Coverage Report

Created: 2025-06-10 06:56

/src/ghostpdl/base/gxstroke.c
Line
Count
Source (jump to first uncovered line)
1
/* Copyright (C) 2001-2025 Artifex Software, Inc.
2
   All Rights Reserved.
3
4
   This software is provided AS-IS with no warranty, either express or
5
   implied.
6
7
   This software is distributed under license and may not be copied,
8
   modified or distributed except as expressly authorized under the terms
9
   of the license contained in the file LICENSE in this distribution.
10
11
   Refer to licensing information at http://www.artifex.com or contact
12
   Artifex Software, Inc.,  39 Mesa Street, Suite 108A, San Francisco,
13
   CA 94129, USA, for further information.
14
*/
15
16
17
/* Path stroking procedures for Ghostscript library */
18
#include "math_.h"
19
#include <stdlib.h> /* abs() */
20
#include "gx.h"
21
#include "gpcheck.h"
22
#include "gserrors.h"
23
#include "gsdcolor.h"
24
#include "gsptype1.h"
25
#include "gsptype2.h"
26
#include "gxfixed.h"
27
#include "gxfarith.h"
28
#include "gxmatrix.h"
29
#include "gscoord.h"
30
#include "gsdevice.h"
31
#include "gxdevice.h"
32
#include "gxhttile.h"
33
#include "gxgstate.h"
34
#include "gzline.h"
35
#include "gzpath.h"
36
#include "gzcpath.h"
37
#include "gxpaint.h"
38
#include "gsstate.h"            /* for gs_currentcpsimode */
39
#include "gzacpath.h"
40
41
/* RJW: There appears to be a difference in the xps and postscript models
42
 * (at least in as far as Microsofts implementation of xps and Acrobats of
43
 * postscript). Acrobat (and ghostscript) are happy to join a line segment
44
 * around a corner, even when the next segment is a dash gap. Microsofts
45
 * implementation of XPS does not.
46
 *
47
 * A test file that shows this up is tests_private/comparefiles/298-05.ps
48
 *
49
 * Enabling the following define would emulate xps behaviour here.
50
 */
51
#undef AVOID_JOINING_TO_DASH_GAPS
52
53
/*
54
 * We don't really know whether it's a good idea to take fill adjustment
55
 * into account for stroking.  Disregarding it means that strokes
56
 * come out thinner than fills; observing it produces heavy-looking
57
 * strokes at low resolutions.  But in any case, we must disregard it
58
 * when stroking zero-width lines.
59
 */
60
#define USE_FILL_ADJUSTMENT
61
62
#ifdef USE_FILL_ADJUSTMENT
63
#  define STROKE_ADJUSTMENT(thin, pgs, xy)\
64
199k
     (thin ? fixed_0 : (pgs)->fill_adjust.xy)
65
#else
66
#  define STROKE_ADJUSTMENT(thin, pgs, xy) fixed_0
67
#endif
68
69
/*
70
 * For some reason, we commented out the optimization for portrait,
71
 * landscape, and uniform (non-scaled) transformations.  We have no record
72
 * of why we did this, and we don't know what bugs re-enabling it may
73
 * introduce.
74
 */
75
#define OPTIMIZE_ORIENTATION
76
77
/*
78
 * Compute the amount by which to expand a stroked bounding box to account
79
 * for line width, caps and joins.  Return 0 if the result is exact, 1 if
80
 * it may be conservative, or gs_error_limitcheck if the result is too
81
 * large to fit in a gs_fixed_point.
82
 *
83
 * Because of square caps and miter and triangular joins, the maximum
84
 * expansion on each side (in user space) is
85
 *      K * line_width/2
86
 * where K is determined as follows:
87
 *      For round or butt caps, E = 1
88
 *      For square caps, E = sqrt(2)
89
 *        If the path is only a single line segment, K = E;
90
 *          if triangular joins, K = 2;
91
 *          if miter joins, K = max(miter_limit, E);
92
 *      otherwise, K = E.
93
 *
94
 * If the following conditions apply, K = E yields an exact result:
95
 *      - The CTM is of the form [X 0 0 Y] or [0 X Y 0].
96
 *      - Square or round caps are used, or all subpaths are closed.
97
 *      - All segments (including the implicit segment created by
98
 *        closepath) are vertical or horizontal lines.
99
 *
100
 * Note that these conditions are sufficient, but not necessary, to get an
101
 * exact result.  We choose this set of conditions because it is easy to
102
 * check and covers many common cases.  Clients that care always have the
103
 * option of using strokepath to get an exact result.
104
 */
105
static float join_expansion_factor(const gs_gstate *, gs_line_join);
106
int
107
gx_stroke_path_expansion(const gs_gstate * pgs, const gx_path * ppath,
108
                         gs_fixed_point * ppt)
109
311k
{
110
311k
    const subpath *psub;
111
311k
    const segment *pseg;
112
311k
    double cx = fabs(pgs->ctm.xx) + fabs(pgs->ctm.yx);
113
311k
    double cy = fabs(pgs->ctm.xy) + fabs(pgs->ctm.yy);
114
311k
    double expand = pgs->line_params.half_width;
115
311k
    int result = 1;
116
117
311k
    if (ppath == NULL) {
118
0
        ppt->x = ppt->y = 0;
119
0
        return 0;   /* no expansion */
120
0
    }
121
311k
    psub = ppath->first_subpath;
122
    /* Adjust the expansion (E) for square caps, if needed */
123
311k
    if (pgs->line_params.start_cap == gs_cap_square ||
124
311k
        pgs->line_params.end_cap == gs_cap_square)
125
5.30k
            expand *= 1.414213562;
126
127
    /* Check for whether an exact result can be computed easily. */
128
311k
    if (is_fzero2(pgs->ctm.xy, pgs->ctm.yx) ||
129
311k
        is_fzero2(pgs->ctm.xx, pgs->ctm.yy)
130
311k
        ) {
131
306k
        bool must_be_closed =
132
306k
            !(pgs->line_params.start_cap == gs_cap_square ||
133
306k
              pgs->line_params.start_cap == gs_cap_round  ||
134
306k
              pgs->line_params.end_cap   == gs_cap_square ||
135
306k
              pgs->line_params.end_cap   == gs_cap_round  ||
136
306k
              pgs->line_params.dash_cap  == gs_cap_square ||
137
306k
              pgs->line_params.dash_cap  == gs_cap_round);
138
306k
        gs_fixed_point prev;
139
140
306k
        prev.x = prev.y = 0; /* Quiet gcc warning. */
141
932k
        for (pseg = (const segment *)psub; pseg;
142
626k
             prev = pseg->pt, pseg = pseg->next
143
306k
             )
144
777k
            switch (pseg->type) {
145
328k
            case s_start:
146
328k
                if (((const subpath *)pseg)->curve_count ||
147
328k
                    (must_be_closed && !((const subpath *)pseg)->is_closed)
148
328k
                    )
149
25.9k
                    goto not_exact;
150
302k
                break;
151
400k
            case s_line:
152
400k
            case s_dash:
153
449k
            case s_line_close:
154
449k
                if (!(pseg->pt.x == prev.x || pseg->pt.y == prev.y))
155
125k
                    goto not_exact;
156
323k
                break;
157
323k
            case s_gap:
158
0
            default:            /* other/unknown segment type */
159
0
                goto not_exact;
160
777k
            }
161
155k
        result = 0;             /* exact result */
162
155k
    }
163
311k
not_exact:
164
311k
    if (result) {
165
156k
        if (!gx_path_has_curves(ppath) && gx_path_subpath_count(ppath) <= 1 &&
166
156k
            (psub == 0 || (pseg = psub->next) == 0 ||
167
147k
             (pseg = pseg->next) == 0 || pseg->type == s_line_close))
168
156k
            DO_NOTHING;
169
12.7k
        else {
170
12.7k
            float factor = join_expansion_factor(pgs, pgs->line_params.join);
171
172
12.7k
            if (pgs->line_params.curve_join >= 0)
173
0
                factor = max(factor, join_expansion_factor(pgs,
174
12.7k
                                (gs_line_join)pgs->line_params.curve_join));
175
12.7k
            expand *= factor;
176
12.7k
        }
177
156k
    }
178
179
    /* Short-cut gs_bbox_transform. */
180
311k
    {
181
311k
        float exx = expand * cx;
182
311k
        float exy = expand * cy;
183
311k
        int code = set_float2fixed_vars(ppt->x, exx);
184
185
311k
        if (code < 0)
186
3.37k
            return code;
187
308k
        code = set_float2fixed_vars(ppt->y, exy);
188
308k
        if (code < 0)
189
50
            return code;
190
308k
    }
191
192
307k
    return result;
193
308k
}
194
static float
195
join_expansion_factor(const gs_gstate *pgs, gs_line_join join)
196
12.7k
{
197
12.7k
    switch (join) {
198
7.04k
    case gs_join_miter: return pgs->line_params.miter_limit;
199
20
    case gs_join_triangle: return 2.0;
200
5.67k
    default: return 1.0;
201
12.7k
    }
202
12.7k
}
203
204
/*
205
 * Structure for a partial line (passed to the drawing routine).
206
 * Two of these are required to do joins right.
207
 * Each endpoint includes the two ends of the cap as well,
208
 * and the deltas for square, round, and triangular cap computation.
209
 *
210
 * The two base values for computing the caps of a partial line are the
211
 * width and the end cap delta.  The width value is one-half the line
212
 * width (suitably transformed) at 90 degrees counter-clockwise
213
 * (in device space, but with "90 degrees" interpreted in *user*
214
 * coordinates) at the end (as opposed to the origin) of the line.
215
 * The cdelta value is one-half the transformed line width in the same
216
 * direction as the line.  From these, we compute two other values at each
217
 * end of the line: co and ce, which are the ends of the cap.
218
 * Note that the cdelta values at o are the negatives of the values at e,
219
 * as are the offsets from p to co and ce.
220
 *
221
 * Initially, only o.p, e.p, e.cdelta, width, and thin are set.
222
 * compute_caps fills in the rest.
223
 */
224
typedef gs_fixed_point *p_ptr;
225
typedef struct endpoint_s {
226
    gs_fixed_point p;           /* the end of the line */
227
    gs_fixed_point co, ce;      /* ends of the cap, p +/- width */
228
    gs_fixed_point cdelta;      /* +/- cap length */
229
} endpoint;
230
typedef endpoint *ep_ptr;
231
typedef const endpoint *const_ep_ptr;
232
typedef struct partial_line_s {
233
    endpoint o;                 /* starting coordinate */
234
    endpoint e;                 /* ending coordinate */
235
    gs_fixed_point width;       /* one-half line width, see above */
236
    gs_fixed_point vector;      /* The line segment direction */
237
    bool thin;                  /* true if minimum-width line */
238
} partial_line;
239
typedef partial_line *pl_ptr;
240
241
/* As we stroke a path, we run through the line segments that make it up.
242
 * We gather each line segment together with any degenerate line segments
243
 * that follow it (call this set "prev"), and then 'join them' to the next
244
 * line segment (and any degenerate line segments that follow it) (if there
245
 * is one) (call this "current").
246
 *
247
 * In order to get the joins right we need to keep flags about both
248
 * prev and current, and whether they originally came from arcs.
249
 */
250
typedef enum note_flags {
251
252
    /* If set, all the line segments that make up current come from arcs. */
253
    nf_all_from_arc       = 1,
254
255
    /* If set, at least one of the line segments that make up current, come
256
     * from arcs. */
257
    nf_some_from_arc      = 2,
258
259
    /* If set then this segment should have a dash cap on the start rather
260
     * than a start cap. */
261
    nf_dash_head          = 4,
262
263
    /* If set then this segment should have a dash cap on the end rather
264
     * than an end cap. */
265
    nf_dash_tail          = 8,
266
267
    /* If set, all the line segments that make up prev come from arcs. */
268
    nf_prev_all_from_arc  = 16,
269
270
    /* If set, at least one of the line segment that make up prev, come from
271
     * arcs. */
272
    nf_prev_some_from_arc = 32,
273
274
    /* If set then prev should have a dash cap on the start rather
275
     * than a start cap. */
276
    nf_prev_dash_head     = 64,
277
278
    /* If set then prev should have a dash cap on the end rather
279
     * than an end cap. */
280
    nf_prev_dash_tail     = 128
281
282
} note_flags;
283
284
/* Macro to combine the prev and current arc_flags. After applying this
285
 * macro, the bits in the result have the following meanings:
286
 *  nf_all_from_arc    set if all the components of current and prev
287
 *                     come from an Arc.
288
 *  nf_some_from_arc   set if any of the components of current and
289
 *                     prev come from an Arc.
290
 *  nf_dash_head       set if prev should have a dash cap rather than
291
 *                     a start cap.
292
 *  nf_dash_tail       set if prev should have a dash cap rather than
293
 *                     an end cap.
294
 */
295
#define COMBINE_FLAGS(F) \
296
514k
    (((F>>4) | ((F) & nf_some_from_arc)) & \
297
514k
     (((F) & nf_all_from_arc) ? ~0 : ~nf_all_from_arc))
298
299
/* Assign a point.  Some compilers would do this with very slow code */
300
/* if we simply implemented it as an assignment. */
301
#define ASSIGN_POINT(pp, p)\
302
115k
  ((pp)->x = (p).x, (pp)->y = (p).y)
303
304
/* Other forward declarations */
305
static bool width_is_thin(pl_ptr);
306
static void adjust_stroke(gx_device *, pl_ptr, const gs_gstate *, bool, bool, note_flags);
307
static int line_join_points(const gx_line_params * pgs_lp,
308
                             pl_ptr plp, pl_ptr nplp,
309
                             gs_fixed_point * join_points,
310
                             const gs_matrix * pmat, gs_line_join join,
311
                             bool reflected);
312
static int line_join_points_fast_cw(const gx_line_params * pgs_lp,
313
                                    pl_ptr plp, pl_ptr nplp,
314
                                    gs_fixed_point * rjoin_points,
315
                                    const gs_matrix * pmat,
316
                                    gs_line_join join);
317
static int line_join_points_fast_ccw(const gx_line_params * pgs_lp,
318
                                     pl_ptr plp, pl_ptr nplp,
319
                                     gs_fixed_point * join_points,
320
                                     const gs_matrix * pmat,
321
                                     gs_line_join join);
322
static void compute_caps(pl_ptr);
323
static int add_points(gx_path *, const gs_fixed_point *,
324
                       int, bool);
325
static int add_pie_join(gx_path *, pl_ptr, pl_ptr, bool, bool);
326
static int add_pie_join_fast_cw(gx_path *, pl_ptr, pl_ptr, bool);
327
static int add_pie_join_fast_ccw(gx_path *, pl_ptr, pl_ptr, bool);
328
static int add_round_cap(gx_path *, const_ep_ptr);
329
static int add_pie_cap(gx_path *, const_ep_ptr);
330
static int cap_points(gs_line_cap, const_ep_ptr,
331
                       gs_fixed_point * /*[3] */ );
332
static int join_under_pie(gx_path *, pl_ptr, pl_ptr, bool);
333
334
int
335
gx_default_stroke_path_shading_or_pattern(gx_device        * pdev,
336
                                    const gs_gstate        * pgs_orig,
337
                                          gx_path          * ppath,
338
                                    const gx_stroke_params * params,
339
                                    const gx_drawing_color * pdevc,
340
                                    const gx_clip_path     * pcpath)
341
31
{
342
31
    gs_gstate *pgs = (gs_gstate *)pgs_orig; /* Nasty cast away const! */
343
31
    gs_logical_operation_t save_lop = gs_current_logical_op_inline(pgs);
344
31
    gx_device_cpath_accum adev;
345
31
    gx_device_color devc;
346
31
    gx_clip_path stroke_as_clip_path;
347
31
    int code;
348
31
    gs_fixed_rect dev_clip_rect = { {min_fixed, min_fixed}, {max_fixed, max_fixed}};
349
350
    /* We want to make a image of the stroke as a clip path, so
351
     * create an empty structure on the stack. */
352
31
    code = gx_cpath_init_local_shared_nested(&stroke_as_clip_path, NULL, pdev->memory, 1);
353
31
    if (code < 0)
354
0
        return code;
355
    /* Now we make an accumulator device that will fill that out. */
356
31
    gx_cpath_accum_begin(&adev, stroke_as_clip_path.path.memory, false);
357
31
    (*dev_proc(pdev, get_clipping_box))(pdev, &dev_clip_rect);
358
31
    gx_cpath_accum_set_cbox(&adev, &dev_clip_rect);
359
31
    set_nonclient_dev_color(&devc, 0); /* arbitrary, but not transparent */
360
31
    gs_set_logical_op_inline(pgs, lop_default);
361
    /* Stroke the path to the accumulator. */
362
31
    code = gx_stroke_path_only(ppath, NULL, (gx_device *)&adev, pgs, params,
363
31
                               &devc, pcpath);
364
    /* Now extract the accumulated path into stroke_as_clip_path. */
365
31
    if (code < 0 || (code = gx_cpath_accum_end(&adev, &stroke_as_clip_path)) < 0)
366
0
        gx_cpath_accum_discard(&adev);
367
31
    gs_set_logical_op_inline(pgs, save_lop);
368
31
    if (code >= 0)
369
31
    {
370
        /* Now, fill a rectangle with the original color through that
371
         * clip path. */
372
31
        gs_fixed_rect clip_box, shading_box;
373
31
        gs_int_rect cb;
374
31
        gx_device_clip cdev;
375
376
31
        gx_cpath_outer_box(&stroke_as_clip_path, &clip_box);
377
        /* This is horrid. If the pdevc is a shading color, then the
378
         * fill_rectangle routine requires us to have intersected it
379
         * with the shading rectangle first. If we don't do this,
380
         * ps3fts/470-01.ps goes wrong. */
381
31
        if (gx_dc_is_pattern2_color(pdevc) &&
382
31
            gx_dc_pattern2_get_bbox(pdevc, &shading_box) > 0)
383
0
        {
384
0
            rect_intersect(clip_box, shading_box);
385
0
        }
386
31
        cb.p.x = fixed2int_pixround(clip_box.p.x);
387
31
        cb.p.y = fixed2int_pixround(clip_box.p.y);
388
31
        cb.q.x = fixed2int_pixround(clip_box.q.x);
389
31
        cb.q.y = fixed2int_pixround(clip_box.q.y);
390
31
        gx_make_clip_device_on_stack(&cdev, &stroke_as_clip_path, pdev);
391
31
        code = pdevc->type->fill_rectangle(pdevc,
392
31
                        cb.p.x, cb.p.y, cb.q.x - cb.p.x, cb.q.y - cb.p.y,
393
31
                        (gx_device *)&cdev, pgs->log_op, NULL);
394
31
        gx_destroy_clip_device_on_stack(&cdev);
395
31
    }
396
31
    gx_cpath_free(&stroke_as_clip_path, "gx_default_stroke_path_shading_or_pattern");
397
398
31
    return code;
399
31
}
400
401
/* Define the default implementation of the device stroke_path procedure. */
402
int
403
gx_default_stroke_path(gx_device * dev, const gs_gstate * pgs,
404
                       gx_path * ppath, const gx_stroke_params * params,
405
                       const gx_drawing_color * pdevc,
406
                       const gx_clip_path * pcpath)
407
23.2k
{
408
23.2k
    if (gx_dc_is_pattern2_color(pdevc) ||
409
23.2k
        pdevc->type == &gx_dc_type_data_ht_colored ||
410
23.2k
        (gx_dc_is_pattern1_color(pdevc) &&
411
23.2k
         gx_pattern_tile_is_clist(pdevc->colors.pattern.p_tile)))
412
14
        return gx_default_stroke_path_shading_or_pattern(dev, pgs, ppath, params,
413
14
                                                         pdevc, pcpath);
414
23.2k
    else
415
23.2k
        return gx_stroke_path_only(ppath, (gx_path *) 0, dev, pgs, params,
416
23.2k
                                   pdevc, pcpath);
417
23.2k
}
418
419
/* Fill a partial stroked path.  Free variables: */
420
/* to_path, stroke_path_body, fill_params, always_thin, pgs, dev, pdevc, */
421
/* code, ppath, exit(label). */
422
#define FILL_STROKE_PATH(dev, thin, pcpath, final)\
423
416k
  if(to_path==&stroke_path_body && !gx_path_is_void(&stroke_path_body) &&\
424
416k
     (final || lop_is_idempotent(pgs->log_op))) {\
425
99.4k
    fill_params.adjust.x = STROKE_ADJUSTMENT(thin, pgs, x);\
426
99.4k
    fill_params.adjust.y = STROKE_ADJUSTMENT(thin, pgs, y);\
427
99.4k
    if (to_path_reverse != NULL) {\
428
0
        code = gx_join_path_and_reverse(to_path, to_path_reverse);\
429
0
        if(code < 0) goto exit;\
430
0
    }\
431
99.4k
    code = gx_fill_path_only(to_path, dev, pgs, &fill_params, pdevc, pcpath);\
432
99.4k
    gx_path_free(&stroke_path_body, "fill_stroke_path");\
433
99.4k
    if ( code < 0 ) goto exit;\
434
99.4k
    gx_path_init_local(&stroke_path_body, ppath->memory);\
435
99.4k
  }
436
437
/*
438
 * Define the internal procedures that stroke a partial_line
439
 * (the first pl_ptr argument).  If both partial_lines are non-null,
440
 * the procedure creates an appropriate join; otherwise, the procedure
441
 * creates an end cap.  If the first int is 0, the procedure also starts
442
 * with an appropriate cap.
443
 */
444
#define stroke_line_proc(proc)\
445
  int proc(gx_path *, gx_path *, bool ensure_closed, int, pl_ptr, pl_ptr,\
446
           const gx_device_color *, gx_device *, const gs_gstate *,\
447
           const gx_stroke_params *, const gs_fixed_rect *, int,\
448
           gs_line_join, bool, note_flags)
449
typedef stroke_line_proc((*stroke_line_proc_t));
450
451
static stroke_line_proc(stroke_add);
452
static stroke_line_proc(stroke_add_compat);
453
static stroke_line_proc(stroke_add_fast);
454
static stroke_line_proc(stroke_fill);
455
static int stroke_add_initial_cap_compat(gx_path * ppath, pl_ptr plp, bool adlust_longitude,
456
           const gx_device_color * pdevc, gx_device * dev,
457
           const gs_gstate * pgs);
458
459
/* Define the orientations we handle specially. */
460
typedef enum {
461
    orient_other = 0,
462
    orient_portrait,            /* [xx 0 0 yy tx ty] */
463
    orient_landscape            /* [0 xy yx 0 tx ty] */
464
} orientation;
465
466
/*
467
 * Internal function used to merge the 2 sides of a stroked path.
468
 * path contains the 'forward' side, rpath contains the 'reversed' side.
469
 * Reverse rpath, then append it to path.
470
 *
471
 * If path is closed, then rpath should be too. If path is open, then the
472
 * starting and ending points of both paths should be the same, so as to
473
 * guarantee a closed path.
474
 */
475
static int
476
gx_join_path_and_reverse(gx_path * path, gx_path * rpath)
477
0
{
478
0
    int code;
479
480
0
    if (gx_path_is_void(rpath))
481
0
        return 0;
482
0
     code = gx_path_append_reversed(rpath, path);
483
0
    if (code < 0)
484
0
        return code;
485
486
0
    gx_path_free(rpath, "gx_join_path_and_reverse");
487
0
    gx_path_init_local(rpath, path->memory);
488
489
0
    return gx_path_close_subpath(path);
490
0
}
491
492
/*
493
 * Stroke a path.  If to_path != 0, append the stroke outline to it;
494
 * if to_path == 0, draw the strokes on pdev.
495
 *
496
 * Note that gx_stroke_path_only with to_path != NULL may clip the path to
497
 * the clipping path, as for to_path == NULL.  This is almost never
498
 * what is wanted.
499
 */
500
static int
501
gx_stroke_path_only_aux(gx_path          *ppath, /* lgtm[cpp/use-of-goto] */
502
                        gx_path          *to_path,
503
                        gx_device        *pdev,
504
                  const gs_gstate        *pgs,
505
                  const gx_stroke_params *params,
506
                  const gx_device_color  *pdevc,
507
                  const gx_clip_path     *pcpath)
508
23.4k
{
509
23.4k
    bool CPSI_mode = gs_currentcpsimode(pgs->memory);
510
23.4k
    bool traditional = CPSI_mode | params->traditional;
511
23.4k
    stroke_line_proc_t line_proc =
512
23.4k
               ((to_path == 0 && !gx_dc_is_pattern1_color_clist_based(pdevc))
513
23.4k
                      ? (lop_is_idempotent(pgs->log_op) ? stroke_fill : stroke_add) :
514
23.4k
                        (traditional ? stroke_add_compat : stroke_add_fast));
515
23.4k
    gs_fixed_rect ibox, cbox;
516
23.4k
    gx_device_clip cdev;
517
23.4k
    gx_device *dev = pdev;
518
23.4k
    int code = 0;
519
23.4k
    gx_fill_params fill_params;
520
23.4k
    const gx_line_params *pgs_lp = gs_currentlineparams_inline(pgs);
521
23.4k
    int dash_count = pgs_lp->dash.pattern_size;
522
23.4k
    gx_path fpath, dpath;
523
23.4k
    gx_path stroke_path_body;
524
23.4k
    gx_path stroke_path_reverse;
525
23.4k
    gx_path *to_path_reverse = NULL;
526
23.4k
    const gx_path *spath;
527
23.4k
    float xx = pgs->ctm.xx, xy = pgs->ctm.xy;
528
23.4k
    float yx = pgs->ctm.yx, yy = pgs->ctm.yy;
529
    /*
530
     * We are dealing with a reflected coordinate system
531
     * if transform(1,0) is counter-clockwise from transform(0,1).
532
     * See the note in stroke_add for the algorithm.
533
     */
534
23.4k
    int uniform;
535
23.4k
    bool reflected;
536
23.4k
    orientation orient =
537
23.4k
        (
538
23.4k
#ifdef OPTIMIZE_ORIENTATION
539
23.4k
         is_fzero2(xy, yx) ?
540
21.1k
         (uniform = (xx == yy ? 1 : xx == -yy ? -1 : 0),
541
21.1k
          reflected = (uniform ? uniform < 0 : (xx < 0) != (yy < 0)),
542
21.1k
          orient_portrait) :
543
23.4k
         is_fzero2(xx, yy) ?
544
0
         (uniform = (xy == yx ? -1 : xy == -yx ? 1 : 0),
545
0
          reflected = (uniform ? uniform < 0 : (xy < 0) == (yx < 0)),
546
0
          orient_landscape) :
547
    /* We should optimize uniform rotated coordinate systems */
548
    /* here as well, but we don't. */
549
2.29k
#endif
550
2.29k
         (uniform = 0,
551
2.29k
          reflected = xy * yx > xx * yy,
552
2.29k
          orient_other));
553
23.4k
    const segment_notes not_first = sn_not_first;
554
23.4k
    gs_line_join curve_join =
555
23.4k
        (pgs_lp->curve_join >= 0 ? (gs_line_join)pgs_lp->curve_join :
556
23.4k
         pgs_lp->join == gs_join_none || pgs_lp->join == gs_join_round ?
557
13.3k
            gs_join_bevel : pgs_lp->join);
558
23.4k
    float line_width = pgs_lp->half_width;      /* (*half* the line width) */
559
23.4k
    bool always_thin;
560
23.4k
    double line_width_and_scale;
561
23.4k
    double device_line_width_scale = 0; /* Quiet compiler. */
562
23.4k
    double device_dot_length = pgs_lp->dot_length * fixed_1;
563
23.4k
    const subpath *psub;
564
23.4k
    gs_matrix initial_matrix;
565
23.4k
    bool initial_matrix_reflected, flattened_path = false;
566
23.4k
    note_flags flags;
567
568
23.4k
    (*dev_proc(pdev, get_initial_matrix)) (pdev, &initial_matrix);
569
23.4k
    initial_matrix_reflected = initial_matrix.xy * initial_matrix.yx >
570
23.4k
                               initial_matrix.xx * initial_matrix.yy;
571
572
#ifdef DEBUG
573
    if (gs_debug_c('o')) {
574
        int i;
575
576
        dmlprintf4(ppath->memory, "[o]half_width=%f, start_cap=%d, end_cap=%d, dash_cap=%d,\n",
577
                   pgs_lp->half_width, (int)pgs_lp->start_cap,
578
                   (int)pgs_lp->end_cap, (int)pgs_lp->dash_cap);
579
        dmlprintf3(ppath->memory, "   join=%d, miter_limit=%f, miter_check=%f,\n",
580
                   (int)pgs_lp->join, pgs_lp->miter_limit,
581
                   pgs_lp->miter_check);
582
        dmlprintf1(ppath->memory, "   dash pattern=%d", dash_count);
583
        for (i = 0; i < dash_count; i++)
584
            dmprintf1(ppath->memory, ",%f", pgs_lp->dash.pattern[i]);
585
        dmputs(ppath->memory, ",\n");
586
        dmlprintf4(ppath->memory, "\toffset=%f, init(ink_on=%d, index=%d, dist_left=%f)\n",
587
                   pgs_lp->dash.offset, pgs_lp->dash.init_ink_on,
588
                   pgs_lp->dash.init_index, pgs_lp->dash.init_dist_left);
589
    }
590
#endif
591
592
23.4k
    gx_path_bbox(ppath, &ibox);
593
    /* Expand the path bounding box by the scaled line width. */
594
23.4k
    {
595
23.4k
        gs_fixed_point expansion;
596
597
23.4k
        if (gx_stroke_path_expansion(pgs, ppath, &expansion) < 0) {
598
            /* The expansion is so large it caused a limitcheck. */
599
1.71k
            ibox.p.x = ibox.p.y = min_fixed;
600
1.71k
            ibox.q.x = ibox.q.y = max_fixed;
601
21.6k
        } else {
602
21.6k
            expansion.x += pgs->fill_adjust.x;
603
21.6k
            expansion.y += pgs->fill_adjust.y;
604
            /*
605
             * It's theoretically possible for the following computations to
606
             * overflow, so we need to check for this.
607
             */
608
21.6k
            ibox.p.x = (ibox.p.x < min_fixed + expansion.x ? min_fixed :
609
21.6k
                        ibox.p.x - expansion.x);
610
21.6k
            ibox.p.y = (ibox.p.y < min_fixed + expansion.y ? min_fixed :
611
21.6k
                        ibox.p.y - expansion.y);
612
21.6k
            ibox.q.x = (ibox.q.x > max_fixed - expansion.x ? max_fixed :
613
21.6k
                        ibox.q.x + expansion.x);
614
21.6k
            ibox.q.y = (ibox.q.y > max_fixed - expansion.y ? max_fixed :
615
21.6k
                        ibox.q.y + expansion.y);
616
21.6k
        }
617
23.4k
    }
618
    /* Check the expanded bounding box against the clipping regions. */
619
23.4k
    if (pcpath)
620
7.34k
        gx_cpath_inner_box(pcpath, &cbox);
621
16.0k
    else if (pdevc)
622
15.9k
        (*dev_proc(pdev, get_clipping_box)) (pdev, &cbox);
623
92
    else {
624
        /* This is strokepath, not stroke.  Don't clip. */
625
92
        cbox = ibox;
626
92
    }
627
23.4k
    if (!rect_within(ibox, cbox)) {
628
        /* Intersect the path box and the clip bounding box. */
629
        /* If the intersection is empty, this call is a no-op. */
630
23.2k
        gs_fixed_rect bbox;
631
632
23.2k
        if (pcpath) {
633
7.32k
            gx_cpath_outer_box(pcpath, &bbox);
634
7.32k
            if_debug4m('f', ppath->memory, "   outer_box=(%g,%g),(%g,%g)\n",
635
7.32k
                       fixed2float(bbox.p.x), fixed2float(bbox.p.y),
636
7.32k
                       fixed2float(bbox.q.x), fixed2float(bbox.q.y));
637
7.32k
            rect_intersect(ibox, bbox);
638
7.32k
        } else
639
23.2k
            rect_intersect(ibox, cbox);
640
23.2k
        if (ibox.p.x >= ibox.q.x || ibox.p.y >= ibox.q.y) {
641
            /* Intersection of boxes is empty! */
642
7.34k
            return 0;
643
7.34k
        }
644
        /*
645
         * The path is neither entirely inside the inner clip box
646
         * nor entirely outside the outer clip box.
647
         * If we had to flatten the path, this is where we would
648
         * recompute its bbox and make the tests again,
649
         * but we don't bother right now.
650
         */
651
        /*
652
         * If there is a clipping path, set up a clipping device.
653
         * for stroke_fill because, because the latter uses low level methods
654
         * which don't accept a clipping path.
655
         * Note that in some cases stroke_fill appends the path to stroke_path_body
656
         * instead a real painting, and it is painted with FILL_STROKE_PATH.
657
         *
658
         * Contrary to that, FILL_STROKE_PATH paints a path with
659
         * the fill_path method, which handles a clipping path,
660
         * so we don't pass the clipper device to FILL_STROKE_PATH
661
         * to prevent an appearence of superposing clippers.
662
         */
663
15.9k
        if (pcpath && line_proc == stroke_fill) {
664
26
            gx_make_clip_device_on_stack(&cdev, pcpath, pdev);
665
26
            cdev.max_fill_band = pdev->max_fill_band;
666
26
            dev = (gx_device *)&cdev;
667
26
        }
668
15.9k
    }
669
16.0k
    fill_params.rule = gx_rule_winding_number;
670
16.0k
    fill_params.flatness = pgs->flatness;
671
16.0k
    if (line_width < 0)
672
0
        line_width = -line_width;
673
16.0k
    line_width_and_scale = line_width * (double)int2fixed(1);
674
16.0k
    if (is_fzero(line_width))
675
1.39k
        always_thin = true;
676
14.6k
    else {
677
14.6k
        float xa, ya;
678
679
14.6k
        switch (orient) {
680
13.2k
            case orient_portrait:
681
13.2k
                xa = xx, ya = yy;
682
13.2k
                goto sat;
683
0
            case orient_landscape:
684
0
                xa = xy, ya = yx;
685
13.2k
              sat:
686
13.2k
                if (xa < 0)
687
7.48k
                    xa = -xa;
688
13.2k
                if (ya < 0)
689
12.8k
                    ya = -ya;
690
13.2k
                always_thin = (max(xa, ya) * line_width < 0.5);
691
13.2k
                if (!always_thin && uniform) {  /* Precompute a value we'll need later. */
692
4.87k
                    device_line_width_scale = line_width_and_scale * xa;
693
4.87k
                }
694
13.2k
                break;
695
1.41k
            default:
696
1.41k
                {
697
                    /* The check is more complicated, but it's worth it. */
698
                    /* Compute radii of the transformed round brush. */
699
                    /* Let x = [a, sqrt(1-a^2)]'
700
                       radius^2 is an extremum of :
701
                       rr(a)=(CTM*x)^2 = (a*xx + sqrt(1 - a^2)*xy)^2 + (a*yx + sqrt(1 - a^2)*yy)^2
702
                       With solving D(rr(a),a)==0, got :
703
                       max_rr = (xx^2 + xy^2 + yx^2 + yy^2 + sqrt(((xy + yx)^2 + (xx - yy)^2)*((xy - yx)^2 + (xx + yy)^2)))/2.
704
                       r = sqrt(max_rr);
705
                       Well we could use eigenvalues of the quadratic form,
706
                       but it gives same result with a bigger calculus.
707
                     */
708
1.41k
                    double max_rr = ((double)(xx*xx + xy*xy + yx*yx + yy*yy) +
709
1.41k
                                     sqrt((double)((xy + yx)*(xy + yx) + (xx - yy)*(xx - yy)) *
710
1.41k
                                                  ((xy - yx)*(xy - yx) + (xx + yy)*(xx + yy))
711
1.41k
                                          )
712
1.41k
                                     )/2;
713
714
1.41k
                    always_thin = max_rr * line_width * line_width < 0.25;
715
1.41k
                }
716
14.6k
        }
717
14.6k
    }
718
16.0k
    if_debug7m('o', ppath->memory, "[o]ctm=(%g,%g,%g,%g,%g,%g) thin=%d\n",
719
16.0k
              xx, xy, yx, yy, pgs->ctm.tx, pgs->ctm.ty, always_thin);
720
16.0k
    if (device_dot_length != 0) {
721
        /*
722
         * Compute the dot length in device space.  We can't do this
723
         * quite right for non-uniform coordinate systems; too bad.
724
         */
725
0
        gs_matrix mat;
726
0
        const gs_matrix *pmat;
727
728
0
        if (pgs_lp->dot_length_absolute) {
729
0
            gs_deviceinitialmatrix(pdev, &mat);
730
0
            pmat = &mat;
731
0
        } else
732
0
            pmat = (const gs_matrix *)&pgs->ctm;
733
0
        device_dot_length *= fabs(pmat->xy) + fabs(pmat->yy);
734
0
    }
735
    /* Start by flattening the path.  We should do this on-the-fly.... */
736
16.0k
    if (!gx_path_has_curves(ppath) && !gx_path_has_long_segments(ppath)) {
737
        /* don't need to flatten */
738
15.9k
        if (!ppath->first_subpath) {
739
14.6k
            if (dev == (gx_device *)&cdev)
740
1
                gx_destroy_clip_device_on_stack(&cdev);
741
14.6k
            return 0;
742
14.6k
        }
743
1.30k
        spath = ppath;
744
1.30k
    } else {
745
79
        gx_path_init_local(&fpath, ppath->memory);
746
79
        if ((code = gx_path_add_flattened_for_stroke(ppath, &fpath,
747
79
            params->flatness, pgs)) < 0) {
748
0
            if (dev == (gx_device *)&cdev)
749
0
                gx_destroy_clip_device_on_stack(&cdev);
750
0
            return code;
751
0
        }
752
79
        spath = &fpath;
753
79
        flattened_path = true;
754
79
    }
755
1.38k
    if (dash_count) {
756
39
        float max_dash_len = 0;
757
39
        float expand_squared;
758
39
        int i;
759
39
        float adjust = (float)pgs->fill_adjust.x;
760
39
        if (adjust > (float)pgs->fill_adjust.y)
761
0
            adjust = (float)pgs->fill_adjust.y;
762
169
        for (i = 0; i < dash_count; i++) {
763
130
            if (max_dash_len < pgs_lp->dash.pattern[i])
764
65
                max_dash_len = pgs_lp->dash.pattern[i];
765
130
        }
766
39
        expand_squared = pgs->ctm.xx * pgs->ctm.yy - pgs->ctm.xy * pgs->ctm.yx;
767
39
        if (expand_squared < 0)
768
35
            expand_squared = -expand_squared;
769
39
        expand_squared *= max_dash_len * max_dash_len;
770
        /* Wide lines in curves can show dashes up, so fudge to allow for
771
         * this. */
772
39
        if (pgs->line_params.half_width > 1)
773
0
            adjust /= pgs->line_params.half_width;
774
39
        if (expand_squared*65536.0f >= (float)(adjust*adjust)) {
775
39
            gx_path_init_local(&dpath, ppath->memory);
776
39
            code = gx_path_add_dash_expansion(spath, &dpath, pgs);
777
39
            if (code < 0)
778
0
                goto exf;
779
39
            spath = &dpath;
780
39
        } else {
781
0
            dash_count = 0;
782
0
        }
783
39
    }
784
1.38k
    if (to_path == 0) {
785
        /* We might try to defer this if it's expensive.... */
786
1.36k
        to_path = &stroke_path_body;
787
1.36k
        gx_path_init_local(&stroke_path_body, ppath->memory);
788
1.36k
    }
789
1.38k
    if (line_proc == stroke_add_fast) {
790
0
        to_path_reverse = &stroke_path_reverse;
791
0
        gx_path_init_local(&stroke_path_reverse, ppath->memory);
792
0
    }
793
3.75k
    for (psub = spath->first_subpath; psub != 0;) {
794
2.36k
        int index = 0;
795
2.36k
        const segment *pseg = (const segment *)psub;
796
2.36k
        fixed x = pseg->pt.x;
797
2.36k
        fixed y = pseg->pt.y;
798
2.36k
        bool is_closed = ((const subpath *)pseg)->is_closed;
799
2.36k
        partial_line pl, pl_prev, pl_first;
800
2.36k
        bool zero_length = true;
801
2.36k
        int pseg_notes = pseg->notes;
802
803
2.36k
        flags = nf_all_from_arc;
804
805
        /* Run through each segment in the current path, drawing each segment
806
         * delayed by 1 - that is, when we're looking at segment n, we draw
807
         * (or not) segment n-1. This delay allows us to always know whether
808
         * to join or cap the line. */
809
416k
        while ((pseg = pseg->next) != 0 &&
810
416k
               pseg->type != s_start
811
414k
            ) {
812
            /* Compute the width parameters in device space. */
813
            /* We work with unscaled values, for speed. */
814
414k
            fixed sx, udx, sy, udy;
815
414k
            bool is_dash_segment;
816
817
414k
            pseg_notes = pseg->notes;
818
819
415k
         d2:is_dash_segment = false;
820
415k
         d1:if (pseg->type == s_dash) {
821
443
                dash_segment *pd = (dash_segment *)pseg;
822
823
443
                sx = pd->pt.x;
824
443
                sy = pd->pt.y;
825
443
                udx = pd->tangent.x;
826
443
                udy = pd->tangent.y;
827
443
                is_dash_segment = true;
828
414k
            } else if (pseg->type == s_gap) {
829
0
                sx = pseg->pt.x;
830
0
                sy = pseg->pt.y;
831
0
                udx = sx - x;
832
0
                udy = sy - y;
833
0
                is_dash_segment = true;
834
414k
            } else {
835
414k
                sx = pseg->pt.x;
836
414k
                sy = pseg->pt.y;
837
414k
                udx = sx - x;
838
414k
                udy = sy - y;
839
414k
            }
840
415k
            zero_length &= ((udx | udy) == 0);
841
415k
            pl.o.p.x = x, pl.o.p.y = y;
842
416k
          d:flags = (((pseg_notes & sn_not_first) ?
843
408k
                      ((flags & nf_all_from_arc) | nf_some_from_arc) : 0) |
844
416k
                     ((pseg_notes & sn_dash_head) ? nf_dash_head : 0)    |
845
416k
                     ((pseg_notes & sn_dash_tail) ? nf_dash_tail : 0)    |
846
416k
                     (flags & ~nf_all_from_arc));
847
416k
            pl.e.p.x = sx, pl.e.p.y = sy;
848
416k
            if (!(udx | udy) || pseg->type == s_dash || pseg->type == s_gap) { /* degenerate or short */
849
                /*
850
                 * If this is the first segment of the subpath,
851
                 * check the entire subpath for degeneracy.
852
                 * Otherwise, ignore the degenerate segment.
853
                 */
854
2.04k
                if (index != 0 && pseg->type != s_dash && pseg->type != s_gap)
855
659
                {
856
659
                    if (pseg->next == NULL || pseg->next->type == s_start)
857
106
                        continue;
858
553
                    pseg = pseg->next;
859
                    /* We're skipping a degenerate path segment; if it was
860
                     * labelled as being the first from a curve, then make
861
                     * sure the one we're skipping to is also labelled as
862
                     * being the first from a curve, otherwise we can get
863
                     * improper joins being used. See Bug 696466. */
864
553
                    pseg_notes = (((pseg_notes & sn_not_first) == 0) ?
865
522
                                  (pseg->notes & ~sn_not_first) :
866
553
                                  pseg->notes);
867
553
                    goto d2;
868
659
                }
869
                /* Check for a degenerate subpath. */
870
1.90k
                while ((pseg = pseg->next) != 0 &&
871
1.90k
                       pseg->type != s_start
872
1.38k
                    ) {
873
555
                    if (is_dash_segment)
874
0
                        break;
875
555
                    if (pseg->type == s_dash || pseg->type == s_gap)
876
0
                        goto d1;
877
555
                    sx = pseg->pt.x, udx = sx - x;
878
555
                    sy = pseg->pt.y, udy = sy - y;
879
555
                    if (udx | udy) {
880
36
                        zero_length = false;
881
36
                        goto d;
882
36
                    }
883
555
                }
884
1.35k
                if (pgs_lp->dot_length == 0 &&
885
1.35k
                    pgs_lp->start_cap != gs_cap_round &&
886
1.35k
                    pgs_lp->end_cap != gs_cap_round &&
887
1.35k
                    !is_dash_segment) {
888
                    /* From PLRM, stroke operator :
889
                       If a subpath is degenerate (consists of a single-point closed path
890
                       or of two or more points at the same coordinates),
891
                       stroke paints it only if round line caps have been specified */
892
23
                    break;
893
23
                }
894
                /*
895
                 * If the subpath is a dash, take the orientation from the dash segment.
896
                 * Otherwise orient the dot according to the previous segment if
897
                 * any, or else the next segment if any, or else
898
                 * according to the specified dot orientation.
899
                 */
900
1.33k
                {
901
                    /* When passing here, either pseg == NULL or it points to the
902
                       start of the next subpaph. So we can't use pseg
903
                       for determining the segment direction.
904
                       In same time, psub->last may help, so use it. */
905
1.33k
                    const segment *end = psub->last;
906
907
1.33k
                    if (is_dash_segment) {
908
                        /* Nothing. */
909
887
                    } else if (end != 0 && (end->pt.x != x || end->pt.y != y))
910
0
                        sx = end->pt.x, sy = end->pt.y, udx = sx - x, udy = sy - y;
911
1.33k
                }
912
                /*
913
                 * Compute the properly oriented dot length, and then
914
                 * draw the dot like a very short line.
915
                 */
916
1.33k
                if ((udx | udy) == 0) {
917
887
                    if (is_fzero(pgs_lp->dot_orientation.xy)) {
918
                        /* Portrait orientation, dot length = X */
919
887
                        udx = fixed_1;
920
887
                    } else {
921
                        /* Landscape orientation, dot length = Y */
922
0
                        udy = fixed_1;
923
0
                    }
924
887
                }
925
1.33k
                if (sx == x && sy == y && (pseg == NULL || pseg->type == s_start)) {
926
1.10k
                    double scale = device_dot_length /
927
1.10k
                                hypot((double)udx, (double)udy);
928
1.10k
                    fixed udx1, udy1;
929
                    /*
930
                     * If we're using butt caps, make sure the "line" is
931
                     * long enough to show up.
932
                     * Don't apply this with always_thin, becase
933
                     * draw thin line always rounds the length up.
934
                     */
935
1.10k
                    if (!always_thin && (pgs_lp->start_cap == gs_cap_butt ||
936
1.10k
                                         pgs_lp->end_cap   == gs_cap_butt ||
937
1.10k
                                         pgs_lp->dash_cap  == gs_cap_butt)) {
938
0
                        fixed dmax = max(any_abs(udx), any_abs(udy));
939
940
0
                        if (dmax * scale < fixed_1)
941
0
                            scale = (float)fixed_1 / dmax;
942
0
                    }
943
1.10k
                    udx1 = (fixed) (udx * scale);
944
1.10k
                    udy1 = (fixed) (udy * scale);
945
1.10k
                    sx = x + udx1;
946
1.10k
                    sy = y + udy1;
947
1.10k
                }
948
                /*
949
                 * Back up 1 segment to keep the bookkeeping straight.
950
                 */
951
1.33k
                pseg = (pseg != 0 ? pseg->prev : psub->last);
952
1.33k
                if (!is_dash_segment)
953
887
                    goto d;
954
443
                pl.e.p.x = sx;
955
443
                pl.e.p.y = sy;
956
443
            }
957
414k
            pl.vector.x = udx;
958
414k
            pl.vector.y = udy;
959
414k
            if (always_thin) {
960
313k
                pl.e.cdelta.x = pl.e.cdelta.y = 0;
961
313k
                pl.width.x = pl.width.y = 0;
962
313k
                pl.thin = true;
963
313k
            } else {
964
101k
                if (uniform != 0) {
965
                    /* We can save a lot of work in this case. */
966
                    /* We know orient != orient_other. */
967
98.6k
                    double dpx = udx, dpy = udy;
968
98.6k
                    double wl = device_line_width_scale /
969
98.6k
                    hypot(dpx, dpy);
970
971
98.6k
                    pl.e.cdelta.x = (fixed) (dpx * wl);
972
98.6k
                    pl.e.cdelta.y = (fixed) (dpy * wl);
973
                    /* The width is the cap delta rotated by */
974
                    /* 90 degrees. */
975
98.6k
                    if (initial_matrix_reflected)
976
98.6k
                        pl.width.x = pl.e.cdelta.y, pl.width.y = -pl.e.cdelta.x;
977
0
                    else
978
0
                        pl.width.x = -pl.e.cdelta.y, pl.width.y = pl.e.cdelta.x;
979
98.6k
                    pl.thin = false;    /* if not always_thin, */
980
                    /* then never thin. */
981
982
98.6k
                } else {
983
2.51k
                    gs_point dpt;       /* unscaled */
984
2.51k
                    float wl;
985
986
2.51k
                    code = gs_gstate_idtransform(pgs,
987
2.51k
                                                 (float)udx, (float)udy,
988
2.51k
                                                 &dpt);
989
2.51k
                    if (code < 0) {
990
720
                        dpt.x = 0; dpt.y = 0;
991
                        /* Swallow the error */
992
720
                        code = 0;
993
1.79k
                    } else {
994
1.79k
                        wl = line_width_and_scale /
995
1.79k
                            hypot(dpt.x, dpt.y);
996
                        /* Construct the width vector in */
997
                        /* user space, still unscaled. */
998
1.79k
                        dpt.x *= wl;
999
1.79k
                        dpt.y *= wl;
1000
1.79k
                    }
1001
1002
                    /*
1003
                     * We now compute both perpendicular
1004
                     * and (optionally) parallel half-widths,
1005
                     * as deltas in device space.  We use
1006
                     * a fixed-point, unscaled version of
1007
                     * gs_dtransform.  The second computation
1008
                     * folds in a 90-degree rotation (in user
1009
                     * space, before transforming) in the
1010
                     * direction that corresponds to counter-
1011
                     * clockwise in device space.
1012
                     */
1013
2.51k
                    pl.e.cdelta.x = (fixed) (dpt.x * xx);
1014
2.51k
                    pl.e.cdelta.y = (fixed) (dpt.y * yy);
1015
2.51k
                    if (orient != orient_portrait)
1016
1.69k
                        pl.e.cdelta.x += (fixed) (dpt.y * yx),
1017
1.69k
                            pl.e.cdelta.y += (fixed) (dpt.x * xy);
1018
2.51k
                    if (!reflected ^ initial_matrix_reflected)
1019
859
                        dpt.x = -dpt.x, dpt.y = -dpt.y;
1020
2.51k
                    pl.width.x = (fixed) (dpt.y * xx),
1021
2.51k
                        pl.width.y = -(fixed) (dpt.x * yy);
1022
2.51k
                    if (orient != orient_portrait)
1023
1.69k
                        pl.width.x -= (fixed) (dpt.x * yx),
1024
1.69k
                            pl.width.y += (fixed) (dpt.y * xy);
1025
2.51k
                    pl.thin = width_is_thin(&pl);
1026
2.51k
                }
1027
101k
                if (!pl.thin) {
1028
99.8k
                    if (index)
1029
98.8k
                        dev->sgr.stroke_stored = false;
1030
99.8k
                    adjust_stroke(dev, &pl, pgs, false,
1031
99.8k
                            (pseg->prev == 0 || pseg->prev->type == s_start) &&
1032
99.8k
                            (pseg->next == 0 || pseg->next->type == s_start) &&
1033
99.8k
                            (zero_length || !is_closed),
1034
99.8k
                            COMBINE_FLAGS(flags));
1035
99.8k
                    compute_caps(&pl);
1036
99.8k
                }
1037
101k
            }
1038
414k
            if (index++) {
1039
412k
                gs_line_join join =
1040
412k
                    (pseg_notes & not_first ? curve_join : pgs_lp->join);
1041
412k
                int first;
1042
412k
                pl_ptr lptr;
1043
412k
                bool ensure_closed;
1044
1045
412k
                if (join == gs_join_none) {
1046
                    /* Fake the end of a subpath so we get */
1047
                    /* caps instead of joins. */
1048
0
                    first = 0;
1049
0
                    lptr = 0;
1050
0
                    index = 1;
1051
412k
                } else {
1052
412k
                    first = (is_closed ? 1 : index - 2);
1053
412k
                    lptr = &pl;
1054
412k
                }
1055
#ifdef AVOID_JOINING_TO_DASH_GAPS
1056
                if (is_dash_segment) /* Never join to a dash segment */
1057
                    lptr = NULL;
1058
#endif
1059
412k
                if (pseg->type == s_gap)
1060
0
                {
1061
0
                    lptr = NULL;
1062
                    /* We are always drawing one line segment behind, so make
1063
                     * sure we don't draw the next one. */
1064
0
                    index = 0;
1065
0
                }
1066
1067
412k
                ensure_closed = ((to_path == &stroke_path_body &&
1068
412k
                                  lop_is_idempotent(pgs->log_op)) ||
1069
412k
                                 (lptr == NULL ? true : lptr->thin));
1070
                /* Draw the PREVIOUS line segment, joining it to lptr (or
1071
                 * capping if lptr == NULL. */
1072
412k
                code = (*line_proc) (to_path, to_path_reverse, ensure_closed,
1073
412k
                                     first, &pl_prev, lptr,
1074
412k
                                     pdevc, dev, pgs, params, &cbox,
1075
412k
                                     uniform, join, initial_matrix_reflected,
1076
412k
                                     COMBINE_FLAGS(flags));
1077
412k
                if (code < 0)
1078
0
                    goto exit;
1079
412k
                FILL_STROKE_PATH(pdev, always_thin, pcpath, false);
1080
412k
            } else if (pseg->type == s_gap) {
1081
                /* If this segment is a gap, then we don't want to draw it
1082
                 * next time! */
1083
0
                index = 0;
1084
0
            } else
1085
2.34k
                pl_first = pl;
1086
414k
            pl_prev = pl;
1087
414k
            x = sx, y = sy;
1088
414k
            flags = (flags<<4) | nf_all_from_arc;
1089
414k
        }
1090
2.36k
        if (index) {
1091
            /* If closed, join back to start, else cap. */
1092
2.34k
            segment_notes notes = (pseg == 0 ?
1093
1.36k
                                   (const segment *)spath->first_subpath :
1094
2.34k
                                   pseg)->notes;
1095
2.34k
            gs_line_join join = (notes & not_first ? curve_join :
1096
2.34k
                                 pgs_lp->join);
1097
2.34k
            gs_line_cap cap;
1098
            /* For some reason, the Borland compiler requires the cast */
1099
            /* in the following statement. */
1100
2.34k
            pl_ptr lptr =
1101
2.34k
                (!is_closed || join == gs_join_none || zero_length ?
1102
1.98k
                 (pl_ptr) 0 : (pl_ptr) & pl_first);
1103
1104
#ifdef AVOID_JOINING_TO_DASH_GAPS
1105
            if (lptr && psub->type == s_dash)
1106
                lptr = NULL;
1107
#endif
1108
            /* If the subpath starts with a gap, then cap, don't join! */
1109
2.34k
            if (lptr && psub->type == s_start && psub->next && psub->next->type == s_gap)
1110
0
                lptr = NULL;
1111
1112
2.34k
            flags = (((notes & sn_not_first) ?
1113
2.34k
                      ((flags & nf_all_from_arc) | nf_some_from_arc) : 0) |
1114
2.34k
                     ((notes & sn_dash_head) ? nf_dash_head : 0) |
1115
2.34k
                     ((notes & sn_dash_tail) ? nf_dash_tail : 0) |
1116
2.34k
                     (flags & ~nf_all_from_arc));
1117
2.34k
            code = (*line_proc) (to_path, to_path_reverse, true,
1118
2.34k
                                 index - 1, &pl_prev, lptr, pdevc,
1119
2.34k
                                 dev, pgs, params, &cbox, uniform, join,
1120
2.34k
                                 initial_matrix_reflected,
1121
2.34k
                                 COMBINE_FLAGS(flags));
1122
2.34k
            if (code < 0)
1123
0
                goto exit;
1124
2.34k
            FILL_STROKE_PATH(pdev, always_thin, pcpath, false);
1125
2.34k
            cap = ((flags & nf_prev_dash_head) ?
1126
1.82k
                   pgs_lp->start_cap : pgs_lp->dash_cap);
1127
2.34k
            if (traditional && lptr == 0 && cap != gs_cap_butt) {
1128
                /* Create the initial cap at last. */
1129
356
                code = stroke_add_initial_cap_compat(to_path, &pl_first, index == 1, pdevc, dev, pgs);
1130
356
                if (code < 0)
1131
0
                    goto exit;
1132
356
                FILL_STROKE_PATH(pdev, always_thin, pcpath, false);
1133
356
            }
1134
2.34k
        }
1135
2.36k
        psub = (const subpath *)pseg;
1136
2.36k
    }
1137
1.38k
    if (to_path_reverse != NULL)
1138
0
        code = gx_join_path_and_reverse(to_path, to_path_reverse);
1139
1.38k
    FILL_STROKE_PATH(pdev, always_thin, pcpath, true);
1140
1.38k
  exit:
1141
1.38k
    if (dev == (gx_device *)&cdev)
1142
25
        cdev.target->sgr = cdev.sgr;
1143
1.38k
    if (to_path == &stroke_path_body)
1144
1.36k
        gx_path_free(&stroke_path_body, "gx_stroke_path_only error");   /* (only needed if error) */
1145
1.38k
    if (to_path_reverse == &stroke_path_reverse)
1146
0
        gx_path_free(&stroke_path_reverse, "gx_stroke_path_only error");
1147
1.38k
  exf:
1148
1.38k
    if (dash_count)
1149
39
        gx_path_free(&dpath, "gx_stroke_path exit(dash path)");
1150
    /* If we flattened the path then we set spath to &fpath. If we flattned the path then now we need to free fpath */
1151
1.38k
    if(flattened_path)
1152
79
        gx_path_free(&fpath, "gx_stroke_path exit(flattened path)");
1153
1.38k
    if (dev == (gx_device *)&cdev)
1154
25
        gx_destroy_clip_device_on_stack(&cdev);
1155
1.38k
    return code;
1156
1.38k
}
1157
1158
int
1159
gx_stroke_path_only(gx_path * ppath, gx_path * to_path, gx_device * pdev,
1160
               const gs_gstate * pgs, const gx_stroke_params * params,
1161
                 const gx_device_color * pdevc, const gx_clip_path * pcpath)
1162
23.4k
{
1163
23.4k
    return gx_stroke_path_only_aux(ppath, to_path, pdev, pgs, params, pdevc, pcpath);
1164
23.4k
}
1165
1166
/* ------ Internal routines ------ */
1167
1168
/*
1169
 * Test whether a line is thin, i.e., whether the half-width, measured
1170
 * perpendicular to the line in device space, is less than 0.5 pixel.
1171
 * Unfortunately, the width values we computed are perpendicular to the
1172
 * line in *user* space, so we may have to do some extra work.
1173
 */
1174
static bool
1175
width_is_thin(pl_ptr plp)
1176
2.51k
{
1177
2.51k
    fixed dx, dy, wx = plp->width.x, wy = plp->width.y;
1178
1179
    /* If the line is horizontal or vertical, things are easy. */
1180
2.51k
    if ((dy = plp->vector.y) == 0)
1181
1.31k
        return any_abs(wy) < fixed_half;
1182
1.19k
    if ((dx = plp->vector.x) == 0)
1183
37
        return any_abs(wx) < fixed_half;
1184
1185
    /* For the longest time, we used to have a test here that
1186
     * attempted to trivially accept diagonal lines as being
1187
     * thin based on the components of the perpendicular
1188
     * width vector in device space as both being less than 0.5.
1189
     * Bug 702196 showed some examples where this was clearly
1190
     * wrong.
1191
     *
1192
     * The cause for this bug was that the 0.5 figure was wrong.
1193
     * For the point to be less than 1/2 a pixel perpendicular
1194
     * distant from the line, we'd need x^2 + y^2 < .5^2.
1195
     * For a 45 degree line, that'd be 2(x^2) < 1/4 = x^2 < 1/8
1196
     * or x < sqr(1/8). 45 degree line is the "worst case", so
1197
     * if both horizontal and vertical widths are less than
1198
     * sqr(1/8), the line is thin. sqr(1/8) = 0.35355339059.
1199
     * So, we should be using sqr(1/8) rather than 0.5.
1200
     *
1201
     * Fixing this did indeed produce many many progressions,
1202
     * but left just the odd file still showing problems.
1203
     *
1204
     * Further investigations show that those cases were due to
1205
     * the use of "non-uniform" scaling matrices, for example
1206
     * (83 0 0 51 0 0). With such matrices, it's possible for
1207
     * nearly horizontal lines to be thin, but nearly vertical
1208
     * ones to be thick (or vice versa). Having the style of
1209
     * line "pop" between thick and thin in a single stroke
1210
     * looks very noticeable.
1211
     *
1212
     * We could change the trivial optimisation below to only
1213
     * apply in the 'uniform' case, but that would never actually
1214
     * trigger (as tested on the cluster), because all such
1215
     * cases are caught by the "always_thin" condition in the
1216
     * caller.
1217
     *
1218
     * Just removing the trivial test and leaving the 'complicated'
1219
     * test below us would leave us vulnerable to "popping",
1220
     * so we disable both. In practice this makes no difference
1221
     * to the number of tests showing diffs in the cluster.
1222
     */
1223
#if 0 /* DISABLED TEST, see above */
1224
    {
1225
        /* thin_threshold = fixed sqr(1/8) - see above. */
1226
        const fixed thin_threshold = float2fixed(0.35355339059f);
1227
        if (any_abs(wx) < thin_threshold && any_abs(wy) < thin_threshold)
1228
            return true;
1229
    }
1230
1231
    /*
1232
     * We have to do this the hard way, by actually computing the
1233
     * perpendicular distance.  The distance from the point (U,V)
1234
     * from a line from (0,0) to (C,D) is
1235
     *      abs(C*V - D*U) / sqrt(C^2 + D^2)
1236
     * In this case, (U,V) is plp->width, and (C,D) is (dx,dy).
1237
     */
1238
    {
1239
        double C = dx, D = dy;
1240
        double num = C * wy - D * wx;
1241
        double denom = hypot(C, D);
1242
1243
        /* both num and denom are scaled by fixed_scale^2, */
1244
        /* so we don't need to do any de-scaling for the test. */
1245
        return fabs(num) < denom * 0.5;
1246
    }
1247
#else
1248
1.16k
    return false;
1249
1.19k
#endif
1250
1.19k
}
1251
1252
/* Adjust the endpoints and width of a stroke segment along a specified axis */
1253
static void
1254
adjust_stroke_transversal(pl_ptr plp, const gs_gstate * pgs, bool thin, bool horiz)
1255
522
{
1256
522
    fixed *pw;
1257
522
    fixed *pov;
1258
522
    fixed *pev;
1259
522
    fixed w, w2;
1260
522
    fixed adj2;
1261
1262
522
    if (horiz) {
1263
        /* More horizontal stroke */
1264
140
        pw = &plp->width.y, pov = &plp->o.p.y, pev = &plp->e.p.y;
1265
140
        adj2 = STROKE_ADJUSTMENT(thin, pgs, y) << 1;
1266
382
    } else {
1267
        /* More vertical stroke */
1268
382
        pw = &plp->width.x, pov = &plp->o.p.x, pev = &plp->e.p.x;
1269
382
        adj2 = STROKE_ADJUSTMENT(thin, pgs, x) << 1;
1270
382
    }
1271
    /* Round the larger component of the width up or down, */
1272
    /* whichever way produces a result closer to the correct width. */
1273
    /* Note that just rounding the larger component */
1274
    /* may not produce the correct result. */
1275
522
    w = *pw;
1276
522
    if (w > 0)
1277
248
        w2 = fixed_rounded(w << 1);     /* full line width */
1278
274
    else
1279
274
        w2 = -fixed_rounded(-w << 1);   /* full line width */
1280
522
    if (w2 == 0 && *pw != 0) {
1281
        /* Make sure thin lines don't disappear. */
1282
0
        w2 = (*pw < 0 ? -fixed_1 + adj2 : fixed_1 - adj2);
1283
0
        *pw = arith_rshift_1(w2);
1284
0
    }
1285
    /* Only adjust the endpoints if the line is horizontal or vertical. */
1286
522
    if (*pov == *pev) {
1287
        /* We're going to round the endpoint coordinates, so */
1288
        /* take the fill adjustment into account now. */
1289
166
        if (w >= 0)
1290
83
            w2 += adj2;
1291
83
        else
1292
83
            w2 = adj2 - w2;
1293
166
        if (w2 & fixed_1)       /* odd width, move to half-pixel */
1294
114
            *pov = *pev = fixed_floor(*pov) + fixed_half;
1295
52
        else                    /* even width, move to pixel */
1296
52
            *pov = *pev = fixed_rounded(*pov);
1297
1298
166
    }
1299
522
}
1300
1301
static void
1302
adjust_stroke_longitude(pl_ptr plp, const gs_gstate * pgs,
1303
                        bool thin, bool horiz,
1304
                        gs_line_cap start_cap, gs_line_cap end_cap)
1305
48
{
1306
1307
48
    fixed *pow = (horiz ? &plp->o.p.y : &plp->o.p.x);
1308
48
    fixed *pew = (horiz ? &plp->e.p.y : &plp->e.p.x);
1309
1310
    /* Only adjust the endpoints if the line is horizontal or vertical.
1311
       Debugged with pdfwrite->ppmraw 72dpi file2.pdf */
1312
48
    if (*pow == *pew) {
1313
29
        fixed *pov = (horiz ? &plp->o.p.x : &plp->o.p.y);
1314
29
        fixed *pev = (horiz ? &plp->e.p.x : &plp->e.p.y);
1315
29
        fixed length = any_abs(*pov - *pev);
1316
29
        fixed length_r, length_r_2;
1317
29
        fixed mv = (*pov + *pev) / 2, mv_r;
1318
29
        fixed adj2 = (horiz ? STROKE_ADJUSTMENT(thin, pgs, x)
1319
29
                            : STROKE_ADJUSTMENT(thin, pgs, y)) << 1;
1320
1321
        /* fixme :
1322
           The best value for adjust_longitude is whether
1323
           the dash is isolated and doesn't cover entire segment.
1324
           The current data structure can't pass this info.
1325
           Therefore we restrict adjust_stroke_longitude with 1 pixel length.
1326
        */
1327
29
        if (length > fixed_1) /* comparefiles/file2.pdf */
1328
27
            return;
1329
2
        if (start_cap == gs_cap_butt || end_cap == gs_cap_butt) {
1330
0
            length_r = fixed_rounded(length);
1331
0
            if (length_r < fixed_1)
1332
0
                length_r = fixed_1;
1333
0
            length_r_2 = length_r / 2;
1334
2
        } else {
1335
            /* Account width for proper placing cap centers. */
1336
2
            fixed width = any_abs(horiz ? plp->width.y : plp->width.x);
1337
1338
2
            length_r = fixed_rounded(length + width * 2 + adj2);
1339
2
            length_r_2 = fixed_rounded(length) / 2;
1340
2
        }
1341
2
        if (length_r & fixed_1)
1342
2
            mv_r = fixed_floor(mv) + fixed_half;
1343
0
        else
1344
0
            mv_r = fixed_floor(mv);
1345
2
        if (*pov < *pev) {
1346
0
            *pov = mv_r - length_r_2;
1347
0
            *pev = mv_r + length_r_2;
1348
2
        } else {
1349
2
            *pov = mv_r + length_r_2;
1350
2
            *pev = mv_r - length_r_2;
1351
2
        }
1352
2
    }
1353
48
}
1354
1355
/* Adjust the endpoints and width of a stroke segment */
1356
/* to achieve more uniform rendering. */
1357
/* Only o.p, e.p, e.cdelta, and width have been set. */
1358
static void
1359
adjust_stroke(gx_device *dev, pl_ptr plp, const gs_gstate * pgs,
1360
              bool thin, bool adjust_longitude, note_flags flags)
1361
100k
{
1362
100k
    bool horiz, adjust = true;
1363
100k
    gs_line_cap start_cap = (flags & nf_dash_head ?
1364
16
                             pgs->line_params.dash_cap :
1365
100k
                             pgs->line_params.start_cap);
1366
100k
    gs_line_cap end_cap   = (flags & nf_dash_tail ?
1367
40
                             pgs->line_params.dash_cap :
1368
100k
                             pgs->line_params.end_cap);
1369
1370
    /* If stroke_adjustment is disabled, or this isn't a horizontal or
1371
     * vertical line, then bale. */
1372
100k
    if (!pgs->stroke_adjust || (plp->width.x != 0 && plp->width.y != 0)) {
1373
99.5k
        dev->sgr.stroke_stored = false;
1374
99.5k
        return;                 /* don't adjust */
1375
99.5k
    }
1376
    /* Recognizing gradients, which some obsolete software
1377
       represent as a set of parallel strokes.
1378
       Such strokes must not be adjusted - bug 687974. */
1379
522
    if (dev->sgr.stroke_stored &&
1380
522
        (start_cap == gs_cap_butt || end_cap == gs_cap_butt) &&
1381
522
        dev->sgr.orig[3].x == plp->vector.x && dev->sgr.orig[3].y == plp->vector.y) {
1382
        /* Parallel. */
1383
24
        if ((int64_t)(plp->o.p.x - dev->sgr.orig[0].x) * plp->vector.x ==
1384
24
            (int64_t)(plp->o.p.y - dev->sgr.orig[0].y) * plp->vector.y &&
1385
24
            (int64_t)(plp->e.p.x - dev->sgr.orig[1].x) * plp->vector.x ==
1386
0
            (int64_t)(plp->e.p.y - dev->sgr.orig[1].y) * plp->vector.y) {
1387
            /* Transversal shift. */
1388
0
            if (any_abs(plp->o.p.x - dev->sgr.orig[0].x) <= any_abs(plp->width.x + dev->sgr.orig[2].x) &&
1389
0
                any_abs(plp->o.p.y - dev->sgr.orig[0].y) <= any_abs(plp->width.y + dev->sgr.orig[2].y) &&
1390
0
                any_abs(plp->e.p.x - dev->sgr.orig[1].x) <= any_abs(plp->width.x + dev->sgr.orig[2].x) &&
1391
0
                any_abs(plp->e.p.y - dev->sgr.orig[1].y) <= any_abs(plp->width.y + dev->sgr.orig[2].y)) {
1392
                /* The strokes were contacting or overlapping. */
1393
0
                if (any_abs(plp->o.p.x - dev->sgr.orig[0].x) >= any_abs(plp->width.x + dev->sgr.orig[2].x) / 2 &&
1394
0
                    any_abs(plp->o.p.y - dev->sgr.orig[0].y) >= any_abs(plp->width.y + dev->sgr.orig[2].y) / 2 &&
1395
0
                    any_abs(plp->e.p.x - dev->sgr.orig[1].x) >= any_abs(plp->width.x + dev->sgr.orig[2].x) / 2 &&
1396
0
                    any_abs(plp->e.p.y - dev->sgr.orig[1].y) >= any_abs(plp->width.y + dev->sgr.orig[2].y) / 2) {
1397
                    /* The strokes were not much overlapping. */
1398
0
                    if (!(any_abs(plp->o.p.x - dev->sgr.adjusted[0].x) <= any_abs(plp->width.x + dev->sgr.adjusted[2].x) &&
1399
0
                          any_abs(plp->o.p.y - dev->sgr.adjusted[0].y) <= any_abs(plp->width.y + dev->sgr.adjusted[2].y) &&
1400
0
                          any_abs(plp->e.p.x - dev->sgr.adjusted[1].x) <= any_abs(plp->width.x + dev->sgr.adjusted[2].x) &&
1401
0
                          any_abs(plp->e.p.y - dev->sgr.adjusted[1].y) <= any_abs(plp->width.y + dev->sgr.adjusted[2].y))) {
1402
                        /* they became not contacting.
1403
                           We should not have adjusted the last stroke. Since if we did,
1404
                           lets change the current one to restore the contact,
1405
                           so that we don't leave gaps when rasterising. See bug 687974.
1406
                         */
1407
0
                        fixed delta_w_x = (dev->sgr.adjusted[2].x - dev->sgr.orig[2].x);
1408
0
                        fixed delta_w_y = (dev->sgr.adjusted[2].y - dev->sgr.orig[2].y);
1409
0
                        fixed shift_o_x = (dev->sgr.adjusted[0].x - dev->sgr.orig[0].x);
1410
0
                        fixed shift_o_y = (dev->sgr.adjusted[0].y - dev->sgr.orig[0].y);
1411
0
                        fixed shift_e_x = (dev->sgr.adjusted[1].x - dev->sgr.orig[1].x); /* Must be same, but we prefer clarity. */
1412
0
                        fixed shift_e_y = (dev->sgr.adjusted[1].y - dev->sgr.orig[1].y);
1413
1414
0
                        if (plp->o.p.x < dev->sgr.orig[0].x ||
1415
0
                            (plp->o.p.x == dev->sgr.orig[0].x && plp->o.p.y < dev->sgr.orig[0].y)) {
1416
                            /* Left contact, adjust to keep the contact. */
1417
0
                            if_debug4m('O', dev->memory, "[O]don't adjust {{%f,%f},{%f,%f}}\n",
1418
0
                                       fixed2float(plp->o.p.x), fixed2float(plp->o.p.y),
1419
0
                                       fixed2float(plp->e.p.x), fixed2float(plp->e.p.y));
1420
0
                            plp->width.x += (shift_o_x - delta_w_x) / 2;
1421
0
                            plp->width.y += (shift_o_y - delta_w_y) / 2;
1422
0
                            plp->o.p.x += (shift_o_x - delta_w_x) / 2;
1423
0
                            plp->o.p.y += (shift_o_y - delta_w_y) / 2;
1424
0
                            plp->e.p.x += (shift_e_x - delta_w_x) / 2;
1425
0
                            plp->e.p.y += (shift_e_y - delta_w_y) / 2;
1426
0
                            adjust = false;
1427
0
                        } else {
1428
                            /* Right contact, adjust to keep the contact. */
1429
0
                            if_debug4m('O', dev->memory, "[O]don't adjust {{%f,%f},{%f,%f}}\n",
1430
0
                                       fixed2float(plp->o.p.x), fixed2float(plp->o.p.y),
1431
0
                                       fixed2float(plp->e.p.x), fixed2float(plp->e.p.y));
1432
0
                            plp->width.x -= (shift_o_x + delta_w_x) / 2;
1433
0
                            plp->width.y -= (shift_o_y + delta_w_y) / 2;
1434
0
                            plp->o.p.x += (shift_o_x + delta_w_x) / 2;
1435
0
                            plp->o.p.y += (shift_o_y + delta_w_y) / 2;
1436
0
                            plp->e.p.x += (shift_e_x + delta_w_x) / 2;
1437
0
                            plp->e.p.y += (shift_e_y + delta_w_y) / 2;
1438
0
                            adjust = false;
1439
0
                        }
1440
0
                    }
1441
0
                }
1442
0
            }
1443
0
        }
1444
24
    }
1445
522
    if ((start_cap == gs_cap_butt) || (end_cap == gs_cap_butt)) {
1446
142
        dev->sgr.stroke_stored = true;
1447
142
        dev->sgr.orig[0] = plp->o.p;
1448
142
        dev->sgr.orig[1] = plp->e.p;
1449
142
        dev->sgr.orig[2] = plp->width;
1450
142
        dev->sgr.orig[3] = plp->vector;
1451
142
    } else
1452
380
        dev->sgr.stroke_stored = false;
1453
522
    if (adjust) {
1454
522
        horiz = (any_abs(plp->width.x) <= any_abs(plp->width.y));
1455
522
        adjust_stroke_transversal(plp, pgs, thin, horiz);
1456
522
        if (adjust_longitude)
1457
48
            adjust_stroke_longitude(plp, pgs, thin, horiz, start_cap, end_cap);
1458
522
    }
1459
522
    if ((start_cap == gs_cap_butt) || (end_cap == gs_cap_butt)) {
1460
142
        dev->sgr.adjusted[0] = plp->o.p;
1461
142
        dev->sgr.adjusted[1] = plp->e.p;
1462
142
        dev->sgr.adjusted[2] = plp->width;
1463
142
        dev->sgr.adjusted[3] = plp->vector;
1464
142
    }
1465
522
}
1466
1467
/* Compute the intersection of two lines.  This is a messy algorithm */
1468
/* that somehow ought to be useful in more places than just here.... */
1469
/* If the lines are (nearly) parallel, return -1 without setting *pi; */
1470
/* otherwise, return 0 if the intersection is beyond *pp1 and *pp2 in */
1471
/* the direction determined by *pd1 and *pd2, and 1 otherwise. */
1472
static int
1473
line_intersect(
1474
                  p_ptr pp1,    /* point on 1st line */
1475
                  p_ptr pd1,    /* slope of 1st line (dx,dy) */
1476
                  p_ptr pp2,    /* point on 2nd line */
1477
                  p_ptr pd2,    /* slope of 2nd line */
1478
                  p_ptr pi)
1479
61.8k
{                               /* return intersection here */
1480
    /* We don't have to do any scaling, the factors all work out right. */
1481
61.8k
    double u1 = pd1->x, v1 = pd1->y;
1482
61.8k
    double u2 = pd2->x, v2 = pd2->y;
1483
61.8k
    double denom = u1 * v2 - u2 * v1;
1484
61.8k
    double xdiff = pp2->x - pp1->x;
1485
61.8k
    double ydiff = pp2->y - pp1->y;
1486
61.8k
    double f1;
1487
61.8k
    double max_result = any_abs(denom) * (double)max_fixed;
1488
1489
#ifdef DEBUG
1490
    if (gs_debug_c('O')) {
1491
        dlprintf4("[o]Intersect %f,%f(%f/%f)",
1492
                  fixed2float(pp1->x), fixed2float(pp1->y),
1493
                  fixed2float(pd1->x), fixed2float(pd1->y));
1494
        dlprintf4(" & %f,%f(%f/%f),\n",
1495
                  fixed2float(pp2->x), fixed2float(pp2->y),
1496
                  fixed2float(pd2->x), fixed2float(pd2->y));
1497
        dlprintf3("\txdiff=%f ydiff=%f denom=%f ->\n",
1498
                  xdiff, ydiff, denom);
1499
    }
1500
#endif
1501
    /* Check for degenerate result. */
1502
61.8k
    if (any_abs(xdiff) >= max_result || any_abs(ydiff) >= max_result) {
1503
        /* The lines are nearly parallel, */
1504
        /* or one of them has zero length.  Punt. */
1505
32
        if_debug0('O', "\tdegenerate!\n");
1506
32
        return -1;
1507
32
    }
1508
61.7k
    f1 = (v2 * xdiff - u2 * ydiff) / denom;
1509
61.7k
    pi->x = pp1->x + (fixed) (f1 * u1);
1510
61.7k
    pi->y = pp1->y + (fixed) (f1 * v1);
1511
61.7k
    if_debug2('O', "\t%f,%f\n",
1512
61.7k
              fixed2float(pi->x), fixed2float(pi->y));
1513
61.7k
    return (f1 >= 0 && (v1 * xdiff >= u1 * ydiff ? denom >= 0 : denom < 0) ? 0 : 1);
1514
61.8k
}
1515
1516
/* Set up the width and delta parameters for a thin line. */
1517
/* We only approximate the width and height. */
1518
static void
1519
set_thin_widths(register pl_ptr plp)
1520
178
{
1521
178
    fixed dx = plp->e.p.x - plp->o.p.x, dy = plp->e.p.y - plp->o.p.y;
1522
1523
178
#define TRSIGN(v, c) ((v) >= 0 ? (c) : -(c))
1524
178
    if (any_abs(dx) > any_abs(dy)) {
1525
90
        plp->width.x = plp->e.cdelta.y = 0;
1526
90
        plp->width.y = plp->e.cdelta.x = TRSIGN(dx, fixed_half);
1527
90
    } else {
1528
88
        plp->width.y = plp->e.cdelta.x = 0;
1529
88
        plp->width.x = -(plp->e.cdelta.y = TRSIGN(dy, fixed_half));
1530
88
    }
1531
178
#undef TRSIGN
1532
178
}
1533
1534
/* Draw a line on the device. */
1535
/* Treat no join the same as a bevel join. */
1536
/* rpath should always be NULL, hence ensure_closed can be ignored */
1537
static int
1538
stroke_fill(gx_path * ppath, gx_path * rpath, bool ensure_closed, int first,
1539
            register pl_ptr plp, pl_ptr nplp, const gx_device_color * pdevc,
1540
            gx_device * dev, const gs_gstate * pgs,
1541
            const gx_stroke_params * params, const gs_fixed_rect * pbbox,
1542
            int uniform, gs_line_join join, bool reflected,
1543
            note_flags flags)
1544
413k
{
1545
413k
    const fixed lix = plp->o.p.x;
1546
413k
    const fixed liy = plp->o.p.y;
1547
413k
    const fixed litox = plp->e.p.x;
1548
413k
    const fixed litoy = plp->e.p.y;
1549
1550
    /* assert(lop_is_idempotent(pgs->log_op)); */
1551
413k
    if (plp->thin) {
1552
        /* Minimum-width line, don't have to be careful with caps/joins. */
1553
314k
        return (*dev_proc(dev, draw_thin_line))(dev, lix, liy, litox, litoy,
1554
314k
                                                pdevc, pgs->log_op,
1555
314k
                                                pgs->fill_adjust.x,
1556
314k
                                                pgs->fill_adjust.y);
1557
314k
    }
1558
    /* Check for being able to fill directly. */
1559
99.2k
    {
1560
99.2k
        const gx_line_params *pgs_lp = gs_currentlineparams_inline(pgs);
1561
99.2k
        gs_line_cap start_cap = (flags & nf_dash_head ?
1562
99.0k
                                 pgs_lp->dash_cap : pgs_lp->start_cap);
1563
99.2k
        gs_line_cap end_cap   = (flags & nf_dash_tail ?
1564
99.0k
                                 pgs_lp->dash_cap : pgs_lp->end_cap);
1565
1566
99.2k
        if (first != 0)
1567
98.8k
            start_cap = gs_cap_butt;
1568
99.2k
        if (nplp != 0)
1569
98.8k
            end_cap = gs_cap_butt;
1570
99.2k
        if (!plp->thin && (nplp == 0 || !nplp->thin)
1571
99.2k
            && (start_cap == gs_cap_butt || start_cap == gs_cap_square)
1572
99.2k
            && (end_cap   == gs_cap_butt || end_cap   == gs_cap_square)
1573
99.2k
            && (join == gs_join_bevel || join == gs_join_miter ||
1574
98.9k
                join == gs_join_none)
1575
99.2k
            && (pgs->fill_adjust.x | pgs->fill_adjust.y) == 0
1576
99.2k
            ) {
1577
0
            gs_fixed_point points[6];
1578
0
            int npoints, code;
1579
0
            fixed ax, ay, bx, by;
1580
1581
0
            npoints = cap_points(start_cap, &plp->o, points);
1582
0
            if (nplp == 0)
1583
0
                code = cap_points(end_cap, &plp->e, points + npoints);
1584
0
            else
1585
0
                code = line_join_points(pgs_lp, plp, nplp, points + npoints,
1586
0
                                        (uniform ? (gs_matrix *) 0 :
1587
0
                                         &ctm_only(pgs)), join, reflected);
1588
0
            if (code < 0)
1589
0
                goto general;
1590
            /* Make sure the parallelogram fill won't overflow. */
1591
0
#define SUB_OVERFLOWS(r, u, v)\
1592
0
  (((r = u - v) ^ u) < 0 && (u ^ v) < 0)
1593
0
            if (SUB_OVERFLOWS(ax, points[0].x, points[1].x) ||
1594
0
                SUB_OVERFLOWS(ay, points[0].y, points[1].y) ||
1595
0
                SUB_OVERFLOWS(bx, points[2].x, points[1].x) ||
1596
0
                SUB_OVERFLOWS(by, points[2].y, points[1].y)
1597
0
                )
1598
0
                goto general;
1599
0
#undef SUB_OVERFLOWS
1600
0
            if (nplp != 0) {
1601
0
                if (join == gs_join_miter) {
1602
                    /* Make sure we have a bevel and not a miter. */
1603
0
                    if (!(points[2].x == plp->e.co.x &&
1604
0
                          points[2].y == plp->e.co.y &&
1605
0
                          points[5].x == plp->e.ce.x &&
1606
0
                          points[5].y == plp->e.ce.y)
1607
0
                        )
1608
0
                        goto fill;
1609
0
                } {
1610
0
                    const gs_fixed_point *bevel = points + 2;
1611
1612
                    /* Identify which 3 points define the bevel triangle. */
1613
0
                    if (points[3].x == nplp->o.p.x &&
1614
0
                        points[3].y == nplp->o.p.y
1615
0
                        )
1616
0
                        ++bevel;
1617
                    /* Fill the bevel. */
1618
0
                    code = (*dev_proc(dev, fill_triangle)) (dev,
1619
0
                                                         bevel->x, bevel->y,
1620
0
                               bevel[1].x - bevel->x, bevel[1].y - bevel->y,
1621
0
                               bevel[2].x - bevel->x, bevel[2].y - bevel->y,
1622
0
                                                        pdevc, pgs->log_op);
1623
0
                    if (code < 0)
1624
0
                        return code;
1625
0
                }
1626
0
            }
1627
            /* Fill the body of the stroke. */
1628
0
            return (*dev_proc(dev, fill_parallelogram)) (dev,
1629
0
                                                   points[1].x, points[1].y,
1630
0
                                                         ax, ay, bx, by,
1631
0
                                                         pdevc, pgs->log_op);
1632
0
          fill:
1633
0
            code = add_points(ppath, points, npoints + code, true);
1634
0
            if (code < 0)
1635
0
                return code;
1636
0
            return gx_path_close_subpath(ppath);
1637
0
        }
1638
99.2k
    }
1639
    /* General case: construct a path for the fill algorithm. */
1640
99.2k
 general:
1641
99.2k
    return stroke_add(ppath, rpath, ensure_closed, first, plp, nplp, pdevc,
1642
99.2k
                      dev, pgs, params, pbbox, uniform, join, reflected,
1643
99.2k
                      flags);
1644
99.2k
}
1645
1646
/* Add a segment to the path.  This handles all the complex cases. */
1647
static int
1648
stroke_add(gx_path * ppath, gx_path * rpath, bool ensure_closed, int first,
1649
           pl_ptr plp, pl_ptr nplp, const gx_device_color * pdevc,
1650
           gx_device * dev, const gs_gstate * pgs,
1651
           const gx_stroke_params * params,
1652
           const gs_fixed_rect * ignore_pbbox, int uniform,
1653
           gs_line_join join, bool reflected, note_flags flags)
1654
99.6k
{
1655
99.6k
    const gx_line_params *pgs_lp = gs_currentlineparams_inline(pgs);
1656
99.6k
    gs_fixed_point points[8];
1657
99.6k
    int npoints;
1658
99.6k
    int code;
1659
99.6k
    bool moveto_first = true;
1660
99.6k
    gs_line_cap start_cap = (flags & nf_dash_head ?
1661
99.4k
                             pgs_lp->dash_cap : pgs_lp->start_cap);
1662
99.6k
    gs_line_cap end_cap   = (flags & nf_dash_tail ?
1663
99.4k
                             pgs_lp->dash_cap : pgs_lp->end_cap);
1664
1665
99.6k
    if (plp->thin) {
1666
        /* We didn't set up the endpoint parameters before, */
1667
        /* because the line was thin.  Do it now. */
1668
176
        set_thin_widths(plp);
1669
176
        adjust_stroke(dev, plp, pgs, true, first == 0 && nplp == 0, flags);
1670
176
        compute_caps(plp);
1671
176
    }
1672
    /* Create an initial cap if desired. */
1673
99.6k
    if (first == 0 && start_cap == gs_cap_round) {
1674
224
        if ((code = gx_path_add_point(ppath, plp->o.co.x, plp->o.co.y)) < 0 ||
1675
224
            (code = add_pie_cap(ppath, &plp->o)) < 0)
1676
0
            return code;
1677
224
        npoints = 0;
1678
224
        moveto_first = false;
1679
99.4k
    } else {
1680
99.4k
        if ((npoints = cap_points((first == 0 ? start_cap : gs_cap_butt),
1681
99.4k
                                  &plp->o, points)) < 0)
1682
0
            return npoints;
1683
99.4k
    }
1684
99.6k
    if (nplp == 0) {
1685
        /* Add a final cap. */
1686
482
        if (end_cap == gs_cap_round) {
1687
225
            ASSIGN_POINT(&points[npoints], plp->e.co);
1688
225
            ++npoints;
1689
225
            if ((code = add_points(ppath, points, npoints, moveto_first)) < 0)
1690
0
                return code;
1691
225
            code = add_pie_cap(ppath, &plp->e);
1692
225
            goto done;
1693
225
        }
1694
257
        code = cap_points(end_cap, &plp->e, points + npoints);
1695
99.1k
    } else if (nplp->thin) /* no join */
1696
176
        code = cap_points(gs_cap_butt, &plp->e, points + npoints);
1697
99.0k
    else if (join == gs_join_round) {
1698
382
        ASSIGN_POINT(&points[npoints], plp->e.co);
1699
382
        ++npoints;
1700
382
        if ((code = add_points(ppath, points, npoints, moveto_first)) < 0)
1701
0
            return code;
1702
382
        code = add_pie_join(ppath, plp, nplp, reflected, true);
1703
382
        goto done;
1704
98.6k
    } else if (flags & nf_all_from_arc) {
1705
        /* If all the segments in 'prev' and 'current' are from a curve
1706
         * then the join should actually be a round one, because it would
1707
         * have been round if we had flattened it enough. */
1708
94.5k
        ASSIGN_POINT(&points[npoints], plp->e.co);
1709
94.5k
        ++npoints;
1710
94.5k
        if ((code = add_points(ppath, points, npoints, moveto_first)) < 0)
1711
0
            return code;
1712
94.5k
        code = add_pie_join(ppath, plp, nplp, reflected, false);
1713
94.5k
        goto done;
1714
94.5k
    } else                      /* non-round join */
1715
4.13k
       code = line_join_points(pgs_lp, plp, nplp, points + npoints,
1716
4.13k
                                (uniform ? (gs_matrix *) 0 : &ctm_only(pgs)),
1717
4.13k
                                join, reflected);
1718
4.56k
    if (code < 0)
1719
0
        return code;
1720
4.56k
    code = add_points(ppath, points, npoints + code, moveto_first);
1721
99.6k
  done:
1722
99.6k
    if (code < 0)
1723
0
        return code;
1724
99.6k
    if ((flags & nf_some_from_arc) && (!plp->thin) &&
1725
99.6k
        (nplp != NULL) && (!nplp->thin))
1726
96.2k
        code = join_under_pie(ppath, plp, nplp, reflected);
1727
99.6k
    return gx_path_close_subpath(ppath);
1728
99.6k
}
1729
1730
/* When painting the 'underjoin' (the 'inside' of a join), we
1731
 * need to take special care if the curve is particularly wide as
1732
 * the leading edge of the underside of the first stroked segment
1733
 * may be beyond the leading edge of the underside of the second
1734
 * stroked segment. Similarly, the trailing edge of the second
1735
 * stroked segment may be behing the trailing edge of the first
1736
 * stroked segment. We detect those cases here.
1737
 *
1738
 * We detect the first case by projecting plp.width onto nplp.vector.
1739
 * If the projected vector is longer then nplp.vector, we have a
1740
 * problem.
1741
 *
1742
 * len_vector_squared = nplp.vector.x * nplp.vector.x + nplp.vector.y * nplp.nvector.y
1743
 * len_vector = sqr(len_vector_squared)
1744
 * len_projection_unnormalised = plp.width.x * nplp.vector.x + plp.width.y * nplp.vector.y
1745
 * len_projection = len_projection_unnormalised / len_vector
1746
 *
1747
 * len_projection > len_vector === len_projection_unnormalised > len_vector * len_vector
1748
 * === len_projection_unnormalised > len_vector_squared
1749
 */
1750
1751
#ifdef SLOWER_BUT_MORE_ACCURATE_STROKING
1752
static bool
1753
wide_underjoin(pl_ptr plp, pl_ptr nplp)
1754
{
1755
    double h_squared = (double)nplp->vector.x * nplp->vector.x + (double)nplp->vector.y * nplp->vector.y;
1756
    double dot = (double)plp->width.x * nplp->vector.x + (double)plp->width.y * nplp->vector.y;
1757
1758
    if (dot < 0)
1759
        dot = -dot;
1760
    if (dot > h_squared)
1761
        return 1;
1762
1763
    h_squared = (double)plp->vector.x * plp->vector.x + (double)plp->vector.y * plp->vector.y;
1764
    dot = (double)nplp->width.x * plp->vector.x + (double)nplp->width.y * plp->vector.y;
1765
    if (dot < 0)
1766
        dot = -dot;
1767
    if (dot > h_squared)
1768
        return 1;
1769
1770
    return 0;
1771
}
1772
#endif
1773
1774
static int
1775
check_miter(const gx_line_params * pgs_lp, pl_ptr plp, pl_ptr nplp,
1776
            const gs_matrix * pmat, p_ptr outp, p_ptr np, p_ptr mpt,
1777
            bool ccw0)
1778
4.13k
{
1779
    /*
1780
     * Check whether a miter join is appropriate.
1781
     * Let a, b be the angles of the two lines.
1782
     * We check tan(a-b) against the miter_check
1783
     * by using the following formula:
1784
     *      If tan(a)=u1/v1 and tan(b)=u2/v2, then
1785
     *      tan(a-b) = (u1*v2 - u2*v1) / (u1*u2 + v1*v2).
1786
     *
1787
     * We can do all the computations unscaled,
1788
     * because we're only concerned with ratios.
1789
     * However, if we have a non-uniform coordinate
1790
     * system (indicated by pmat != 0), we must do the
1791
     * computations in user space.
1792
     */
1793
4.13k
    float check;
1794
4.13k
    double u1, v1, u2, v2;
1795
4.13k
    double num, denom;
1796
4.13k
    int code;
1797
1798
    /*
1799
     * Don't bother with the miter check if the two
1800
     * points to be joined are very close together,
1801
     * namely, in the same square half-pixel.
1802
     */
1803
4.13k
    if (fixed2long(outp->x << 1) == fixed2long(np->x << 1) &&
1804
4.13k
        fixed2long(outp->y << 1) == fixed2long(np->y << 1))
1805
1.40k
        return 1;
1806
1807
2.72k
    check = pgs_lp->miter_check;
1808
2.72k
    u1 = plp->vector.y, v1 = plp->vector.x;
1809
2.72k
    u2 = -nplp->vector.y, v2 = -nplp->vector.x;
1810
1811
2.72k
    if (pmat) {
1812
18
        gs_point pt;
1813
1814
18
        code = gs_distance_transform_inverse(v1, u1, pmat, &pt);
1815
18
        if (code < 0)
1816
0
        return code;
1817
18
        v1 = pt.x, u1 = pt.y;
1818
18
        code = gs_distance_transform_inverse(v2, u2, pmat, &pt);
1819
18
        if (code < 0)
1820
0
            return code;
1821
18
        v2 = pt.x, u2 = pt.y;
1822
        /*
1823
         * We need to recompute ccw according to the
1824
         * relative positions of the lines in user space.
1825
         * We repeat the computation described above,
1826
         * using the cdelta values instead of the widths.
1827
         * Because the definition of ccw above is inverted
1828
         * from the intuitive one (for historical reasons),
1829
         * we actually have to do the test backwards.
1830
         */
1831
18
        ccw0 = v1 * u2 < v2 * u1;
1832
#ifdef DEBUG
1833
        {
1834
            double a1 = atan2(u1, v1), a2 = atan2(u2, v2), dif = a1 - a2;
1835
1836
            if (dif < 0)
1837
                dif += 2 * M_PI;
1838
            else if (dif >= 2 * M_PI)
1839
                dif -= 2 * M_PI;
1840
            if (dif != 0 && (dif < M_PI) != ccw0)
1841
                lprintf8("ccw wrong: tan(a1=%g)=%g/%g, tan(a2=%g)=%g,%g, dif=%g, ccw0=%d\n",
1842
                         a1, u1, v1, a2, u2, v2, dif, ccw0);
1843
        }
1844
#endif
1845
18
    }
1846
2.72k
    num = u1 * v2 - u2 * v1;
1847
2.72k
    denom = u1 * u2 + v1 * v2;
1848
    /*
1849
     * We will want either tan(a-b) or tan(b-a)
1850
     * depending on the orientations of the lines.
1851
     * Fortunately we know the relative orientations already.
1852
     */
1853
2.72k
    if (!ccw0)          /* have plp - nplp, want vice versa */
1854
1.45k
        num = -num;
1855
#ifdef DEBUG
1856
    if (gs_debug_c('O')) {
1857
        dlprintf4("[o]Miter check: u1/v1=%f/%f, u2/v2=%f/%f,\n",
1858
                  u1, v1, u2, v2);
1859
        dlprintf3("        num=%f, denom=%f, check=%f\n",
1860
                  num, denom, check);
1861
    }
1862
#endif
1863
    /*
1864
     * If we define T = num / denom, then we want to use
1865
     * a miter join iff arctan(T) >= arctan(check).
1866
     * We know that both of these angles are in the 1st
1867
     * or 2nd quadrant, and since arctan is monotonic
1868
     * within each quadrant, we can do the comparisons
1869
     * on T and check directly, taking signs into account
1870
     * as follows:
1871
     *              sign(T) sign(check)     atan(T) >= atan(check)
1872
     *              ------- -----------     ----------------------
1873
     *              +       +               T >= check
1874
     *              -       +               true
1875
     *              +       -               false
1876
     *              -       -               T >= check
1877
     */
1878
2.72k
    if (num == 0 && denom == 0)
1879
0
        return_error(gs_error_unregistered); /* Must not happen. */
1880
2.72k
    if (denom < 0)
1881
2.08k
        num = -num, denom = -denom;
1882
    /* Now denom >= 0, so sign(num) = sign(T). */
1883
2.72k
    if (check > 0 ?
1884
2.72k
        (num < 0 || num >= denom * check) :
1885
2.72k
        (num < 0 && num >= denom * check)
1886
2.72k
        ) {
1887
        /* OK to use a miter join. */
1888
2.49k
        gs_fixed_point dirn1, dirn2;
1889
1890
2.49k
        dirn1.x = plp->e.cdelta.x;
1891
2.49k
        dirn1.y = plp->e.cdelta.y;
1892
        /* If this direction is small enough that we might have
1893
         * underflowed and the vector record is suitable for us
1894
         * to use to calculate a better one, then do so. */
1895
2.49k
        if ((abs(dirn1.x) + abs(dirn1.y) < 16) &&
1896
2.49k
            ((plp->vector.x != 0) || (plp->vector.y != 0)))
1897
0
        {
1898
0
            float scale = 65536.0;
1899
0
            if (abs(plp->vector.x) > abs(plp->vector.y))
1900
0
                scale /= abs(plp->vector.x);
1901
0
            else
1902
0
                scale /= abs(plp->vector.y);
1903
0
            dirn1.x = (fixed)(plp->vector.x*scale);
1904
0
            dirn1.y = (fixed)(plp->vector.y*scale);
1905
0
        }
1906
2.49k
        dirn2.x = nplp->o.cdelta.x;
1907
2.49k
        dirn2.y = nplp->o.cdelta.y;
1908
        /* If this direction is small enough that we might have
1909
         * underflowed and the vector record is suitable for us
1910
         * to use to calculate a better one, then do so. */
1911
2.49k
        if ((abs(dirn2.x) + abs(dirn2.y) < 16) &&
1912
2.49k
            ((nplp->vector.x != 0) || (nplp->vector.y != 0)))
1913
0
        {
1914
0
            float scale = 65536.0;
1915
0
            if (abs(nplp->vector.x) > abs(nplp->vector.y))
1916
0
                scale /= abs(nplp->vector.x);
1917
0
            else
1918
0
                scale /= abs(nplp->vector.y);
1919
0
            dirn2.x = (fixed)(-nplp->vector.x*scale);
1920
0
            dirn2.y = (fixed)(-nplp->vector.y*scale);
1921
0
        }
1922
2.49k
        if_debug0('O', "        ... passes.\n");
1923
        /* Compute the intersection of the extended edge lines. */
1924
2.49k
        if (line_intersect(outp, &dirn1, np, &dirn2, mpt) == 0)
1925
2.39k
            return 0;
1926
2.49k
    }
1927
325
    return 1;
1928
2.72k
}
1929
1930
/* Add a segment to the path.
1931
 * This works by crafting 2 paths, one for each edge, that will later be
1932
 * merged together. */
1933
static int
1934
stroke_add_fast(gx_path * ppath, gx_path * rpath, bool ensure_closed, int first,
1935
                pl_ptr plp, pl_ptr nplp, const gx_device_color * pdevc,
1936
                gx_device * dev, const gs_gstate * pgs,
1937
                const gx_stroke_params * params,
1938
                const gs_fixed_rect * ignore_pbbox, int uniform,
1939
                gs_line_join join, bool reflected, note_flags flags)
1940
0
{
1941
0
    const gx_line_params *pgs_lp = gs_currentlineparams_inline(pgs);
1942
0
    gs_fixed_point points[8];
1943
0
    gs_fixed_point rpoints[8];
1944
0
    int npoints  = 0;
1945
0
    int nrpoints = 0;
1946
0
    int code;
1947
0
    bool moveto_first  = false;
1948
0
    bool rmoveto_first = false;
1949
0
    gs_line_cap start_cap, end_cap;
1950
0
    const gs_matrix *pmat = (uniform ? (const gs_matrix *)NULL : &ctm_only(pgs));
1951
0
    enum {
1952
0
        joinsense_cap = 0,
1953
0
        joinsense_cw = 1,
1954
0
        joinsense_ccw = 2,
1955
0
        joinsense_over = 4,
1956
0
        joinsense_under = 8,
1957
0
    } joinsense = joinsense_cap;
1958
1959
0
    if (plp->thin) {
1960
        /* We didn't set up the endpoint parameters before, */
1961
        /* because the line was thin.  Do it now. */
1962
0
        set_thin_widths(plp);
1963
0
        adjust_stroke(dev, plp, pgs, true, first == 0 && nplp == 0, flags);
1964
0
        compute_caps(plp);
1965
0
    }
1966
0
    start_cap = (flags & nf_dash_head ?
1967
0
                 pgs_lp->dash_cap : pgs_lp->start_cap);
1968
0
    end_cap   = (flags & nf_dash_tail ?
1969
0
                 pgs_lp->dash_cap : pgs_lp->end_cap);
1970
    /* If we're starting a new rpath here, we need to fake a new cap.
1971
     * Don't interfere if we would have been doing a cap anyway. */
1972
0
    if (gx_path_is_void(rpath) && (first != 0)) {
1973
0
        first = 0;
1974
0
        start_cap = gs_cap_butt;
1975
0
        end_cap   = gs_cap_butt;
1976
0
        moveto_first  = true;
1977
0
        rmoveto_first = true;
1978
0
    }
1979
0
    if (first == 0) {
1980
        /* Create an initial cap. */
1981
0
        if (start_cap == gs_cap_round) {
1982
0
            if ((code = gx_path_add_point(ppath, plp->o.co.x, plp->o.co.y)) < 0 ||
1983
0
                (code = add_pie_cap(ppath, &plp->o)) < 0)
1984
0
                return code;
1985
0
            moveto_first = false;
1986
0
        } else {
1987
0
            if ((npoints = cap_points(start_cap, &plp->o, points)) < 0)
1988
0
                return npoints;
1989
0
            moveto_first = true;
1990
0
        }
1991
0
        rmoveto_first = true;
1992
0
        ASSIGN_POINT(&rpoints[0], plp->o.co);
1993
0
        nrpoints = 1;
1994
0
    }
1995
    /* Add points to move us along the edges of this stroke */
1996
0
    ASSIGN_POINT(&points [npoints ], plp->e.co);
1997
0
    ASSIGN_POINT(&rpoints[nrpoints], plp->e.ce);
1998
0
    npoints++;
1999
0
    nrpoints++;
2000
2001
0
    if (nplp != NULL && !nplp->thin) {
2002
        /* We need to do a join. What sense is it it? */
2003
0
        double l, r;
2004
2005
0
        l = (double)(plp->width.x) /* x1 */ * (nplp->width.y) /* y2 */;
2006
0
        r = (double)(nplp->width.x) /* x2 */ * (plp->width.y) /* y1 */;
2007
2008
0
        if ((l == r) && (join == gs_join_round))
2009
0
             joinsense = joinsense_cap;
2010
0
        else if ((l > r) ^ reflected)
2011
0
             joinsense = joinsense_ccw | joinsense_over | joinsense_under;
2012
0
        else
2013
0
             joinsense = joinsense_cw | joinsense_over | joinsense_under;
2014
2015
0
        if (joinsense != joinsense_cap && join == gs_join_miter) {
2016
            /* We need to do a miter line join. Miters are 'special'
2017
             * in that we'd like to do them by adjusting the existing
2018
             * points, rather than adding new ones. */
2019
0
            gs_fixed_point mpt;
2020
0
            if (joinsense & joinsense_ccw) {
2021
                /* Underjoin (in reverse path):
2022
                 * A = plp->o.co, B = plp->e.ce, C = nplp->o.co, D = nplp->e.ce */
2023
0
                double xa =  plp->o.co.x, ya =  plp->o.co.y;
2024
0
                double xb =  plp->e.ce.x, yb =  plp->e.ce.y;
2025
0
                double xc = nplp->o.co.x, yc = nplp->o.co.y;
2026
0
                double xd = nplp->e.ce.x, yd = nplp->e.ce.y;
2027
0
                double xab = xa-xb, xac = xa-xc, xcd = xc-xd;
2028
0
                double yab = ya-yb, yac = ya-yc, ycd = yc-yd;
2029
0
                double t_num = xac * ycd - yac * xcd;
2030
0
                double t_den = xab * ycd - yab * xcd;
2031
0
                code = check_miter(pgs_lp, plp, nplp, pmat, &plp->e.co,
2032
0
                                   &nplp->o.ce, &mpt, true);
2033
0
                if (code < 0)
2034
0
                    return code;
2035
0
                if (code == 0) {
2036
0
                    points[npoints-1].x = mpt.x;
2037
0
                    points[npoints-1].y = mpt.y;
2038
0
                    if (ensure_closed) {
2039
0
                        points[npoints].x = nplp->o.ce.x;
2040
0
                        points[npoints].y = nplp->o.ce.y;
2041
0
                        npoints++;
2042
0
                    }
2043
0
                    joinsense &= ~joinsense_over;
2044
0
                } else
2045
0
                    join = gs_join_bevel;
2046
0
                if (t_den != 0 &&
2047
0
                    ((t_num >= 0 && t_num <= t_den) ||
2048
0
                     (t_num <= 0 && t_num >= t_den))) {
2049
0
                    double x = xa - xab * t_num / t_den;
2050
0
                    double y = ya - yab * t_num / t_den;
2051
0
                    rpoints[nrpoints-1].x = (fixed)x;
2052
0
                    rpoints[nrpoints-1].y = (fixed)y;
2053
0
                    joinsense &= ~joinsense_under;
2054
0
                }
2055
0
            } else {
2056
                /* Underjoin (in fwd path):
2057
                 * A = plp->o.ce, B = plp->e.co, C = nplp->o.ce, D = nplp->e.co */
2058
0
                double xa =  plp->o.ce.x, ya =  plp->o.ce.y;
2059
0
                double xb =  plp->e.co.x, yb =  plp->e.co.y;
2060
0
                double xc = nplp->o.ce.x, yc = nplp->o.ce.y;
2061
0
                double xd = nplp->e.co.x, yd = nplp->e.co.y;
2062
0
                double xab = xa-xb, xac = xa-xc, xcd = xc-xd;
2063
0
                double yab = ya-yb, yac = ya-yc, ycd = yc-yd;
2064
0
                double t_num = xac * ycd - yac * xcd;
2065
0
                double t_den = xab * ycd - yab * xcd;
2066
0
                code = check_miter(pgs_lp, plp, nplp, pmat, &plp->e.ce,
2067
0
                                   &nplp->o.co, &mpt, false);
2068
0
                if (code < 0)
2069
0
                    return code;
2070
0
                if (code == 0) {
2071
0
                    rpoints[nrpoints-1].x = mpt.x;
2072
0
                    rpoints[nrpoints-1].y = mpt.y;
2073
0
                    if (ensure_closed) {
2074
0
                        rpoints[nrpoints].x = nplp->o.co.x;
2075
0
                        rpoints[nrpoints].y = nplp->o.co.y;
2076
0
                        nrpoints++;
2077
0
                    }
2078
0
                    joinsense &= ~joinsense_over;
2079
0
                } else
2080
0
                    join = gs_join_bevel;
2081
0
                if (t_den != 0 &&
2082
0
                    ((t_num >= 0 && t_num <= t_den) ||
2083
0
                     (t_num <= 0 && t_num >= t_den)))   {
2084
0
                    double x = xa - xab * t_num / t_den;
2085
0
                    double y = ya - yab * t_num / t_den;
2086
0
                    points[npoints-1].x = (fixed)x;
2087
0
                    points[npoints-1].y = (fixed)y;
2088
0
                    joinsense &= ~joinsense_under;
2089
0
                }
2090
0
            }
2091
0
        }
2092
0
    }
2093
2094
0
    if ((code = add_points(ppath, points, npoints, moveto_first)) < 0)
2095
0
        return code;
2096
0
    if ((code = add_points(rpath, rpoints, nrpoints, rmoveto_first)) < 0)
2097
0
        return code;
2098
0
    npoints  = 0;
2099
0
    nrpoints = 0;
2100
2101
0
    if (nplp == 0) { /* Add a final cap. */
2102
0
        if (end_cap == gs_cap_round) {
2103
0
            code = add_pie_cap(ppath, &plp->e);
2104
0
        } else {
2105
0
            code = cap_points(end_cap, &plp->e, points);
2106
0
            npoints = code;
2107
0
        }
2108
0
    } else if (nplp->thin) { /* no join */
2109
0
        code = cap_points(gs_cap_butt, &plp->e, points);
2110
0
        npoints = code;
2111
0
    } else if (joinsense == joinsense_cap) {
2112
        /* Do a cap */
2113
0
        code = add_pie_cap(ppath, &plp->e);
2114
0
        if (code >= 0) {
2115
            /* If the next line is in the opposite direction as the current one
2116
             * we want to leave the point on the same side as it was
2117
             * originally. This is required for paths that come to a stop
2118
             * and then reverse themselves, but may produce more complexity
2119
             * than we'd really like at the ends of smooth beziers. */
2120
0
            if ((double)(plp->width.x) * nplp->width.x + (double)plp->width.y * nplp->width.y >= 0)
2121
0
                code = gx_path_add_line(ppath, plp->e.co.x, plp->e.co.y);
2122
0
        }
2123
0
    } else if (joinsense & joinsense_ccw) {
2124
        /* CCW rotation. Join in the forward path. "Underjoin" in the
2125
         * reverse path. */
2126
0
        if (joinsense & joinsense_over) {
2127
            /* RJW: Ideally we should include the "|| flags" clause in
2128
             * the following condition. This forces all joins between
2129
             * line segments generated from arcs to be round. This would
2130
             * solve some flatness issues, but makes some pathological
2131
             * cases incredibly slow. */
2132
0
            if (join == gs_join_round /* || (flags & nf_all_from_arc) */) {
2133
0
                code = add_pie_join_fast_ccw(ppath, plp, nplp, reflected);
2134
0
            } else { /* non-round join */
2135
0
                code = line_join_points_fast_ccw(pgs_lp, plp, nplp,
2136
0
                                                 points, pmat, join);
2137
0
                npoints = code;
2138
0
            }
2139
0
            if (code < 0)
2140
0
                return code;
2141
0
        }
2142
0
        if (joinsense & joinsense_under) {
2143
            /* The underjoin */
2144
0
#ifndef SLOWER_BUT_MORE_ACCURATE_STROKING
2145
0
            if ((flags & (nf_some_from_arc | nf_prev_some_from_arc)) == 0) {
2146
                /* RJW: This is an approximation. We ought to draw a line
2147
                 * back to nplp->o.p, and then independently fill any exposed
2148
                 * region under the curve with a round join. Sadly, that's
2149
                 * a) really hard to do, and b) makes certain pathological
2150
                 * filling cases MUCH slower due to the greater number of
2151
                 * "cross-segment" line segments this produces. Instead,
2152
                 * we just skip the line to the middle, and join across the
2153
                 * bottom instead. This is akin to what other graphics libs
2154
                 * do (such as fitz, libart, etc). It's not perfect but in
2155
                 * most cases it's close, and results in faster to fill
2156
                 * paths.
2157
                 */
2158
                /* RJW: This goes wrong for some paths, as the 'underjoin' wind
2159
                 * will be the wrong way. See bug 694971 */
2160
0
                code = gx_path_add_line(rpath, nplp->o.p.x, nplp->o.p.y);
2161
0
                if (code < 0)
2162
0
                    return code;
2163
0
            }
2164
#else
2165
            if (wide_underjoin(plp, nplp))
2166
            {
2167
                code = gx_path_add_line(rpath, nplp->o.p.x, nplp->o.p.y);
2168
                if (code < 0)
2169
                    return code;
2170
                if ((flags & (nf_some_from_arc | nf_prev_some_from_arc)) != 0) {
2171
                    code = gx_path_add_line(rpath, nplp->o.co.x, nplp->o.co.y);
2172
                    if (code < 0)
2173
                        return code;
2174
                    code = gx_path_add_line(rpath, plp->e.ce.x, plp->e.ce.y);
2175
                    if (code < 0)
2176
                        return code;
2177
                    code = gx_path_add_line(rpath, nplp->o.p.x, nplp->o.p.y);
2178
                    if (code < 0)
2179
                        return code;
2180
                }
2181
            }
2182
#endif
2183
0
            code = gx_path_add_line(rpath, nplp->o.co.x, nplp->o.co.y);
2184
0
        }
2185
0
    } else if (joinsense & joinsense) {
2186
        /* CW rotation. Join in the reverse path. "Underjoin" in the
2187
         * forward path. */
2188
0
        if (joinsense & joinsense_over) {
2189
            /* RJW: Ideally we should include the "|| flags" clause in
2190
             * the following condition. This forces all joins between
2191
             * line segments generated from arcs to be round. This would
2192
             * solve some flatness issues, but makes some pathological
2193
             * cases incredibly slow. */
2194
0
            if (join == gs_join_round /* || (flags & nf_all_from_arc) */) {
2195
0
                code = add_pie_join_fast_cw(rpath, plp, nplp, reflected);
2196
0
            } else { /* non-round join */
2197
0
                code = line_join_points_fast_cw(pgs_lp, plp, nplp,
2198
0
                                                rpoints, pmat, join);
2199
0
                nrpoints = code;
2200
0
            }
2201
0
            if (code < 0)
2202
0
                return code;
2203
0
        }
2204
0
        if (joinsense & joinsense_under) {
2205
            /* The underjoin */
2206
0
#ifndef SLOWER_BUT_MORE_ACCURATE_STROKING
2207
0
            if ((flags & (nf_some_from_arc | nf_prev_some_from_arc)) == 0 &&
2208
0
                join != gs_join_miter) {
2209
                /* RJW: This is an approximation. We ought to draw a line
2210
                 * back to nplp->o.p, and then independently fill any exposed
2211
                 * region under the curve with a round join. Sadly, that's
2212
                 * a) really hard to do, and b) makes certain pathological
2213
                 * filling cases MUCH slower due to the greater number of
2214
                 * "cross-segment" line segments this produces. Instead,
2215
                 * we just skip the line to the middle, and join across the
2216
                 * bottom instead. This is akin to what other graphics libs
2217
                 * do (such as fitz, libart, etc). It's not perfect but in
2218
                 * most cases it's close, and results in faster to fill
2219
                 * paths.
2220
                 */
2221
                /* RJW: This goes wrong for some paths, as the 'underjoin' wind
2222
                 * will be the wrong way. See bug 694971 */
2223
0
                code = gx_path_add_line(ppath, nplp->o.p.x, nplp->o.p.y);
2224
0
                if (code < 0)
2225
0
                    return code;
2226
0
            }
2227
#else
2228
            if (wide_underjoin(plp, nplp))
2229
            {
2230
                code = gx_path_add_line(ppath, nplp->o.p.x, nplp->o.p.y);
2231
                if (code < 0)
2232
                    return code;
2233
                if ((flags & (nf_some_from_arc | nf_prev_some_from_arc)) != 0) {
2234
                    code = gx_path_add_line(ppath, nplp->o.ce.x, nplp->o.ce.y);
2235
                    if (code < 0)
2236
                        return code;
2237
                    code = gx_path_add_line(ppath, plp->e.co.x, plp->e.co.y);
2238
                    if (code < 0)
2239
                        return code;
2240
                    code = gx_path_add_line(ppath, nplp->o.p.x, nplp->o.p.y);
2241
                    if (code < 0)
2242
                        return code;
2243
                }
2244
            }
2245
#endif
2246
0
            code = gx_path_add_line(ppath, nplp->o.ce.x, nplp->o.ce.y);
2247
0
        }
2248
0
    }
2249
0
    if (code < 0)
2250
0
        return code;
2251
0
    if (npoints > 0) {
2252
0
        code = add_points(ppath, points, npoints, false);
2253
0
        if (code < 0)
2254
0
            return code;
2255
0
    }
2256
0
    if (nrpoints > 0) {
2257
0
        code = add_points(rpath, rpoints, nrpoints, false);
2258
0
        if (code < 0)
2259
0
            return code;
2260
0
    }
2261
0
    if (ensure_closed)
2262
0
        return gx_join_path_and_reverse(ppath, rpath);
2263
0
    return 0;
2264
0
}
2265
2266
/* Add a CPSI-compatible segment to the path.  This handles all the complex
2267
 * cases.
2268
 *
2269
 * This method doesn't support start/end/dash caps, but it's only used from
2270
 * postscript, so it doesn't need to.
2271
 */
2272
static int
2273
stroke_add_compat(gx_path * ppath, gx_path *rpath, bool ensure_closed,
2274
                  int first, pl_ptr plp, pl_ptr nplp,
2275
                  const gx_device_color * pdevc, gx_device * dev,
2276
                  const gs_gstate * pgs,
2277
                  const gx_stroke_params * params,
2278
                  const gs_fixed_rect * ignore_pbbox, int uniform,
2279
                  gs_line_join join, bool reflected, note_flags flags)
2280
356
{
2281
    /* Actually it adds 2 contours : one for the segment itself,
2282
       and another one for line join or for the ending cap.
2283
       Note CPSI creates negative contours. */
2284
356
    const gx_line_params *pgs_lp = gs_currentlineparams_inline(pgs);
2285
356
    gs_fixed_point points[6];
2286
356
    int npoints;
2287
356
    bool const moveto_first = true; /* Keeping this code closer to "stroke_add". */
2288
356
    int code;
2289
2290
356
    if (plp->thin) {
2291
        /* We didn't set up the endpoint parameters before, */
2292
        /* because the line was thin.  Do it now. */
2293
1
        set_thin_widths(plp);
2294
1
        adjust_stroke(dev, plp, pgs, true, first == 0 && nplp == 0, flags);
2295
1
        compute_caps(plp);
2296
1
    }
2297
    /* The segment itself : */
2298
356
    ASSIGN_POINT(&points[0], plp->o.ce);
2299
356
    ASSIGN_POINT(&points[1], plp->e.co);
2300
356
    ASSIGN_POINT(&points[2], plp->e.ce);
2301
356
    ASSIGN_POINT(&points[3], plp->o.co);
2302
356
    code = add_points(ppath, points, 4, moveto_first);
2303
356
    if (code < 0)
2304
0
        return code;
2305
356
    code = gx_path_close_subpath(ppath);
2306
356
    if (code < 0)
2307
0
        return code;
2308
356
    npoints = 0;
2309
356
    if (nplp == 0) {
2310
        /* Add a final cap. */
2311
356
        if (pgs_lp->start_cap == gs_cap_butt)
2312
0
            return 0;
2313
356
        if (pgs_lp->start_cap == gs_cap_round) {
2314
356
            ASSIGN_POINT(&points[npoints], plp->e.co);
2315
356
            ++npoints;
2316
356
            if ((code = add_points(ppath, points, npoints, moveto_first)) < 0)
2317
0
                return code;
2318
356
            return add_round_cap(ppath, &plp->e);
2319
356
        }
2320
0
        ASSIGN_POINT(&points[0], plp->e.ce);
2321
0
        ++npoints;
2322
0
        ASSIGN_POINT(&points[npoints], plp->e.co);
2323
0
        ++npoints;
2324
0
        code = cap_points(pgs_lp->start_cap, &plp->e, points + npoints);
2325
0
        if (code < 0)
2326
0
            return code;
2327
0
        npoints += code;
2328
0
    } else if (join == gs_join_round) {
2329
0
        ASSIGN_POINT(&points[npoints], plp->e.co);
2330
0
        ++npoints;
2331
0
        if ((code = add_points(ppath, points, npoints, moveto_first)) < 0)
2332
0
            return code;
2333
0
        return add_round_cap(ppath, &plp->e);
2334
0
    } else if (nplp->thin) {    /* no join */
2335
0
        npoints = 0;
2336
0
    } else {                    /* non-round join */
2337
0
        bool ccw =
2338
0
            (double)(plp->width.x) /* x1 */ * (nplp->width.y) /* y2 */ >
2339
0
            (double)(nplp->width.x) /* x2 */ * (plp->width.y) /* y1 */;
2340
2341
0
        if (ccw ^ reflected) {
2342
0
            ASSIGN_POINT(&points[0], plp->e.co);
2343
0
            ++npoints;
2344
0
            code = line_join_points(pgs_lp, plp, nplp, points + npoints,
2345
0
                                    (uniform ? (gs_matrix *) 0 : &ctm_only(pgs)),
2346
0
                                    join, reflected);
2347
0
            if (code < 0)
2348
0
                return code;
2349
0
            code--; /* Drop the last point of the non-compatible mode. */
2350
0
            npoints += code;
2351
0
        } else {
2352
0
            code = line_join_points(pgs_lp, plp, nplp, points,
2353
0
                                    (uniform ? (gs_matrix *) 0 : &ctm_only(pgs)),
2354
0
                                    join, reflected);
2355
0
            if (code < 0)
2356
0
                return code;
2357
0
            ASSIGN_POINT(&points[0], plp->e.ce); /* Replace the starting point of the non-compatible mode. */
2358
0
            npoints = code;
2359
0
        }
2360
0
    }
2361
0
    code = add_points(ppath, points, npoints, moveto_first);
2362
0
    if (code < 0)
2363
0
        return code;
2364
0
    code = gx_path_close_subpath(ppath);
2365
0
    return code;
2366
0
}
2367
2368
/* Add a CPSI-compatible segment to the path.  This handles all the complex
2369
 * cases.
2370
 *
2371
 * This method doesn't support start/end/dash caps, but it's only used from
2372
 * postscript, so it doesn't need to.
2373
 */
2374
static int
2375
stroke_add_initial_cap_compat(gx_path * ppath, pl_ptr plp, bool adlust_longitude,
2376
           const gx_device_color * pdevc, gx_device * dev,
2377
           const gs_gstate * pgs)
2378
356
{
2379
356
    const gx_line_params *pgs_lp = gs_currentlineparams_inline(pgs);
2380
356
    gs_fixed_point points[5];
2381
356
    int npoints = 0;
2382
356
    int code;
2383
2384
356
    if (pgs_lp->start_cap == gs_cap_butt)
2385
0
        return 0;
2386
356
    if (plp->thin) {
2387
        /* We didn't set up the endpoint parameters before, */
2388
        /* because the line was thin.  Do it now. */
2389
1
        set_thin_widths(plp);
2390
1
        adjust_stroke(dev, plp, pgs, true, adlust_longitude, 0);
2391
1
        compute_caps(plp);
2392
1
    }
2393
    /* Create an initial cap if desired. */
2394
356
    if (pgs_lp->start_cap == gs_cap_round) {
2395
356
        if ((code = gx_path_add_point(ppath, plp->o.co.x, plp->o.co.y)) < 0 ||
2396
356
            (code = add_round_cap(ppath, &plp->o)) < 0
2397
356
            )
2398
0
            return code;
2399
356
        return 0;
2400
356
    } else {
2401
0
        ASSIGN_POINT(&points[0], plp->o.co);
2402
0
        ++npoints;
2403
0
        if ((code = cap_points(pgs_lp->start_cap, &plp->o, points + npoints)) < 0)
2404
0
            return npoints;
2405
0
        npoints += code;
2406
0
        ASSIGN_POINT(&points[npoints], plp->o.ce);
2407
0
        ++npoints;
2408
0
        code = add_points(ppath, points, npoints, true);
2409
0
        if (code < 0)
2410
0
            return code;
2411
0
        return gx_path_close_subpath(ppath);
2412
0
    }
2413
356
}
2414
2415
/* Add lines with a possible initial moveto. */
2416
static int
2417
add_points(gx_path * ppath, const gs_fixed_point * points, int npoints,
2418
           bool moveto_first)
2419
100k
{
2420
100k
    int code;
2421
2422
100k
    if (moveto_first) {
2423
100k
        code = gx_path_add_point(ppath, points[0].x, points[0].y);
2424
100k
        if (code < 0)
2425
0
            return code;
2426
100k
        return gx_path_add_lines(ppath, points + 1, npoints - 1);
2427
100k
    } else {
2428
224
        return gx_path_add_lines(ppath, points, npoints);
2429
224
    }
2430
100k
}
2431
2432
/* ---------------- Join computation ---------------- */
2433
2434
/* Compute the points for a bevel, miter, or triangle join. */
2435
/* Treat no join the same as a bevel join. */
2436
/* If pmat != 0, we must inverse-transform the distances for */
2437
/* the miter check. */
2438
static int
2439
line_join_points(const gx_line_params * pgs_lp, pl_ptr plp, pl_ptr nplp,
2440
                 gs_fixed_point * join_points, const gs_matrix * pmat,
2441
                 gs_line_join join, bool reflected)
2442
4.13k
{
2443
4.13k
#define jp1 join_points[0]
2444
4.13k
#define np1 join_points[1]
2445
4.13k
#define np2 join_points[2]
2446
4.13k
#define jp2 join_points[3]
2447
4.13k
#define jpx join_points[4]
2448
    /*
2449
     * Set np to whichever of nplp->o.co or .ce is outside
2450
     * the current line.  We observe that the point (x2,y2)
2451
     * is counter-clockwise from (x1,y1), relative to the origin,
2452
     * iff
2453
     *  (arctan(y2/x2) - arctan(y1/x1)) mod 2*pi < pi,
2454
     * taking the signs of xi and yi into account to determine
2455
     * the quadrants of the results.  It turns out that
2456
     * even though arctan is monotonic only in the 4th/1st
2457
     * quadrants and the 2nd/3rd quadrants, case analysis on
2458
     * the signs of xi and yi demonstrates that this test
2459
     * is equivalent to the much less expensive test
2460
     *  x1 * y2 > x2 * y1
2461
     * in all cases.
2462
     *
2463
     * In the present instance, x1,y1 are plp->width,
2464
     * x2,y2 are nplp->width, and the origin is
2465
     * their common point (plp->e.p, nplp->o.p).
2466
     * ccw will be true iff nplp.o.co (nplp.o.p + width) is
2467
     * counter-clockwise from plp.e.ce (plp.e.p + width),
2468
     * in which case we want tan(a-b) rather than tan(b-a).
2469
     *
2470
     * We make the test using double arithmetic only because
2471
     * the !@#&^*% C language doesn't give us access to
2472
     * the double-width-result multiplication operation
2473
     * that almost all CPUs provide!
2474
     */
2475
4.13k
    bool ccw =
2476
4.13k
        (double)(plp->width.x) /* x1 */ * (nplp->width.y) /* y2 */ >
2477
4.13k
        (double)(nplp->width.x) /* x2 */ * (plp->width.y) /* y1 */;
2478
4.13k
    bool ccw0 = ccw;
2479
4.13k
    p_ptr outp, np;
2480
4.13k
    int   code;
2481
4.13k
    gs_fixed_point mpt;
2482
2483
4.13k
    ccw ^= reflected;
2484
2485
    /* Initialize for a bevel join. */
2486
4.13k
    ASSIGN_POINT(&jp1, plp->e.co);
2487
4.13k
    ASSIGN_POINT(&jp2, plp->e.ce);
2488
2489
    /*
2490
     * Because of stroke adjustment, it is possible that
2491
     * plp->e.p != nplp->o.p.  For that reason, we must use
2492
     * nplp->o.p as np1 or np2.
2493
     */
2494
4.13k
    if (!ccw) {
2495
1.89k
        outp = &jp2;
2496
1.89k
        ASSIGN_POINT(&np2, nplp->o.co);
2497
1.89k
        ASSIGN_POINT(&np1, nplp->o.p);
2498
1.89k
        np = &np2;
2499
2.24k
    } else {
2500
2.24k
        outp = &jp1;
2501
2.24k
        ASSIGN_POINT(&np1, nplp->o.ce);
2502
2.24k
        ASSIGN_POINT(&np2, nplp->o.p);
2503
2.24k
        np = &np1;
2504
2.24k
    }
2505
4.13k
    if_debug1('O', "[O]use %s\n", (ccw ? "co (ccw)" : "ce (cw)"));
2506
2507
    /* Handle triangular joins now. */
2508
4.13k
    if (join == gs_join_triangle) {
2509
0
        fixed tpx = outp->x - nplp->o.p.x + np->x;
2510
0
        fixed tpy = outp->y - nplp->o.p.y + np->y;
2511
2512
0
        ASSIGN_POINT(&jpx, jp2);
2513
0
        if (!ccw) {
2514
            /* Insert tp between np2 and jp2. */
2515
0
            jp2.x = tpx, jp2.y = tpy;
2516
0
        } else {
2517
            /* Insert tp between jp1 and np1. */
2518
0
            ASSIGN_POINT(&jp2, np2);
2519
0
            ASSIGN_POINT(&np2, np1);
2520
0
            np1.x = tpx, np1.y = tpy;
2521
0
        }
2522
0
        return 5;
2523
0
    }
2524
4.13k
    if (join == gs_join_miter &&
2525
4.13k
        (code = check_miter(pgs_lp, plp, nplp, pmat, outp, np, &mpt, ccw0)) <= 0) {
2526
2.39k
        if (code < 0)
2527
0
            return code;
2528
2.39k
        ASSIGN_POINT(outp, mpt);
2529
2.39k
    }
2530
4.13k
    return 4;
2531
4.13k
}
2532
2533
static int
2534
line_join_points_fast_cw(const gx_line_params * pgs_lp,
2535
                         pl_ptr plp, pl_ptr nplp,
2536
                         gs_fixed_point * rjoin_points,
2537
                         const gs_matrix * pmat,
2538
                         gs_line_join join)
2539
0
{
2540
    /* rjoin_points will be added to a path that is currently at plp->e.ce.
2541
     */
2542
2543
    /* Join will be between plp->e.ce and nplp->o.co */
2544
0
    if (join == gs_join_triangle)
2545
0
    {
2546
0
        gs_fixed_point tp;
2547
2548
0
        tp.x = plp->e.ce.x - nplp->o.p.x + nplp->o.co.x;
2549
0
        tp.y = plp->e.ce.y - nplp->o.p.y + nplp->o.co.y;
2550
0
        ASSIGN_POINT(&rjoin_points[0], tp);
2551
0
        ASSIGN_POINT(&rjoin_points[1], nplp->o.co);
2552
0
        return 2;
2553
0
    }
2554
2555
    /* Set up for a Bevel join */
2556
0
    ASSIGN_POINT(&rjoin_points[0], nplp->o.co);
2557
2558
0
    return 1;
2559
0
}
2560
2561
static int
2562
line_join_points_fast_ccw(const gx_line_params * pgs_lp,
2563
                          pl_ptr plp, pl_ptr nplp,
2564
                          gs_fixed_point * join_points,
2565
                          const gs_matrix * pmat,
2566
                          gs_line_join join)
2567
0
{
2568
    /* join_points will be added to a path that is currently at plp->e.co.
2569
     */
2570
    /* Join will be between plp->e.co and nplp->o.ce */
2571
0
    if (join == gs_join_triangle)
2572
0
    {
2573
0
        gs_fixed_point tp;
2574
2575
0
        tp.x = plp->e.co.x - nplp->o.p.x + nplp->o.ce.x;
2576
0
        tp.y = plp->e.co.y - nplp->o.p.y + nplp->o.ce.y;
2577
0
        ASSIGN_POINT(&join_points[0], tp);
2578
0
        ASSIGN_POINT(&join_points[1], nplp->o.ce);
2579
0
        return 2;
2580
0
    }
2581
2582
    /* Set up for a Bevel join */
2583
0
    ASSIGN_POINT(&join_points[0], nplp->o.ce);
2584
2585
0
    return 1;
2586
0
}
2587
/* ---------------- Cap computations ---------------- */
2588
2589
/* Compute the endpoints of the two caps of a segment. */
2590
/* Only o.p, e.p, width, and cdelta have been set. */
2591
static void
2592
compute_caps(pl_ptr plp)
2593
100k
{
2594
100k
    fixed wx2 = plp->width.x;
2595
100k
    fixed wy2 = plp->width.y;
2596
2597
100k
    plp->o.co.x = plp->o.p.x + wx2, plp->o.co.y = plp->o.p.y + wy2;
2598
100k
    plp->o.cdelta.x = -plp->e.cdelta.x,
2599
100k
        plp->o.cdelta.y = -plp->e.cdelta.y;
2600
100k
    plp->o.ce.x = plp->o.p.x - wx2, plp->o.ce.y = plp->o.p.y - wy2;
2601
100k
    plp->e.co.x = plp->e.p.x - wx2, plp->e.co.y = plp->e.p.y - wy2;
2602
100k
    plp->e.ce.x = plp->e.p.x + wx2, plp->e.ce.y = plp->e.p.y + wy2;
2603
#ifdef DEBUG
2604
    if (gs_debug_c('O')) {
2605
        dlprintf4("[o]Stroke o=(%f,%f) e=(%f,%f)\n",
2606
                  fixed2float(plp->o.p.x), fixed2float(plp->o.p.y),
2607
                  fixed2float(plp->e.p.x), fixed2float(plp->e.p.y));
2608
        dlprintf4("\twxy=(%f,%f) lxy=(%f,%f)\n",
2609
                  fixed2float(wx2), fixed2float(wy2),
2610
                  fixed2float(plp->e.cdelta.x),
2611
                  fixed2float(plp->e.cdelta.y));
2612
    }
2613
#endif
2614
100k
}
2615
2616
#define px endp->p.x
2617
#define py endp->p.y
2618
#define xo endp->co.x
2619
#define yo endp->co.y
2620
#define xe endp->ce.x
2621
#define ye endp->ce.y
2622
#define cdx endp->cdelta.x
2623
#define cdy endp->cdelta.y
2624
2625
/* Add a round cap to a path. */
2626
/* Assume the current point is the cap origin (endp->co). */
2627
static int
2628
add_round_cap(gx_path * ppath, const_ep_ptr endp)
2629
712
{
2630
712
    int code;
2631
2632
    /*
2633
     * Per the Red Book, we draw a full circle, even though a semicircle
2634
     * is sufficient for the join.
2635
     */
2636
712
    if ((code = gx_path_add_partial_arc(ppath, px + cdx, py + cdy,
2637
712
                                        xo + cdx, yo + cdy,
2638
712
                                        quarter_arc_fraction)) < 0 ||
2639
712
        (code = gx_path_add_partial_arc(ppath, xe, ye, xe + cdx, ye + cdy,
2640
712
                                        quarter_arc_fraction)) < 0 ||
2641
712
        (code = gx_path_add_partial_arc(ppath, px - cdx, py - cdy,
2642
712
                                        xe - cdx, ye - cdy,
2643
712
                                        quarter_arc_fraction)) < 0 ||
2644
712
        (code = gx_path_add_partial_arc(ppath, xo, yo, xo - cdx, yo - cdy,
2645
712
                                        quarter_arc_fraction)) < 0 ||
2646
        /* The final point must be (xe,ye). */
2647
712
        (code = gx_path_add_line(ppath, xe, ye)) < 0
2648
712
        )
2649
0
        return code;
2650
712
    return 0;
2651
712
}
2652
2653
/* Add a semicircular cap to a path. */
2654
/* Assume the current point is the cap origin (endp->co). */
2655
static int
2656
add_pie_cap(gx_path * ppath, const_ep_ptr endp)
2657
497
{
2658
497
    int code;
2659
2660
497
    if ((code = gx_path_add_partial_arc(ppath, px + cdx, py + cdy,
2661
497
                                        xo + cdx, yo + cdy,
2662
497
                                        quarter_arc_fraction)) < 0 ||
2663
497
        (code = gx_path_add_partial_arc(ppath, xe, ye, xe + cdx, ye + cdy,
2664
497
                                        quarter_arc_fraction)) < 0 ||
2665
497
        (code = gx_path_add_line(ppath, xe, ye)) < 0)
2666
0
        return code;
2667
497
    return 0;
2668
497
}
2669
2670
static int
2671
do_pie_join(gx_path * ppath, gs_fixed_point *centre,
2672
            gs_fixed_point *current_orig, gs_fixed_point *current_tangent,
2673
            gs_fixed_point *final, gs_fixed_point *final_tangent, bool ccw,
2674
            gs_fixed_point *width)
2675
31.3k
{
2676
31.3k
    int code;
2677
31.3k
    double rad_squared, dist_squared, F;
2678
31.3k
    gs_fixed_point current, tangent, tangmeet;
2679
2680
31.3k
    tangent.x = current_tangent->x;
2681
31.3k
    tangent.y = current_tangent->y;
2682
31.3k
    current.x = current_orig->x;
2683
31.3k
    current.y = current_orig->y;
2684
2685
    /* Is the join more than 90 degrees? */
2686
31.3k
    if ((double)tangent.x * (double)final_tangent->x +
2687
31.3k
        (double)tangent.y * (double)final_tangent->y > 0) {
2688
        /* Yes, so do a quarter turn. */
2689
171
        code = gx_path_add_partial_arc(ppath,
2690
171
                                       centre->x + tangent.x,
2691
171
                                       centre->y + tangent.y,
2692
                                       /* Point where tangents meet */
2693
171
                                       current.x + tangent.x,
2694
171
                                       current.y + tangent.y,
2695
171
                                       quarter_arc_fraction);
2696
171
        if (code < 0)
2697
0
            return code;
2698
171
        current.x = centre->x + tangent.x;
2699
171
        current.y = centre->y + tangent.y;
2700
171
        if (ccw) {
2701
0
            int tmp = tangent.x;
2702
0
            tangent.x = -tangent.y;
2703
0
            tangent.y = tmp;
2704
171
        } else {
2705
171
            int tmp = tangent.x;
2706
171
            tangent.x = tangent.y;
2707
171
            tangent.y = -tmp;
2708
171
        }
2709
171
    }
2710
2711
    /* Now we are guaranteed that the remaining arc is 90 degrees or
2712
     * less. Find where the tangents meet for this final section. */
2713
31.3k
    if (line_intersect(&current, &tangent,
2714
31.3k
                       final, final_tangent, &tangmeet) != 0) {
2715
4.76k
        return gx_path_add_line(ppath, final->x, final->y);
2716
4.76k
    }
2717
26.6k
    current.x -= tangmeet.x;
2718
26.6k
    current.y -= tangmeet.y;
2719
26.6k
    dist_squared = ((double)current.x) * current.x +
2720
26.6k
                   ((double)current.y) * current.y;
2721
26.6k
    rad_squared  = ((double)width->x) * width->x +
2722
26.6k
                   ((double)width->y) * width->y;
2723
26.6k
    dist_squared /= rad_squared;
2724
26.6k
    F = (4.0/3.0)*(1/(1+sqrt(1+dist_squared)));
2725
26.6k
    return gx_path_add_partial_arc(ppath, final->x, final->y,
2726
31.3k
                                   tangmeet.x, tangmeet.y, F);
2727
31.3k
}
2728
2729
/* Add a pie shaped join to a path. */
2730
/* Assume the current point is the cap origin (endp->co). */
2731
static int
2732
add_pie_join(gx_path * ppath, pl_ptr plp, pl_ptr nplp, bool reflected,
2733
             bool cap)
2734
94.8k
{
2735
94.8k
    int code;
2736
94.8k
    gs_fixed_point *current, *final, *tangent, *final_tangent;
2737
94.8k
    double l, r;
2738
94.8k
    bool ccw;
2739
2740
94.8k
    l = (double)(plp->width.x) /* x1 */ * (nplp->width.y) /* y2 */;
2741
94.8k
    r = (double)(nplp->width.x) /* x2 */ * (plp->width.y) /* y1 */;
2742
2743
94.8k
    if (l == r) {
2744
        /* Colinear. Suppress drawing a cap unless the path reverses direction. */
2745
68.2k
        if (cap &&
2746
68.2k
            ((double)(plp->width.x) * (nplp->width.x) + (double)(nplp->width.y) * (plp->width.y)) < 0)
2747
48
            return add_pie_cap(ppath, &plp->e);
2748
68.2k
        else
2749
68.2k
            return gx_path_add_line(ppath, plp->e.ce.x, plp->e.ce.y);
2750
68.2k
    }
2751
2752
26.5k
    ccw = (l > r);
2753
2754
26.5k
    ccw ^= reflected;
2755
2756
    /* At this point, the current point is plp->e.co */
2757
26.5k
    if (ccw) {
2758
3.51k
        current       = & plp->e.co;
2759
3.51k
        final         = &nplp->o.ce;
2760
3.51k
        tangent       = & plp->e.cdelta;
2761
3.51k
        final_tangent = &nplp->o.cdelta;
2762
        /* Check for no join required */
2763
3.51k
        if (current->x == final->x && current->y == final->y) {
2764
0
            return gx_path_add_line(ppath, plp->e.ce.x, plp->e.ce.y);
2765
0
        }
2766
23.0k
    } else {
2767
23.0k
        current       = &nplp->o.co;
2768
23.0k
        final         = & plp->e.ce;
2769
23.0k
        tangent       = &nplp->o.cdelta;
2770
23.0k
        final_tangent = & plp->e.cdelta;
2771
23.0k
        code = gx_path_add_line(ppath, plp->e.p.x, plp->e.p.y);
2772
23.0k
        if (code < 0)
2773
0
            return code;
2774
23.0k
        code = gx_path_add_line(ppath, current->x, current->y);
2775
23.0k
        if (code < 0)
2776
0
            return code;
2777
23.0k
        if (current->x == final->x && current->y == final->y)
2778
0
            return 0;
2779
23.0k
    }
2780
2781
26.5k
    if ((code = do_pie_join(ppath, &plp->e.p, current, tangent,
2782
26.5k
                            final, final_tangent, !reflected, &plp->width)) < 0)
2783
0
        return code;
2784
26.5k
    if (ccw &&
2785
26.5k
        ((code = gx_path_add_line(ppath, plp->e.p.x, plp->e.p.y)) < 0 ||
2786
3.51k
         (code = gx_path_add_line(ppath, plp->e.ce.x, plp->e.ce.y)) < 0))
2787
0
        return code;
2788
2789
26.5k
    return 0;
2790
26.5k
}
2791
2792
/* Add a pie shaped join to a path. */
2793
static int
2794
add_pie_join_fast_cw(gx_path * rpath, pl_ptr plp, pl_ptr nplp, bool reflected)
2795
0
{
2796
    /* At this point, the current point is plp->e.ce */
2797
0
    if (plp->e.ce.x == nplp->o.co.x && plp->e.ce.y == nplp->o.co.y)
2798
0
        return 0;
2799
2800
0
    return do_pie_join(rpath, &plp->e.p, &plp->e.ce, &plp->e.cdelta,
2801
0
                       &nplp->o.co, &nplp->o.cdelta, reflected, &plp->width);
2802
0
}
2803
2804
static int
2805
add_pie_join_fast_ccw(gx_path * ppath, pl_ptr plp, pl_ptr nplp, bool reflected)
2806
0
{
2807
    /* At this point, the current point is plp->e.co */
2808
    /* Check for no join required */
2809
0
    if (plp->e.co.x == nplp->o.ce.x && plp->e.co.y == nplp->o.ce.y)
2810
0
        return 0;
2811
2812
0
    return do_pie_join(ppath, &plp->e.p, &plp->e.co, &plp->e.cdelta,
2813
0
                       &nplp->o.ce, &nplp->o.cdelta, !reflected, &plp->width);
2814
0
}
2815
2816
static int
2817
join_under_pie(gx_path * ppath, pl_ptr plp, pl_ptr nplp, bool reflected)
2818
96.2k
{
2819
96.2k
    int code;
2820
96.2k
    gs_fixed_point dirn1, dirn2, tangmeet;
2821
96.2k
    double l, r;
2822
96.2k
    bool ccw;
2823
2824
96.2k
    l = (double)(plp->width.x) /* x1 */ * (nplp->width.y) /* y2 */;
2825
96.2k
    r = (double)(nplp->width.x) /* x2 */ * (plp->width.y) /* y1 */;
2826
2827
96.2k
    if (l == r)
2828
68.3k
        return 0;
2829
2830
27.9k
    ccw = (l > r);
2831
2832
27.9k
    ccw ^= reflected;
2833
2834
27.9k
    if (ccw) {
2835
4.15k
        dirn1.x = - plp->width.x;
2836
4.15k
        dirn1.y = - plp->width.y;
2837
4.15k
        dirn2.x = -nplp->width.x;
2838
4.15k
        dirn2.y = -nplp->width.y;
2839
4.15k
        if (line_intersect(& plp->o.co, &dirn1,
2840
4.15k
                           &nplp->e.ce, &dirn2, &tangmeet) != 0)
2841
3.07k
            return 0;
2842
1.08k
        if ((code = gx_path_close_subpath(ppath)) < 0 ||
2843
1.08k
            (code = gx_path_add_point(ppath, tangmeet.x, tangmeet.y)) < 0  ||
2844
1.08k
            (code = gx_path_add_line(ppath,plp->o.co.x,plp->o.co.y)) < 0 ||
2845
1.08k
            (code = do_pie_join(ppath, &plp->e.p, &plp->o.co, &plp->o.cdelta,
2846
1.08k
                                &nplp->e.ce, &nplp->e.cdelta, !reflected,
2847
1.08k
                                &plp->width)))
2848
0
            return code;
2849
23.7k
    } else {
2850
23.7k
        if (line_intersect(& plp->o.ce, & plp->width,
2851
23.7k
                           &nplp->e.co, &nplp->width, &tangmeet) != 0)
2852
20.0k
            return 0;
2853
3.70k
        if ((code = gx_path_close_subpath(ppath)) < 0 ||
2854
3.70k
            (code = gx_path_add_point(ppath, tangmeet.x, tangmeet.y)) < 0  ||
2855
3.70k
            (code = gx_path_add_line(ppath,nplp->e.co.x,nplp->e.co.y)) < 0 ||
2856
3.70k
            (code = do_pie_join(ppath, &plp->e.p,&nplp->e.co,&nplp->e.cdelta,
2857
3.70k
                                &plp->o.ce, &plp->o.cdelta, !reflected,
2858
3.70k
                                &plp->width)))
2859
0
            return code;
2860
3.70k
    }
2861
4.78k
    return 0;
2862
27.9k
}
2863
2864
/* Compute the points for a non-round cap. */
2865
/* Return the number of points. */
2866
static int
2867
cap_points(gs_line_cap type, const_ep_ptr endp, gs_fixed_point *pts /*[3]*/)
2868
99.8k
{
2869
99.8k
#define PUT_POINT(i, px, py)\
2870
199k
  pts[i].x = (px), pts[i].y = (py)
2871
99.8k
    switch (type) {
2872
99.8k
        case gs_cap_butt:
2873
99.8k
            PUT_POINT(0, xo, yo);
2874
99.8k
            PUT_POINT(1, xe, ye);
2875
99.8k
            return 2;
2876
10
        case gs_cap_square:
2877
10
            PUT_POINT(0, xo + cdx, yo + cdy);
2878
10
            PUT_POINT(1, xe + cdx, ye + cdy);
2879
10
            return 2;
2880
0
        case gs_cap_triangle:   /* (not supported by PostScript) */
2881
0
            PUT_POINT(0, xo, yo);
2882
0
            PUT_POINT(1, px + cdx, py + cdy);
2883
0
            PUT_POINT(2, xe, ye);
2884
0
            return 3;
2885
0
        default:                /* can't happen */
2886
0
            return_error(gs_error_unregistered);
2887
99.8k
    }
2888
99.8k
#undef PUT_POINT
2889
99.8k
}