Coverage Report

Created: 2025-06-10 06:56

/src/ghostpdl/psi/isave.c
Line
Count
Source (jump to first uncovered line)
1
/* Copyright (C) 2001-2024 Artifex Software, Inc.
2
   All Rights Reserved.
3
4
   This software is provided AS-IS with no warranty, either express or
5
   implied.
6
7
   This software is distributed under license and may not be copied,
8
   modified or distributed except as expressly authorized under the terms
9
   of the license contained in the file LICENSE in this distribution.
10
11
   Refer to licensing information at http://www.artifex.com or contact
12
   Artifex Software, Inc.,  39 Mesa Street, Suite 108A, San Francisco,
13
   CA 94129, USA, for further information.
14
*/
15
16
17
/* Save/restore manager for Ghostscript interpreter */
18
#include "ghost.h"
19
#include "memory_.h"
20
#include "ierrors.h"
21
#include "gsexit.h"
22
#include "gsstruct.h"
23
#include "stream.h"   /* for linking for forgetsave */
24
#include "iastate.h"
25
#include "inamedef.h"
26
#include "iname.h"
27
#include "ipacked.h"
28
#include "isave.h"
29
#include "isstate.h"
30
#include "gsstate.h"
31
#include "store.h"    /* for ref_assign */
32
#include "ivmspace.h"
33
#include "igc.h"
34
#include "gsutil.h"   /* gs_next_ids prototype */
35
#include "icstate.h"
36
37
/* Structure descriptor */
38
private_st_alloc_save();
39
40
/* Define the maximum amount of data we are willing to scan repeatedly -- */
41
/* see below for details. */
42
static const long max_repeated_scan = 100000;
43
44
/* Define the minimum space for creating an inner clump. */
45
/* Must be at least sizeof(clump_head_t). */
46
static const long min_inner_clump_space = sizeof(clump_head_t) + 500;
47
48
/*
49
 * The logic for saving and restoring the state is complex.
50
 * Both the changes to individual objects, and the overall state
51
 * of the memory manager, must be saved and restored.
52
 */
53
54
/*
55
 * To save the state of the memory manager:
56
 *      Save the state of the current clump in which we are allocating.
57
 *      Shrink all clumps to their inner unallocated region.
58
 *      Save and reset the free block chains.
59
 * By doing this, we guarantee that no object older than the save
60
 * can be freed.
61
 *
62
 * To restore the state of the memory manager:
63
 *      Free all clumps newer than the save, and the descriptors for
64
 *        the inner clumps created by the save.
65
 *      Make current the clump that was current at the time of the save.
66
 *      Restore the state of the current clump.
67
 *
68
 * In addition to save ("start transaction") and restore ("abort transaction"),
69
 * we support forgetting a save ("commit transation").  To forget a save:
70
 *      Reassign to the next outer save all clumps newer than the save.
71
 *      Free the descriptors for the inners clump, updating their outer
72
 *        clumps to reflect additional allocations in the inner clumps.
73
 *      Concatenate the free block chains with those of the outer save.
74
 */
75
76
/*
77
 * For saving changes to individual objects, we add an "attribute" bit
78
 * (l_new) that logically belongs to the slot where the ref is stored,
79
 * not to the ref itself.  The bit means "the contents of this slot
80
 * have been changed, or the slot was allocated, since the last save."
81
 * To keep track of changes since the save, we associate a chain of
82
 * <slot, old_contents> pairs that remembers the old contents of slots.
83
 *
84
 * When creating an object, if the save level is non-zero:
85
 *      Set l_new in all slots.
86
 *
87
 * When storing into a slot, if the save level is non-zero:
88
 *      If l_new isn't set, save the address and contents of the slot
89
 *        on the current contents chain.
90
 *      Set l_new after storing the new value.
91
 *
92
 * To do a save:
93
 *      If the save level is non-zero:
94
 *              Reset l_new in all slots on the contents chain, and in all
95
 *                objects created since the previous save.
96
 *      Push the head of the contents chain, and reset the chain to empty.
97
 *
98
 * To do a restore:
99
 *      Check all the stacks to make sure they don't contain references
100
 *        to objects created since the save.
101
 *      Restore all the slots on the contents chain.
102
 *      Pop the contents chain head.
103
 *      If the save level is now non-zero:
104
 *              Scan the newly restored contents chain, and set l_new in all
105
 *                the slots it references.
106
 *              Scan all objects created since the previous save, and set
107
 *                l_new in all the slots of each object.
108
 *
109
 * To forget a save:
110
 *      If the save level is greater than 1:
111
 *              Set l_new as for a restore, per the next outer save.
112
 *              Concatenate the next outer contents chain to the end of
113
 *                the current one.
114
 *      If the save level is 1:
115
 *              Reset l_new as for a save.
116
 *              Free the contents chain.
117
 */
118
119
/*
120
 * A consequence of the foregoing algorithms is that the cost of a save is
121
 * proportional to the total amount of data allocated since the previous
122
 * save.  If a PostScript program reads in a large amount of setup code and
123
 * then uses save/restore heavily, each save/restore will be expensive.  To
124
 * mitigate this, we check to see how much data we have scanned at this save
125
 * level: if it is large, we do a second, invisible save.  This greatly
126
 * reduces the cost of inner saves, at the expense of possibly saving some
127
 * changes twice that otherwise would only have to be saved once.
128
 */
129
130
/*
131
 * The presence of global and local VM complicates the situation further.
132
 * There is a separate save chain and contents chain for each VM space.
133
 * When multiple contexts are fully implemented, save and restore will have
134
 * the following effects, according to the privacy status of the current
135
 * context's global and local VM:
136
 *      Private global, private local:
137
 *              The outermost save saves both global and local VM;
138
 *                otherwise, save only saves local VM.
139
 *      Shared global, private local:
140
 *              Save only saves local VM.
141
 *      Shared global, shared local:
142
 *              Save only saves local VM, and suspends all other contexts
143
 *                sharing the same local VM until the matching restore.
144
 * Since we do not currently implement multiple contexts, only the first
145
 * case is relevant.
146
 *
147
 * Note that when saving the contents of a slot, the choice of chain
148
 * is determined by the VM space in which the slot is allocated,
149
 * not by the current allocation mode.
150
 */
151
152
/* Tracing printout */
153
static void
154
print_save(const char *str, uint spacen, const alloc_save_t *sav)
155
10.5k
{
156
10.5k
  if_debug5('u', "[u]%s space %u "PRI_INTPTR": cdata = "PRI_INTPTR", id = %lu\n",\
157
10.5k
            str, spacen, (intptr_t)sav, (intptr_t)sav->client_data, (ulong)sav->id);
158
10.5k
}
159
160
/* A link to igcref.c . */
161
ptr_proc_reloc(igc_reloc_ref_ptr_nocheck, ref_packed);
162
163
static
164
CLEAR_MARKS_PROC(change_clear_marks)
165
126k
{
166
126k
    alloc_change_t *const ptr = (alloc_change_t *)vptr;
167
168
126k
    if (r_is_packed(&ptr->contents))
169
2.31k
        r_clear_pmark((ref_packed *) & ptr->contents);
170
123k
    else
171
123k
        r_clear_attrs(&ptr->contents, l_mark);
172
126k
}
173
static
174
503k
ENUM_PTRS_WITH(change_enum_ptrs, alloc_change_t *ptr) return 0;
175
125k
ENUM_PTR(0, alloc_change_t, next);
176
125k
case 1:
177
125k
    if (ptr->offset >= 0)
178
0
        ENUM_RETURN((byte *) ptr->where - ptr->offset);
179
125k
    else
180
125k
        if (ptr->offset != AC_OFFSET_ALLOCATED)
181
16.0k
            ENUM_RETURN_REF(ptr->where);
182
109k
        else {
183
            /* Don't enumerate ptr->where, because it
184
               needs a special processing with
185
               alloc_save__filter_changes. */
186
109k
            ENUM_RETURN(0);
187
109k
        }
188
125k
case 2:
189
125k
    ENUM_RETURN_REF(&ptr->contents);
190
503k
ENUM_PTRS_END
191
30.4k
static RELOC_PTRS_WITH(change_reloc_ptrs, alloc_change_t *ptr)
192
30.4k
{
193
30.4k
    RELOC_VAR(ptr->next);
194
30.4k
    switch (ptr->offset) {
195
0
        case AC_OFFSET_STATIC:
196
0
            break;
197
16.0k
        case AC_OFFSET_REF:
198
16.0k
            RELOC_REF_PTR_VAR(ptr->where);
199
16.0k
            break;
200
14.3k
        case AC_OFFSET_ALLOCATED:
201
            /* We know that ptr->where may point to an unmarked object
202
               because change_enum_ptrs skipped it,
203
               and we know it always points to same space
204
               because we took a special care when calling alloc_save_change_alloc.
205
               Therefore we must skip the check for the mark,
206
               which would happen if we call the regular relocation function
207
               igc_reloc_ref_ptr from RELOC_REF_PTR_VAR.
208
               Calling igc_reloc_ref_ptr_nocheck instead. */
209
14.3k
            { /* A sanity check. */
210
14.3k
                obj_header_t *pre = (obj_header_t *)ptr->where - 1;
211
212
14.3k
                if (pre->o_type != &st_refs)
213
0
                    gs_abort(gcst->heap);
214
14.3k
            }
215
14.3k
            if (ptr->where != 0 && !gcst->relocating_untraced)
216
14.2k
                ptr->where = igc_reloc_ref_ptr_nocheck(ptr->where, gcst);
217
14.3k
            break;
218
0
        default:
219
0
            {
220
0
                byte *obj = (byte *) ptr->where - ptr->offset;
221
222
0
                RELOC_VAR(obj);
223
0
                ptr->where = (ref_packed *) (obj + ptr->offset);
224
0
            }
225
0
            break;
226
30.4k
    }
227
30.4k
    if (r_is_packed(&ptr->contents))
228
2.30k
        r_clear_pmark((ref_packed *) & ptr->contents);
229
28.1k
    else {
230
28.1k
        RELOC_REF_VAR(ptr->contents);
231
28.1k
        r_clear_attrs(&ptr->contents, l_mark);
232
28.1k
    }
233
30.4k
}
234
30.4k
RELOC_PTRS_END
235
gs_private_st_complex_only(st_alloc_change, alloc_change_t, "alloc_change",
236
                change_clear_marks, change_enum_ptrs, change_reloc_ptrs, 0);
237
238
/* Debugging printout */
239
#ifdef DEBUG
240
static void
241
alloc_save_print(const gs_memory_t *mem, alloc_change_t * cp, bool print_current)
242
{
243
    dmprintf2(mem, " "PRI_INTPTR"x: "PRI_INTPTR": ", (intptr_t) cp, (intptr_t) cp->where);
244
    if (r_is_packed(&cp->contents)) {
245
        if (print_current)
246
            dmprintf2(mem, "saved=%x cur=%x\n", *(ref_packed *) & cp->contents,
247
                      *cp->where);
248
        else
249
            dmprintf1(mem, "%x\n", *(ref_packed *) & cp->contents);
250
    } else {
251
        if (print_current)
252
            dmprintf6(mem, "saved=%x %x %lx cur=%x %x %lx\n",
253
                      r_type_attrs(&cp->contents), r_size(&cp->contents),
254
                      (ulong) cp->contents.value.intval,
255
                      r_type_attrs((ref *) cp->where),
256
                      r_size((ref *) cp->where),
257
                      (ulong) ((ref *) cp->where)->value.intval);
258
        else
259
            dmprintf3(mem, "%x %x %lx\n",
260
                      r_type_attrs(&cp->contents), r_size(&cp->contents),
261
                      (ulong) cp->contents.value.intval);
262
    }
263
}
264
#endif
265
266
/* Forward references */
267
static int  restore_resources(alloc_save_t *, gs_ref_memory_t *);
268
static void restore_free(gs_ref_memory_t *);
269
static int  save_set_new(gs_ref_memory_t * mem, bool to_new, bool set_limit, ulong *pscanned);
270
static int  save_set_new_changes(gs_ref_memory_t *, bool, bool);
271
static bool check_l_mark(void *obj);
272
273
/* Initialize the save/restore machinery. */
274
void
275
alloc_save_init(gs_dual_memory_t * dmem)
276
1.78k
{
277
1.78k
    alloc_set_not_in_save(dmem);
278
1.78k
}
279
280
/* Record that we are in a save. */
281
static void
282
alloc_set_masks(gs_dual_memory_t *dmem, uint new_mask, uint test_mask)
283
14.2k
{
284
14.2k
    int i;
285
14.2k
    gs_ref_memory_t *mem;
286
287
14.2k
    dmem->new_mask = new_mask;
288
14.2k
    dmem->test_mask = test_mask;
289
71.0k
    for (i = 0; i < countof(dmem->spaces.memories.indexed); ++i)
290
56.8k
        if ((mem = dmem->spaces.memories.indexed[i]) != 0) {
291
42.6k
            mem->new_mask = new_mask, mem->test_mask = test_mask;
292
42.6k
            if (mem->stable_memory != (gs_memory_t *)mem) {
293
28.4k
                mem = (gs_ref_memory_t *)mem->stable_memory;
294
28.4k
                mem->new_mask = new_mask, mem->test_mask = test_mask;
295
28.4k
            }
296
42.6k
        }
297
14.2k
}
298
void
299
alloc_set_in_save(gs_dual_memory_t *dmem)
300
5.27k
{
301
5.27k
    alloc_set_masks(dmem, l_new, l_new);
302
5.27k
}
303
304
/* Record that we are not in a save. */
305
void
306
alloc_set_not_in_save(gs_dual_memory_t *dmem)
307
8.93k
{
308
8.93k
    alloc_set_masks(dmem, 0, ~0);
309
8.93k
}
310
311
/* Save the state. */
312
static alloc_save_t *alloc_save_space(gs_ref_memory_t *mem,
313
                                       gs_dual_memory_t *dmem,
314
                                       ulong sid);
315
static void
316
alloc_free_save(gs_ref_memory_t *mem, alloc_save_t *save, const char *scn)
317
0
{
318
0
    gs_ref_memory_t save_mem;
319
0
    save_mem = mem->saved->state;
320
0
    gs_free_object((gs_memory_t *)mem, save, scn);
321
    /* Free any inner clump structures.  This is the easiest way to do it. */
322
0
    restore_free(mem);
323
    /* Restore the 'saved' state - this pulls our object off the linked
324
     * list of states. Without this we hit a SEGV in the gc later. */
325
0
    *mem = save_mem;
326
0
}
327
int
328
alloc_save_state(gs_dual_memory_t * dmem, void *cdata, ulong *psid)
329
3.48k
{
330
3.48k
    gs_ref_memory_t *lmem = dmem->space_local;
331
3.48k
    gs_ref_memory_t *gmem = dmem->space_global;
332
3.48k
    ulong sid = gs_next_ids((const gs_memory_t *)lmem->stable_memory, 2);
333
3.48k
    bool global =
334
3.48k
        lmem->save_level == 0 && gmem != lmem &&
335
3.48k
        gmem->num_contexts == 1;
336
3.48k
    alloc_save_t *gsave =
337
3.48k
        (global ? alloc_save_space(gmem, dmem, sid + 1) : (alloc_save_t *) 0);
338
3.48k
    alloc_save_t *lsave = alloc_save_space(lmem, dmem, sid);
339
340
3.48k
    if (lsave == 0 || (global && gsave == 0)) {
341
        /* Only 1 of lsave or gsave will have been allocated, but
342
         * nevertheless (in case things change in future), we free
343
         * lsave, then gsave, so they 'pop' correctly when restoring
344
         * the mem->saved states. */
345
0
        if (lsave != 0)
346
0
            alloc_free_save(lmem, lsave, "alloc_save_state(local save)");
347
0
        if (gsave != 0)
348
0
            alloc_free_save(gmem, gsave, "alloc_save_state(global save)");
349
0
        return_error(gs_error_VMerror);
350
0
    }
351
3.48k
    if (gsave != 0) {
352
1.78k
        gsave->client_data = 0;
353
1.78k
        print_save("save", gmem->space, gsave);
354
        /* Restore names when we do the local restore. */
355
1.78k
        lsave->restore_names = gsave->restore_names;
356
1.78k
        gsave->restore_names = false;
357
1.78k
    }
358
3.48k
    lsave->id = sid;
359
3.48k
    lsave->client_data = cdata;
360
3.48k
    print_save("save", lmem->space, lsave);
361
    /* Reset the l_new attribute in all slots.  The only slots that */
362
    /* can have the attribute set are the ones on the changes chain, */
363
    /* and ones in objects allocated since the last save. */
364
3.48k
    if (lmem->save_level > 1) {
365
1.69k
        ulong scanned;
366
1.69k
        int code = save_set_new(&lsave->state, false, true, &scanned);
367
368
1.69k
        if (code < 0)
369
0
            return code;
370
#if 0 /* Disable invisible save levels. */
371
        if ((lsave->state.total_scanned += scanned) > max_repeated_scan) {
372
            /* Do a second, invisible save. */
373
            alloc_save_t *rsave;
374
375
            rsave = alloc_save_space(lmem, dmem, 0L);
376
            if (rsave != 0) {
377
                rsave->client_data = cdata;
378
#if 0 /* Bug 688153 */
379
                rsave->id = lsave->id;
380
                print_save("save", lmem->space, rsave);
381
                lsave->id = 0;  /* mark as invisible */
382
                rsave->state.save_level--; /* ditto */
383
                lsave->client_data = 0;
384
#else
385
                rsave->id = 0;  /* mark as invisible */
386
                print_save("save", lmem->space, rsave);
387
                rsave->state.save_level--; /* ditto */
388
                rsave->client_data = 0;
389
#endif
390
                /* Inherit the allocated space count -- */
391
                /* we need this for triggering a GC. */
392
                print_save("save", lmem->space, lsave);
393
            }
394
        }
395
#endif
396
1.69k
    }
397
398
3.48k
    alloc_set_in_save(dmem);
399
3.48k
    *psid = sid;
400
3.48k
    return 0;
401
3.48k
}
402
/* Save the state of one space (global or local). */
403
static alloc_save_t *
404
alloc_save_space(gs_ref_memory_t * mem, gs_dual_memory_t * dmem, ulong sid)
405
5.26k
{
406
5.26k
    gs_ref_memory_t save_mem;
407
5.26k
    alloc_save_t *save;
408
5.26k
    clump_t *cp;
409
5.26k
    clump_t *new_cc = NULL;
410
5.26k
    clump_splay_walker sw;
411
412
5.26k
    save_mem = *mem;
413
5.26k
    alloc_close_clump(mem);
414
5.26k
    mem->cc = NULL;
415
5.26k
    gs_memory_status((gs_memory_t *) mem, &mem->previous_status);
416
5.26k
    ialloc_reset(mem);
417
418
    /* Create inner clumps wherever it's worthwhile. */
419
420
210k
    for (cp = clump_splay_walk_init(&sw, &save_mem); cp != 0; cp = clump_splay_walk_fwd(&sw)) {
421
204k
        if (cp->ctop - cp->cbot > min_inner_clump_space) {
422
            /* Create an inner clump to cover only the unallocated part. */
423
72.5k
            clump_t *inner =
424
72.5k
                gs_raw_alloc_struct_immovable(mem->non_gc_memory, &st_clump,
425
72.5k
                                              "alloc_save_space(inner)");
426
427
72.5k
            if (inner == 0)
428
0
                break;   /* maybe should fail */
429
72.5k
            alloc_init_clump(inner, cp->cbot, cp->ctop, cp->sreloc != 0, cp);
430
72.5k
            alloc_link_clump(inner, mem);
431
72.5k
            if_debug2m('u', (gs_memory_t *)mem, "[u]inner clump: cbot="PRI_INTPTR" ctop="PRI_INTPTR"\n",
432
72.5k
                       (intptr_t) inner->cbot, (intptr_t) inner->ctop);
433
72.5k
            if (cp == save_mem.cc)
434
5.07k
                new_cc = inner;
435
72.5k
        }
436
204k
    }
437
5.26k
    mem->cc = new_cc;
438
5.26k
    alloc_open_clump(mem);
439
440
5.26k
    save = gs_alloc_struct((gs_memory_t *) mem, alloc_save_t,
441
5.26k
                           &st_alloc_save, "alloc_save_space(save)");
442
5.26k
    if_debug2m('u', (gs_memory_t *)mem, "[u]save space %u at "PRI_INTPTR"\n",
443
5.26k
               mem->space, (intptr_t) save);
444
5.26k
    if (save == 0) {
445
        /* Free the inner clump structures.  This is the easiest way. */
446
0
        restore_free(mem);
447
0
        *mem = save_mem;
448
0
        return 0;
449
0
    }
450
5.26k
    save->client_data = NULL;
451
5.26k
    save->state = save_mem;
452
5.26k
    save->spaces = dmem->spaces;
453
5.26k
    save->restore_names = (name_memory(mem) == (gs_memory_t *) mem);
454
5.26k
    save->is_current = (dmem->current == mem);
455
5.26k
    save->id = sid;
456
5.26k
    mem->saved = save;
457
5.26k
    if_debug2m('u', (gs_memory_t *)mem, "[u%u]file_save "PRI_INTPTR"\n",
458
5.26k
               mem->space, (intptr_t) mem->streams);
459
5.26k
    mem->streams = 0;
460
5.26k
    mem->total_scanned = 0;
461
5.26k
    mem->total_scanned_after_compacting = 0;
462
5.26k
    if (sid)
463
5.26k
        mem->save_level++;
464
5.26k
    return save;
465
5.26k
}
466
467
/* Record a state change that must be undone for restore, */
468
/* and mark it as having been saved. */
469
int
470
alloc_save_change_in(gs_ref_memory_t *mem, const ref * pcont,
471
                  ref_packed * where, client_name_t cname)
472
23.6M
{
473
23.6M
    register alloc_change_t *cp;
474
475
23.6M
    if (mem->new_mask == 0)
476
23.6M
        return 0;    /* no saving */
477
84.4k
    cp = gs_alloc_struct((gs_memory_t *)mem, alloc_change_t,
478
84.4k
                         &st_alloc_change, "alloc_save_change");
479
84.4k
    if (cp == 0)
480
0
        return -1;
481
84.4k
    cp->next = mem->changes;
482
84.4k
    cp->where = where;
483
84.4k
    if (pcont == NULL)
484
0
        cp->offset = AC_OFFSET_STATIC;
485
84.4k
    else if (r_is_array(pcont) || r_has_type(pcont, t_dictionary))
486
84.4k
        cp->offset = AC_OFFSET_REF;
487
0
    else if (r_is_struct(pcont))
488
0
        cp->offset = (byte *) where - (byte *) pcont->value.pstruct;
489
0
    else {
490
0
        if_debug3('u', "Bad type %u for save!  pcont = "PRI_INTPTR", where = "PRI_INTPTR"\n",
491
0
                 r_type(pcont), (intptr_t) pcont, (intptr_t) where);
492
0
        gs_abort((const gs_memory_t *)mem);
493
0
    }
494
84.4k
    if (r_is_packed(where))
495
9.00k
        *(ref_packed *)&cp->contents = *where;
496
75.4k
    else {
497
75.4k
        ref_assign_inline(&cp->contents, (ref *) where);
498
75.4k
        r_set_attrs((ref *) where, l_new);
499
75.4k
    }
500
84.4k
    mem->changes = cp;
501
#ifdef DEBUG
502
    if (gs_debug_c('U')) {
503
        dmlprintf1((const gs_memory_t *)mem, "[U]save(%s)", client_name_string(cname));
504
        alloc_save_print((const gs_memory_t *)mem, cp, false);
505
    }
506
#endif
507
84.4k
    return 0;
508
84.4k
}
509
int
510
alloc_save_change(gs_dual_memory_t * dmem, const ref * pcont,
511
                  ref_packed * where, client_name_t cname)
512
23.6M
{
513
23.6M
    gs_ref_memory_t *mem =
514
23.6M
        (pcont == NULL ? dmem->space_local :
515
23.6M
         dmem->spaces_indexed[r_space(pcont) >> r_space_shift]);
516
517
23.6M
    return alloc_save_change_in(mem, pcont, where, cname);
518
23.6M
}
519
520
/* Allocate a structure for recording an allocation event. */
521
int
522
alloc_save_change_alloc(gs_ref_memory_t *mem, client_name_t cname, alloc_change_t **pcp)
523
2.43M
{
524
2.43M
    register alloc_change_t *cp;
525
526
2.43M
    if (mem->new_mask == 0)
527
2.12M
        return 0;    /* no saving */
528
310k
    cp = gs_alloc_struct((gs_memory_t *)mem, alloc_change_t,
529
310k
                         &st_alloc_change, "alloc_save_change");
530
310k
    if (cp == 0)
531
0
        return_error(gs_error_VMerror);
532
310k
    cp->next = mem->changes;
533
310k
    cp->where = 0;
534
310k
    cp->offset = AC_OFFSET_ALLOCATED;
535
310k
    make_null(&cp->contents);
536
310k
    *pcp = cp;
537
310k
    return 1;
538
310k
}
539
540
/* Remove an AC_OFFSET_ALLOCATED element. */
541
void
542
alloc_save_remove(gs_ref_memory_t *mem, ref_packed *obj, client_name_t cname)
543
18
{
544
18
    alloc_change_t **cpp = &mem->changes;
545
546
7.19k
    for (; *cpp != NULL;) {
547
7.17k
        alloc_change_t *cp = *cpp;
548
549
7.17k
        if (cp->offset == AC_OFFSET_ALLOCATED && cp->where == obj) {
550
18
            if (mem->scan_limit == cp)
551
0
                mem->scan_limit = cp->next;
552
18
            *cpp = cp->next;
553
18
            gs_free_object((gs_memory_t *)mem, cp, "alloc_save_remove");
554
18
        } else
555
7.15k
            cpp = &(*cpp)->next;
556
7.17k
    }
557
18
}
558
559
/* Filter save change lists. */
560
static inline void
561
alloc_save__filter_changes_in_space(gs_ref_memory_t *mem)
562
21.4k
{
563
    /* This is a special function, which is called
564
       from the garbager after setting marks and before collecting
565
       unused space. Therefore it just resets marks for
566
       elements being released instead releasing them really. */
567
21.4k
    alloc_change_t **cpp = &mem->changes;
568
569
147k
    for (; *cpp != NULL; ) {
570
125k
        alloc_change_t *cp = *cpp;
571
572
125k
        if (cp->offset == AC_OFFSET_ALLOCATED && !check_l_mark(cp->where)) {
573
95.4k
            obj_header_t *pre = (obj_header_t *)cp - 1;
574
575
95.4k
            *cpp = cp->next;
576
95.4k
            cp->where = 0;
577
95.4k
            if (mem->scan_limit == cp)
578
3
                mem->scan_limit = cp->next;
579
95.4k
            o_set_unmarked(pre);
580
95.4k
        } else
581
30.2k
            cpp = &(*cpp)->next;
582
125k
    }
583
21.4k
}
584
585
/* Filter save change lists. */
586
void
587
alloc_save__filter_changes(gs_ref_memory_t *memory)
588
17.8k
{
589
17.8k
    gs_ref_memory_t *mem = memory;
590
591
39.3k
    for  (; mem; mem = &mem->saved->state)
592
21.4k
        alloc_save__filter_changes_in_space(mem);
593
17.8k
}
594
595
/* Return (the id of) the innermost externally visible save object, */
596
/* i.e., the innermost save with a non-zero ID. */
597
ulong
598
alloc_save_current_id(const gs_dual_memory_t * dmem)
599
3.48k
{
600
3.48k
    const alloc_save_t *save = dmem->space_local->saved;
601
602
3.48k
    while (save != 0 && save->id == 0)
603
0
        save = save->state.saved;
604
3.48k
    if (save)
605
3.48k
        return save->id;
606
607
    /* This should never happen, if it does, return a totally
608
     * impossible value.
609
     */
610
0
    return (ulong)-1;
611
3.48k
}
612
alloc_save_t *
613
alloc_save_current(const gs_dual_memory_t * dmem)
614
3.48k
{
615
3.48k
    return alloc_find_save(dmem, alloc_save_current_id(dmem));
616
3.48k
}
617
618
/* Test whether a reference would be invalidated by a restore. */
619
bool
620
alloc_is_since_save(const void *vptr, const alloc_save_t * save)
621
65.8k
{
622
    /* A reference postdates a save iff it is in a clump allocated */
623
    /* since the save (including any carried-over inner clumps). */
624
625
65.8k
    const char *const ptr = (const char *)vptr;
626
65.8k
    register gs_ref_memory_t *mem = save->space_local;
627
628
65.8k
    if_debug2m('U', (gs_memory_t *)mem, "[U]is_since_save "PRI_INTPTR", "PRI_INTPTR":\n",
629
65.8k
               (intptr_t) ptr, (intptr_t) save);
630
65.8k
    if (mem->saved == 0) { /* This is a special case, the final 'restore' from */
631
        /* alloc_restore_all. */
632
1.78k
        return true;
633
1.78k
    }
634
    /* Check against clumps allocated since the save. */
635
    /* (There may have been intermediate saves as well.) */
636
64.0k
    for (;; mem = &mem->saved->state) {
637
64.0k
        if_debug1m('U', (gs_memory_t *)mem, "[U]checking mem="PRI_INTPTR"\n", (intptr_t) mem);
638
64.0k
        if (ptr_is_within_mem_clumps(ptr, mem)) {
639
0
            if_debug0m('U', (gs_memory_t *)mem, "[U+]found\n");
640
0
            return true;
641
0
        }
642
64.0k
        if_debug1m('U', (gs_memory_t *)mem, "[U-]not in any chunks belonging to "PRI_INTPTR"\n", (intptr_t) mem);
643
64.0k
        if (mem->saved == save) { /* We've checked all the more recent saves, */
644
            /* must be OK. */
645
64.0k
            break;
646
64.0k
        }
647
64.0k
    }
648
649
    /*
650
     * If we're about to do a global restore (a restore to the level 0),
651
     * and there is only one context using this global VM
652
     * (the normal case, in which global VM is saved by the
653
     * outermost save), we also have to check the global save.
654
     * Global saves can't be nested, which makes things easy.
655
     */
656
64.0k
    if (save->state.save_level == 0 /* Restoring to save level 0 - see bug 688157, 688161 */ &&
657
64.0k
        (mem = save->space_global) != save->space_local &&
658
64.0k
        save->space_global->num_contexts == 1
659
64.0k
        ) {
660
1.79k
        if_debug1m('U', (gs_memory_t *)mem, "[U]checking global mem="PRI_INTPTR"\n", (intptr_t) mem);
661
1.79k
        if (ptr_is_within_mem_clumps(ptr, mem)) {
662
0
            if_debug0m('U', (gs_memory_t *)mem, "[U+]  found\n");
663
0
            return true;
664
0
        }
665
1.79k
    }
666
64.0k
    return false;
667
668
64.0k
#undef ptr
669
64.0k
}
670
671
/* Test whether a name would be invalidated by a restore. */
672
bool
673
alloc_name_is_since_save(const gs_memory_t *mem,
674
                         const ref * pnref, const alloc_save_t * save)
675
3.26k
{
676
3.26k
    const name_string_t *pnstr;
677
678
3.26k
    if (!save->restore_names)
679
3.26k
        return false;
680
0
    pnstr = names_string_inline(mem->gs_lib_ctx->gs_name_table, pnref);
681
0
    if (pnstr->foreign_string)
682
0
        return false;
683
0
    return alloc_is_since_save(pnstr->string_bytes, save);
684
0
}
685
bool
686
alloc_name_index_is_since_save(const gs_memory_t *mem,
687
                               uint nidx, const alloc_save_t *save)
688
0
{
689
0
    const name_string_t *pnstr;
690
691
0
    if (!save->restore_names)
692
0
        return false;
693
0
    pnstr = names_index_string_inline(mem->gs_lib_ctx->gs_name_table, nidx);
694
0
    if (pnstr->foreign_string)
695
0
        return false;
696
0
    return alloc_is_since_save(pnstr->string_bytes, save);
697
0
}
698
699
/* Check whether any names have been created since a given save */
700
/* that might be released by the restore. */
701
bool
702
alloc_any_names_since_save(const alloc_save_t * save)
703
5.26k
{
704
5.26k
    return save->restore_names;
705
5.26k
}
706
707
/* Get the saved state with a given ID. */
708
alloc_save_t *
709
alloc_find_save(const gs_dual_memory_t * dmem, ulong sid)
710
11.6k
{
711
11.6k
    alloc_save_t *sprev = dmem->space_local->saved;
712
713
11.6k
    if (sid == 0)
714
0
        return 0;   /* invalid id */
715
11.6k
    while (sprev != 0) {
716
11.6k
        if (sprev->id == sid)
717
11.6k
            return sprev;
718
0
        sprev = sprev->state.saved;
719
0
    }
720
0
    return 0;
721
11.6k
}
722
723
/* Get the client data from a saved state. */
724
void *
725
alloc_save_client_data(const alloc_save_t * save)
726
3.48k
{
727
3.48k
    return save->client_data;
728
3.48k
}
729
730
/*
731
 * Do one step of restoring the state.  The client is responsible for
732
 * calling alloc_find_save to get the save object, and for ensuring that
733
 * there are no surviving pointers for which alloc_is_since_save is true.
734
 * Return true if the argument was the innermost save, in which case
735
 * this is the last (or only) step.
736
 * Note that "one step" may involve multiple internal steps,
737
 * if this is the outermost restore (which requires restoring both local
738
 * and global VM) or if we created extra save levels to reduce scanning.
739
 */
740
static void restore_finalize(gs_ref_memory_t *);
741
static void restore_space(gs_ref_memory_t *, gs_dual_memory_t *);
742
743
int
744
alloc_restore_step_in(gs_dual_memory_t *dmem, alloc_save_t * save)
745
3.48k
{
746
    /* Get save->space_* now, because the save object will be freed. */
747
3.48k
    gs_ref_memory_t *lmem = save->space_local;
748
3.48k
    gs_ref_memory_t *gmem = save->space_global;
749
3.48k
    gs_ref_memory_t *mem = lmem;
750
3.48k
    alloc_save_t *sprev;
751
3.48k
    int code;
752
753
    /* Finalize all objects before releasing resources or undoing changes. */
754
3.48k
    do {
755
3.48k
        ulong sid;
756
757
3.48k
        sprev = mem->saved;
758
3.48k
        sid = sprev->id;
759
3.48k
        restore_finalize(mem);  /* finalize objects */
760
3.48k
        mem = &sprev->state;
761
3.48k
        if (sid != 0)
762
3.48k
            break;
763
3.48k
    }
764
3.48k
    while (sprev != save);
765
3.48k
    if (mem->save_level == 0) {
766
        /* This is the outermost save, which might also */
767
        /* need to restore global VM. */
768
1.78k
        mem = gmem;
769
1.78k
        if (mem != lmem && mem->saved != 0) {
770
1.78k
            restore_finalize(mem);
771
1.78k
        }
772
1.78k
    }
773
774
    /* Do one (externally visible) step of restoring the state. */
775
3.48k
    mem = lmem;
776
3.48k
    do {
777
3.48k
        ulong sid;
778
779
3.48k
        sprev = mem->saved;
780
3.48k
        sid = sprev->id;
781
3.48k
        code = restore_resources(sprev, mem); /* release other resources */
782
3.48k
        if (code < 0)
783
0
            return code;
784
3.48k
        restore_space(mem, dmem); /* release memory */
785
3.48k
        if (sid != 0)
786
3.48k
            break;
787
3.48k
    }
788
3.48k
    while (sprev != save);
789
790
3.48k
    if (mem->save_level == 0) {
791
        /* This is the outermost save, which might also */
792
        /* need to restore global VM. */
793
1.78k
        mem = gmem;
794
1.78k
        if (mem != lmem && mem->saved != 0) {
795
1.78k
            code = restore_resources(mem->saved, mem);
796
1.78k
            if (code < 0)
797
0
                return code;
798
1.78k
            restore_space(mem, dmem);
799
1.78k
        }
800
1.78k
        alloc_set_not_in_save(dmem);
801
1.78k
    } else {     /* Set the l_new attribute in all slots that are now new. */
802
1.69k
        ulong scanned;
803
804
1.69k
        code = save_set_new(mem, true, false, &scanned);
805
1.69k
        if (code < 0)
806
0
            return code;
807
1.69k
    }
808
809
3.48k
    return sprev == save;
810
3.48k
}
811
/* Restore the memory of one space, by undoing changes and freeing */
812
/* memory allocated since the save. */
813
static void
814
restore_space(gs_ref_memory_t * mem, gs_dual_memory_t *dmem)
815
5.26k
{
816
5.26k
    alloc_save_t *save = mem->saved;
817
5.26k
    alloc_save_t saved;
818
819
5.26k
    print_save("restore", mem->space, save);
820
821
    /* Undo changes since the save. */
822
5.26k
    {
823
5.26k
        register alloc_change_t *cp = mem->changes;
824
825
304k
        while (cp) {
826
#ifdef DEBUG
827
            if (gs_debug_c('U')) {
828
                dmlputs((const gs_memory_t *)mem, "[U]restore");
829
                alloc_save_print((const gs_memory_t *)mem, cp, true);
830
            }
831
#endif
832
298k
            if (cp->offset == AC_OFFSET_ALLOCATED)
833
298k
                DO_NOTHING;
834
84.4k
            else
835
84.4k
            if (r_is_packed(&cp->contents))
836
9.00k
                *cp->where = *(ref_packed *) & cp->contents;
837
75.4k
            else
838
75.4k
                ref_assign_inline((ref *) cp->where, &cp->contents);
839
298k
            cp = cp->next;
840
298k
        }
841
5.26k
    }
842
843
    /* Free memory allocated since the save. */
844
    /* Note that this frees all clumps except the inner ones */
845
    /* belonging to this level. */
846
5.26k
    saved = *save;
847
5.26k
    restore_free(mem);
848
849
    /* Restore the allocator state. */
850
5.26k
    {
851
5.26k
        int num_contexts = mem->num_contexts; /* don't restore */
852
853
5.26k
        *mem = saved.state;
854
5.26k
        mem->num_contexts = num_contexts;
855
5.26k
    }
856
5.26k
    alloc_open_clump(mem);
857
858
    /* Make the allocator current if it was current before the save. */
859
5.26k
    if (saved.is_current) {
860
3.48k
        dmem->current = mem;
861
3.48k
        dmem->current_space = mem->space;
862
3.48k
    }
863
5.26k
}
864
865
/* Restore to the initial state, releasing all resources. */
866
/* The allocator is no longer usable after calling this routine! */
867
int
868
alloc_restore_all(i_ctx_t *i_ctx_p)
869
1.78k
{
870
    /*
871
     * Save the memory pointers, since freeing space_local will also
872
     * free dmem itself.
873
     */
874
1.78k
    gs_ref_memory_t *lmem = idmemory->space_local;
875
1.78k
    gs_ref_memory_t *gmem = idmemory->space_global;
876
1.78k
    gs_ref_memory_t *smem = idmemory->space_system;
877
878
1.78k
    gs_ref_memory_t *mem;
879
1.78k
    int code;
880
881
    /* Restore to a state outside any saves. */
882
3.59k
    while (lmem->save_level != 0) {
883
1.81k
        vm_save_t *vmsave = alloc_save_client_data(alloc_save_current(idmemory));
884
1.81k
        if (vmsave->gsave) {
885
1.81k
            gs_grestoreall_for_restore(i_ctx_p->pgs, vmsave->gsave);
886
1.81k
        }
887
1.81k
        vmsave->gsave = 0;
888
1.81k
        code = alloc_restore_step_in(idmemory, lmem->saved);
889
890
1.81k
        if (code < 0)
891
0
            return code;
892
1.81k
    }
893
894
    /* Finalize memory. */
895
1.78k
    restore_finalize(lmem);
896
1.78k
    if ((mem = (gs_ref_memory_t *)lmem->stable_memory) != lmem)
897
1.78k
        restore_finalize(mem);
898
1.78k
    if (gmem != lmem && gmem->num_contexts == 1) {
899
1.78k
        restore_finalize(gmem);
900
1.78k
        if ((mem = (gs_ref_memory_t *)gmem->stable_memory) != gmem)
901
1.78k
            restore_finalize(mem);
902
1.78k
    }
903
1.78k
    restore_finalize(smem);
904
905
    /* Release resources other than memory, using fake */
906
    /* save and memory objects. */
907
1.78k
    {
908
1.78k
        alloc_save_t empty_save;
909
910
1.78k
        empty_save.spaces = idmemory->spaces;
911
1.78k
        empty_save.restore_names = false; /* don't bother to release */
912
1.78k
        code = restore_resources(&empty_save, NULL);
913
1.78k
        if (code < 0)
914
0
            return code;
915
1.78k
    }
916
917
    /* Finally, release memory. */
918
1.78k
    restore_free(lmem);
919
1.78k
    if ((mem = (gs_ref_memory_t *)lmem->stable_memory) != lmem)
920
1.78k
        restore_free(mem);
921
1.78k
    if (gmem != lmem) {
922
1.78k
        if (!--(gmem->num_contexts)) {
923
1.78k
            restore_free(gmem);
924
1.78k
            if ((mem = (gs_ref_memory_t *)gmem->stable_memory) != gmem)
925
1.78k
                restore_free(mem);
926
1.78k
        }
927
1.78k
    }
928
1.78k
    restore_free(smem);
929
1.78k
    return 0;
930
1.78k
}
931
932
/*
933
 * Finalize objects that will be freed by a restore.
934
 * Note that we must temporarily disable the freeing operations
935
 * of the allocator while doing this.
936
 */
937
static void
938
restore_finalize(gs_ref_memory_t * mem)
939
14.1k
{
940
14.1k
    clump_t *cp;
941
14.1k
    clump_splay_walker sw;
942
943
14.1k
    alloc_close_clump(mem);
944
14.1k
    gs_enable_free((gs_memory_t *) mem, false);
945
392k
    for (cp = clump_splay_walk_bwd_init(&sw, mem); cp != 0; cp = clump_splay_walk_bwd(&sw)) {
946
3.34M
        SCAN_CLUMP_OBJECTS(cp)
947
3.34M
            DO_ALL
948
3.34M
            struct_proc_finalize((*finalize)) =
949
3.34M
            pre->o_type->finalize;
950
3.34M
        if (finalize != 0) {
951
105k
            if_debug2m('u', (gs_memory_t *)mem, "[u]restore finalizing %s "PRI_INTPTR"\n",
952
105k
                       struct_type_name_string(pre->o_type),
953
105k
                       (intptr_t) (pre + 1));
954
105k
            (*finalize) ((gs_memory_t *) mem, pre + 1);
955
105k
        }
956
3.34M
        END_OBJECTS_SCAN
957
378k
    }
958
14.1k
    gs_enable_free((gs_memory_t *) mem, true);
959
14.1k
}
960
961
/* Release resources for a restore */
962
static int
963
restore_resources(alloc_save_t * sprev, gs_ref_memory_t * mem)
964
7.04k
{
965
7.04k
    int code;
966
#ifdef DEBUG
967
    if (mem) {
968
        /* Note restoring of the file list. */
969
        if_debug4m('u', (gs_memory_t *)mem, "[u%u]file_restore "PRI_INTPTR" => "PRI_INTPTR" for "PRI_INTPTR"\n",
970
                   mem->space, (intptr_t)mem->streams,
971
                   (intptr_t)sprev->state.streams, (intptr_t)sprev);
972
    }
973
#endif
974
975
    /* Remove entries from font and character caches. */
976
7.04k
    code = font_restore(sprev);
977
7.04k
    if (code < 0)
978
0
        return code;
979
980
    /* Adjust the name table. */
981
7.04k
    if (sprev->restore_names)
982
0
        names_restore(mem->gs_lib_ctx->gs_name_table, sprev);
983
7.04k
    return 0;
984
7.04k
}
985
986
/* Release memory for a restore. */
987
static void
988
restore_free(gs_ref_memory_t * mem)
989
14.1k
{
990
    /* Free clumps allocated since the save. */
991
14.1k
    gs_free_all((gs_memory_t *) mem);
992
14.1k
}
993
994
/* Forget a save, by merging this level with the next outer one. */
995
static void file_forget_save(gs_ref_memory_t *);
996
static void combine_space(gs_ref_memory_t *);
997
static void forget_changes(gs_ref_memory_t *);
998
int
999
alloc_forget_save_in(gs_dual_memory_t *dmem, alloc_save_t * save)
1000
0
{
1001
0
    gs_ref_memory_t *mem = save->space_local;
1002
0
    alloc_save_t *sprev;
1003
0
    ulong scanned;
1004
0
    int code;
1005
1006
0
    print_save("forget_save", mem->space, save);
1007
1008
    /* Iteratively combine the current level with the previous one. */
1009
0
    do {
1010
0
        sprev = mem->saved;
1011
0
        if (sprev->id != 0)
1012
0
            mem->save_level--;
1013
0
        if (mem->save_level != 0) {
1014
0
            alloc_change_t *chp = mem->changes;
1015
1016
0
            code = save_set_new(&sprev->state, true, false, &scanned);
1017
0
            if (code < 0)
1018
0
                return code;
1019
            /* Concatenate the changes chains. */
1020
0
            if (chp == 0)
1021
0
                mem->changes = sprev->state.changes;
1022
0
            else {
1023
0
                while (chp->next != 0)
1024
0
                    chp = chp->next;
1025
0
                chp->next = sprev->state.changes;
1026
0
            }
1027
0
            file_forget_save(mem);
1028
0
            combine_space(mem); /* combine memory */
1029
0
        } else {
1030
0
            forget_changes(mem);
1031
0
            code = save_set_new(mem, false, false, &scanned);
1032
0
            if (code < 0)
1033
0
                return code;
1034
0
            file_forget_save(mem);
1035
0
            combine_space(mem); /* combine memory */
1036
            /* This is the outermost save, which might also */
1037
            /* need to combine global VM. */
1038
0
            mem = save->space_global;
1039
0
            if (mem != save->space_local && mem->saved != 0) {
1040
0
                forget_changes(mem);
1041
0
                code = save_set_new(mem, false, false, &scanned);
1042
0
                if (code < 0)
1043
0
                    return code;
1044
0
                file_forget_save(mem);
1045
0
                combine_space(mem);
1046
0
            }
1047
0
            alloc_set_not_in_save(dmem);
1048
0
            break;   /* must be outermost */
1049
0
        }
1050
0
    }
1051
0
    while (sprev != save);
1052
0
    return 0;
1053
0
}
1054
/* Combine the clumps of the next outer level with those of the current one, */
1055
/* and free the bookkeeping structures. */
1056
static void
1057
combine_space(gs_ref_memory_t * mem)
1058
0
{
1059
0
    alloc_save_t *saved = mem->saved;
1060
0
    gs_ref_memory_t *omem = &saved->state;
1061
0
    clump_t *cp;
1062
0
    clump_splay_walker sw;
1063
1064
0
    alloc_close_clump(mem);
1065
0
    for (cp = clump_splay_walk_init(&sw, mem); cp != 0; cp = clump_splay_walk_fwd(&sw)) {
1066
0
        if (cp->outer == 0)
1067
0
            alloc_link_clump(cp, omem);
1068
0
        else {
1069
0
            clump_t *outer = cp->outer;
1070
1071
0
            outer->inner_count--;
1072
0
            if (mem->cc == cp)
1073
0
                mem->cc = outer;
1074
0
            if (mem->cfreed.cp == cp)
1075
0
                mem->cfreed.cp = outer;
1076
            /* "Free" the header of the inner clump, */
1077
            /* and any immediately preceding gap left by */
1078
            /* the GC having compacted the outer clump. */
1079
0
            {
1080
0
                obj_header_t *hp = (obj_header_t *) outer->cbot;
1081
1082
0
                hp->o_pad = 0;
1083
0
                hp->o_alone = 0;
1084
0
                hp->o_size = (char *)(cp->chead + 1)
1085
0
                    - (char *)(hp + 1);
1086
0
                hp->o_type = &st_bytes;
1087
                /* The following call is probably not safe. */
1088
#if 0       /* **************** */
1089
                gs_free_object((gs_memory_t *) mem,
1090
                               hp + 1, "combine_space(header)");
1091
#endif /* **************** */
1092
0
            }
1093
            /* Update the outer clump's allocation pointers. */
1094
0
            outer->cbot = cp->cbot;
1095
0
            outer->rcur = cp->rcur;
1096
0
            outer->rtop = cp->rtop;
1097
0
            outer->ctop = cp->ctop;
1098
0
            outer->has_refs |= cp->has_refs;
1099
0
            gs_free_object(mem->non_gc_memory, cp,
1100
0
                           "combine_space(inner)");
1101
0
        }
1102
0
    }
1103
    /* Update relevant parts of allocator state. */
1104
0
    mem->root = omem->root;
1105
0
    mem->allocated += omem->allocated;
1106
0
    mem->gc_allocated += omem->allocated;
1107
0
    mem->lost.objects += omem->lost.objects;
1108
0
    mem->lost.refs += omem->lost.refs;
1109
0
    mem->lost.strings += omem->lost.strings;
1110
0
    mem->saved = omem->saved;
1111
0
    mem->previous_status = omem->previous_status;
1112
0
    {       /* Concatenate free lists. */
1113
0
        int i;
1114
1115
0
        for (i = 0; i < num_freelists; i++) {
1116
0
            obj_header_t *olist = omem->freelists[i];
1117
0
            obj_header_t *list = mem->freelists[i];
1118
1119
0
            if (olist == 0);
1120
0
            else if (list == 0)
1121
0
                mem->freelists[i] = olist;
1122
0
            else {
1123
0
                while (*(obj_header_t **) list != 0)
1124
0
                    list = *(obj_header_t **) list;
1125
0
                *(obj_header_t **) list = olist;
1126
0
            }
1127
0
        }
1128
0
        if (omem->largest_free_size > mem->largest_free_size)
1129
0
            mem->largest_free_size = omem->largest_free_size;
1130
0
    }
1131
0
    gs_free_object((gs_memory_t *) mem, saved, "combine_space(saved)");
1132
0
    alloc_open_clump(mem);
1133
0
}
1134
/* Free the changes chain for a level 0 .forgetsave, */
1135
/* resetting the l_new flag in the changed refs. */
1136
static void
1137
forget_changes(gs_ref_memory_t * mem)
1138
0
{
1139
0
    register alloc_change_t *chp = mem->changes;
1140
0
    alloc_change_t *next;
1141
1142
0
    for (; chp; chp = next) {
1143
0
        ref_packed *prp = chp->where;
1144
1145
0
        if_debug1m('U', (gs_memory_t *)mem, "[U]forgetting change "PRI_INTPTR"\n", (intptr_t) chp);
1146
0
        if (chp->offset == AC_OFFSET_ALLOCATED)
1147
0
            DO_NOTHING;
1148
0
        else
1149
0
        if (!r_is_packed(prp))
1150
0
            r_clear_attrs((ref *) prp, l_new);
1151
0
        next = chp->next;
1152
0
        gs_free_object((gs_memory_t *) mem, chp, "forget_changes");
1153
0
    }
1154
0
    mem->changes = 0;
1155
0
}
1156
/* Update the streams list when forgetting a save. */
1157
static void
1158
file_forget_save(gs_ref_memory_t * mem)
1159
0
{
1160
0
    const alloc_save_t *save = mem->saved;
1161
0
    stream *streams = mem->streams;
1162
0
    stream *saved_streams = save->state.streams;
1163
1164
0
    if_debug4m('u', (gs_memory_t *)mem, "[u%d]file_forget_save "PRI_INTPTR" + "PRI_INTPTR" for "PRI_INTPTR"\n",
1165
0
               mem->space, (intptr_t) streams, (intptr_t) saved_streams,
1166
0
               (intptr_t) save);
1167
0
    if (streams == 0)
1168
0
        mem->streams = saved_streams;
1169
0
    else if (saved_streams != 0) {
1170
0
        while (streams->next != 0)
1171
0
            streams = streams->next;
1172
0
        streams->next = saved_streams;
1173
0
        saved_streams->prev = streams;
1174
0
    }
1175
0
}
1176
1177
static inline int
1178
mark_allocated(void *obj, bool to_new, uint *psize)
1179
62.3k
{
1180
62.3k
    obj_header_t *pre = (obj_header_t *)obj - 1;
1181
62.3k
    uint size = pre_obj_contents_size(pre);
1182
62.3k
    ref_packed *prp = (ref_packed *) (pre + 1);
1183
62.3k
    ref_packed *next = (ref_packed *) ((char *)prp + size);
1184
#ifdef ALIGNMENT_ALIASING_BUG
1185
                ref *rpref;
1186
# define RP_REF(rp) (rpref = (ref *)rp, rpref)
1187
#else
1188
6.18M
# define RP_REF(rp) ((ref *)rp)
1189
62.3k
#endif
1190
1191
62.3k
    if (pre->o_type != &st_refs) {
1192
        /* Must not happen. */
1193
0
        if_debug0('u', "Wrong object type when expected a ref.\n");
1194
0
        return_error(gs_error_Fatal);
1195
0
    }
1196
    /* We know that every block of refs ends with */
1197
    /* a full-size ref, so we only need the end check */
1198
    /* when we encounter one of those. */
1199
62.3k
    if (to_new)
1200
3.22M
        while (1) {
1201
3.22M
            if (r_is_packed(prp))
1202
159k
                prp++;
1203
3.06M
            else {
1204
3.06M
                RP_REF(prp)->tas.type_attrs |= l_new;
1205
3.06M
                prp += packed_per_ref;
1206
3.06M
                if (prp >= next)
1207
30.5k
                    break;
1208
3.06M
            }
1209
3.22M
    } else
1210
3.28M
        while (1) {
1211
3.28M
            if (r_is_packed(prp))
1212
165k
                prp++;
1213
3.11M
            else {
1214
3.11M
                RP_REF(prp)->tas.type_attrs &= ~l_new;
1215
3.11M
                prp += packed_per_ref;
1216
3.11M
                if (prp >= next)
1217
31.7k
                    break;
1218
3.11M
            }
1219
3.28M
        }
1220
62.3k
#undef RP_REF
1221
62.3k
    *psize = size;
1222
62.3k
    return 0;
1223
62.3k
}
1224
1225
/* Check if a block contains refs marked by garbager. */
1226
static bool
1227
check_l_mark(void *obj)
1228
109k
{
1229
109k
    obj_header_t *pre = (obj_header_t *)obj - 1;
1230
109k
    uint size = pre_obj_contents_size(pre);
1231
109k
    ref_packed *prp = (ref_packed *) (pre + 1);
1232
109k
    ref_packed *next = (ref_packed *) ((char *)prp + size);
1233
#ifdef ALIGNMENT_ALIASING_BUG
1234
                ref *rpref;
1235
# define RP_REF(rp) (rpref = (ref *)rp, rpref)
1236
#else
1237
109k
# define RP_REF(rp) ((ref *)rp)
1238
109k
#endif
1239
1240
    /* We know that every block of refs ends with */
1241
    /* a full-size ref, so we only need the end check */
1242
    /* when we encounter one of those. */
1243
8.60M
    while (1) {
1244
8.60M
        if (r_is_packed(prp)) {
1245
250k
            if (r_has_pmark(prp))
1246
13
                return true;
1247
250k
            prp++;
1248
8.35M
        } else {
1249
8.35M
            if (r_has_attr(RP_REF(prp), l_mark))
1250
14.2k
                return true;
1251
8.34M
            prp += packed_per_ref;
1252
8.34M
            if (prp >= next)
1253
95.4k
                return false;
1254
8.34M
        }
1255
8.60M
    }
1256
109k
#undef RP_REF
1257
109k
}
1258
1259
/* Set or reset the l_new attribute in every relevant slot. */
1260
/* This includes every slot on the current change chain, */
1261
/* and every (ref) slot allocated at this save level. */
1262
/* Return the number of bytes of data scanned. */
1263
static int
1264
save_set_new(gs_ref_memory_t * mem, bool to_new, bool set_limit, ulong *pscanned)
1265
3.39k
{
1266
3.39k
    ulong scanned = 0;
1267
3.39k
    int code;
1268
1269
    /* Handle the change chain. */
1270
3.39k
    code = save_set_new_changes(mem, to_new, set_limit);
1271
3.39k
    if (code < 0)
1272
0
        return code;
1273
1274
    /* Handle newly allocated ref objects. */
1275
17.2k
    SCAN_MEM_CLUMPS(mem, cp) {
1276
17.2k
        if (cp->has_refs) {
1277
7.54k
            bool has_refs = false;
1278
7.54k
            bool no_outer_clump = !(cp->outer != NULL && cp->ctop - cp->cbot > min_inner_clump_space);
1279
123k
            SCAN_CLUMP_OBJECTS(cp)
1280
123k
                DO_ALL
1281
123k
                if_debug3m('U', (gs_memory_t *)mem, "[U]set_new scan("PRI_INTPTR"(%u), %d)\n",
1282
123k
                           (intptr_t) pre, size, to_new);
1283
123k
            if (pre->o_type == &st_refs) {
1284
                /* These are refs, scan them. */
1285
31.2k
                ref_packed *prp = (ref_packed *) (pre + 1);
1286
31.2k
                uint size;
1287
                /* In order to avoid the garbager unnecessarily scanning for refs that may
1288
                   not exist, we reset the "has_refs" flag if we're doing a save (and leave
1289
                   it alone during a restore. This generally works because when we get here
1290
                   during a save, we've already created the inner clump, and during a restore,
1291
                   we've already restored to the outer clump.
1292
                   Where is goes wrong is when there isn't sufficient space left in the clump
1293
                   for any new allocations, so we won't have created the inner clump, and then
1294
                   the flag isn't retained. Spot that above, and only meddle with the flag here if
1295
                   an inner clump has been created.
1296
                 */
1297
31.2k
                has_refs = true && (to_new | no_outer_clump);
1298
31.2k
                code = mark_allocated(prp, to_new, &size);
1299
31.2k
                if (code < 0)
1300
0
                    return code;
1301
31.2k
                scanned += size;
1302
31.2k
            } else
1303
92.4k
                scanned += sizeof(obj_header_t);
1304
123k
            END_OBJECTS_SCAN
1305
7.54k
                cp->has_refs = has_refs;
1306
7.54k
        }
1307
17.2k
    }
1308
17.2k
    END_CLUMPS_SCAN
1309
3.39k
    if_debug2m('u', (gs_memory_t *)mem, "[u]set_new (%s) scanned %ld\n",
1310
3.39k
               (to_new ? "restore" : "save"), scanned);
1311
3.39k
    *pscanned = scanned;
1312
3.39k
    return 0;
1313
3.39k
}
1314
1315
/* Drop redundant elements from the changes list and set l_new. */
1316
static void
1317
drop_redundant_changes(gs_ref_memory_t * mem)
1318
0
{
1319
0
    register alloc_change_t *chp = mem->changes, *chp_back = NULL, *chp_forth;
1320
1321
    /* As we are trying to throw away redundant changes in an allocator instance
1322
       that has already been "saved", the active clump has already been "closed"
1323
       by alloc_save_space(). Using such an allocator (for example, by calling
1324
       gs_free_object() with it) can leave it in an unstable state, causing
1325
       problems for the garbage collector (specifically, the clump validator code).
1326
       So, before we might use it, open the current clump, and then close it again
1327
       when we're done.
1328
     */
1329
0
    alloc_open_clump(mem);
1330
1331
    /* First reverse the list and set all. */
1332
0
    for (; chp; chp = chp_forth) {
1333
0
        chp_forth = chp->next;
1334
0
        if (chp->offset != AC_OFFSET_ALLOCATED) {
1335
0
            ref_packed *prp = chp->where;
1336
1337
0
            if (!r_is_packed(prp)) {
1338
0
                ref *const rp = (ref *)prp;
1339
1340
0
                rp->tas.type_attrs |= l_new;
1341
0
            }
1342
0
        }
1343
0
        chp->next = chp_back;
1344
0
        chp_back = chp;
1345
0
    }
1346
0
    mem->changes = chp_back;
1347
0
    chp_back = NULL;
1348
    /* Then filter, reset and reverse again. */
1349
0
    for (chp = mem->changes; chp; chp = chp_forth) {
1350
0
        chp_forth = chp->next;
1351
0
        if (chp->offset != AC_OFFSET_ALLOCATED) {
1352
0
            ref_packed *prp = chp->where;
1353
1354
0
            if (!r_is_packed(prp)) {
1355
0
                ref *const rp = (ref *)prp;
1356
1357
0
                if ((rp->tas.type_attrs & l_new) == 0) {
1358
0
                    if (mem->scan_limit == chp)
1359
0
                        mem->scan_limit = chp_back;
1360
0
                    if (mem->changes == chp)
1361
0
                        mem->changes = chp_back;
1362
0
                    gs_free_object((gs_memory_t *)mem, chp, "alloc_save_remove");
1363
0
                    continue;
1364
0
                } else
1365
0
                    rp->tas.type_attrs &= ~l_new;
1366
0
            }
1367
0
        }
1368
0
        chp->next = chp_back;
1369
0
        chp_back = chp;
1370
0
    }
1371
0
    mem->changes = chp_back;
1372
1373
0
    alloc_close_clump(mem);
1374
0
}
1375
1376
/* Set or reset the l_new attribute on the changes chain. */
1377
static int
1378
save_set_new_changes(gs_ref_memory_t * mem, bool to_new, bool set_limit)
1379
3.39k
{
1380
3.39k
    register alloc_change_t *chp;
1381
3.39k
    register uint new = (to_new ? l_new : 0);
1382
3.39k
    ulong scanned = 0;
1383
1384
3.39k
    if (!to_new && mem->total_scanned_after_compacting > max_repeated_scan * 16) {
1385
0
        mem->total_scanned_after_compacting = 0;
1386
0
        drop_redundant_changes(mem);
1387
0
    }
1388
44.6k
    for (chp = mem->changes; chp; chp = chp->next) {
1389
41.2k
        if (chp->offset == AC_OFFSET_ALLOCATED) {
1390
31.1k
            if (chp->where != 0) {
1391
31.1k
                uint size;
1392
31.1k
                int code = mark_allocated((void *)chp->where, to_new, &size);
1393
1394
31.1k
                if (code < 0)
1395
0
                    return code;
1396
31.1k
                scanned += size;
1397
31.1k
            }
1398
31.1k
        } else {
1399
10.1k
            ref_packed *prp = chp->where;
1400
1401
10.1k
            if_debug3m('U', (gs_memory_t *)mem, "[U]set_new "PRI_INTPTR": ("PRI_INTPTR", %d)\n",
1402
10.1k
                       (intptr_t)chp, (intptr_t)prp, new);
1403
10.1k
            if (!r_is_packed(prp)) {
1404
10.1k
                ref *const rp = (ref *) prp;
1405
1406
10.1k
                rp->tas.type_attrs =
1407
10.1k
                    (rp->tas.type_attrs & ~l_new) + new;
1408
10.1k
            }
1409
10.1k
        }
1410
41.2k
        if (mem->scan_limit == chp)
1411
2
            break;
1412
41.2k
    }
1413
3.39k
    if (set_limit) {
1414
1.69k
        mem->total_scanned_after_compacting += scanned;
1415
1.69k
        if (scanned  + mem->total_scanned >= max_repeated_scan) {
1416
2
            mem->scan_limit = mem->changes;
1417
2
            mem->total_scanned = 0;
1418
2
        } else
1419
1.69k
            mem->total_scanned += scanned;
1420
1.69k
    }
1421
3.39k
    return 0;
1422
3.39k
}
1423
1424
gs_memory_t *
1425
gs_save_any_memory(const alloc_save_t *save)
1426
7.04k
{
1427
7.04k
    return((gs_memory_t *)save->space_local);
1428
7.04k
}