Coverage Report

Created: 2025-06-10 07:17

/src/ghostpdl/base/gdevdflt.c
Line
Count
Source (jump to first uncovered line)
1
/* Copyright (C) 2001-2025 Artifex Software, Inc.
2
   All Rights Reserved.
3
4
   This software is provided AS-IS with no warranty, either express or
5
   implied.
6
7
   This software is distributed under license and may not be copied,
8
   modified or distributed except as expressly authorized under the terms
9
   of the license contained in the file LICENSE in this distribution.
10
11
   Refer to licensing information at http://www.artifex.com or contact
12
   Artifex Software, Inc.,  39 Mesa Street, Suite 108A, San Francisco,
13
   CA 94129, USA, for further information.
14
*/
15
16
/* Default device implementation */
17
#include "math_.h"
18
#include "memory_.h"
19
#include "gx.h"
20
#include "gsstruct.h"
21
#include "gxobj.h"
22
#include "gserrors.h"
23
#include "gsropt.h"
24
#include "gxcomp.h"
25
#include "gxdevice.h"
26
#include "gxdevsop.h"
27
#include "gdevp14.h"        /* Needed to patch up the procs after compositor creation */
28
#include "gstrans.h"        /* For gs_pdf14trans_t */
29
#include "gxgstate.h"       /* for gs_image_state_s */
30
31
32
/* defined in gsdpram.c */
33
int gx_default_get_param(gx_device *dev, char *Param, void *list);
34
35
/* ---------------- Default device procedures ---------------- */
36
37
/*
38
 * Set a color model polarity to be additive or subtractive. In either
39
 * case, indicate an error (and don't modify the polarity) if the current
40
 * setting differs from the desired and is not GX_CINFO_POLARITY_UNKNOWN.
41
 */
42
static void
43
set_cinfo_polarity(gx_device * dev, gx_color_polarity_t new_polarity)
44
1.30M
{
45
#ifdef DEBUG
46
    /* sanity check */
47
    if (new_polarity == GX_CINFO_POLARITY_UNKNOWN) {
48
        dmprintf(dev->memory, "set_cinfo_polarity: illegal operand\n");
49
        return;
50
    }
51
#endif
52
    /*
53
     * The meory devices assume that single color devices are gray.
54
     * This may not be true if SeparationOrder is specified.  Thus only
55
     * change the value if the current value is unknown.
56
     */
57
1.30M
    if (dev->color_info.polarity == GX_CINFO_POLARITY_UNKNOWN)
58
0
        dev->color_info.polarity = new_polarity;
59
1.30M
}
60
61
static gx_color_index
62
(*get_encode_color(gx_device *dev))(gx_device *, const gx_color_value *)
63
4.58M
{
64
4.58M
    dev_proc_encode_color(*encode_proc);
65
66
    /* use encode_color if it has been provided */
67
4.58M
    if ((encode_proc = dev_proc(dev, encode_color)) == 0) {
68
1.30M
        if (dev->color_info.num_components == 1                          &&
69
1.30M
            dev_proc(dev, map_rgb_color) != 0) {
70
771k
            set_cinfo_polarity(dev, GX_CINFO_POLARITY_ADDITIVE);
71
771k
            encode_proc = gx_backwards_compatible_gray_encode;
72
771k
        } else  if ( (dev->color_info.num_components == 3    )           &&
73
538k
             (encode_proc = dev_proc(dev, map_rgb_color)) != 0  )
74
0
            set_cinfo_polarity(dev, GX_CINFO_POLARITY_ADDITIVE);
75
538k
        else if ( dev->color_info.num_components == 4                    &&
76
538k
                 (encode_proc = dev_proc(dev, map_cmyk_color)) != 0   )
77
0
            set_cinfo_polarity(dev, GX_CINFO_POLARITY_SUBTRACTIVE);
78
1.30M
    }
79
80
    /*
81
     * If no encode_color procedure at this point, the color model had
82
     * better be monochrome (though not necessarily bi-level). In this
83
     * case, it is assumed to be additive, as that is consistent with
84
     * the pre-DeviceN code.
85
     *
86
     * If this is not the case, then the color model had better be known
87
     * to be separable and linear, for there is no other way to derive
88
     * an encoding. This is the case even for weakly linear and separable
89
     * color models with a known polarity.
90
     */
91
4.58M
    if (encode_proc == 0) {
92
538k
        if (dev->color_info.num_components == 1 && dev->color_info.depth != 0) {
93
538k
            set_cinfo_polarity(dev, GX_CINFO_POLARITY_ADDITIVE);
94
538k
            if (dev->color_info.max_gray == (1 << dev->color_info.depth) - 1)
95
538k
                encode_proc = gx_default_gray_fast_encode;
96
0
            else
97
0
                encode_proc = gx_default_gray_encode;
98
538k
            dev->color_info.separable_and_linear = GX_CINFO_SEP_LIN;
99
538k
        } else if (colors_are_separable_and_linear(&dev->color_info)) {
100
0
            gx_color_value  max_gray = dev->color_info.max_gray;
101
0
            gx_color_value  max_color = dev->color_info.max_color;
102
103
0
            if ( (max_gray & (max_gray + 1)) == 0  &&
104
0
                 (max_color & (max_color + 1)) == 0  )
105
                /* NB should be gx_default_fast_encode_color */
106
0
                encode_proc = gx_default_encode_color;
107
0
            else
108
0
                encode_proc = gx_default_encode_color;
109
0
        }
110
538k
    }
111
112
4.58M
    return encode_proc;
113
4.58M
}
114
115
/*
116
 * Determine if a color model has the properties of a DeviceRGB
117
 * color model. This procedure is, in all likelihood, high-grade
118
 * overkill, but since this is not a performance sensitive area
119
 * no harm is done.
120
 *
121
 * Since there is little benefit to checking the values 0, 1, or
122
 * 1/2, we use the values 1/4, 1/3, and 3/4 in their place. We
123
 * compare the results to see if the intensities match to within
124
 * a tolerance of .01, which is arbitrarily selected.
125
 */
126
127
static bool
128
is_like_DeviceRGB(gx_device * dev)
129
1.30M
{
130
1.30M
    frac                            cm_comp_fracs[3];
131
1.30M
    int                             i;
132
1.30M
    const gx_device                *cmdev;
133
1.30M
    const gx_cm_color_map_procs    *cmprocs;
134
135
1.30M
    if ( dev->color_info.num_components != 3                   ||
136
1.30M
         dev->color_info.polarity != GX_CINFO_POLARITY_ADDITIVE  )
137
1.30M
        return false;
138
139
0
    cmprocs = dev_proc(dev, get_color_mapping_procs)(dev, &cmdev);
140
141
    /* check the values 1/4, 1/3, and 3/4 */
142
0
    cmprocs->map_rgb(cmdev, 0, frac_1 / 4, frac_1 / 3, 3 * frac_1 / 4, cm_comp_fracs);
143
144
    /* verify results to .01 */
145
0
    cm_comp_fracs[0] -= frac_1 / 4;
146
0
    cm_comp_fracs[1] -= frac_1 / 3;
147
0
    cm_comp_fracs[2] -= 3 * frac_1 / 4;
148
0
    for ( i = 0;
149
0
           i < 3                            &&
150
0
           -frac_1 / 100 < cm_comp_fracs[i] &&
151
0
           cm_comp_fracs[i] < frac_1 / 100;
152
0
          i++ )
153
0
        ;
154
0
    return i == 3;
155
1.30M
}
156
157
/*
158
 * Similar to is_like_DeviceRGB, but for DeviceCMYK.
159
 */
160
static bool
161
is_like_DeviceCMYK(gx_device * dev)
162
0
{
163
0
    frac                            cm_comp_fracs[4];
164
0
    int                             i;
165
0
    const gx_device                *cmdev;
166
0
    const gx_cm_color_map_procs    *cmprocs;
167
168
0
    if ( dev->color_info.num_components != 4                      ||
169
0
         dev->color_info.polarity != GX_CINFO_POLARITY_SUBTRACTIVE  )
170
0
        return false;
171
172
0
    cmprocs = dev_proc(dev, get_color_mapping_procs)(dev, &cmdev);
173
    /* check the values 1/4, 1/3, 3/4, and 1/8 */
174
175
0
    cmprocs->map_cmyk(cmdev,
176
0
                      frac_1 / 4,
177
0
                      frac_1 / 3,
178
0
                      3 * frac_1 / 4,
179
0
                      frac_1 / 8,
180
0
                      cm_comp_fracs);
181
182
    /* verify results to .01 */
183
0
    cm_comp_fracs[0] -= frac_1 / 4;
184
0
    cm_comp_fracs[1] -= frac_1 / 3;
185
0
    cm_comp_fracs[2] -= 3 * frac_1 / 4;
186
0
    cm_comp_fracs[3] -= frac_1 / 8;
187
0
    for ( i = 0;
188
0
           i < 4                            &&
189
0
           -frac_1 / 100 < cm_comp_fracs[i] &&
190
0
           cm_comp_fracs[i] < frac_1 / 100;
191
0
          i++ )
192
0
        ;
193
0
    return i == 4;
194
0
}
195
196
/*
197
 * Two default decode_color procedures to use for monochrome devices.
198
 * These will make use of the map_color_rgb routine, and use the first
199
 * component of the returned value or its inverse.
200
 */
201
static int
202
gx_default_1_add_decode_color(
203
    gx_device *     dev,
204
    gx_color_index  color,
205
    gx_color_value  cv[1] )
206
0
{
207
0
    gx_color_value  rgb[3];
208
0
    int             code = dev_proc(dev, map_color_rgb)(dev, color, rgb);
209
210
0
    cv[0] = rgb[0];
211
0
    return code;
212
0
}
213
214
static int
215
gx_default_1_sub_decode_color(
216
    gx_device *     dev,
217
    gx_color_index  color,
218
    gx_color_value  cv[1] )
219
0
{
220
0
    gx_color_value  rgb[3];
221
0
    int             code = dev_proc(dev, map_color_rgb)(dev, color, rgb);
222
223
0
    cv[0] = gx_max_color_value - rgb[0];
224
0
    return code;
225
0
}
226
227
/*
228
 * A default decode_color procedure for DeviceCMYK color models.
229
 *
230
 * There is no generally accurate way of decode a DeviceCMYK color using
231
 * the map_color_rgb method. Unfortunately, there are many older devices
232
 * employ the DeviceCMYK color model but don't provide a decode_color
233
 * method. The code below works on the assumption of full undercolor
234
 * removal and black generation. This may not be accurate, but is the
235
 * best that can be done in the general case without other information.
236
 */
237
static int
238
gx_default_cmyk_decode_color(
239
    gx_device *     dev,
240
    gx_color_index  color,
241
    gx_color_value  cv[4] )
242
0
{
243
    /* The device may have been determined to be 'separable'. */
244
0
    if (colors_are_separable_and_linear(&dev->color_info))
245
0
        return gx_default_decode_color(dev, color, cv);
246
0
    else {
247
0
        int i, code = dev_proc(dev, map_color_rgb)(dev, color, cv);
248
0
        gx_color_value min_val = gx_max_color_value;
249
250
0
        for (i = 0; i < 3; i++) {
251
0
            if ((cv[i] = gx_max_color_value - cv[i]) < min_val)
252
0
                min_val = cv[i];
253
0
        }
254
0
        for (i = 0; i < 3; i++)
255
0
            cv[i] -= min_val;
256
0
        cv[3] = min_val;
257
258
0
        return code;
259
0
    }
260
0
}
261
262
/*
263
 * Special case default color decode routine for a canonical 1-bit per
264
 * component DeviceCMYK color model.
265
 */
266
static int
267
gx_1bit_cmyk_decode_color(
268
    gx_device *     dev,
269
    gx_color_index  color,
270
    gx_color_value  cv[4] )
271
0
{
272
0
    cv[0] = ((color & 0x8) != 0 ? gx_max_color_value : 0);
273
0
    cv[1] = ((color & 0x4) != 0 ? gx_max_color_value : 0);
274
0
    cv[2] = ((color & 0x2) != 0 ? gx_max_color_value : 0);
275
0
    cv[3] = ((color & 0x1) != 0 ? gx_max_color_value : 0);
276
0
    return 0;
277
0
}
278
279
static int
280
(*get_decode_color(gx_device * dev))(gx_device *, gx_color_index, gx_color_value *)
281
4.58M
{
282
    /* if a method has already been provided, use it */
283
4.58M
    if (dev_proc(dev, decode_color) != 0)
284
3.27M
        return dev_proc(dev, decode_color);
285
286
    /*
287
     * If a map_color_rgb method has been provided, we may be able to use it.
288
     * Currently this will always be the case, as a default value will be
289
     * provided this method. While this default may not be correct, we are not
290
     * introducing any new errors by using it.
291
     */
292
1.30M
    if (dev_proc(dev, map_color_rgb) != 0) {
293
294
        /* if the device has a DeviceRGB color model, use map_color_rgb */
295
1.30M
        if (is_like_DeviceRGB(dev))
296
0
            return dev_proc(dev, map_color_rgb);
297
298
        /* If separable ande linear then use default */
299
1.30M
        if (colors_are_separable_and_linear(&dev->color_info))
300
538k
            return &gx_default_decode_color;
301
302
        /* gray devices can be handled based on their polarity */
303
771k
        if ( dev->color_info.num_components == 1 &&
304
771k
             dev->color_info.gray_index == 0       )
305
771k
            return dev->color_info.polarity == GX_CINFO_POLARITY_ADDITIVE
306
771k
                       ? &gx_default_1_add_decode_color
307
771k
                       : &gx_default_1_sub_decode_color;
308
309
        /*
310
         * There is no accurate way to decode colors for cmyk devices
311
         * using the map_color_rgb procedure. Unfortunately, this cases
312
         * arises with some frequency, so it is useful not to generate an
313
         * error in this case. The mechanism below assumes full undercolor
314
         * removal and black generation, which may not be accurate but are
315
         * the  best that can be done in the general case in the absence of
316
         * other information.
317
         *
318
         * As a hack to handle certain common devices, if the map_rgb_color
319
         * routine is cmyk_1bit_map_color_rgb, we provide a direct one-bit
320
         * decoder.
321
         */
322
0
        if (is_like_DeviceCMYK(dev)) {
323
0
            if (dev_proc(dev, map_color_rgb) == cmyk_1bit_map_color_rgb)
324
0
                return &gx_1bit_cmyk_decode_color;
325
0
            else
326
0
                return &gx_default_cmyk_decode_color;
327
0
        }
328
0
    }
329
330
    /*
331
     * The separable and linear case will already have been handled by
332
     * code in gx_device_fill_in_procs, so at this point we can only hope
333
     * the device doesn't use the decode_color method.
334
     */
335
0
    if (colors_are_separable_and_linear(&dev->color_info))
336
0
        return &gx_default_decode_color;
337
0
    else
338
0
        return &gx_error_decode_color;
339
0
}
340
341
/*
342
 * If a device has a linear and separable encode color function then
343
 * set up the comp_bits, comp_mask, and comp_shift fields.  Note:  This
344
 * routine assumes that the colorant shift factor decreases with the
345
 * component number.  See check_device_separable() for a general routine.
346
 */
347
void
348
set_linear_color_bits_mask_shift(gx_device * dev)
349
1.03k
{
350
1.03k
    int i;
351
1.03k
    byte gray_index = dev->color_info.gray_index;
352
1.03k
    gx_color_value max_gray = dev->color_info.max_gray;
353
1.03k
    gx_color_value max_color = dev->color_info.max_color;
354
1.03k
    int num_components = dev->color_info.num_components;
355
356
2.07k
#define comp_bits (dev->color_info.comp_bits)
357
1.03k
#define comp_mask (dev->color_info.comp_mask)
358
2.07k
#define comp_shift (dev->color_info.comp_shift)
359
1.03k
    comp_shift[num_components - 1] = 0;
360
1.03k
    for ( i = num_components - 1 - 1; i >= 0; i-- ) {
361
0
        comp_shift[i] = comp_shift[i + 1] +
362
0
            ( i == gray_index ? ilog2(max_gray + 1) : ilog2(max_color + 1) );
363
0
    }
364
2.07k
    for ( i = 0; i < num_components; i++ ) {
365
1.03k
        comp_bits[i] = ( i == gray_index ?
366
1.03k
                         ilog2(max_gray + 1) :
367
1.03k
                         ilog2(max_color + 1) );
368
1.03k
        comp_mask[i] = (((gx_color_index)1 << comp_bits[i]) - 1)
369
1.03k
                                               << comp_shift[i];
370
1.03k
    }
371
1.03k
#undef comp_bits
372
1.03k
#undef comp_mask
373
1.03k
#undef comp_shift
374
1.03k
}
375
376
/* Determine if a number is a power of two.  Works only for integers. */
377
113k
#define is_power_of_two(x) ((((x) - 1) & (x)) == 0)
378
379
/* A brutish way to check if we are a HT device */
380
bool
381
device_is_contone(gx_device* pdev)
382
36.4k
{
383
36.4k
    if ((float)pdev->color_info.depth / (float)pdev->color_info.num_components >= 8)
384
36.4k
        return true;
385
0
    return false;
386
36.4k
}
387
388
/*
389
 * This routine attempts to determine if a device's encode_color procedure
390
 * produces gx_color_index values which are 'separable'.  A 'separable' value
391
 * means two things.  Each colorant has a group of bits in the gx_color_index
392
 * value which is associated with the colorant.  These bits are separate.
393
 * I.e. no bit is associated with more than one colorant.  If a colorant has
394
 * a value of zero then the bits associated with that colorant are zero.
395
 * These criteria allows the graphics library to build gx_color_index values
396
 * from the colorant values and not using the encode_color routine. This is
397
 * useful and necessary for overprinting, halftoning more
398
 * than four colorants, and the fast shading logic.  However this information
399
 * is not setup by the default device macros.  Thus we attempt to derive this
400
 * information.
401
 *
402
 * This routine can be fooled.  However it usually errors on the side of
403
 * assuing that a device is not separable.  In this case it does not create
404
 * any new problems.  In theory it can be fooled into believing that a device
405
 * is separable when it is not.  However we do not know of any real cases that
406
 * will fool it.
407
 */
408
void
409
check_device_separable(gx_device * dev)
410
3.13M
{
411
3.13M
    int i, j;
412
3.13M
    gx_device_color_info * pinfo = &(dev->color_info);
413
3.13M
    int num_components = pinfo->num_components;
414
3.13M
    byte comp_shift[GX_DEVICE_COLOR_MAX_COMPONENTS];
415
3.13M
    byte comp_bits[GX_DEVICE_COLOR_MAX_COMPONENTS];
416
3.13M
    gx_color_index comp_mask[GX_DEVICE_COLOR_MAX_COMPONENTS];
417
3.13M
    gx_color_index color_index;
418
3.13M
    gx_color_index current_bits = 0;
419
3.13M
    gx_color_value colorants[GX_DEVICE_COLOR_MAX_COMPONENTS] = { 0 };
420
421
    /* If this is already known then we do not need to do anything. */
422
3.13M
    if (pinfo->separable_and_linear != GX_CINFO_UNKNOWN_SEP_LIN)
423
2.34M
        return;
424
    /* If there is not an encode_color_routine then we cannot proceed. */
425
799k
    if (dev_proc(dev, encode_color) == NULL)
426
761k
        return;
427
    /*
428
     * If these values do not check then we should have an error.  However
429
     * we do not know what to do so we are simply exitting and hoping that
430
     * the device will clean up its values.
431
     */
432
37.9k
    if (pinfo->gray_index < num_components &&
433
37.9k
        (!pinfo->dither_grays || pinfo->dither_grays != (pinfo->max_gray + 1)))
434
0
            return;
435
37.9k
    if ((num_components > 1 || pinfo->gray_index != 0) &&
436
37.9k
        (!pinfo->dither_colors || pinfo->dither_colors != (pinfo->max_color + 1)))
437
0
        return;
438
    /*
439
     * If dither_grays or dither_colors is not a power of two then we assume
440
     * that the device is not separable.  In theory this not a requirement
441
     * but it has been true for all of the devices that we have seen so far.
442
     * This assumption also makes the logic in the next section easier.
443
     */
444
37.9k
    if (!is_power_of_two(pinfo->dither_grays)
445
37.9k
                    || !is_power_of_two(pinfo->dither_colors))
446
0
        return;
447
    /*
448
     * Use the encode_color routine to try to verify that the device is
449
     * separable and to determine the shift count, etc. for each colorant.
450
     */
451
37.9k
    color_index = dev_proc(dev, encode_color)(dev, colorants);
452
37.9k
    if (color_index != 0)
453
32
        return;    /* Exit if zero colorants produce a non zero index */
454
75.7k
    for (i = 0; i < num_components; i++) {
455
        /* Check this colorant = max with all others = 0 */
456
75.7k
        for (j = 0; j < num_components; j++)
457
37.8k
            colorants[j] = 0;
458
37.8k
        colorants[i] = gx_max_color_value;
459
37.8k
        color_index = dev_proc(dev, encode_color)(dev, colorants);
460
37.8k
        if (color_index == 0)  /* If no bits then we have a problem */
461
0
            return;
462
37.8k
        if (color_index & current_bits)  /* Check for overlapping bits */
463
0
            return;
464
37.8k
        current_bits |= color_index;
465
37.8k
        comp_mask[i] = color_index;
466
        /* Determine the shift count for the colorant */
467
37.8k
        for (j = 0; (color_index & 1) == 0 && color_index != 0; j++)
468
0
            color_index >>= 1;
469
37.8k
        comp_shift[i] = j;
470
        /* Determine the bit count for the colorant */
471
142k
        for (j = 0; color_index != 0; j++) {
472
104k
            if ((color_index & 1) == 0) /* check for non-consecutive bits */
473
0
                return;
474
104k
            color_index >>= 1;
475
104k
        }
476
37.8k
        comp_bits[i] = j;
477
        /*
478
         * We could verify that the bit count matches the dither_grays or
479
         * dither_colors values, but this is not really required unless we
480
         * are halftoning.  Thus we are allowing for non equal colorant sizes.
481
         */
482
        /* Check for overlap with other colorant if they are all maxed */
483
75.7k
        for (j = 0; j < num_components; j++)
484
37.8k
            colorants[j] = gx_max_color_value;
485
37.8k
        colorants[i] = 0;
486
37.8k
        color_index = dev_proc(dev, encode_color)(dev, colorants);
487
37.8k
        if (color_index & comp_mask[i])  /* Check for overlapping bits */
488
0
            return;
489
37.8k
    }
490
    /* If we get to here then the device is very likely to be separable. */
491
37.8k
    pinfo->separable_and_linear = GX_CINFO_SEP_LIN;
492
75.7k
    for (i = 0; i < num_components; i++) {
493
37.8k
        pinfo->comp_shift[i] = comp_shift[i];
494
37.8k
        pinfo->comp_bits[i] = comp_bits[i];
495
37.8k
        pinfo->comp_mask[i] = comp_mask[i];
496
37.8k
    }
497
    /*
498
     * The 'gray_index' value allows one colorant to have a different number
499
     * of shades from the remainder.  Since the default macros only guess at
500
     * an appropriate value, we are setting its value based upon the data that
501
     * we just determined.  Note:  In some cases the macros set max_gray to 0
502
     * and dither_grays to 1.  This is not valid so ignore this case.
503
     */
504
37.8k
    for (i = 0; i < num_components; i++) {
505
37.8k
        int dither = 1 << comp_bits[i];
506
507
37.8k
        if (pinfo->dither_grays != 1 && dither == pinfo->dither_grays) {
508
37.8k
            pinfo->gray_index = i;
509
37.8k
            break;
510
37.8k
        }
511
37.8k
    }
512
37.8k
}
513
#undef is_power_of_two
514
515
/*
516
 * This routine attempts to determine if a device's encode_color procedure
517
 * produces values that are in keeping with "the standard encoding".
518
 * i.e. that given by pdf14_encode_color.
519
 *
520
 * It works by first checking to see if we are separable_and_linear. If not
521
 * we cannot hope to be the standard encoding.
522
 *
523
 * Then, we check to see if we are a dev device - if so, we must be
524
 * compatible.
525
 *
526
 * Failing that it checks to see if the encoding uses the appropriate
527
 * bit ranges for each individual color.
528
 *
529
 * If those (quick) tests pass, then we try the slower test of checking
530
 * the encodings. We can do this far faster than an exhaustive check, by
531
 * relying on the separability and linearity - we only need to check 256
532
 * possible values.
533
 *
534
 * The one tricky section there is to avoid the special case for
535
 * gx_no_color_index_value (which can occur when we have a 32bit
536
 * gx_color_index type, and a 4 component device, such as cmyk).
537
 * We allow the encoding to be off in the lower bits for that case.
538
 */
539
void check_device_compatible_encoding(gx_device *dev)
540
2.49M
{
541
2.49M
    gx_device_color_info * pinfo = &(dev->color_info);
542
2.49M
    int num_components = pinfo->num_components;
543
2.49M
    gx_color_index mul, color_index;
544
2.49M
    int i, j;
545
2.49M
    gx_color_value colorants[GX_DEVICE_COLOR_MAX_COMPONENTS];
546
2.49M
    bool deep = device_is_deep(dev);
547
548
2.49M
    if (pinfo->separable_and_linear == GX_CINFO_UNKNOWN_SEP_LIN)
549
0
        check_device_separable(dev);
550
2.49M
    if (pinfo->separable_and_linear != GX_CINFO_SEP_LIN)
551
2.49M
        return;
552
553
1.03k
    if (dev_proc(dev, ret_devn_params)(dev) != NULL) {
554
        /* We know all devn devices are compatible. */
555
0
        pinfo->separable_and_linear = GX_CINFO_SEP_LIN_STANDARD;
556
0
        return;
557
0
    }
558
559
    /* Do the superficial quick checks */
560
2.07k
    for (i = 0; i < num_components; i++) {
561
1.03k
        int shift = (num_components-1-i)*(8<<deep);
562
1.03k
        if (pinfo->comp_shift[i] != shift)
563
0
            goto bad;
564
1.03k
        if (pinfo->comp_bits[i] != 8<<deep)
565
0
            goto bad;
566
1.03k
        if (pinfo->comp_mask[i] != ((gx_color_index)(deep ? 65535 : 255))<<shift)
567
0
            goto bad;
568
1.03k
    }
569
570
    /* OK, now we are going to be slower. */
571
1.03k
    mul = 0;
572
2.07k
    for (i = 0; i < num_components; i++) {
573
1.03k
        mul = (mul<<(8<<deep)) | 1;
574
1.03k
    }
575
    /* In the deep case, we don't exhaustively test */
576
264k
    for (i = 0; i < 255; i++) {
577
527k
        for (j = 0; j < num_components; j++)
578
263k
            colorants[j] = i*257;
579
263k
        color_index = dev_proc(dev, encode_color)(dev, colorants);
580
263k
        if (color_index != i*mul*(deep ? 257 : 1) && (i*mul*(deep ? 257 : 1) != gx_no_color_index_value))
581
0
            goto bad;
582
263k
    }
583
    /* If we reach here, then every value matched, except possibly the last one.
584
     * We'll allow that to differ just in the lowest bits. */
585
1.03k
    if ((color_index | mul) != 255*mul*(deep ? 257 : 1))
586
0
        goto bad;
587
588
1.03k
    pinfo->separable_and_linear = GX_CINFO_SEP_LIN_STANDARD;
589
1.03k
    return;
590
0
bad:
591
0
    pinfo->separable_and_linear = GX_CINFO_SEP_LIN_NON_STANDARD;
592
0
}
593
594
int gx_default_no_copy_alpha_hl_color(gx_device * dev, const byte * data, int data_x, int raster, gx_bitmap_id id, int x, int y, int width, int height, const gx_drawing_color *pdcolor, int depth);
595
596
/* Fill in NULL procedures in a device procedure record. */
597
void
598
gx_device_fill_in_procs(register gx_device * dev)
599
4.58M
{
600
4.58M
    fill_dev_proc(dev, open_device, gx_default_open_device);
601
4.58M
    fill_dev_proc(dev, get_initial_matrix, gx_default_get_initial_matrix);
602
4.58M
    fill_dev_proc(dev, sync_output, gx_default_sync_output);
603
4.58M
    fill_dev_proc(dev, output_page, gx_default_output_page);
604
4.58M
    fill_dev_proc(dev, close_device, gx_default_close_device);
605
    /* see below for map_rgb_color */
606
4.58M
    fill_dev_proc(dev, map_color_rgb, gx_default_map_color_rgb);
607
    /* NOT fill_rectangle */
608
4.58M
    fill_dev_proc(dev, copy_mono, gx_default_copy_mono);
609
4.58M
    fill_dev_proc(dev, copy_color, gx_default_copy_color);
610
4.58M
    fill_dev_proc(dev, get_params, gx_default_get_params);
611
4.58M
    fill_dev_proc(dev, put_params, gx_default_put_params);
612
    /* see below for map_cmyk_color */
613
4.58M
    fill_dev_proc(dev, get_page_device, gx_default_get_page_device);
614
4.58M
    fill_dev_proc(dev, get_alpha_bits, gx_default_get_alpha_bits);
615
4.58M
    fill_dev_proc(dev, copy_alpha, gx_default_copy_alpha);
616
4.58M
    fill_dev_proc(dev, fill_path, gx_default_fill_path);
617
4.58M
    fill_dev_proc(dev, stroke_path, gx_default_stroke_path);
618
4.58M
    fill_dev_proc(dev, fill_mask, gx_default_fill_mask);
619
4.58M
    fill_dev_proc(dev, fill_trapezoid, gx_default_fill_trapezoid);
620
4.58M
    fill_dev_proc(dev, fill_parallelogram, gx_default_fill_parallelogram);
621
4.58M
    fill_dev_proc(dev, fill_triangle, gx_default_fill_triangle);
622
4.58M
    fill_dev_proc(dev, draw_thin_line, gx_default_draw_thin_line);
623
4.58M
    fill_dev_proc(dev, get_alpha_bits, gx_default_get_alpha_bits);
624
4.58M
    fill_dev_proc(dev, strip_tile_rectangle, gx_default_strip_tile_rectangle);
625
4.58M
    fill_dev_proc(dev, strip_copy_rop2, gx_default_strip_copy_rop2);
626
4.58M
    fill_dev_proc(dev, strip_tile_rect_devn, gx_default_strip_tile_rect_devn);
627
4.58M
    fill_dev_proc(dev, get_clipping_box, gx_default_get_clipping_box);
628
4.58M
    fill_dev_proc(dev, begin_typed_image, gx_default_begin_typed_image);
629
4.58M
    fill_dev_proc(dev, get_bits_rectangle, gx_default_get_bits_rectangle);
630
4.58M
    fill_dev_proc(dev, composite, gx_default_composite);
631
4.58M
    fill_dev_proc(dev, get_hardware_params, gx_default_get_hardware_params);
632
4.58M
    fill_dev_proc(dev, text_begin, gx_default_text_begin);
633
634
4.58M
    set_dev_proc(dev, encode_color, get_encode_color(dev));
635
4.58M
    if (dev->color_info.num_components == 3)
636
2.32M
        set_dev_proc(dev, map_rgb_color, dev_proc(dev, encode_color));
637
4.58M
    if (dev->color_info.num_components == 4)
638
0
        set_dev_proc(dev, map_cmyk_color, dev_proc(dev, encode_color));
639
640
4.58M
    if (colors_are_separable_and_linear(&dev->color_info)) {
641
3.14M
        fill_dev_proc(dev, encode_color, gx_default_encode_color);
642
3.14M
        fill_dev_proc(dev, map_cmyk_color, gx_default_encode_color);
643
3.14M
        fill_dev_proc(dev, map_rgb_color, gx_default_encode_color);
644
3.14M
    } else {
645
        /* if it isn't set now punt */
646
1.44M
        fill_dev_proc(dev, encode_color, gx_error_encode_color);
647
1.44M
        fill_dev_proc(dev, map_cmyk_color, gx_error_encode_color);
648
1.44M
        fill_dev_proc(dev, map_rgb_color, gx_error_encode_color);
649
1.44M
    }
650
651
    /*
652
     * Fill in the color mapping procedures and the component index
653
     * assignment procedure if they have not been provided by the client.
654
     *
655
     * Because it is difficult to provide default encoding procedures
656
     * that handle level inversion, this code needs to check both
657
     * the number of components and the polarity of color model.
658
     */
659
4.58M
    switch (dev->color_info.num_components) {
660
2.26M
    case 1:     /* DeviceGray or DeviceInvertGray */
661
        /*
662
         * If not gray then the device must provide the color
663
         * mapping procs.
664
         */
665
2.26M
        if (dev->color_info.polarity == GX_CINFO_POLARITY_ADDITIVE) {
666
2.26M
            fill_dev_proc( dev,
667
2.26M
                       get_color_mapping_procs,
668
2.26M
                       gx_default_DevGray_get_color_mapping_procs );
669
2.26M
        } else
670
0
            fill_dev_proc(dev, get_color_mapping_procs, gx_error_get_color_mapping_procs);
671
2.26M
        fill_dev_proc( dev,
672
2.26M
                       get_color_comp_index,
673
2.26M
                       gx_default_DevGray_get_color_comp_index );
674
2.26M
        break;
675
676
2.32M
    case 3:
677
2.32M
        if (dev->color_info.polarity == GX_CINFO_POLARITY_ADDITIVE) {
678
2.32M
            fill_dev_proc( dev,
679
2.32M
                       get_color_mapping_procs,
680
2.32M
                       gx_default_DevRGB_get_color_mapping_procs );
681
2.32M
            fill_dev_proc( dev,
682
2.32M
                       get_color_comp_index,
683
2.32M
                       gx_default_DevRGB_get_color_comp_index );
684
2.32M
        } else {
685
0
            fill_dev_proc(dev, get_color_mapping_procs, gx_error_get_color_mapping_procs);
686
0
            fill_dev_proc(dev, get_color_comp_index, gx_error_get_color_comp_index);
687
0
        }
688
2.32M
        break;
689
690
0
    case 4:
691
0
        fill_dev_proc(dev, get_color_mapping_procs, gx_default_DevCMYK_get_color_mapping_procs);
692
0
        fill_dev_proc(dev, get_color_comp_index, gx_default_DevCMYK_get_color_comp_index);
693
0
        break;
694
0
    default:    /* Unknown color model - set error handlers */
695
0
        if (dev_proc(dev, get_color_mapping_procs) == NULL) {
696
0
            fill_dev_proc(dev, get_color_mapping_procs, gx_error_get_color_mapping_procs);
697
0
            fill_dev_proc(dev, get_color_comp_index, gx_error_get_color_comp_index);
698
0
        }
699
4.58M
    }
700
701
4.58M
    set_dev_proc(dev, decode_color, get_decode_color(dev));
702
4.58M
    fill_dev_proc(dev, get_profile, gx_default_get_profile);
703
4.58M
    fill_dev_proc(dev, set_graphics_type_tag, gx_default_set_graphics_type_tag);
704
705
4.58M
    fill_dev_proc(dev, fill_rectangle_hl_color, gx_default_fill_rectangle_hl_color);
706
4.58M
    fill_dev_proc(dev, include_color_space, gx_default_include_color_space);
707
4.58M
    fill_dev_proc(dev, fill_linear_color_scanline, gx_default_fill_linear_color_scanline);
708
4.58M
    fill_dev_proc(dev, fill_linear_color_trapezoid, gx_default_fill_linear_color_trapezoid);
709
4.58M
    fill_dev_proc(dev, fill_linear_color_triangle, gx_default_fill_linear_color_triangle);
710
4.58M
    fill_dev_proc(dev, update_spot_equivalent_colors, gx_default_update_spot_equivalent_colors);
711
4.58M
    fill_dev_proc(dev, ret_devn_params, gx_default_ret_devn_params);
712
4.58M
    fill_dev_proc(dev, fillpage, gx_default_fillpage);
713
4.58M
    fill_dev_proc(dev, copy_alpha_hl_color, gx_default_no_copy_alpha_hl_color);
714
715
4.58M
    fill_dev_proc(dev, begin_transparency_group, gx_default_begin_transparency_group);
716
4.58M
    fill_dev_proc(dev, end_transparency_group, gx_default_end_transparency_group);
717
718
4.58M
    fill_dev_proc(dev, begin_transparency_mask, gx_default_begin_transparency_mask);
719
4.58M
    fill_dev_proc(dev, end_transparency_mask, gx_default_end_transparency_mask);
720
4.58M
    fill_dev_proc(dev, discard_transparency_layer, gx_default_discard_transparency_layer);
721
722
4.58M
    fill_dev_proc(dev, push_transparency_state, gx_default_push_transparency_state);
723
4.58M
    fill_dev_proc(dev, pop_transparency_state, gx_default_pop_transparency_state);
724
725
4.58M
    fill_dev_proc(dev, put_image, gx_default_put_image);
726
727
4.58M
    fill_dev_proc(dev, dev_spec_op, gx_default_dev_spec_op);
728
4.58M
    fill_dev_proc(dev, copy_planes, gx_default_copy_planes);
729
4.58M
    fill_dev_proc(dev, process_page, gx_default_process_page);
730
4.58M
    fill_dev_proc(dev, transform_pixel_region, gx_default_transform_pixel_region);
731
4.58M
    fill_dev_proc(dev, fill_stroke_path, gx_default_fill_stroke_path);
732
4.58M
    fill_dev_proc(dev, lock_pattern, gx_default_lock_pattern);
733
4.58M
}
734
735
736
int
737
gx_default_open_device(gx_device * dev)
738
29.3k
{
739
    /* Initialize the separable status if not known. */
740
29.3k
    check_device_separable(dev);
741
29.3k
    return 0;
742
29.3k
}
743
744
/* Get the initial matrix for a device with inverted Y. */
745
/* This includes essentially all printers and displays. */
746
/* Supports LeadingEdge, but no margins or viewports */
747
void
748
gx_default_get_initial_matrix(gx_device * dev, register gs_matrix * pmat)
749
3.21M
{
750
    /* NB this device has no paper margins */
751
3.21M
    double fs_res = dev->HWResolution[0] / 72.0;
752
3.21M
    double ss_res = dev->HWResolution[1] / 72.0;
753
754
3.21M
    switch(dev->LeadingEdge & LEADINGEDGE_MASK) {
755
0
    case 1: /* 90 degrees */
756
0
        pmat->xx = 0;
757
0
        pmat->xy = -ss_res;
758
0
        pmat->yx = -fs_res;
759
0
        pmat->yy = 0;
760
0
        pmat->tx = (float)dev->width;
761
0
        pmat->ty = (float)dev->height;
762
0
        break;
763
0
    case 2: /* 180 degrees */
764
0
        pmat->xx = -fs_res;
765
0
        pmat->xy = 0;
766
0
        pmat->yx = 0;
767
0
        pmat->yy = ss_res;
768
0
        pmat->tx = (float)dev->width;
769
0
        pmat->ty = 0;
770
0
        break;
771
0
    case 3: /* 270 degrees */
772
0
        pmat->xx = 0;
773
0
        pmat->xy = ss_res;
774
0
        pmat->yx = fs_res;
775
0
        pmat->yy = 0;
776
0
        pmat->tx = 0;
777
0
        pmat->ty = 0;
778
0
        break;
779
0
    default:
780
3.21M
    case 0:
781
3.21M
        pmat->xx = fs_res;
782
3.21M
        pmat->xy = 0;
783
3.21M
        pmat->yx = 0;
784
3.21M
        pmat->yy = -ss_res;
785
3.21M
        pmat->tx = 0;
786
3.21M
        pmat->ty = (float)dev->height;
787
        /****** tx/y is WRONG for devices with ******/
788
        /****** arbitrary initial matrix ******/
789
3.21M
        break;
790
3.21M
    }
791
3.21M
}
792
/* Get the initial matrix for a device with upright Y. */
793
/* This includes just a few printers and window systems. */
794
void
795
gx_upright_get_initial_matrix(gx_device * dev, register gs_matrix * pmat)
796
89.5k
{
797
89.5k
    pmat->xx = dev->HWResolution[0] / 72.0; /* x_pixels_per_inch */
798
89.5k
    pmat->xy = 0;
799
89.5k
    pmat->yx = 0;
800
89.5k
    pmat->yy = dev->HWResolution[1] / 72.0; /* y_pixels_per_inch */
801
    /****** tx/y is WRONG for devices with ******/
802
    /****** arbitrary initial matrix ******/
803
89.5k
    pmat->tx = 0;
804
89.5k
    pmat->ty = 0;
805
89.5k
}
806
807
int
808
gx_default_sync_output(gx_device * dev) /* lgtm [cpp/useless-expression] */
809
66.6k
{
810
66.6k
    return 0;
811
66.6k
}
812
813
int
814
gx_default_output_page(gx_device * dev, int num_copies, int flush)
815
0
{
816
0
    int code = dev_proc(dev, sync_output)(dev);
817
818
0
    if (code >= 0)
819
0
        code = gx_finish_output_page(dev, num_copies, flush);
820
0
    return code;
821
0
}
822
823
int
824
gx_default_close_device(gx_device * dev)
825
54.7k
{
826
54.7k
    return 0;
827
54.7k
}
828
829
gx_device *
830
gx_default_get_page_device(gx_device * dev)
831
32.6k
{
832
32.6k
    return NULL;
833
32.6k
}
834
gx_device *
835
gx_page_device_get_page_device(gx_device * dev)
836
2.77M
{
837
2.77M
    return dev;
838
2.77M
}
839
840
int
841
gx_default_get_alpha_bits(gx_device * dev, graphics_object_type type)
842
8.56M
{
843
8.56M
    return (type == go_text ? dev->color_info.anti_alias.text_bits :
844
8.56M
            dev->color_info.anti_alias.graphics_bits);
845
8.56M
}
846
847
void
848
gx_default_get_clipping_box(gx_device * dev, gs_fixed_rect * pbox)
849
1.85M
{
850
1.85M
    pbox->p.x = 0;
851
1.85M
    pbox->p.y = 0;
852
1.85M
    pbox->q.x = int2fixed(dev->width);
853
1.85M
    pbox->q.y = int2fixed(dev->height);
854
1.85M
}
855
void
856
gx_get_largest_clipping_box(gx_device * dev, gs_fixed_rect * pbox)
857
1
{
858
1
    pbox->p.x = min_fixed;
859
1
    pbox->p.y = min_fixed;
860
1
    pbox->q.x = max_fixed;
861
1
    pbox->q.y = max_fixed;
862
1
}
863
864
int
865
gx_no_composite(gx_device * dev, gx_device ** pcdev,
866
                        const gs_composite_t * pcte,
867
                        gs_gstate * pgs, gs_memory_t * memory,
868
                        gx_device *cdev)
869
0
{
870
0
    return_error(gs_error_unknownerror);  /* not implemented */
871
0
}
872
int
873
gx_default_composite(gx_device * dev, gx_device ** pcdev,
874
                             const gs_composite_t * pcte,
875
                             gs_gstate * pgs, gs_memory_t * memory,
876
                             gx_device *cdev)
877
3.19M
{
878
3.19M
    return pcte->type->procs.create_default_compositor
879
3.19M
        (pcte, pcdev, dev, pgs, memory);
880
3.19M
}
881
int
882
gx_null_composite(gx_device * dev, gx_device ** pcdev,
883
                          const gs_composite_t * pcte,
884
                          gs_gstate * pgs, gs_memory_t * memory,
885
                          gx_device *cdev)
886
0
{
887
0
    *pcdev = dev;
888
0
    return 0;
889
0
}
890
891
/*
892
 * Default handler for creating a compositor device when writing the clist. */
893
int
894
gx_default_composite_clist_write_update(const gs_composite_t *pcte, gx_device * dev,
895
                gx_device ** pcdev, gs_gstate * pgs, gs_memory_t * mem)
896
57.0k
{
897
57.0k
    *pcdev = dev;   /* Do nothing -> return the same device */
898
57.0k
    return 0;
899
57.0k
}
900
901
/* Default handler for adjusting a compositor's CTM. */
902
int
903
gx_default_composite_adjust_ctm(gs_composite_t *pcte, int x0, int y0, gs_gstate *pgs)
904
16.6M
{
905
16.6M
    return 0;
906
16.6M
}
907
908
/*
909
 * Default check for closing compositor.
910
 */
911
gs_compositor_closing_state
912
gx_default_composite_is_closing(const gs_composite_t *this, gs_composite_t **pcte, gx_device *dev)
913
0
{
914
0
    return COMP_ENQUEUE;
915
0
}
916
917
/*
918
 * Default check whether a next operation is friendly to the compositor.
919
 */
920
bool
921
gx_default_composite_is_friendly(const gs_composite_t *this, byte cmd0, byte cmd1)
922
304k
{
923
304k
    return false;
924
304k
}
925
926
/*
927
 * Default handler for updating the clist device when reading a compositing
928
 * device.
929
 */
930
int
931
gx_default_composite_clist_read_update(gs_composite_t *pxcte, gx_device * cdev,
932
                gx_device * tdev, gs_gstate * pgs, gs_memory_t * mem)
933
16.6M
{
934
16.6M
    return 0;     /* Do nothing */
935
16.6M
}
936
937
/*
938
 * Default handler for get_cropping returns no cropping.
939
 */
940
int
941
gx_default_composite_get_cropping(const gs_composite_t *pxcte, int *ry, int *rheight,
942
                                  int cropping_min, int cropping_max)
943
57.0k
{
944
57.0k
    return 0;     /* No cropping. */
945
57.0k
}
946
947
int
948
gx_default_initialize_device(gx_device *dev)
949
0
{
950
0
    return 0;
951
0
}
952
953
int
954
gx_default_dev_spec_op(gx_device *pdev, int dev_spec_op, void *data, int size)
955
25.4M
{
956
25.4M
    switch(dev_spec_op) {
957
0
        case gxdso_form_begin:
958
0
        case gxdso_form_end:
959
463
        case gxdso_pattern_can_accum:
960
463
        case gxdso_pattern_start_accum:
961
463
        case gxdso_pattern_finish_accum:
962
4.25k
        case gxdso_pattern_load:
963
170k
        case gxdso_pattern_shading_area:
964
300k
        case gxdso_pattern_is_cpath_accum:
965
301k
        case gxdso_pattern_handles_clip_path:
966
306k
        case gxdso_is_pdf14_device:
967
10.1M
        case gxdso_supports_devn:
968
10.1M
        case gxdso_supports_hlcolor:
969
10.1M
        case gxdso_supports_saved_pages:
970
10.1M
        case gxdso_needs_invariant_palette:
971
10.1M
        case gxdso_supports_iccpostrender:
972
10.2M
        case gxdso_supports_alpha:
973
10.2M
        case gxdso_pdf14_sep_device:
974
10.3M
        case gxdso_supports_pattern_transparency:
975
10.3M
        case gxdso_overprintsim_state:
976
10.3M
        case gxdso_skip_icc_component_validation:
977
10.3M
            return 0;
978
63
        case gxdso_pattern_shfill_doesnt_need_path:
979
63
            return (dev_proc(pdev, fill_path) == gx_default_fill_path);
980
0
        case gxdso_is_std_cmyk_1bit:
981
0
            return (dev_proc(pdev, map_cmyk_color) == cmyk_1bit_map_cmyk_color);
982
0
        case gxdso_interpolate_antidropout:
983
0
            return pdev->color_info.use_antidropout_downscaler;
984
113k
        case gxdso_interpolate_threshold:
985
113k
            if ((pdev->color_info.num_components == 1 &&
986
113k
                 pdev->color_info.max_gray < 15) ||
987
113k
                (pdev->color_info.num_components > 1 &&
988
113k
                 pdev->color_info.max_color < 15)) {
989
                /* If we are a limited color device (i.e. we are halftoning)
990
                 * then only interpolate if we are upscaling by at least 4 */
991
0
                return 4;
992
0
            }
993
113k
            return 0; /* Otherwise no change */
994
233k
        case gxdso_get_dev_param:
995
233k
            {
996
233k
                dev_param_req_t *request = (dev_param_req_t *)data;
997
233k
                return gx_default_get_param(pdev, request->Param, request->list);
998
113k
            }
999
124k
        case gxdso_current_output_device:
1000
124k
            {
1001
124k
                *(gx_device **)data = pdev;
1002
124k
                return 0;
1003
113k
            }
1004
12.3k
        case gxdso_copy_color_is_fast:
1005
12.3k
            return (dev_proc(pdev, copy_color) != gx_default_copy_color);
1006
432k
        case gxdso_is_encoding_direct:
1007
432k
            if (pdev->color_info.depth != 8 * pdev->color_info.num_components)
1008
0
                return 0;
1009
432k
            return (dev_proc(pdev, encode_color) == gx_default_encode_color ||
1010
432k
                    dev_proc(pdev, encode_color) == gx_default_rgb_map_rgb_color);
1011
        /* Just ignore information about events */
1012
0
        case gxdso_event_info:
1013
0
            return 0;
1014
3.06M
        case gxdso_overprint_active:
1015
3.06M
            return 0;
1016
25.4M
    }
1017
25.4M
    return_error(gs_error_undefined);
1018
25.4M
}
1019
1020
int
1021
gx_default_fill_rectangle_hl_color(gx_device *pdev,
1022
    const gs_fixed_rect *rect,
1023
    const gs_gstate *pgs, const gx_drawing_color *pdcolor,
1024
    const gx_clip_path *pcpath)
1025
0
{
1026
0
    return_error(gs_error_rangecheck);
1027
0
}
1028
1029
int
1030
gx_default_include_color_space(gx_device *pdev, gs_color_space *cspace,
1031
        const byte *res_name, int name_length)
1032
0
{
1033
0
    return 0;
1034
0
}
1035
1036
/*
1037
 * If a device wants to determine an equivalent color for its spot colors then
1038
 * it needs to implement this method.  See comments at the start of
1039
 * src/gsequivc.c.
1040
 */
1041
int
1042
gx_default_update_spot_equivalent_colors(gx_device *pdev, const gs_gstate * pgs, const gs_color_space *pcs)
1043
1.18k
{
1044
1.18k
    return 0;
1045
1.18k
}
1046
1047
/*
1048
 * If a device wants to determine implement support for spot colors then
1049
 * it needs to implement this method.
1050
 */
1051
gs_devn_params *
1052
gx_default_ret_devn_params(gx_device *pdev)
1053
2.41M
{
1054
2.41M
    return NULL;
1055
2.41M
}
1056
1057
int
1058
gx_default_process_page(gx_device *dev, gx_process_page_options_t *options)
1059
0
{
1060
0
    gs_int_rect rect;
1061
0
    int code = 0;
1062
0
    void *buffer = NULL;
1063
1064
    /* Possible future improvements in here could be given by us dividing the
1065
     * page up into n chunks, and spawning a thread per chunk to do the
1066
     * process_fn call on. n could be given by NumRenderingThreads. This
1067
     * would give us multi-core advantages even without clist. */
1068
0
    if (options->init_buffer_fn) {
1069
0
        code = options->init_buffer_fn(options->arg, dev, dev->memory, dev->width, dev->height, &buffer);
1070
0
        if (code < 0)
1071
0
            return code;
1072
0
    }
1073
1074
0
    rect.p.x = 0;
1075
0
    rect.p.y = 0;
1076
0
    rect.q.x = dev->width;
1077
0
    rect.q.y = dev->height;
1078
0
    if (options->process_fn)
1079
0
        code = options->process_fn(options->arg, dev, dev, &rect, buffer);
1080
0
    if (code >= 0 && options->output_fn)
1081
0
        code = options->output_fn(options->arg, dev, buffer);
1082
1083
0
    if (options->free_buffer_fn)
1084
0
        options->free_buffer_fn(options->arg, dev, dev->memory, buffer);
1085
1086
0
    return code;
1087
0
}
1088
1089
int
1090
gx_default_begin_transparency_group(gx_device *dev, const gs_transparency_group_params_t *ptgp, const gs_rect *pbbox, gs_gstate *pgs, gs_memory_t *mem)
1091
0
{
1092
0
    return 0;
1093
0
}
1094
1095
int
1096
gx_default_end_transparency_group(gx_device *dev, gs_gstate *pgs)
1097
0
{
1098
0
    return 0;
1099
0
}
1100
1101
int
1102
gx_default_begin_transparency_mask(gx_device *dev, const gx_transparency_mask_params_t *ptgp, const gs_rect *pbbox, gs_gstate *pgs, gs_memory_t *mem)
1103
0
{
1104
0
    return 0;
1105
0
}
1106
1107
int
1108
gx_default_end_transparency_mask(gx_device *dev, gs_gstate *pgs)
1109
0
{
1110
0
    return 0;
1111
0
}
1112
1113
int
1114
gx_default_discard_transparency_layer(gx_device *dev, gs_gstate *pgs)
1115
0
{
1116
0
    return 0;
1117
0
}
1118
1119
int
1120
gx_default_push_transparency_state(gx_device *dev, gs_gstate *pgs)
1121
0
{
1122
0
    return 0;
1123
0
}
1124
1125
int
1126
gx_default_pop_transparency_state(gx_device *dev, gs_gstate *pgs)
1127
0
{
1128
0
    return 0;
1129
0
}
1130
1131
int
1132
gx_default_put_image(gx_device *dev, gx_device *mdev, const byte **buffers, int num_chan, int x, int y, int width, int height, int row_stride, int alpha_plane_index, int tag_plane_index)
1133
0
{
1134
0
    return_error(gs_error_undefined);
1135
0
}
1136
1137
int
1138
gx_default_no_copy_alpha_hl_color(gx_device * dev, const byte * data, int data_x, int raster, gx_bitmap_id id, int x, int y, int width, int height, const gx_drawing_color *pdcolor, int depth)
1139
0
{
1140
0
    return_error(gs_error_undefined);
1141
0
}
1142
1143
int
1144
gx_default_copy_planes(gx_device *dev, const byte *data, int data_x, int raster, gx_bitmap_id id, int x, int y, int width, int height, int plane_height)
1145
0
{
1146
0
    return_error(gs_error_undefined);
1147
0
}
1148
1149
/* ---------------- Default per-instance procedures ---------------- */
1150
1151
int
1152
gx_default_install(gx_device * dev, gs_gstate * pgs)
1153
34.9k
{
1154
34.9k
    return 0;
1155
34.9k
}
1156
1157
int
1158
gx_default_begin_page(gx_device * dev, gs_gstate * pgs)
1159
47.4k
{
1160
47.4k
    return 0;
1161
47.4k
}
1162
1163
int
1164
gx_default_end_page(gx_device * dev, int reason, gs_gstate * pgs)
1165
57.0k
{
1166
57.0k
    return (reason != 2 ? 1 : 0);
1167
57.0k
}
1168
1169
void
1170
gx_default_set_graphics_type_tag(gx_device *dev, gs_graphics_type_tag_t graphics_type_tag)
1171
449k
{
1172
    /* set the tag but carefully preserve GS_DEVICE_ENCODES_TAGS */
1173
449k
    dev->graphics_type_tag = (dev->graphics_type_tag & GS_DEVICE_ENCODES_TAGS) | graphics_type_tag;
1174
449k
}
1175
1176
/* ---------------- Device subclassing procedures ---------------- */
1177
1178
/* Non-obvious code. The 'dest_procs' is the 'procs' memory occupied by the original device that we decided to subclass,
1179
 * 'src_procs' is the newly allocated piece of memory, to which we have already copied the content of the
1180
 * original device (including the procs), prototype is the device structure prototype for the subclassing device.
1181
 * Here we copy the methods from the prototype to the original device procs memory *but* if the original (src_procs)
1182
 * device had a NULL method, we make the new device procs have a NULL method too.
1183
 * The reason for ths is ugly, there are some places in the graphics library which explicitly check for
1184
 * a device having a NULL method and take different code paths depending on the result.
1185
 * Now in general we expect subclassing devices to implement *every* method, so if we didn't copy
1186
 * over NULL methods present in the original source device then the code path could be inappropriate for
1187
 * that underlying (now subclassed) device.
1188
 */
1189
/* November 10th 2017 Restored the original behaviour of the device methods, they should now never be NULL.
1190
 * Howwever, there are still places in the code which take different code paths if the device method is (now)
1191
 * the default device method, rather than a device-specific method.
1192
 * So instead of checking for NULL, we now need to check against the default implementation, and *NOT* copy the
1193
 * prototype (subclass device) method if the original device had the default implementation.
1194
 * I suspect a combination of forwarding and subclassing devices will not work properly for this reason.
1195
 */
1196
int gx_copy_device_procs(gx_device *dest, const gx_device *src, const gx_device *pprototype)
1197
9.56k
{
1198
9.56k
    gx_device prototype = *pprototype;
1199
1200
    /* In the new (as of 2021) world, the prototype does not contain
1201
     * device procs. We need to call the 'initialize_device_procs'
1202
     * function to properly populate the procs array. We can't write to
1203
     * the const prototype pointer we are passed in, so copy it to a
1204
     * local block, and initialize that instead, */
1205
9.56k
    prototype.initialize_device_procs(&prototype);
1206
    /* Fill in missing entries with the global defaults */
1207
9.56k
    gx_device_fill_in_procs(&prototype);
1208
1209
9.56k
    if (dest->initialize_device_procs == NULL)
1210
0
       dest->initialize_device_procs = prototype.initialize_device_procs;
1211
1212
9.56k
    set_dev_proc(dest, initialize_device, dev_proc(&prototype, initialize_device));
1213
9.56k
    set_dev_proc(dest, open_device, dev_proc(&prototype, open_device));
1214
9.56k
    set_dev_proc(dest, get_initial_matrix, dev_proc(&prototype, get_initial_matrix));
1215
9.56k
    set_dev_proc(dest, sync_output, dev_proc(&prototype, sync_output));
1216
9.56k
    set_dev_proc(dest, output_page, dev_proc(&prototype, output_page));
1217
9.56k
    set_dev_proc(dest, close_device, dev_proc(&prototype, close_device));
1218
9.56k
    set_dev_proc(dest, map_rgb_color, dev_proc(&prototype, map_rgb_color));
1219
9.56k
    set_dev_proc(dest, map_color_rgb, dev_proc(&prototype, map_color_rgb));
1220
9.56k
    set_dev_proc(dest, fill_rectangle, dev_proc(&prototype, fill_rectangle));
1221
9.56k
    set_dev_proc(dest, copy_mono, dev_proc(&prototype, copy_mono));
1222
9.56k
    set_dev_proc(dest, copy_color, dev_proc(&prototype, copy_color));
1223
9.56k
    set_dev_proc(dest, get_params, dev_proc(&prototype, get_params));
1224
9.56k
    set_dev_proc(dest, put_params, dev_proc(&prototype, put_params));
1225
9.56k
    set_dev_proc(dest, map_cmyk_color, dev_proc(&prototype, map_cmyk_color));
1226
9.56k
    set_dev_proc(dest, get_page_device, dev_proc(&prototype, get_page_device));
1227
9.56k
    set_dev_proc(dest, get_alpha_bits, dev_proc(&prototype, get_alpha_bits));
1228
9.56k
    set_dev_proc(dest, copy_alpha, dev_proc(&prototype, copy_alpha));
1229
9.56k
    set_dev_proc(dest, fill_path, dev_proc(&prototype, fill_path));
1230
9.56k
    set_dev_proc(dest, stroke_path, dev_proc(&prototype, stroke_path));
1231
9.56k
    set_dev_proc(dest, fill_trapezoid, dev_proc(&prototype, fill_trapezoid));
1232
9.56k
    set_dev_proc(dest, fill_parallelogram, dev_proc(&prototype, fill_parallelogram));
1233
9.56k
    set_dev_proc(dest, fill_triangle, dev_proc(&prototype, fill_triangle));
1234
9.56k
    set_dev_proc(dest, draw_thin_line, dev_proc(&prototype, draw_thin_line));
1235
9.56k
    set_dev_proc(dest, strip_tile_rectangle, dev_proc(&prototype, strip_tile_rectangle));
1236
9.56k
    set_dev_proc(dest, get_clipping_box, dev_proc(&prototype, get_clipping_box));
1237
9.56k
    set_dev_proc(dest, begin_typed_image, dev_proc(&prototype, begin_typed_image));
1238
9.56k
    set_dev_proc(dest, get_bits_rectangle, dev_proc(&prototype, get_bits_rectangle));
1239
9.56k
    set_dev_proc(dest, composite, dev_proc(&prototype, composite));
1240
9.56k
    set_dev_proc(dest, get_hardware_params, dev_proc(&prototype, get_hardware_params));
1241
9.56k
    set_dev_proc(dest, text_begin, dev_proc(&prototype, text_begin));
1242
9.56k
    set_dev_proc(dest, discard_transparency_layer, dev_proc(&prototype, discard_transparency_layer));
1243
9.56k
    set_dev_proc(dest, get_color_mapping_procs, dev_proc(&prototype, get_color_mapping_procs));
1244
9.56k
    set_dev_proc(dest, get_color_comp_index, dev_proc(&prototype, get_color_comp_index));
1245
9.56k
    set_dev_proc(dest, encode_color, dev_proc(&prototype, encode_color));
1246
9.56k
    set_dev_proc(dest, decode_color, dev_proc(&prototype, decode_color));
1247
9.56k
    set_dev_proc(dest, fill_rectangle_hl_color, dev_proc(&prototype, fill_rectangle_hl_color));
1248
9.56k
    set_dev_proc(dest, include_color_space, dev_proc(&prototype, include_color_space));
1249
9.56k
    set_dev_proc(dest, fill_linear_color_scanline, dev_proc(&prototype, fill_linear_color_scanline));
1250
9.56k
    set_dev_proc(dest, fill_linear_color_trapezoid, dev_proc(&prototype, fill_linear_color_trapezoid));
1251
9.56k
    set_dev_proc(dest, fill_linear_color_triangle, dev_proc(&prototype, fill_linear_color_triangle));
1252
9.56k
    set_dev_proc(dest, update_spot_equivalent_colors, dev_proc(&prototype, update_spot_equivalent_colors));
1253
9.56k
    set_dev_proc(dest, ret_devn_params, dev_proc(&prototype, ret_devn_params));
1254
9.56k
    set_dev_proc(dest, fillpage, dev_proc(&prototype, fillpage));
1255
9.56k
    set_dev_proc(dest, push_transparency_state, dev_proc(&prototype, push_transparency_state));
1256
9.56k
    set_dev_proc(dest, pop_transparency_state, dev_proc(&prototype, pop_transparency_state));
1257
9.56k
    set_dev_proc(dest, dev_spec_op, dev_proc(&prototype, dev_spec_op));
1258
9.56k
    set_dev_proc(dest, get_profile, dev_proc(&prototype, get_profile));
1259
9.56k
    set_dev_proc(dest, strip_copy_rop2, dev_proc(&prototype, strip_copy_rop2));
1260
9.56k
    set_dev_proc(dest, strip_tile_rect_devn, dev_proc(&prototype, strip_tile_rect_devn));
1261
9.56k
    set_dev_proc(dest, process_page, dev_proc(&prototype, process_page));
1262
9.56k
    set_dev_proc(dest, transform_pixel_region, dev_proc(&prototype, transform_pixel_region));
1263
9.56k
    set_dev_proc(dest, fill_stroke_path, dev_proc(&prototype, fill_stroke_path));
1264
9.56k
    set_dev_proc(dest, lock_pattern, dev_proc(&prototype, lock_pattern));
1265
1266
    /*
1267
     * We absolutely must set the 'set_graphics_type_tag' to the default subclass one
1268
     * even if the subclassed device is using the default. This is because the
1269
     * default implementation sets a flag in the device structure, and if we
1270
     * copy the default method, we'll end up setting the flag in the subclassing device
1271
     * instead of the subclassed device!
1272
     */
1273
9.56k
    set_dev_proc(dest, set_graphics_type_tag, dev_proc(&prototype, set_graphics_type_tag));
1274
1275
    /* These are the routines whose existence is checked against the default at
1276
     * some point in the code. The code path differs when the device implements a
1277
     * method other than the default, so the subclassing device needs to ensure that
1278
     * if the subclassed device has one of these methods set to the default, we
1279
     * do not overwrite the default method.
1280
     */
1281
9.56k
    if (dev_proc(src, fill_mask) != gx_default_fill_mask)
1282
9.56k
        set_dev_proc(dest, fill_mask, dev_proc(&prototype, fill_mask));
1283
9.56k
    if (dev_proc(src, begin_transparency_group) != gx_default_begin_transparency_group)
1284
0
        set_dev_proc(dest, begin_transparency_group, dev_proc(&prototype, begin_transparency_group));
1285
9.56k
    if (dev_proc(src, end_transparency_group) != gx_default_end_transparency_group)
1286
0
        set_dev_proc(dest, end_transparency_group, dev_proc(&prototype, end_transparency_group));
1287
9.56k
    if (dev_proc(src, put_image) != gx_default_put_image)
1288
0
        set_dev_proc(dest, put_image, dev_proc(&prototype, put_image));
1289
9.56k
    if (dev_proc(src, copy_planes) != gx_default_copy_planes)
1290
0
        set_dev_proc(dest, copy_planes, dev_proc(&prototype, copy_planes));
1291
9.56k
    if (dev_proc(src, copy_alpha_hl_color) != gx_default_no_copy_alpha_hl_color)
1292
0
        set_dev_proc(dest, copy_alpha_hl_color, dev_proc(&prototype, copy_alpha_hl_color));
1293
1294
9.56k
    return 0;
1295
9.56k
}
1296
1297
int gx_device_subclass(gx_device *dev_to_subclass, gx_device *new_prototype, unsigned int private_data_size)
1298
9.56k
{
1299
9.56k
    gx_device *child_dev;
1300
9.56k
    void *psubclass_data;
1301
9.56k
    gs_memory_struct_type_t *a_std = NULL, *b_std = NULL;
1302
9.56k
    int dynamic = dev_to_subclass->stype_is_dynamic;
1303
9.56k
    char *ptr, *ptr1;
1304
1305
    /* If this happens we are stuffed, as there is no way to get hold
1306
     * of the original device's stype structure, which means we cannot
1307
     * allocate a replacement structure. Abort if so.
1308
     * Also abort if the new_prototype device struct is too large.
1309
     */
1310
9.56k
    if (!dev_to_subclass->stype ||
1311
9.56k
        dev_to_subclass->stype->ssize < new_prototype->params_size)
1312
0
        return_error(gs_error_VMerror);
1313
1314
    /* We make a 'stype' structure for our new device, and copy the old stype into it
1315
     * This means our new device will always have the 'stype_is_dynamic' flag set
1316
     */
1317
9.56k
    a_std = (gs_memory_struct_type_t *)
1318
9.56k
        gs_alloc_bytes_immovable(dev_to_subclass->memory->non_gc_memory, sizeof(*a_std),
1319
9.56k
                                 "gs_device_subclass(stype)");
1320
9.56k
    if (!a_std)
1321
0
        return_error(gs_error_VMerror);
1322
9.56k
    *a_std = *dev_to_subclass->stype;
1323
9.56k
    a_std->ssize = dev_to_subclass->params_size;
1324
1325
9.56k
    if (!dynamic) {
1326
9.56k
        b_std = (gs_memory_struct_type_t *)
1327
9.56k
            gs_alloc_bytes_immovable(dev_to_subclass->memory->non_gc_memory, sizeof(*b_std),
1328
9.56k
                                     "gs_device_subclass(stype)");
1329
9.56k
        if (!b_std) {
1330
0
            gs_free_const_object(dev_to_subclass->memory->non_gc_memory, a_std, "gs_device_subclass(stype)");
1331
0
            return_error(gs_error_VMerror);
1332
0
        }
1333
9.56k
    }
1334
1335
    /* Allocate a device structure for the new child device */
1336
9.56k
    child_dev = gs_alloc_struct_immovable(dev_to_subclass->memory->stable_memory, gx_device, a_std,
1337
9.56k
                                        "gs_device_subclass(device)");
1338
9.56k
    if (child_dev == 0) {
1339
0
        gs_free_const_object(dev_to_subclass->memory->non_gc_memory, a_std, "gs_device_subclass(stype)");
1340
0
        gs_free_const_object(dev_to_subclass->memory->non_gc_memory, b_std, "gs_device_subclass(stype)");
1341
0
        return_error(gs_error_VMerror);
1342
0
    }
1343
1344
    /* Make sure all methods are filled in, note this won't work for a forwarding device
1345
     * so forwarding devices will have to be filled in before being subclassed. This doesn't fill
1346
     * in the fill_rectangle proc, that gets done in the ultimate device's open proc.
1347
     */
1348
9.56k
    gx_device_fill_in_procs(dev_to_subclass);
1349
9.56k
    memcpy(child_dev, dev_to_subclass, dev_to_subclass->stype->ssize);
1350
9.56k
    child_dev->stype = a_std;
1351
9.56k
    child_dev->stype_is_dynamic = 1;
1352
1353
    /* At this point, the only counted reference to the child is from its parent, and we need it to use the right allocator */
1354
9.56k
    rc_init(child_dev, dev_to_subclass->memory->stable_memory, 1);
1355
1356
9.56k
    psubclass_data = (void *)gs_alloc_bytes(dev_to_subclass->memory->non_gc_memory, private_data_size, "subclass memory for subclassing device");
1357
9.56k
    if (psubclass_data == 0){
1358
0
        gs_free_const_object(dev_to_subclass->memory->non_gc_memory, b_std, "gs_device_subclass(stype)");
1359
        /* We *don't* want to run the finalize routine. This would free the stype and
1360
         * properly handle the icc_struct and PageList, but for devices with a custom
1361
         * finalize (eg psdcmyk) it might also free memory it had allocated, and we're
1362
         * still pointing at that memory in the parent.
1363
         */
1364
0
        a_std->finalize = NULL;
1365
0
        gs_set_object_type(dev_to_subclass->memory->stable_memory, child_dev, a_std);
1366
0
        gs_free_object(dev_to_subclass->memory->stable_memory, child_dev, "free subclass memory for subclassing device");
1367
0
        gs_free_const_object(dev_to_subclass->memory->non_gc_memory, a_std, "gs_device_subclass(stype)");
1368
0
        return_error(gs_error_VMerror);
1369
0
    }
1370
9.56k
    memset(psubclass_data, 0x00, private_data_size);
1371
1372
9.56k
    gx_copy_device_procs(dev_to_subclass, child_dev, new_prototype);
1373
9.56k
    dev_to_subclass->finalize = new_prototype->finalize;
1374
9.56k
    dev_to_subclass->dname = new_prototype->dname;
1375
9.56k
    if (dev_to_subclass->icc_struct)
1376
9.56k
        rc_increment(dev_to_subclass->icc_struct);
1377
9.56k
    if (dev_to_subclass->PageList)
1378
9.56k
        rc_increment(dev_to_subclass->PageList);
1379
9.56k
    if (dev_to_subclass->NupControl)
1380
9.56k
        rc_increment(dev_to_subclass->NupControl);
1381
1382
9.56k
    dev_to_subclass->page_procs = new_prototype->page_procs;
1383
9.56k
    gx_subclass_fill_in_page_procs(dev_to_subclass);
1384
1385
    /* In case the new device we're creating has already been initialised, copy
1386
     * its additional data.
1387
     */
1388
9.56k
    ptr = ((char *)dev_to_subclass) + sizeof(gx_device);
1389
9.56k
    ptr1 = ((char *)new_prototype) + sizeof(gx_device);
1390
9.56k
    memcpy(ptr, ptr1, new_prototype->params_size - sizeof(gx_device));
1391
1392
    /* If the original device's stype structure was dynamically allocated, we need
1393
     * to 'fixup' the contents, it's procs need to point to the new device's procs
1394
     * for instance.
1395
     */
1396
9.56k
    if (dynamic) {
1397
0
        if (new_prototype->stype) {
1398
0
            b_std = (gs_memory_struct_type_t *)dev_to_subclass->stype;
1399
0
            *b_std = *new_prototype->stype;
1400
0
            b_std->ssize = a_std->ssize;
1401
0
            dev_to_subclass->stype_is_dynamic = 1;
1402
0
        } else {
1403
0
            gs_free_const_object(child_dev->memory->non_gc_memory, dev_to_subclass->stype,
1404
0
                             "unsubclass");
1405
0
            dev_to_subclass->stype = NULL;
1406
0
            b_std = (gs_memory_struct_type_t *)new_prototype->stype;
1407
0
            dev_to_subclass->stype_is_dynamic = 0;
1408
0
        }
1409
0
    }
1410
9.56k
    else {
1411
9.56k
        *b_std = *new_prototype->stype;
1412
9.56k
        b_std->ssize = a_std->ssize;
1413
9.56k
        dev_to_subclass->stype_is_dynamic = 1;
1414
9.56k
    }
1415
9.56k
    dev_to_subclass->stype = b_std;
1416
    /* We have to patch up the "type" parameters that the memory manage/garbage
1417
     * collector will use, as well.
1418
     */
1419
9.56k
    gs_set_object_type(child_dev->memory, dev_to_subclass, b_std);
1420
1421
9.56k
    dev_to_subclass->subclass_data = psubclass_data;
1422
9.56k
    dev_to_subclass->child = child_dev;
1423
9.56k
    if (child_dev->parent) {
1424
0
        dev_to_subclass->parent = child_dev->parent;
1425
0
        child_dev->parent->child = dev_to_subclass;
1426
0
    }
1427
9.56k
    if (child_dev->child) {
1428
0
        child_dev->child->parent = child_dev;
1429
0
    }
1430
9.56k
    child_dev->parent = dev_to_subclass;
1431
1432
9.56k
    return 0;
1433
9.56k
}
1434
1435
void gx_device_unsubclass(gx_device *dev)
1436
0
{
1437
0
    generic_subclass_data *psubclass_data;
1438
0
    gx_device *parent, *child;
1439
0
    gs_memory_struct_type_t *a_std = 0, *b_std = 0;
1440
0
    int dynamic, ref_count;
1441
0
    gs_memory_t *rcmem;
1442
1443
    /* This should not happen... */
1444
0
    if (!dev)
1445
0
        return;
1446
1447
0
    ref_count = dev->rc.ref_count;
1448
0
    rcmem = dev->rc.memory;
1449
1450
0
    child = dev->child;
1451
0
    psubclass_data = (generic_subclass_data *)dev->subclass_data;
1452
0
    parent = dev->parent;
1453
0
    dynamic = dev->stype_is_dynamic;
1454
1455
    /* We need to account for the fact that we are removing ourselves from
1456
     * the device chain after a clist device has been pushed, due to a
1457
     * compositor action. Since we patched the clist 'composite'
1458
     * method (and target device) when it was pushed.
1459
     * A point to note; we *don't* want to change the forwarding device's
1460
     * 'target', because when we copy the child up to replace 'this' device
1461
     * we do still want the forwarding device to point here. NB its the *child*
1462
     * device that goes away.
1463
     */
1464
0
    if (psubclass_data != NULL && psubclass_data->forwarding_dev != NULL && psubclass_data->saved_compositor_method)
1465
0
        psubclass_data->forwarding_dev->procs.composite = psubclass_data->saved_compositor_method;
1466
1467
    /* If ths device's stype is dynamically allocated, keep a copy of it
1468
     * in case we might need it.
1469
     */
1470
0
    if (dynamic) {
1471
0
        a_std = (gs_memory_struct_type_t *)dev->stype;
1472
0
        if (child)
1473
0
            *a_std = *child->stype;
1474
0
    }
1475
1476
    /* If ths device has any private storage, free it now */
1477
0
    if (psubclass_data)
1478
0
        gs_free_object(dev->memory->non_gc_memory, psubclass_data, "gx_device_unsubclass");
1479
1480
    /* Copy the child device into ths device's memory */
1481
0
    if (child) {
1482
0
        b_std = (gs_memory_struct_type_t *)dev->stype;
1483
0
        rc_decrement(dev->icc_struct, "unsubclass device");
1484
0
        rc_increment(child->icc_struct);
1485
0
        memcpy(dev, child, child->stype->ssize);
1486
        /* Patch back the 'stype' in the memory manager */
1487
0
        gs_set_object_type(child->memory, dev, b_std);
1488
1489
0
        dev->stype = b_std;
1490
        /* The reference count of the subclassing device may have been
1491
         * changed (eg graphics states pointing to it) after we subclassed
1492
         * the device. We need to ensure that we do not overwrite this
1493
         * when we copy back the subclassed device.
1494
         */
1495
0
        dev->rc.ref_count = ref_count;
1496
0
        dev->rc.memory = rcmem;
1497
1498
        /* If we have a chain of devices, make sure the chain beyond the
1499
         * device we're unsubclassing doesn't get broken, we need to
1500
         * detach the lower chain and reattach it at the new highest level.
1501
         */
1502
0
        if (child->child)
1503
0
            child->child->parent = dev;
1504
0
        child->parent->child = child->child;
1505
0
    }
1506
1507
    /* How can we have a subclass device with no child ? Simples; when we
1508
     * hit the end of job restore, the devices are not freed in device
1509
     * chain order. To make sure we don't end up following stale pointers,
1510
     * when a device is freed we remove it from the chain and update
1511
     * any dangling pointers to NULL. When we later free the remaining
1512
     * devices it's possible that their child pointer can then be NULL.
1513
     */
1514
0
    if (child) {
1515
        /* We cannot afford to free the child device if its stype is not
1516
         * dynamic because we can't 'null' the finalise routine, and we
1517
         * cannot permit the device to be finalised because we have copied
1518
         * it up one level, not discarded it. (This shouldn't happen! Child
1519
         * devices are always created with a dynamic stype.) If this ever
1520
         * happens garbage collecton will eventually clean up the memory.
1521
         */
1522
0
        if (child->stype_is_dynamic) {
1523
            /* Make sure that nothing will try to follow the device chain,
1524
             * just security here. */
1525
0
            child->parent = NULL;
1526
0
            child->child = NULL;
1527
1528
            /* We *don't* want to run the finalize routine. This would free
1529
             * the stype and properly handle the icc_struct and PageList,
1530
             * but for devices with a custom finalize (eg psdcmyk) it might
1531
             * also free memory it had allocated, and we're still pointing
1532
             * at that memory in the parent. The indirection through a
1533
             * variable is just to get rid of const warnings.
1534
             */
1535
0
            b_std = (gs_memory_struct_type_t *)child->stype;
1536
0
            gs_free_const_object(dev->memory->non_gc_memory, b_std, "gs_device_unsubclass(stype)");
1537
            /* Make this into a generic device */
1538
0
            child->stype = &st_device;
1539
0
            child->stype_is_dynamic = false;
1540
1541
            /* We can't simply discard the child device, because there may be references to it elsewhere,
1542
               but equally, we really don't want it doing anything, so set the procs so actions are just discarded.
1543
             */
1544
0
            gx_copy_device_procs(child, (gx_device *)&gs_null_device, (gx_device *)&gs_null_device);
1545
1546
            /* Having changed the stype, we need to make sure the memory
1547
             * manager uses it. It keeps a copy in its own data structure,
1548
             * and would use that copy, which would mean it would call the
1549
             * finalize routine that we just patched out.
1550
             */
1551
0
            gs_set_object_type(dev->memory->stable_memory, child, child->stype);
1552
0
            child->finalize = NULL;
1553
            /* Now (finally) free the child memory */
1554
0
            rc_decrement(child, "gx_device_unsubclass(device)");
1555
0
        }
1556
0
    }
1557
0
    dev->parent = parent;
1558
1559
    /* If this device has a dynamic stype, we wnt to keep using it, but we copied
1560
     * the stype pointer from the child when we copied the rest of the device. So
1561
     * we update the stype pointer with the saved pointer to this device's stype.
1562
     */
1563
0
    if (dynamic) {
1564
0
        dev->stype = a_std;
1565
0
        dev->stype_is_dynamic = 1;
1566
0
    } else {
1567
0
        dev->stype_is_dynamic = 0;
1568
0
    }
1569
0
}
1570
1571
int gx_update_from_subclass(gx_device *dev)
1572
41.9k
{
1573
41.9k
    if (!dev->child)
1574
0
        return 0;
1575
1576
41.9k
    memcpy(&dev->color_info, &dev->child->color_info, sizeof(gx_device_color_info));
1577
41.9k
    memcpy(&dev->cached_colors, &dev->child->cached_colors, sizeof(gx_device_cached_colors_t));
1578
41.9k
    dev->max_fill_band = dev->child->max_fill_band;
1579
41.9k
    dev->width = dev->child->width;
1580
41.9k
    dev->height = dev->child->height;
1581
41.9k
    dev->pad = dev->child->pad;
1582
41.9k
    dev->log2_align_mod = dev->child->log2_align_mod;
1583
41.9k
    dev->max_fill_band = dev->child->max_fill_band;
1584
41.9k
    dev->num_planar_planes = dev->child->num_planar_planes;
1585
41.9k
    dev->LeadingEdge = dev->child->LeadingEdge;
1586
41.9k
    memcpy(&dev->ImagingBBox, &dev->child->ImagingBBox, sizeof(dev->child->ImagingBBox));
1587
41.9k
    dev->ImagingBBox_set = dev->child->ImagingBBox_set;
1588
41.9k
    memcpy(&dev->MediaSize, &dev->child->MediaSize, sizeof(dev->child->MediaSize));
1589
41.9k
    memcpy(&dev->HWResolution, &dev->child->HWResolution, sizeof(dev->child->HWResolution));
1590
41.9k
    memcpy(&dev->Margins, &dev->child->Margins, sizeof(dev->child->Margins));
1591
41.9k
    memcpy(&dev->HWMargins, &dev->child->HWMargins, sizeof(dev->child->HWMargins));
1592
41.9k
    dev->FirstPage = dev->child->FirstPage;
1593
41.9k
    dev->LastPage = dev->child->LastPage;
1594
41.9k
    dev->PageCount = dev->child->PageCount;
1595
41.9k
    dev->ShowpageCount = dev->child->ShowpageCount;
1596
41.9k
    dev->NumCopies = dev->child->NumCopies;
1597
41.9k
    dev->NumCopies_set = dev->child->NumCopies_set;
1598
41.9k
    dev->IgnoreNumCopies = dev->child->IgnoreNumCopies;
1599
41.9k
    dev->UseCIEColor = dev->child->UseCIEColor;
1600
41.9k
    dev->LockSafetyParams= dev->child->LockSafetyParams;
1601
41.9k
    dev->band_offset_x = dev->child->band_offset_y;
1602
41.9k
    dev->sgr = dev->child->sgr;
1603
41.9k
    dev->MaxPatternBitmap = dev->child->MaxPatternBitmap;
1604
41.9k
    dev->page_uses_transparency = dev->child->page_uses_transparency;
1605
41.9k
    memcpy(&dev->space_params, &dev->child->space_params, sizeof(gdev_space_params));
1606
41.9k
    dev->graphics_type_tag = dev->child->graphics_type_tag;
1607
1608
41.9k
    return 0;
1609
41.9k
}
1610
1611
int gx_subclass_composite(gx_device *dev, gx_device **pcdev, const gs_composite_t *pcte,
1612
    gs_gstate *pgs, gs_memory_t *memory, gx_device *cdev)
1613
0
{
1614
0
    pdf14_clist_device *p14dev;
1615
0
    generic_subclass_data *psubclass_data;
1616
0
    int code = 0;
1617
1618
0
    p14dev = (pdf14_clist_device *)dev;
1619
0
    psubclass_data = (generic_subclass_data *)p14dev->target->subclass_data;
1620
1621
0
    set_dev_proc(dev, composite, psubclass_data->saved_compositor_method);
1622
1623
0
    if (gs_is_pdf14trans_compositor(pcte) != 0 && strncmp(dev->dname, "pdf14clist", 10) == 0) {
1624
0
        const gs_pdf14trans_t * pdf14pct = (const gs_pdf14trans_t *) pcte;
1625
1626
0
        switch (pdf14pct->params.pdf14_op) {
1627
0
            case PDF14_POP_DEVICE:
1628
0
                {
1629
0
                    pdf14_clist_device *p14dev = (pdf14_clist_device *)dev;
1630
0
                    gx_device *subclass_device;
1631
1632
0
                    p14dev->target->color_info = p14dev->saved_target_color_info;
1633
0
                    if (p14dev->target->child) {
1634
0
                        p14dev->target->child->color_info = p14dev->saved_target_color_info;
1635
1636
0
                        set_dev_proc(p14dev->target->child, encode_color, p14dev->saved_target_encode_color);
1637
0
                        set_dev_proc(p14dev->target->child, decode_color, p14dev->saved_target_decode_color);
1638
0
                        set_dev_proc(p14dev->target->child, get_color_mapping_procs, p14dev->saved_target_get_color_mapping_procs);
1639
0
                        set_dev_proc(p14dev->target->child, get_color_comp_index, p14dev->saved_target_get_color_comp_index);
1640
0
                    }
1641
1642
0
                    pgs->get_cmap_procs = p14dev->save_get_cmap_procs;
1643
0
                    gx_set_cmap_procs(pgs, p14dev->target);
1644
1645
0
                    subclass_device = p14dev->target;
1646
0
                    p14dev->target = p14dev->target->child;
1647
1648
0
                    code = dev_proc(dev, composite)(dev, pcdev, pcte, pgs, memory, cdev);
1649
1650
0
                    p14dev->target = subclass_device;
1651
1652
                    /* We return 0, rather than 1, as we have not created
1653
                     * a new compositor that wraps dev. */
1654
0
                    if (code == 1)
1655
0
                        code = 0;
1656
0
                    return code;
1657
0
                }
1658
0
                break;
1659
0
            default:
1660
0
                code = dev_proc(dev, composite)(dev, pcdev, pcte, pgs, memory, cdev);
1661
0
                break;
1662
0
        }
1663
0
    } else {
1664
0
        code = dev_proc(dev, composite)(dev, pcdev, pcte, pgs, memory, cdev);
1665
0
    }
1666
0
    set_dev_proc(dev, composite, gx_subclass_composite);
1667
0
    return code;
1668
0
}
1669
1670
typedef enum
1671
{
1672
    transform_pixel_region_portrait,
1673
    transform_pixel_region_landscape,
1674
    transform_pixel_region_skew
1675
} transform_pixel_region_posture;
1676
1677
typedef struct gx_default_transform_pixel_region_state_s gx_default_transform_pixel_region_state_t;
1678
1679
typedef int (gx_default_transform_pixel_region_render_fn)(gx_device *dev, gx_default_transform_pixel_region_state_t *state, const unsigned char **buffer, int data_x, gx_cmapper_t *cmapper, const gs_gstate *pgs);
1680
1681
struct gx_default_transform_pixel_region_state_s
1682
{
1683
    gs_memory_t *mem;
1684
    gx_dda_fixed_point pixels;
1685
    gx_dda_fixed_point rows;
1686
    gs_int_rect clip;
1687
    int w;
1688
    int h;
1689
    int spp;
1690
    transform_pixel_region_posture posture;
1691
    gs_logical_operation_t lop;
1692
    byte *line;
1693
    gx_default_transform_pixel_region_render_fn *render;
1694
};
1695
1696
static void
1697
get_portrait_y_extent(gx_default_transform_pixel_region_state_t *state, int *iy, int *ih)
1698
493k
{
1699
493k
    fixed y0, y1;
1700
493k
    gx_dda_fixed row = state->rows.y;
1701
1702
493k
    y0 = dda_current(row);
1703
493k
    dda_next(row);
1704
493k
    y1 = dda_current(row);
1705
1706
493k
    if (y1 < y0) {
1707
2.43k
        fixed t = y1; y1 = y0; y0 = t;
1708
2.43k
    }
1709
1710
493k
    *iy = fixed2int_pixround_perfect(y0);
1711
493k
    *ih = fixed2int_pixround_perfect(y1) - *iy;
1712
493k
}
1713
1714
static void
1715
get_landscape_x_extent(gx_default_transform_pixel_region_state_t *state, int *ix, int *iw)
1716
0
{
1717
0
    fixed x0, x1;
1718
0
    gx_dda_fixed row = state->rows.x;
1719
1720
0
    x0 = dda_current(row);
1721
0
    dda_next(row);
1722
0
    x1 = dda_current(row);
1723
1724
0
    if (x1 < x0) {
1725
0
        fixed t = x1; x1 = x0; x0 = t;
1726
0
    }
1727
1728
0
    *ix = fixed2int_pixround_perfect(x0);
1729
0
    *iw = fixed2int_pixround_perfect(x1) - *ix;
1730
0
}
1731
1732
static void
1733
get_skew_extents(gx_default_transform_pixel_region_state_t *state, fixed *w, fixed *h)
1734
2.22k
{
1735
2.22k
    fixed x0, x1, y0, y1;
1736
2.22k
    gx_dda_fixed_point row = state->rows;
1737
1738
2.22k
    x0 = dda_current(row.x);
1739
2.22k
    y0 = dda_current(row.y);
1740
2.22k
    dda_next(row.x);
1741
2.22k
    dda_next(row.y);
1742
2.22k
    x1 = dda_current(row.x);
1743
2.22k
    y1 = dda_current(row.y);
1744
1745
2.22k
    *w = x1-x0;
1746
2.22k
    *h = y1-y0;
1747
2.22k
}
1748
1749
static int
1750
transform_pixel_region_render_portrait(gx_device *dev, gx_default_transform_pixel_region_state_t *state, const unsigned char **buffer, int data_x, gx_cmapper_t *cmapper, const gs_gstate *pgs)
1751
240k
{
1752
240k
    gs_logical_operation_t lop = state->lop;
1753
240k
    gx_dda_fixed_point pnext;
1754
240k
    int vci, vdi;
1755
240k
    int irun;     /* int x/rrun */
1756
240k
    int w = state->w;
1757
240k
    int h = state->h;
1758
240k
    int spp = state->spp;
1759
240k
    const byte *data = buffer[0] + data_x * spp;
1760
240k
    const byte *bufend = NULL;
1761
240k
    int code = 0;
1762
240k
    const byte *run = NULL;
1763
240k
    int k;
1764
240k
    gx_color_value *conc = &cmapper->conc[0];
1765
240k
    int to_rects;
1766
240k
    gx_cmapper_fn *mapper = cmapper->set_color;
1767
240k
    int minx, maxx;
1768
1769
240k
    if (h == 0)
1770
0
        return 0;
1771
1772
    /* Clip on Y */
1773
240k
    get_portrait_y_extent(state, &vci, &vdi);
1774
240k
    if (vci < state->clip.p.y)
1775
12.3k
        vdi += vci - state->clip.p.y, vci = state->clip.p.y;
1776
240k
    if (vci+vdi > state->clip.q.y)
1777
5.77k
        vdi = state->clip.q.y - vci;
1778
240k
    if (vdi <= 0)
1779
79.8k
        return 0;
1780
1781
160k
    pnext = state->pixels;
1782
160k
    dda_translate(pnext.x,  (-fixed_epsilon));
1783
160k
    irun = fixed2int_var_rounded(dda_current(pnext.x));
1784
160k
    if_debug5m('b', dev->memory, "[b]y=%d data_x=%d w=%d xt=%f yt=%f\n",
1785
160k
               vci, data_x, w, fixed2float(dda_current(pnext.x)), fixed2float(dda_current(pnext.y)));
1786
160k
    to_rects = (dev->color_info.depth != spp*8);
1787
160k
    if (to_rects == 0) {
1788
160k
        if (dev_proc(dev, dev_spec_op)(dev, gxdso_copy_color_is_fast, NULL, 0) <= 0)
1789
148k
            to_rects = 1;
1790
160k
    }
1791
1792
160k
    minx = state->clip.p.x;
1793
160k
    maxx = state->clip.q.x;
1794
160k
    bufend = data + w * spp;
1795
160k
    if (to_rects) {
1796
16.5M
        while (data < bufend) {
1797
            /* Find the length of the next run. It will either end when we hit
1798
             * the end of the source data, or when the pixel data differs. */
1799
16.3M
            run = data + spp;
1800
63.8M
            while (1) {
1801
63.8M
                dda_next(pnext.x);
1802
63.8M
                if (run >= bufend)
1803
148k
                    break;
1804
63.7M
                if (memcmp(run, data, spp))
1805
16.2M
                    break;
1806
47.5M
                run += spp;
1807
47.5M
            }
1808
            /* So we have a run of pixels from data to run that are all the same. */
1809
            /* This needs to be sped up */
1810
59.6M
            for (k = 0; k < spp; k++) {
1811
43.2M
                conc[k] = gx_color_value_from_byte(data[k]);
1812
43.2M
            }
1813
16.3M
            mapper(cmapper);
1814
            /* Fill the region between irun and fixed2int_var_rounded(pnext.x) */
1815
16.3M
            {
1816
16.3M
                int xi = irun;
1817
16.3M
                int wi = (irun = fixed2int_var_rounded(dda_current(pnext.x))) - xi;
1818
1819
16.3M
                if (wi < 0)
1820
569
                    xi += wi, wi = -wi;
1821
16.3M
                if (xi < minx)
1822
8.97k
                    wi += xi - minx, xi = minx;
1823
16.3M
                if (xi + wi > maxx)
1824
10.7k
                    wi = maxx - xi;
1825
16.3M
                if (wi > 0)
1826
15.8M
                    code = gx_fill_rectangle_device_rop(xi, vci, wi, vdi,
1827
16.3M
                                                        &cmapper->devc, dev, lop);
1828
16.3M
            }
1829
16.3M
            if (code < 0)
1830
0
                goto err;
1831
16.3M
            data = run;
1832
16.3M
        }
1833
148k
    } else {
1834
12.3k
        int pending_left = irun;
1835
12.3k
        int pending_right;
1836
12.3k
        byte *out;
1837
12.3k
        int depth = spp;
1838
12.3k
        if (state->line == NULL) {
1839
58
            state->line = gs_alloc_bytes(state->mem,
1840
58
                                         (size_t)dev->width * depth,
1841
58
                                         "image line");
1842
58
            if (state->line == NULL)
1843
0
                return gs_error_VMerror;
1844
58
        }
1845
12.3k
        out = state->line;
1846
1847
12.3k
        if (minx < 0)
1848
0
            minx = 0;
1849
12.3k
        if (maxx > dev->width)
1850
0
            maxx = dev->width;
1851
1852
12.3k
        if (pending_left < minx)
1853
0
            pending_left = minx;
1854
12.3k
        else if (pending_left > maxx)
1855
0
            pending_left = maxx;
1856
12.3k
        pending_right = pending_left;
1857
1858
3.27M
        while (data < bufend) {
1859
            /* Find the length of the next run. It will either end when we hit
1860
             * the end of the source data, or when the pixel data differs. */
1861
3.26M
            run = data + spp;
1862
7.31M
            while (1) {
1863
7.31M
                dda_next(pnext.x);
1864
7.31M
                if (run >= bufend)
1865
12.3k
                    break;
1866
7.30M
                if (memcmp(run, data, spp))
1867
3.25M
                    break;
1868
4.05M
                run += spp;
1869
4.05M
            }
1870
            /* So we have a run of pixels from data to run that are all the same. */
1871
            /* This needs to be sped up */
1872
6.53M
            for (k = 0; k < spp; k++) {
1873
3.26M
                conc[k] = gx_color_value_from_byte(data[k]);
1874
3.26M
            }
1875
3.26M
            mapper(cmapper);
1876
            /* Fill the region between irun and fixed2int_var_rounded(pnext.x) */
1877
3.26M
            {
1878
3.26M
                int xi = irun;
1879
3.26M
                int wi = (irun = fixed2int_var_rounded(dda_current(pnext.x))) - xi;
1880
1881
3.26M
                if (wi < 0)
1882
0
                    xi += wi, wi = -wi;
1883
1884
3.26M
                if (xi < minx)
1885
0
                    wi += xi - minx, xi = minx;
1886
3.26M
                if (xi + wi > maxx)
1887
52.9k
                    wi = maxx - xi;
1888
1889
3.26M
                if (wi > 0) {
1890
3.20M
                    if (color_is_pure(&cmapper->devc)) {
1891
3.20M
                        gx_color_index color = cmapper->devc.colors.pure;
1892
3.20M
                        int xii = xi * spp;
1893
1894
3.20M
                        if (pending_left > xi)
1895
0
                            pending_left = xi;
1896
3.20M
                        else
1897
3.20M
                            pending_right = xi + wi;
1898
11.6M
                        do {
1899
                            /* Excuse the double shifts below, that's to stop the
1900
                             * C compiler complaining if the color index type is
1901
                             * 32 bits. */
1902
11.6M
                            switch(depth)
1903
11.6M
                            {
1904
0
                            case 8: out[xii++] = ((color>>28)>>28) & 0xff;
1905
0
                            case 7: out[xii++] = ((color>>24)>>24) & 0xff;
1906
0
                            case 6: out[xii++] = ((color>>24)>>16) & 0xff;
1907
0
                            case 5: out[xii++] = ((color>>24)>>8) & 0xff;
1908
0
                            case 4: out[xii++] = (color>>24) & 0xff;
1909
0
                            case 3: out[xii++] = (color>>16) & 0xff;
1910
0
                            case 2: out[xii++] = (color>>8) & 0xff;
1911
11.6M
                            case 1: out[xii++] = color & 0xff;
1912
11.6M
                            }
1913
11.6M
                        } while (--wi != 0);
1914
3.20M
                    } else {
1915
0
                        if (pending_left != pending_right) {
1916
0
                            code = dev_proc(dev, copy_color)(dev, out, pending_left, 0, 0, pending_left, vci, pending_right - pending_left, vdi);
1917
0
                            if (code < 0)
1918
0
                                goto err;
1919
0
                        }
1920
0
                        pending_left = pending_right = xi + (pending_left > xi ? 0 : wi);
1921
0
                        code = gx_fill_rectangle_device_rop(xi, vci, wi, vdi,
1922
0
                                                            &cmapper->devc, dev, lop);
1923
0
                    }
1924
3.20M
                }
1925
3.26M
                if (code < 0)
1926
0
                    goto err;
1927
3.26M
            }
1928
3.26M
            data = run;
1929
3.26M
        }
1930
12.3k
        if (pending_left != pending_right) {
1931
12.3k
            code = dev_proc(dev, copy_color)(dev, out, pending_left, 0, 0, pending_left, vci, pending_right - pending_left, vdi);
1932
12.3k
            if (code < 0)
1933
0
                goto err;
1934
12.3k
        }
1935
12.3k
    }
1936
160k
    return 1;
1937
    /* Save position if error, in case we resume. */
1938
0
err:
1939
0
    buffer[0] = run;
1940
0
    return code;
1941
160k
}
1942
1943
static int
1944
transform_pixel_region_render_landscape(gx_device *dev, gx_default_transform_pixel_region_state_t *state, const unsigned char **buffer, int data_x, gx_cmapper_t *cmapper, const gs_gstate *pgs)
1945
0
{
1946
0
    gs_logical_operation_t lop = state->lop;
1947
0
    gx_dda_fixed_point pnext;
1948
0
    int vci, vdi;
1949
0
    int irun;     /* int x/rrun */
1950
0
    int w = state->w;
1951
0
    int h = state->h;
1952
0
    int spp = state->spp;
1953
0
    const byte *data = buffer[0] + data_x * spp;
1954
0
    const byte *bufend = NULL;
1955
0
    int code = 0;
1956
0
    const byte *run;
1957
0
    int k;
1958
0
    gx_color_value *conc = &cmapper->conc[0];
1959
0
    int to_rects;
1960
0
    gx_cmapper_fn *mapper = cmapper->set_color;
1961
0
    int miny, maxy;
1962
1963
0
    if (h == 0)
1964
0
        return 0;
1965
1966
    /* Clip on X */
1967
0
    get_landscape_x_extent(state, &vci, &vdi);
1968
0
    if (vci < state->clip.p.x)
1969
0
        vdi += vci - state->clip.p.x, vci = state->clip.p.x;
1970
0
    if (vci+vdi > state->clip.q.x)
1971
0
        vdi = state->clip.q.x - vci;
1972
0
    if (vdi <= 0)
1973
0
        return 0;
1974
1975
0
    pnext = state->pixels;
1976
0
    dda_translate(pnext.x,  (-fixed_epsilon));
1977
0
    irun = fixed2int_var_rounded(dda_current(pnext.y));
1978
0
    if_debug5m('b', dev->memory, "[b]y=%d data_x=%d w=%d xt=%f yt=%f\n",
1979
0
               vci, data_x, w, fixed2float(dda_current(pnext.x)), fixed2float(dda_current(pnext.y)));
1980
0
    to_rects = (dev->color_info.depth != spp*8);
1981
0
    if (to_rects == 0) {
1982
0
        if (dev_proc(dev, dev_spec_op)(dev, gxdso_copy_color_is_fast, NULL, 0) <= 0)
1983
0
            to_rects = 1;
1984
0
    }
1985
1986
0
    miny = state->clip.p.y;
1987
0
    maxy = state->clip.q.y;
1988
0
    bufend = data + w * spp;
1989
0
    while (data < bufend) {
1990
        /* Find the length of the next run. It will either end when we hit
1991
         * the end of the source data, or when the pixel data differs. */
1992
0
        run = data + spp;
1993
0
        while (1) {
1994
0
            dda_next(pnext.y);
1995
0
            if (run >= bufend)
1996
0
                break;
1997
0
            if (memcmp(run, data, spp))
1998
0
                break;
1999
0
            run += spp;
2000
0
        }
2001
        /* So we have a run of pixels from data to run that are all the same. */
2002
        /* This needs to be sped up */
2003
0
        for (k = 0; k < spp; k++) {
2004
0
            conc[k] = gx_color_value_from_byte(data[k]);
2005
0
        }
2006
0
        mapper(cmapper);
2007
        /* Fill the region between irun and fixed2int_var_rounded(pnext.y) */
2008
0
        {              /* 90 degree rotated rectangle */
2009
0
            int yi = irun;
2010
0
            int hi = (irun = fixed2int_var_rounded(dda_current(pnext.y))) - yi;
2011
2012
0
            if (hi < 0)
2013
0
                yi += hi, hi = -hi;
2014
0
            if (yi < miny)
2015
0
                hi += yi - miny, yi = miny;
2016
0
            if (yi + hi > maxy)
2017
0
                hi = maxy - yi;
2018
0
            if (hi > 0)
2019
0
                code = gx_fill_rectangle_device_rop(vci, yi, vdi, hi,
2020
0
                                                    &cmapper->devc, dev, lop);
2021
0
        }
2022
0
        if (code < 0)
2023
0
            goto err;
2024
0
        data = run;
2025
0
    }
2026
0
    return 1;
2027
    /* Save position if error, in case we resume. */
2028
0
err:
2029
0
    buffer[0] = run;
2030
0
    return code;
2031
0
}
2032
2033
static int
2034
transform_pixel_region_render_skew(gx_device *dev, gx_default_transform_pixel_region_state_t *state, const unsigned char **buffer, int data_x, gx_cmapper_t *cmapper, const gs_gstate *pgs)
2035
2.22k
{
2036
2.22k
    gs_logical_operation_t lop = state->lop;
2037
2.22k
    gx_dda_fixed_point pnext;
2038
2.22k
    fixed xprev, yprev;
2039
2.22k
    fixed pdyx, pdyy;   /* edge of parallelogram */
2040
2.22k
    int w = state->w;
2041
2.22k
    int h = state->h;
2042
2.22k
    int spp = state->spp;
2043
2.22k
    const byte *data = buffer[0] + data_x * spp;
2044
2.22k
    fixed xpos;     /* x ditto */
2045
2.22k
    fixed ypos;     /* y ditto */
2046
2.22k
    const byte *bufend = data + w * spp;
2047
2.22k
    int code = 0;
2048
2.22k
    int k;
2049
2.22k
    byte initial_run[GX_DEVICE_COLOR_MAX_COMPONENTS] = { 0 };
2050
2.22k
    const byte *prev = &initial_run[0];
2051
2.22k
    gx_cmapper_fn *mapper = cmapper->set_color;
2052
2.22k
    gx_color_value *conc = &cmapper->conc[0];
2053
2054
2.22k
    if (h == 0)
2055
0
        return 0;
2056
2.22k
    pnext = state->pixels;
2057
2.22k
    get_skew_extents(state, &pdyx, &pdyy);
2058
2.22k
    dda_translate(pnext.x,  (-fixed_epsilon));
2059
2.22k
    xprev = dda_current(pnext.x);
2060
2.22k
    yprev = dda_current(pnext.y);
2061
2.22k
    if_debug4m('b', dev->memory, "[b]y=? data_x=%d w=%d xt=%f yt=%f\n",
2062
2.22k
               data_x, w, fixed2float(xprev), fixed2float(yprev));
2063
2.22k
    initial_run[0] = ~data[0];  /* Force intial setting */
2064
330k
    while (data < bufend) {
2065
328k
        dda_next(pnext.x);
2066
328k
        dda_next(pnext.y);
2067
328k
        xpos = dda_current(pnext.x);
2068
328k
        ypos = dda_current(pnext.y);
2069
2070
328k
        if (memcmp(prev, data, spp) != 0)
2071
173k
        {
2072
            /* This needs to be sped up */
2073
353k
            for (k = 0; k < spp; k++) {
2074
179k
                conc[k] = gx_color_value_from_byte(data[k]);
2075
179k
            }
2076
173k
            mapper(cmapper);
2077
173k
        }
2078
        /* Fill the region between */
2079
        /* xprev/yprev and xpos/ypos */
2080
        /* Parallelogram */
2081
328k
        code = (*dev_proc(dev, fill_parallelogram))
2082
328k
                    (dev, xprev, yprev, xpos - xprev, ypos - yprev, pdyx, pdyy,
2083
328k
                     &cmapper->devc, lop);
2084
328k
        xprev = xpos;
2085
328k
        yprev = ypos;
2086
328k
        if (code < 0)
2087
0
            goto err;
2088
328k
        prev = data;
2089
328k
        data += spp;
2090
328k
    }
2091
2.22k
    return 1;
2092
    /* Save position if error, in case we resume. */
2093
0
err:
2094
    /* Only set buffer[0] if we've managed to set prev to something valid. */
2095
0
    if (prev != &initial_run[0]) buffer[0] = prev;
2096
0
    return code;
2097
2.22k
}
2098
2099
static int
2100
gx_default_transform_pixel_region_begin(gx_device *dev, int w, int h, int spp,
2101
                             const gx_dda_fixed_point *pixels, const gx_dda_fixed_point *rows,
2102
                             const gs_int_rect *clip, gs_logical_operation_t lop,
2103
                             gx_default_transform_pixel_region_state_t **statep)
2104
15.4k
{
2105
15.4k
    gx_default_transform_pixel_region_state_t *state;
2106
15.4k
    gs_memory_t *mem = dev->memory->non_gc_memory;
2107
2108
15.4k
    *statep = state = (gx_default_transform_pixel_region_state_t *)gs_alloc_bytes(mem, sizeof(gx_default_transform_pixel_region_state_t), "gx_default_transform_pixel_region_state_t");
2109
15.4k
    if (state == NULL)
2110
0
        return gs_error_VMerror;
2111
15.4k
    state->mem = mem;
2112
15.4k
    state->rows = *rows;
2113
15.4k
    state->pixels = *pixels;
2114
15.4k
    state->clip = *clip;
2115
15.4k
    state->w = w;
2116
15.4k
    state->h = h;
2117
15.4k
    state->spp = spp;
2118
15.4k
    state->lop = lop;
2119
15.4k
    state->line = NULL;
2120
2121
    /* FIXME: Consider sheers here too. Probably happens rarely enough not to be worth it. */
2122
15.4k
    if (rows->x.step.dQ == 0 && rows->x.step.dR == 0 && pixels->y.step.dQ == 0 && pixels->y.step.dR == 0)
2123
15.3k
        state->posture = transform_pixel_region_portrait;
2124
66
    else if (rows->y.step.dQ == 0 && rows->y.step.dR == 0 && pixels->x.step.dQ == 0 && pixels->x.step.dR == 0)
2125
0
        state->posture = transform_pixel_region_landscape;
2126
66
    else
2127
66
        state->posture = transform_pixel_region_skew;
2128
2129
15.4k
    if (state->posture == transform_pixel_region_portrait)
2130
15.3k
        state->render = transform_pixel_region_render_portrait;
2131
66
    else if (state->posture == transform_pixel_region_landscape)
2132
0
        state->render = transform_pixel_region_render_landscape;
2133
66
    else
2134
66
        state->render = transform_pixel_region_render_skew;
2135
2136
15.4k
    return 0;
2137
15.4k
}
2138
2139
static void
2140
step_to_next_line(gx_default_transform_pixel_region_state_t *state)
2141
254k
{
2142
254k
    fixed x = dda_current(state->rows.x);
2143
254k
    fixed y = dda_current(state->rows.y);
2144
2145
254k
    dda_next(state->rows.x);
2146
254k
    dda_next(state->rows.y);
2147
254k
    x = dda_current(state->rows.x) - x;
2148
254k
    y = dda_current(state->rows.y) - y;
2149
254k
    dda_translate(state->pixels.x, x);
2150
254k
    dda_translate(state->pixels.y, y);
2151
254k
}
2152
2153
static int
2154
gx_default_transform_pixel_region_data_needed(gx_device *dev, gx_default_transform_pixel_region_state_t *state)
2155
254k
{
2156
254k
    if (state->posture == transform_pixel_region_portrait) {
2157
252k
        int iy, ih;
2158
2159
252k
        get_portrait_y_extent(state, &iy, &ih);
2160
2161
252k
        if (iy + ih < state->clip.p.y || iy >= state->clip.q.y) {
2162
            /* Skip this line. */
2163
12.1k
            step_to_next_line(state);
2164
12.1k
            return 0;
2165
12.1k
        }
2166
252k
    } else if (state->posture == transform_pixel_region_landscape) {
2167
0
        int ix, iw;
2168
2169
0
        get_landscape_x_extent(state, &ix, &iw);
2170
2171
0
        if (ix + iw < state->clip.p.x || ix >= state->clip.q.x) {
2172
            /* Skip this line. */
2173
0
            step_to_next_line(state);
2174
0
            return 0;
2175
0
        }
2176
0
    }
2177
2178
242k
    return 1;
2179
254k
}
2180
2181
static int
2182
gx_default_transform_pixel_region_process_data(gx_device *dev, gx_default_transform_pixel_region_state_t *state, const unsigned char **buffer, int data_x, gx_cmapper_t *cmapper, const gs_gstate *pgs)
2183
242k
{
2184
242k
    int ret = state->render(dev, state, buffer, data_x, cmapper, pgs);
2185
2186
242k
    step_to_next_line(state);
2187
242k
    return ret;
2188
242k
}
2189
2190
static int
2191
gx_default_transform_pixel_region_end(gx_device *dev, gx_default_transform_pixel_region_state_t *state)
2192
15.4k
{
2193
15.4k
    if (state) {
2194
15.4k
        gs_free_object(state->mem, state->line, "image line");
2195
15.4k
        gs_free_object(state->mem, state, "gx_default_transform_pixel_region_state_t");
2196
15.4k
    }
2197
15.4k
    return 0;
2198
15.4k
}
2199
2200
int
2201
gx_default_transform_pixel_region(gx_device *dev,
2202
                       transform_pixel_region_reason reason,
2203
                       transform_pixel_region_data *data)
2204
528k
{
2205
528k
    gx_default_transform_pixel_region_state_t *state = (gx_default_transform_pixel_region_state_t *)data->state;
2206
2207
528k
    switch (reason)
2208
528k
    {
2209
15.4k
    case transform_pixel_region_begin:
2210
15.4k
        return gx_default_transform_pixel_region_begin(dev, data->u.init.w, data->u.init.h, data->u.init.spp, data->u.init.pixels, data->u.init.rows, data->u.init.clip, data->u.init.lop, (gx_default_transform_pixel_region_state_t **)&data->state);
2211
254k
    case transform_pixel_region_data_needed:
2212
254k
        return gx_default_transform_pixel_region_data_needed(dev, state);
2213
242k
    case transform_pixel_region_process_data:
2214
242k
        return gx_default_transform_pixel_region_process_data(dev, state, data->u.process_data.buffer, data->u.process_data.data_x, data->u.process_data.cmapper, data->u.process_data.pgs);
2215
15.4k
    case transform_pixel_region_end:
2216
15.4k
        data->state = NULL;
2217
15.4k
        return gx_default_transform_pixel_region_end(dev, state);
2218
0
    default:
2219
0
        return gs_error_unknownerror;
2220
528k
    }
2221
528k
}