Coverage Report

Created: 2025-06-10 07:17

/src/ghostpdl/base/gxstroke.c
Line
Count
Source (jump to first uncovered line)
1
/* Copyright (C) 2001-2025 Artifex Software, Inc.
2
   All Rights Reserved.
3
4
   This software is provided AS-IS with no warranty, either express or
5
   implied.
6
7
   This software is distributed under license and may not be copied,
8
   modified or distributed except as expressly authorized under the terms
9
   of the license contained in the file LICENSE in this distribution.
10
11
   Refer to licensing information at http://www.artifex.com or contact
12
   Artifex Software, Inc.,  39 Mesa Street, Suite 108A, San Francisco,
13
   CA 94129, USA, for further information.
14
*/
15
16
17
/* Path stroking procedures for Ghostscript library */
18
#include "math_.h"
19
#include <stdlib.h> /* abs() */
20
#include "gx.h"
21
#include "gpcheck.h"
22
#include "gserrors.h"
23
#include "gsdcolor.h"
24
#include "gsptype1.h"
25
#include "gsptype2.h"
26
#include "gxfixed.h"
27
#include "gxfarith.h"
28
#include "gxmatrix.h"
29
#include "gscoord.h"
30
#include "gsdevice.h"
31
#include "gxdevice.h"
32
#include "gxhttile.h"
33
#include "gxgstate.h"
34
#include "gzline.h"
35
#include "gzpath.h"
36
#include "gzcpath.h"
37
#include "gxpaint.h"
38
#include "gsstate.h"            /* for gs_currentcpsimode */
39
#include "gzacpath.h"
40
41
/* RJW: There appears to be a difference in the xps and postscript models
42
 * (at least in as far as Microsofts implementation of xps and Acrobats of
43
 * postscript). Acrobat (and ghostscript) are happy to join a line segment
44
 * around a corner, even when the next segment is a dash gap. Microsofts
45
 * implementation of XPS does not.
46
 *
47
 * A test file that shows this up is tests_private/comparefiles/298-05.ps
48
 *
49
 * Enabling the following define would emulate xps behaviour here.
50
 */
51
#undef AVOID_JOINING_TO_DASH_GAPS
52
53
/*
54
 * We don't really know whether it's a good idea to take fill adjustment
55
 * into account for stroking.  Disregarding it means that strokes
56
 * come out thinner than fills; observing it produces heavy-looking
57
 * strokes at low resolutions.  But in any case, we must disregard it
58
 * when stroking zero-width lines.
59
 */
60
#define USE_FILL_ADJUSTMENT
61
62
#ifdef USE_FILL_ADJUSTMENT
63
#  define STROKE_ADJUSTMENT(thin, pgs, xy)\
64
4.99M
     (thin ? fixed_0 : (pgs)->fill_adjust.xy)
65
#else
66
#  define STROKE_ADJUSTMENT(thin, pgs, xy) fixed_0
67
#endif
68
69
/*
70
 * For some reason, we commented out the optimization for portrait,
71
 * landscape, and uniform (non-scaled) transformations.  We have no record
72
 * of why we did this, and we don't know what bugs re-enabling it may
73
 * introduce.
74
 */
75
#define OPTIMIZE_ORIENTATION
76
77
/*
78
 * Compute the amount by which to expand a stroked bounding box to account
79
 * for line width, caps and joins.  Return 0 if the result is exact, 1 if
80
 * it may be conservative, or gs_error_limitcheck if the result is too
81
 * large to fit in a gs_fixed_point.
82
 *
83
 * Because of square caps and miter and triangular joins, the maximum
84
 * expansion on each side (in user space) is
85
 *      K * line_width/2
86
 * where K is determined as follows:
87
 *      For round or butt caps, E = 1
88
 *      For square caps, E = sqrt(2)
89
 *        If the path is only a single line segment, K = E;
90
 *          if triangular joins, K = 2;
91
 *          if miter joins, K = max(miter_limit, E);
92
 *      otherwise, K = E.
93
 *
94
 * If the following conditions apply, K = E yields an exact result:
95
 *      - The CTM is of the form [X 0 0 Y] or [0 X Y 0].
96
 *      - Square or round caps are used, or all subpaths are closed.
97
 *      - All segments (including the implicit segment created by
98
 *        closepath) are vertical or horizontal lines.
99
 *
100
 * Note that these conditions are sufficient, but not necessary, to get an
101
 * exact result.  We choose this set of conditions because it is easy to
102
 * check and covers many common cases.  Clients that care always have the
103
 * option of using strokepath to get an exact result.
104
 */
105
static float join_expansion_factor(const gs_gstate *, gs_line_join);
106
int
107
gx_stroke_path_expansion(const gs_gstate * pgs, const gx_path * ppath,
108
                         gs_fixed_point * ppt)
109
573k
{
110
573k
    const subpath *psub;
111
573k
    const segment *pseg;
112
573k
    double cx = fabs(pgs->ctm.xx) + fabs(pgs->ctm.yx);
113
573k
    double cy = fabs(pgs->ctm.xy) + fabs(pgs->ctm.yy);
114
573k
    double expand = pgs->line_params.half_width;
115
573k
    int result = 1;
116
117
573k
    if (ppath == NULL) {
118
0
        ppt->x = ppt->y = 0;
119
0
        return 0;   /* no expansion */
120
0
    }
121
573k
    psub = ppath->first_subpath;
122
    /* Adjust the expansion (E) for square caps, if needed */
123
573k
    if (pgs->line_params.start_cap == gs_cap_square ||
124
573k
        pgs->line_params.end_cap == gs_cap_square)
125
58.9k
            expand *= 1.414213562;
126
127
    /* Check for whether an exact result can be computed easily. */
128
573k
    if (is_fzero2(pgs->ctm.xy, pgs->ctm.yx) ||
129
573k
        is_fzero2(pgs->ctm.xx, pgs->ctm.yy)
130
573k
        ) {
131
322k
        bool must_be_closed =
132
322k
            !(pgs->line_params.start_cap == gs_cap_square ||
133
322k
              pgs->line_params.start_cap == gs_cap_round  ||
134
322k
              pgs->line_params.end_cap   == gs_cap_square ||
135
322k
              pgs->line_params.end_cap   == gs_cap_round  ||
136
322k
              pgs->line_params.dash_cap  == gs_cap_square ||
137
322k
              pgs->line_params.dash_cap  == gs_cap_round);
138
322k
        gs_fixed_point prev;
139
140
322k
        prev.x = prev.y = 0; /* Quiet gcc warning. */
141
946k
        for (pseg = (const segment *)psub; pseg;
142
623k
             prev = pseg->pt, pseg = pseg->next
143
322k
             )
144
751k
            switch (pseg->type) {
145
287k
            case s_start:
146
287k
                if (((const subpath *)pseg)->curve_count ||
147
287k
                    (must_be_closed && !((const subpath *)pseg)->is_closed)
148
287k
                    )
149
29.6k
                    goto not_exact;
150
258k
                break;
151
395k
            case s_line:
152
395k
            case s_dash:
153
463k
            case s_line_close:
154
463k
                if (!(pseg->pt.x == prev.x || pseg->pt.y == prev.y))
155
98.9k
                    goto not_exact;
156
364k
                break;
157
364k
            case s_gap:
158
0
            default:            /* other/unknown segment type */
159
0
                goto not_exact;
160
751k
            }
161
194k
        result = 0;             /* exact result */
162
194k
    }
163
573k
not_exact:
164
573k
    if (result) {
165
379k
        if (!gx_path_has_curves(ppath) && gx_path_subpath_count(ppath) <= 1 &&
166
379k
            (psub == 0 || (pseg = psub->next) == 0 ||
167
348k
             (pseg = pseg->next) == 0 || pseg->type == s_line_close))
168
379k
            DO_NOTHING;
169
58.2k
        else {
170
58.2k
            float factor = join_expansion_factor(pgs, pgs->line_params.join);
171
172
58.2k
            if (pgs->line_params.curve_join >= 0)
173
0
                factor = max(factor, join_expansion_factor(pgs,
174
58.2k
                                (gs_line_join)pgs->line_params.curve_join));
175
58.2k
            expand *= factor;
176
58.2k
        }
177
379k
    }
178
179
    /* Short-cut gs_bbox_transform. */
180
573k
    {
181
573k
        float exx = expand * cx;
182
573k
        float exy = expand * cy;
183
573k
        int code = set_float2fixed_vars(ppt->x, exx);
184
185
573k
        if (code < 0)
186
231k
            return code;
187
341k
        code = set_float2fixed_vars(ppt->y, exy);
188
341k
        if (code < 0)
189
11.3k
            return code;
190
341k
    }
191
192
330k
    return result;
193
341k
}
194
static float
195
join_expansion_factor(const gs_gstate *pgs, gs_line_join join)
196
58.2k
{
197
58.2k
    switch (join) {
198
49.5k
    case gs_join_miter: return pgs->line_params.miter_limit;
199
0
    case gs_join_triangle: return 2.0;
200
8.76k
    default: return 1.0;
201
58.2k
    }
202
58.2k
}
203
204
/*
205
 * Structure for a partial line (passed to the drawing routine).
206
 * Two of these are required to do joins right.
207
 * Each endpoint includes the two ends of the cap as well,
208
 * and the deltas for square, round, and triangular cap computation.
209
 *
210
 * The two base values for computing the caps of a partial line are the
211
 * width and the end cap delta.  The width value is one-half the line
212
 * width (suitably transformed) at 90 degrees counter-clockwise
213
 * (in device space, but with "90 degrees" interpreted in *user*
214
 * coordinates) at the end (as opposed to the origin) of the line.
215
 * The cdelta value is one-half the transformed line width in the same
216
 * direction as the line.  From these, we compute two other values at each
217
 * end of the line: co and ce, which are the ends of the cap.
218
 * Note that the cdelta values at o are the negatives of the values at e,
219
 * as are the offsets from p to co and ce.
220
 *
221
 * Initially, only o.p, e.p, e.cdelta, width, and thin are set.
222
 * compute_caps fills in the rest.
223
 */
224
typedef gs_fixed_point *p_ptr;
225
typedef struct endpoint_s {
226
    gs_fixed_point p;           /* the end of the line */
227
    gs_fixed_point co, ce;      /* ends of the cap, p +/- width */
228
    gs_fixed_point cdelta;      /* +/- cap length */
229
} endpoint;
230
typedef endpoint *ep_ptr;
231
typedef const endpoint *const_ep_ptr;
232
typedef struct partial_line_s {
233
    endpoint o;                 /* starting coordinate */
234
    endpoint e;                 /* ending coordinate */
235
    gs_fixed_point width;       /* one-half line width, see above */
236
    gs_fixed_point vector;      /* The line segment direction */
237
    bool thin;                  /* true if minimum-width line */
238
} partial_line;
239
typedef partial_line *pl_ptr;
240
241
/* As we stroke a path, we run through the line segments that make it up.
242
 * We gather each line segment together with any degenerate line segments
243
 * that follow it (call this set "prev"), and then 'join them' to the next
244
 * line segment (and any degenerate line segments that follow it) (if there
245
 * is one) (call this "current").
246
 *
247
 * In order to get the joins right we need to keep flags about both
248
 * prev and current, and whether they originally came from arcs.
249
 */
250
typedef enum note_flags {
251
252
    /* If set, all the line segments that make up current come from arcs. */
253
    nf_all_from_arc       = 1,
254
255
    /* If set, at least one of the line segments that make up current, come
256
     * from arcs. */
257
    nf_some_from_arc      = 2,
258
259
    /* If set then this segment should have a dash cap on the start rather
260
     * than a start cap. */
261
    nf_dash_head          = 4,
262
263
    /* If set then this segment should have a dash cap on the end rather
264
     * than an end cap. */
265
    nf_dash_tail          = 8,
266
267
    /* If set, all the line segments that make up prev come from arcs. */
268
    nf_prev_all_from_arc  = 16,
269
270
    /* If set, at least one of the line segment that make up prev, come from
271
     * arcs. */
272
    nf_prev_some_from_arc = 32,
273
274
    /* If set then prev should have a dash cap on the start rather
275
     * than a start cap. */
276
    nf_prev_dash_head     = 64,
277
278
    /* If set then prev should have a dash cap on the end rather
279
     * than an end cap. */
280
    nf_prev_dash_tail     = 128
281
282
} note_flags;
283
284
/* Macro to combine the prev and current arc_flags. After applying this
285
 * macro, the bits in the result have the following meanings:
286
 *  nf_all_from_arc    set if all the components of current and prev
287
 *                     come from an Arc.
288
 *  nf_some_from_arc   set if any of the components of current and
289
 *                     prev come from an Arc.
290
 *  nf_dash_head       set if prev should have a dash cap rather than
291
 *                     a start cap.
292
 *  nf_dash_tail       set if prev should have a dash cap rather than
293
 *                     an end cap.
294
 */
295
#define COMBINE_FLAGS(F) \
296
6.93M
    (((F>>4) | ((F) & nf_some_from_arc)) & \
297
6.93M
     (((F) & nf_all_from_arc) ? ~0 : ~nf_all_from_arc))
298
299
/* Assign a point.  Some compilers would do this with very slow code */
300
/* if we simply implemented it as an assignment. */
301
#define ASSIGN_POINT(pp, p)\
302
4.26M
  ((pp)->x = (p).x, (pp)->y = (p).y)
303
304
/* Other forward declarations */
305
static bool width_is_thin(pl_ptr);
306
static void adjust_stroke(gx_device *, pl_ptr, const gs_gstate *, bool, bool, note_flags);
307
static int line_join_points(const gx_line_params * pgs_lp,
308
                             pl_ptr plp, pl_ptr nplp,
309
                             gs_fixed_point * join_points,
310
                             const gs_matrix * pmat, gs_line_join join,
311
                             bool reflected);
312
static int line_join_points_fast_cw(const gx_line_params * pgs_lp,
313
                                    pl_ptr plp, pl_ptr nplp,
314
                                    gs_fixed_point * rjoin_points,
315
                                    const gs_matrix * pmat,
316
                                    gs_line_join join);
317
static int line_join_points_fast_ccw(const gx_line_params * pgs_lp,
318
                                     pl_ptr plp, pl_ptr nplp,
319
                                     gs_fixed_point * join_points,
320
                                     const gs_matrix * pmat,
321
                                     gs_line_join join);
322
static void compute_caps(pl_ptr);
323
static int add_points(gx_path *, const gs_fixed_point *,
324
                       int, bool);
325
static int add_pie_join(gx_path *, pl_ptr, pl_ptr, bool, bool);
326
static int add_pie_join_fast_cw(gx_path *, pl_ptr, pl_ptr, bool);
327
static int add_pie_join_fast_ccw(gx_path *, pl_ptr, pl_ptr, bool);
328
static int add_round_cap(gx_path *, const_ep_ptr);
329
static int add_pie_cap(gx_path *, const_ep_ptr);
330
static int cap_points(gs_line_cap, const_ep_ptr,
331
                       gs_fixed_point * /*[3] */ );
332
static int join_under_pie(gx_path *, pl_ptr, pl_ptr, bool);
333
334
int
335
gx_default_stroke_path_shading_or_pattern(gx_device        * pdev,
336
                                    const gs_gstate        * pgs_orig,
337
                                          gx_path          * ppath,
338
                                    const gx_stroke_params * params,
339
                                    const gx_drawing_color * pdevc,
340
                                    const gx_clip_path     * pcpath)
341
29
{
342
29
    gs_gstate *pgs = (gs_gstate *)pgs_orig; /* Nasty cast away const! */
343
29
    gs_logical_operation_t save_lop = gs_current_logical_op_inline(pgs);
344
29
    gx_device_cpath_accum adev;
345
29
    gx_device_color devc;
346
29
    gx_clip_path stroke_as_clip_path;
347
29
    int code;
348
29
    gs_fixed_rect dev_clip_rect = { {min_fixed, min_fixed}, {max_fixed, max_fixed}};
349
350
    /* We want to make a image of the stroke as a clip path, so
351
     * create an empty structure on the stack. */
352
29
    code = gx_cpath_init_local_shared_nested(&stroke_as_clip_path, NULL, pdev->memory, 1);
353
29
    if (code < 0)
354
0
        return code;
355
    /* Now we make an accumulator device that will fill that out. */
356
29
    gx_cpath_accum_begin(&adev, stroke_as_clip_path.path.memory, false);
357
29
    (*dev_proc(pdev, get_clipping_box))(pdev, &dev_clip_rect);
358
29
    gx_cpath_accum_set_cbox(&adev, &dev_clip_rect);
359
29
    set_nonclient_dev_color(&devc, 0); /* arbitrary, but not transparent */
360
29
    gs_set_logical_op_inline(pgs, lop_default);
361
    /* Stroke the path to the accumulator. */
362
29
    code = gx_stroke_path_only(ppath, NULL, (gx_device *)&adev, pgs, params,
363
29
                               &devc, pcpath);
364
    /* Now extract the accumulated path into stroke_as_clip_path. */
365
29
    if (code < 0 || (code = gx_cpath_accum_end(&adev, &stroke_as_clip_path)) < 0)
366
0
        gx_cpath_accum_discard(&adev);
367
29
    gs_set_logical_op_inline(pgs, save_lop);
368
29
    if (code >= 0)
369
29
    {
370
        /* Now, fill a rectangle with the original color through that
371
         * clip path. */
372
29
        gs_fixed_rect clip_box, shading_box;
373
29
        gs_int_rect cb;
374
29
        gx_device_clip cdev;
375
376
29
        gx_cpath_outer_box(&stroke_as_clip_path, &clip_box);
377
        /* This is horrid. If the pdevc is a shading color, then the
378
         * fill_rectangle routine requires us to have intersected it
379
         * with the shading rectangle first. If we don't do this,
380
         * ps3fts/470-01.ps goes wrong. */
381
29
        if (gx_dc_is_pattern2_color(pdevc) &&
382
29
            gx_dc_pattern2_get_bbox(pdevc, &shading_box) > 0)
383
0
        {
384
0
            rect_intersect(clip_box, shading_box);
385
0
        }
386
29
        cb.p.x = fixed2int_pixround(clip_box.p.x);
387
29
        cb.p.y = fixed2int_pixround(clip_box.p.y);
388
29
        cb.q.x = fixed2int_pixround(clip_box.q.x);
389
29
        cb.q.y = fixed2int_pixround(clip_box.q.y);
390
29
        gx_make_clip_device_on_stack(&cdev, &stroke_as_clip_path, pdev);
391
29
        code = pdevc->type->fill_rectangle(pdevc,
392
29
                        cb.p.x, cb.p.y, cb.q.x - cb.p.x, cb.q.y - cb.p.y,
393
29
                        (gx_device *)&cdev, pgs->log_op, NULL);
394
29
        gx_destroy_clip_device_on_stack(&cdev);
395
29
    }
396
29
    gx_cpath_free(&stroke_as_clip_path, "gx_default_stroke_path_shading_or_pattern");
397
398
29
    return code;
399
29
}
400
401
/* Define the default implementation of the device stroke_path procedure. */
402
int
403
gx_default_stroke_path(gx_device * dev, const gs_gstate * pgs,
404
                       gx_path * ppath, const gx_stroke_params * params,
405
                       const gx_drawing_color * pdevc,
406
                       const gx_clip_path * pcpath)
407
548k
{
408
548k
    if (gx_dc_is_pattern2_color(pdevc) ||
409
548k
        pdevc->type == &gx_dc_type_data_ht_colored ||
410
548k
        (gx_dc_is_pattern1_color(pdevc) &&
411
548k
         gx_pattern_tile_is_clist(pdevc->colors.pattern.p_tile)))
412
18
        return gx_default_stroke_path_shading_or_pattern(dev, pgs, ppath, params,
413
18
                                                         pdevc, pcpath);
414
548k
    else
415
548k
        return gx_stroke_path_only(ppath, (gx_path *) 0, dev, pgs, params,
416
548k
                                   pdevc, pcpath);
417
548k
}
418
419
/* Fill a partial stroked path.  Free variables: */
420
/* to_path, stroke_path_body, fill_params, always_thin, pgs, dev, pdevc, */
421
/* code, ppath, exit(label). */
422
#define FILL_STROKE_PATH(dev, thin, pcpath, final)\
423
4.68M
  if(to_path==&stroke_path_body && !gx_path_is_void(&stroke_path_body) &&\
424
4.68M
     (final || lop_is_idempotent(pgs->log_op))) {\
425
2.44M
    fill_params.adjust.x = STROKE_ADJUSTMENT(thin, pgs, x);\
426
2.44M
    fill_params.adjust.y = STROKE_ADJUSTMENT(thin, pgs, y);\
427
2.44M
    if (to_path_reverse != NULL) {\
428
0
        code = gx_join_path_and_reverse(to_path, to_path_reverse);\
429
0
        if(code < 0) goto exit;\
430
0
    }\
431
2.44M
    code = gx_fill_path_only(to_path, dev, pgs, &fill_params, pdevc, pcpath);\
432
2.44M
    gx_path_free(&stroke_path_body, "fill_stroke_path");\
433
2.44M
    if ( code < 0 ) goto exit;\
434
2.44M
    gx_path_init_local(&stroke_path_body, ppath->memory);\
435
2.44M
  }
436
437
/*
438
 * Define the internal procedures that stroke a partial_line
439
 * (the first pl_ptr argument).  If both partial_lines are non-null,
440
 * the procedure creates an appropriate join; otherwise, the procedure
441
 * creates an end cap.  If the first int is 0, the procedure also starts
442
 * with an appropriate cap.
443
 */
444
#define stroke_line_proc(proc)\
445
  int proc(gx_path *, gx_path *, bool ensure_closed, int, pl_ptr, pl_ptr,\
446
           const gx_device_color *, gx_device *, const gs_gstate *,\
447
           const gx_stroke_params *, const gs_fixed_rect *, int,\
448
           gs_line_join, bool, note_flags)
449
typedef stroke_line_proc((*stroke_line_proc_t));
450
451
static stroke_line_proc(stroke_add);
452
static stroke_line_proc(stroke_add_compat);
453
static stroke_line_proc(stroke_add_fast);
454
static stroke_line_proc(stroke_fill);
455
static int stroke_add_initial_cap_compat(gx_path * ppath, pl_ptr plp, bool adlust_longitude,
456
           const gx_device_color * pdevc, gx_device * dev,
457
           const gs_gstate * pgs);
458
459
/* Define the orientations we handle specially. */
460
typedef enum {
461
    orient_other = 0,
462
    orient_portrait,            /* [xx 0 0 yy tx ty] */
463
    orient_landscape            /* [0 xy yx 0 tx ty] */
464
} orientation;
465
466
/*
467
 * Internal function used to merge the 2 sides of a stroked path.
468
 * path contains the 'forward' side, rpath contains the 'reversed' side.
469
 * Reverse rpath, then append it to path.
470
 *
471
 * If path is closed, then rpath should be too. If path is open, then the
472
 * starting and ending points of both paths should be the same, so as to
473
 * guarantee a closed path.
474
 */
475
static int
476
gx_join_path_and_reverse(gx_path * path, gx_path * rpath)
477
0
{
478
0
    int code;
479
480
0
    if (gx_path_is_void(rpath))
481
0
        return 0;
482
0
     code = gx_path_append_reversed(rpath, path);
483
0
    if (code < 0)
484
0
        return code;
485
486
0
    gx_path_free(rpath, "gx_join_path_and_reverse");
487
0
    gx_path_init_local(rpath, path->memory);
488
489
0
    return gx_path_close_subpath(path);
490
0
}
491
492
/*
493
 * Stroke a path.  If to_path != 0, append the stroke outline to it;
494
 * if to_path == 0, draw the strokes on pdev.
495
 *
496
 * Note that gx_stroke_path_only with to_path != NULL may clip the path to
497
 * the clipping path, as for to_path == NULL.  This is almost never
498
 * what is wanted.
499
 */
500
static int
501
gx_stroke_path_only_aux(gx_path          *ppath, /* lgtm[cpp/use-of-goto] */
502
                        gx_path          *to_path,
503
                        gx_device        *pdev,
504
                  const gs_gstate        *pgs,
505
                  const gx_stroke_params *params,
506
                  const gx_device_color  *pdevc,
507
                  const gx_clip_path     *pcpath)
508
548k
{
509
548k
    bool CPSI_mode = gs_currentcpsimode(pgs->memory);
510
548k
    bool traditional = CPSI_mode | params->traditional;
511
548k
    stroke_line_proc_t line_proc =
512
548k
               ((to_path == 0 && !gx_dc_is_pattern1_color_clist_based(pdevc))
513
548k
                      ? (lop_is_idempotent(pgs->log_op) ? stroke_fill : stroke_add) :
514
548k
                        (traditional ? stroke_add_compat : stroke_add_fast));
515
548k
    gs_fixed_rect ibox, cbox;
516
548k
    gx_device_clip cdev;
517
548k
    gx_device *dev = pdev;
518
548k
    int code = 0;
519
548k
    gx_fill_params fill_params;
520
548k
    const gx_line_params *pgs_lp = gs_currentlineparams_inline(pgs);
521
548k
    int dash_count = pgs_lp->dash.pattern_size;
522
548k
    gx_path fpath, dpath;
523
548k
    gx_path stroke_path_body;
524
548k
    gx_path stroke_path_reverse;
525
548k
    gx_path *to_path_reverse = NULL;
526
548k
    const gx_path *spath;
527
548k
    float xx = pgs->ctm.xx, xy = pgs->ctm.xy;
528
548k
    float yx = pgs->ctm.yx, yy = pgs->ctm.yy;
529
    /*
530
     * We are dealing with a reflected coordinate system
531
     * if transform(1,0) is counter-clockwise from transform(0,1).
532
     * See the note in stroke_add for the algorithm.
533
     */
534
548k
    int uniform;
535
548k
    bool reflected;
536
548k
    orientation orient =
537
548k
        (
538
548k
#ifdef OPTIMIZE_ORIENTATION
539
548k
         is_fzero2(xy, yx) ?
540
296k
         (uniform = (xx == yy ? 1 : xx == -yy ? -1 : 0),
541
296k
          reflected = (uniform ? uniform < 0 : (xx < 0) != (yy < 0)),
542
296k
          orient_portrait) :
543
548k
         is_fzero2(xx, yy) ?
544
2.63k
         (uniform = (xy == yx ? -1 : xy == -yx ? 1 : 0),
545
2.63k
          reflected = (uniform ? uniform < 0 : (xy < 0) == (yx < 0)),
546
2.63k
          orient_landscape) :
547
    /* We should optimize uniform rotated coordinate systems */
548
    /* here as well, but we don't. */
549
251k
#endif
550
251k
         (uniform = 0,
551
248k
          reflected = xy * yx > xx * yy,
552
248k
          orient_other));
553
548k
    const segment_notes not_first = sn_not_first;
554
548k
    gs_line_join curve_join =
555
548k
        (pgs_lp->curve_join >= 0 ? (gs_line_join)pgs_lp->curve_join :
556
548k
         pgs_lp->join == gs_join_none || pgs_lp->join == gs_join_round ?
557
379k
            gs_join_bevel : pgs_lp->join);
558
548k
    float line_width = pgs_lp->half_width;      /* (*half* the line width) */
559
548k
    bool always_thin;
560
548k
    double line_width_and_scale;
561
548k
    double device_line_width_scale = 0; /* Quiet compiler. */
562
548k
    double device_dot_length = pgs_lp->dot_length * fixed_1;
563
548k
    const subpath *psub;
564
548k
    gs_matrix initial_matrix;
565
548k
    bool initial_matrix_reflected, flattened_path = false;
566
548k
    note_flags flags;
567
568
548k
    (*dev_proc(pdev, get_initial_matrix)) (pdev, &initial_matrix);
569
548k
    initial_matrix_reflected = initial_matrix.xy * initial_matrix.yx >
570
548k
                               initial_matrix.xx * initial_matrix.yy;
571
572
#ifdef DEBUG
573
    if (gs_debug_c('o')) {
574
        int i;
575
576
        dmlprintf4(ppath->memory, "[o]half_width=%f, start_cap=%d, end_cap=%d, dash_cap=%d,\n",
577
                   pgs_lp->half_width, (int)pgs_lp->start_cap,
578
                   (int)pgs_lp->end_cap, (int)pgs_lp->dash_cap);
579
        dmlprintf3(ppath->memory, "   join=%d, miter_limit=%f, miter_check=%f,\n",
580
                   (int)pgs_lp->join, pgs_lp->miter_limit,
581
                   pgs_lp->miter_check);
582
        dmlprintf1(ppath->memory, "   dash pattern=%d", dash_count);
583
        for (i = 0; i < dash_count; i++)
584
            dmprintf1(ppath->memory, ",%f", pgs_lp->dash.pattern[i]);
585
        dmputs(ppath->memory, ",\n");
586
        dmlprintf4(ppath->memory, "\toffset=%f, init(ink_on=%d, index=%d, dist_left=%f)\n",
587
                   pgs_lp->dash.offset, pgs_lp->dash.init_ink_on,
588
                   pgs_lp->dash.init_index, pgs_lp->dash.init_dist_left);
589
    }
590
#endif
591
592
548k
    gx_path_bbox(ppath, &ibox);
593
    /* Expand the path bounding box by the scaled line width. */
594
548k
    {
595
548k
        gs_fixed_point expansion;
596
597
548k
        if (gx_stroke_path_expansion(pgs, ppath, &expansion) < 0) {
598
            /* The expansion is so large it caused a limitcheck. */
599
241k
            ibox.p.x = ibox.p.y = min_fixed;
600
241k
            ibox.q.x = ibox.q.y = max_fixed;
601
306k
        } else {
602
306k
            expansion.x += pgs->fill_adjust.x;
603
306k
            expansion.y += pgs->fill_adjust.y;
604
            /*
605
             * It's theoretically possible for the following computations to
606
             * overflow, so we need to check for this.
607
             */
608
306k
            ibox.p.x = (ibox.p.x < min_fixed + expansion.x ? min_fixed :
609
306k
                        ibox.p.x - expansion.x);
610
306k
            ibox.p.y = (ibox.p.y < min_fixed + expansion.y ? min_fixed :
611
306k
                        ibox.p.y - expansion.y);
612
306k
            ibox.q.x = (ibox.q.x > max_fixed - expansion.x ? max_fixed :
613
306k
                        ibox.q.x + expansion.x);
614
306k
            ibox.q.y = (ibox.q.y > max_fixed - expansion.y ? max_fixed :
615
306k
                        ibox.q.y + expansion.y);
616
306k
        }
617
548k
    }
618
    /* Check the expanded bounding box against the clipping regions. */
619
548k
    if (pcpath)
620
480k
        gx_cpath_inner_box(pcpath, &cbox);
621
67.8k
    else if (pdevc)
622
67.8k
        (*dev_proc(pdev, get_clipping_box)) (pdev, &cbox);
623
20
    else {
624
        /* This is strokepath, not stroke.  Don't clip. */
625
20
        cbox = ibox;
626
20
    }
627
548k
    if (!rect_within(ibox, cbox)) {
628
        /* Intersect the path box and the clip bounding box. */
629
        /* If the intersection is empty, this call is a no-op. */
630
446k
        gs_fixed_rect bbox;
631
632
446k
        if (pcpath) {
633
379k
            gx_cpath_outer_box(pcpath, &bbox);
634
379k
            if_debug4m('f', ppath->memory, "   outer_box=(%g,%g),(%g,%g)\n",
635
379k
                       fixed2float(bbox.p.x), fixed2float(bbox.p.y),
636
379k
                       fixed2float(bbox.q.x), fixed2float(bbox.q.y));
637
379k
            rect_intersect(ibox, bbox);
638
379k
        } else
639
446k
            rect_intersect(ibox, cbox);
640
446k
        if (ibox.p.x >= ibox.q.x || ibox.p.y >= ibox.q.y) {
641
            /* Intersection of boxes is empty! */
642
337k
            return 0;
643
337k
        }
644
        /*
645
         * The path is neither entirely inside the inner clip box
646
         * nor entirely outside the outer clip box.
647
         * If we had to flatten the path, this is where we would
648
         * recompute its bbox and make the tests again,
649
         * but we don't bother right now.
650
         */
651
        /*
652
         * If there is a clipping path, set up a clipping device.
653
         * for stroke_fill because, because the latter uses low level methods
654
         * which don't accept a clipping path.
655
         * Note that in some cases stroke_fill appends the path to stroke_path_body
656
         * instead a real painting, and it is painted with FILL_STROKE_PATH.
657
         *
658
         * Contrary to that, FILL_STROKE_PATH paints a path with
659
         * the fill_path method, which handles a clipping path,
660
         * so we don't pass the clipper device to FILL_STROKE_PATH
661
         * to prevent an appearence of superposing clippers.
662
         */
663
109k
        if (pcpath && line_proc == stroke_fill) {
664
44.0k
            gx_make_clip_device_on_stack(&cdev, pcpath, pdev);
665
44.0k
            cdev.max_fill_band = pdev->max_fill_band;
666
44.0k
            dev = (gx_device *)&cdev;
667
44.0k
        }
668
109k
    }
669
211k
    fill_params.rule = gx_rule_winding_number;
670
211k
    fill_params.flatness = pgs->flatness;
671
211k
    if (line_width < 0)
672
0
        line_width = -line_width;
673
211k
    line_width_and_scale = line_width * (double)int2fixed(1);
674
211k
    if (is_fzero(line_width))
675
2.16k
        always_thin = true;
676
209k
    else {
677
209k
        float xa, ya;
678
679
209k
        switch (orient) {
680
204k
            case orient_portrait:
681
204k
                xa = xx, ya = yy;
682
204k
                goto sat;
683
1.29k
            case orient_landscape:
684
1.29k
                xa = xy, ya = yx;
685
205k
              sat:
686
205k
                if (xa < 0)
687
1.05k
                    xa = -xa;
688
205k
                if (ya < 0)
689
97.1k
                    ya = -ya;
690
205k
                always_thin = (max(xa, ya) * line_width < 0.5);
691
205k
                if (!always_thin && uniform) {  /* Precompute a value we'll need later. */
692
91.8k
                    device_line_width_scale = line_width_and_scale * xa;
693
91.8k
                }
694
205k
                break;
695
3.14k
            default:
696
3.14k
                {
697
                    /* The check is more complicated, but it's worth it. */
698
                    /* Compute radii of the transformed round brush. */
699
                    /* Let x = [a, sqrt(1-a^2)]'
700
                       radius^2 is an extremum of :
701
                       rr(a)=(CTM*x)^2 = (a*xx + sqrt(1 - a^2)*xy)^2 + (a*yx + sqrt(1 - a^2)*yy)^2
702
                       With solving D(rr(a),a)==0, got :
703
                       max_rr = (xx^2 + xy^2 + yx^2 + yy^2 + sqrt(((xy + yx)^2 + (xx - yy)^2)*((xy - yx)^2 + (xx + yy)^2)))/2.
704
                       r = sqrt(max_rr);
705
                       Well we could use eigenvalues of the quadratic form,
706
                       but it gives same result with a bigger calculus.
707
                     */
708
3.14k
                    double max_rr = ((double)(xx*xx + xy*xy + yx*yx + yy*yy) +
709
3.14k
                                     sqrt((double)((xy + yx)*(xy + yx) + (xx - yy)*(xx - yy)) *
710
3.14k
                                                  ((xy - yx)*(xy - yx) + (xx + yy)*(xx + yy))
711
3.14k
                                          )
712
3.14k
                                     )/2;
713
714
3.14k
                    always_thin = max_rr * line_width * line_width < 0.25;
715
3.14k
                }
716
209k
        }
717
209k
    }
718
211k
    if_debug7m('o', ppath->memory, "[o]ctm=(%g,%g,%g,%g,%g,%g) thin=%d\n",
719
211k
              xx, xy, yx, yy, pgs->ctm.tx, pgs->ctm.ty, always_thin);
720
211k
    if (device_dot_length != 0) {
721
        /*
722
         * Compute the dot length in device space.  We can't do this
723
         * quite right for non-uniform coordinate systems; too bad.
724
         */
725
0
        gs_matrix mat;
726
0
        const gs_matrix *pmat;
727
728
0
        if (pgs_lp->dot_length_absolute) {
729
0
            gs_deviceinitialmatrix(pdev, &mat);
730
0
            pmat = &mat;
731
0
        } else
732
0
            pmat = (const gs_matrix *)&pgs->ctm;
733
0
        device_dot_length *= fabs(pmat->xy) + fabs(pmat->yy);
734
0
    }
735
    /* Start by flattening the path.  We should do this on-the-fly.... */
736
211k
    if (!gx_path_has_curves(ppath) && !gx_path_has_long_segments(ppath)) {
737
        /* don't need to flatten */
738
197k
        if (!ppath->first_subpath) {
739
8.41k
            if (dev == (gx_device *)&cdev)
740
5.30k
                gx_destroy_clip_device_on_stack(&cdev);
741
8.41k
            return 0;
742
8.41k
        }
743
188k
        spath = ppath;
744
188k
    } else {
745
14.1k
        gx_path_init_local(&fpath, ppath->memory);
746
14.1k
        if ((code = gx_path_add_flattened_for_stroke(ppath, &fpath,
747
14.1k
            params->flatness, pgs)) < 0) {
748
0
            if (dev == (gx_device *)&cdev)
749
0
                gx_destroy_clip_device_on_stack(&cdev);
750
0
            return code;
751
0
        }
752
14.1k
        spath = &fpath;
753
14.1k
        flattened_path = true;
754
14.1k
    }
755
202k
    if (dash_count) {
756
2.10k
        float max_dash_len = 0;
757
2.10k
        float expand_squared;
758
2.10k
        int i;
759
2.10k
        float adjust = (float)pgs->fill_adjust.x;
760
2.10k
        if (adjust > (float)pgs->fill_adjust.y)
761
0
            adjust = (float)pgs->fill_adjust.y;
762
6.06k
        for (i = 0; i < dash_count; i++) {
763
3.96k
            if (max_dash_len < pgs_lp->dash.pattern[i])
764
2.15k
                max_dash_len = pgs_lp->dash.pattern[i];
765
3.96k
        }
766
2.10k
        expand_squared = pgs->ctm.xx * pgs->ctm.yy - pgs->ctm.xy * pgs->ctm.yx;
767
2.10k
        if (expand_squared < 0)
768
1.06k
            expand_squared = -expand_squared;
769
2.10k
        expand_squared *= max_dash_len * max_dash_len;
770
        /* Wide lines in curves can show dashes up, so fudge to allow for
771
         * this. */
772
2.10k
        if (pgs->line_params.half_width > 1)
773
187
            adjust /= pgs->line_params.half_width;
774
2.10k
        if (expand_squared*65536.0f >= (float)(adjust*adjust)) {
775
2.10k
            gx_path_init_local(&dpath, ppath->memory);
776
2.10k
            code = gx_path_add_dash_expansion(spath, &dpath, pgs);
777
2.10k
            if (code < 0)
778
0
                goto exf;
779
2.10k
            spath = &dpath;
780
2.10k
        } else {
781
0
            dash_count = 0;
782
0
        }
783
2.10k
    }
784
202k
    if (to_path == 0) {
785
        /* We might try to defer this if it's expensive.... */
786
202k
        to_path = &stroke_path_body;
787
202k
        gx_path_init_local(&stroke_path_body, ppath->memory);
788
202k
    }
789
202k
    if (line_proc == stroke_add_fast) {
790
0
        to_path_reverse = &stroke_path_reverse;
791
0
        gx_path_init_local(&stroke_path_reverse, ppath->memory);
792
0
    }
793
539k
    for (psub = spath->first_subpath; psub != 0;) {
794
336k
        int index = 0;
795
336k
        const segment *pseg = (const segment *)psub;
796
336k
        fixed x = pseg->pt.x;
797
336k
        fixed y = pseg->pt.y;
798
336k
        bool is_closed = ((const subpath *)pseg)->is_closed;
799
336k
        partial_line pl, pl_prev, pl_first;
800
336k
        bool zero_length = true;
801
336k
        int pseg_notes = pseg->notes;
802
803
336k
        flags = nf_all_from_arc;
804
805
        /* Run through each segment in the current path, drawing each segment
806
         * delayed by 1 - that is, when we're looking at segment n, we draw
807
         * (or not) segment n-1. This delay allows us to always know whether
808
         * to join or cap the line. */
809
4.83M
        while ((pseg = pseg->next) != 0 &&
810
4.83M
               pseg->type != s_start
811
4.49M
            ) {
812
            /* Compute the width parameters in device space. */
813
            /* We work with unscaled values, for speed. */
814
4.49M
            fixed sx, udx, sy, udy;
815
4.49M
            bool is_dash_segment;
816
817
4.49M
            pseg_notes = pseg->notes;
818
819
4.52M
         d2:is_dash_segment = false;
820
4.52M
         d1:if (pseg->type == s_dash) {
821
28.2k
                dash_segment *pd = (dash_segment *)pseg;
822
823
28.2k
                sx = pd->pt.x;
824
28.2k
                sy = pd->pt.y;
825
28.2k
                udx = pd->tangent.x;
826
28.2k
                udy = pd->tangent.y;
827
28.2k
                is_dash_segment = true;
828
4.49M
            } else if (pseg->type == s_gap) {
829
0
                sx = pseg->pt.x;
830
0
                sy = pseg->pt.y;
831
0
                udx = sx - x;
832
0
                udy = sy - y;
833
0
                is_dash_segment = true;
834
4.49M
            } else {
835
4.49M
                sx = pseg->pt.x;
836
4.49M
                sy = pseg->pt.y;
837
4.49M
                udx = sx - x;
838
4.49M
                udy = sy - y;
839
4.49M
            }
840
4.52M
            zero_length &= ((udx | udy) == 0);
841
4.52M
            pl.o.p.x = x, pl.o.p.y = y;
842
4.53M
          d:flags = (((pseg_notes & sn_not_first) ?
843
3.62M
                      ((flags & nf_all_from_arc) | nf_some_from_arc) : 0) |
844
4.53M
                     ((pseg_notes & sn_dash_head) ? nf_dash_head : 0)    |
845
4.53M
                     ((pseg_notes & sn_dash_tail) ? nf_dash_tail : 0)    |
846
4.53M
                     (flags & ~nf_all_from_arc));
847
4.53M
            pl.e.p.x = sx, pl.e.p.y = sy;
848
4.53M
            if (!(udx | udy) || pseg->type == s_dash || pseg->type == s_gap) { /* degenerate or short */
849
                /*
850
                 * If this is the first segment of the subpath,
851
                 * check the entire subpath for degeneracy.
852
                 * Otherwise, ignore the degenerate segment.
853
                 */
854
74.9k
                if (index != 0 && pseg->type != s_dash && pseg->type != s_gap)
855
39.6k
                {
856
39.6k
                    if (pseg->next == NULL || pseg->next->type == s_start)
857
13.1k
                        continue;
858
26.4k
                    pseg = pseg->next;
859
                    /* We're skipping a degenerate path segment; if it was
860
                     * labelled as being the first from a curve, then make
861
                     * sure the one we're skipping to is also labelled as
862
                     * being the first from a curve, otherwise we can get
863
                     * improper joins being used. See Bug 696466. */
864
26.4k
                    pseg_notes = (((pseg_notes & sn_not_first) == 0) ?
865
20.8k
                                  (pseg->notes & ~sn_not_first) :
866
26.4k
                                  pseg->notes);
867
26.4k
                    goto d2;
868
39.6k
                }
869
                /* Check for a degenerate subpath. */
870
35.8k
                while ((pseg = pseg->next) != 0 &&
871
35.8k
                       pseg->type != s_start
872
35.3k
                    ) {
873
1.69k
                    if (is_dash_segment)
874
505
                        break;
875
1.18k
                    if (pseg->type == s_dash || pseg->type == s_gap)
876
0
                        goto d1;
877
1.18k
                    sx = pseg->pt.x, udx = sx - x;
878
1.18k
                    sy = pseg->pt.y, udy = sy - y;
879
1.18k
                    if (udx | udy) {
880
700
                        zero_length = false;
881
700
                        goto d;
882
700
                    }
883
1.18k
                }
884
34.6k
                if (pgs_lp->dot_length == 0 &&
885
34.6k
                    pgs_lp->start_cap != gs_cap_round &&
886
34.6k
                    pgs_lp->end_cap != gs_cap_round &&
887
34.6k
                    !is_dash_segment) {
888
                    /* From PLRM, stroke operator :
889
                       If a subpath is degenerate (consists of a single-point closed path
890
                       or of two or more points at the same coordinates),
891
                       stroke paints it only if round line caps have been specified */
892
77
                    break;
893
77
                }
894
                /*
895
                 * If the subpath is a dash, take the orientation from the dash segment.
896
                 * Otherwise orient the dot according to the previous segment if
897
                 * any, or else the next segment if any, or else
898
                 * according to the specified dot orientation.
899
                 */
900
34.5k
                {
901
                    /* When passing here, either pseg == NULL or it points to the
902
                       start of the next subpaph. So we can't use pseg
903
                       for determining the segment direction.
904
                       In same time, psub->last may help, so use it. */
905
34.5k
                    const segment *end = psub->last;
906
907
34.5k
                    if (is_dash_segment) {
908
                        /* Nothing. */
909
28.2k
                    } else if (end != 0 && (end->pt.x != x || end->pt.y != y))
910
0
                        sx = end->pt.x, sy = end->pt.y, udx = sx - x, udy = sy - y;
911
34.5k
                }
912
                /*
913
                 * Compute the properly oriented dot length, and then
914
                 * draw the dot like a very short line.
915
                 */
916
34.5k
                if ((udx | udy) == 0) {
917
6.33k
                    if (is_fzero(pgs_lp->dot_orientation.xy)) {
918
                        /* Portrait orientation, dot length = X */
919
6.33k
                        udx = fixed_1;
920
6.33k
                    } else {
921
                        /* Landscape orientation, dot length = Y */
922
0
                        udy = fixed_1;
923
0
                    }
924
6.33k
                }
925
34.5k
                if (sx == x && sy == y && (pseg == NULL || pseg->type == s_start)) {
926
32.6k
                    double scale = device_dot_length /
927
32.6k
                                hypot((double)udx, (double)udy);
928
32.6k
                    fixed udx1, udy1;
929
                    /*
930
                     * If we're using butt caps, make sure the "line" is
931
                     * long enough to show up.
932
                     * Don't apply this with always_thin, becase
933
                     * draw thin line always rounds the length up.
934
                     */
935
32.6k
                    if (!always_thin && (pgs_lp->start_cap == gs_cap_butt ||
936
29.5k
                                         pgs_lp->end_cap   == gs_cap_butt ||
937
29.5k
                                         pgs_lp->dash_cap  == gs_cap_butt)) {
938
0
                        fixed dmax = max(any_abs(udx), any_abs(udy));
939
940
0
                        if (dmax * scale < fixed_1)
941
0
                            scale = (float)fixed_1 / dmax;
942
0
                    }
943
32.6k
                    udx1 = (fixed) (udx * scale);
944
32.6k
                    udy1 = (fixed) (udy * scale);
945
32.6k
                    sx = x + udx1;
946
32.6k
                    sy = y + udy1;
947
32.6k
                }
948
                /*
949
                 * Back up 1 segment to keep the bookkeeping straight.
950
                 */
951
34.5k
                pseg = (pseg != 0 ? pseg->prev : psub->last);
952
34.5k
                if (!is_dash_segment)
953
6.33k
                    goto d;
954
28.2k
                pl.e.p.x = sx;
955
28.2k
                pl.e.p.y = sy;
956
28.2k
            }
957
4.48M
            pl.vector.x = udx;
958
4.48M
            pl.vector.y = udy;
959
4.48M
            if (always_thin) {
960
2.02M
                pl.e.cdelta.x = pl.e.cdelta.y = 0;
961
2.02M
                pl.width.x = pl.width.y = 0;
962
2.02M
                pl.thin = true;
963
2.45M
            } else {
964
2.45M
                if (uniform != 0) {
965
                    /* We can save a lot of work in this case. */
966
                    /* We know orient != orient_other. */
967
1.92M
                    double dpx = udx, dpy = udy;
968
1.92M
                    double wl = device_line_width_scale /
969
1.92M
                    hypot(dpx, dpy);
970
971
1.92M
                    pl.e.cdelta.x = (fixed) (dpx * wl);
972
1.92M
                    pl.e.cdelta.y = (fixed) (dpy * wl);
973
                    /* The width is the cap delta rotated by */
974
                    /* 90 degrees. */
975
1.92M
                    if (initial_matrix_reflected)
976
1.92M
                        pl.width.x = pl.e.cdelta.y, pl.width.y = -pl.e.cdelta.x;
977
40
                    else
978
40
                        pl.width.x = -pl.e.cdelta.y, pl.width.y = pl.e.cdelta.x;
979
1.92M
                    pl.thin = false;    /* if not always_thin, */
980
                    /* then never thin. */
981
982
1.92M
                } else {
983
529k
                    gs_point dpt;       /* unscaled */
984
529k
                    float wl;
985
986
529k
                    code = gs_gstate_idtransform(pgs,
987
529k
                                                 (float)udx, (float)udy,
988
529k
                                                 &dpt);
989
529k
                    if (code < 0) {
990
3.05k
                        dpt.x = 0; dpt.y = 0;
991
                        /* Swallow the error */
992
3.05k
                        code = 0;
993
526k
                    } else {
994
526k
                        wl = line_width_and_scale /
995
526k
                            hypot(dpt.x, dpt.y);
996
                        /* Construct the width vector in */
997
                        /* user space, still unscaled. */
998
526k
                        dpt.x *= wl;
999
526k
                        dpt.y *= wl;
1000
526k
                    }
1001
1002
                    /*
1003
                     * We now compute both perpendicular
1004
                     * and (optionally) parallel half-widths,
1005
                     * as deltas in device space.  We use
1006
                     * a fixed-point, unscaled version of
1007
                     * gs_dtransform.  The second computation
1008
                     * folds in a 90-degree rotation (in user
1009
                     * space, before transforming) in the
1010
                     * direction that corresponds to counter-
1011
                     * clockwise in device space.
1012
                     */
1013
529k
                    pl.e.cdelta.x = (fixed) (dpt.x * xx);
1014
529k
                    pl.e.cdelta.y = (fixed) (dpt.y * yy);
1015
529k
                    if (orient != orient_portrait)
1016
37.2k
                        pl.e.cdelta.x += (fixed) (dpt.y * yx),
1017
37.2k
                            pl.e.cdelta.y += (fixed) (dpt.x * xy);
1018
529k
                    if (!reflected ^ initial_matrix_reflected)
1019
505k
                        dpt.x = -dpt.x, dpt.y = -dpt.y;
1020
529k
                    pl.width.x = (fixed) (dpt.y * xx),
1021
529k
                        pl.width.y = -(fixed) (dpt.x * yy);
1022
529k
                    if (orient != orient_portrait)
1023
37.2k
                        pl.width.x -= (fixed) (dpt.x * yx),
1024
37.2k
                            pl.width.y += (fixed) (dpt.y * xy);
1025
529k
                    pl.thin = width_is_thin(&pl);
1026
529k
                }
1027
2.45M
                if (!pl.thin) {
1028
2.45M
                    if (index)
1029
2.22M
                        dev->sgr.stroke_stored = false;
1030
2.45M
                    adjust_stroke(dev, &pl, pgs, false,
1031
2.45M
                            (pseg->prev == 0 || pseg->prev->type == s_start) &&
1032
2.45M
                            (pseg->next == 0 || pseg->next->type == s_start) &&
1033
2.45M
                            (zero_length || !is_closed),
1034
2.45M
                            COMBINE_FLAGS(flags));
1035
2.45M
                    compute_caps(&pl);
1036
2.45M
                }
1037
2.45M
            }
1038
4.48M
            if (index++) {
1039
4.14M
                gs_line_join join =
1040
4.14M
                    (pseg_notes & not_first ? curve_join : pgs_lp->join);
1041
4.14M
                int first;
1042
4.14M
                pl_ptr lptr;
1043
4.14M
                bool ensure_closed;
1044
1045
4.14M
                if (join == gs_join_none) {
1046
                    /* Fake the end of a subpath so we get */
1047
                    /* caps instead of joins. */
1048
0
                    first = 0;
1049
0
                    lptr = 0;
1050
0
                    index = 1;
1051
4.14M
                } else {
1052
4.14M
                    first = (is_closed ? 1 : index - 2);
1053
4.14M
                    lptr = &pl;
1054
4.14M
                }
1055
#ifdef AVOID_JOINING_TO_DASH_GAPS
1056
                if (is_dash_segment) /* Never join to a dash segment */
1057
                    lptr = NULL;
1058
#endif
1059
4.14M
                if (pseg->type == s_gap)
1060
0
                {
1061
0
                    lptr = NULL;
1062
                    /* We are always drawing one line segment behind, so make
1063
                     * sure we don't draw the next one. */
1064
0
                    index = 0;
1065
0
                }
1066
1067
4.14M
                ensure_closed = ((to_path == &stroke_path_body &&
1068
4.14M
                                  lop_is_idempotent(pgs->log_op)) ||
1069
4.14M
                                 (lptr == NULL ? true : lptr->thin));
1070
                /* Draw the PREVIOUS line segment, joining it to lptr (or
1071
                 * capping if lptr == NULL. */
1072
4.14M
                code = (*line_proc) (to_path, to_path_reverse, ensure_closed,
1073
4.14M
                                     first, &pl_prev, lptr,
1074
4.14M
                                     pdevc, dev, pgs, params, &cbox,
1075
4.14M
                                     uniform, join, initial_matrix_reflected,
1076
4.14M
                                     COMBINE_FLAGS(flags));
1077
4.14M
                if (code < 0)
1078
0
                    goto exit;
1079
4.14M
                FILL_STROKE_PATH(pdev, always_thin, pcpath, false);
1080
4.14M
            } else if (pseg->type == s_gap) {
1081
                /* If this segment is a gap, then we don't want to draw it
1082
                 * next time! */
1083
0
                index = 0;
1084
0
            } else
1085
336k
                pl_first = pl;
1086
4.48M
            pl_prev = pl;
1087
4.48M
            x = sx, y = sy;
1088
4.48M
            flags = (flags<<4) | nf_all_from_arc;
1089
4.48M
        }
1090
336k
        if (index) {
1091
            /* If closed, join back to start, else cap. */
1092
336k
            segment_notes notes = (pseg == 0 ?
1093
202k
                                   (const segment *)spath->first_subpath :
1094
336k
                                   pseg)->notes;
1095
336k
            gs_line_join join = (notes & not_first ? curve_join :
1096
336k
                                 pgs_lp->join);
1097
336k
            gs_line_cap cap;
1098
            /* For some reason, the Borland compiler requires the cast */
1099
            /* in the following statement. */
1100
336k
            pl_ptr lptr =
1101
336k
                (!is_closed || join == gs_join_none || zero_length ?
1102
275k
                 (pl_ptr) 0 : (pl_ptr) & pl_first);
1103
1104
#ifdef AVOID_JOINING_TO_DASH_GAPS
1105
            if (lptr && psub->type == s_dash)
1106
                lptr = NULL;
1107
#endif
1108
            /* If the subpath starts with a gap, then cap, don't join! */
1109
336k
            if (lptr && psub->type == s_start && psub->next && psub->next->type == s_gap)
1110
0
                lptr = NULL;
1111
1112
336k
            flags = (((notes & sn_not_first) ?
1113
336k
                      ((flags & nf_all_from_arc) | nf_some_from_arc) : 0) |
1114
336k
                     ((notes & sn_dash_head) ? nf_dash_head : 0) |
1115
336k
                     ((notes & sn_dash_tail) ? nf_dash_tail : 0) |
1116
336k
                     (flags & ~nf_all_from_arc));
1117
336k
            code = (*line_proc) (to_path, to_path_reverse, true,
1118
336k
                                 index - 1, &pl_prev, lptr, pdevc,
1119
336k
                                 dev, pgs, params, &cbox, uniform, join,
1120
336k
                                 initial_matrix_reflected,
1121
336k
                                 COMBINE_FLAGS(flags));
1122
336k
            if (code < 0)
1123
0
                goto exit;
1124
336k
            FILL_STROKE_PATH(pdev, always_thin, pcpath, false);
1125
336k
            cap = ((flags & nf_prev_dash_head) ?
1126
245k
                   pgs_lp->start_cap : pgs_lp->dash_cap);
1127
336k
            if (traditional && lptr == 0 && cap != gs_cap_butt) {
1128
                /* Create the initial cap at last. */
1129
332
                code = stroke_add_initial_cap_compat(to_path, &pl_first, index == 1, pdevc, dev, pgs);
1130
332
                if (code < 0)
1131
0
                    goto exit;
1132
332
                FILL_STROKE_PATH(pdev, always_thin, pcpath, false);
1133
332
            }
1134
336k
        }
1135
336k
        psub = (const subpath *)pseg;
1136
336k
    }
1137
202k
    if (to_path_reverse != NULL)
1138
0
        code = gx_join_path_and_reverse(to_path, to_path_reverse);
1139
202k
    FILL_STROKE_PATH(pdev, always_thin, pcpath, true);
1140
202k
  exit:
1141
202k
    if (dev == (gx_device *)&cdev)
1142
38.7k
        cdev.target->sgr = cdev.sgr;
1143
202k
    if (to_path == &stroke_path_body)
1144
202k
        gx_path_free(&stroke_path_body, "gx_stroke_path_only error");   /* (only needed if error) */
1145
202k
    if (to_path_reverse == &stroke_path_reverse)
1146
0
        gx_path_free(&stroke_path_reverse, "gx_stroke_path_only error");
1147
202k
  exf:
1148
202k
    if (dash_count)
1149
2.10k
        gx_path_free(&dpath, "gx_stroke_path exit(dash path)");
1150
    /* If we flattened the path then we set spath to &fpath. If we flattned the path then now we need to free fpath */
1151
202k
    if(flattened_path)
1152
14.1k
        gx_path_free(&fpath, "gx_stroke_path exit(flattened path)");
1153
202k
    if (dev == (gx_device *)&cdev)
1154
38.7k
        gx_destroy_clip_device_on_stack(&cdev);
1155
202k
    return code;
1156
202k
}
1157
1158
int
1159
gx_stroke_path_only(gx_path * ppath, gx_path * to_path, gx_device * pdev,
1160
               const gs_gstate * pgs, const gx_stroke_params * params,
1161
                 const gx_device_color * pdevc, const gx_clip_path * pcpath)
1162
548k
{
1163
548k
    return gx_stroke_path_only_aux(ppath, to_path, pdev, pgs, params, pdevc, pcpath);
1164
548k
}
1165
1166
/* ------ Internal routines ------ */
1167
1168
/*
1169
 * Test whether a line is thin, i.e., whether the half-width, measured
1170
 * perpendicular to the line in device space, is less than 0.5 pixel.
1171
 * Unfortunately, the width values we computed are perpendicular to the
1172
 * line in *user* space, so we may have to do some extra work.
1173
 */
1174
static bool
1175
width_is_thin(pl_ptr plp)
1176
529k
{
1177
529k
    fixed dx, dy, wx = plp->width.x, wy = plp->width.y;
1178
1179
    /* If the line is horizontal or vertical, things are easy. */
1180
529k
    if ((dy = plp->vector.y) == 0)
1181
46.3k
        return any_abs(wy) < fixed_half;
1182
482k
    if ((dx = plp->vector.x) == 0)
1183
52.1k
        return any_abs(wx) < fixed_half;
1184
1185
    /* For the longest time, we used to have a test here that
1186
     * attempted to trivially accept diagonal lines as being
1187
     * thin based on the components of the perpendicular
1188
     * width vector in device space as both being less than 0.5.
1189
     * Bug 702196 showed some examples where this was clearly
1190
     * wrong.
1191
     *
1192
     * The cause for this bug was that the 0.5 figure was wrong.
1193
     * For the point to be less than 1/2 a pixel perpendicular
1194
     * distant from the line, we'd need x^2 + y^2 < .5^2.
1195
     * For a 45 degree line, that'd be 2(x^2) < 1/4 = x^2 < 1/8
1196
     * or x < sqr(1/8). 45 degree line is the "worst case", so
1197
     * if both horizontal and vertical widths are less than
1198
     * sqr(1/8), the line is thin. sqr(1/8) = 0.35355339059.
1199
     * So, we should be using sqr(1/8) rather than 0.5.
1200
     *
1201
     * Fixing this did indeed produce many many progressions,
1202
     * but left just the odd file still showing problems.
1203
     *
1204
     * Further investigations show that those cases were due to
1205
     * the use of "non-uniform" scaling matrices, for example
1206
     * (83 0 0 51 0 0). With such matrices, it's possible for
1207
     * nearly horizontal lines to be thin, but nearly vertical
1208
     * ones to be thick (or vice versa). Having the style of
1209
     * line "pop" between thick and thin in a single stroke
1210
     * looks very noticeable.
1211
     *
1212
     * We could change the trivial optimisation below to only
1213
     * apply in the 'uniform' case, but that would never actually
1214
     * trigger (as tested on the cluster), because all such
1215
     * cases are caught by the "always_thin" condition in the
1216
     * caller.
1217
     *
1218
     * Just removing the trivial test and leaving the 'complicated'
1219
     * test below us would leave us vulnerable to "popping",
1220
     * so we disable both. In practice this makes no difference
1221
     * to the number of tests showing diffs in the cluster.
1222
     */
1223
#if 0 /* DISABLED TEST, see above */
1224
    {
1225
        /* thin_threshold = fixed sqr(1/8) - see above. */
1226
        const fixed thin_threshold = float2fixed(0.35355339059f);
1227
        if (any_abs(wx) < thin_threshold && any_abs(wy) < thin_threshold)
1228
            return true;
1229
    }
1230
1231
    /*
1232
     * We have to do this the hard way, by actually computing the
1233
     * perpendicular distance.  The distance from the point (U,V)
1234
     * from a line from (0,0) to (C,D) is
1235
     *      abs(C*V - D*U) / sqrt(C^2 + D^2)
1236
     * In this case, (U,V) is plp->width, and (C,D) is (dx,dy).
1237
     */
1238
    {
1239
        double C = dx, D = dy;
1240
        double num = C * wy - D * wx;
1241
        double denom = hypot(C, D);
1242
1243
        /* both num and denom are scaled by fixed_scale^2, */
1244
        /* so we don't need to do any de-scaling for the test. */
1245
        return fabs(num) < denom * 0.5;
1246
    }
1247
#else
1248
430k
    return false;
1249
482k
#endif
1250
482k
}
1251
1252
/* Adjust the endpoints and width of a stroke segment along a specified axis */
1253
static void
1254
adjust_stroke_transversal(pl_ptr plp, const gs_gstate * pgs, bool thin, bool horiz)
1255
65.2k
{
1256
65.2k
    fixed *pw;
1257
65.2k
    fixed *pov;
1258
65.2k
    fixed *pev;
1259
65.2k
    fixed w, w2;
1260
65.2k
    fixed adj2;
1261
1262
65.2k
    if (horiz) {
1263
        /* More horizontal stroke */
1264
56.7k
        pw = &plp->width.y, pov = &plp->o.p.y, pev = &plp->e.p.y;
1265
56.7k
        adj2 = STROKE_ADJUSTMENT(thin, pgs, y) << 1;
1266
56.7k
    } else {
1267
        /* More vertical stroke */
1268
8.48k
        pw = &plp->width.x, pov = &plp->o.p.x, pev = &plp->e.p.x;
1269
8.48k
        adj2 = STROKE_ADJUSTMENT(thin, pgs, x) << 1;
1270
8.48k
    }
1271
    /* Round the larger component of the width up or down, */
1272
    /* whichever way produces a result closer to the correct width. */
1273
    /* Note that just rounding the larger component */
1274
    /* may not produce the correct result. */
1275
65.2k
    w = *pw;
1276
65.2k
    if (w > 0)
1277
9.26k
        w2 = fixed_rounded(w << 1);     /* full line width */
1278
55.9k
    else
1279
55.9k
        w2 = -fixed_rounded(-w << 1);   /* full line width */
1280
65.2k
    if (w2 == 0 && *pw != 0) {
1281
        /* Make sure thin lines don't disappear. */
1282
0
        w2 = (*pw < 0 ? -fixed_1 + adj2 : fixed_1 - adj2);
1283
0
        *pw = arith_rshift_1(w2);
1284
0
    }
1285
    /* Only adjust the endpoints if the line is horizontal or vertical. */
1286
65.2k
    if (*pov == *pev) {
1287
        /* We're going to round the endpoint coordinates, so */
1288
        /* take the fill adjustment into account now. */
1289
54.6k
        if (w >= 0)
1290
5.33k
            w2 += adj2;
1291
49.3k
        else
1292
49.3k
            w2 = adj2 - w2;
1293
54.6k
        if (w2 & fixed_1)       /* odd width, move to half-pixel */
1294
6.44k
            *pov = *pev = fixed_floor(*pov) + fixed_half;
1295
48.2k
        else                    /* even width, move to pixel */
1296
48.2k
            *pov = *pev = fixed_rounded(*pov);
1297
1298
54.6k
    }
1299
65.2k
}
1300
1301
static void
1302
adjust_stroke_longitude(pl_ptr plp, const gs_gstate * pgs,
1303
                        bool thin, bool horiz,
1304
                        gs_line_cap start_cap, gs_line_cap end_cap)
1305
41.5k
{
1306
1307
41.5k
    fixed *pow = (horiz ? &plp->o.p.y : &plp->o.p.x);
1308
41.5k
    fixed *pew = (horiz ? &plp->e.p.y : &plp->e.p.x);
1309
1310
    /* Only adjust the endpoints if the line is horizontal or vertical.
1311
       Debugged with pdfwrite->ppmraw 72dpi file2.pdf */
1312
41.5k
    if (*pow == *pew) {
1313
40.9k
        fixed *pov = (horiz ? &plp->o.p.x : &plp->o.p.y);
1314
40.9k
        fixed *pev = (horiz ? &plp->e.p.x : &plp->e.p.y);
1315
40.9k
        fixed length = any_abs(*pov - *pev);
1316
40.9k
        fixed length_r, length_r_2;
1317
40.9k
        fixed mv = (*pov + *pev) / 2, mv_r;
1318
40.9k
        fixed adj2 = (horiz ? STROKE_ADJUSTMENT(thin, pgs, x)
1319
40.9k
                            : STROKE_ADJUSTMENT(thin, pgs, y)) << 1;
1320
1321
        /* fixme :
1322
           The best value for adjust_longitude is whether
1323
           the dash is isolated and doesn't cover entire segment.
1324
           The current data structure can't pass this info.
1325
           Therefore we restrict adjust_stroke_longitude with 1 pixel length.
1326
        */
1327
40.9k
        if (length > fixed_1) /* comparefiles/file2.pdf */
1328
15.1k
            return;
1329
25.8k
        if (start_cap == gs_cap_butt || end_cap == gs_cap_butt) {
1330
0
            length_r = fixed_rounded(length);
1331
0
            if (length_r < fixed_1)
1332
0
                length_r = fixed_1;
1333
0
            length_r_2 = length_r / 2;
1334
25.8k
        } else {
1335
            /* Account width for proper placing cap centers. */
1336
25.8k
            fixed width = any_abs(horiz ? plp->width.y : plp->width.x);
1337
1338
25.8k
            length_r = fixed_rounded(length + width * 2 + adj2);
1339
25.8k
            length_r_2 = fixed_rounded(length) / 2;
1340
25.8k
        }
1341
25.8k
        if (length_r & fixed_1)
1342
0
            mv_r = fixed_floor(mv) + fixed_half;
1343
25.8k
        else
1344
25.8k
            mv_r = fixed_floor(mv);
1345
25.8k
        if (*pov < *pev) {
1346
0
            *pov = mv_r - length_r_2;
1347
0
            *pev = mv_r + length_r_2;
1348
25.8k
        } else {
1349
25.8k
            *pov = mv_r + length_r_2;
1350
25.8k
            *pev = mv_r - length_r_2;
1351
25.8k
        }
1352
25.8k
    }
1353
41.5k
}
1354
1355
/* Adjust the endpoints and width of a stroke segment */
1356
/* to achieve more uniform rendering. */
1357
/* Only o.p, e.p, e.cdelta, and width have been set. */
1358
static void
1359
adjust_stroke(gx_device *dev, pl_ptr plp, const gs_gstate * pgs,
1360
              bool thin, bool adjust_longitude, note_flags flags)
1361
2.46M
{
1362
2.46M
    bool horiz, adjust = true;
1363
2.46M
    gs_line_cap start_cap = (flags & nf_dash_head ?
1364
11.1k
                             pgs->line_params.dash_cap :
1365
2.46M
                             pgs->line_params.start_cap);
1366
2.46M
    gs_line_cap end_cap   = (flags & nf_dash_tail ?
1367
11.4k
                             pgs->line_params.dash_cap :
1368
2.46M
                             pgs->line_params.end_cap);
1369
1370
    /* If stroke_adjustment is disabled, or this isn't a horizontal or
1371
     * vertical line, then bale. */
1372
2.46M
    if (!pgs->stroke_adjust || (plp->width.x != 0 && plp->width.y != 0)) {
1373
2.39M
        dev->sgr.stroke_stored = false;
1374
2.39M
        return;                 /* don't adjust */
1375
2.39M
    }
1376
    /* Recognizing gradients, which some obsolete software
1377
       represent as a set of parallel strokes.
1378
       Such strokes must not be adjusted - bug 687974. */
1379
65.2k
    if (dev->sgr.stroke_stored &&
1380
65.2k
        (start_cap == gs_cap_butt || end_cap == gs_cap_butt) &&
1381
65.2k
        dev->sgr.orig[3].x == plp->vector.x && dev->sgr.orig[3].y == plp->vector.y) {
1382
        /* Parallel. */
1383
24
        if ((int64_t)(plp->o.p.x - dev->sgr.orig[0].x) * plp->vector.x ==
1384
24
            (int64_t)(plp->o.p.y - dev->sgr.orig[0].y) * plp->vector.y &&
1385
24
            (int64_t)(plp->e.p.x - dev->sgr.orig[1].x) * plp->vector.x ==
1386
0
            (int64_t)(plp->e.p.y - dev->sgr.orig[1].y) * plp->vector.y) {
1387
            /* Transversal shift. */
1388
0
            if (any_abs(plp->o.p.x - dev->sgr.orig[0].x) <= any_abs(plp->width.x + dev->sgr.orig[2].x) &&
1389
0
                any_abs(plp->o.p.y - dev->sgr.orig[0].y) <= any_abs(plp->width.y + dev->sgr.orig[2].y) &&
1390
0
                any_abs(plp->e.p.x - dev->sgr.orig[1].x) <= any_abs(plp->width.x + dev->sgr.orig[2].x) &&
1391
0
                any_abs(plp->e.p.y - dev->sgr.orig[1].y) <= any_abs(plp->width.y + dev->sgr.orig[2].y)) {
1392
                /* The strokes were contacting or overlapping. */
1393
0
                if (any_abs(plp->o.p.x - dev->sgr.orig[0].x) >= any_abs(plp->width.x + dev->sgr.orig[2].x) / 2 &&
1394
0
                    any_abs(plp->o.p.y - dev->sgr.orig[0].y) >= any_abs(plp->width.y + dev->sgr.orig[2].y) / 2 &&
1395
0
                    any_abs(plp->e.p.x - dev->sgr.orig[1].x) >= any_abs(plp->width.x + dev->sgr.orig[2].x) / 2 &&
1396
0
                    any_abs(plp->e.p.y - dev->sgr.orig[1].y) >= any_abs(plp->width.y + dev->sgr.orig[2].y) / 2) {
1397
                    /* The strokes were not much overlapping. */
1398
0
                    if (!(any_abs(plp->o.p.x - dev->sgr.adjusted[0].x) <= any_abs(plp->width.x + dev->sgr.adjusted[2].x) &&
1399
0
                          any_abs(plp->o.p.y - dev->sgr.adjusted[0].y) <= any_abs(plp->width.y + dev->sgr.adjusted[2].y) &&
1400
0
                          any_abs(plp->e.p.x - dev->sgr.adjusted[1].x) <= any_abs(plp->width.x + dev->sgr.adjusted[2].x) &&
1401
0
                          any_abs(plp->e.p.y - dev->sgr.adjusted[1].y) <= any_abs(plp->width.y + dev->sgr.adjusted[2].y))) {
1402
                        /* they became not contacting.
1403
                           We should not have adjusted the last stroke. Since if we did,
1404
                           lets change the current one to restore the contact,
1405
                           so that we don't leave gaps when rasterising. See bug 687974.
1406
                         */
1407
0
                        fixed delta_w_x = (dev->sgr.adjusted[2].x - dev->sgr.orig[2].x);
1408
0
                        fixed delta_w_y = (dev->sgr.adjusted[2].y - dev->sgr.orig[2].y);
1409
0
                        fixed shift_o_x = (dev->sgr.adjusted[0].x - dev->sgr.orig[0].x);
1410
0
                        fixed shift_o_y = (dev->sgr.adjusted[0].y - dev->sgr.orig[0].y);
1411
0
                        fixed shift_e_x = (dev->sgr.adjusted[1].x - dev->sgr.orig[1].x); /* Must be same, but we prefer clarity. */
1412
0
                        fixed shift_e_y = (dev->sgr.adjusted[1].y - dev->sgr.orig[1].y);
1413
1414
0
                        if (plp->o.p.x < dev->sgr.orig[0].x ||
1415
0
                            (plp->o.p.x == dev->sgr.orig[0].x && plp->o.p.y < dev->sgr.orig[0].y)) {
1416
                            /* Left contact, adjust to keep the contact. */
1417
0
                            if_debug4m('O', dev->memory, "[O]don't adjust {{%f,%f},{%f,%f}}\n",
1418
0
                                       fixed2float(plp->o.p.x), fixed2float(plp->o.p.y),
1419
0
                                       fixed2float(plp->e.p.x), fixed2float(plp->e.p.y));
1420
0
                            plp->width.x += (shift_o_x - delta_w_x) / 2;
1421
0
                            plp->width.y += (shift_o_y - delta_w_y) / 2;
1422
0
                            plp->o.p.x += (shift_o_x - delta_w_x) / 2;
1423
0
                            plp->o.p.y += (shift_o_y - delta_w_y) / 2;
1424
0
                            plp->e.p.x += (shift_e_x - delta_w_x) / 2;
1425
0
                            plp->e.p.y += (shift_e_y - delta_w_y) / 2;
1426
0
                            adjust = false;
1427
0
                        } else {
1428
                            /* Right contact, adjust to keep the contact. */
1429
0
                            if_debug4m('O', dev->memory, "[O]don't adjust {{%f,%f},{%f,%f}}\n",
1430
0
                                       fixed2float(plp->o.p.x), fixed2float(plp->o.p.y),
1431
0
                                       fixed2float(plp->e.p.x), fixed2float(plp->e.p.y));
1432
0
                            plp->width.x -= (shift_o_x + delta_w_x) / 2;
1433
0
                            plp->width.y -= (shift_o_y + delta_w_y) / 2;
1434
0
                            plp->o.p.x += (shift_o_x + delta_w_x) / 2;
1435
0
                            plp->o.p.y += (shift_o_y + delta_w_y) / 2;
1436
0
                            plp->e.p.x += (shift_e_x + delta_w_x) / 2;
1437
0
                            plp->e.p.y += (shift_e_y + delta_w_y) / 2;
1438
0
                            adjust = false;
1439
0
                        }
1440
0
                    }
1441
0
                }
1442
0
            }
1443
0
        }
1444
24
    }
1445
65.2k
    if ((start_cap == gs_cap_butt) || (end_cap == gs_cap_butt)) {
1446
4.20k
        dev->sgr.stroke_stored = true;
1447
4.20k
        dev->sgr.orig[0] = plp->o.p;
1448
4.20k
        dev->sgr.orig[1] = plp->e.p;
1449
4.20k
        dev->sgr.orig[2] = plp->width;
1450
4.20k
        dev->sgr.orig[3] = plp->vector;
1451
4.20k
    } else
1452
61.0k
        dev->sgr.stroke_stored = false;
1453
65.2k
    if (adjust) {
1454
65.2k
        horiz = (any_abs(plp->width.x) <= any_abs(plp->width.y));
1455
65.2k
        adjust_stroke_transversal(plp, pgs, thin, horiz);
1456
65.2k
        if (adjust_longitude)
1457
41.5k
            adjust_stroke_longitude(plp, pgs, thin, horiz, start_cap, end_cap);
1458
65.2k
    }
1459
65.2k
    if ((start_cap == gs_cap_butt) || (end_cap == gs_cap_butt)) {
1460
4.20k
        dev->sgr.adjusted[0] = plp->o.p;
1461
4.20k
        dev->sgr.adjusted[1] = plp->e.p;
1462
4.20k
        dev->sgr.adjusted[2] = plp->width;
1463
4.20k
        dev->sgr.adjusted[3] = plp->vector;
1464
4.20k
    }
1465
65.2k
}
1466
1467
/* Compute the intersection of two lines.  This is a messy algorithm */
1468
/* that somehow ought to be useful in more places than just here.... */
1469
/* If the lines are (nearly) parallel, return -1 without setting *pi; */
1470
/* otherwise, return 0 if the intersection is beyond *pp1 and *pp2 in */
1471
/* the direction determined by *pd1 and *pd2, and 1 otherwise. */
1472
static int
1473
line_intersect(
1474
                  p_ptr pp1,    /* point on 1st line */
1475
                  p_ptr pd1,    /* slope of 1st line (dx,dy) */
1476
                  p_ptr pp2,    /* point on 2nd line */
1477
                  p_ptr pd2,    /* slope of 2nd line */
1478
                  p_ptr pi)
1479
2.45M
{                               /* return intersection here */
1480
    /* We don't have to do any scaling, the factors all work out right. */
1481
2.45M
    double u1 = pd1->x, v1 = pd1->y;
1482
2.45M
    double u2 = pd2->x, v2 = pd2->y;
1483
2.45M
    double denom = u1 * v2 - u2 * v1;
1484
2.45M
    double xdiff = pp2->x - pp1->x;
1485
2.45M
    double ydiff = pp2->y - pp1->y;
1486
2.45M
    double f1;
1487
2.45M
    double max_result = any_abs(denom) * (double)max_fixed;
1488
1489
#ifdef DEBUG
1490
    if (gs_debug_c('O')) {
1491
        dlprintf4("[o]Intersect %f,%f(%f/%f)",
1492
                  fixed2float(pp1->x), fixed2float(pp1->y),
1493
                  fixed2float(pd1->x), fixed2float(pd1->y));
1494
        dlprintf4(" & %f,%f(%f/%f),\n",
1495
                  fixed2float(pp2->x), fixed2float(pp2->y),
1496
                  fixed2float(pd2->x), fixed2float(pd2->y));
1497
        dlprintf3("\txdiff=%f ydiff=%f denom=%f ->\n",
1498
                  xdiff, ydiff, denom);
1499
    }
1500
#endif
1501
    /* Check for degenerate result. */
1502
2.45M
    if (any_abs(xdiff) >= max_result || any_abs(ydiff) >= max_result) {
1503
        /* The lines are nearly parallel, */
1504
        /* or one of them has zero length.  Punt. */
1505
12.8k
        if_debug0('O', "\tdegenerate!\n");
1506
12.8k
        return -1;
1507
12.8k
    }
1508
2.44M
    f1 = (v2 * xdiff - u2 * ydiff) / denom;
1509
2.44M
    pi->x = pp1->x + (fixed) (f1 * u1);
1510
2.44M
    pi->y = pp1->y + (fixed) (f1 * v1);
1511
2.44M
    if_debug2('O', "\t%f,%f\n",
1512
2.44M
              fixed2float(pi->x), fixed2float(pi->y));
1513
2.44M
    return (f1 >= 0 && (v1 * xdiff >= u1 * ydiff ? denom >= 0 : denom < 0) ? 0 : 1);
1514
2.45M
}
1515
1516
/* Set up the width and delta parameters for a thin line. */
1517
/* We only approximate the width and height. */
1518
static void
1519
set_thin_widths(register pl_ptr plp)
1520
8.59k
{
1521
8.59k
    fixed dx = plp->e.p.x - plp->o.p.x, dy = plp->e.p.y - plp->o.p.y;
1522
1523
8.59k
#define TRSIGN(v, c) ((v) >= 0 ? (c) : -(c))
1524
8.59k
    if (any_abs(dx) > any_abs(dy)) {
1525
4.48k
        plp->width.x = plp->e.cdelta.y = 0;
1526
4.48k
        plp->width.y = plp->e.cdelta.x = TRSIGN(dx, fixed_half);
1527
4.48k
    } else {
1528
4.11k
        plp->width.y = plp->e.cdelta.x = 0;
1529
4.11k
        plp->width.x = -(plp->e.cdelta.y = TRSIGN(dy, fixed_half));
1530
4.11k
    }
1531
8.59k
#undef TRSIGN
1532
8.59k
}
1533
1534
/* Draw a line on the device. */
1535
/* Treat no join the same as a bevel join. */
1536
/* rpath should always be NULL, hence ensure_closed can be ignored */
1537
static int
1538
stroke_fill(gx_path * ppath, gx_path * rpath, bool ensure_closed, int first,
1539
            register pl_ptr plp, pl_ptr nplp, const gx_device_color * pdevc,
1540
            gx_device * dev, const gs_gstate * pgs,
1541
            const gx_stroke_params * params, const gs_fixed_rect * pbbox,
1542
            int uniform, gs_line_join join, bool reflected,
1543
            note_flags flags)
1544
4.46M
{
1545
4.46M
    const fixed lix = plp->o.p.x;
1546
4.46M
    const fixed liy = plp->o.p.y;
1547
4.46M
    const fixed litox = plp->e.p.x;
1548
4.46M
    const fixed litoy = plp->e.p.y;
1549
1550
    /* assert(lop_is_idempotent(pgs->log_op)); */
1551
4.46M
    if (plp->thin) {
1552
        /* Minimum-width line, don't have to be careful with caps/joins. */
1553
2.01M
        return (*dev_proc(dev, draw_thin_line))(dev, lix, liy, litox, litoy,
1554
2.01M
                                                pdevc, pgs->log_op,
1555
2.01M
                                                pgs->fill_adjust.x,
1556
2.01M
                                                pgs->fill_adjust.y);
1557
2.01M
    }
1558
    /* Check for being able to fill directly. */
1559
2.44M
    {
1560
2.44M
        const gx_line_params *pgs_lp = gs_currentlineparams_inline(pgs);
1561
2.44M
        gs_line_cap start_cap = (flags & nf_dash_head ?
1562
2.34M
                                 pgs_lp->dash_cap : pgs_lp->start_cap);
1563
2.44M
        gs_line_cap end_cap   = (flags & nf_dash_tail ?
1564
2.33M
                                 pgs_lp->dash_cap : pgs_lp->end_cap);
1565
1566
2.44M
        if (first != 0)
1567
2.27M
            start_cap = gs_cap_butt;
1568
2.44M
        if (nplp != 0)
1569
2.27M
            end_cap = gs_cap_butt;
1570
2.44M
        if (!plp->thin && (nplp == 0 || !nplp->thin)
1571
2.44M
            && (start_cap == gs_cap_butt || start_cap == gs_cap_square)
1572
2.44M
            && (end_cap   == gs_cap_butt || end_cap   == gs_cap_square)
1573
2.44M
            && (join == gs_join_bevel || join == gs_join_miter ||
1574
2.34M
                join == gs_join_none)
1575
2.44M
            && (pgs->fill_adjust.x | pgs->fill_adjust.y) == 0
1576
2.44M
            ) {
1577
0
            gs_fixed_point points[6];
1578
0
            int npoints, code;
1579
0
            fixed ax, ay, bx, by;
1580
1581
0
            npoints = cap_points(start_cap, &plp->o, points);
1582
0
            if (nplp == 0)
1583
0
                code = cap_points(end_cap, &plp->e, points + npoints);
1584
0
            else
1585
0
                code = line_join_points(pgs_lp, plp, nplp, points + npoints,
1586
0
                                        (uniform ? (gs_matrix *) 0 :
1587
0
                                         &ctm_only(pgs)), join, reflected);
1588
0
            if (code < 0)
1589
0
                goto general;
1590
            /* Make sure the parallelogram fill won't overflow. */
1591
0
#define SUB_OVERFLOWS(r, u, v)\
1592
0
  (((r = u - v) ^ u) < 0 && (u ^ v) < 0)
1593
0
            if (SUB_OVERFLOWS(ax, points[0].x, points[1].x) ||
1594
0
                SUB_OVERFLOWS(ay, points[0].y, points[1].y) ||
1595
0
                SUB_OVERFLOWS(bx, points[2].x, points[1].x) ||
1596
0
                SUB_OVERFLOWS(by, points[2].y, points[1].y)
1597
0
                )
1598
0
                goto general;
1599
0
#undef SUB_OVERFLOWS
1600
0
            if (nplp != 0) {
1601
0
                if (join == gs_join_miter) {
1602
                    /* Make sure we have a bevel and not a miter. */
1603
0
                    if (!(points[2].x == plp->e.co.x &&
1604
0
                          points[2].y == plp->e.co.y &&
1605
0
                          points[5].x == plp->e.ce.x &&
1606
0
                          points[5].y == plp->e.ce.y)
1607
0
                        )
1608
0
                        goto fill;
1609
0
                } {
1610
0
                    const gs_fixed_point *bevel = points + 2;
1611
1612
                    /* Identify which 3 points define the bevel triangle. */
1613
0
                    if (points[3].x == nplp->o.p.x &&
1614
0
                        points[3].y == nplp->o.p.y
1615
0
                        )
1616
0
                        ++bevel;
1617
                    /* Fill the bevel. */
1618
0
                    code = (*dev_proc(dev, fill_triangle)) (dev,
1619
0
                                                         bevel->x, bevel->y,
1620
0
                               bevel[1].x - bevel->x, bevel[1].y - bevel->y,
1621
0
                               bevel[2].x - bevel->x, bevel[2].y - bevel->y,
1622
0
                                                        pdevc, pgs->log_op);
1623
0
                    if (code < 0)
1624
0
                        return code;
1625
0
                }
1626
0
            }
1627
            /* Fill the body of the stroke. */
1628
0
            return (*dev_proc(dev, fill_parallelogram)) (dev,
1629
0
                                                   points[1].x, points[1].y,
1630
0
                                                         ax, ay, bx, by,
1631
0
                                                         pdevc, pgs->log_op);
1632
0
          fill:
1633
0
            code = add_points(ppath, points, npoints + code, true);
1634
0
            if (code < 0)
1635
0
                return code;
1636
0
            return gx_path_close_subpath(ppath);
1637
0
        }
1638
2.44M
    }
1639
    /* General case: construct a path for the fill algorithm. */
1640
2.44M
 general:
1641
2.44M
    return stroke_add(ppath, rpath, ensure_closed, first, plp, nplp, pdevc,
1642
2.44M
                      dev, pgs, params, pbbox, uniform, join, reflected,
1643
2.44M
                      flags);
1644
2.44M
}
1645
1646
/* Add a segment to the path.  This handles all the complex cases. */
1647
static int
1648
stroke_add(gx_path * ppath, gx_path * rpath, bool ensure_closed, int first,
1649
           pl_ptr plp, pl_ptr nplp, const gx_device_color * pdevc,
1650
           gx_device * dev, const gs_gstate * pgs,
1651
           const gx_stroke_params * params,
1652
           const gs_fixed_rect * ignore_pbbox, int uniform,
1653
           gs_line_join join, bool reflected, note_flags flags)
1654
2.46M
{
1655
2.46M
    const gx_line_params *pgs_lp = gs_currentlineparams_inline(pgs);
1656
2.46M
    gs_fixed_point points[8];
1657
2.46M
    int npoints;
1658
2.46M
    int code;
1659
2.46M
    bool moveto_first = true;
1660
2.46M
    gs_line_cap start_cap = (flags & nf_dash_head ?
1661
2.36M
                             pgs_lp->dash_cap : pgs_lp->start_cap);
1662
2.46M
    gs_line_cap end_cap   = (flags & nf_dash_tail ?
1663
2.35M
                             pgs_lp->dash_cap : pgs_lp->end_cap);
1664
1665
2.46M
    if (plp->thin) {
1666
        /* We didn't set up the endpoint parameters before, */
1667
        /* because the line was thin.  Do it now. */
1668
8.59k
        set_thin_widths(plp);
1669
8.59k
        adjust_stroke(dev, plp, pgs, true, first == 0 && nplp == 0, flags);
1670
8.59k
        compute_caps(plp);
1671
8.59k
    }
1672
    /* Create an initial cap if desired. */
1673
2.46M
    if (first == 0 && start_cap == gs_cap_round) {
1674
89.2k
        if ((code = gx_path_add_point(ppath, plp->o.co.x, plp->o.co.y)) < 0 ||
1675
89.2k
            (code = add_pie_cap(ppath, &plp->o)) < 0)
1676
0
            return code;
1677
89.2k
        npoints = 0;
1678
89.2k
        moveto_first = false;
1679
2.37M
    } else {
1680
2.37M
        if ((npoints = cap_points((first == 0 ? start_cap : gs_cap_butt),
1681
2.37M
                                  &plp->o, points)) < 0)
1682
0
            return npoints;
1683
2.37M
    }
1684
2.46M
    if (nplp == 0) {
1685
        /* Add a final cap. */
1686
172k
        if (end_cap == gs_cap_round) {
1687
89.2k
            ASSIGN_POINT(&points[npoints], plp->e.co);
1688
89.2k
            ++npoints;
1689
89.2k
            if ((code = add_points(ppath, points, npoints, moveto_first)) < 0)
1690
0
                return code;
1691
89.2k
            code = add_pie_cap(ppath, &plp->e);
1692
89.2k
            goto done;
1693
89.2k
        }
1694
83.5k
        code = cap_points(end_cap, &plp->e, points + npoints);
1695
2.29M
    } else if (nplp->thin) /* no join */
1696
8.63k
        code = cap_points(gs_cap_butt, &plp->e, points + npoints);
1697
2.28M
    else if (join == gs_join_round) {
1698
57.7k
        ASSIGN_POINT(&points[npoints], plp->e.co);
1699
57.7k
        ++npoints;
1700
57.7k
        if ((code = add_points(ppath, points, npoints, moveto_first)) < 0)
1701
0
            return code;
1702
57.7k
        code = add_pie_join(ppath, plp, nplp, reflected, true);
1703
57.7k
        goto done;
1704
2.22M
    } else if (flags & nf_all_from_arc) {
1705
        /* If all the segments in 'prev' and 'current' are from a curve
1706
         * then the join should actually be a round one, because it would
1707
         * have been round if we had flattened it enough. */
1708
1.70M
        ASSIGN_POINT(&points[npoints], plp->e.co);
1709
1.70M
        ++npoints;
1710
1.70M
        if ((code = add_points(ppath, points, npoints, moveto_first)) < 0)
1711
0
            return code;
1712
1.70M
        code = add_pie_join(ppath, plp, nplp, reflected, false);
1713
1.70M
        goto done;
1714
1.70M
    } else                      /* non-round join */
1715
519k
       code = line_join_points(pgs_lp, plp, nplp, points + npoints,
1716
519k
                                (uniform ? (gs_matrix *) 0 : &ctm_only(pgs)),
1717
519k
                                join, reflected);
1718
611k
    if (code < 0)
1719
0
        return code;
1720
611k
    code = add_points(ppath, points, npoints + code, moveto_first);
1721
2.46M
  done:
1722
2.46M
    if (code < 0)
1723
0
        return code;
1724
2.46M
    if ((flags & nf_some_from_arc) && (!plp->thin) &&
1725
2.46M
        (nplp != NULL) && (!nplp->thin))
1726
1.91M
        code = join_under_pie(ppath, plp, nplp, reflected);
1727
2.46M
    return gx_path_close_subpath(ppath);
1728
2.46M
}
1729
1730
/* When painting the 'underjoin' (the 'inside' of a join), we
1731
 * need to take special care if the curve is particularly wide as
1732
 * the leading edge of the underside of the first stroked segment
1733
 * may be beyond the leading edge of the underside of the second
1734
 * stroked segment. Similarly, the trailing edge of the second
1735
 * stroked segment may be behing the trailing edge of the first
1736
 * stroked segment. We detect those cases here.
1737
 *
1738
 * We detect the first case by projecting plp.width onto nplp.vector.
1739
 * If the projected vector is longer then nplp.vector, we have a
1740
 * problem.
1741
 *
1742
 * len_vector_squared = nplp.vector.x * nplp.vector.x + nplp.vector.y * nplp.nvector.y
1743
 * len_vector = sqr(len_vector_squared)
1744
 * len_projection_unnormalised = plp.width.x * nplp.vector.x + plp.width.y * nplp.vector.y
1745
 * len_projection = len_projection_unnormalised / len_vector
1746
 *
1747
 * len_projection > len_vector === len_projection_unnormalised > len_vector * len_vector
1748
 * === len_projection_unnormalised > len_vector_squared
1749
 */
1750
1751
#ifdef SLOWER_BUT_MORE_ACCURATE_STROKING
1752
static bool
1753
wide_underjoin(pl_ptr plp, pl_ptr nplp)
1754
{
1755
    double h_squared = (double)nplp->vector.x * nplp->vector.x + (double)nplp->vector.y * nplp->vector.y;
1756
    double dot = (double)plp->width.x * nplp->vector.x + (double)plp->width.y * nplp->vector.y;
1757
1758
    if (dot < 0)
1759
        dot = -dot;
1760
    if (dot > h_squared)
1761
        return 1;
1762
1763
    h_squared = (double)plp->vector.x * plp->vector.x + (double)plp->vector.y * plp->vector.y;
1764
    dot = (double)nplp->width.x * plp->vector.x + (double)nplp->width.y * plp->vector.y;
1765
    if (dot < 0)
1766
        dot = -dot;
1767
    if (dot > h_squared)
1768
        return 1;
1769
1770
    return 0;
1771
}
1772
#endif
1773
1774
static int
1775
check_miter(const gx_line_params * pgs_lp, pl_ptr plp, pl_ptr nplp,
1776
            const gs_matrix * pmat, p_ptr outp, p_ptr np, p_ptr mpt,
1777
            bool ccw0)
1778
491k
{
1779
    /*
1780
     * Check whether a miter join is appropriate.
1781
     * Let a, b be the angles of the two lines.
1782
     * We check tan(a-b) against the miter_check
1783
     * by using the following formula:
1784
     *      If tan(a)=u1/v1 and tan(b)=u2/v2, then
1785
     *      tan(a-b) = (u1*v2 - u2*v1) / (u1*u2 + v1*v2).
1786
     *
1787
     * We can do all the computations unscaled,
1788
     * because we're only concerned with ratios.
1789
     * However, if we have a non-uniform coordinate
1790
     * system (indicated by pmat != 0), we must do the
1791
     * computations in user space.
1792
     */
1793
491k
    float check;
1794
491k
    double u1, v1, u2, v2;
1795
491k
    double num, denom;
1796
491k
    int code;
1797
1798
    /*
1799
     * Don't bother with the miter check if the two
1800
     * points to be joined are very close together,
1801
     * namely, in the same square half-pixel.
1802
     */
1803
491k
    if (fixed2long(outp->x << 1) == fixed2long(np->x << 1) &&
1804
491k
        fixed2long(outp->y << 1) == fixed2long(np->y << 1))
1805
149k
        return 1;
1806
1807
342k
    check = pgs_lp->miter_check;
1808
342k
    u1 = plp->vector.y, v1 = plp->vector.x;
1809
342k
    u2 = -nplp->vector.y, v2 = -nplp->vector.x;
1810
1811
342k
    if (pmat) {
1812
50.1k
        gs_point pt;
1813
1814
50.1k
        code = gs_distance_transform_inverse(v1, u1, pmat, &pt);
1815
50.1k
        if (code < 0)
1816
0
        return code;
1817
50.1k
        v1 = pt.x, u1 = pt.y;
1818
50.1k
        code = gs_distance_transform_inverse(v2, u2, pmat, &pt);
1819
50.1k
        if (code < 0)
1820
0
            return code;
1821
50.1k
        v2 = pt.x, u2 = pt.y;
1822
        /*
1823
         * We need to recompute ccw according to the
1824
         * relative positions of the lines in user space.
1825
         * We repeat the computation described above,
1826
         * using the cdelta values instead of the widths.
1827
         * Because the definition of ccw above is inverted
1828
         * from the intuitive one (for historical reasons),
1829
         * we actually have to do the test backwards.
1830
         */
1831
50.1k
        ccw0 = v1 * u2 < v2 * u1;
1832
#ifdef DEBUG
1833
        {
1834
            double a1 = atan2(u1, v1), a2 = atan2(u2, v2), dif = a1 - a2;
1835
1836
            if (dif < 0)
1837
                dif += 2 * M_PI;
1838
            else if (dif >= 2 * M_PI)
1839
                dif -= 2 * M_PI;
1840
            if (dif != 0 && (dif < M_PI) != ccw0)
1841
                lprintf8("ccw wrong: tan(a1=%g)=%g/%g, tan(a2=%g)=%g,%g, dif=%g, ccw0=%d\n",
1842
                         a1, u1, v1, a2, u2, v2, dif, ccw0);
1843
        }
1844
#endif
1845
50.1k
    }
1846
342k
    num = u1 * v2 - u2 * v1;
1847
342k
    denom = u1 * u2 + v1 * v2;
1848
    /*
1849
     * We will want either tan(a-b) or tan(b-a)
1850
     * depending on the orientations of the lines.
1851
     * Fortunately we know the relative orientations already.
1852
     */
1853
342k
    if (!ccw0)          /* have plp - nplp, want vice versa */
1854
113k
        num = -num;
1855
#ifdef DEBUG
1856
    if (gs_debug_c('O')) {
1857
        dlprintf4("[o]Miter check: u1/v1=%f/%f, u2/v2=%f/%f,\n",
1858
                  u1, v1, u2, v2);
1859
        dlprintf3("        num=%f, denom=%f, check=%f\n",
1860
                  num, denom, check);
1861
    }
1862
#endif
1863
    /*
1864
     * If we define T = num / denom, then we want to use
1865
     * a miter join iff arctan(T) >= arctan(check).
1866
     * We know that both of these angles are in the 1st
1867
     * or 2nd quadrant, and since arctan is monotonic
1868
     * within each quadrant, we can do the comparisons
1869
     * on T and check directly, taking signs into account
1870
     * as follows:
1871
     *              sign(T) sign(check)     atan(T) >= atan(check)
1872
     *              ------- -----------     ----------------------
1873
     *              +       +               T >= check
1874
     *              -       +               true
1875
     *              +       -               false
1876
     *              -       -               T >= check
1877
     */
1878
342k
    if (num == 0 && denom == 0)
1879
0
        return_error(gs_error_unregistered); /* Must not happen. */
1880
342k
    if (denom < 0)
1881
139k
        num = -num, denom = -denom;
1882
    /* Now denom >= 0, so sign(num) = sign(T). */
1883
342k
    if (check > 0 ?
1884
342k
        (num < 0 || num >= denom * check) :
1885
342k
        (num < 0 && num >= denom * check)
1886
342k
        ) {
1887
        /* OK to use a miter join. */
1888
339k
        gs_fixed_point dirn1, dirn2;
1889
1890
339k
        dirn1.x = plp->e.cdelta.x;
1891
339k
        dirn1.y = plp->e.cdelta.y;
1892
        /* If this direction is small enough that we might have
1893
         * underflowed and the vector record is suitable for us
1894
         * to use to calculate a better one, then do so. */
1895
339k
        if ((abs(dirn1.x) + abs(dirn1.y) < 16) &&
1896
339k
            ((plp->vector.x != 0) || (plp->vector.y != 0)))
1897
0
        {
1898
0
            float scale = 65536.0;
1899
0
            if (abs(plp->vector.x) > abs(plp->vector.y))
1900
0
                scale /= abs(plp->vector.x);
1901
0
            else
1902
0
                scale /= abs(plp->vector.y);
1903
0
            dirn1.x = (fixed)(plp->vector.x*scale);
1904
0
            dirn1.y = (fixed)(plp->vector.y*scale);
1905
0
        }
1906
339k
        dirn2.x = nplp->o.cdelta.x;
1907
339k
        dirn2.y = nplp->o.cdelta.y;
1908
        /* If this direction is small enough that we might have
1909
         * underflowed and the vector record is suitable for us
1910
         * to use to calculate a better one, then do so. */
1911
339k
        if ((abs(dirn2.x) + abs(dirn2.y) < 16) &&
1912
339k
            ((nplp->vector.x != 0) || (nplp->vector.y != 0)))
1913
0
        {
1914
0
            float scale = 65536.0;
1915
0
            if (abs(nplp->vector.x) > abs(nplp->vector.y))
1916
0
                scale /= abs(nplp->vector.x);
1917
0
            else
1918
0
                scale /= abs(nplp->vector.y);
1919
0
            dirn2.x = (fixed)(-nplp->vector.x*scale);
1920
0
            dirn2.y = (fixed)(-nplp->vector.y*scale);
1921
0
        }
1922
339k
        if_debug0('O', "        ... passes.\n");
1923
        /* Compute the intersection of the extended edge lines. */
1924
339k
        if (line_intersect(outp, &dirn1, np, &dirn2, mpt) == 0)
1925
335k
            return 0;
1926
339k
    }
1927
6.97k
    return 1;
1928
342k
}
1929
1930
/* Add a segment to the path.
1931
 * This works by crafting 2 paths, one for each edge, that will later be
1932
 * merged together. */
1933
static int
1934
stroke_add_fast(gx_path * ppath, gx_path * rpath, bool ensure_closed, int first,
1935
                pl_ptr plp, pl_ptr nplp, const gx_device_color * pdevc,
1936
                gx_device * dev, const gs_gstate * pgs,
1937
                const gx_stroke_params * params,
1938
                const gs_fixed_rect * ignore_pbbox, int uniform,
1939
                gs_line_join join, bool reflected, note_flags flags)
1940
0
{
1941
0
    const gx_line_params *pgs_lp = gs_currentlineparams_inline(pgs);
1942
0
    gs_fixed_point points[8];
1943
0
    gs_fixed_point rpoints[8];
1944
0
    int npoints  = 0;
1945
0
    int nrpoints = 0;
1946
0
    int code;
1947
0
    bool moveto_first  = false;
1948
0
    bool rmoveto_first = false;
1949
0
    gs_line_cap start_cap, end_cap;
1950
0
    const gs_matrix *pmat = (uniform ? (const gs_matrix *)NULL : &ctm_only(pgs));
1951
0
    enum {
1952
0
        joinsense_cap = 0,
1953
0
        joinsense_cw = 1,
1954
0
        joinsense_ccw = 2,
1955
0
        joinsense_over = 4,
1956
0
        joinsense_under = 8,
1957
0
    } joinsense = joinsense_cap;
1958
1959
0
    if (plp->thin) {
1960
        /* We didn't set up the endpoint parameters before, */
1961
        /* because the line was thin.  Do it now. */
1962
0
        set_thin_widths(plp);
1963
0
        adjust_stroke(dev, plp, pgs, true, first == 0 && nplp == 0, flags);
1964
0
        compute_caps(plp);
1965
0
    }
1966
0
    start_cap = (flags & nf_dash_head ?
1967
0
                 pgs_lp->dash_cap : pgs_lp->start_cap);
1968
0
    end_cap   = (flags & nf_dash_tail ?
1969
0
                 pgs_lp->dash_cap : pgs_lp->end_cap);
1970
    /* If we're starting a new rpath here, we need to fake a new cap.
1971
     * Don't interfere if we would have been doing a cap anyway. */
1972
0
    if (gx_path_is_void(rpath) && (first != 0)) {
1973
0
        first = 0;
1974
0
        start_cap = gs_cap_butt;
1975
0
        end_cap   = gs_cap_butt;
1976
0
        moveto_first  = true;
1977
0
        rmoveto_first = true;
1978
0
    }
1979
0
    if (first == 0) {
1980
        /* Create an initial cap. */
1981
0
        if (start_cap == gs_cap_round) {
1982
0
            if ((code = gx_path_add_point(ppath, plp->o.co.x, plp->o.co.y)) < 0 ||
1983
0
                (code = add_pie_cap(ppath, &plp->o)) < 0)
1984
0
                return code;
1985
0
            moveto_first = false;
1986
0
        } else {
1987
0
            if ((npoints = cap_points(start_cap, &plp->o, points)) < 0)
1988
0
                return npoints;
1989
0
            moveto_first = true;
1990
0
        }
1991
0
        rmoveto_first = true;
1992
0
        ASSIGN_POINT(&rpoints[0], plp->o.co);
1993
0
        nrpoints = 1;
1994
0
    }
1995
    /* Add points to move us along the edges of this stroke */
1996
0
    ASSIGN_POINT(&points [npoints ], plp->e.co);
1997
0
    ASSIGN_POINT(&rpoints[nrpoints], plp->e.ce);
1998
0
    npoints++;
1999
0
    nrpoints++;
2000
2001
0
    if (nplp != NULL && !nplp->thin) {
2002
        /* We need to do a join. What sense is it it? */
2003
0
        double l, r;
2004
2005
0
        l = (double)(plp->width.x) /* x1 */ * (nplp->width.y) /* y2 */;
2006
0
        r = (double)(nplp->width.x) /* x2 */ * (plp->width.y) /* y1 */;
2007
2008
0
        if ((l == r) && (join == gs_join_round))
2009
0
             joinsense = joinsense_cap;
2010
0
        else if ((l > r) ^ reflected)
2011
0
             joinsense = joinsense_ccw | joinsense_over | joinsense_under;
2012
0
        else
2013
0
             joinsense = joinsense_cw | joinsense_over | joinsense_under;
2014
2015
0
        if (joinsense != joinsense_cap && join == gs_join_miter) {
2016
            /* We need to do a miter line join. Miters are 'special'
2017
             * in that we'd like to do them by adjusting the existing
2018
             * points, rather than adding new ones. */
2019
0
            gs_fixed_point mpt;
2020
0
            if (joinsense & joinsense_ccw) {
2021
                /* Underjoin (in reverse path):
2022
                 * A = plp->o.co, B = plp->e.ce, C = nplp->o.co, D = nplp->e.ce */
2023
0
                double xa =  plp->o.co.x, ya =  plp->o.co.y;
2024
0
                double xb =  plp->e.ce.x, yb =  plp->e.ce.y;
2025
0
                double xc = nplp->o.co.x, yc = nplp->o.co.y;
2026
0
                double xd = nplp->e.ce.x, yd = nplp->e.ce.y;
2027
0
                double xab = xa-xb, xac = xa-xc, xcd = xc-xd;
2028
0
                double yab = ya-yb, yac = ya-yc, ycd = yc-yd;
2029
0
                double t_num = xac * ycd - yac * xcd;
2030
0
                double t_den = xab * ycd - yab * xcd;
2031
0
                code = check_miter(pgs_lp, plp, nplp, pmat, &plp->e.co,
2032
0
                                   &nplp->o.ce, &mpt, true);
2033
0
                if (code < 0)
2034
0
                    return code;
2035
0
                if (code == 0) {
2036
0
                    points[npoints-1].x = mpt.x;
2037
0
                    points[npoints-1].y = mpt.y;
2038
0
                    if (ensure_closed) {
2039
0
                        points[npoints].x = nplp->o.ce.x;
2040
0
                        points[npoints].y = nplp->o.ce.y;
2041
0
                        npoints++;
2042
0
                    }
2043
0
                    joinsense &= ~joinsense_over;
2044
0
                } else
2045
0
                    join = gs_join_bevel;
2046
0
                if (t_den != 0 &&
2047
0
                    ((t_num >= 0 && t_num <= t_den) ||
2048
0
                     (t_num <= 0 && t_num >= t_den))) {
2049
0
                    double x = xa - xab * t_num / t_den;
2050
0
                    double y = ya - yab * t_num / t_den;
2051
0
                    rpoints[nrpoints-1].x = (fixed)x;
2052
0
                    rpoints[nrpoints-1].y = (fixed)y;
2053
0
                    joinsense &= ~joinsense_under;
2054
0
                }
2055
0
            } else {
2056
                /* Underjoin (in fwd path):
2057
                 * A = plp->o.ce, B = plp->e.co, C = nplp->o.ce, D = nplp->e.co */
2058
0
                double xa =  plp->o.ce.x, ya =  plp->o.ce.y;
2059
0
                double xb =  plp->e.co.x, yb =  plp->e.co.y;
2060
0
                double xc = nplp->o.ce.x, yc = nplp->o.ce.y;
2061
0
                double xd = nplp->e.co.x, yd = nplp->e.co.y;
2062
0
                double xab = xa-xb, xac = xa-xc, xcd = xc-xd;
2063
0
                double yab = ya-yb, yac = ya-yc, ycd = yc-yd;
2064
0
                double t_num = xac * ycd - yac * xcd;
2065
0
                double t_den = xab * ycd - yab * xcd;
2066
0
                code = check_miter(pgs_lp, plp, nplp, pmat, &plp->e.ce,
2067
0
                                   &nplp->o.co, &mpt, false);
2068
0
                if (code < 0)
2069
0
                    return code;
2070
0
                if (code == 0) {
2071
0
                    rpoints[nrpoints-1].x = mpt.x;
2072
0
                    rpoints[nrpoints-1].y = mpt.y;
2073
0
                    if (ensure_closed) {
2074
0
                        rpoints[nrpoints].x = nplp->o.co.x;
2075
0
                        rpoints[nrpoints].y = nplp->o.co.y;
2076
0
                        nrpoints++;
2077
0
                    }
2078
0
                    joinsense &= ~joinsense_over;
2079
0
                } else
2080
0
                    join = gs_join_bevel;
2081
0
                if (t_den != 0 &&
2082
0
                    ((t_num >= 0 && t_num <= t_den) ||
2083
0
                     (t_num <= 0 && t_num >= t_den)))   {
2084
0
                    double x = xa - xab * t_num / t_den;
2085
0
                    double y = ya - yab * t_num / t_den;
2086
0
                    points[npoints-1].x = (fixed)x;
2087
0
                    points[npoints-1].y = (fixed)y;
2088
0
                    joinsense &= ~joinsense_under;
2089
0
                }
2090
0
            }
2091
0
        }
2092
0
    }
2093
2094
0
    if ((code = add_points(ppath, points, npoints, moveto_first)) < 0)
2095
0
        return code;
2096
0
    if ((code = add_points(rpath, rpoints, nrpoints, rmoveto_first)) < 0)
2097
0
        return code;
2098
0
    npoints  = 0;
2099
0
    nrpoints = 0;
2100
2101
0
    if (nplp == 0) { /* Add a final cap. */
2102
0
        if (end_cap == gs_cap_round) {
2103
0
            code = add_pie_cap(ppath, &plp->e);
2104
0
        } else {
2105
0
            code = cap_points(end_cap, &plp->e, points);
2106
0
            npoints = code;
2107
0
        }
2108
0
    } else if (nplp->thin) { /* no join */
2109
0
        code = cap_points(gs_cap_butt, &plp->e, points);
2110
0
        npoints = code;
2111
0
    } else if (joinsense == joinsense_cap) {
2112
        /* Do a cap */
2113
0
        code = add_pie_cap(ppath, &plp->e);
2114
0
        if (code >= 0) {
2115
            /* If the next line is in the opposite direction as the current one
2116
             * we want to leave the point on the same side as it was
2117
             * originally. This is required for paths that come to a stop
2118
             * and then reverse themselves, but may produce more complexity
2119
             * than we'd really like at the ends of smooth beziers. */
2120
0
            if ((double)(plp->width.x) * nplp->width.x + (double)plp->width.y * nplp->width.y >= 0)
2121
0
                code = gx_path_add_line(ppath, plp->e.co.x, plp->e.co.y);
2122
0
        }
2123
0
    } else if (joinsense & joinsense_ccw) {
2124
        /* CCW rotation. Join in the forward path. "Underjoin" in the
2125
         * reverse path. */
2126
0
        if (joinsense & joinsense_over) {
2127
            /* RJW: Ideally we should include the "|| flags" clause in
2128
             * the following condition. This forces all joins between
2129
             * line segments generated from arcs to be round. This would
2130
             * solve some flatness issues, but makes some pathological
2131
             * cases incredibly slow. */
2132
0
            if (join == gs_join_round /* || (flags & nf_all_from_arc) */) {
2133
0
                code = add_pie_join_fast_ccw(ppath, plp, nplp, reflected);
2134
0
            } else { /* non-round join */
2135
0
                code = line_join_points_fast_ccw(pgs_lp, plp, nplp,
2136
0
                                                 points, pmat, join);
2137
0
                npoints = code;
2138
0
            }
2139
0
            if (code < 0)
2140
0
                return code;
2141
0
        }
2142
0
        if (joinsense & joinsense_under) {
2143
            /* The underjoin */
2144
0
#ifndef SLOWER_BUT_MORE_ACCURATE_STROKING
2145
0
            if ((flags & (nf_some_from_arc | nf_prev_some_from_arc)) == 0) {
2146
                /* RJW: This is an approximation. We ought to draw a line
2147
                 * back to nplp->o.p, and then independently fill any exposed
2148
                 * region under the curve with a round join. Sadly, that's
2149
                 * a) really hard to do, and b) makes certain pathological
2150
                 * filling cases MUCH slower due to the greater number of
2151
                 * "cross-segment" line segments this produces. Instead,
2152
                 * we just skip the line to the middle, and join across the
2153
                 * bottom instead. This is akin to what other graphics libs
2154
                 * do (such as fitz, libart, etc). It's not perfect but in
2155
                 * most cases it's close, and results in faster to fill
2156
                 * paths.
2157
                 */
2158
                /* RJW: This goes wrong for some paths, as the 'underjoin' wind
2159
                 * will be the wrong way. See bug 694971 */
2160
0
                code = gx_path_add_line(rpath, nplp->o.p.x, nplp->o.p.y);
2161
0
                if (code < 0)
2162
0
                    return code;
2163
0
            }
2164
#else
2165
            if (wide_underjoin(plp, nplp))
2166
            {
2167
                code = gx_path_add_line(rpath, nplp->o.p.x, nplp->o.p.y);
2168
                if (code < 0)
2169
                    return code;
2170
                if ((flags & (nf_some_from_arc | nf_prev_some_from_arc)) != 0) {
2171
                    code = gx_path_add_line(rpath, nplp->o.co.x, nplp->o.co.y);
2172
                    if (code < 0)
2173
                        return code;
2174
                    code = gx_path_add_line(rpath, plp->e.ce.x, plp->e.ce.y);
2175
                    if (code < 0)
2176
                        return code;
2177
                    code = gx_path_add_line(rpath, nplp->o.p.x, nplp->o.p.y);
2178
                    if (code < 0)
2179
                        return code;
2180
                }
2181
            }
2182
#endif
2183
0
            code = gx_path_add_line(rpath, nplp->o.co.x, nplp->o.co.y);
2184
0
        }
2185
0
    } else if (joinsense & joinsense) {
2186
        /* CW rotation. Join in the reverse path. "Underjoin" in the
2187
         * forward path. */
2188
0
        if (joinsense & joinsense_over) {
2189
            /* RJW: Ideally we should include the "|| flags" clause in
2190
             * the following condition. This forces all joins between
2191
             * line segments generated from arcs to be round. This would
2192
             * solve some flatness issues, but makes some pathological
2193
             * cases incredibly slow. */
2194
0
            if (join == gs_join_round /* || (flags & nf_all_from_arc) */) {
2195
0
                code = add_pie_join_fast_cw(rpath, plp, nplp, reflected);
2196
0
            } else { /* non-round join */
2197
0
                code = line_join_points_fast_cw(pgs_lp, plp, nplp,
2198
0
                                                rpoints, pmat, join);
2199
0
                nrpoints = code;
2200
0
            }
2201
0
            if (code < 0)
2202
0
                return code;
2203
0
        }
2204
0
        if (joinsense & joinsense_under) {
2205
            /* The underjoin */
2206
0
#ifndef SLOWER_BUT_MORE_ACCURATE_STROKING
2207
0
            if ((flags & (nf_some_from_arc | nf_prev_some_from_arc)) == 0 &&
2208
0
                join != gs_join_miter) {
2209
                /* RJW: This is an approximation. We ought to draw a line
2210
                 * back to nplp->o.p, and then independently fill any exposed
2211
                 * region under the curve with a round join. Sadly, that's
2212
                 * a) really hard to do, and b) makes certain pathological
2213
                 * filling cases MUCH slower due to the greater number of
2214
                 * "cross-segment" line segments this produces. Instead,
2215
                 * we just skip the line to the middle, and join across the
2216
                 * bottom instead. This is akin to what other graphics libs
2217
                 * do (such as fitz, libart, etc). It's not perfect but in
2218
                 * most cases it's close, and results in faster to fill
2219
                 * paths.
2220
                 */
2221
                /* RJW: This goes wrong for some paths, as the 'underjoin' wind
2222
                 * will be the wrong way. See bug 694971 */
2223
0
                code = gx_path_add_line(ppath, nplp->o.p.x, nplp->o.p.y);
2224
0
                if (code < 0)
2225
0
                    return code;
2226
0
            }
2227
#else
2228
            if (wide_underjoin(plp, nplp))
2229
            {
2230
                code = gx_path_add_line(ppath, nplp->o.p.x, nplp->o.p.y);
2231
                if (code < 0)
2232
                    return code;
2233
                if ((flags & (nf_some_from_arc | nf_prev_some_from_arc)) != 0) {
2234
                    code = gx_path_add_line(ppath, nplp->o.ce.x, nplp->o.ce.y);
2235
                    if (code < 0)
2236
                        return code;
2237
                    code = gx_path_add_line(ppath, plp->e.co.x, plp->e.co.y);
2238
                    if (code < 0)
2239
                        return code;
2240
                    code = gx_path_add_line(ppath, nplp->o.p.x, nplp->o.p.y);
2241
                    if (code < 0)
2242
                        return code;
2243
                }
2244
            }
2245
#endif
2246
0
            code = gx_path_add_line(ppath, nplp->o.ce.x, nplp->o.ce.y);
2247
0
        }
2248
0
    }
2249
0
    if (code < 0)
2250
0
        return code;
2251
0
    if (npoints > 0) {
2252
0
        code = add_points(ppath, points, npoints, false);
2253
0
        if (code < 0)
2254
0
            return code;
2255
0
    }
2256
0
    if (nrpoints > 0) {
2257
0
        code = add_points(rpath, rpoints, nrpoints, false);
2258
0
        if (code < 0)
2259
0
            return code;
2260
0
    }
2261
0
    if (ensure_closed)
2262
0
        return gx_join_path_and_reverse(ppath, rpath);
2263
0
    return 0;
2264
0
}
2265
2266
/* Add a CPSI-compatible segment to the path.  This handles all the complex
2267
 * cases.
2268
 *
2269
 * This method doesn't support start/end/dash caps, but it's only used from
2270
 * postscript, so it doesn't need to.
2271
 */
2272
static int
2273
stroke_add_compat(gx_path * ppath, gx_path *rpath, bool ensure_closed,
2274
                  int first, pl_ptr plp, pl_ptr nplp,
2275
                  const gx_device_color * pdevc, gx_device * dev,
2276
                  const gs_gstate * pgs,
2277
                  const gx_stroke_params * params,
2278
                  const gs_fixed_rect * ignore_pbbox, int uniform,
2279
                  gs_line_join join, bool reflected, note_flags flags)
2280
332
{
2281
    /* Actually it adds 2 contours : one for the segment itself,
2282
       and another one for line join or for the ending cap.
2283
       Note CPSI creates negative contours. */
2284
332
    const gx_line_params *pgs_lp = gs_currentlineparams_inline(pgs);
2285
332
    gs_fixed_point points[6];
2286
332
    int npoints;
2287
332
    bool const moveto_first = true; /* Keeping this code closer to "stroke_add". */
2288
332
    int code;
2289
2290
332
    if (plp->thin) {
2291
        /* We didn't set up the endpoint parameters before, */
2292
        /* because the line was thin.  Do it now. */
2293
0
        set_thin_widths(plp);
2294
0
        adjust_stroke(dev, plp, pgs, true, first == 0 && nplp == 0, flags);
2295
0
        compute_caps(plp);
2296
0
    }
2297
    /* The segment itself : */
2298
332
    ASSIGN_POINT(&points[0], plp->o.ce);
2299
332
    ASSIGN_POINT(&points[1], plp->e.co);
2300
332
    ASSIGN_POINT(&points[2], plp->e.ce);
2301
332
    ASSIGN_POINT(&points[3], plp->o.co);
2302
332
    code = add_points(ppath, points, 4, moveto_first);
2303
332
    if (code < 0)
2304
0
        return code;
2305
332
    code = gx_path_close_subpath(ppath);
2306
332
    if (code < 0)
2307
0
        return code;
2308
332
    npoints = 0;
2309
332
    if (nplp == 0) {
2310
        /* Add a final cap. */
2311
332
        if (pgs_lp->start_cap == gs_cap_butt)
2312
0
            return 0;
2313
332
        if (pgs_lp->start_cap == gs_cap_round) {
2314
332
            ASSIGN_POINT(&points[npoints], plp->e.co);
2315
332
            ++npoints;
2316
332
            if ((code = add_points(ppath, points, npoints, moveto_first)) < 0)
2317
0
                return code;
2318
332
            return add_round_cap(ppath, &plp->e);
2319
332
        }
2320
0
        ASSIGN_POINT(&points[0], plp->e.ce);
2321
0
        ++npoints;
2322
0
        ASSIGN_POINT(&points[npoints], plp->e.co);
2323
0
        ++npoints;
2324
0
        code = cap_points(pgs_lp->start_cap, &plp->e, points + npoints);
2325
0
        if (code < 0)
2326
0
            return code;
2327
0
        npoints += code;
2328
0
    } else if (join == gs_join_round) {
2329
0
        ASSIGN_POINT(&points[npoints], plp->e.co);
2330
0
        ++npoints;
2331
0
        if ((code = add_points(ppath, points, npoints, moveto_first)) < 0)
2332
0
            return code;
2333
0
        return add_round_cap(ppath, &plp->e);
2334
0
    } else if (nplp->thin) {    /* no join */
2335
0
        npoints = 0;
2336
0
    } else {                    /* non-round join */
2337
0
        bool ccw =
2338
0
            (double)(plp->width.x) /* x1 */ * (nplp->width.y) /* y2 */ >
2339
0
            (double)(nplp->width.x) /* x2 */ * (plp->width.y) /* y1 */;
2340
2341
0
        if (ccw ^ reflected) {
2342
0
            ASSIGN_POINT(&points[0], plp->e.co);
2343
0
            ++npoints;
2344
0
            code = line_join_points(pgs_lp, plp, nplp, points + npoints,
2345
0
                                    (uniform ? (gs_matrix *) 0 : &ctm_only(pgs)),
2346
0
                                    join, reflected);
2347
0
            if (code < 0)
2348
0
                return code;
2349
0
            code--; /* Drop the last point of the non-compatible mode. */
2350
0
            npoints += code;
2351
0
        } else {
2352
0
            code = line_join_points(pgs_lp, plp, nplp, points,
2353
0
                                    (uniform ? (gs_matrix *) 0 : &ctm_only(pgs)),
2354
0
                                    join, reflected);
2355
0
            if (code < 0)
2356
0
                return code;
2357
0
            ASSIGN_POINT(&points[0], plp->e.ce); /* Replace the starting point of the non-compatible mode. */
2358
0
            npoints = code;
2359
0
        }
2360
0
    }
2361
0
    code = add_points(ppath, points, npoints, moveto_first);
2362
0
    if (code < 0)
2363
0
        return code;
2364
0
    code = gx_path_close_subpath(ppath);
2365
0
    return code;
2366
0
}
2367
2368
/* Add a CPSI-compatible segment to the path.  This handles all the complex
2369
 * cases.
2370
 *
2371
 * This method doesn't support start/end/dash caps, but it's only used from
2372
 * postscript, so it doesn't need to.
2373
 */
2374
static int
2375
stroke_add_initial_cap_compat(gx_path * ppath, pl_ptr plp, bool adlust_longitude,
2376
           const gx_device_color * pdevc, gx_device * dev,
2377
           const gs_gstate * pgs)
2378
332
{
2379
332
    const gx_line_params *pgs_lp = gs_currentlineparams_inline(pgs);
2380
332
    gs_fixed_point points[5];
2381
332
    int npoints = 0;
2382
332
    int code;
2383
2384
332
    if (pgs_lp->start_cap == gs_cap_butt)
2385
0
        return 0;
2386
332
    if (plp->thin) {
2387
        /* We didn't set up the endpoint parameters before, */
2388
        /* because the line was thin.  Do it now. */
2389
0
        set_thin_widths(plp);
2390
0
        adjust_stroke(dev, plp, pgs, true, adlust_longitude, 0);
2391
0
        compute_caps(plp);
2392
0
    }
2393
    /* Create an initial cap if desired. */
2394
332
    if (pgs_lp->start_cap == gs_cap_round) {
2395
332
        if ((code = gx_path_add_point(ppath, plp->o.co.x, plp->o.co.y)) < 0 ||
2396
332
            (code = add_round_cap(ppath, &plp->o)) < 0
2397
332
            )
2398
0
            return code;
2399
332
        return 0;
2400
332
    } else {
2401
0
        ASSIGN_POINT(&points[0], plp->o.co);
2402
0
        ++npoints;
2403
0
        if ((code = cap_points(pgs_lp->start_cap, &plp->o, points + npoints)) < 0)
2404
0
            return npoints;
2405
0
        npoints += code;
2406
0
        ASSIGN_POINT(&points[npoints], plp->o.ce);
2407
0
        ++npoints;
2408
0
        code = add_points(ppath, points, npoints, true);
2409
0
        if (code < 0)
2410
0
            return code;
2411
0
        return gx_path_close_subpath(ppath);
2412
0
    }
2413
332
}
2414
2415
/* Add lines with a possible initial moveto. */
2416
static int
2417
add_points(gx_path * ppath, const gs_fixed_point * points, int npoints,
2418
           bool moveto_first)
2419
2.46M
{
2420
2.46M
    int code;
2421
2422
2.46M
    if (moveto_first) {
2423
2.37M
        code = gx_path_add_point(ppath, points[0].x, points[0].y);
2424
2.37M
        if (code < 0)
2425
0
            return code;
2426
2.37M
        return gx_path_add_lines(ppath, points + 1, npoints - 1);
2427
2.37M
    } else {
2428
89.2k
        return gx_path_add_lines(ppath, points, npoints);
2429
89.2k
    }
2430
2.46M
}
2431
2432
/* ---------------- Join computation ---------------- */
2433
2434
/* Compute the points for a bevel, miter, or triangle join. */
2435
/* Treat no join the same as a bevel join. */
2436
/* If pmat != 0, we must inverse-transform the distances for */
2437
/* the miter check. */
2438
static int
2439
line_join_points(const gx_line_params * pgs_lp, pl_ptr plp, pl_ptr nplp,
2440
                 gs_fixed_point * join_points, const gs_matrix * pmat,
2441
                 gs_line_join join, bool reflected)
2442
519k
{
2443
519k
#define jp1 join_points[0]
2444
519k
#define np1 join_points[1]
2445
519k
#define np2 join_points[2]
2446
519k
#define jp2 join_points[3]
2447
519k
#define jpx join_points[4]
2448
    /*
2449
     * Set np to whichever of nplp->o.co or .ce is outside
2450
     * the current line.  We observe that the point (x2,y2)
2451
     * is counter-clockwise from (x1,y1), relative to the origin,
2452
     * iff
2453
     *  (arctan(y2/x2) - arctan(y1/x1)) mod 2*pi < pi,
2454
     * taking the signs of xi and yi into account to determine
2455
     * the quadrants of the results.  It turns out that
2456
     * even though arctan is monotonic only in the 4th/1st
2457
     * quadrants and the 2nd/3rd quadrants, case analysis on
2458
     * the signs of xi and yi demonstrates that this test
2459
     * is equivalent to the much less expensive test
2460
     *  x1 * y2 > x2 * y1
2461
     * in all cases.
2462
     *
2463
     * In the present instance, x1,y1 are plp->width,
2464
     * x2,y2 are nplp->width, and the origin is
2465
     * their common point (plp->e.p, nplp->o.p).
2466
     * ccw will be true iff nplp.o.co (nplp.o.p + width) is
2467
     * counter-clockwise from plp.e.ce (plp.e.p + width),
2468
     * in which case we want tan(a-b) rather than tan(b-a).
2469
     *
2470
     * We make the test using double arithmetic only because
2471
     * the !@#&^*% C language doesn't give us access to
2472
     * the double-width-result multiplication operation
2473
     * that almost all CPUs provide!
2474
     */
2475
519k
    bool ccw =
2476
519k
        (double)(plp->width.x) /* x1 */ * (nplp->width.y) /* y2 */ >
2477
519k
        (double)(nplp->width.x) /* x2 */ * (plp->width.y) /* y1 */;
2478
519k
    bool ccw0 = ccw;
2479
519k
    p_ptr outp, np;
2480
519k
    int   code;
2481
519k
    gs_fixed_point mpt;
2482
2483
519k
    ccw ^= reflected;
2484
2485
    /* Initialize for a bevel join. */
2486
519k
    ASSIGN_POINT(&jp1, plp->e.co);
2487
519k
    ASSIGN_POINT(&jp2, plp->e.ce);
2488
2489
    /*
2490
     * Because of stroke adjustment, it is possible that
2491
     * plp->e.p != nplp->o.p.  For that reason, we must use
2492
     * nplp->o.p as np1 or np2.
2493
     */
2494
519k
    if (!ccw) {
2495
272k
        outp = &jp2;
2496
272k
        ASSIGN_POINT(&np2, nplp->o.co);
2497
272k
        ASSIGN_POINT(&np1, nplp->o.p);
2498
272k
        np = &np2;
2499
272k
    } else {
2500
246k
        outp = &jp1;
2501
246k
        ASSIGN_POINT(&np1, nplp->o.ce);
2502
246k
        ASSIGN_POINT(&np2, nplp->o.p);
2503
246k
        np = &np1;
2504
246k
    }
2505
519k
    if_debug1('O', "[O]use %s\n", (ccw ? "co (ccw)" : "ce (cw)"));
2506
2507
    /* Handle triangular joins now. */
2508
519k
    if (join == gs_join_triangle) {
2509
0
        fixed tpx = outp->x - nplp->o.p.x + np->x;
2510
0
        fixed tpy = outp->y - nplp->o.p.y + np->y;
2511
2512
0
        ASSIGN_POINT(&jpx, jp2);
2513
0
        if (!ccw) {
2514
            /* Insert tp between np2 and jp2. */
2515
0
            jp2.x = tpx, jp2.y = tpy;
2516
0
        } else {
2517
            /* Insert tp between jp1 and np1. */
2518
0
            ASSIGN_POINT(&jp2, np2);
2519
0
            ASSIGN_POINT(&np2, np1);
2520
0
            np1.x = tpx, np1.y = tpy;
2521
0
        }
2522
0
        return 5;
2523
0
    }
2524
519k
    if (join == gs_join_miter &&
2525
519k
        (code = check_miter(pgs_lp, plp, nplp, pmat, outp, np, &mpt, ccw0)) <= 0) {
2526
335k
        if (code < 0)
2527
0
            return code;
2528
335k
        ASSIGN_POINT(outp, mpt);
2529
335k
    }
2530
519k
    return 4;
2531
519k
}
2532
2533
static int
2534
line_join_points_fast_cw(const gx_line_params * pgs_lp,
2535
                         pl_ptr plp, pl_ptr nplp,
2536
                         gs_fixed_point * rjoin_points,
2537
                         const gs_matrix * pmat,
2538
                         gs_line_join join)
2539
0
{
2540
    /* rjoin_points will be added to a path that is currently at plp->e.ce.
2541
     */
2542
2543
    /* Join will be between plp->e.ce and nplp->o.co */
2544
0
    if (join == gs_join_triangle)
2545
0
    {
2546
0
        gs_fixed_point tp;
2547
2548
0
        tp.x = plp->e.ce.x - nplp->o.p.x + nplp->o.co.x;
2549
0
        tp.y = plp->e.ce.y - nplp->o.p.y + nplp->o.co.y;
2550
0
        ASSIGN_POINT(&rjoin_points[0], tp);
2551
0
        ASSIGN_POINT(&rjoin_points[1], nplp->o.co);
2552
0
        return 2;
2553
0
    }
2554
2555
    /* Set up for a Bevel join */
2556
0
    ASSIGN_POINT(&rjoin_points[0], nplp->o.co);
2557
2558
0
    return 1;
2559
0
}
2560
2561
static int
2562
line_join_points_fast_ccw(const gx_line_params * pgs_lp,
2563
                          pl_ptr plp, pl_ptr nplp,
2564
                          gs_fixed_point * join_points,
2565
                          const gs_matrix * pmat,
2566
                          gs_line_join join)
2567
0
{
2568
    /* join_points will be added to a path that is currently at plp->e.co.
2569
     */
2570
    /* Join will be between plp->e.co and nplp->o.ce */
2571
0
    if (join == gs_join_triangle)
2572
0
    {
2573
0
        gs_fixed_point tp;
2574
2575
0
        tp.x = plp->e.co.x - nplp->o.p.x + nplp->o.ce.x;
2576
0
        tp.y = plp->e.co.y - nplp->o.p.y + nplp->o.ce.y;
2577
0
        ASSIGN_POINT(&join_points[0], tp);
2578
0
        ASSIGN_POINT(&join_points[1], nplp->o.ce);
2579
0
        return 2;
2580
0
    }
2581
2582
    /* Set up for a Bevel join */
2583
0
    ASSIGN_POINT(&join_points[0], nplp->o.ce);
2584
2585
0
    return 1;
2586
0
}
2587
/* ---------------- Cap computations ---------------- */
2588
2589
/* Compute the endpoints of the two caps of a segment. */
2590
/* Only o.p, e.p, width, and cdelta have been set. */
2591
static void
2592
compute_caps(pl_ptr plp)
2593
2.46M
{
2594
2.46M
    fixed wx2 = plp->width.x;
2595
2.46M
    fixed wy2 = plp->width.y;
2596
2597
2.46M
    plp->o.co.x = plp->o.p.x + wx2, plp->o.co.y = plp->o.p.y + wy2;
2598
2.46M
    plp->o.cdelta.x = -plp->e.cdelta.x,
2599
2.46M
        plp->o.cdelta.y = -plp->e.cdelta.y;
2600
2.46M
    plp->o.ce.x = plp->o.p.x - wx2, plp->o.ce.y = plp->o.p.y - wy2;
2601
2.46M
    plp->e.co.x = plp->e.p.x - wx2, plp->e.co.y = plp->e.p.y - wy2;
2602
2.46M
    plp->e.ce.x = plp->e.p.x + wx2, plp->e.ce.y = plp->e.p.y + wy2;
2603
#ifdef DEBUG
2604
    if (gs_debug_c('O')) {
2605
        dlprintf4("[o]Stroke o=(%f,%f) e=(%f,%f)\n",
2606
                  fixed2float(plp->o.p.x), fixed2float(plp->o.p.y),
2607
                  fixed2float(plp->e.p.x), fixed2float(plp->e.p.y));
2608
        dlprintf4("\twxy=(%f,%f) lxy=(%f,%f)\n",
2609
                  fixed2float(wx2), fixed2float(wy2),
2610
                  fixed2float(plp->e.cdelta.x),
2611
                  fixed2float(plp->e.cdelta.y));
2612
    }
2613
#endif
2614
2.46M
}
2615
2616
#define px endp->p.x
2617
#define py endp->p.y
2618
#define xo endp->co.x
2619
#define yo endp->co.y
2620
#define xe endp->ce.x
2621
#define ye endp->ce.y
2622
#define cdx endp->cdelta.x
2623
#define cdy endp->cdelta.y
2624
2625
/* Add a round cap to a path. */
2626
/* Assume the current point is the cap origin (endp->co). */
2627
static int
2628
add_round_cap(gx_path * ppath, const_ep_ptr endp)
2629
664
{
2630
664
    int code;
2631
2632
    /*
2633
     * Per the Red Book, we draw a full circle, even though a semicircle
2634
     * is sufficient for the join.
2635
     */
2636
664
    if ((code = gx_path_add_partial_arc(ppath, px + cdx, py + cdy,
2637
664
                                        xo + cdx, yo + cdy,
2638
664
                                        quarter_arc_fraction)) < 0 ||
2639
664
        (code = gx_path_add_partial_arc(ppath, xe, ye, xe + cdx, ye + cdy,
2640
664
                                        quarter_arc_fraction)) < 0 ||
2641
664
        (code = gx_path_add_partial_arc(ppath, px - cdx, py - cdy,
2642
664
                                        xe - cdx, ye - cdy,
2643
664
                                        quarter_arc_fraction)) < 0 ||
2644
664
        (code = gx_path_add_partial_arc(ppath, xo, yo, xo - cdx, yo - cdy,
2645
664
                                        quarter_arc_fraction)) < 0 ||
2646
        /* The final point must be (xe,ye). */
2647
664
        (code = gx_path_add_line(ppath, xe, ye)) < 0
2648
664
        )
2649
0
        return code;
2650
664
    return 0;
2651
664
}
2652
2653
/* Add a semicircular cap to a path. */
2654
/* Assume the current point is the cap origin (endp->co). */
2655
static int
2656
add_pie_cap(gx_path * ppath, const_ep_ptr endp)
2657
178k
{
2658
178k
    int code;
2659
2660
178k
    if ((code = gx_path_add_partial_arc(ppath, px + cdx, py + cdy,
2661
178k
                                        xo + cdx, yo + cdy,
2662
178k
                                        quarter_arc_fraction)) < 0 ||
2663
178k
        (code = gx_path_add_partial_arc(ppath, xe, ye, xe + cdx, ye + cdy,
2664
178k
                                        quarter_arc_fraction)) < 0 ||
2665
178k
        (code = gx_path_add_line(ppath, xe, ye)) < 0)
2666
0
        return code;
2667
178k
    return 0;
2668
178k
}
2669
2670
static int
2671
do_pie_join(gx_path * ppath, gs_fixed_point *centre,
2672
            gs_fixed_point *current_orig, gs_fixed_point *current_tangent,
2673
            gs_fixed_point *final, gs_fixed_point *final_tangent, bool ccw,
2674
            gs_fixed_point *width)
2675
1.02M
{
2676
1.02M
    int code;
2677
1.02M
    double rad_squared, dist_squared, F;
2678
1.02M
    gs_fixed_point current, tangent, tangmeet;
2679
2680
1.02M
    tangent.x = current_tangent->x;
2681
1.02M
    tangent.y = current_tangent->y;
2682
1.02M
    current.x = current_orig->x;
2683
1.02M
    current.y = current_orig->y;
2684
2685
    /* Is the join more than 90 degrees? */
2686
1.02M
    if ((double)tangent.x * (double)final_tangent->x +
2687
1.02M
        (double)tangent.y * (double)final_tangent->y > 0) {
2688
        /* Yes, so do a quarter turn. */
2689
13.1k
        code = gx_path_add_partial_arc(ppath,
2690
13.1k
                                       centre->x + tangent.x,
2691
13.1k
                                       centre->y + tangent.y,
2692
                                       /* Point where tangents meet */
2693
13.1k
                                       current.x + tangent.x,
2694
13.1k
                                       current.y + tangent.y,
2695
13.1k
                                       quarter_arc_fraction);
2696
13.1k
        if (code < 0)
2697
0
            return code;
2698
13.1k
        current.x = centre->x + tangent.x;
2699
13.1k
        current.y = centre->y + tangent.y;
2700
13.1k
        if (ccw) {
2701
0
            int tmp = tangent.x;
2702
0
            tangent.x = -tangent.y;
2703
0
            tangent.y = tmp;
2704
13.1k
        } else {
2705
13.1k
            int tmp = tangent.x;
2706
13.1k
            tangent.x = tangent.y;
2707
13.1k
            tangent.y = -tmp;
2708
13.1k
        }
2709
13.1k
    }
2710
2711
    /* Now we are guaranteed that the remaining arc is 90 degrees or
2712
     * less. Find where the tangents meet for this final section. */
2713
1.02M
    if (line_intersect(&current, &tangent,
2714
1.02M
                       final, final_tangent, &tangmeet) != 0) {
2715
424k
        return gx_path_add_line(ppath, final->x, final->y);
2716
424k
    }
2717
604k
    current.x -= tangmeet.x;
2718
604k
    current.y -= tangmeet.y;
2719
604k
    dist_squared = ((double)current.x) * current.x +
2720
604k
                   ((double)current.y) * current.y;
2721
604k
    rad_squared  = ((double)width->x) * width->x +
2722
604k
                   ((double)width->y) * width->y;
2723
604k
    dist_squared /= rad_squared;
2724
604k
    F = (4.0/3.0)*(1/(1+sqrt(1+dist_squared)));
2725
604k
    return gx_path_add_partial_arc(ppath, final->x, final->y,
2726
1.02M
                                   tangmeet.x, tangmeet.y, F);
2727
1.02M
}
2728
2729
/* Add a pie shaped join to a path. */
2730
/* Assume the current point is the cap origin (endp->co). */
2731
static int
2732
add_pie_join(gx_path * ppath, pl_ptr plp, pl_ptr nplp, bool reflected,
2733
             bool cap)
2734
1.76M
{
2735
1.76M
    int code;
2736
1.76M
    gs_fixed_point *current, *final, *tangent, *final_tangent;
2737
1.76M
    double l, r;
2738
1.76M
    bool ccw;
2739
2740
1.76M
    l = (double)(plp->width.x) /* x1 */ * (nplp->width.y) /* y2 */;
2741
1.76M
    r = (double)(nplp->width.x) /* x2 */ * (plp->width.y) /* y1 */;
2742
2743
1.76M
    if (l == r) {
2744
        /* Colinear. Suppress drawing a cap unless the path reverses direction. */
2745
788k
        if (cap &&
2746
788k
            ((double)(plp->width.x) * (nplp->width.x) + (double)(nplp->width.y) * (plp->width.y)) < 0)
2747
254
            return add_pie_cap(ppath, &plp->e);
2748
788k
        else
2749
788k
            return gx_path_add_line(ppath, plp->e.ce.x, plp->e.ce.y);
2750
788k
    }
2751
2752
974k
    ccw = (l > r);
2753
2754
974k
    ccw ^= reflected;
2755
2756
    /* At this point, the current point is plp->e.co */
2757
974k
    if (ccw) {
2758
417k
        current       = & plp->e.co;
2759
417k
        final         = &nplp->o.ce;
2760
417k
        tangent       = & plp->e.cdelta;
2761
417k
        final_tangent = &nplp->o.cdelta;
2762
        /* Check for no join required */
2763
417k
        if (current->x == final->x && current->y == final->y) {
2764
0
            return gx_path_add_line(ppath, plp->e.ce.x, plp->e.ce.y);
2765
0
        }
2766
556k
    } else {
2767
556k
        current       = &nplp->o.co;
2768
556k
        final         = & plp->e.ce;
2769
556k
        tangent       = &nplp->o.cdelta;
2770
556k
        final_tangent = & plp->e.cdelta;
2771
556k
        code = gx_path_add_line(ppath, plp->e.p.x, plp->e.p.y);
2772
556k
        if (code < 0)
2773
0
            return code;
2774
556k
        code = gx_path_add_line(ppath, current->x, current->y);
2775
556k
        if (code < 0)
2776
0
            return code;
2777
556k
        if (current->x == final->x && current->y == final->y)
2778
0
            return 0;
2779
556k
    }
2780
2781
974k
    if ((code = do_pie_join(ppath, &plp->e.p, current, tangent,
2782
974k
                            final, final_tangent, !reflected, &plp->width)) < 0)
2783
0
        return code;
2784
974k
    if (ccw &&
2785
974k
        ((code = gx_path_add_line(ppath, plp->e.p.x, plp->e.p.y)) < 0 ||
2786
417k
         (code = gx_path_add_line(ppath, plp->e.ce.x, plp->e.ce.y)) < 0))
2787
0
        return code;
2788
2789
974k
    return 0;
2790
974k
}
2791
2792
/* Add a pie shaped join to a path. */
2793
static int
2794
add_pie_join_fast_cw(gx_path * rpath, pl_ptr plp, pl_ptr nplp, bool reflected)
2795
0
{
2796
    /* At this point, the current point is plp->e.ce */
2797
0
    if (plp->e.ce.x == nplp->o.co.x && plp->e.ce.y == nplp->o.co.y)
2798
0
        return 0;
2799
2800
0
    return do_pie_join(rpath, &plp->e.p, &plp->e.ce, &plp->e.cdelta,
2801
0
                       &nplp->o.co, &nplp->o.cdelta, reflected, &plp->width);
2802
0
}
2803
2804
static int
2805
add_pie_join_fast_ccw(gx_path * ppath, pl_ptr plp, pl_ptr nplp, bool reflected)
2806
0
{
2807
    /* At this point, the current point is plp->e.co */
2808
    /* Check for no join required */
2809
0
    if (plp->e.co.x == nplp->o.ce.x && plp->e.co.y == nplp->o.ce.y)
2810
0
        return 0;
2811
2812
0
    return do_pie_join(ppath, &plp->e.p, &plp->e.co, &plp->e.cdelta,
2813
0
                       &nplp->o.ce, &nplp->o.cdelta, !reflected, &plp->width);
2814
0
}
2815
2816
static int
2817
join_under_pie(gx_path * ppath, pl_ptr plp, pl_ptr nplp, bool reflected)
2818
1.91M
{
2819
1.91M
    int code;
2820
1.91M
    gs_fixed_point dirn1, dirn2, tangmeet;
2821
1.91M
    double l, r;
2822
1.91M
    bool ccw;
2823
2824
1.91M
    l = (double)(plp->width.x) /* x1 */ * (nplp->width.y) /* y2 */;
2825
1.91M
    r = (double)(nplp->width.x) /* x2 */ * (plp->width.y) /* y1 */;
2826
2827
1.91M
    if (l == r)
2828
824k
        return 0;
2829
2830
1.08M
    ccw = (l > r);
2831
2832
1.08M
    ccw ^= reflected;
2833
2834
1.08M
    if (ccw) {
2835
478k
        dirn1.x = - plp->width.x;
2836
478k
        dirn1.y = - plp->width.y;
2837
478k
        dirn2.x = -nplp->width.x;
2838
478k
        dirn2.y = -nplp->width.y;
2839
478k
        if (line_intersect(& plp->o.co, &dirn1,
2840
478k
                           &nplp->e.ce, &dirn2, &tangmeet) != 0)
2841
452k
            return 0;
2842
26.5k
        if ((code = gx_path_close_subpath(ppath)) < 0 ||
2843
26.5k
            (code = gx_path_add_point(ppath, tangmeet.x, tangmeet.y)) < 0  ||
2844
26.5k
            (code = gx_path_add_line(ppath,plp->o.co.x,plp->o.co.y)) < 0 ||
2845
26.5k
            (code = do_pie_join(ppath, &plp->e.p, &plp->o.co, &plp->o.cdelta,
2846
26.5k
                                &nplp->e.ce, &nplp->e.cdelta, !reflected,
2847
26.5k
                                &plp->width)))
2848
0
            return code;
2849
610k
    } else {
2850
610k
        if (line_intersect(& plp->o.ce, & plp->width,
2851
610k
                           &nplp->e.co, &nplp->width, &tangmeet) != 0)
2852
582k
            return 0;
2853
28.2k
        if ((code = gx_path_close_subpath(ppath)) < 0 ||
2854
28.2k
            (code = gx_path_add_point(ppath, tangmeet.x, tangmeet.y)) < 0  ||
2855
28.2k
            (code = gx_path_add_line(ppath,nplp->e.co.x,nplp->e.co.y)) < 0 ||
2856
28.2k
            (code = do_pie_join(ppath, &plp->e.p,&nplp->e.co,&nplp->e.cdelta,
2857
28.2k
                                &plp->o.ce, &plp->o.cdelta, !reflected,
2858
28.2k
                                &plp->width)))
2859
0
            return code;
2860
28.2k
    }
2861
54.7k
    return 0;
2862
1.08M
}
2863
2864
/* Compute the points for a non-round cap. */
2865
/* Return the number of points. */
2866
static int
2867
cap_points(gs_line_cap type, const_ep_ptr endp, gs_fixed_point *pts /*[3]*/)
2868
2.46M
{
2869
2.46M
#define PUT_POINT(i, px, py)\
2870
4.93M
  pts[i].x = (px), pts[i].y = (py)
2871
2.46M
    switch (type) {
2872
2.44M
        case gs_cap_butt:
2873
2.44M
            PUT_POINT(0, xo, yo);
2874
2.44M
            PUT_POINT(1, xe, ye);
2875
2.44M
            return 2;
2876
25.9k
        case gs_cap_square:
2877
25.9k
            PUT_POINT(0, xo + cdx, yo + cdy);
2878
25.9k
            PUT_POINT(1, xe + cdx, ye + cdy);
2879
25.9k
            return 2;
2880
0
        case gs_cap_triangle:   /* (not supported by PostScript) */
2881
0
            PUT_POINT(0, xo, yo);
2882
0
            PUT_POINT(1, px + cdx, py + cdy);
2883
0
            PUT_POINT(2, xe, ye);
2884
0
            return 3;
2885
0
        default:                /* can't happen */
2886
0
            return_error(gs_error_unregistered);
2887
2.46M
    }
2888
2.46M
#undef PUT_POINT
2889
2.46M
}