Coverage Report

Created: 2025-06-10 07:17

/src/ghostpdl/psi/isave.c
Line
Count
Source (jump to first uncovered line)
1
/* Copyright (C) 2001-2024 Artifex Software, Inc.
2
   All Rights Reserved.
3
4
   This software is provided AS-IS with no warranty, either express or
5
   implied.
6
7
   This software is distributed under license and may not be copied,
8
   modified or distributed except as expressly authorized under the terms
9
   of the license contained in the file LICENSE in this distribution.
10
11
   Refer to licensing information at http://www.artifex.com or contact
12
   Artifex Software, Inc.,  39 Mesa Street, Suite 108A, San Francisco,
13
   CA 94129, USA, for further information.
14
*/
15
16
17
/* Save/restore manager for Ghostscript interpreter */
18
#include "ghost.h"
19
#include "memory_.h"
20
#include "ierrors.h"
21
#include "gsexit.h"
22
#include "gsstruct.h"
23
#include "stream.h"   /* for linking for forgetsave */
24
#include "iastate.h"
25
#include "inamedef.h"
26
#include "iname.h"
27
#include "ipacked.h"
28
#include "isave.h"
29
#include "isstate.h"
30
#include "gsstate.h"
31
#include "store.h"    /* for ref_assign */
32
#include "ivmspace.h"
33
#include "igc.h"
34
#include "gsutil.h"   /* gs_next_ids prototype */
35
#include "icstate.h"
36
37
/* Structure descriptor */
38
private_st_alloc_save();
39
40
/* Define the maximum amount of data we are willing to scan repeatedly -- */
41
/* see below for details. */
42
static const long max_repeated_scan = 100000;
43
44
/* Define the minimum space for creating an inner clump. */
45
/* Must be at least sizeof(clump_head_t). */
46
static const long min_inner_clump_space = sizeof(clump_head_t) + 500;
47
48
/*
49
 * The logic for saving and restoring the state is complex.
50
 * Both the changes to individual objects, and the overall state
51
 * of the memory manager, must be saved and restored.
52
 */
53
54
/*
55
 * To save the state of the memory manager:
56
 *      Save the state of the current clump in which we are allocating.
57
 *      Shrink all clumps to their inner unallocated region.
58
 *      Save and reset the free block chains.
59
 * By doing this, we guarantee that no object older than the save
60
 * can be freed.
61
 *
62
 * To restore the state of the memory manager:
63
 *      Free all clumps newer than the save, and the descriptors for
64
 *        the inner clumps created by the save.
65
 *      Make current the clump that was current at the time of the save.
66
 *      Restore the state of the current clump.
67
 *
68
 * In addition to save ("start transaction") and restore ("abort transaction"),
69
 * we support forgetting a save ("commit transation").  To forget a save:
70
 *      Reassign to the next outer save all clumps newer than the save.
71
 *      Free the descriptors for the inners clump, updating their outer
72
 *        clumps to reflect additional allocations in the inner clumps.
73
 *      Concatenate the free block chains with those of the outer save.
74
 */
75
76
/*
77
 * For saving changes to individual objects, we add an "attribute" bit
78
 * (l_new) that logically belongs to the slot where the ref is stored,
79
 * not to the ref itself.  The bit means "the contents of this slot
80
 * have been changed, or the slot was allocated, since the last save."
81
 * To keep track of changes since the save, we associate a chain of
82
 * <slot, old_contents> pairs that remembers the old contents of slots.
83
 *
84
 * When creating an object, if the save level is non-zero:
85
 *      Set l_new in all slots.
86
 *
87
 * When storing into a slot, if the save level is non-zero:
88
 *      If l_new isn't set, save the address and contents of the slot
89
 *        on the current contents chain.
90
 *      Set l_new after storing the new value.
91
 *
92
 * To do a save:
93
 *      If the save level is non-zero:
94
 *              Reset l_new in all slots on the contents chain, and in all
95
 *                objects created since the previous save.
96
 *      Push the head of the contents chain, and reset the chain to empty.
97
 *
98
 * To do a restore:
99
 *      Check all the stacks to make sure they don't contain references
100
 *        to objects created since the save.
101
 *      Restore all the slots on the contents chain.
102
 *      Pop the contents chain head.
103
 *      If the save level is now non-zero:
104
 *              Scan the newly restored contents chain, and set l_new in all
105
 *                the slots it references.
106
 *              Scan all objects created since the previous save, and set
107
 *                l_new in all the slots of each object.
108
 *
109
 * To forget a save:
110
 *      If the save level is greater than 1:
111
 *              Set l_new as for a restore, per the next outer save.
112
 *              Concatenate the next outer contents chain to the end of
113
 *                the current one.
114
 *      If the save level is 1:
115
 *              Reset l_new as for a save.
116
 *              Free the contents chain.
117
 */
118
119
/*
120
 * A consequence of the foregoing algorithms is that the cost of a save is
121
 * proportional to the total amount of data allocated since the previous
122
 * save.  If a PostScript program reads in a large amount of setup code and
123
 * then uses save/restore heavily, each save/restore will be expensive.  To
124
 * mitigate this, we check to see how much data we have scanned at this save
125
 * level: if it is large, we do a second, invisible save.  This greatly
126
 * reduces the cost of inner saves, at the expense of possibly saving some
127
 * changes twice that otherwise would only have to be saved once.
128
 */
129
130
/*
131
 * The presence of global and local VM complicates the situation further.
132
 * There is a separate save chain and contents chain for each VM space.
133
 * When multiple contexts are fully implemented, save and restore will have
134
 * the following effects, according to the privacy status of the current
135
 * context's global and local VM:
136
 *      Private global, private local:
137
 *              The outermost save saves both global and local VM;
138
 *                otherwise, save only saves local VM.
139
 *      Shared global, private local:
140
 *              Save only saves local VM.
141
 *      Shared global, shared local:
142
 *              Save only saves local VM, and suspends all other contexts
143
 *                sharing the same local VM until the matching restore.
144
 * Since we do not currently implement multiple contexts, only the first
145
 * case is relevant.
146
 *
147
 * Note that when saving the contents of a slot, the choice of chain
148
 * is determined by the VM space in which the slot is allocated,
149
 * not by the current allocation mode.
150
 */
151
152
/* Tracing printout */
153
static void
154
print_save(const char *str, uint spacen, const alloc_save_t *sav)
155
190k
{
156
190k
  if_debug5('u', "[u]%s space %u "PRI_INTPTR": cdata = "PRI_INTPTR", id = %lu\n",\
157
190k
            str, spacen, (intptr_t)sav, (intptr_t)sav->client_data, (ulong)sav->id);
158
190k
}
159
160
/* A link to igcref.c . */
161
ptr_proc_reloc(igc_reloc_ref_ptr_nocheck, ref_packed);
162
163
static
164
CLEAR_MARKS_PROC(change_clear_marks)
165
1.26M
{
166
1.26M
    alloc_change_t *const ptr = (alloc_change_t *)vptr;
167
168
1.26M
    if (r_is_packed(&ptr->contents))
169
26.4k
        r_clear_pmark((ref_packed *) & ptr->contents);
170
1.23M
    else
171
1.23M
        r_clear_attrs(&ptr->contents, l_mark);
172
1.26M
}
173
static
174
5.03M
ENUM_PTRS_WITH(change_enum_ptrs, alloc_change_t *ptr) return 0;
175
1.25M
ENUM_PTR(0, alloc_change_t, next);
176
1.25M
case 1:
177
1.25M
    if (ptr->offset >= 0)
178
0
        ENUM_RETURN((byte *) ptr->where - ptr->offset);
179
1.25M
    else
180
1.25M
        if (ptr->offset != AC_OFFSET_ALLOCATED)
181
493k
            ENUM_RETURN_REF(ptr->where);
182
765k
        else {
183
            /* Don't enumerate ptr->where, because it
184
               needs a special processing with
185
               alloc_save__filter_changes. */
186
765k
            ENUM_RETURN(0);
187
765k
        }
188
1.25M
case 2:
189
1.25M
    ENUM_RETURN_REF(&ptr->contents);
190
5.03M
ENUM_PTRS_END
191
582k
static RELOC_PTRS_WITH(change_reloc_ptrs, alloc_change_t *ptr)
192
582k
{
193
582k
    RELOC_VAR(ptr->next);
194
582k
    switch (ptr->offset) {
195
0
        case AC_OFFSET_STATIC:
196
0
            break;
197
493k
        case AC_OFFSET_REF:
198
493k
            RELOC_REF_PTR_VAR(ptr->where);
199
493k
            break;
200
89.0k
        case AC_OFFSET_ALLOCATED:
201
            /* We know that ptr->where may point to an unmarked object
202
               because change_enum_ptrs skipped it,
203
               and we know it always points to same space
204
               because we took a special care when calling alloc_save_change_alloc.
205
               Therefore we must skip the check for the mark,
206
               which would happen if we call the regular relocation function
207
               igc_reloc_ref_ptr from RELOC_REF_PTR_VAR.
208
               Calling igc_reloc_ref_ptr_nocheck instead. */
209
89.0k
            { /* A sanity check. */
210
89.0k
                obj_header_t *pre = (obj_header_t *)ptr->where - 1;
211
212
89.0k
                if (pre->o_type != &st_refs)
213
0
                    gs_abort(gcst->heap);
214
89.0k
            }
215
89.0k
            if (ptr->where != 0 && !gcst->relocating_untraced)
216
85.5k
                ptr->where = igc_reloc_ref_ptr_nocheck(ptr->where, gcst);
217
89.0k
            break;
218
0
        default:
219
0
            {
220
0
                byte *obj = (byte *) ptr->where - ptr->offset;
221
222
0
                RELOC_VAR(obj);
223
0
                ptr->where = (ref_packed *) (obj + ptr->offset);
224
0
            }
225
0
            break;
226
582k
    }
227
582k
    if (r_is_packed(&ptr->contents))
228
26.4k
        r_clear_pmark((ref_packed *) & ptr->contents);
229
556k
    else {
230
556k
        RELOC_REF_VAR(ptr->contents);
231
556k
        r_clear_attrs(&ptr->contents, l_mark);
232
556k
    }
233
582k
}
234
582k
RELOC_PTRS_END
235
gs_private_st_complex_only(st_alloc_change, alloc_change_t, "alloc_change",
236
                change_clear_marks, change_enum_ptrs, change_reloc_ptrs, 0);
237
238
/* Debugging printout */
239
#ifdef DEBUG
240
static void
241
alloc_save_print(const gs_memory_t *mem, alloc_change_t * cp, bool print_current)
242
{
243
    dmprintf2(mem, " "PRI_INTPTR"x: "PRI_INTPTR": ", (intptr_t) cp, (intptr_t) cp->where);
244
    if (r_is_packed(&cp->contents)) {
245
        if (print_current)
246
            dmprintf2(mem, "saved=%x cur=%x\n", *(ref_packed *) & cp->contents,
247
                      *cp->where);
248
        else
249
            dmprintf1(mem, "%x\n", *(ref_packed *) & cp->contents);
250
    } else {
251
        if (print_current)
252
            dmprintf6(mem, "saved=%x %x %lx cur=%x %x %lx\n",
253
                      r_type_attrs(&cp->contents), r_size(&cp->contents),
254
                      (ulong) cp->contents.value.intval,
255
                      r_type_attrs((ref *) cp->where),
256
                      r_size((ref *) cp->where),
257
                      (ulong) ((ref *) cp->where)->value.intval);
258
        else
259
            dmprintf3(mem, "%x %x %lx\n",
260
                      r_type_attrs(&cp->contents), r_size(&cp->contents),
261
                      (ulong) cp->contents.value.intval);
262
    }
263
}
264
#endif
265
266
/* Forward references */
267
static int  restore_resources(alloc_save_t *, gs_ref_memory_t *);
268
static void restore_free(gs_ref_memory_t *);
269
static int  save_set_new(gs_ref_memory_t * mem, bool to_new, bool set_limit, ulong *pscanned);
270
static int  save_set_new_changes(gs_ref_memory_t *, bool, bool);
271
static bool check_l_mark(void *obj);
272
273
/* Initialize the save/restore machinery. */
274
void
275
alloc_save_init(gs_dual_memory_t * dmem)
276
9.56k
{
277
9.56k
    alloc_set_not_in_save(dmem);
278
9.56k
}
279
280
/* Record that we are in a save. */
281
static void
282
alloc_set_masks(gs_dual_memory_t *dmem, uint new_mask, uint test_mask)
283
145k
{
284
145k
    int i;
285
145k
    gs_ref_memory_t *mem;
286
287
145k
    dmem->new_mask = new_mask;
288
145k
    dmem->test_mask = test_mask;
289
726k
    for (i = 0; i < countof(dmem->spaces.memories.indexed); ++i)
290
581k
        if ((mem = dmem->spaces.memories.indexed[i]) != 0) {
291
436k
            mem->new_mask = new_mask, mem->test_mask = test_mask;
292
436k
            if (mem->stable_memory != (gs_memory_t *)mem) {
293
290k
                mem = (gs_ref_memory_t *)mem->stable_memory;
294
290k
                mem->new_mask = new_mask, mem->test_mask = test_mask;
295
290k
            }
296
436k
        }
297
145k
}
298
void
299
alloc_set_in_save(gs_dual_memory_t *dmem)
300
96.4k
{
301
96.4k
    alloc_set_masks(dmem, l_new, l_new);
302
96.4k
}
303
304
/* Record that we are not in a save. */
305
void
306
alloc_set_not_in_save(gs_dual_memory_t *dmem)
307
48.9k
{
308
48.9k
    alloc_set_masks(dmem, 0, ~0);
309
48.9k
}
310
311
/* Save the state. */
312
static alloc_save_t *alloc_save_space(gs_ref_memory_t *mem,
313
                                       gs_dual_memory_t *dmem,
314
                                       ulong sid);
315
static void
316
alloc_free_save(gs_ref_memory_t *mem, alloc_save_t *save, const char *scn)
317
0
{
318
0
    gs_ref_memory_t save_mem;
319
0
    save_mem = mem->saved->state;
320
0
    gs_free_object((gs_memory_t *)mem, save, scn);
321
    /* Free any inner clump structures.  This is the easiest way to do it. */
322
0
    restore_free(mem);
323
    /* Restore the 'saved' state - this pulls our object off the linked
324
     * list of states. Without this we hit a SEGV in the gc later. */
325
0
    *mem = save_mem;
326
0
}
327
int
328
alloc_save_state(gs_dual_memory_t * dmem, void *cdata, ulong *psid)
329
85.8k
{
330
85.8k
    gs_ref_memory_t *lmem = dmem->space_local;
331
85.8k
    gs_ref_memory_t *gmem = dmem->space_global;
332
85.8k
    ulong sid = gs_next_ids((const gs_memory_t *)lmem->stable_memory, 2);
333
85.8k
    bool global =
334
85.8k
        lmem->save_level == 0 && gmem != lmem &&
335
85.8k
        gmem->num_contexts == 1;
336
85.8k
    alloc_save_t *gsave =
337
85.8k
        (global ? alloc_save_space(gmem, dmem, sid + 1) : (alloc_save_t *) 0);
338
85.8k
    alloc_save_t *lsave = alloc_save_space(lmem, dmem, sid);
339
340
85.8k
    if (lsave == 0 || (global && gsave == 0)) {
341
        /* Only 1 of lsave or gsave will have been allocated, but
342
         * nevertheless (in case things change in future), we free
343
         * lsave, then gsave, so they 'pop' correctly when restoring
344
         * the mem->saved states. */
345
0
        if (lsave != 0)
346
0
            alloc_free_save(lmem, lsave, "alloc_save_state(local save)");
347
0
        if (gsave != 0)
348
0
            alloc_free_save(gmem, gsave, "alloc_save_state(global save)");
349
0
        return_error(gs_error_VMerror);
350
0
    }
351
85.8k
    if (gsave != 0) {
352
9.56k
        gsave->client_data = 0;
353
9.56k
        print_save("save", gmem->space, gsave);
354
        /* Restore names when we do the local restore. */
355
9.56k
        lsave->restore_names = gsave->restore_names;
356
9.56k
        gsave->restore_names = false;
357
9.56k
    }
358
85.8k
    lsave->id = sid;
359
85.8k
    lsave->client_data = cdata;
360
85.8k
    print_save("save", lmem->space, lsave);
361
    /* Reset the l_new attribute in all slots.  The only slots that */
362
    /* can have the attribute set are the ones on the changes chain, */
363
    /* and ones in objects allocated since the last save. */
364
85.8k
    if (lmem->save_level > 1) {
365
76.2k
        ulong scanned;
366
76.2k
        int code = save_set_new(&lsave->state, false, true, &scanned);
367
368
76.2k
        if (code < 0)
369
0
            return code;
370
#if 0 /* Disable invisible save levels. */
371
        if ((lsave->state.total_scanned += scanned) > max_repeated_scan) {
372
            /* Do a second, invisible save. */
373
            alloc_save_t *rsave;
374
375
            rsave = alloc_save_space(lmem, dmem, 0L);
376
            if (rsave != 0) {
377
                rsave->client_data = cdata;
378
#if 0 /* Bug 688153 */
379
                rsave->id = lsave->id;
380
                print_save("save", lmem->space, rsave);
381
                lsave->id = 0;  /* mark as invisible */
382
                rsave->state.save_level--; /* ditto */
383
                lsave->client_data = 0;
384
#else
385
                rsave->id = 0;  /* mark as invisible */
386
                print_save("save", lmem->space, rsave);
387
                rsave->state.save_level--; /* ditto */
388
                rsave->client_data = 0;
389
#endif
390
                /* Inherit the allocated space count -- */
391
                /* we need this for triggering a GC. */
392
                print_save("save", lmem->space, lsave);
393
            }
394
        }
395
#endif
396
76.2k
    }
397
398
85.8k
    alloc_set_in_save(dmem);
399
85.8k
    *psid = sid;
400
85.8k
    return 0;
401
85.8k
}
402
/* Save the state of one space (global or local). */
403
static alloc_save_t *
404
alloc_save_space(gs_ref_memory_t * mem, gs_dual_memory_t * dmem, ulong sid)
405
95.3k
{
406
95.3k
    gs_ref_memory_t save_mem;
407
95.3k
    alloc_save_t *save;
408
95.3k
    clump_t *cp;
409
95.3k
    clump_t *new_cc = NULL;
410
95.3k
    clump_splay_walker sw;
411
412
95.3k
    save_mem = *mem;
413
95.3k
    alloc_close_clump(mem);
414
95.3k
    mem->cc = NULL;
415
95.3k
    gs_memory_status((gs_memory_t *) mem, &mem->previous_status);
416
95.3k
    ialloc_reset(mem);
417
418
    /* Create inner clumps wherever it's worthwhile. */
419
420
1.10M
    for (cp = clump_splay_walk_init(&sw, &save_mem); cp != 0; cp = clump_splay_walk_fwd(&sw)) {
421
1.00M
        if (cp->ctop - cp->cbot > min_inner_clump_space) {
422
            /* Create an inner clump to cover only the unallocated part. */
423
508k
            clump_t *inner =
424
508k
                gs_raw_alloc_struct_immovable(mem->non_gc_memory, &st_clump,
425
508k
                                              "alloc_save_space(inner)");
426
427
508k
            if (inner == 0)
428
0
                break;   /* maybe should fail */
429
508k
            alloc_init_clump(inner, cp->cbot, cp->ctop, cp->sreloc != 0, cp);
430
508k
            alloc_link_clump(inner, mem);
431
508k
            if_debug2m('u', (gs_memory_t *)mem, "[u]inner clump: cbot="PRI_INTPTR" ctop="PRI_INTPTR"\n",
432
508k
                       (intptr_t) inner->cbot, (intptr_t) inner->ctop);
433
508k
            if (cp == save_mem.cc)
434
82.8k
                new_cc = inner;
435
508k
        }
436
1.00M
    }
437
95.3k
    mem->cc = new_cc;
438
95.3k
    alloc_open_clump(mem);
439
440
95.3k
    save = gs_alloc_struct((gs_memory_t *) mem, alloc_save_t,
441
95.3k
                           &st_alloc_save, "alloc_save_space(save)");
442
95.3k
    if_debug2m('u', (gs_memory_t *)mem, "[u]save space %u at "PRI_INTPTR"\n",
443
95.3k
               mem->space, (intptr_t) save);
444
95.3k
    if (save == 0) {
445
        /* Free the inner clump structures.  This is the easiest way. */
446
0
        restore_free(mem);
447
0
        *mem = save_mem;
448
0
        return 0;
449
0
    }
450
95.3k
    save->client_data = NULL;
451
95.3k
    save->state = save_mem;
452
95.3k
    save->spaces = dmem->spaces;
453
95.3k
    save->restore_names = (name_memory(mem) == (gs_memory_t *) mem);
454
95.3k
    save->is_current = (dmem->current == mem);
455
95.3k
    save->id = sid;
456
95.3k
    mem->saved = save;
457
95.3k
    if_debug2m('u', (gs_memory_t *)mem, "[u%u]file_save "PRI_INTPTR"\n",
458
95.3k
               mem->space, (intptr_t) mem->streams);
459
95.3k
    mem->streams = 0;
460
95.3k
    mem->total_scanned = 0;
461
95.3k
    mem->total_scanned_after_compacting = 0;
462
95.3k
    if (sid)
463
95.3k
        mem->save_level++;
464
95.3k
    return save;
465
95.3k
}
466
467
/* Record a state change that must be undone for restore, */
468
/* and mark it as having been saved. */
469
int
470
alloc_save_change_in(gs_ref_memory_t *mem, const ref * pcont,
471
                  ref_packed * where, client_name_t cname)
472
126M
{
473
126M
    register alloc_change_t *cp;
474
475
126M
    if (mem->new_mask == 0)
476
126M
        return 0;    /* no saving */
477
350k
    cp = gs_alloc_struct((gs_memory_t *)mem, alloc_change_t,
478
350k
                         &st_alloc_change, "alloc_save_change");
479
350k
    if (cp == 0)
480
0
        return -1;
481
350k
    cp->next = mem->changes;
482
350k
    cp->where = where;
483
350k
    if (pcont == NULL)
484
0
        cp->offset = AC_OFFSET_STATIC;
485
350k
    else if (r_is_array(pcont) || r_has_type(pcont, t_dictionary))
486
350k
        cp->offset = AC_OFFSET_REF;
487
0
    else if (r_is_struct(pcont))
488
0
        cp->offset = (byte *) where - (byte *) pcont->value.pstruct;
489
0
    else {
490
0
        if_debug3('u', "Bad type %u for save!  pcont = "PRI_INTPTR", where = "PRI_INTPTR"\n",
491
0
                 r_type(pcont), (intptr_t) pcont, (intptr_t) where);
492
0
        gs_abort((const gs_memory_t *)mem);
493
0
    }
494
350k
    if (r_is_packed(where))
495
34.2k
        *(ref_packed *)&cp->contents = *where;
496
316k
    else {
497
316k
        ref_assign_inline(&cp->contents, (ref *) where);
498
316k
        r_set_attrs((ref *) where, l_new);
499
316k
    }
500
350k
    mem->changes = cp;
501
#ifdef DEBUG
502
    if (gs_debug_c('U')) {
503
        dmlprintf1((const gs_memory_t *)mem, "[U]save(%s)", client_name_string(cname));
504
        alloc_save_print((const gs_memory_t *)mem, cp, false);
505
    }
506
#endif
507
350k
    return 0;
508
350k
}
509
int
510
alloc_save_change(gs_dual_memory_t * dmem, const ref * pcont,
511
                  ref_packed * where, client_name_t cname)
512
126M
{
513
126M
    gs_ref_memory_t *mem =
514
126M
        (pcont == NULL ? dmem->space_local :
515
126M
         dmem->spaces_indexed[r_space(pcont) >> r_space_shift]);
516
517
126M
    return alloc_save_change_in(mem, pcont, where, cname);
518
126M
}
519
520
/* Allocate a structure for recording an allocation event. */
521
int
522
alloc_save_change_alloc(gs_ref_memory_t *mem, client_name_t cname, alloc_change_t **pcp)
523
12.4M
{
524
12.4M
    register alloc_change_t *cp;
525
526
12.4M
    if (mem->new_mask == 0)
527
11.3M
        return 0;    /* no saving */
528
1.09M
    cp = gs_alloc_struct((gs_memory_t *)mem, alloc_change_t,
529
1.09M
                         &st_alloc_change, "alloc_save_change");
530
1.09M
    if (cp == 0)
531
0
        return_error(gs_error_VMerror);
532
1.09M
    cp->next = mem->changes;
533
1.09M
    cp->where = 0;
534
1.09M
    cp->offset = AC_OFFSET_ALLOCATED;
535
1.09M
    make_null(&cp->contents);
536
1.09M
    *pcp = cp;
537
1.09M
    return 1;
538
1.09M
}
539
540
/* Remove an AC_OFFSET_ALLOCATED element. */
541
void
542
alloc_save_remove(gs_ref_memory_t *mem, ref_packed *obj, client_name_t cname)
543
1.76k
{
544
1.76k
    alloc_change_t **cpp = &mem->changes;
545
546
69.1k
    for (; *cpp != NULL;) {
547
67.3k
        alloc_change_t *cp = *cpp;
548
549
67.3k
        if (cp->offset == AC_OFFSET_ALLOCATED && cp->where == obj) {
550
1.76k
            if (mem->scan_limit == cp)
551
0
                mem->scan_limit = cp->next;
552
1.76k
            *cpp = cp->next;
553
1.76k
            gs_free_object((gs_memory_t *)mem, cp, "alloc_save_remove");
554
1.76k
        } else
555
65.5k
            cpp = &(*cpp)->next;
556
67.3k
    }
557
1.76k
}
558
559
/* Filter save change lists. */
560
static inline void
561
alloc_save__filter_changes_in_space(gs_ref_memory_t *mem)
562
507k
{
563
    /* This is a special function, which is called
564
       from the garbager after setting marks and before collecting
565
       unused space. Therefore it just resets marks for
566
       elements being released instead releasing them really. */
567
507k
    alloc_change_t **cpp = &mem->changes;
568
569
1.76M
    for (; *cpp != NULL; ) {
570
1.25M
        alloc_change_t *cp = *cpp;
571
572
1.25M
        if (cp->offset == AC_OFFSET_ALLOCATED && !check_l_mark(cp->where)) {
573
676k
            obj_header_t *pre = (obj_header_t *)cp - 1;
574
575
676k
            *cpp = cp->next;
576
676k
            cp->where = 0;
577
676k
            if (mem->scan_limit == cp)
578
237
                mem->scan_limit = cp->next;
579
676k
            o_set_unmarked(pre);
580
676k
        } else
581
579k
            cpp = &(*cpp)->next;
582
1.25M
    }
583
507k
}
584
585
/* Filter save change lists. */
586
void
587
alloc_save__filter_changes(gs_ref_memory_t *memory)
588
97.8k
{
589
97.8k
    gs_ref_memory_t *mem = memory;
590
591
605k
    for  (; mem; mem = &mem->saved->state)
592
507k
        alloc_save__filter_changes_in_space(mem);
593
97.8k
}
594
595
/* Return (the id of) the innermost externally visible save object, */
596
/* i.e., the innermost save with a non-zero ID. */
597
ulong
598
alloc_save_current_id(const gs_dual_memory_t * dmem)
599
85.8k
{
600
85.8k
    const alloc_save_t *save = dmem->space_local->saved;
601
602
85.8k
    while (save != 0 && save->id == 0)
603
0
        save = save->state.saved;
604
85.8k
    if (save)
605
85.8k
        return save->id;
606
607
    /* This should never happen, if it does, return a totally
608
     * impossible value.
609
     */
610
0
    return (ulong)-1;
611
85.8k
}
612
alloc_save_t *
613
alloc_save_current(const gs_dual_memory_t * dmem)
614
85.8k
{
615
85.8k
    return alloc_find_save(dmem, alloc_save_current_id(dmem));
616
85.8k
}
617
618
/* Test whether a reference would be invalidated by a restore. */
619
bool
620
alloc_is_since_save(const void *vptr, const alloc_save_t * save)
621
308k
{
622
    /* A reference postdates a save iff it is in a clump allocated */
623
    /* since the save (including any carried-over inner clumps). */
624
625
308k
    const char *const ptr = (const char *)vptr;
626
308k
    register gs_ref_memory_t *mem = save->space_local;
627
628
308k
    if_debug2m('U', (gs_memory_t *)mem, "[U]is_since_save "PRI_INTPTR", "PRI_INTPTR":\n",
629
308k
               (intptr_t) ptr, (intptr_t) save);
630
308k
    if (mem->saved == 0) { /* This is a special case, the final 'restore' from */
631
        /* alloc_restore_all. */
632
9.56k
        return true;
633
9.56k
    }
634
    /* Check against clumps allocated since the save. */
635
    /* (There may have been intermediate saves as well.) */
636
299k
    for (;; mem = &mem->saved->state) {
637
299k
        if_debug1m('U', (gs_memory_t *)mem, "[U]checking mem="PRI_INTPTR"\n", (intptr_t) mem);
638
299k
        if (ptr_is_within_mem_clumps(ptr, mem)) {
639
0
            if_debug0m('U', (gs_memory_t *)mem, "[U+]found\n");
640
0
            return true;
641
0
        }
642
299k
        if_debug1m('U', (gs_memory_t *)mem, "[U-]not in any chunks belonging to "PRI_INTPTR"\n", (intptr_t) mem);
643
299k
        if (mem->saved == save) { /* We've checked all the more recent saves, */
644
            /* must be OK. */
645
299k
            break;
646
299k
        }
647
299k
    }
648
649
    /*
650
     * If we're about to do a global restore (a restore to the level 0),
651
     * and there is only one context using this global VM
652
     * (the normal case, in which global VM is saved by the
653
     * outermost save), we also have to check the global save.
654
     * Global saves can't be nested, which makes things easy.
655
     */
656
299k
    if (save->state.save_level == 0 /* Restoring to save level 0 - see bug 688157, 688161 */ &&
657
299k
        (mem = save->space_global) != save->space_local &&
658
299k
        save->space_global->num_contexts == 1
659
299k
        ) {
660
9.98k
        if_debug1m('U', (gs_memory_t *)mem, "[U]checking global mem="PRI_INTPTR"\n", (intptr_t) mem);
661
9.98k
        if (ptr_is_within_mem_clumps(ptr, mem)) {
662
0
            if_debug0m('U', (gs_memory_t *)mem, "[U+]  found\n");
663
0
            return true;
664
0
        }
665
9.98k
    }
666
299k
    return false;
667
668
299k
#undef ptr
669
299k
}
670
671
/* Test whether a name would be invalidated by a restore. */
672
bool
673
alloc_name_is_since_save(const gs_memory_t *mem,
674
                         const ref * pnref, const alloc_save_t * save)
675
9.40k
{
676
9.40k
    const name_string_t *pnstr;
677
678
9.40k
    if (!save->restore_names)
679
9.40k
        return false;
680
0
    pnstr = names_string_inline(mem->gs_lib_ctx->gs_name_table, pnref);
681
0
    if (pnstr->foreign_string)
682
0
        return false;
683
0
    return alloc_is_since_save(pnstr->string_bytes, save);
684
0
}
685
bool
686
alloc_name_index_is_since_save(const gs_memory_t *mem,
687
                               uint nidx, const alloc_save_t *save)
688
0
{
689
0
    const name_string_t *pnstr;
690
691
0
    if (!save->restore_names)
692
0
        return false;
693
0
    pnstr = names_index_string_inline(mem->gs_lib_ctx->gs_name_table, nidx);
694
0
    if (pnstr->foreign_string)
695
0
        return false;
696
0
    return alloc_is_since_save(pnstr->string_bytes, save);
697
0
}
698
699
/* Check whether any names have been created since a given save */
700
/* that might be released by the restore. */
701
bool
702
alloc_any_names_since_save(const alloc_save_t * save)
703
95.3k
{
704
95.3k
    return save->restore_names;
705
95.3k
}
706
707
/* Get the saved state with a given ID. */
708
alloc_save_t *
709
alloc_find_save(const gs_dual_memory_t * dmem, ulong sid)
710
108k
{
711
108k
    alloc_save_t *sprev = dmem->space_local->saved;
712
713
108k
    if (sid == 0)
714
0
        return 0;   /* invalid id */
715
108k
    while (sprev != 0) {
716
108k
        if (sprev->id == sid)
717
108k
            return sprev;
718
2
        sprev = sprev->state.saved;
719
2
    }
720
0
    return 0;
721
108k
}
722
723
/* Get the client data from a saved state. */
724
void *
725
alloc_save_client_data(const alloc_save_t * save)
726
85.8k
{
727
85.8k
    return save->client_data;
728
85.8k
}
729
730
/*
731
 * Do one step of restoring the state.  The client is responsible for
732
 * calling alloc_find_save to get the save object, and for ensuring that
733
 * there are no surviving pointers for which alloc_is_since_save is true.
734
 * Return true if the argument was the innermost save, in which case
735
 * this is the last (or only) step.
736
 * Note that "one step" may involve multiple internal steps,
737
 * if this is the outermost restore (which requires restoring both local
738
 * and global VM) or if we created extra save levels to reduce scanning.
739
 */
740
static void restore_finalize(gs_ref_memory_t *);
741
static void restore_space(gs_ref_memory_t *, gs_dual_memory_t *);
742
743
int
744
alloc_restore_step_in(gs_dual_memory_t *dmem, alloc_save_t * save)
745
85.8k
{
746
    /* Get save->space_* now, because the save object will be freed. */
747
85.8k
    gs_ref_memory_t *lmem = save->space_local;
748
85.8k
    gs_ref_memory_t *gmem = save->space_global;
749
85.8k
    gs_ref_memory_t *mem = lmem;
750
85.8k
    alloc_save_t *sprev;
751
85.8k
    int code;
752
753
    /* Finalize all objects before releasing resources or undoing changes. */
754
85.8k
    do {
755
85.8k
        ulong sid;
756
757
85.8k
        sprev = mem->saved;
758
85.8k
        sid = sprev->id;
759
85.8k
        restore_finalize(mem);  /* finalize objects */
760
85.8k
        mem = &sprev->state;
761
85.8k
        if (sid != 0)
762
85.8k
            break;
763
85.8k
    }
764
85.8k
    while (sprev != save);
765
85.8k
    if (mem->save_level == 0) {
766
        /* This is the outermost save, which might also */
767
        /* need to restore global VM. */
768
9.56k
        mem = gmem;
769
9.56k
        if (mem != lmem && mem->saved != 0) {
770
9.56k
            restore_finalize(mem);
771
9.56k
        }
772
9.56k
    }
773
774
    /* Do one (externally visible) step of restoring the state. */
775
85.8k
    mem = lmem;
776
85.8k
    do {
777
85.8k
        ulong sid;
778
779
85.8k
        sprev = mem->saved;
780
85.8k
        sid = sprev->id;
781
85.8k
        code = restore_resources(sprev, mem); /* release other resources */
782
85.8k
        if (code < 0)
783
0
            return code;
784
85.8k
        restore_space(mem, dmem); /* release memory */
785
85.8k
        if (sid != 0)
786
85.8k
            break;
787
85.8k
    }
788
85.8k
    while (sprev != save);
789
790
85.8k
    if (mem->save_level == 0) {
791
        /* This is the outermost save, which might also */
792
        /* need to restore global VM. */
793
9.56k
        mem = gmem;
794
9.56k
        if (mem != lmem && mem->saved != 0) {
795
9.56k
            code = restore_resources(mem->saved, mem);
796
9.56k
            if (code < 0)
797
0
                return code;
798
9.56k
            restore_space(mem, dmem);
799
9.56k
        }
800
9.56k
        alloc_set_not_in_save(dmem);
801
76.2k
    } else {     /* Set the l_new attribute in all slots that are now new. */
802
76.2k
        ulong scanned;
803
804
76.2k
        code = save_set_new(mem, true, false, &scanned);
805
76.2k
        if (code < 0)
806
0
            return code;
807
76.2k
    }
808
809
85.8k
    return sprev == save;
810
85.8k
}
811
/* Restore the memory of one space, by undoing changes and freeing */
812
/* memory allocated since the save. */
813
static void
814
restore_space(gs_ref_memory_t * mem, gs_dual_memory_t *dmem)
815
95.3k
{
816
95.3k
    alloc_save_t *save = mem->saved;
817
95.3k
    alloc_save_t saved;
818
819
95.3k
    print_save("restore", mem->space, save);
820
821
    /* Undo changes since the save. */
822
95.3k
    {
823
95.3k
        register alloc_change_t *cp = mem->changes;
824
825
859k
        while (cp) {
826
#ifdef DEBUG
827
            if (gs_debug_c('U')) {
828
                dmlputs((const gs_memory_t *)mem, "[U]restore");
829
                alloc_save_print((const gs_memory_t *)mem, cp, true);
830
            }
831
#endif
832
763k
            if (cp->offset == AC_OFFSET_ALLOCATED)
833
763k
                DO_NOTHING;
834
350k
            else
835
350k
            if (r_is_packed(&cp->contents))
836
34.2k
                *cp->where = *(ref_packed *) & cp->contents;
837
316k
            else
838
316k
                ref_assign_inline((ref *) cp->where, &cp->contents);
839
763k
            cp = cp->next;
840
763k
        }
841
95.3k
    }
842
843
    /* Free memory allocated since the save. */
844
    /* Note that this frees all clumps except the inner ones */
845
    /* belonging to this level. */
846
95.3k
    saved = *save;
847
95.3k
    restore_free(mem);
848
849
    /* Restore the allocator state. */
850
95.3k
    {
851
95.3k
        int num_contexts = mem->num_contexts; /* don't restore */
852
853
95.3k
        *mem = saved.state;
854
95.3k
        mem->num_contexts = num_contexts;
855
95.3k
    }
856
95.3k
    alloc_open_clump(mem);
857
858
    /* Make the allocator current if it was current before the save. */
859
95.3k
    if (saved.is_current) {
860
85.8k
        dmem->current = mem;
861
85.8k
        dmem->current_space = mem->space;
862
85.8k
    }
863
95.3k
}
864
865
/* Restore to the initial state, releasing all resources. */
866
/* The allocator is no longer usable after calling this routine! */
867
int
868
alloc_restore_all(i_ctx_t *i_ctx_p)
869
9.56k
{
870
    /*
871
     * Save the memory pointers, since freeing space_local will also
872
     * free dmem itself.
873
     */
874
9.56k
    gs_ref_memory_t *lmem = idmemory->space_local;
875
9.56k
    gs_ref_memory_t *gmem = idmemory->space_global;
876
9.56k
    gs_ref_memory_t *smem = idmemory->space_system;
877
878
9.56k
    gs_ref_memory_t *mem;
879
9.56k
    int code;
880
881
    /* Restore to a state outside any saves. */
882
90.0k
    while (lmem->save_level != 0) {
883
80.4k
        vm_save_t *vmsave = alloc_save_client_data(alloc_save_current(idmemory));
884
80.4k
        if (vmsave->gsave) {
885
80.4k
            gs_grestoreall_for_restore(i_ctx_p->pgs, vmsave->gsave);
886
80.4k
        }
887
80.4k
        vmsave->gsave = 0;
888
80.4k
        code = alloc_restore_step_in(idmemory, lmem->saved);
889
890
80.4k
        if (code < 0)
891
0
            return code;
892
80.4k
    }
893
894
    /* Finalize memory. */
895
9.56k
    restore_finalize(lmem);
896
9.56k
    if ((mem = (gs_ref_memory_t *)lmem->stable_memory) != lmem)
897
9.56k
        restore_finalize(mem);
898
9.56k
    if (gmem != lmem && gmem->num_contexts == 1) {
899
9.56k
        restore_finalize(gmem);
900
9.56k
        if ((mem = (gs_ref_memory_t *)gmem->stable_memory) != gmem)
901
9.56k
            restore_finalize(mem);
902
9.56k
    }
903
9.56k
    restore_finalize(smem);
904
905
    /* Release resources other than memory, using fake */
906
    /* save and memory objects. */
907
9.56k
    {
908
9.56k
        alloc_save_t empty_save;
909
910
9.56k
        empty_save.spaces = idmemory->spaces;
911
9.56k
        empty_save.restore_names = false; /* don't bother to release */
912
9.56k
        code = restore_resources(&empty_save, NULL);
913
9.56k
        if (code < 0)
914
0
            return code;
915
9.56k
    }
916
917
    /* Finally, release memory. */
918
9.56k
    restore_free(lmem);
919
9.56k
    if ((mem = (gs_ref_memory_t *)lmem->stable_memory) != lmem)
920
9.56k
        restore_free(mem);
921
9.56k
    if (gmem != lmem) {
922
9.56k
        if (!--(gmem->num_contexts)) {
923
9.56k
            restore_free(gmem);
924
9.56k
            if ((mem = (gs_ref_memory_t *)gmem->stable_memory) != gmem)
925
9.56k
                restore_free(mem);
926
9.56k
        }
927
9.56k
    }
928
9.56k
    restore_free(smem);
929
9.56k
    return 0;
930
9.56k
}
931
932
/*
933
 * Finalize objects that will be freed by a restore.
934
 * Note that we must temporarily disable the freeing operations
935
 * of the allocator while doing this.
936
 */
937
static void
938
restore_finalize(gs_ref_memory_t * mem)
939
143k
{
940
143k
    clump_t *cp;
941
143k
    clump_splay_walker sw;
942
943
143k
    alloc_close_clump(mem);
944
143k
    gs_enable_free((gs_memory_t *) mem, false);
945
2.03M
    for (cp = clump_splay_walk_bwd_init(&sw, mem); cp != 0; cp = clump_splay_walk_bwd(&sw)) {
946
15.3M
        SCAN_CLUMP_OBJECTS(cp)
947
15.3M
            DO_ALL
948
15.3M
            struct_proc_finalize((*finalize)) =
949
15.3M
            pre->o_type->finalize;
950
15.3M
        if (finalize != 0) {
951
572k
            if_debug2m('u', (gs_memory_t *)mem, "[u]restore finalizing %s "PRI_INTPTR"\n",
952
572k
                       struct_type_name_string(pre->o_type),
953
572k
                       (intptr_t) (pre + 1));
954
572k
            (*finalize) ((gs_memory_t *) mem, pre + 1);
955
572k
        }
956
15.3M
        END_OBJECTS_SCAN
957
1.89M
    }
958
143k
    gs_enable_free((gs_memory_t *) mem, true);
959
143k
}
960
961
/* Release resources for a restore */
962
static int
963
restore_resources(alloc_save_t * sprev, gs_ref_memory_t * mem)
964
104k
{
965
104k
    int code;
966
#ifdef DEBUG
967
    if (mem) {
968
        /* Note restoring of the file list. */
969
        if_debug4m('u', (gs_memory_t *)mem, "[u%u]file_restore "PRI_INTPTR" => "PRI_INTPTR" for "PRI_INTPTR"\n",
970
                   mem->space, (intptr_t)mem->streams,
971
                   (intptr_t)sprev->state.streams, (intptr_t)sprev);
972
    }
973
#endif
974
975
    /* Remove entries from font and character caches. */
976
104k
    code = font_restore(sprev);
977
104k
    if (code < 0)
978
0
        return code;
979
980
    /* Adjust the name table. */
981
104k
    if (sprev->restore_names)
982
0
        names_restore(mem->gs_lib_ctx->gs_name_table, sprev);
983
104k
    return 0;
984
104k
}
985
986
/* Release memory for a restore. */
987
static void
988
restore_free(gs_ref_memory_t * mem)
989
143k
{
990
    /* Free clumps allocated since the save. */
991
143k
    gs_free_all((gs_memory_t *) mem);
992
143k
}
993
994
/* Forget a save, by merging this level with the next outer one. */
995
static void file_forget_save(gs_ref_memory_t *);
996
static void combine_space(gs_ref_memory_t *);
997
static void forget_changes(gs_ref_memory_t *);
998
int
999
alloc_forget_save_in(gs_dual_memory_t *dmem, alloc_save_t * save)
1000
0
{
1001
0
    gs_ref_memory_t *mem = save->space_local;
1002
0
    alloc_save_t *sprev;
1003
0
    ulong scanned;
1004
0
    int code;
1005
1006
0
    print_save("forget_save", mem->space, save);
1007
1008
    /* Iteratively combine the current level with the previous one. */
1009
0
    do {
1010
0
        sprev = mem->saved;
1011
0
        if (sprev->id != 0)
1012
0
            mem->save_level--;
1013
0
        if (mem->save_level != 0) {
1014
0
            alloc_change_t *chp = mem->changes;
1015
1016
0
            code = save_set_new(&sprev->state, true, false, &scanned);
1017
0
            if (code < 0)
1018
0
                return code;
1019
            /* Concatenate the changes chains. */
1020
0
            if (chp == 0)
1021
0
                mem->changes = sprev->state.changes;
1022
0
            else {
1023
0
                while (chp->next != 0)
1024
0
                    chp = chp->next;
1025
0
                chp->next = sprev->state.changes;
1026
0
            }
1027
0
            file_forget_save(mem);
1028
0
            combine_space(mem); /* combine memory */
1029
0
        } else {
1030
0
            forget_changes(mem);
1031
0
            code = save_set_new(mem, false, false, &scanned);
1032
0
            if (code < 0)
1033
0
                return code;
1034
0
            file_forget_save(mem);
1035
0
            combine_space(mem); /* combine memory */
1036
            /* This is the outermost save, which might also */
1037
            /* need to combine global VM. */
1038
0
            mem = save->space_global;
1039
0
            if (mem != save->space_local && mem->saved != 0) {
1040
0
                forget_changes(mem);
1041
0
                code = save_set_new(mem, false, false, &scanned);
1042
0
                if (code < 0)
1043
0
                    return code;
1044
0
                file_forget_save(mem);
1045
0
                combine_space(mem);
1046
0
            }
1047
0
            alloc_set_not_in_save(dmem);
1048
0
            break;   /* must be outermost */
1049
0
        }
1050
0
    }
1051
0
    while (sprev != save);
1052
0
    return 0;
1053
0
}
1054
/* Combine the clumps of the next outer level with those of the current one, */
1055
/* and free the bookkeeping structures. */
1056
static void
1057
combine_space(gs_ref_memory_t * mem)
1058
0
{
1059
0
    alloc_save_t *saved = mem->saved;
1060
0
    gs_ref_memory_t *omem = &saved->state;
1061
0
    clump_t *cp;
1062
0
    clump_splay_walker sw;
1063
1064
0
    alloc_close_clump(mem);
1065
0
    for (cp = clump_splay_walk_init(&sw, mem); cp != 0; cp = clump_splay_walk_fwd(&sw)) {
1066
0
        if (cp->outer == 0)
1067
0
            alloc_link_clump(cp, omem);
1068
0
        else {
1069
0
            clump_t *outer = cp->outer;
1070
1071
0
            outer->inner_count--;
1072
0
            if (mem->cc == cp)
1073
0
                mem->cc = outer;
1074
0
            if (mem->cfreed.cp == cp)
1075
0
                mem->cfreed.cp = outer;
1076
            /* "Free" the header of the inner clump, */
1077
            /* and any immediately preceding gap left by */
1078
            /* the GC having compacted the outer clump. */
1079
0
            {
1080
0
                obj_header_t *hp = (obj_header_t *) outer->cbot;
1081
1082
0
                hp->o_pad = 0;
1083
0
                hp->o_alone = 0;
1084
0
                hp->o_size = (char *)(cp->chead + 1)
1085
0
                    - (char *)(hp + 1);
1086
0
                hp->o_type = &st_bytes;
1087
                /* The following call is probably not safe. */
1088
#if 0       /* **************** */
1089
                gs_free_object((gs_memory_t *) mem,
1090
                               hp + 1, "combine_space(header)");
1091
#endif /* **************** */
1092
0
            }
1093
            /* Update the outer clump's allocation pointers. */
1094
0
            outer->cbot = cp->cbot;
1095
0
            outer->rcur = cp->rcur;
1096
0
            outer->rtop = cp->rtop;
1097
0
            outer->ctop = cp->ctop;
1098
0
            outer->has_refs |= cp->has_refs;
1099
0
            gs_free_object(mem->non_gc_memory, cp,
1100
0
                           "combine_space(inner)");
1101
0
        }
1102
0
    }
1103
    /* Update relevant parts of allocator state. */
1104
0
    mem->root = omem->root;
1105
0
    mem->allocated += omem->allocated;
1106
0
    mem->gc_allocated += omem->allocated;
1107
0
    mem->lost.objects += omem->lost.objects;
1108
0
    mem->lost.refs += omem->lost.refs;
1109
0
    mem->lost.strings += omem->lost.strings;
1110
0
    mem->saved = omem->saved;
1111
0
    mem->previous_status = omem->previous_status;
1112
0
    {       /* Concatenate free lists. */
1113
0
        int i;
1114
1115
0
        for (i = 0; i < num_freelists; i++) {
1116
0
            obj_header_t *olist = omem->freelists[i];
1117
0
            obj_header_t *list = mem->freelists[i];
1118
1119
0
            if (olist == 0);
1120
0
            else if (list == 0)
1121
0
                mem->freelists[i] = olist;
1122
0
            else {
1123
0
                while (*(obj_header_t **) list != 0)
1124
0
                    list = *(obj_header_t **) list;
1125
0
                *(obj_header_t **) list = olist;
1126
0
            }
1127
0
        }
1128
0
        if (omem->largest_free_size > mem->largest_free_size)
1129
0
            mem->largest_free_size = omem->largest_free_size;
1130
0
    }
1131
0
    gs_free_object((gs_memory_t *) mem, saved, "combine_space(saved)");
1132
0
    alloc_open_clump(mem);
1133
0
}
1134
/* Free the changes chain for a level 0 .forgetsave, */
1135
/* resetting the l_new flag in the changed refs. */
1136
static void
1137
forget_changes(gs_ref_memory_t * mem)
1138
0
{
1139
0
    register alloc_change_t *chp = mem->changes;
1140
0
    alloc_change_t *next;
1141
1142
0
    for (; chp; chp = next) {
1143
0
        ref_packed *prp = chp->where;
1144
1145
0
        if_debug1m('U', (gs_memory_t *)mem, "[U]forgetting change "PRI_INTPTR"\n", (intptr_t) chp);
1146
0
        if (chp->offset == AC_OFFSET_ALLOCATED)
1147
0
            DO_NOTHING;
1148
0
        else
1149
0
        if (!r_is_packed(prp))
1150
0
            r_clear_attrs((ref *) prp, l_new);
1151
0
        next = chp->next;
1152
0
        gs_free_object((gs_memory_t *) mem, chp, "forget_changes");
1153
0
    }
1154
0
    mem->changes = 0;
1155
0
}
1156
/* Update the streams list when forgetting a save. */
1157
static void
1158
file_forget_save(gs_ref_memory_t * mem)
1159
0
{
1160
0
    const alloc_save_t *save = mem->saved;
1161
0
    stream *streams = mem->streams;
1162
0
    stream *saved_streams = save->state.streams;
1163
1164
0
    if_debug4m('u', (gs_memory_t *)mem, "[u%d]file_forget_save "PRI_INTPTR" + "PRI_INTPTR" for "PRI_INTPTR"\n",
1165
0
               mem->space, (intptr_t) streams, (intptr_t) saved_streams,
1166
0
               (intptr_t) save);
1167
0
    if (streams == 0)
1168
0
        mem->streams = saved_streams;
1169
0
    else if (saved_streams != 0) {
1170
0
        while (streams->next != 0)
1171
0
            streams = streams->next;
1172
0
        streams->next = saved_streams;
1173
0
        saved_streams->prev = streams;
1174
0
    }
1175
0
}
1176
1177
static inline int
1178
mark_allocated(void *obj, bool to_new, uint *psize)
1179
220k
{
1180
220k
    obj_header_t *pre = (obj_header_t *)obj - 1;
1181
220k
    uint size = pre_obj_contents_size(pre);
1182
220k
    ref_packed *prp = (ref_packed *) (pre + 1);
1183
220k
    ref_packed *next = (ref_packed *) ((char *)prp + size);
1184
#ifdef ALIGNMENT_ALIASING_BUG
1185
                ref *rpref;
1186
# define RP_REF(rp) (rpref = (ref *)rp, rpref)
1187
#else
1188
52.9M
# define RP_REF(rp) ((ref *)rp)
1189
220k
#endif
1190
1191
220k
    if (pre->o_type != &st_refs) {
1192
        /* Must not happen. */
1193
0
        if_debug0('u', "Wrong object type when expected a ref.\n");
1194
0
        return_error(gs_error_Fatal);
1195
0
    }
1196
    /* We know that every block of refs ends with */
1197
    /* a full-size ref, so we only need the end check */
1198
    /* when we encounter one of those. */
1199
220k
    if (to_new)
1200
15.7M
        while (1) {
1201
15.7M
            if (r_is_packed(prp))
1202
3.26M
                prp++;
1203
12.4M
            else {
1204
12.4M
                RP_REF(prp)->tas.type_attrs |= l_new;
1205
12.4M
                prp += packed_per_ref;
1206
12.4M
                if (prp >= next)
1207
94.0k
                    break;
1208
12.4M
            }
1209
15.7M
    } else
1210
67.5M
        while (1) {
1211
67.5M
            if (r_is_packed(prp))
1212
27.0M
                prp++;
1213
40.4M
            else {
1214
40.4M
                RP_REF(prp)->tas.type_attrs &= ~l_new;
1215
40.4M
                prp += packed_per_ref;
1216
40.4M
                if (prp >= next)
1217
126k
                    break;
1218
40.4M
            }
1219
67.5M
        }
1220
220k
#undef RP_REF
1221
220k
    *psize = size;
1222
220k
    return 0;
1223
220k
}
1224
1225
/* Check if a block contains refs marked by garbager. */
1226
static bool
1227
check_l_mark(void *obj)
1228
761k
{
1229
761k
    obj_header_t *pre = (obj_header_t *)obj - 1;
1230
761k
    uint size = pre_obj_contents_size(pre);
1231
761k
    ref_packed *prp = (ref_packed *) (pre + 1);
1232
761k
    ref_packed *next = (ref_packed *) ((char *)prp + size);
1233
#ifdef ALIGNMENT_ALIASING_BUG
1234
                ref *rpref;
1235
# define RP_REF(rp) (rpref = (ref *)rp, rpref)
1236
#else
1237
761k
# define RP_REF(rp) ((ref *)rp)
1238
761k
#endif
1239
1240
    /* We know that every block of refs ends with */
1241
    /* a full-size ref, so we only need the end check */
1242
    /* when we encounter one of those. */
1243
1.98G
    while (1) {
1244
1.98G
        if (r_is_packed(prp)) {
1245
23.3M
            if (r_has_pmark(prp))
1246
842
                return true;
1247
23.3M
            prp++;
1248
1.96G
        } else {
1249
1.96G
            if (r_has_attr(RP_REF(prp), l_mark))
1250
84.6k
                return true;
1251
1.96G
            prp += packed_per_ref;
1252
1.96G
            if (prp >= next)
1253
676k
                return false;
1254
1.96G
        }
1255
1.98G
    }
1256
761k
#undef RP_REF
1257
761k
}
1258
1259
/* Set or reset the l_new attribute in every relevant slot. */
1260
/* This includes every slot on the current change chain, */
1261
/* and every (ref) slot allocated at this save level. */
1262
/* Return the number of bytes of data scanned. */
1263
static int
1264
save_set_new(gs_ref_memory_t * mem, bool to_new, bool set_limit, ulong *pscanned)
1265
152k
{
1266
152k
    ulong scanned = 0;
1267
152k
    int code;
1268
1269
    /* Handle the change chain. */
1270
152k
    code = save_set_new_changes(mem, to_new, set_limit);
1271
152k
    if (code < 0)
1272
0
        return code;
1273
1274
    /* Handle newly allocated ref objects. */
1275
403k
    SCAN_MEM_CLUMPS(mem, cp) {
1276
403k
        if (cp->has_refs) {
1277
37.2k
            bool has_refs = false;
1278
37.2k
            bool no_outer_clump = !(cp->outer != NULL && cp->ctop - cp->cbot > min_inner_clump_space);
1279
416k
            SCAN_CLUMP_OBJECTS(cp)
1280
416k
                DO_ALL
1281
416k
                if_debug3m('U', (gs_memory_t *)mem, "[U]set_new scan("PRI_INTPTR"(%u), %d)\n",
1282
416k
                           (intptr_t) pre, size, to_new);
1283
416k
            if (pre->o_type == &st_refs) {
1284
                /* These are refs, scan them. */
1285
110k
                ref_packed *prp = (ref_packed *) (pre + 1);
1286
110k
                uint size;
1287
                /* In order to avoid the garbager unnecessarily scanning for refs that may
1288
                   not exist, we reset the "has_refs" flag if we're doing a save (and leave
1289
                   it alone during a restore. This generally works because when we get here
1290
                   during a save, we've already created the inner clump, and during a restore,
1291
                   we've already restored to the outer clump.
1292
                   Where is goes wrong is when there isn't sufficient space left in the clump
1293
                   for any new allocations, so we won't have created the inner clump, and then
1294
                   the flag isn't retained. Spot that above, and only meddle with the flag here if
1295
                   an inner clump has been created.
1296
                 */
1297
110k
                has_refs = true && (to_new | no_outer_clump);
1298
110k
                code = mark_allocated(prp, to_new, &size);
1299
110k
                if (code < 0)
1300
0
                    return code;
1301
110k
                scanned += size;
1302
110k
            } else
1303
305k
                scanned += sizeof(obj_header_t);
1304
416k
            END_OBJECTS_SCAN
1305
37.2k
                cp->has_refs = has_refs;
1306
37.2k
        }
1307
403k
    }
1308
403k
    END_CLUMPS_SCAN
1309
152k
    if_debug2m('u', (gs_memory_t *)mem, "[u]set_new (%s) scanned %ld\n",
1310
152k
               (to_new ? "restore" : "save"), scanned);
1311
152k
    *pscanned = scanned;
1312
152k
    return 0;
1313
152k
}
1314
1315
/* Drop redundant elements from the changes list and set l_new. */
1316
static void
1317
drop_redundant_changes(gs_ref_memory_t * mem)
1318
0
{
1319
0
    register alloc_change_t *chp = mem->changes, *chp_back = NULL, *chp_forth;
1320
1321
    /* As we are trying to throw away redundant changes in an allocator instance
1322
       that has already been "saved", the active clump has already been "closed"
1323
       by alloc_save_space(). Using such an allocator (for example, by calling
1324
       gs_free_object() with it) can leave it in an unstable state, causing
1325
       problems for the garbage collector (specifically, the clump validator code).
1326
       So, before we might use it, open the current clump, and then close it again
1327
       when we're done.
1328
     */
1329
0
    alloc_open_clump(mem);
1330
1331
    /* First reverse the list and set all. */
1332
0
    for (; chp; chp = chp_forth) {
1333
0
        chp_forth = chp->next;
1334
0
        if (chp->offset != AC_OFFSET_ALLOCATED) {
1335
0
            ref_packed *prp = chp->where;
1336
1337
0
            if (!r_is_packed(prp)) {
1338
0
                ref *const rp = (ref *)prp;
1339
1340
0
                rp->tas.type_attrs |= l_new;
1341
0
            }
1342
0
        }
1343
0
        chp->next = chp_back;
1344
0
        chp_back = chp;
1345
0
    }
1346
0
    mem->changes = chp_back;
1347
0
    chp_back = NULL;
1348
    /* Then filter, reset and reverse again. */
1349
0
    for (chp = mem->changes; chp; chp = chp_forth) {
1350
0
        chp_forth = chp->next;
1351
0
        if (chp->offset != AC_OFFSET_ALLOCATED) {
1352
0
            ref_packed *prp = chp->where;
1353
1354
0
            if (!r_is_packed(prp)) {
1355
0
                ref *const rp = (ref *)prp;
1356
1357
0
                if ((rp->tas.type_attrs & l_new) == 0) {
1358
0
                    if (mem->scan_limit == chp)
1359
0
                        mem->scan_limit = chp_back;
1360
0
                    if (mem->changes == chp)
1361
0
                        mem->changes = chp_back;
1362
0
                    gs_free_object((gs_memory_t *)mem, chp, "alloc_save_remove");
1363
0
                    continue;
1364
0
                } else
1365
0
                    rp->tas.type_attrs &= ~l_new;
1366
0
            }
1367
0
        }
1368
0
        chp->next = chp_back;
1369
0
        chp_back = chp;
1370
0
    }
1371
0
    mem->changes = chp_back;
1372
1373
0
    alloc_close_clump(mem);
1374
0
}
1375
1376
/* Set or reset the l_new attribute on the changes chain. */
1377
static int
1378
save_set_new_changes(gs_ref_memory_t * mem, bool to_new, bool set_limit)
1379
152k
{
1380
152k
    register alloc_change_t *chp;
1381
152k
    register uint new = (to_new ? l_new : 0);
1382
152k
    ulong scanned = 0;
1383
1384
152k
    if (!to_new && mem->total_scanned_after_compacting > max_repeated_scan * 16) {
1385
0
        mem->total_scanned_after_compacting = 0;
1386
0
        drop_redundant_changes(mem);
1387
0
    }
1388
439k
    for (chp = mem->changes; chp; chp = chp->next) {
1389
287k
        if (chp->offset == AC_OFFSET_ALLOCATED) {
1390
110k
            if (chp->where != 0) {
1391
110k
                uint size;
1392
110k
                int code = mark_allocated((void *)chp->where, to_new, &size);
1393
1394
110k
                if (code < 0)
1395
0
                    return code;
1396
110k
                scanned += size;
1397
110k
            }
1398
177k
        } else {
1399
177k
            ref_packed *prp = chp->where;
1400
1401
177k
            if_debug3m('U', (gs_memory_t *)mem, "[U]set_new "PRI_INTPTR": ("PRI_INTPTR", %d)\n",
1402
177k
                       (intptr_t)chp, (intptr_t)prp, new);
1403
177k
            if (!r_is_packed(prp)) {
1404
176k
                ref *const rp = (ref *) prp;
1405
1406
176k
                rp->tas.type_attrs =
1407
176k
                    (rp->tas.type_attrs & ~l_new) + new;
1408
176k
            }
1409
177k
        }
1410
287k
        if (mem->scan_limit == chp)
1411
204
            break;
1412
287k
    }
1413
152k
    if (set_limit) {
1414
76.2k
        mem->total_scanned_after_compacting += scanned;
1415
76.2k
        if (scanned  + mem->total_scanned >= max_repeated_scan) {
1416
204
            mem->scan_limit = mem->changes;
1417
204
            mem->total_scanned = 0;
1418
204
        } else
1419
76.0k
            mem->total_scanned += scanned;
1420
76.2k
    }
1421
152k
    return 0;
1422
152k
}
1423
1424
gs_memory_t *
1425
gs_save_any_memory(const alloc_save_t *save)
1426
104k
{
1427
104k
    return((gs_memory_t *)save->space_local);
1428
104k
}