396 | 9.85M | } Unexecuted instantiation: gx_fill_trapezoid_cf_fd Unexecuted instantiation: gx_fill_trapezoid_cf_nd gdevddrw.c:gx_fill_trapezoid_as_fd Line | Count | Source | 137 | 23.3k | { | 138 | 23.3k | const fixed ymin = fixed_pixround(ybot) + fixed_half; | 139 | 23.3k | const fixed ymax = fixed_pixround(ytop); | 140 | | | 141 | 23.3k | if (ymin >= ymax) | 142 | 92 | return 0; /* no scan lines to sample */ | 143 | 23.2k | { | 144 | 23.2k | int iy = fixed2int_var(ymin); | 145 | 23.2k | const int iy1 = fixed2int_var(ymax); | 146 | 23.2k | trap_line l, r; | 147 | 23.2k | register int rxl, rxr; | 148 | 23.2k | #if !LINEAR_COLOR | 149 | 23.2k | int ry; | 150 | 23.2k | #endif | 151 | 23.2k | const fixed | 152 | 23.2k | x0l = left->start.x, x1l = left->end.x, x0r = right->start.x, | 153 | 23.2k | x1r = right->end.x, dxl = x1l - x0l, dxr = x1r - x0r; | 154 | 23.2k | const fixed /* partial pixel offset to first line to sample */ | 155 | 23.2k | ysl = ymin - left->start.y, ysr = ymin - right->start.y; | 156 | 23.2k | fixed fxl; | 157 | 23.2k | int code; | 158 | | # if CONTIGUOUS_FILL | 159 | | const bool peak0 = ((flags & 1) != 0); | 160 | | const bool peak1 = ((flags & 2) != 0); | 161 | | int peak_y0 = ybot + fixed_half; | 162 | | int peak_y1 = ytop - fixed_half; | 163 | | # endif | 164 | | # if LINEAR_COLOR | 165 | | int num_components = dev->color_info.num_components; | 166 | | frac31 lgc[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 167 | | int32_t lgf[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 168 | | int32_t lgnum[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 169 | | frac31 rgc[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 170 | | int32_t rgf[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 171 | | int32_t rgnum[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 172 | | frac31 xgc[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 173 | | int32_t xgf[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 174 | | int32_t xgnum[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 175 | | trap_gradient lg, rg, xg; | 176 | | # else | 177 | 23.2k | gx_color_index cindex = pdevc->colors.pure; | 178 | 23.2k | dev_proc_fill_rectangle((*fill_rect)) = | 179 | 23.2k | dev_proc(dev, fill_rectangle); | 180 | 23.2k | # endif | 181 | | | 182 | 23.2k | if_debug2m('z', dev->memory, "[z]y=[%d,%d]\n", iy, iy1); | 183 | | | 184 | 23.2k | l.h = left->end.y - left->start.y; | 185 | 23.2k | if (l.h == 0) | 186 | 0 | return 0; | 187 | 23.2k | r.h = right->end.y - right->start.y; | 188 | 23.2k | if (r.h == 0) | 189 | 0 | return 0; | 190 | 23.2k | l.x = x0l + (fixed_half - fixed_epsilon); | 191 | 23.2k | r.x = x0r + (fixed_half - fixed_epsilon); | 192 | 23.2k | #if !LINEAR_COLOR | 193 | 23.2k | ry = iy; | 194 | 23.2k | #endif | 195 | | | 196 | | /* | 197 | | * Free variables of FILL_TRAP_RECT: | 198 | | * SWAP_AXES, pdevc, dev, fa | 199 | | * Free variables of FILL_TRAP_RECT_DIRECT: | 200 | | * SWAP_AXES, fill_rect, dev, cindex | 201 | | */ | 202 | 23.2k | #define FILL_TRAP_RECT_INDIRECT(x,y,w,h)\ | 203 | 23.2k | (SWAP_AXES ? gx_fill_rectangle_device_rop(y, x, h, w, pdevc, dev, fa) :\ | 204 | 23.2k | gx_fill_rectangle_device_rop(x, y, w, h, pdevc, dev, fa)) | 205 | 23.2k | #define FILL_TRAP_RECT_DIRECT(x,y,w,h)\ | 206 | 23.2k | (SWAP_AXES ? (*fill_rect)(dev, y, x, h, w, cindex) :\ | 207 | 23.2k | (*fill_rect)(dev, x, y, w, h, cindex)) | 208 | | | 209 | | #if LINEAR_COLOR | 210 | | # define FILL_TRAP_RECT(x,y,w,h)\ | 211 | | (!(w) ? 0 : dev_proc(dev, fill_linear_color_scanline)(dev, fa, x, y, w, xg.c, xg.f, xg.num, xg.den)) | 212 | | #else | 213 | 23.2k | # define FILL_TRAP_RECT(x,y,w,h)\ | 214 | 23.2k | (FILL_DIRECT ? FILL_TRAP_RECT_DIRECT(x,y,w,h) : FILL_TRAP_RECT_INDIRECT(x,y,w,h)) | 215 | 23.2k | #endif | 216 | | | 217 | | /* Compute the dx/dy ratios. */ | 218 | | | 219 | | /* | 220 | | * Compute the x offsets at the first scan line to sample. We need | 221 | | * to be careful in computing ys# * dx#f {/,%} h# because the | 222 | | * multiplication may overflow. We know that all the quantities | 223 | | * involved are non-negative, and that ys# is usually less than 1 (as | 224 | | * a fixed, of course); this gives us a cheap conservative check for | 225 | | * overflow in the multiplication. | 226 | | */ | 227 | 23.2k | #define YMULT_QUO(ys, tl)\ | 228 | 23.2k | (ys < fixed_1 && tl.df < YMULT_LIMIT ? ys * tl.df / tl.h :\ | 229 | 23.2k | fixed_mult_quo(ys, tl.df, tl.h)) | 230 | | | 231 | | #if CONTIGUOUS_FILL | 232 | | /* | 233 | | * If left and right boundary round to same pixel index, | 234 | | * we would not paing the scan and would get a dropout. | 235 | | * Check for this case and choose one of two pixels | 236 | | * which is closer to the "axis". We need to exclude | 237 | | * 'peak' because it would paint an excessive pixel. | 238 | | */ | 239 | | #define SET_MINIMAL_WIDTH(ixl, ixr, l, r) \ | 240 | | if (ixl == ixr) \ | 241 | | if ((!peak0 || iy >= peak_y0) && (!peak1 || iy <= peak_y1)) {\ | 242 | | fixed x = int2fixed(ixl) + fixed_half;\ | 243 | | if (x - l.x < r.x - x)\ | 244 | | ++ixr;\ | 245 | | else\ | 246 | | --ixl;\ | 247 | | } | 248 | | | 249 | | #define CONNECT_RECTANGLES(ixl, ixr, rxl, rxr, iy, ry, adj1, adj2, fill)\ | 250 | | if (adj1 < adj2) {\ | 251 | | if (iy - ry > 1) {\ | 252 | | code = fill(rxl, ry, rxr - rxl, iy - ry - 1);\ | 253 | | if (code < 0)\ | 254 | | goto xit;\ | 255 | | ry = iy - 1;\ | 256 | | }\ | 257 | | adj1 = adj2 = (adj2 + adj2) / 2;\ | 258 | | } | 259 | | | 260 | | #else | 261 | 23.2k | #define SET_MINIMAL_WIDTH(ixl, ixr, l, r) DO_NOTHING | 262 | 23.2k | #define CONNECT_RECTANGLES(ixl, ixr, rxl, rxr, iy, ry, adj1, adj2, fill) DO_NOTHING | 263 | 23.2k | #endif | 264 | 23.2k | if (fixed_floor(l.x) == fixed_pixround(x1l)) { | 265 | | /* Left edge is vertical, we don't need to increment. */ | 266 | 1.42k | l.di = 0, l.df = 0; | 267 | 1.42k | fxl = 0; | 268 | 21.8k | } else { | 269 | 21.8k | compute_dx(&l, dxl, ysl); | 270 | 21.8k | fxl = YMULT_QUO(ysl, l); | 271 | 21.8k | l.x += fxl; | 272 | 21.8k | } | 273 | 23.2k | if (fixed_floor(r.x) == fixed_pixround(x1r)) { | 274 | | /* Right edge is vertical. If both are vertical, */ | 275 | | /* we have a rectangle. */ | 276 | 1.20k | # if !LINEAR_COLOR | 277 | 1.20k | if (l.di == 0 && l.df == 0) { | 278 | 1.14k | rxl = fixed2int_var(l.x); | 279 | 1.14k | rxr = fixed2int_var(r.x); | 280 | 1.14k | SET_MINIMAL_WIDTH(rxl, rxr, l, r); | 281 | 1.14k | code = FILL_TRAP_RECT(rxl, ry, rxr - rxl, iy1 - ry); | 282 | 1.14k | goto xit; | 283 | 1.14k | } | 284 | 64 | # endif | 285 | 64 | r.di = 0, r.df = 0; | 286 | 64 | } | 287 | | /* | 288 | | * The test for fxl != 0 is required because the right edge might | 289 | | * cross some pixel centers even if the left edge doesn't. | 290 | | */ | 291 | 22.0k | else if (dxr == dxl && fxl != 0) { | 292 | 4.05k | if (l.di == 0) | 293 | 2.93k | r.di = 0, r.df = l.df; | 294 | 1.11k | else | 295 | 1.11k | compute_dx(&r, dxr, ysr); | 296 | 4.05k | if (ysr == ysl && r.h == l.h) | 297 | 4.05k | r.x += fxl; | 298 | 0 | else | 299 | 0 | r.x += YMULT_QUO(ysr, r); | 300 | 17.9k | } else { | 301 | 17.9k | compute_dx(&r, dxr, ysr); | 302 | 17.9k | r.x += YMULT_QUO(ysr, r); | 303 | 17.9k | } | 304 | | /* Compute one line's worth of dx/dy. */ | 305 | 22.1k | compute_ldx(&l, ysl); | 306 | 22.1k | compute_ldx(&r, ysr); | 307 | | /* We subtracted fixed_epsilon from l.x, r.x to simplify rounding | 308 | | when the rational part is zero. Now add it back to get xl', xr' */ | 309 | 22.1k | l.x += fixed_epsilon; | 310 | 22.1k | r.x += fixed_epsilon; | 311 | | # if LINEAR_COLOR | 312 | | # ifdef DEBUG | 313 | | if (check_gradient_overflow(left, right)) { | 314 | | /* The caller must care of. | 315 | | Checking it here looses some performance with triangles. */ | 316 | | return_error(gs_error_unregistered); | 317 | | } | 318 | | # endif | 319 | | lg.c = lgc; | 320 | | lg.f = lgf; | 321 | | lg.num = lgnum; | 322 | | rg.c = rgc; | 323 | | rg.f = rgf; | 324 | | rg.num = rgnum; | 325 | | xg.c = xgc; | 326 | | xg.f = xgf; | 327 | | xg.num = xgnum; | 328 | | code = init_gradient(&lg, fa, left, right, &l, ymin, num_components); | 329 | | if (code < 0) | 330 | | return code; | 331 | | code = init_gradient(&rg, fa, right, left, &r, ymin, num_components); | 332 | | if (code < 0) | 333 | | return code; | 334 | | | 335 | | # endif | 336 | | | 337 | 22.1k | #define rational_floor(tl)\ | 338 | 22.1k | fixed2int_var(fixed_is_int(tl.x) && tl.xf == -tl.h ? tl.x - fixed_1 : tl.x) | 339 | 22.1k | #define STEP_LINE(ix, tl)\ | 340 | 22.1k | tl.x += tl.ldi;\ | 341 | 22.1k | if ( (tl.xf += tl.ldf) >= 0 ) tl.xf -= tl.h, tl.x++;\ | 342 | 22.1k | ix = rational_floor(tl) | 343 | | | 344 | 22.1k | rxl = rational_floor(l); | 345 | 22.1k | rxr = rational_floor(r); | 346 | 22.1k | SET_MINIMAL_WIDTH(rxl, rxr, l, r); | 347 | 2.15M | while (LINEAR_COLOR ? 1 : ++iy != iy1) { | 348 | | # if LINEAR_COLOR | 349 | | if (rxl != rxr) { | 350 | | code = set_x_gradient(&xg, &lg, &rg, &l, &r, rxl, rxr, num_components); | 351 | | if (code < 0) | 352 | | goto xit; | 353 | | code = FILL_TRAP_RECT(rxl, iy, rxr - rxl, 1); | 354 | | if (code < 0) | 355 | | goto xit; | 356 | | } | 357 | | if (++iy == iy1) | 358 | | break; | 359 | | STEP_LINE(rxl, l); | 360 | | STEP_LINE(rxr, r); | 361 | | step_gradient(&lg, num_components); | 362 | | step_gradient(&rg, num_components); | 363 | | # else | 364 | 2.13M | register int ixl, ixr; | 365 | | | 366 | 2.13M | STEP_LINE(ixl, l); | 367 | 2.13M | STEP_LINE(ixr, r); | 368 | 2.13M | SET_MINIMAL_WIDTH(ixl, ixr, l, r); | 369 | 2.13M | if (ixl != rxl || ixr != rxr) { | 370 | 719k | CONNECT_RECTANGLES(ixl, ixr, rxl, rxr, iy, ry, rxr, ixl, FILL_TRAP_RECT); | 371 | 719k | CONNECT_RECTANGLES(ixl, ixr, rxl, rxr, iy, ry, ixr, rxl, FILL_TRAP_RECT); | 372 | 719k | code = FILL_TRAP_RECT(rxl, ry, rxr - rxl, iy - ry); | 373 | 719k | if (code < 0) | 374 | 0 | goto xit; | 375 | 719k | rxl = ixl, rxr = ixr, ry = iy; | 376 | 719k | } | 377 | 2.13M | # endif | 378 | 2.13M | } | 379 | 22.1k | # if !LINEAR_COLOR | 380 | 22.1k | code = FILL_TRAP_RECT(rxl, ry, rxr - rxl, iy - ry); | 381 | | # else | 382 | | code = 0; | 383 | | # endif | 384 | 22.1k | #undef STEP_LINE | 385 | 22.1k | #undef SET_MINIMAL_WIDTH | 386 | 22.1k | #undef CONNECT_RECTANGLES | 387 | 22.1k | #undef FILL_TRAP_RECT | 388 | 22.1k | #undef FILL_TRAP_RECT_DIRECT | 389 | 22.1k | #undef FILL_TRAP_RECT_INRECT | 390 | 22.1k | #undef YMULT_QUO | 391 | 23.2k | xit: if (code < 0 && FILL_DIRECT) | 392 | 0 | return_error(code); | 393 | 23.2k | return_if_interrupt(dev->memory); | 394 | 23.2k | return code; | 395 | 23.2k | } | 396 | 23.2k | } |
gdevddrw.c:gx_fill_trapezoid_as_nd Line | Count | Source | 137 | 573k | { | 138 | 573k | const fixed ymin = fixed_pixround(ybot) + fixed_half; | 139 | 573k | const fixed ymax = fixed_pixround(ytop); | 140 | | | 141 | 573k | if (ymin >= ymax) | 142 | 5.97k | return 0; /* no scan lines to sample */ | 143 | 567k | { | 144 | 567k | int iy = fixed2int_var(ymin); | 145 | 567k | const int iy1 = fixed2int_var(ymax); | 146 | 567k | trap_line l, r; | 147 | 567k | register int rxl, rxr; | 148 | 567k | #if !LINEAR_COLOR | 149 | 567k | int ry; | 150 | 567k | #endif | 151 | 567k | const fixed | 152 | 567k | x0l = left->start.x, x1l = left->end.x, x0r = right->start.x, | 153 | 567k | x1r = right->end.x, dxl = x1l - x0l, dxr = x1r - x0r; | 154 | 567k | const fixed /* partial pixel offset to first line to sample */ | 155 | 567k | ysl = ymin - left->start.y, ysr = ymin - right->start.y; | 156 | 567k | fixed fxl; | 157 | 567k | int code; | 158 | | # if CONTIGUOUS_FILL | 159 | | const bool peak0 = ((flags & 1) != 0); | 160 | | const bool peak1 = ((flags & 2) != 0); | 161 | | int peak_y0 = ybot + fixed_half; | 162 | | int peak_y1 = ytop - fixed_half; | 163 | | # endif | 164 | | # if LINEAR_COLOR | 165 | | int num_components = dev->color_info.num_components; | 166 | | frac31 lgc[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 167 | | int32_t lgf[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 168 | | int32_t lgnum[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 169 | | frac31 rgc[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 170 | | int32_t rgf[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 171 | | int32_t rgnum[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 172 | | frac31 xgc[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 173 | | int32_t xgf[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 174 | | int32_t xgnum[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 175 | | trap_gradient lg, rg, xg; | 176 | | # else | 177 | 567k | gx_color_index cindex = pdevc->colors.pure; | 178 | 567k | dev_proc_fill_rectangle((*fill_rect)) = | 179 | 567k | dev_proc(dev, fill_rectangle); | 180 | 567k | # endif | 181 | | | 182 | 567k | if_debug2m('z', dev->memory, "[z]y=[%d,%d]\n", iy, iy1); | 183 | | | 184 | 567k | l.h = left->end.y - left->start.y; | 185 | 567k | if (l.h == 0) | 186 | 0 | return 0; | 187 | 567k | r.h = right->end.y - right->start.y; | 188 | 567k | if (r.h == 0) | 189 | 0 | return 0; | 190 | 567k | l.x = x0l + (fixed_half - fixed_epsilon); | 191 | 567k | r.x = x0r + (fixed_half - fixed_epsilon); | 192 | 567k | #if !LINEAR_COLOR | 193 | 567k | ry = iy; | 194 | 567k | #endif | 195 | | | 196 | | /* | 197 | | * Free variables of FILL_TRAP_RECT: | 198 | | * SWAP_AXES, pdevc, dev, fa | 199 | | * Free variables of FILL_TRAP_RECT_DIRECT: | 200 | | * SWAP_AXES, fill_rect, dev, cindex | 201 | | */ | 202 | 567k | #define FILL_TRAP_RECT_INDIRECT(x,y,w,h)\ | 203 | 567k | (SWAP_AXES ? gx_fill_rectangle_device_rop(y, x, h, w, pdevc, dev, fa) :\ | 204 | 567k | gx_fill_rectangle_device_rop(x, y, w, h, pdevc, dev, fa)) | 205 | 567k | #define FILL_TRAP_RECT_DIRECT(x,y,w,h)\ | 206 | 567k | (SWAP_AXES ? (*fill_rect)(dev, y, x, h, w, cindex) :\ | 207 | 567k | (*fill_rect)(dev, x, y, w, h, cindex)) | 208 | | | 209 | | #if LINEAR_COLOR | 210 | | # define FILL_TRAP_RECT(x,y,w,h)\ | 211 | | (!(w) ? 0 : dev_proc(dev, fill_linear_color_scanline)(dev, fa, x, y, w, xg.c, xg.f, xg.num, xg.den)) | 212 | | #else | 213 | 567k | # define FILL_TRAP_RECT(x,y,w,h)\ | 214 | 567k | (FILL_DIRECT ? FILL_TRAP_RECT_DIRECT(x,y,w,h) : FILL_TRAP_RECT_INDIRECT(x,y,w,h)) | 215 | 567k | #endif | 216 | | | 217 | | /* Compute the dx/dy ratios. */ | 218 | | | 219 | | /* | 220 | | * Compute the x offsets at the first scan line to sample. We need | 221 | | * to be careful in computing ys# * dx#f {/,%} h# because the | 222 | | * multiplication may overflow. We know that all the quantities | 223 | | * involved are non-negative, and that ys# is usually less than 1 (as | 224 | | * a fixed, of course); this gives us a cheap conservative check for | 225 | | * overflow in the multiplication. | 226 | | */ | 227 | 567k | #define YMULT_QUO(ys, tl)\ | 228 | 567k | (ys < fixed_1 && tl.df < YMULT_LIMIT ? ys * tl.df / tl.h :\ | 229 | 567k | fixed_mult_quo(ys, tl.df, tl.h)) | 230 | | | 231 | | #if CONTIGUOUS_FILL | 232 | | /* | 233 | | * If left and right boundary round to same pixel index, | 234 | | * we would not paing the scan and would get a dropout. | 235 | | * Check for this case and choose one of two pixels | 236 | | * which is closer to the "axis". We need to exclude | 237 | | * 'peak' because it would paint an excessive pixel. | 238 | | */ | 239 | | #define SET_MINIMAL_WIDTH(ixl, ixr, l, r) \ | 240 | | if (ixl == ixr) \ | 241 | | if ((!peak0 || iy >= peak_y0) && (!peak1 || iy <= peak_y1)) {\ | 242 | | fixed x = int2fixed(ixl) + fixed_half;\ | 243 | | if (x - l.x < r.x - x)\ | 244 | | ++ixr;\ | 245 | | else\ | 246 | | --ixl;\ | 247 | | } | 248 | | | 249 | | #define CONNECT_RECTANGLES(ixl, ixr, rxl, rxr, iy, ry, adj1, adj2, fill)\ | 250 | | if (adj1 < adj2) {\ | 251 | | if (iy - ry > 1) {\ | 252 | | code = fill(rxl, ry, rxr - rxl, iy - ry - 1);\ | 253 | | if (code < 0)\ | 254 | | goto xit;\ | 255 | | ry = iy - 1;\ | 256 | | }\ | 257 | | adj1 = adj2 = (adj2 + adj2) / 2;\ | 258 | | } | 259 | | | 260 | | #else | 261 | 567k | #define SET_MINIMAL_WIDTH(ixl, ixr, l, r) DO_NOTHING | 262 | 567k | #define CONNECT_RECTANGLES(ixl, ixr, rxl, rxr, iy, ry, adj1, adj2, fill) DO_NOTHING | 263 | 567k | #endif | 264 | 567k | if (fixed_floor(l.x) == fixed_pixround(x1l)) { | 265 | | /* Left edge is vertical, we don't need to increment. */ | 266 | 66.7k | l.di = 0, l.df = 0; | 267 | 66.7k | fxl = 0; | 268 | 501k | } else { | 269 | 501k | compute_dx(&l, dxl, ysl); | 270 | 501k | fxl = YMULT_QUO(ysl, l); | 271 | 501k | l.x += fxl; | 272 | 501k | } | 273 | 567k | if (fixed_floor(r.x) == fixed_pixround(x1r)) { | 274 | | /* Right edge is vertical. If both are vertical, */ | 275 | | /* we have a rectangle. */ | 276 | 59.6k | # if !LINEAR_COLOR | 277 | 59.6k | if (l.di == 0 && l.df == 0) { | 278 | 55.6k | rxl = fixed2int_var(l.x); | 279 | 55.6k | rxr = fixed2int_var(r.x); | 280 | 55.6k | SET_MINIMAL_WIDTH(rxl, rxr, l, r); | 281 | 55.6k | code = FILL_TRAP_RECT(rxl, ry, rxr - rxl, iy1 - ry); | 282 | 55.6k | goto xit; | 283 | 55.6k | } | 284 | 3.97k | # endif | 285 | 3.97k | r.di = 0, r.df = 0; | 286 | 3.97k | } | 287 | | /* | 288 | | * The test for fxl != 0 is required because the right edge might | 289 | | * cross some pixel centers even if the left edge doesn't. | 290 | | */ | 291 | 508k | else if (dxr == dxl && fxl != 0) { | 292 | 86.2k | if (l.di == 0) | 293 | 63.4k | r.di = 0, r.df = l.df; | 294 | 22.8k | else | 295 | 22.8k | compute_dx(&r, dxr, ysr); | 296 | 86.2k | if (ysr == ysl && r.h == l.h) | 297 | 86.2k | r.x += fxl; | 298 | 11 | else | 299 | 11 | r.x += YMULT_QUO(ysr, r); | 300 | 422k | } else { | 301 | 422k | compute_dx(&r, dxr, ysr); | 302 | 422k | r.x += YMULT_QUO(ysr, r); | 303 | 422k | } | 304 | | /* Compute one line's worth of dx/dy. */ | 305 | 512k | compute_ldx(&l, ysl); | 306 | 512k | compute_ldx(&r, ysr); | 307 | | /* We subtracted fixed_epsilon from l.x, r.x to simplify rounding | 308 | | when the rational part is zero. Now add it back to get xl', xr' */ | 309 | 512k | l.x += fixed_epsilon; | 310 | 512k | r.x += fixed_epsilon; | 311 | | # if LINEAR_COLOR | 312 | | # ifdef DEBUG | 313 | | if (check_gradient_overflow(left, right)) { | 314 | | /* The caller must care of. | 315 | | Checking it here looses some performance with triangles. */ | 316 | | return_error(gs_error_unregistered); | 317 | | } | 318 | | # endif | 319 | | lg.c = lgc; | 320 | | lg.f = lgf; | 321 | | lg.num = lgnum; | 322 | | rg.c = rgc; | 323 | | rg.f = rgf; | 324 | | rg.num = rgnum; | 325 | | xg.c = xgc; | 326 | | xg.f = xgf; | 327 | | xg.num = xgnum; | 328 | | code = init_gradient(&lg, fa, left, right, &l, ymin, num_components); | 329 | | if (code < 0) | 330 | | return code; | 331 | | code = init_gradient(&rg, fa, right, left, &r, ymin, num_components); | 332 | | if (code < 0) | 333 | | return code; | 334 | | | 335 | | # endif | 336 | | | 337 | 512k | #define rational_floor(tl)\ | 338 | 512k | fixed2int_var(fixed_is_int(tl.x) && tl.xf == -tl.h ? tl.x - fixed_1 : tl.x) | 339 | 512k | #define STEP_LINE(ix, tl)\ | 340 | 512k | tl.x += tl.ldi;\ | 341 | 512k | if ( (tl.xf += tl.ldf) >= 0 ) tl.xf -= tl.h, tl.x++;\ | 342 | 512k | ix = rational_floor(tl) | 343 | | | 344 | 512k | rxl = rational_floor(l); | 345 | 512k | rxr = rational_floor(r); | 346 | 512k | SET_MINIMAL_WIDTH(rxl, rxr, l, r); | 347 | 35.0M | while (LINEAR_COLOR ? 1 : ++iy != iy1) { | 348 | | # if LINEAR_COLOR | 349 | | if (rxl != rxr) { | 350 | | code = set_x_gradient(&xg, &lg, &rg, &l, &r, rxl, rxr, num_components); | 351 | | if (code < 0) | 352 | | goto xit; | 353 | | code = FILL_TRAP_RECT(rxl, iy, rxr - rxl, 1); | 354 | | if (code < 0) | 355 | | goto xit; | 356 | | } | 357 | | if (++iy == iy1) | 358 | | break; | 359 | | STEP_LINE(rxl, l); | 360 | | STEP_LINE(rxr, r); | 361 | | step_gradient(&lg, num_components); | 362 | | step_gradient(&rg, num_components); | 363 | | # else | 364 | 34.5M | register int ixl, ixr; | 365 | | | 366 | 34.5M | STEP_LINE(ixl, l); | 367 | 34.5M | STEP_LINE(ixr, r); | 368 | 34.5M | SET_MINIMAL_WIDTH(ixl, ixr, l, r); | 369 | 34.5M | if (ixl != rxl || ixr != rxr) { | 370 | 23.9M | CONNECT_RECTANGLES(ixl, ixr, rxl, rxr, iy, ry, rxr, ixl, FILL_TRAP_RECT); | 371 | 23.9M | CONNECT_RECTANGLES(ixl, ixr, rxl, rxr, iy, ry, ixr, rxl, FILL_TRAP_RECT); | 372 | 23.9M | code = FILL_TRAP_RECT(rxl, ry, rxr - rxl, iy - ry); | 373 | 23.9M | if (code < 0) | 374 | 0 | goto xit; | 375 | 23.9M | rxl = ixl, rxr = ixr, ry = iy; | 376 | 23.9M | } | 377 | 34.5M | # endif | 378 | 34.5M | } | 379 | 512k | # if !LINEAR_COLOR | 380 | 512k | code = FILL_TRAP_RECT(rxl, ry, rxr - rxl, iy - ry); | 381 | | # else | 382 | | code = 0; | 383 | | # endif | 384 | 512k | #undef STEP_LINE | 385 | 512k | #undef SET_MINIMAL_WIDTH | 386 | 512k | #undef CONNECT_RECTANGLES | 387 | 512k | #undef FILL_TRAP_RECT | 388 | 512k | #undef FILL_TRAP_RECT_DIRECT | 389 | 512k | #undef FILL_TRAP_RECT_INRECT | 390 | 512k | #undef YMULT_QUO | 391 | 567k | xit: if (code < 0 && FILL_DIRECT) | 392 | 0 | return_error(code); | 393 | 567k | return_if_interrupt(dev->memory); | 394 | 567k | return code; | 395 | 567k | } | 396 | 567k | } |
gdevddrw.c:gx_fill_trapezoid_ns_fd Line | Count | Source | 137 | 1.17M | { | 138 | 1.17M | const fixed ymin = fixed_pixround(ybot) + fixed_half; | 139 | 1.17M | const fixed ymax = fixed_pixround(ytop); | 140 | | | 141 | 1.17M | if (ymin >= ymax) | 142 | 114k | return 0; /* no scan lines to sample */ | 143 | 1.06M | { | 144 | 1.06M | int iy = fixed2int_var(ymin); | 145 | 1.06M | const int iy1 = fixed2int_var(ymax); | 146 | 1.06M | trap_line l, r; | 147 | 1.06M | register int rxl, rxr; | 148 | 1.06M | #if !LINEAR_COLOR | 149 | 1.06M | int ry; | 150 | 1.06M | #endif | 151 | 1.06M | const fixed | 152 | 1.06M | x0l = left->start.x, x1l = left->end.x, x0r = right->start.x, | 153 | 1.06M | x1r = right->end.x, dxl = x1l - x0l, dxr = x1r - x0r; | 154 | 1.06M | const fixed /* partial pixel offset to first line to sample */ | 155 | 1.06M | ysl = ymin - left->start.y, ysr = ymin - right->start.y; | 156 | 1.06M | fixed fxl; | 157 | 1.06M | int code; | 158 | | # if CONTIGUOUS_FILL | 159 | | const bool peak0 = ((flags & 1) != 0); | 160 | | const bool peak1 = ((flags & 2) != 0); | 161 | | int peak_y0 = ybot + fixed_half; | 162 | | int peak_y1 = ytop - fixed_half; | 163 | | # endif | 164 | | # if LINEAR_COLOR | 165 | | int num_components = dev->color_info.num_components; | 166 | | frac31 lgc[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 167 | | int32_t lgf[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 168 | | int32_t lgnum[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 169 | | frac31 rgc[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 170 | | int32_t rgf[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 171 | | int32_t rgnum[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 172 | | frac31 xgc[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 173 | | int32_t xgf[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 174 | | int32_t xgnum[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 175 | | trap_gradient lg, rg, xg; | 176 | | # else | 177 | 1.06M | gx_color_index cindex = pdevc->colors.pure; | 178 | 1.06M | dev_proc_fill_rectangle((*fill_rect)) = | 179 | 1.06M | dev_proc(dev, fill_rectangle); | 180 | 1.06M | # endif | 181 | | | 182 | 1.06M | if_debug2m('z', dev->memory, "[z]y=[%d,%d]\n", iy, iy1); | 183 | | | 184 | 1.06M | l.h = left->end.y - left->start.y; | 185 | 1.06M | if (l.h == 0) | 186 | 0 | return 0; | 187 | 1.06M | r.h = right->end.y - right->start.y; | 188 | 1.06M | if (r.h == 0) | 189 | 0 | return 0; | 190 | 1.06M | l.x = x0l + (fixed_half - fixed_epsilon); | 191 | 1.06M | r.x = x0r + (fixed_half - fixed_epsilon); | 192 | 1.06M | #if !LINEAR_COLOR | 193 | 1.06M | ry = iy; | 194 | 1.06M | #endif | 195 | | | 196 | | /* | 197 | | * Free variables of FILL_TRAP_RECT: | 198 | | * SWAP_AXES, pdevc, dev, fa | 199 | | * Free variables of FILL_TRAP_RECT_DIRECT: | 200 | | * SWAP_AXES, fill_rect, dev, cindex | 201 | | */ | 202 | 1.06M | #define FILL_TRAP_RECT_INDIRECT(x,y,w,h)\ | 203 | 1.06M | (SWAP_AXES ? gx_fill_rectangle_device_rop(y, x, h, w, pdevc, dev, fa) :\ | 204 | 1.06M | gx_fill_rectangle_device_rop(x, y, w, h, pdevc, dev, fa)) | 205 | 1.06M | #define FILL_TRAP_RECT_DIRECT(x,y,w,h)\ | 206 | 1.06M | (SWAP_AXES ? (*fill_rect)(dev, y, x, h, w, cindex) :\ | 207 | 1.06M | (*fill_rect)(dev, x, y, w, h, cindex)) | 208 | | | 209 | | #if LINEAR_COLOR | 210 | | # define FILL_TRAP_RECT(x,y,w,h)\ | 211 | | (!(w) ? 0 : dev_proc(dev, fill_linear_color_scanline)(dev, fa, x, y, w, xg.c, xg.f, xg.num, xg.den)) | 212 | | #else | 213 | 1.06M | # define FILL_TRAP_RECT(x,y,w,h)\ | 214 | 1.06M | (FILL_DIRECT ? FILL_TRAP_RECT_DIRECT(x,y,w,h) : FILL_TRAP_RECT_INDIRECT(x,y,w,h)) | 215 | 1.06M | #endif | 216 | | | 217 | | /* Compute the dx/dy ratios. */ | 218 | | | 219 | | /* | 220 | | * Compute the x offsets at the first scan line to sample. We need | 221 | | * to be careful in computing ys# * dx#f {/,%} h# because the | 222 | | * multiplication may overflow. We know that all the quantities | 223 | | * involved are non-negative, and that ys# is usually less than 1 (as | 224 | | * a fixed, of course); this gives us a cheap conservative check for | 225 | | * overflow in the multiplication. | 226 | | */ | 227 | 1.06M | #define YMULT_QUO(ys, tl)\ | 228 | 1.06M | (ys < fixed_1 && tl.df < YMULT_LIMIT ? ys * tl.df / tl.h :\ | 229 | 1.06M | fixed_mult_quo(ys, tl.df, tl.h)) | 230 | | | 231 | | #if CONTIGUOUS_FILL | 232 | | /* | 233 | | * If left and right boundary round to same pixel index, | 234 | | * we would not paing the scan and would get a dropout. | 235 | | * Check for this case and choose one of two pixels | 236 | | * which is closer to the "axis". We need to exclude | 237 | | * 'peak' because it would paint an excessive pixel. | 238 | | */ | 239 | | #define SET_MINIMAL_WIDTH(ixl, ixr, l, r) \ | 240 | | if (ixl == ixr) \ | 241 | | if ((!peak0 || iy >= peak_y0) && (!peak1 || iy <= peak_y1)) {\ | 242 | | fixed x = int2fixed(ixl) + fixed_half;\ | 243 | | if (x - l.x < r.x - x)\ | 244 | | ++ixr;\ | 245 | | else\ | 246 | | --ixl;\ | 247 | | } | 248 | | | 249 | | #define CONNECT_RECTANGLES(ixl, ixr, rxl, rxr, iy, ry, adj1, adj2, fill)\ | 250 | | if (adj1 < adj2) {\ | 251 | | if (iy - ry > 1) {\ | 252 | | code = fill(rxl, ry, rxr - rxl, iy - ry - 1);\ | 253 | | if (code < 0)\ | 254 | | goto xit;\ | 255 | | ry = iy - 1;\ | 256 | | }\ | 257 | | adj1 = adj2 = (adj2 + adj2) / 2;\ | 258 | | } | 259 | | | 260 | | #else | 261 | 1.06M | #define SET_MINIMAL_WIDTH(ixl, ixr, l, r) DO_NOTHING | 262 | 1.06M | #define CONNECT_RECTANGLES(ixl, ixr, rxl, rxr, iy, ry, adj1, adj2, fill) DO_NOTHING | 263 | 1.06M | #endif | 264 | 1.06M | if (fixed_floor(l.x) == fixed_pixround(x1l)) { | 265 | | /* Left edge is vertical, we don't need to increment. */ | 266 | 374k | l.di = 0, l.df = 0; | 267 | 374k | fxl = 0; | 268 | 691k | } else { | 269 | 691k | compute_dx(&l, dxl, ysl); | 270 | 691k | fxl = YMULT_QUO(ysl, l); | 271 | 691k | l.x += fxl; | 272 | 691k | } | 273 | 1.06M | if (fixed_floor(r.x) == fixed_pixround(x1r)) { | 274 | | /* Right edge is vertical. If both are vertical, */ | 275 | | /* we have a rectangle. */ | 276 | 426k | # if !LINEAR_COLOR | 277 | 426k | if (l.di == 0 && l.df == 0) { | 278 | 103k | rxl = fixed2int_var(l.x); | 279 | 103k | rxr = fixed2int_var(r.x); | 280 | 103k | SET_MINIMAL_WIDTH(rxl, rxr, l, r); | 281 | 103k | code = FILL_TRAP_RECT(rxl, ry, rxr - rxl, iy1 - ry); | 282 | 103k | goto xit; | 283 | 103k | } | 284 | 323k | # endif | 285 | 323k | r.di = 0, r.df = 0; | 286 | 323k | } | 287 | | /* | 288 | | * The test for fxl != 0 is required because the right edge might | 289 | | * cross some pixel centers even if the left edge doesn't. | 290 | | */ | 291 | 638k | else if (dxr == dxl && fxl != 0) { | 292 | 9.18k | if (l.di == 0) | 293 | 1.25k | r.di = 0, r.df = l.df; | 294 | 7.92k | else | 295 | 7.92k | compute_dx(&r, dxr, ysr); | 296 | 9.18k | if (ysr == ysl && r.h == l.h) | 297 | 3.20k | r.x += fxl; | 298 | 5.98k | else | 299 | 5.98k | r.x += YMULT_QUO(ysr, r); | 300 | 629k | } else { | 301 | 629k | compute_dx(&r, dxr, ysr); | 302 | 629k | r.x += YMULT_QUO(ysr, r); | 303 | 629k | } | 304 | | /* Compute one line's worth of dx/dy. */ | 305 | 961k | compute_ldx(&l, ysl); | 306 | 961k | compute_ldx(&r, ysr); | 307 | | /* We subtracted fixed_epsilon from l.x, r.x to simplify rounding | 308 | | when the rational part is zero. Now add it back to get xl', xr' */ | 309 | 961k | l.x += fixed_epsilon; | 310 | 961k | r.x += fixed_epsilon; | 311 | | # if LINEAR_COLOR | 312 | | # ifdef DEBUG | 313 | | if (check_gradient_overflow(left, right)) { | 314 | | /* The caller must care of. | 315 | | Checking it here looses some performance with triangles. */ | 316 | | return_error(gs_error_unregistered); | 317 | | } | 318 | | # endif | 319 | | lg.c = lgc; | 320 | | lg.f = lgf; | 321 | | lg.num = lgnum; | 322 | | rg.c = rgc; | 323 | | rg.f = rgf; | 324 | | rg.num = rgnum; | 325 | | xg.c = xgc; | 326 | | xg.f = xgf; | 327 | | xg.num = xgnum; | 328 | | code = init_gradient(&lg, fa, left, right, &l, ymin, num_components); | 329 | | if (code < 0) | 330 | | return code; | 331 | | code = init_gradient(&rg, fa, right, left, &r, ymin, num_components); | 332 | | if (code < 0) | 333 | | return code; | 334 | | | 335 | | # endif | 336 | | | 337 | 961k | #define rational_floor(tl)\ | 338 | 961k | fixed2int_var(fixed_is_int(tl.x) && tl.xf == -tl.h ? tl.x - fixed_1 : tl.x) | 339 | 961k | #define STEP_LINE(ix, tl)\ | 340 | 961k | tl.x += tl.ldi;\ | 341 | 961k | if ( (tl.xf += tl.ldf) >= 0 ) tl.xf -= tl.h, tl.x++;\ | 342 | 961k | ix = rational_floor(tl) | 343 | | | 344 | 961k | rxl = rational_floor(l); | 345 | 961k | rxr = rational_floor(r); | 346 | 961k | SET_MINIMAL_WIDTH(rxl, rxr, l, r); | 347 | 3.28M | while (LINEAR_COLOR ? 1 : ++iy != iy1) { | 348 | | # if LINEAR_COLOR | 349 | | if (rxl != rxr) { | 350 | | code = set_x_gradient(&xg, &lg, &rg, &l, &r, rxl, rxr, num_components); | 351 | | if (code < 0) | 352 | | goto xit; | 353 | | code = FILL_TRAP_RECT(rxl, iy, rxr - rxl, 1); | 354 | | if (code < 0) | 355 | | goto xit; | 356 | | } | 357 | | if (++iy == iy1) | 358 | | break; | 359 | | STEP_LINE(rxl, l); | 360 | | STEP_LINE(rxr, r); | 361 | | step_gradient(&lg, num_components); | 362 | | step_gradient(&rg, num_components); | 363 | | # else | 364 | 2.32M | register int ixl, ixr; | 365 | | | 366 | 2.32M | STEP_LINE(ixl, l); | 367 | 2.32M | STEP_LINE(ixr, r); | 368 | 2.32M | SET_MINIMAL_WIDTH(ixl, ixr, l, r); | 369 | 2.32M | if (ixl != rxl || ixr != rxr) { | 370 | 1.41M | CONNECT_RECTANGLES(ixl, ixr, rxl, rxr, iy, ry, rxr, ixl, FILL_TRAP_RECT); | 371 | 1.41M | CONNECT_RECTANGLES(ixl, ixr, rxl, rxr, iy, ry, ixr, rxl, FILL_TRAP_RECT); | 372 | 1.41M | code = FILL_TRAP_RECT(rxl, ry, rxr - rxl, iy - ry); | 373 | 1.41M | if (code < 0) | 374 | 0 | goto xit; | 375 | 1.41M | rxl = ixl, rxr = ixr, ry = iy; | 376 | 1.41M | } | 377 | 2.32M | # endif | 378 | 2.32M | } | 379 | 961k | # if !LINEAR_COLOR | 380 | 961k | code = FILL_TRAP_RECT(rxl, ry, rxr - rxl, iy - ry); | 381 | | # else | 382 | | code = 0; | 383 | | # endif | 384 | 961k | #undef STEP_LINE | 385 | 961k | #undef SET_MINIMAL_WIDTH | 386 | 961k | #undef CONNECT_RECTANGLES | 387 | 961k | #undef FILL_TRAP_RECT | 388 | 961k | #undef FILL_TRAP_RECT_DIRECT | 389 | 961k | #undef FILL_TRAP_RECT_INRECT | 390 | 961k | #undef YMULT_QUO | 391 | 1.06M | xit: if (code < 0 && FILL_DIRECT) | 392 | 0 | return_error(code); | 393 | 1.06M | return_if_interrupt(dev->memory); | 394 | 1.06M | return code; | 395 | 1.06M | } | 396 | 1.06M | } |
gdevddrw.c:gx_fill_trapezoid_ns_nd Line | Count | Source | 137 | 11.3M | { | 138 | 11.3M | const fixed ymin = fixed_pixround(ybot) + fixed_half; | 139 | 11.3M | const fixed ymax = fixed_pixround(ytop); | 140 | | | 141 | 11.3M | if (ymin >= ymax) | 142 | 3.63M | return 0; /* no scan lines to sample */ | 143 | 7.69M | { | 144 | 7.69M | int iy = fixed2int_var(ymin); | 145 | 7.69M | const int iy1 = fixed2int_var(ymax); | 146 | 7.69M | trap_line l, r; | 147 | 7.69M | register int rxl, rxr; | 148 | 7.69M | #if !LINEAR_COLOR | 149 | 7.69M | int ry; | 150 | 7.69M | #endif | 151 | 7.69M | const fixed | 152 | 7.69M | x0l = left->start.x, x1l = left->end.x, x0r = right->start.x, | 153 | 7.69M | x1r = right->end.x, dxl = x1l - x0l, dxr = x1r - x0r; | 154 | 7.69M | const fixed /* partial pixel offset to first line to sample */ | 155 | 7.69M | ysl = ymin - left->start.y, ysr = ymin - right->start.y; | 156 | 7.69M | fixed fxl; | 157 | 7.69M | int code; | 158 | | # if CONTIGUOUS_FILL | 159 | | const bool peak0 = ((flags & 1) != 0); | 160 | | const bool peak1 = ((flags & 2) != 0); | 161 | | int peak_y0 = ybot + fixed_half; | 162 | | int peak_y1 = ytop - fixed_half; | 163 | | # endif | 164 | | # if LINEAR_COLOR | 165 | | int num_components = dev->color_info.num_components; | 166 | | frac31 lgc[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 167 | | int32_t lgf[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 168 | | int32_t lgnum[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 169 | | frac31 rgc[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 170 | | int32_t rgf[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 171 | | int32_t rgnum[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 172 | | frac31 xgc[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 173 | | int32_t xgf[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 174 | | int32_t xgnum[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 175 | | trap_gradient lg, rg, xg; | 176 | | # else | 177 | 7.69M | gx_color_index cindex = pdevc->colors.pure; | 178 | 7.69M | dev_proc_fill_rectangle((*fill_rect)) = | 179 | 7.69M | dev_proc(dev, fill_rectangle); | 180 | 7.69M | # endif | 181 | | | 182 | 7.69M | if_debug2m('z', dev->memory, "[z]y=[%d,%d]\n", iy, iy1); | 183 | | | 184 | 7.69M | l.h = left->end.y - left->start.y; | 185 | 7.69M | if (l.h == 0) | 186 | 0 | return 0; | 187 | 7.69M | r.h = right->end.y - right->start.y; | 188 | 7.69M | if (r.h == 0) | 189 | 0 | return 0; | 190 | 7.69M | l.x = x0l + (fixed_half - fixed_epsilon); | 191 | 7.69M | r.x = x0r + (fixed_half - fixed_epsilon); | 192 | 7.69M | #if !LINEAR_COLOR | 193 | 7.69M | ry = iy; | 194 | 7.69M | #endif | 195 | | | 196 | | /* | 197 | | * Free variables of FILL_TRAP_RECT: | 198 | | * SWAP_AXES, pdevc, dev, fa | 199 | | * Free variables of FILL_TRAP_RECT_DIRECT: | 200 | | * SWAP_AXES, fill_rect, dev, cindex | 201 | | */ | 202 | 7.69M | #define FILL_TRAP_RECT_INDIRECT(x,y,w,h)\ | 203 | 7.69M | (SWAP_AXES ? gx_fill_rectangle_device_rop(y, x, h, w, pdevc, dev, fa) :\ | 204 | 7.69M | gx_fill_rectangle_device_rop(x, y, w, h, pdevc, dev, fa)) | 205 | 7.69M | #define FILL_TRAP_RECT_DIRECT(x,y,w,h)\ | 206 | 7.69M | (SWAP_AXES ? (*fill_rect)(dev, y, x, h, w, cindex) :\ | 207 | 7.69M | (*fill_rect)(dev, x, y, w, h, cindex)) | 208 | | | 209 | | #if LINEAR_COLOR | 210 | | # define FILL_TRAP_RECT(x,y,w,h)\ | 211 | | (!(w) ? 0 : dev_proc(dev, fill_linear_color_scanline)(dev, fa, x, y, w, xg.c, xg.f, xg.num, xg.den)) | 212 | | #else | 213 | 7.69M | # define FILL_TRAP_RECT(x,y,w,h)\ | 214 | 7.69M | (FILL_DIRECT ? FILL_TRAP_RECT_DIRECT(x,y,w,h) : FILL_TRAP_RECT_INDIRECT(x,y,w,h)) | 215 | 7.69M | #endif | 216 | | | 217 | | /* Compute the dx/dy ratios. */ | 218 | | | 219 | | /* | 220 | | * Compute the x offsets at the first scan line to sample. We need | 221 | | * to be careful in computing ys# * dx#f {/,%} h# because the | 222 | | * multiplication may overflow. We know that all the quantities | 223 | | * involved are non-negative, and that ys# is usually less than 1 (as | 224 | | * a fixed, of course); this gives us a cheap conservative check for | 225 | | * overflow in the multiplication. | 226 | | */ | 227 | 7.69M | #define YMULT_QUO(ys, tl)\ | 228 | 7.69M | (ys < fixed_1 && tl.df < YMULT_LIMIT ? ys * tl.df / tl.h :\ | 229 | 7.69M | fixed_mult_quo(ys, tl.df, tl.h)) | 230 | | | 231 | | #if CONTIGUOUS_FILL | 232 | | /* | 233 | | * If left and right boundary round to same pixel index, | 234 | | * we would not paing the scan and would get a dropout. | 235 | | * Check for this case and choose one of two pixels | 236 | | * which is closer to the "axis". We need to exclude | 237 | | * 'peak' because it would paint an excessive pixel. | 238 | | */ | 239 | | #define SET_MINIMAL_WIDTH(ixl, ixr, l, r) \ | 240 | | if (ixl == ixr) \ | 241 | | if ((!peak0 || iy >= peak_y0) && (!peak1 || iy <= peak_y1)) {\ | 242 | | fixed x = int2fixed(ixl) + fixed_half;\ | 243 | | if (x - l.x < r.x - x)\ | 244 | | ++ixr;\ | 245 | | else\ | 246 | | --ixl;\ | 247 | | } | 248 | | | 249 | | #define CONNECT_RECTANGLES(ixl, ixr, rxl, rxr, iy, ry, adj1, adj2, fill)\ | 250 | | if (adj1 < adj2) {\ | 251 | | if (iy - ry > 1) {\ | 252 | | code = fill(rxl, ry, rxr - rxl, iy - ry - 1);\ | 253 | | if (code < 0)\ | 254 | | goto xit;\ | 255 | | ry = iy - 1;\ | 256 | | }\ | 257 | | adj1 = adj2 = (adj2 + adj2) / 2;\ | 258 | | } | 259 | | | 260 | | #else | 261 | 7.69M | #define SET_MINIMAL_WIDTH(ixl, ixr, l, r) DO_NOTHING | 262 | 7.69M | #define CONNECT_RECTANGLES(ixl, ixr, rxl, rxr, iy, ry, adj1, adj2, fill) DO_NOTHING | 263 | 7.69M | #endif | 264 | 7.69M | if (fixed_floor(l.x) == fixed_pixround(x1l)) { | 265 | | /* Left edge is vertical, we don't need to increment. */ | 266 | 2.19M | l.di = 0, l.df = 0; | 267 | 2.19M | fxl = 0; | 268 | 5.49M | } else { | 269 | 5.49M | compute_dx(&l, dxl, ysl); | 270 | 5.49M | fxl = YMULT_QUO(ysl, l); | 271 | 5.49M | l.x += fxl; | 272 | 5.49M | } | 273 | 7.69M | if (fixed_floor(r.x) == fixed_pixround(x1r)) { | 274 | | /* Right edge is vertical. If both are vertical, */ | 275 | | /* we have a rectangle. */ | 276 | 3.55M | # if !LINEAR_COLOR | 277 | 3.55M | if (l.di == 0 && l.df == 0) { | 278 | 721k | rxl = fixed2int_var(l.x); | 279 | 721k | rxr = fixed2int_var(r.x); | 280 | 721k | SET_MINIMAL_WIDTH(rxl, rxr, l, r); | 281 | 721k | code = FILL_TRAP_RECT(rxl, ry, rxr - rxl, iy1 - ry); | 282 | 721k | goto xit; | 283 | 721k | } | 284 | 2.83M | # endif | 285 | 2.83M | r.di = 0, r.df = 0; | 286 | 2.83M | } | 287 | | /* | 288 | | * The test for fxl != 0 is required because the right edge might | 289 | | * cross some pixel centers even if the left edge doesn't. | 290 | | */ | 291 | 4.14M | else if (dxr == dxl && fxl != 0) { | 292 | 203k | if (l.di == 0) | 293 | 12.4k | r.di = 0, r.df = l.df; | 294 | 190k | else | 295 | 190k | compute_dx(&r, dxr, ysr); | 296 | 203k | if (ysr == ysl && r.h == l.h) | 297 | 102k | r.x += fxl; | 298 | 100k | else | 299 | 100k | r.x += YMULT_QUO(ysr, r); | 300 | 3.94M | } else { | 301 | 3.94M | compute_dx(&r, dxr, ysr); | 302 | 3.94M | r.x += YMULT_QUO(ysr, r); | 303 | 3.94M | } | 304 | | /* Compute one line's worth of dx/dy. */ | 305 | 6.97M | compute_ldx(&l, ysl); | 306 | 6.97M | compute_ldx(&r, ysr); | 307 | | /* We subtracted fixed_epsilon from l.x, r.x to simplify rounding | 308 | | when the rational part is zero. Now add it back to get xl', xr' */ | 309 | 6.97M | l.x += fixed_epsilon; | 310 | 6.97M | r.x += fixed_epsilon; | 311 | | # if LINEAR_COLOR | 312 | | # ifdef DEBUG | 313 | | if (check_gradient_overflow(left, right)) { | 314 | | /* The caller must care of. | 315 | | Checking it here looses some performance with triangles. */ | 316 | | return_error(gs_error_unregistered); | 317 | | } | 318 | | # endif | 319 | | lg.c = lgc; | 320 | | lg.f = lgf; | 321 | | lg.num = lgnum; | 322 | | rg.c = rgc; | 323 | | rg.f = rgf; | 324 | | rg.num = rgnum; | 325 | | xg.c = xgc; | 326 | | xg.f = xgf; | 327 | | xg.num = xgnum; | 328 | | code = init_gradient(&lg, fa, left, right, &l, ymin, num_components); | 329 | | if (code < 0) | 330 | | return code; | 331 | | code = init_gradient(&rg, fa, right, left, &r, ymin, num_components); | 332 | | if (code < 0) | 333 | | return code; | 334 | | | 335 | | # endif | 336 | | | 337 | 6.97M | #define rational_floor(tl)\ | 338 | 6.97M | fixed2int_var(fixed_is_int(tl.x) && tl.xf == -tl.h ? tl.x - fixed_1 : tl.x) | 339 | 6.97M | #define STEP_LINE(ix, tl)\ | 340 | 6.97M | tl.x += tl.ldi;\ | 341 | 6.97M | if ( (tl.xf += tl.ldf) >= 0 ) tl.xf -= tl.h, tl.x++;\ | 342 | 6.97M | ix = rational_floor(tl) | 343 | | | 344 | 6.97M | rxl = rational_floor(l); | 345 | 6.97M | rxr = rational_floor(r); | 346 | 6.97M | SET_MINIMAL_WIDTH(rxl, rxr, l, r); | 347 | 100M | while (LINEAR_COLOR ? 1 : ++iy != iy1) { | 348 | | # if LINEAR_COLOR | 349 | | if (rxl != rxr) { | 350 | | code = set_x_gradient(&xg, &lg, &rg, &l, &r, rxl, rxr, num_components); | 351 | | if (code < 0) | 352 | | goto xit; | 353 | | code = FILL_TRAP_RECT(rxl, iy, rxr - rxl, 1); | 354 | | if (code < 0) | 355 | | goto xit; | 356 | | } | 357 | | if (++iy == iy1) | 358 | | break; | 359 | | STEP_LINE(rxl, l); | 360 | | STEP_LINE(rxr, r); | 361 | | step_gradient(&lg, num_components); | 362 | | step_gradient(&rg, num_components); | 363 | | # else | 364 | 93.2M | register int ixl, ixr; | 365 | | | 366 | 93.2M | STEP_LINE(ixl, l); | 367 | 93.2M | STEP_LINE(ixr, r); | 368 | 93.2M | SET_MINIMAL_WIDTH(ixl, ixr, l, r); | 369 | 93.2M | if (ixl != rxl || ixr != rxr) { | 370 | 83.0M | CONNECT_RECTANGLES(ixl, ixr, rxl, rxr, iy, ry, rxr, ixl, FILL_TRAP_RECT); | 371 | 83.0M | CONNECT_RECTANGLES(ixl, ixr, rxl, rxr, iy, ry, ixr, rxl, FILL_TRAP_RECT); | 372 | 83.0M | code = FILL_TRAP_RECT(rxl, ry, rxr - rxl, iy - ry); | 373 | 83.0M | if (code < 0) | 374 | 0 | goto xit; | 375 | 83.0M | rxl = ixl, rxr = ixr, ry = iy; | 376 | 83.0M | } | 377 | 93.2M | # endif | 378 | 93.2M | } | 379 | 6.97M | # if !LINEAR_COLOR | 380 | 6.97M | code = FILL_TRAP_RECT(rxl, ry, rxr - rxl, iy - ry); | 381 | | # else | 382 | | code = 0; | 383 | | # endif | 384 | 6.97M | #undef STEP_LINE | 385 | 6.97M | #undef SET_MINIMAL_WIDTH | 386 | 6.97M | #undef CONNECT_RECTANGLES | 387 | 6.97M | #undef FILL_TRAP_RECT | 388 | 6.97M | #undef FILL_TRAP_RECT_DIRECT | 389 | 6.97M | #undef FILL_TRAP_RECT_INRECT | 390 | 6.97M | #undef YMULT_QUO | 391 | 7.69M | xit: if (code < 0 && FILL_DIRECT) | 392 | 0 | return_error(code); | 393 | 7.69M | return_if_interrupt(dev->memory); | 394 | 7.69M | return code; | 395 | 7.69M | } | 396 | 7.69M | } |
gdevddrw.c:gx_fill_trapezoid_as_lc Line | Count | Source | 137 | 32.9k | { | 138 | 32.9k | const fixed ymin = fixed_pixround(ybot) + fixed_half; | 139 | 32.9k | const fixed ymax = fixed_pixround(ytop); | 140 | | | 141 | 32.9k | if (ymin >= ymax) | 142 | 800 | return 0; /* no scan lines to sample */ | 143 | 32.1k | { | 144 | 32.1k | int iy = fixed2int_var(ymin); | 145 | 32.1k | const int iy1 = fixed2int_var(ymax); | 146 | 32.1k | trap_line l, r; | 147 | 32.1k | register int rxl, rxr; | 148 | | #if !LINEAR_COLOR | 149 | | int ry; | 150 | | #endif | 151 | 32.1k | const fixed | 152 | 32.1k | x0l = left->start.x, x1l = left->end.x, x0r = right->start.x, | 153 | 32.1k | x1r = right->end.x, dxl = x1l - x0l, dxr = x1r - x0r; | 154 | 32.1k | const fixed /* partial pixel offset to first line to sample */ | 155 | 32.1k | ysl = ymin - left->start.y, ysr = ymin - right->start.y; | 156 | 32.1k | fixed fxl; | 157 | 32.1k | int code; | 158 | | # if CONTIGUOUS_FILL | 159 | | const bool peak0 = ((flags & 1) != 0); | 160 | | const bool peak1 = ((flags & 2) != 0); | 161 | | int peak_y0 = ybot + fixed_half; | 162 | | int peak_y1 = ytop - fixed_half; | 163 | | # endif | 164 | 32.1k | # if LINEAR_COLOR | 165 | 32.1k | int num_components = dev->color_info.num_components; | 166 | 32.1k | frac31 lgc[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 167 | 32.1k | int32_t lgf[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 168 | 32.1k | int32_t lgnum[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 169 | 32.1k | frac31 rgc[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 170 | 32.1k | int32_t rgf[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 171 | 32.1k | int32_t rgnum[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 172 | 32.1k | frac31 xgc[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 173 | 32.1k | int32_t xgf[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 174 | 32.1k | int32_t xgnum[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 175 | 32.1k | trap_gradient lg, rg, xg; | 176 | | # else | 177 | | gx_color_index cindex = pdevc->colors.pure; | 178 | | dev_proc_fill_rectangle((*fill_rect)) = | 179 | | dev_proc(dev, fill_rectangle); | 180 | | # endif | 181 | | | 182 | 32.1k | if_debug2m('z', dev->memory, "[z]y=[%d,%d]\n", iy, iy1); | 183 | | | 184 | 32.1k | l.h = left->end.y - left->start.y; | 185 | 32.1k | if (l.h == 0) | 186 | 0 | return 0; | 187 | 32.1k | r.h = right->end.y - right->start.y; | 188 | 32.1k | if (r.h == 0) | 189 | 0 | return 0; | 190 | 32.1k | l.x = x0l + (fixed_half - fixed_epsilon); | 191 | 32.1k | r.x = x0r + (fixed_half - fixed_epsilon); | 192 | | #if !LINEAR_COLOR | 193 | | ry = iy; | 194 | | #endif | 195 | | | 196 | | /* | 197 | | * Free variables of FILL_TRAP_RECT: | 198 | | * SWAP_AXES, pdevc, dev, fa | 199 | | * Free variables of FILL_TRAP_RECT_DIRECT: | 200 | | * SWAP_AXES, fill_rect, dev, cindex | 201 | | */ | 202 | 32.1k | #define FILL_TRAP_RECT_INDIRECT(x,y,w,h)\ | 203 | 32.1k | (SWAP_AXES ? gx_fill_rectangle_device_rop(y, x, h, w, pdevc, dev, fa) :\ | 204 | 32.1k | gx_fill_rectangle_device_rop(x, y, w, h, pdevc, dev, fa)) | 205 | 32.1k | #define FILL_TRAP_RECT_DIRECT(x,y,w,h)\ | 206 | 32.1k | (SWAP_AXES ? (*fill_rect)(dev, y, x, h, w, cindex) :\ | 207 | 32.1k | (*fill_rect)(dev, x, y, w, h, cindex)) | 208 | | | 209 | 32.1k | #if LINEAR_COLOR | 210 | 32.1k | # define FILL_TRAP_RECT(x,y,w,h)\ | 211 | 32.1k | (!(w) ? 0 : dev_proc(dev, fill_linear_color_scanline)(dev, fa, x, y, w, xg.c, xg.f, xg.num, xg.den)) | 212 | | #else | 213 | | # define FILL_TRAP_RECT(x,y,w,h)\ | 214 | | (FILL_DIRECT ? FILL_TRAP_RECT_DIRECT(x,y,w,h) : FILL_TRAP_RECT_INDIRECT(x,y,w,h)) | 215 | | #endif | 216 | | | 217 | | /* Compute the dx/dy ratios. */ | 218 | | | 219 | | /* | 220 | | * Compute the x offsets at the first scan line to sample. We need | 221 | | * to be careful in computing ys# * dx#f {/,%} h# because the | 222 | | * multiplication may overflow. We know that all the quantities | 223 | | * involved are non-negative, and that ys# is usually less than 1 (as | 224 | | * a fixed, of course); this gives us a cheap conservative check for | 225 | | * overflow in the multiplication. | 226 | | */ | 227 | 32.1k | #define YMULT_QUO(ys, tl)\ | 228 | 32.1k | (ys < fixed_1 && tl.df < YMULT_LIMIT ? ys * tl.df / tl.h :\ | 229 | 32.1k | fixed_mult_quo(ys, tl.df, tl.h)) | 230 | | | 231 | | #if CONTIGUOUS_FILL | 232 | | /* | 233 | | * If left and right boundary round to same pixel index, | 234 | | * we would not paing the scan and would get a dropout. | 235 | | * Check for this case and choose one of two pixels | 236 | | * which is closer to the "axis". We need to exclude | 237 | | * 'peak' because it would paint an excessive pixel. | 238 | | */ | 239 | | #define SET_MINIMAL_WIDTH(ixl, ixr, l, r) \ | 240 | | if (ixl == ixr) \ | 241 | | if ((!peak0 || iy >= peak_y0) && (!peak1 || iy <= peak_y1)) {\ | 242 | | fixed x = int2fixed(ixl) + fixed_half;\ | 243 | | if (x - l.x < r.x - x)\ | 244 | | ++ixr;\ | 245 | | else\ | 246 | | --ixl;\ | 247 | | } | 248 | | | 249 | | #define CONNECT_RECTANGLES(ixl, ixr, rxl, rxr, iy, ry, adj1, adj2, fill)\ | 250 | | if (adj1 < adj2) {\ | 251 | | if (iy - ry > 1) {\ | 252 | | code = fill(rxl, ry, rxr - rxl, iy - ry - 1);\ | 253 | | if (code < 0)\ | 254 | | goto xit;\ | 255 | | ry = iy - 1;\ | 256 | | }\ | 257 | | adj1 = adj2 = (adj2 + adj2) / 2;\ | 258 | | } | 259 | | | 260 | | #else | 261 | 32.1k | #define SET_MINIMAL_WIDTH(ixl, ixr, l, r) DO_NOTHING | 262 | 32.1k | #define CONNECT_RECTANGLES(ixl, ixr, rxl, rxr, iy, ry, adj1, adj2, fill) DO_NOTHING | 263 | 32.1k | #endif | 264 | 32.1k | if (fixed_floor(l.x) == fixed_pixround(x1l)) { | 265 | | /* Left edge is vertical, we don't need to increment. */ | 266 | 18.8k | l.di = 0, l.df = 0; | 267 | 18.8k | fxl = 0; | 268 | 18.8k | } else { | 269 | 13.2k | compute_dx(&l, dxl, ysl); | 270 | 13.2k | fxl = YMULT_QUO(ysl, l); | 271 | 13.2k | l.x += fxl; | 272 | 13.2k | } | 273 | 32.1k | if (fixed_floor(r.x) == fixed_pixround(x1r)) { | 274 | | /* Right edge is vertical. If both are vertical, */ | 275 | | /* we have a rectangle. */ | 276 | | # if !LINEAR_COLOR | 277 | | if (l.di == 0 && l.df == 0) { | 278 | | rxl = fixed2int_var(l.x); | 279 | | rxr = fixed2int_var(r.x); | 280 | | SET_MINIMAL_WIDTH(rxl, rxr, l, r); | 281 | | code = FILL_TRAP_RECT(rxl, ry, rxr - rxl, iy1 - ry); | 282 | | goto xit; | 283 | | } | 284 | | # endif | 285 | 18.4k | r.di = 0, r.df = 0; | 286 | 18.4k | } | 287 | | /* | 288 | | * The test for fxl != 0 is required because the right edge might | 289 | | * cross some pixel centers even if the left edge doesn't. | 290 | | */ | 291 | 13.6k | else if (dxr == dxl && fxl != 0) { | 292 | 6.89k | if (l.di == 0) | 293 | 2.77k | r.di = 0, r.df = l.df; | 294 | 4.11k | else | 295 | 4.11k | compute_dx(&r, dxr, ysr); | 296 | 6.89k | if (ysr == ysl && r.h == l.h) | 297 | 6.89k | r.x += fxl; | 298 | 0 | else | 299 | 0 | r.x += YMULT_QUO(ysr, r); | 300 | 6.89k | } else { | 301 | 6.73k | compute_dx(&r, dxr, ysr); | 302 | 6.73k | r.x += YMULT_QUO(ysr, r); | 303 | 6.73k | } | 304 | | /* Compute one line's worth of dx/dy. */ | 305 | 32.1k | compute_ldx(&l, ysl); | 306 | 32.1k | compute_ldx(&r, ysr); | 307 | | /* We subtracted fixed_epsilon from l.x, r.x to simplify rounding | 308 | | when the rational part is zero. Now add it back to get xl', xr' */ | 309 | 32.1k | l.x += fixed_epsilon; | 310 | 32.1k | r.x += fixed_epsilon; | 311 | 32.1k | # if LINEAR_COLOR | 312 | | # ifdef DEBUG | 313 | | if (check_gradient_overflow(left, right)) { | 314 | | /* The caller must care of. | 315 | | Checking it here looses some performance with triangles. */ | 316 | | return_error(gs_error_unregistered); | 317 | | } | 318 | | # endif | 319 | 32.1k | lg.c = lgc; | 320 | 32.1k | lg.f = lgf; | 321 | 32.1k | lg.num = lgnum; | 322 | 32.1k | rg.c = rgc; | 323 | 32.1k | rg.f = rgf; | 324 | 32.1k | rg.num = rgnum; | 325 | 32.1k | xg.c = xgc; | 326 | 32.1k | xg.f = xgf; | 327 | 32.1k | xg.num = xgnum; | 328 | 32.1k | code = init_gradient(&lg, fa, left, right, &l, ymin, num_components); | 329 | 32.1k | if (code < 0) | 330 | 0 | return code; | 331 | 32.1k | code = init_gradient(&rg, fa, right, left, &r, ymin, num_components); | 332 | 32.1k | if (code < 0) | 333 | 0 | return code; | 334 | | | 335 | 32.1k | # endif | 336 | | | 337 | 32.1k | #define rational_floor(tl)\ | 338 | 32.1k | fixed2int_var(fixed_is_int(tl.x) && tl.xf == -tl.h ? tl.x - fixed_1 : tl.x) | 339 | 32.1k | #define STEP_LINE(ix, tl)\ | 340 | 32.1k | tl.x += tl.ldi;\ | 341 | 32.1k | if ( (tl.xf += tl.ldf) >= 0 ) tl.xf -= tl.h, tl.x++;\ | 342 | 32.1k | ix = rational_floor(tl) | 343 | | | 344 | 32.1k | rxl = rational_floor(l); | 345 | 32.1k | rxr = rational_floor(r); | 346 | 32.1k | SET_MINIMAL_WIDTH(rxl, rxr, l, r); | 347 | 402k | while (LINEAR_COLOR ? 1 : ++iy != iy1) { | 348 | 402k | # if LINEAR_COLOR | 349 | 402k | if (rxl != rxr) { | 350 | 368k | code = set_x_gradient(&xg, &lg, &rg, &l, &r, rxl, rxr, num_components); | 351 | 368k | if (code < 0) | 352 | 0 | goto xit; | 353 | 368k | code = FILL_TRAP_RECT(rxl, iy, rxr - rxl, 1); | 354 | 368k | if (code < 0) | 355 | 0 | goto xit; | 356 | 368k | } | 357 | 402k | if (++iy == iy1) | 358 | 32.1k | break; | 359 | 370k | STEP_LINE(rxl, l); | 360 | 370k | STEP_LINE(rxr, r); | 361 | 370k | step_gradient(&lg, num_components); | 362 | 370k | step_gradient(&rg, num_components); | 363 | | # else | 364 | | register int ixl, ixr; | 365 | | | 366 | | STEP_LINE(ixl, l); | 367 | | STEP_LINE(ixr, r); | 368 | | SET_MINIMAL_WIDTH(ixl, ixr, l, r); | 369 | | if (ixl != rxl || ixr != rxr) { | 370 | | CONNECT_RECTANGLES(ixl, ixr, rxl, rxr, iy, ry, rxr, ixl, FILL_TRAP_RECT); | 371 | | CONNECT_RECTANGLES(ixl, ixr, rxl, rxr, iy, ry, ixr, rxl, FILL_TRAP_RECT); | 372 | | code = FILL_TRAP_RECT(rxl, ry, rxr - rxl, iy - ry); | 373 | | if (code < 0) | 374 | | goto xit; | 375 | | rxl = ixl, rxr = ixr, ry = iy; | 376 | | } | 377 | | # endif | 378 | 370k | } | 379 | | # if !LINEAR_COLOR | 380 | | code = FILL_TRAP_RECT(rxl, ry, rxr - rxl, iy - ry); | 381 | | # else | 382 | 32.1k | code = 0; | 383 | 32.1k | # endif | 384 | 32.1k | #undef STEP_LINE | 385 | 32.1k | #undef SET_MINIMAL_WIDTH | 386 | 32.1k | #undef CONNECT_RECTANGLES | 387 | 32.1k | #undef FILL_TRAP_RECT | 388 | 32.1k | #undef FILL_TRAP_RECT_DIRECT | 389 | 32.1k | #undef FILL_TRAP_RECT_INRECT | 390 | 32.1k | #undef YMULT_QUO | 391 | 32.1k | xit: if (code < 0 && FILL_DIRECT) | 392 | 0 | return_error(code); | 393 | 32.1k | return_if_interrupt(dev->memory); | 394 | 32.1k | return code; | 395 | 32.1k | } | 396 | 32.1k | } |
gdevddrw.c:gx_fill_trapezoid_ns_lc Line | Count | Source | 137 | 849k | { | 138 | 849k | const fixed ymin = fixed_pixround(ybot) + fixed_half; | 139 | 849k | const fixed ymax = fixed_pixround(ytop); | 140 | | | 141 | 849k | if (ymin >= ymax) | 142 | 375k | return 0; /* no scan lines to sample */ | 143 | 473k | { | 144 | 473k | int iy = fixed2int_var(ymin); | 145 | 473k | const int iy1 = fixed2int_var(ymax); | 146 | 473k | trap_line l, r; | 147 | 473k | register int rxl, rxr; | 148 | | #if !LINEAR_COLOR | 149 | | int ry; | 150 | | #endif | 151 | 473k | const fixed | 152 | 473k | x0l = left->start.x, x1l = left->end.x, x0r = right->start.x, | 153 | 473k | x1r = right->end.x, dxl = x1l - x0l, dxr = x1r - x0r; | 154 | 473k | const fixed /* partial pixel offset to first line to sample */ | 155 | 473k | ysl = ymin - left->start.y, ysr = ymin - right->start.y; | 156 | 473k | fixed fxl; | 157 | 473k | int code; | 158 | | # if CONTIGUOUS_FILL | 159 | | const bool peak0 = ((flags & 1) != 0); | 160 | | const bool peak1 = ((flags & 2) != 0); | 161 | | int peak_y0 = ybot + fixed_half; | 162 | | int peak_y1 = ytop - fixed_half; | 163 | | # endif | 164 | 473k | # if LINEAR_COLOR | 165 | 473k | int num_components = dev->color_info.num_components; | 166 | 473k | frac31 lgc[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 167 | 473k | int32_t lgf[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 168 | 473k | int32_t lgnum[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 169 | 473k | frac31 rgc[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 170 | 473k | int32_t rgf[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 171 | 473k | int32_t rgnum[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 172 | 473k | frac31 xgc[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 173 | 473k | int32_t xgf[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 174 | 473k | int32_t xgnum[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 175 | 473k | trap_gradient lg, rg, xg; | 176 | | # else | 177 | | gx_color_index cindex = pdevc->colors.pure; | 178 | | dev_proc_fill_rectangle((*fill_rect)) = | 179 | | dev_proc(dev, fill_rectangle); | 180 | | # endif | 181 | | | 182 | 473k | if_debug2m('z', dev->memory, "[z]y=[%d,%d]\n", iy, iy1); | 183 | | | 184 | 473k | l.h = left->end.y - left->start.y; | 185 | 473k | if (l.h == 0) | 186 | 0 | return 0; | 187 | 473k | r.h = right->end.y - right->start.y; | 188 | 473k | if (r.h == 0) | 189 | 0 | return 0; | 190 | 473k | l.x = x0l + (fixed_half - fixed_epsilon); | 191 | 473k | r.x = x0r + (fixed_half - fixed_epsilon); | 192 | | #if !LINEAR_COLOR | 193 | | ry = iy; | 194 | | #endif | 195 | | | 196 | | /* | 197 | | * Free variables of FILL_TRAP_RECT: | 198 | | * SWAP_AXES, pdevc, dev, fa | 199 | | * Free variables of FILL_TRAP_RECT_DIRECT: | 200 | | * SWAP_AXES, fill_rect, dev, cindex | 201 | | */ | 202 | 473k | #define FILL_TRAP_RECT_INDIRECT(x,y,w,h)\ | 203 | 473k | (SWAP_AXES ? gx_fill_rectangle_device_rop(y, x, h, w, pdevc, dev, fa) :\ | 204 | 473k | gx_fill_rectangle_device_rop(x, y, w, h, pdevc, dev, fa)) | 205 | 473k | #define FILL_TRAP_RECT_DIRECT(x,y,w,h)\ | 206 | 473k | (SWAP_AXES ? (*fill_rect)(dev, y, x, h, w, cindex) :\ | 207 | 473k | (*fill_rect)(dev, x, y, w, h, cindex)) | 208 | | | 209 | 473k | #if LINEAR_COLOR | 210 | 473k | # define FILL_TRAP_RECT(x,y,w,h)\ | 211 | 473k | (!(w) ? 0 : dev_proc(dev, fill_linear_color_scanline)(dev, fa, x, y, w, xg.c, xg.f, xg.num, xg.den)) | 212 | | #else | 213 | | # define FILL_TRAP_RECT(x,y,w,h)\ | 214 | | (FILL_DIRECT ? FILL_TRAP_RECT_DIRECT(x,y,w,h) : FILL_TRAP_RECT_INDIRECT(x,y,w,h)) | 215 | | #endif | 216 | | | 217 | | /* Compute the dx/dy ratios. */ | 218 | | | 219 | | /* | 220 | | * Compute the x offsets at the first scan line to sample. We need | 221 | | * to be careful in computing ys# * dx#f {/,%} h# because the | 222 | | * multiplication may overflow. We know that all the quantities | 223 | | * involved are non-negative, and that ys# is usually less than 1 (as | 224 | | * a fixed, of course); this gives us a cheap conservative check for | 225 | | * overflow in the multiplication. | 226 | | */ | 227 | 473k | #define YMULT_QUO(ys, tl)\ | 228 | 473k | (ys < fixed_1 && tl.df < YMULT_LIMIT ? ys * tl.df / tl.h :\ | 229 | 473k | fixed_mult_quo(ys, tl.df, tl.h)) | 230 | | | 231 | | #if CONTIGUOUS_FILL | 232 | | /* | 233 | | * If left and right boundary round to same pixel index, | 234 | | * we would not paing the scan and would get a dropout. | 235 | | * Check for this case and choose one of two pixels | 236 | | * which is closer to the "axis". We need to exclude | 237 | | * 'peak' because it would paint an excessive pixel. | 238 | | */ | 239 | | #define SET_MINIMAL_WIDTH(ixl, ixr, l, r) \ | 240 | | if (ixl == ixr) \ | 241 | | if ((!peak0 || iy >= peak_y0) && (!peak1 || iy <= peak_y1)) {\ | 242 | | fixed x = int2fixed(ixl) + fixed_half;\ | 243 | | if (x - l.x < r.x - x)\ | 244 | | ++ixr;\ | 245 | | else\ | 246 | | --ixl;\ | 247 | | } | 248 | | | 249 | | #define CONNECT_RECTANGLES(ixl, ixr, rxl, rxr, iy, ry, adj1, adj2, fill)\ | 250 | | if (adj1 < adj2) {\ | 251 | | if (iy - ry > 1) {\ | 252 | | code = fill(rxl, ry, rxr - rxl, iy - ry - 1);\ | 253 | | if (code < 0)\ | 254 | | goto xit;\ | 255 | | ry = iy - 1;\ | 256 | | }\ | 257 | | adj1 = adj2 = (adj2 + adj2) / 2;\ | 258 | | } | 259 | | | 260 | | #else | 261 | 473k | #define SET_MINIMAL_WIDTH(ixl, ixr, l, r) DO_NOTHING | 262 | 473k | #define CONNECT_RECTANGLES(ixl, ixr, rxl, rxr, iy, ry, adj1, adj2, fill) DO_NOTHING | 263 | 473k | #endif | 264 | 473k | if (fixed_floor(l.x) == fixed_pixround(x1l)) { | 265 | | /* Left edge is vertical, we don't need to increment. */ | 266 | 111k | l.di = 0, l.df = 0; | 267 | 111k | fxl = 0; | 268 | 361k | } else { | 269 | 361k | compute_dx(&l, dxl, ysl); | 270 | 361k | fxl = YMULT_QUO(ysl, l); | 271 | 361k | l.x += fxl; | 272 | 361k | } | 273 | 473k | if (fixed_floor(r.x) == fixed_pixround(x1r)) { | 274 | | /* Right edge is vertical. If both are vertical, */ | 275 | | /* we have a rectangle. */ | 276 | | # if !LINEAR_COLOR | 277 | | if (l.di == 0 && l.df == 0) { | 278 | | rxl = fixed2int_var(l.x); | 279 | | rxr = fixed2int_var(r.x); | 280 | | SET_MINIMAL_WIDTH(rxl, rxr, l, r); | 281 | | code = FILL_TRAP_RECT(rxl, ry, rxr - rxl, iy1 - ry); | 282 | | goto xit; | 283 | | } | 284 | | # endif | 285 | 110k | r.di = 0, r.df = 0; | 286 | 110k | } | 287 | | /* | 288 | | * The test for fxl != 0 is required because the right edge might | 289 | | * cross some pixel centers even if the left edge doesn't. | 290 | | */ | 291 | 362k | else if (dxr == dxl && fxl != 0) { | 292 | 32.3k | if (l.di == 0) | 293 | 5.54k | r.di = 0, r.df = l.df; | 294 | 26.8k | else | 295 | 26.8k | compute_dx(&r, dxr, ysr); | 296 | 32.3k | if (ysr == ysl && r.h == l.h) | 297 | 18.0k | r.x += fxl; | 298 | 14.2k | else | 299 | 14.2k | r.x += YMULT_QUO(ysr, r); | 300 | 330k | } else { | 301 | 330k | compute_dx(&r, dxr, ysr); | 302 | 330k | r.x += YMULT_QUO(ysr, r); | 303 | 330k | } | 304 | | /* Compute one line's worth of dx/dy. */ | 305 | 473k | compute_ldx(&l, ysl); | 306 | 473k | compute_ldx(&r, ysr); | 307 | | /* We subtracted fixed_epsilon from l.x, r.x to simplify rounding | 308 | | when the rational part is zero. Now add it back to get xl', xr' */ | 309 | 473k | l.x += fixed_epsilon; | 310 | 473k | r.x += fixed_epsilon; | 311 | 473k | # if LINEAR_COLOR | 312 | | # ifdef DEBUG | 313 | | if (check_gradient_overflow(left, right)) { | 314 | | /* The caller must care of. | 315 | | Checking it here looses some performance with triangles. */ | 316 | | return_error(gs_error_unregistered); | 317 | | } | 318 | | # endif | 319 | 473k | lg.c = lgc; | 320 | 473k | lg.f = lgf; | 321 | 473k | lg.num = lgnum; | 322 | 473k | rg.c = rgc; | 323 | 473k | rg.f = rgf; | 324 | 473k | rg.num = rgnum; | 325 | 473k | xg.c = xgc; | 326 | 473k | xg.f = xgf; | 327 | 473k | xg.num = xgnum; | 328 | 473k | code = init_gradient(&lg, fa, left, right, &l, ymin, num_components); | 329 | 473k | if (code < 0) | 330 | 0 | return code; | 331 | 473k | code = init_gradient(&rg, fa, right, left, &r, ymin, num_components); | 332 | 473k | if (code < 0) | 333 | 0 | return code; | 334 | | | 335 | 473k | # endif | 336 | | | 337 | 473k | #define rational_floor(tl)\ | 338 | 473k | fixed2int_var(fixed_is_int(tl.x) && tl.xf == -tl.h ? tl.x - fixed_1 : tl.x) | 339 | 473k | #define STEP_LINE(ix, tl)\ | 340 | 473k | tl.x += tl.ldi;\ | 341 | 473k | if ( (tl.xf += tl.ldf) >= 0 ) tl.xf -= tl.h, tl.x++;\ | 342 | 473k | ix = rational_floor(tl) | 343 | | | 344 | 473k | rxl = rational_floor(l); | 345 | 473k | rxr = rational_floor(r); | 346 | 473k | SET_MINIMAL_WIDTH(rxl, rxr, l, r); | 347 | 3.62M | while (LINEAR_COLOR ? 1 : ++iy != iy1) { | 348 | 3.62M | # if LINEAR_COLOR | 349 | 3.62M | if (rxl != rxr) { | 350 | 1.16M | code = set_x_gradient(&xg, &lg, &rg, &l, &r, rxl, rxr, num_components); | 351 | 1.16M | if (code < 0) | 352 | 0 | goto xit; | 353 | 1.16M | code = FILL_TRAP_RECT(rxl, iy, rxr - rxl, 1); | 354 | 1.16M | if (code < 0) | 355 | 0 | goto xit; | 356 | 1.16M | } | 357 | 3.62M | if (++iy == iy1) | 358 | 473k | break; | 359 | 3.15M | STEP_LINE(rxl, l); | 360 | 3.15M | STEP_LINE(rxr, r); | 361 | 3.15M | step_gradient(&lg, num_components); | 362 | 3.15M | step_gradient(&rg, num_components); | 363 | | # else | 364 | | register int ixl, ixr; | 365 | | | 366 | | STEP_LINE(ixl, l); | 367 | | STEP_LINE(ixr, r); | 368 | | SET_MINIMAL_WIDTH(ixl, ixr, l, r); | 369 | | if (ixl != rxl || ixr != rxr) { | 370 | | CONNECT_RECTANGLES(ixl, ixr, rxl, rxr, iy, ry, rxr, ixl, FILL_TRAP_RECT); | 371 | | CONNECT_RECTANGLES(ixl, ixr, rxl, rxr, iy, ry, ixr, rxl, FILL_TRAP_RECT); | 372 | | code = FILL_TRAP_RECT(rxl, ry, rxr - rxl, iy - ry); | 373 | | if (code < 0) | 374 | | goto xit; | 375 | | rxl = ixl, rxr = ixr, ry = iy; | 376 | | } | 377 | | # endif | 378 | 3.15M | } | 379 | | # if !LINEAR_COLOR | 380 | | code = FILL_TRAP_RECT(rxl, ry, rxr - rxl, iy - ry); | 381 | | # else | 382 | 473k | code = 0; | 383 | 473k | # endif | 384 | 473k | #undef STEP_LINE | 385 | 473k | #undef SET_MINIMAL_WIDTH | 386 | 473k | #undef CONNECT_RECTANGLES | 387 | 473k | #undef FILL_TRAP_RECT | 388 | 473k | #undef FILL_TRAP_RECT_DIRECT | 389 | 473k | #undef FILL_TRAP_RECT_INRECT | 390 | 473k | #undef YMULT_QUO | 391 | 473k | xit: if (code < 0 && FILL_DIRECT) | 392 | 0 | return_error(code); | 393 | 473k | return_if_interrupt(dev->memory); | 394 | 473k | return code; | 395 | 473k | } | 396 | 473k | } |
|