Coverage Report

Created: 2025-06-10 06:58

/src/ghostpdl/base/gxpcopy.c
Line
Count
Source (jump to first uncovered line)
1
/* Copyright (C) 2001-2023 Artifex Software, Inc.
2
   All Rights Reserved.
3
4
   This software is provided AS-IS with no warranty, either express or
5
   implied.
6
7
   This software is distributed under license and may not be copied,
8
   modified or distributed except as expressly authorized under the terms
9
   of the license contained in the file LICENSE in this distribution.
10
11
   Refer to licensing information at http://www.artifex.com or contact
12
   Artifex Software, Inc.,  39 Mesa Street, Suite 108A, San Francisco,
13
   CA 94129, USA, for further information.
14
*/
15
16
17
/* Path copying and flattening */
18
#include "math_.h"
19
#include "gx.h"
20
#include "gserrors.h"
21
#include "gxfixed.h"
22
#include "gxfarith.h"
23
#include "gxgstate.h"   /* for access to line params */
24
#include "gzpath.h"
25
26
/* Forward declarations */
27
static void adjust_point_to_tangent(segment *, const segment *,
28
                                     const gs_fixed_point *);
29
30
static inline int
31
break_line_if_long(gx_path *ppath, const segment *pseg)
32
9.83M
{
33
9.83M
    fixed x0 = ppath->position.x;
34
9.83M
    fixed y0 = ppath->position.y;
35
36
9.83M
    if (gx_check_fixed_diff_overflow(pseg->pt.x, x0) ||
37
9.83M
        gx_check_fixed_diff_overflow(pseg->pt.y, y0)) {
38
1.42k
        fixed x, y;
39
40
1.42k
        if (gx_check_fixed_sum_overflow(pseg->pt.x, x0))
41
9
            x = (pseg->pt.x >> 1) + (x0 >> 1);
42
1.41k
        else
43
1.41k
            x = (pseg->pt.x + x0) >> 1;
44
1.42k
        if (gx_check_fixed_sum_overflow(pseg->pt.y, y0))
45
27
            y = (pseg->pt.y >> 1) + (y0 >> 1);
46
1.40k
        else
47
1.40k
            y = (pseg->pt.y + y0) >> 1;
48
1.42k
        return gx_path_add_line_notes(ppath, x, y, pseg->notes);
49
        /* WARNING: Stringly speaking, the next half segment must get
50
           the sn_not_first flag. We don't bother, because that flag
51
           has no important meaning with colinear segments.
52
         */
53
1.42k
    }
54
9.82M
    return 0;
55
9.83M
}
56
static inline int
57
break_gap_if_long(gx_path *ppath, const segment *pseg)
58
0
{
59
0
    fixed x0 = ppath->position.x;
60
0
    fixed y0 = ppath->position.y;
61
62
0
    if (gx_check_fixed_diff_overflow(pseg->pt.x, x0) ||
63
0
        gx_check_fixed_diff_overflow(pseg->pt.y, y0)) {
64
0
        fixed x, y;
65
66
0
        if (gx_check_fixed_sum_overflow(pseg->pt.x, x0))
67
0
            x = (pseg->pt.x >> 1) + (x0 >> 1);
68
0
        else
69
0
            x = (pseg->pt.x + x0) >> 1;
70
0
        if (gx_check_fixed_sum_overflow(pseg->pt.y, y0))
71
0
            y = (pseg->pt.y >> 1) + (y0 >> 1);
72
0
        else
73
0
            y = (pseg->pt.y + y0) >> 1;
74
0
        return gx_path_add_gap_notes(ppath, x, y, pseg->notes);
75
        /* WARNING: Stringly speaking, the next half segment must get
76
           the sn_not_first flag. We don't bother, because that flag
77
           has no important meaning with colinear segments.
78
         */
79
0
    }
80
0
    return 0;
81
0
}
82
83
/* Copy a path, optionally flattening or monotonizing it. */
84
/* If the copy fails, free the new path. */
85
int
86
gx_path_copy_reducing(const gx_path *ppath_old, gx_path *ppath,
87
                      fixed fixed_flatness, const gs_gstate *pgs,
88
                      gx_path_copy_options options)
89
1.83M
{
90
1.83M
    const segment *pseg;
91
1.83M
    fixed flat = fixed_flatness;
92
1.83M
    gs_fixed_point expansion;
93
    /*
94
     * Since we're going to be adding to the path, unshare it
95
     * before we start.
96
     */
97
1.83M
    int code = gx_path_unshare(ppath);
98
99
1.83M
    if (code < 0)
100
0
        return code;
101
#ifdef DEBUG
102
    if (gs_debug_c('P'))
103
        gx_dump_path(ppath_old, "before reducing");
104
#endif
105
1.83M
    if (options & pco_for_stroke) {
106
        /* Precompute the maximum expansion of the bounding box. */
107
4.04k
        double width = pgs->line_params.half_width;
108
109
4.04k
        expansion.x =
110
4.04k
            float2fixed((fabs(pgs->ctm.xx) + fabs(pgs->ctm.yx)) * width) * 2;
111
4.04k
        expansion.y =
112
4.04k
            float2fixed((fabs(pgs->ctm.xy) + fabs(pgs->ctm.yy)) * width) * 2;
113
4.04k
    } else
114
1.82M
        expansion.x = expansion.y = 0; /* Quiet gcc warning. */
115
1.83M
    pseg = (const segment *)(ppath_old->first_subpath);
116
25.9M
    while (pseg) {
117
24.1M
        switch (pseg->type) {
118
2.37M
            case s_start:
119
2.37M
                code = gx_path_add_point(ppath,
120
2.37M
                                         pseg->pt.x, pseg->pt.y);
121
2.37M
                break;
122
11.9M
            case s_curve:
123
11.9M
                {
124
11.9M
                    const curve_segment *pc = (const curve_segment *)pseg;
125
126
11.9M
                    if (fixed_flatness == max_fixed) { /* don't flatten */
127
5.46M
                        if (options & pco_monotonize)
128
0
                            code = gx_curve_monotonize(ppath, pc);
129
5.46M
                        else
130
5.46M
                            code = gx_path_add_curve_notes(ppath,
131
5.46M
                                     pc->p1.x, pc->p1.y, pc->p2.x, pc->p2.y,
132
5.46M
                                           pc->pt.x, pc->pt.y, pseg->notes);
133
6.49M
                    } else {
134
6.49M
                        fixed x0 = ppath->position.x;
135
6.49M
                        fixed y0 = ppath->position.y;
136
6.49M
                        segment_notes notes = pseg->notes;
137
6.49M
                        curve_segment cseg;
138
6.49M
                        int k;
139
140
6.49M
                        if (options & pco_for_stroke) {
141
                            /*
142
                             * When flattening for stroking, the flatness
143
                             * must apply to the outside of the resulting
144
                             * stroked region.  We approximate this by
145
                             * dividing the flatness by the ratio of the
146
                             * expanded bounding box to the original
147
                             * bounding box.  This is crude, but pretty
148
                             * simple to calculate, and produces reasonably
149
                             * good results.
150
                             */
151
37.6k
                            fixed min01, max01, min23, max23;
152
37.6k
                            fixed ex, ey, flat_x, flat_y;
153
154
37.6k
#define SET_EXTENT(r, c0, c1, c2, c3)\
155
75.3k
    BEGIN\
156
75.3k
        if (c0 < c1) min01 = c0, max01 = c1;\
157
75.3k
        else         min01 = c1, max01 = c0;\
158
75.3k
        if (c2 < c3) min23 = c2, max23 = c3;\
159
75.3k
        else         min23 = c3, max23 = c2;\
160
75.3k
        r = max(max01, max23) - min(min01, min23);\
161
75.3k
    END
162
37.6k
                            SET_EXTENT(ex, x0, pc->p1.x, pc->p2.x, pc->pt.x);
163
37.6k
                            SET_EXTENT(ey, y0, pc->p1.y, pc->p2.y, pc->pt.y);
164
37.6k
#undef SET_EXTENT
165
                            /*
166
                             * We check for the degenerate case specially
167
                             * to avoid a division by zero.
168
                             */
169
37.6k
                            if (ex == 0 || ey == 0)
170
1.00k
                                if (ex != 0) {
171
102
                                    flat = fixed_mult_quo(fixed_flatness, ex,
172
102
                                                          ex + expansion.x);
173
102
                                    k = gx_curve_log2_samples(x0,y0,pc,flat);
174
906
                                } else if (ey != 0) {
175
179
                                    flat = fixed_mult_quo(fixed_flatness, ey,
176
179
                                                          ey + expansion.y);
177
179
                                    k = gx_curve_log2_samples(x0,y0,pc,flat);
178
179
                                } else
179
727
                                    k = 0;
180
36.6k
                            else {
181
36.6k
                                flat_x =
182
36.6k
                                    fixed_mult_quo(fixed_flatness, ex,
183
36.6k
                                                   ex + expansion.x);
184
36.6k
                                flat_y =
185
36.6k
                                    fixed_mult_quo(fixed_flatness, ey,
186
36.6k
                                                   ey + expansion.y);
187
36.6k
                                flat = min(flat_x, flat_y);
188
36.6k
                                k = gx_curve_log2_samples(x0, y0, pc, flat);
189
36.6k
                            }
190
37.6k
                        } else
191
6.45M
                            k = gx_curve_log2_samples(x0, y0, pc, flat);
192
6.49M
                        if (options & pco_accurate) {
193
6.49M
                            segment *start;
194
6.49M
                            segment *end;
195
196
                            /*
197
                             * Add an extra line, which will become
198
                             * the tangent segment.
199
                             */
200
6.49M
                            code = gx_path_add_line_notes(ppath, x0, y0,
201
6.49M
                                                          notes);
202
6.49M
                            if (code < 0)
203
0
                                break;
204
6.49M
                            start = ppath->current_subpath->last;
205
6.49M
                            notes |= sn_not_first;
206
6.49M
                            cseg = *pc;
207
6.49M
                            code = gx_subdivide_curve(ppath, k, &cseg, notes);
208
6.49M
                            if (code < 0)
209
0
                                break;
210
                            /*
211
                             * Adjust the first and last segments so that
212
                             * they line up with the tangents.
213
                             */
214
6.49M
                            end = ppath->current_subpath->last;
215
6.49M
                            if ((code = gx_path_add_line_notes(ppath,
216
6.49M
                                                          ppath->position.x,
217
6.49M
                                                          ppath->position.y,
218
6.49M
                                            pseg->notes | sn_not_first)) < 0)
219
0
                                break;
220
6.49M
                            if (start->next->pt.x != pc->p1.x || start->next->pt.y != pc->p1.y)
221
6.49M
                                adjust_point_to_tangent(start, start->next, &pc->p1);
222
1.01k
                            else if (start->next->pt.x != pc->p2.x || start->next->pt.y != pc->p2.y)
223
184
                                adjust_point_to_tangent(start, start->next, &pc->p2);
224
834
                            else
225
834
                                adjust_point_to_tangent(start, start->next, &end->prev->pt);
226
6.49M
                            if (end->prev->pt.x != pc->p2.x || end->prev->pt.y != pc->p2.y)
227
6.49M
                                adjust_point_to_tangent(end, end->prev, &pc->p2);
228
1.32k
                            else if (end->prev->pt.x != pc->p1.x || end->prev->pt.y != pc->p1.y)
229
482
                                adjust_point_to_tangent(end, end->prev, &pc->p1);
230
840
                            else
231
840
                                adjust_point_to_tangent(end, end->prev, &start->pt);
232
6.49M
                        } else {
233
0
                            cseg = *pc;
234
0
                            code = gx_subdivide_curve(ppath, k, &cseg, notes);
235
0
                        }
236
6.49M
                    }
237
11.9M
                    break;
238
11.9M
                }
239
11.9M
            case s_line:
240
8.10M
                code = break_line_if_long(ppath, pseg);
241
8.10M
                if (code < 0)
242
0
                    break;
243
8.10M
                code = gx_path_add_line_notes(ppath,
244
8.10M
                                       pseg->pt.x, pseg->pt.y, pseg->notes);
245
8.10M
                break;
246
0
            case s_gap:
247
0
                code = break_gap_if_long(ppath, pseg);
248
0
                if (code < 0)
249
0
                    break;
250
0
                code = gx_path_add_gap_notes(ppath,
251
0
                                       pseg->pt.x, pseg->pt.y, pseg->notes);
252
0
                break;
253
0
            case s_dash:
254
0
                {
255
0
                    const dash_segment *pd = (const dash_segment *)pseg;
256
257
0
                    code = gx_path_add_dash_notes(ppath,
258
0
                                       pd->pt.x, pd->pt.y, pd->tangent.x, pd->tangent.y, pseg->notes);
259
0
                    break;
260
0
                }
261
1.72M
            case s_line_close:
262
1.72M
                code = break_line_if_long(ppath, pseg);
263
1.72M
                if (code < 0)
264
0
                    break;
265
1.72M
                code = gx_path_close_subpath(ppath);
266
1.72M
                break;
267
0
            default:    /* can't happen */
268
0
                code = gs_note_error(gs_error_unregistered);
269
24.1M
        }
270
24.1M
        if (code < 0) {
271
0
            gx_path_new(ppath);
272
0
            return code;
273
0
        }
274
24.1M
        pseg = pseg->next;
275
24.1M
    }
276
1.83M
    if (path_last_is_moveto(ppath_old)) {
277
67.0k
        code = gx_path_add_point(ppath, ppath_old->position.x,
278
67.0k
                          ppath_old->position.y);
279
67.0k
        if (code < 0) {
280
0
            gx_path_new(ppath);
281
0
            return code;
282
0
        }
283
67.0k
    }
284
1.83M
    if (ppath_old->bbox_set) {
285
0
        if (ppath->bbox_set) {
286
0
            ppath->bbox.p.x = min(ppath_old->bbox.p.x, ppath->bbox.p.x);
287
0
            ppath->bbox.p.y = min(ppath_old->bbox.p.y, ppath->bbox.p.y);
288
0
            ppath->bbox.q.x = max(ppath_old->bbox.q.x, ppath->bbox.q.x);
289
0
            ppath->bbox.q.y = max(ppath_old->bbox.q.y, ppath->bbox.q.y);
290
0
        } else {
291
0
            ppath->bbox_set = true;
292
0
            ppath->bbox = ppath_old->bbox;
293
0
        }
294
0
    }
295
#ifdef DEBUG
296
    if (gs_debug_c('P'))
297
        gx_dump_path(ppath, "after reducing");
298
#endif
299
1.83M
    return 0;
300
1.83M
}
301
302
/*
303
 * Adjust one end of a line (the first or last line of a flattened curve)
304
 * so it falls on the curve tangent.  The closest point on the line from
305
 * (0,0) to (C,D) to a point (U,V) -- i.e., the point on the line at which
306
 * a perpendicular line from the point intersects it -- is given by
307
 *      T = (C*U + D*V) / (C^2 + D^2)
308
 *      (X,Y) = (C*T,D*T)
309
 * However, any smaller value of T will also work: the one we actually
310
 * use is 0.25 * the value we just derived.  We must check that
311
 * numerical instabilities don't lead to a negative value of T.
312
 */
313
static void
314
adjust_point_to_tangent(segment * pseg, const segment * next,
315
                        const gs_fixed_point * p1)
316
12.9M
{
317
12.9M
    const fixed x0 = pseg->pt.x, y0 = pseg->pt.y;
318
12.9M
    const fixed fC = p1->x - x0, fD = p1->y - y0;
319
320
    /*
321
     * By far the commonest case is that the end of the curve is
322
     * horizontal or vertical.  Check for this specially, because
323
     * we can handle it with far less work (and no floating point).
324
     */
325
12.9M
    if (fC == 0) {
326
        /* Vertical tangent. */
327
3.37M
        const fixed DT = arith_rshift(next->pt.y - y0, 2);
328
329
3.37M
        if (fD == 0)
330
8.56k
            return;    /* anomalous case */
331
3.37M
        if_debug1('2', "[2]adjusting vertical: DT = %g\n",
332
3.36M
                  fixed2float(DT));
333
3.36M
        if ((DT ^ fD) > 0) /* lgtm [cpp/bitwise-sign-check] */
334
3.36M
            pseg->pt.y = DT + y0;
335
9.61M
    } else if (fD == 0) {
336
        /* Horizontal tangent. */
337
4.25M
        const fixed CT = arith_rshift(next->pt.x - x0, 2);
338
339
4.25M
        if_debug1('2', "[2]adjusting horizontal: CT = %g\n",
340
4.25M
                  fixed2float(CT));
341
4.25M
        if ((CT ^ fC) > 0) /* lgtm [cpp/bitwise-sign-check] */
342
4.24M
            pseg->pt.x = CT + x0;
343
5.36M
    } else {
344
        /* General case. */
345
5.36M
        const double C = fC, D = fD;
346
5.36M
        double T = (C * (next->pt.x - x0) + D * (next->pt.y - y0)) /
347
5.36M
        (C * C + D * D);
348
349
5.36M
        if_debug3('2', "[2]adjusting: C = %g, D = %g, T = %g\n",
350
5.36M
                  C, D, T);
351
5.36M
        if (T > 0) {
352
5.33M
            if (T > 1) {
353
                /* Don't go outside the curve bounding box. */
354
965k
                T = 1;
355
965k
            }
356
5.33M
            pseg->pt.x = arith_rshift((fixed) (C * T), 2) + x0;
357
5.33M
            pseg->pt.y = arith_rshift((fixed) (D * T), 2) + y0;
358
5.33M
        }
359
5.36M
    }
360
12.9M
}
361
362
/* ---------------- Monotonic curves ---------------- */
363
364
/* Test whether a path is free of non-monotonic curves. */
365
bool
366
gx_path__check_curves(const gx_path * ppath, gx_path_copy_options options, fixed fixed_flat)
367
0
{
368
0
    const segment *pseg = (const segment *)(ppath->first_subpath);
369
0
    gs_fixed_point pt0;
370
371
0
    pt0.x = pt0.y = 0; /* Quiet gcc warning. */
372
0
    while (pseg) {
373
0
        switch (pseg->type) {
374
0
            case s_start:
375
0
                {
376
0
                    const subpath *psub = (const subpath *)pseg;
377
378
                    /* Skip subpaths without curves. */
379
0
                    if (!psub->curve_count)
380
0
                        pseg = psub->last;
381
0
                }
382
0
                break;
383
0
            case s_line:
384
0
            case s_gap:
385
0
                if (gx_check_fixed_diff_overflow(pseg->pt.x, pt0.x) ||
386
0
                    gx_check_fixed_diff_overflow(pseg->pt.y, pt0.y))
387
0
                    return false;
388
0
                break;
389
0
            case s_curve:
390
0
                {
391
0
                    const curve_segment *pc = (const curve_segment *)pseg;
392
393
0
                    if (options & pco_monotonize) {
394
0
                        double t[2];
395
0
                        int nz = gx_curve_monotonic_points(pt0.y,
396
0
                                               pc->p1.y, pc->p2.y, pc->pt.y, t);
397
398
0
                        if (nz != 0)
399
0
                            return false;
400
0
                        nz = gx_curve_monotonic_points(pt0.x,
401
0
                                               pc->p1.x, pc->p2.x, pc->pt.x, t);
402
0
                        if (nz != 0)
403
0
                            return false;
404
0
                    }
405
0
                    if (options & pco_small_curves) {
406
0
                        fixed ax, bx, cx, ay, by, cy;
407
0
                        int k = gx_curve_log2_samples(pt0.x, pt0.y, pc, fixed_flat);
408
409
0
                        if(!curve_coeffs_ranged(pt0.x, pc->p1.x, pc->p2.x, pc->pt.x,
410
0
                                pt0.y, pc->p1.y, pc->p2.y, pc->pt.y,
411
0
                                &ax, &bx, &cx, &ay, &by, &cy, k))
412
0
                            return false;
413
0
                    if (gx_check_fixed_diff_overflow(pseg->pt.x, pt0.x) ||
414
0
                        gx_check_fixed_diff_overflow(pseg->pt.y, pt0.y))
415
0
                        return false;
416
0
                    }
417
0
                }
418
0
                break;
419
0
            default:
420
0
                ;
421
0
        }
422
0
        pt0 = pseg->pt;
423
0
        pseg = pseg->next;
424
0
    }
425
0
    return true;
426
0
}
427
428
/* Test whether a path is free of long segments. */
429
/* WARNING : This function checks the distance between
430
 * the starting point and the ending point of a segment.
431
 * When they are not too far, a curve nevertheless may be too long.
432
 * Don't worry about it here, because we assume
433
 * this function is never called with paths which have curves.
434
 */
435
bool
436
gx_path_has_long_segments(const gx_path * ppath)
437
54.9k
{
438
54.9k
    const segment *pseg = (const segment *)(ppath->first_subpath);
439
54.9k
    gs_fixed_point pt0;
440
441
54.9k
    pt0.x = pt0.y = 0; /* Quiet gcc warning. */
442
265k
    while (pseg) {
443
210k
        switch (pseg->type) {
444
52.2k
            case s_start:
445
52.2k
                break;
446
158k
            default:
447
158k
                if (gx_check_fixed_diff_overflow(pseg->pt.x, pt0.x) ||
448
158k
                    gx_check_fixed_diff_overflow(pseg->pt.y, pt0.y))
449
165
                    return true;
450
157k
                break;
451
210k
        }
452
210k
        pt0 = pseg->pt;
453
210k
        pseg = pseg->next;
454
210k
    }
455
54.8k
    return false;
456
54.9k
}
457
458
/* Monotonize a curve, by splitting it if necessary. */
459
/* In the worst case, this could split the curve into 9 pieces. */
460
int
461
gx_curve_monotonize(gx_path * ppath, const curve_segment * pc)
462
0
{
463
0
    fixed x0 = ppath->position.x, y0 = ppath->position.y;
464
0
    segment_notes notes = pc->notes;
465
0
    double t[5], tt = 1, tp;
466
0
    int c[5];
467
0
    int n0, n1, n, i, j, k = 0;
468
0
    fixed ax, bx, cx, ay, by, cy, v01, v12;
469
0
    fixed px, py, qx, qy, rx, ry, sx, sy;
470
0
    const double delta = 0.0000001;
471
472
    /* Roots of the derivative : */
473
0
    n0 = gx_curve_monotonic_points(x0, pc->p1.x, pc->p2.x, pc->pt.x, t);
474
0
    n1 = gx_curve_monotonic_points(y0, pc->p1.y, pc->p2.y, pc->pt.y, t + n0);
475
0
    n = n0 + n1;
476
0
    if (n == 0)
477
0
        return gx_path_add_curve_notes(ppath, pc->p1.x, pc->p1.y,
478
0
                pc->p2.x, pc->p2.y, pc->pt.x, pc->pt.y, notes);
479
0
    if (n0 > 0)
480
0
        c[0] = 1;
481
0
    if (n0 > 1)
482
0
        c[1] = 1;
483
0
    if (n1 > 0)
484
0
        c[n0] = 2;
485
0
    if (n1 > 1)
486
0
        c[n0 + 1] = 2;
487
    /* Order roots : */
488
0
    for (i = 0; i < n; i++)
489
0
        for (j = i + 1; j < n; j++)
490
0
            if (t[i] > t[j]) {
491
0
                int w;
492
0
                double v = t[i]; t[i] = t[j]; t[j] = v;
493
0
                w = c[i]; c[i] = c[j]; c[j] = w;
494
0
            }
495
    /* Drop roots near zero : */
496
0
    for (k = 0; k < n; k++)
497
0
        if (t[k] >= delta)
498
0
            break;
499
    /* Merge close roots, and drop roots at 1 : */
500
0
    if (t[n - 1] > 1 - delta)
501
0
        n--;
502
0
    for (i = k + 1, j = k; i < n && t[k] < 1 - delta; i++)
503
0
        if (any_abs(t[i] - t[j]) < delta) {
504
0
            t[j] = (t[j] + t[i]) / 2; /* Unlikely 3 roots are close. */
505
0
            c[j] |= c[i];
506
0
        } else {
507
0
            j++;
508
0
            t[j] = t[i];
509
0
            c[j] = c[i];
510
0
        }
511
0
    n = j + 1;
512
    /* Do split : */
513
0
    curve_points_to_coefficients(x0, pc->p1.x, pc->p2.x, pc->pt.x, ax, bx, cx, v01, v12);
514
0
    curve_points_to_coefficients(y0, pc->p1.y, pc->p2.y, pc->pt.y, ay, by, cy, v01, v12);
515
0
    ax *= 3, bx *= 2; /* Coefficients of the derivative. */
516
0
    ay *= 3, by *= 2;
517
0
    px = x0;
518
0
    py = y0;
519
0
    qx = (fixed)((pc->p1.x - px) * t[0] + 0.5);
520
0
    qy = (fixed)((pc->p1.y - py) * t[0] + 0.5);
521
0
    tp = 0;
522
0
    for (i = k; i < n; i++) {
523
0
        double ti = t[i];
524
0
        double t2 = ti * ti, t3 = t2 * ti;
525
0
        double omt = 1 - ti, omt2 = omt * omt, omt3 = omt2 * omt;
526
0
        double x = x0 * omt3 + 3 * pc->p1.x * omt2 * ti + 3 * pc->p2.x * omt * t2 + pc->pt.x * t3;
527
0
        double y = y0 * omt3 + 3 * pc->p1.y * omt2 * ti + 3 * pc->p2.y * omt * t2 + pc->pt.y * t3;
528
0
        double ddx = (c[i] & 1 ? 0 : ax * t2 + bx * ti + cx); /* Suppress noise. */
529
0
        double ddy = (c[i] & 2 ? 0 : ay * t2 + by * ti + cy);
530
0
        fixed dx = (fixed)(ddx + 0.5);
531
0
        fixed dy = (fixed)(ddy + 0.5);
532
0
        int code;
533
534
0
        tt = (i + 1 < n ? t[i + 1] : 1) - ti;
535
0
        rx = (fixed)(dx * (t[i] - tp) / 3 + 0.5);
536
0
        ry = (fixed)(dy * (t[i] - tp) / 3 + 0.5);
537
0
        sx = (fixed)(x + 0.5);
538
0
        sy = (fixed)(y + 0.5);
539
        /* Suppress the derivative sign noise near a peak : */
540
0
        if ((double)(sx - px) * qx + (double)(sy - py) * qy < 0)
541
0
            qx = -qx, qy = -qy;
542
0
        if ((double)(sx - px) * rx + (double)(sy - py) * ry < 0)
543
0
            rx = -rx, ry = -qy;
544
        /* Do add : */
545
0
        code = gx_path_add_curve_notes(ppath, px + qx, py + qy, sx - rx, sy - ry, sx, sy, notes);
546
0
        if (code < 0)
547
0
            return code;
548
0
        notes |= sn_not_first;
549
0
        px = sx;
550
0
        py = sy;
551
0
        qx = (fixed)(dx * tt / 3 + 0.5);
552
0
        qy = (fixed)(dy * tt / 3 + 0.5);
553
0
        tp = t[i];
554
0
    }
555
0
    sx = pc->pt.x;
556
0
    sy = pc->pt.y;
557
0
    rx = (fixed)((pc->pt.x - pc->p2.x) * tt + 0.5);
558
0
    ry = (fixed)((pc->pt.y - pc->p2.y) * tt + 0.5);
559
    /* Suppress the derivative sign noise near peaks : */
560
0
    if ((double)(sx - px) * qx + (double)(sy - py) * qy < 0)
561
0
        qx = -qx, qy = -qy;
562
0
    if ((double)(sx - px) * rx + (double)(sy - py) * ry < 0)
563
0
        rx = -rx, ry = -qy;
564
0
    return gx_path_add_curve_notes(ppath, px + qx, py + qy, sx - rx, sy - ry, sx, sy, notes);
565
0
}
566
567
/*
568
 * Split a curve if necessary into pieces that are monotonic in X or Y as a
569
 * function of the curve parameter t.  This allows us to rasterize curves
570
 * directly without pre-flattening.  This takes a fair amount of analysis....
571
 * Store the values of t of the split points in pst[0] and pst[1].  Return
572
 * the number of split points (0, 1, or 2).
573
 */
574
int
575
gx_curve_monotonic_points(fixed v0, fixed v1, fixed v2, fixed v3,
576
                          double pst[2])
577
0
{
578
    /*
579
       Let
580
       v(t) = a*t^3 + b*t^2 + c*t + d, 0 <= t <= 1.
581
       Then
582
       dv(t) = 3*a*t^2 + 2*b*t + c.
583
       v(t) has a local minimum or maximum (or inflection point)
584
       precisely where dv(t) = 0.  Now the roots of dv(t) = 0 (i.e.,
585
       the zeros of dv(t)) are at
586
       t =  ( -2*b +/- sqrt(4*b^2 - 12*a*c) ) / 6*a
587
       =    ( -b +/- sqrt(b^2 - 3*a*c) ) / 3*a
588
       (Note that real roots exist iff b^2 >= 3*a*c.)
589
       We want to know if these lie in the range (0..1).
590
       (The endpoints don't count.)  Call such a root a "valid zero."
591
       Since computing the roots is expensive, we would like to have
592
       some cheap tests to filter out cases where they don't exist
593
       (i.e., where the curve is already monotonic).
594
     */
595
0
    fixed v01, v12, a, b, c, b2, a3;
596
0
    fixed dv_end, b2abs, a3abs;
597
598
0
    curve_points_to_coefficients(v0, v1, v2, v3, a, b, c, v01, v12);
599
0
    b2 = b << 1;
600
0
    a3 = (a << 1) + a;
601
    /*
602
       If a = 0, the only possible zero is t = -c / 2*b.
603
       This zero is valid iff sign(c) != sign(b) and 0 < |c| < 2*|b|.
604
     */
605
0
    if (a == 0) {
606
0
        if ((b ^ c) < 0 && any_abs(c) < any_abs(b2) && c != 0) {
607
0
            *pst = (double)(-c) / b2;
608
0
            return 1;
609
0
        } else
610
0
            return 0;
611
0
    }
612
    /*
613
       Iff a curve is horizontal at t = 0, c = 0.  In this case,
614
       there can be at most one other zero, at -2*b / 3*a.
615
       This zero is valid iff sign(a) != sign(b) and 0 < 2*|b| < 3*|a|.
616
     */
617
0
    if (c == 0) {
618
0
        if ((a ^ b) < 0 && any_abs(b2) < any_abs(a3) && b != 0) {
619
0
            *pst = (double)(-b2) / a3;
620
0
            return 1;
621
0
        } else
622
0
            return 0;
623
0
    }
624
    /*
625
       Similarly, iff a curve is horizontal at t = 1, 3*a + 2*b + c = 0.
626
       In this case, there can be at most one other zero,
627
       at -1 - 2*b / 3*a, iff sign(a) != sign(b) and 1 < -2*b / 3*a < 2,
628
       i.e., 3*|a| < 2*|b| < 6*|a|.
629
     */
630
0
    else if ((dv_end = a3 + b2 + c) == 0) {
631
0
        if ((a ^ b) < 0 &&
632
0
            (b2abs = any_abs(b2)) > (a3abs = any_abs(a3)) &&
633
0
            b2abs < a3abs << 1
634
0
            ) {
635
0
            *pst = (double)(-b2 - a3) / a3;
636
0
            return 1;
637
0
        } else
638
0
            return 0;
639
0
    }
640
    /*
641
       If sign(dv_end) != sign(c), at least one valid zero exists,
642
       since dv(0) and dv(1) have opposite signs and hence
643
       dv(t) must be zero somewhere in the interval [0..1].
644
     */
645
0
    else if ((dv_end ^ c) < 0);
646
    /*
647
       If sign(a) = sign(b), no valid zero exists,
648
       since dv is monotonic on [0..1] and has the same sign
649
       at both endpoints.
650
     */
651
0
    else if ((a ^ b) >= 0)
652
0
        return 0;
653
    /*
654
       Otherwise, dv(t) may be non-monotonic on [0..1]; it has valid zeros
655
       iff its sign anywhere in this interval is different from its sign
656
       at the endpoints, which occurs iff it has an extremum in this
657
       interval and the extremum is of the opposite sign from c.
658
       To find this out, we look for the local extremum of dv(t)
659
       by observing
660
       d2v(t) = 6*a*t + 2*b
661
       which has a zero only at
662
       t1 = -b / 3*a
663
       Now if t1 <= 0 or t1 >= 1, no valid zero exists.
664
       Note that we just determined that sign(a) != sign(b), so we know t1 > 0.
665
     */
666
0
    else if (any_abs(b) >= any_abs(a3))
667
0
        return 0;
668
    /*
669
       Otherwise, we just go ahead with the computation of the roots,
670
       and test them for being in the correct range.  Note that a valid
671
       zero is an inflection point of v(t) iff d2v(t) = 0; we don't
672
       bother to check for this case, since it's rare.
673
     */
674
0
    {
675
0
        double nbf = (double)(-b);
676
0
        double a3f = (double)a3;
677
0
        double radicand = nbf * nbf - a3f * c;
678
679
0
        if (radicand < 0) {
680
0
            if_debug1('2', "[2]negative radicand = %g\n", radicand);
681
0
            return 0;
682
0
        } {
683
0
            double root = sqrt(radicand);
684
0
            int nzeros = 0;
685
0
            double z = (nbf - root) / a3f;
686
687
            /*
688
             * We need to return the zeros in the correct order.
689
             * We know that root is non-negative, but a3f may be either
690
             * positive or negative, so we need to check the ordering
691
             * explicitly.
692
             */
693
0
            if_debug2('2', "[2]zeros at %g, %g\n", z, (nbf + root) / a3f);
694
0
            if (z > 0 && z < 1)
695
0
                *pst = z, nzeros = 1;
696
0
            if (root != 0) {
697
0
                z = (nbf + root) / a3f;
698
0
                if (z > 0 && z < 1) {
699
0
                    if (nzeros && a3f < 0) /* order is reversed */
700
0
                        pst[1] = *pst, *pst = z;
701
0
                    else
702
0
                        pst[nzeros] = z;
703
0
                    nzeros++;
704
0
                }
705
0
            }
706
0
            return nzeros;
707
0
        }
708
0
    }
709
0
}
710
711
/* ---------------- Path optimization for the filling algorithm. ---------------- */
712
713
static bool
714
find_contacting_segments(const subpath *sp0, segment *sp0last,
715
                         const subpath *sp1, segment *sp1last,
716
                         segment **sc0, segment **sc1)
717
0
{
718
0
    segment *s0, *s1;
719
0
    const segment *s0s, *s1s;
720
0
    int count0, count1, search_limit = 50;
721
0
    int min_length = fixed_1 * 1;
722
723
    /* This is a simplified algorithm, which only checks for quazi-colinear vertical lines.
724
       "Quazi-vertical" means dx <= 1 && dy >= min_length . */
725
    /* To avoid a big unuseful expence of the processor time,
726
       we search the first subpath from the end
727
       (assuming that it was recently merged near the end),
728
       and restrict the search with search_limit segments
729
       against a quadratic scanning of two long subpaths.
730
       Thus algorithm is not necessary finds anything contacting.
731
       Instead it either quickly finds something, or maybe not. */
732
0
    for (s0 = sp0last, count0 = 0; count0 < search_limit && s0 != (segment *)sp0; s0 = s0->prev, count0++) {
733
0
        s0s = s0->prev;
734
0
        if ((s0->type == s_line || s0->type == s_gap) &&
735
0
            (s0s->pt.x == s0->pt.x ||
736
0
             (any_abs(s0s->pt.x - s0->pt.x) == 1 &&
737
0
              any_abs(s0s->pt.y - s0->pt.y) > min_length))) {
738
0
            for (s1 = sp1last, count1 = 0; count1 < search_limit && s1 != (segment *)sp1; s1 = s1->prev, count1++) {
739
0
                s1s = s1->prev;
740
0
                if ((s1->type == s_line || s1->type == s_gap) &&
741
0
                    (s1s->pt.x == s1->pt.x ||
742
0
                     (any_abs(s1s->pt.x - s1->pt.x) == 1 && any_abs(s1s->pt.y - s1->pt.y) > min_length))) {
743
0
                    if (s0s->pt.x == s1s->pt.x || s0->pt.x == s1->pt.x || s0->pt.x == s1s->pt.x || s0s->pt.x == s1->pt.x) {
744
0
                        if (s0s->pt.y < s0->pt.y && s1s->pt.y > s1->pt.y) {
745
0
                            fixed y0 = max(s0s->pt.y, s1->pt.y);
746
0
                            fixed y1 = min(s0->pt.y, s1s->pt.y);
747
748
0
                            if (y0 <= y1) {
749
0
                                *sc0 = s0;
750
0
                                *sc1 = s1;
751
0
                                return true;
752
0
                            }
753
0
                        }
754
0
                        if (s0s->pt.y > s0->pt.y && s1s->pt.y < s1->pt.y) {
755
0
                            fixed y0 = max(s0->pt.y, s1s->pt.y);
756
0
                            fixed y1 = min(s0s->pt.y, s1->pt.y);
757
758
0
                            if (y0 <= y1) {
759
0
                                *sc0 = s0;
760
0
                                *sc1 = s1;
761
0
                                return true;
762
0
                            }
763
0
                        }
764
0
                    }
765
0
                }
766
0
            }
767
0
        }
768
0
    }
769
0
    return false;
770
0
}
771
772
int
773
gx_path_merge_contacting_contours(gx_path *ppath)
774
0
{
775
    /* Now this is a simplified algorithm,
776
       which merge only contours by a common quazi-vertical line. */
777
    /* Note the merged contour is not equivalent to sum of original contours,
778
       because we ignore small coordinate differences within fixed_epsilon. */
779
0
    int window = 5/* max spot holes */ * 6/* segments per subpath */;
780
0
    subpath *sp0 = ppath->segments->contents.subpath_first;
781
782
0
    for (; sp0 != NULL; sp0 = (subpath *)sp0->last->next) {
783
0
        segment *sp0last = sp0->last;
784
0
        subpath *sp1 = (subpath *)sp0last->next, *spnext;
785
0
        subpath *sp1p = sp0;
786
0
        int count;
787
788
0
        for (count = 0; sp1 != NULL && count < window; sp1 = spnext, count++) {
789
0
            segment *sp1last = sp1->last;
790
0
            segment *sc0, *sc1, *old_first;
791
792
0
            spnext = (subpath *)sp1last->next;
793
0
            if (find_contacting_segments(sp0, sp0last, sp1, sp1last, &sc0, &sc1)) {
794
                /* Detach the subpath 1 from the path: */
795
0
                sp1->prev->next = sp1last->next;
796
0
                if (sp1last->next != NULL)
797
0
                    sp1last->next->prev = sp1->prev;
798
0
                sp1->prev = 0;
799
0
                sp1last->next = 0;
800
0
                old_first = sp1->next;
801
                /* sp1 is not longer in use. Move subpath_current from it for safe removing : */
802
0
                if (ppath->segments->contents.subpath_current == sp1) {
803
0
                    ppath->segments->contents.subpath_current = sp1p;
804
0
                }
805
0
                if (sp1last->type == s_line_close) {
806
                    /* Change 'closepath' of the subpath 1 to a line (maybe degenerate) : */
807
0
                    sp1last->type = s_line;
808
                    /* sp1 is not longer in use. Free it : */
809
0
                    gs_free_object(gs_memory_stable(ppath->memory), sp1, "gx_path_merge_contacting_contours");
810
0
                } else if (sp1last->pt.x == sp1->pt.x && sp1last->pt.y == sp1->pt.y) {
811
                    /* Implicit closepath with zero length. Don't need a new segment. */
812
                    /* sp1 is not longer in use. Free it : */
813
0
                    gs_free_object(gs_memory_stable(ppath->memory), sp1, "gx_path_merge_contacting_contours");
814
0
                } else {
815
                    /* Insert the closing line segment. */
816
                    /* sp1 is not longer in use. Convert it to the line segment : */
817
0
                    sp1->type = s_line;
818
0
                    sp1last->next = (segment *)sp1;
819
0
                    sp1->next = NULL;
820
0
                    sp1->prev = sp1last;
821
0
                    sp1->last = NULL; /* Safety for garbager. */
822
0
                    sp1last = (segment *)sp1;
823
0
                }
824
0
                sp1 = 0; /* Safety. */
825
                /* Rotate the subpath 1 to sc1 : */
826
0
                {   /* Detach s_start and make a loop : */
827
0
                    sp1last->next = old_first;
828
0
                    old_first->prev = sp1last;
829
                    /* Unlink before sc1 : */
830
0
                    sp1last = sc1->prev;
831
0
                    sc1->prev->next = 0;
832
0
                    sc1->prev = 0; /* Safety. */
833
                    /* sp1 is not longer in use. Free it : */
834
0
                    if (ppath->segments->contents.subpath_current == sp1) {
835
0
                        ppath->segments->contents.subpath_current = sp1p;
836
0
                    }
837
0
                    gs_free_object(gs_memory_stable(ppath->memory), sp1, "gx_path_merge_contacting_contours");
838
0
                    sp1 = 0; /* Safety. */
839
0
                }
840
                /* Insert the subpath 1 into the subpath 0 before sc0 :*/
841
0
                sc0->prev->next = sc1;
842
0
                sc1->prev = sc0->prev;
843
0
                sp1last->next = sc0;
844
0
                sc0->prev = sp1last;
845
                /* Remove degenearte "bridge" segments : (fixme: Not done due to low importance). */
846
                /* Edit the subpath count : */
847
0
                ppath->subpath_count--;
848
0
            } else
849
0
                sp1p = sp1;
850
0
        }
851
0
    }
852
0
    return 0;
853
0
}
854
855
static int
856
is_colinear(gs_fixed_rect *rect, fixed x, fixed y)
857
0
{
858
0
    fixed x0 = rect->p.x;
859
0
    fixed y0 = rect->p.y;
860
0
    fixed x1 = rect->q.x;
861
0
    fixed y1 = rect->q.y;
862
863
0
    if (x0 == x1) {
864
0
        if (y0 == y1) {
865
            /* Initial case */
866
            /* Still counts as colinear */
867
0
        } else if (x == x0) {
868
            /* OK! */
869
0
        } else {
870
0
            return 0; /* Not colinear */
871
0
        }
872
0
    } else if (rect->p.y == rect->q.y) {
873
0
        if (y == rect->p.y) {
874
            /* OK */
875
0
        } else {
876
0
            return 0; /* Not colinear */
877
0
        }
878
0
    } else {
879
        /* Need to do hairy maths */
880
        /* The distance of a point (x,y) from the line passing through
881
         * (x0,y0) and (x1,y1) is:
882
         * d = |(y1-y0)x - (x1-x0)y + x1y0 - y1x0| / SQR((y1-y0)^2 + (x1-x0)^2)
883
         *
884
         * We want d <= epsilon to count as colinear.
885
         *
886
         * d = |(y1-y0)x - (x1-x0)y + x1y0 - y1x0| / SQR((y1-y0)^2 + (x1-x0)^2) <= epsilon
887
         *
888
         * |(y1-y0)x - (x1-x0)y + x1y0 - y1x0| <= epsilon * SQR((y1-y0)^2 + (x1-x0)^2)
889
         *
890
         * ((y1-y0)x - (x1-x0)y + x1y0 - y1x0)^2 <= epsilon^2 * ((y1-y0)^2 + (x1-x0)^2)
891
         */
892
0
        int64_t ix1 = ((int64_t)x1);
893
0
        int64_t iy1 = ((int64_t)y1);
894
0
        int64_t dx  = ix1 - x0;
895
0
        int64_t dy  = iy1 - y0;
896
0
        int64_t num = dy*x - dx*y + ix1*y0 - iy1*x0;
897
0
        int64_t den = dx*dx + dy*dy;
898
0
        int epsilon_squared = 2;
899
900
0
        if (num < 0)
901
0
            num = -num;
902
0
        while (num > (1<<30)) {
903
0
            num >>= 2;
904
0
            den >>= 1;
905
0
            if (den == 0)
906
0
                return 0; /* Not colinear */
907
0
        }
908
0
        num *= num;
909
0
        if (num > epsilon_squared * den)
910
0
            return 0;
911
0
    }
912
    /* rect is not really a rect. It's just a pair of points. We guarantee that x0 <= x1. */
913
0
    if (x == x0) {
914
0
        if (y < y0)
915
0
            rect->p.y = y;
916
0
        else if (y > y1)
917
0
            rect->q.y = y;
918
0
    } else if (x < x0) {
919
0
        rect->p.x = x;
920
0
        rect->p.y = y;
921
0
    } else {
922
0
        rect->q.x = x;
923
0
        rect->q.y = y;
924
0
    }
925
926
0
    return 1;
927
0
}
928
929
static int
930
gx_path_copy_eliding_1d(const gx_path *ppath_old, gx_path *ppath)
931
0
{
932
0
    const segment *pseg;
933
    /*
934
     * Since we're going to be adding to the path, unshare it
935
     * before we start.
936
     */
937
0
    int code = gx_path_unshare(ppath);
938
939
0
    if (code < 0)
940
0
        return code;
941
#ifdef DEBUG
942
    if (gs_debug_c('P'))
943
        gx_dump_path(ppath_old, "before eliding_1d");
944
#endif
945
946
0
    pseg = (const segment *)(ppath_old->first_subpath);
947
0
    while (pseg != NULL) {
948
0
        const segment *look = pseg;
949
0
        gs_fixed_rect rect;
950
951
0
        rect.p.x = rect.q.x = look->pt.x;
952
0
        rect.p.y = rect.q.y = look->pt.y;
953
954
0
        if (look->type != s_start) {
955
0
            dlprintf("Unlikely?");
956
0
        }
957
958
0
        look = look->next;
959
0
        while (look != NULL && look->type != s_start) {
960
0
            if (look->type == s_curve) {
961
0
                const curve_segment *pc = (const curve_segment *)look;
962
0
                if (!is_colinear(&rect, pc->p1.x, pc->p1.y) ||
963
0
                    !is_colinear(&rect, pc->p2.x, pc->p2.y) ||
964
0
                    !is_colinear(&rect, pc->pt.x, pc->pt.y))
965
0
                    goto not_colinear;
966
0
            } else if (!is_colinear(&rect, look->pt.x, look->pt.y)) {
967
0
                goto not_colinear;
968
0
            }
969
0
            look = look->next;
970
0
        }
971
0
        pseg = look;
972
0
        if (0)
973
0
        {
974
0
not_colinear:
975
            /* Not colinear. We want to keep this section. */
976
0
            while (look != NULL && look->type != s_start)
977
0
                look = look->next;
978
0
            while (pseg != look && code >= 0) {
979
                /* Copy */
980
0
                switch (pseg->type) {
981
0
                    case s_start:
982
0
                        code = gx_path_add_point(ppath,
983
0
                                                 pseg->pt.x, pseg->pt.y);
984
0
                        break;
985
0
                    case s_curve:
986
0
                        {
987
0
                            const curve_segment *pc = (const curve_segment *)pseg;
988
989
0
                            code = gx_path_add_curve_notes(ppath,
990
0
                                             pc->p1.x, pc->p1.y, pc->p2.x, pc->p2.y,
991
0
                                                   pc->pt.x, pc->pt.y, pseg->notes);
992
0
                            break;
993
0
                        }
994
0
                    case s_line:
995
0
                        code = gx_path_add_line_notes(ppath,
996
0
                                               pseg->pt.x, pseg->pt.y, pseg->notes);
997
0
                        break;
998
0
                    case s_gap:
999
0
                        code = gx_path_add_gap_notes(ppath,
1000
0
                                               pseg->pt.x, pseg->pt.y, pseg->notes);
1001
0
                        break;
1002
0
                    case s_dash:
1003
0
                        {
1004
0
                            const dash_segment *pd = (const dash_segment *)pseg;
1005
1006
0
                            code = gx_path_add_dash_notes(ppath,
1007
0
                                               pd->pt.x, pd->pt.y, pd->tangent.x, pd->tangent.y, pseg->notes);
1008
0
                            break;
1009
0
                        }
1010
0
                    case s_line_close:
1011
0
                        code = gx_path_close_subpath(ppath);
1012
0
                        break;
1013
0
                    default:    /* can't happen */
1014
0
                        code = gs_note_error(gs_error_unregistered);
1015
0
                }
1016
0
                pseg = pseg->next;
1017
0
            }
1018
0
            if (code < 0) {
1019
0
                gx_path_new(ppath);
1020
0
                return code;
1021
0
            }
1022
0
        }
1023
0
    }
1024
0
    ppath->bbox_set = false;
1025
#ifdef DEBUG
1026
    if (gs_debug_c('P'))
1027
        gx_dump_path(ppath, "after eliding_1d");
1028
#endif
1029
0
    return 0;
1030
0
}
1031
1032
int
1033
gx_path_elide_1d(gx_path *ppath)
1034
0
{
1035
0
    int code;
1036
0
    gx_path path;
1037
1038
0
    gx_path_init_local(&path, ppath->memory);
1039
0
    code = gx_path_copy_eliding_1d(ppath, &path);
1040
0
    if (code < 0)
1041
0
        return code;
1042
0
    gx_path_assign_free(ppath, &path);
1043
0
    gx_path_free(&path, "gx_path_elide_1d");
1044
1045
0
    return 0;
1046
0
}