Coverage Report

Created: 2025-06-10 06:58

/src/ghostpdl/psi/isave.c
Line
Count
Source (jump to first uncovered line)
1
/* Copyright (C) 2001-2024 Artifex Software, Inc.
2
   All Rights Reserved.
3
4
   This software is provided AS-IS with no warranty, either express or
5
   implied.
6
7
   This software is distributed under license and may not be copied,
8
   modified or distributed except as expressly authorized under the terms
9
   of the license contained in the file LICENSE in this distribution.
10
11
   Refer to licensing information at http://www.artifex.com or contact
12
   Artifex Software, Inc.,  39 Mesa Street, Suite 108A, San Francisco,
13
   CA 94129, USA, for further information.
14
*/
15
16
17
/* Save/restore manager for Ghostscript interpreter */
18
#include "ghost.h"
19
#include "memory_.h"
20
#include "ierrors.h"
21
#include "gsexit.h"
22
#include "gsstruct.h"
23
#include "stream.h"   /* for linking for forgetsave */
24
#include "iastate.h"
25
#include "inamedef.h"
26
#include "iname.h"
27
#include "ipacked.h"
28
#include "isave.h"
29
#include "isstate.h"
30
#include "gsstate.h"
31
#include "store.h"    /* for ref_assign */
32
#include "ivmspace.h"
33
#include "igc.h"
34
#include "gsutil.h"   /* gs_next_ids prototype */
35
#include "icstate.h"
36
37
/* Structure descriptor */
38
private_st_alloc_save();
39
40
/* Define the maximum amount of data we are willing to scan repeatedly -- */
41
/* see below for details. */
42
static const long max_repeated_scan = 100000;
43
44
/* Define the minimum space for creating an inner clump. */
45
/* Must be at least sizeof(clump_head_t). */
46
static const long min_inner_clump_space = sizeof(clump_head_t) + 500;
47
48
/*
49
 * The logic for saving and restoring the state is complex.
50
 * Both the changes to individual objects, and the overall state
51
 * of the memory manager, must be saved and restored.
52
 */
53
54
/*
55
 * To save the state of the memory manager:
56
 *      Save the state of the current clump in which we are allocating.
57
 *      Shrink all clumps to their inner unallocated region.
58
 *      Save and reset the free block chains.
59
 * By doing this, we guarantee that no object older than the save
60
 * can be freed.
61
 *
62
 * To restore the state of the memory manager:
63
 *      Free all clumps newer than the save, and the descriptors for
64
 *        the inner clumps created by the save.
65
 *      Make current the clump that was current at the time of the save.
66
 *      Restore the state of the current clump.
67
 *
68
 * In addition to save ("start transaction") and restore ("abort transaction"),
69
 * we support forgetting a save ("commit transation").  To forget a save:
70
 *      Reassign to the next outer save all clumps newer than the save.
71
 *      Free the descriptors for the inners clump, updating their outer
72
 *        clumps to reflect additional allocations in the inner clumps.
73
 *      Concatenate the free block chains with those of the outer save.
74
 */
75
76
/*
77
 * For saving changes to individual objects, we add an "attribute" bit
78
 * (l_new) that logically belongs to the slot where the ref is stored,
79
 * not to the ref itself.  The bit means "the contents of this slot
80
 * have been changed, or the slot was allocated, since the last save."
81
 * To keep track of changes since the save, we associate a chain of
82
 * <slot, old_contents> pairs that remembers the old contents of slots.
83
 *
84
 * When creating an object, if the save level is non-zero:
85
 *      Set l_new in all slots.
86
 *
87
 * When storing into a slot, if the save level is non-zero:
88
 *      If l_new isn't set, save the address and contents of the slot
89
 *        on the current contents chain.
90
 *      Set l_new after storing the new value.
91
 *
92
 * To do a save:
93
 *      If the save level is non-zero:
94
 *              Reset l_new in all slots on the contents chain, and in all
95
 *                objects created since the previous save.
96
 *      Push the head of the contents chain, and reset the chain to empty.
97
 *
98
 * To do a restore:
99
 *      Check all the stacks to make sure they don't contain references
100
 *        to objects created since the save.
101
 *      Restore all the slots on the contents chain.
102
 *      Pop the contents chain head.
103
 *      If the save level is now non-zero:
104
 *              Scan the newly restored contents chain, and set l_new in all
105
 *                the slots it references.
106
 *              Scan all objects created since the previous save, and set
107
 *                l_new in all the slots of each object.
108
 *
109
 * To forget a save:
110
 *      If the save level is greater than 1:
111
 *              Set l_new as for a restore, per the next outer save.
112
 *              Concatenate the next outer contents chain to the end of
113
 *                the current one.
114
 *      If the save level is 1:
115
 *              Reset l_new as for a save.
116
 *              Free the contents chain.
117
 */
118
119
/*
120
 * A consequence of the foregoing algorithms is that the cost of a save is
121
 * proportional to the total amount of data allocated since the previous
122
 * save.  If a PostScript program reads in a large amount of setup code and
123
 * then uses save/restore heavily, each save/restore will be expensive.  To
124
 * mitigate this, we check to see how much data we have scanned at this save
125
 * level: if it is large, we do a second, invisible save.  This greatly
126
 * reduces the cost of inner saves, at the expense of possibly saving some
127
 * changes twice that otherwise would only have to be saved once.
128
 */
129
130
/*
131
 * The presence of global and local VM complicates the situation further.
132
 * There is a separate save chain and contents chain for each VM space.
133
 * When multiple contexts are fully implemented, save and restore will have
134
 * the following effects, according to the privacy status of the current
135
 * context's global and local VM:
136
 *      Private global, private local:
137
 *              The outermost save saves both global and local VM;
138
 *                otherwise, save only saves local VM.
139
 *      Shared global, private local:
140
 *              Save only saves local VM.
141
 *      Shared global, shared local:
142
 *              Save only saves local VM, and suspends all other contexts
143
 *                sharing the same local VM until the matching restore.
144
 * Since we do not currently implement multiple contexts, only the first
145
 * case is relevant.
146
 *
147
 * Note that when saving the contents of a slot, the choice of chain
148
 * is determined by the VM space in which the slot is allocated,
149
 * not by the current allocation mode.
150
 */
151
152
/* Tracing printout */
153
static void
154
print_save(const char *str, uint spacen, const alloc_save_t *sav)
155
47.5k
{
156
47.5k
  if_debug5('u', "[u]%s space %u "PRI_INTPTR": cdata = "PRI_INTPTR", id = %lu\n",\
157
47.5k
            str, spacen, (intptr_t)sav, (intptr_t)sav->client_data, (ulong)sav->id);
158
47.5k
}
159
160
/* A link to igcref.c . */
161
ptr_proc_reloc(igc_reloc_ref_ptr_nocheck, ref_packed);
162
163
static
164
CLEAR_MARKS_PROC(change_clear_marks)
165
412k
{
166
412k
    alloc_change_t *const ptr = (alloc_change_t *)vptr;
167
168
412k
    if (r_is_packed(&ptr->contents))
169
22.4k
        r_clear_pmark((ref_packed *) & ptr->contents);
170
389k
    else
171
389k
        r_clear_attrs(&ptr->contents, l_mark);
172
412k
}
173
static
174
1.64M
ENUM_PTRS_WITH(change_enum_ptrs, alloc_change_t *ptr) return 0;
175
411k
ENUM_PTR(0, alloc_change_t, next);
176
411k
case 1:
177
411k
    if (ptr->offset >= 0)
178
0
        ENUM_RETURN((byte *) ptr->where - ptr->offset);
179
411k
    else
180
411k
        if (ptr->offset != AC_OFFSET_ALLOCATED)
181
105k
            ENUM_RETURN_REF(ptr->where);
182
306k
        else {
183
            /* Don't enumerate ptr->where, because it
184
               needs a special processing with
185
               alloc_save__filter_changes. */
186
306k
            ENUM_RETURN(0);
187
306k
        }
188
411k
case 2:
189
411k
    ENUM_RETURN_REF(&ptr->contents);
190
1.64M
ENUM_PTRS_END
191
163k
static RELOC_PTRS_WITH(change_reloc_ptrs, alloc_change_t *ptr)
192
163k
{
193
163k
    RELOC_VAR(ptr->next);
194
163k
    switch (ptr->offset) {
195
0
        case AC_OFFSET_STATIC:
196
0
            break;
197
105k
        case AC_OFFSET_REF:
198
105k
            RELOC_REF_PTR_VAR(ptr->where);
199
105k
            break;
200
57.9k
        case AC_OFFSET_ALLOCATED:
201
            /* We know that ptr->where may point to an unmarked object
202
               because change_enum_ptrs skipped it,
203
               and we know it always points to same space
204
               because we took a special care when calling alloc_save_change_alloc.
205
               Therefore we must skip the check for the mark,
206
               which would happen if we call the regular relocation function
207
               igc_reloc_ref_ptr from RELOC_REF_PTR_VAR.
208
               Calling igc_reloc_ref_ptr_nocheck instead. */
209
57.9k
            { /* A sanity check. */
210
57.9k
                obj_header_t *pre = (obj_header_t *)ptr->where - 1;
211
212
57.9k
                if (pre->o_type != &st_refs)
213
0
                    gs_abort(gcst->heap);
214
57.9k
            }
215
57.9k
            if (ptr->where != 0 && !gcst->relocating_untraced)
216
57.5k
                ptr->where = igc_reloc_ref_ptr_nocheck(ptr->where, gcst);
217
57.9k
            break;
218
0
        default:
219
0
            {
220
0
                byte *obj = (byte *) ptr->where - ptr->offset;
221
222
0
                RELOC_VAR(obj);
223
0
                ptr->where = (ref_packed *) (obj + ptr->offset);
224
0
            }
225
0
            break;
226
163k
    }
227
163k
    if (r_is_packed(&ptr->contents))
228
22.3k
        r_clear_pmark((ref_packed *) & ptr->contents);
229
141k
    else {
230
141k
        RELOC_REF_VAR(ptr->contents);
231
141k
        r_clear_attrs(&ptr->contents, l_mark);
232
141k
    }
233
163k
}
234
163k
RELOC_PTRS_END
235
gs_private_st_complex_only(st_alloc_change, alloc_change_t, "alloc_change",
236
                change_clear_marks, change_enum_ptrs, change_reloc_ptrs, 0);
237
238
/* Debugging printout */
239
#ifdef DEBUG
240
static void
241
alloc_save_print(const gs_memory_t *mem, alloc_change_t * cp, bool print_current)
242
{
243
    dmprintf2(mem, " "PRI_INTPTR"x: "PRI_INTPTR": ", (intptr_t) cp, (intptr_t) cp->where);
244
    if (r_is_packed(&cp->contents)) {
245
        if (print_current)
246
            dmprintf2(mem, "saved=%x cur=%x\n", *(ref_packed *) & cp->contents,
247
                      *cp->where);
248
        else
249
            dmprintf1(mem, "%x\n", *(ref_packed *) & cp->contents);
250
    } else {
251
        if (print_current)
252
            dmprintf6(mem, "saved=%x %x %lx cur=%x %x %lx\n",
253
                      r_type_attrs(&cp->contents), r_size(&cp->contents),
254
                      (ulong) cp->contents.value.intval,
255
                      r_type_attrs((ref *) cp->where),
256
                      r_size((ref *) cp->where),
257
                      (ulong) ((ref *) cp->where)->value.intval);
258
        else
259
            dmprintf3(mem, "%x %x %lx\n",
260
                      r_type_attrs(&cp->contents), r_size(&cp->contents),
261
                      (ulong) cp->contents.value.intval);
262
    }
263
}
264
#endif
265
266
/* Forward references */
267
static int  restore_resources(alloc_save_t *, gs_ref_memory_t *);
268
static void restore_free(gs_ref_memory_t *);
269
static int  save_set_new(gs_ref_memory_t * mem, bool to_new, bool set_limit, ulong *pscanned);
270
static int  save_set_new_changes(gs_ref_memory_t *, bool, bool);
271
static bool check_l_mark(void *obj);
272
273
/* Initialize the save/restore machinery. */
274
void
275
alloc_save_init(gs_dual_memory_t * dmem)
276
8.88k
{
277
8.88k
    alloc_set_not_in_save(dmem);
278
8.88k
}
279
280
/* Record that we are in a save. */
281
static void
282
alloc_set_masks(gs_dual_memory_t *dmem, uint new_mask, uint test_mask)
283
68.4k
{
284
68.4k
    int i;
285
68.4k
    gs_ref_memory_t *mem;
286
287
68.4k
    dmem->new_mask = new_mask;
288
68.4k
    dmem->test_mask = test_mask;
289
342k
    for (i = 0; i < countof(dmem->spaces.memories.indexed); ++i)
290
273k
        if ((mem = dmem->spaces.memories.indexed[i]) != 0) {
291
205k
            mem->new_mask = new_mask, mem->test_mask = test_mask;
292
205k
            if (mem->stable_memory != (gs_memory_t *)mem) {
293
136k
                mem = (gs_ref_memory_t *)mem->stable_memory;
294
136k
                mem->new_mask = new_mask, mem->test_mask = test_mask;
295
136k
            }
296
205k
        }
297
68.4k
}
298
void
299
alloc_set_in_save(gs_dual_memory_t *dmem)
300
23.8k
{
301
23.8k
    alloc_set_masks(dmem, l_new, l_new);
302
23.8k
}
303
304
/* Record that we are not in a save. */
305
void
306
alloc_set_not_in_save(gs_dual_memory_t *dmem)
307
44.5k
{
308
44.5k
    alloc_set_masks(dmem, 0, ~0);
309
44.5k
}
310
311
/* Save the state. */
312
static alloc_save_t *alloc_save_space(gs_ref_memory_t *mem,
313
                                       gs_dual_memory_t *dmem,
314
                                       ulong sid);
315
static void
316
alloc_free_save(gs_ref_memory_t *mem, alloc_save_t *save, const char *scn)
317
0
{
318
0
    gs_ref_memory_t save_mem;
319
0
    save_mem = mem->saved->state;
320
0
    gs_free_object((gs_memory_t *)mem, save, scn);
321
    /* Free any inner clump structures.  This is the easiest way to do it. */
322
0
    restore_free(mem);
323
    /* Restore the 'saved' state - this pulls our object off the linked
324
     * list of states. Without this we hit a SEGV in the gc later. */
325
0
    *mem = save_mem;
326
0
}
327
int
328
alloc_save_state(gs_dual_memory_t * dmem, void *cdata, ulong *psid)
329
14.8k
{
330
14.8k
    gs_ref_memory_t *lmem = dmem->space_local;
331
14.8k
    gs_ref_memory_t *gmem = dmem->space_global;
332
14.8k
    ulong sid = gs_next_ids((const gs_memory_t *)lmem->stable_memory, 2);
333
14.8k
    bool global =
334
14.8k
        lmem->save_level == 0 && gmem != lmem &&
335
14.8k
        gmem->num_contexts == 1;
336
14.8k
    alloc_save_t *gsave =
337
14.8k
        (global ? alloc_save_space(gmem, dmem, sid + 1) : (alloc_save_t *) 0);
338
14.8k
    alloc_save_t *lsave = alloc_save_space(lmem, dmem, sid);
339
340
14.8k
    if (lsave == 0 || (global && gsave == 0)) {
341
        /* Only 1 of lsave or gsave will have been allocated, but
342
         * nevertheless (in case things change in future), we free
343
         * lsave, then gsave, so they 'pop' correctly when restoring
344
         * the mem->saved states. */
345
0
        if (lsave != 0)
346
0
            alloc_free_save(lmem, lsave, "alloc_save_state(local save)");
347
0
        if (gsave != 0)
348
0
            alloc_free_save(gmem, gsave, "alloc_save_state(global save)");
349
0
        return_error(gs_error_VMerror);
350
0
    }
351
14.8k
    if (gsave != 0) {
352
8.88k
        gsave->client_data = 0;
353
8.88k
        print_save("save", gmem->space, gsave);
354
        /* Restore names when we do the local restore. */
355
8.88k
        lsave->restore_names = gsave->restore_names;
356
8.88k
        gsave->restore_names = false;
357
8.88k
    }
358
14.8k
    lsave->id = sid;
359
14.8k
    lsave->client_data = cdata;
360
14.8k
    print_save("save", lmem->space, lsave);
361
    /* Reset the l_new attribute in all slots.  The only slots that */
362
    /* can have the attribute set are the ones on the changes chain, */
363
    /* and ones in objects allocated since the last save. */
364
14.8k
    if (lmem->save_level > 1) {
365
5.98k
        ulong scanned;
366
5.98k
        int code = save_set_new(&lsave->state, false, true, &scanned);
367
368
5.98k
        if (code < 0)
369
0
            return code;
370
#if 0 /* Disable invisible save levels. */
371
        if ((lsave->state.total_scanned += scanned) > max_repeated_scan) {
372
            /* Do a second, invisible save. */
373
            alloc_save_t *rsave;
374
375
            rsave = alloc_save_space(lmem, dmem, 0L);
376
            if (rsave != 0) {
377
                rsave->client_data = cdata;
378
#if 0 /* Bug 688153 */
379
                rsave->id = lsave->id;
380
                print_save("save", lmem->space, rsave);
381
                lsave->id = 0;  /* mark as invisible */
382
                rsave->state.save_level--; /* ditto */
383
                lsave->client_data = 0;
384
#else
385
                rsave->id = 0;  /* mark as invisible */
386
                print_save("save", lmem->space, rsave);
387
                rsave->state.save_level--; /* ditto */
388
                rsave->client_data = 0;
389
#endif
390
                /* Inherit the allocated space count -- */
391
                /* we need this for triggering a GC. */
392
                print_save("save", lmem->space, lsave);
393
            }
394
        }
395
#endif
396
5.98k
    }
397
398
14.8k
    alloc_set_in_save(dmem);
399
14.8k
    *psid = sid;
400
14.8k
    return 0;
401
14.8k
}
402
/* Save the state of one space (global or local). */
403
static alloc_save_t *
404
alloc_save_space(gs_ref_memory_t * mem, gs_dual_memory_t * dmem, ulong sid)
405
23.7k
{
406
23.7k
    gs_ref_memory_t save_mem;
407
23.7k
    alloc_save_t *save;
408
23.7k
    clump_t *cp;
409
23.7k
    clump_t *new_cc = NULL;
410
23.7k
    clump_splay_walker sw;
411
412
23.7k
    save_mem = *mem;
413
23.7k
    alloc_close_clump(mem);
414
23.7k
    mem->cc = NULL;
415
23.7k
    gs_memory_status((gs_memory_t *) mem, &mem->previous_status);
416
23.7k
    ialloc_reset(mem);
417
418
    /* Create inner clumps wherever it's worthwhile. */
419
420
1.02M
    for (cp = clump_splay_walk_init(&sw, &save_mem); cp != 0; cp = clump_splay_walk_fwd(&sw)) {
421
999k
        if (cp->ctop - cp->cbot > min_inner_clump_space) {
422
            /* Create an inner clump to cover only the unallocated part. */
423
362k
            clump_t *inner =
424
362k
                gs_raw_alloc_struct_immovable(mem->non_gc_memory, &st_clump,
425
362k
                                              "alloc_save_space(inner)");
426
427
362k
            if (inner == 0)
428
0
                break;   /* maybe should fail */
429
362k
            alloc_init_clump(inner, cp->cbot, cp->ctop, cp->sreloc != 0, cp);
430
362k
            alloc_link_clump(inner, mem);
431
362k
            if_debug2m('u', (gs_memory_t *)mem, "[u]inner clump: cbot="PRI_INTPTR" ctop="PRI_INTPTR"\n",
432
362k
                       (intptr_t) inner->cbot, (intptr_t) inner->ctop);
433
362k
            if (cp == save_mem.cc)
434
23.7k
                new_cc = inner;
435
362k
        }
436
999k
    }
437
23.7k
    mem->cc = new_cc;
438
23.7k
    alloc_open_clump(mem);
439
440
23.7k
    save = gs_alloc_struct((gs_memory_t *) mem, alloc_save_t,
441
23.7k
                           &st_alloc_save, "alloc_save_space(save)");
442
23.7k
    if_debug2m('u', (gs_memory_t *)mem, "[u]save space %u at "PRI_INTPTR"\n",
443
23.7k
               mem->space, (intptr_t) save);
444
23.7k
    if (save == 0) {
445
        /* Free the inner clump structures.  This is the easiest way. */
446
0
        restore_free(mem);
447
0
        *mem = save_mem;
448
0
        return 0;
449
0
    }
450
23.7k
    save->client_data = NULL;
451
23.7k
    save->state = save_mem;
452
23.7k
    save->spaces = dmem->spaces;
453
23.7k
    save->restore_names = (name_memory(mem) == (gs_memory_t *) mem);
454
23.7k
    save->is_current = (dmem->current == mem);
455
23.7k
    save->id = sid;
456
23.7k
    mem->saved = save;
457
23.7k
    if_debug2m('u', (gs_memory_t *)mem, "[u%u]file_save "PRI_INTPTR"\n",
458
23.7k
               mem->space, (intptr_t) mem->streams);
459
23.7k
    mem->streams = 0;
460
23.7k
    mem->total_scanned = 0;
461
23.7k
    mem->total_scanned_after_compacting = 0;
462
23.7k
    if (sid)
463
23.7k
        mem->save_level++;
464
23.7k
    return save;
465
23.7k
}
466
467
/* Record a state change that must be undone for restore, */
468
/* and mark it as having been saved. */
469
int
470
alloc_save_change_in(gs_ref_memory_t *mem, const ref * pcont,
471
                  ref_packed * where, client_name_t cname)
472
117M
{
473
117M
    register alloc_change_t *cp;
474
475
117M
    if (mem->new_mask == 0)
476
117M
        return 0;    /* no saving */
477
238k
    cp = gs_alloc_struct((gs_memory_t *)mem, alloc_change_t,
478
238k
                         &st_alloc_change, "alloc_save_change");
479
238k
    if (cp == 0)
480
0
        return -1;
481
238k
    cp->next = mem->changes;
482
238k
    cp->where = where;
483
238k
    if (pcont == NULL)
484
0
        cp->offset = AC_OFFSET_STATIC;
485
238k
    else if (r_is_array(pcont) || r_has_type(pcont, t_dictionary))
486
238k
        cp->offset = AC_OFFSET_REF;
487
0
    else if (r_is_struct(pcont))
488
0
        cp->offset = (byte *) where - (byte *) pcont->value.pstruct;
489
0
    else {
490
0
        if_debug3('u', "Bad type %u for save!  pcont = "PRI_INTPTR", where = "PRI_INTPTR"\n",
491
0
                 r_type(pcont), (intptr_t) pcont, (intptr_t) where);
492
0
        gs_abort((const gs_memory_t *)mem);
493
0
    }
494
238k
    if (r_is_packed(where))
495
32.1k
        *(ref_packed *)&cp->contents = *where;
496
206k
    else {
497
206k
        ref_assign_inline(&cp->contents, (ref *) where);
498
206k
        r_set_attrs((ref *) where, l_new);
499
206k
    }
500
238k
    mem->changes = cp;
501
#ifdef DEBUG
502
    if (gs_debug_c('U')) {
503
        dmlprintf1((const gs_memory_t *)mem, "[U]save(%s)", client_name_string(cname));
504
        alloc_save_print((const gs_memory_t *)mem, cp, false);
505
    }
506
#endif
507
238k
    return 0;
508
238k
}
509
int
510
alloc_save_change(gs_dual_memory_t * dmem, const ref * pcont,
511
                  ref_packed * where, client_name_t cname)
512
117M
{
513
117M
    gs_ref_memory_t *mem =
514
117M
        (pcont == NULL ? dmem->space_local :
515
117M
         dmem->spaces_indexed[r_space(pcont) >> r_space_shift]);
516
517
117M
    return alloc_save_change_in(mem, pcont, where, cname);
518
117M
}
519
520
/* Allocate a structure for recording an allocation event. */
521
int
522
alloc_save_change_alloc(gs_ref_memory_t *mem, client_name_t cname, alloc_change_t **pcp)
523
11.2M
{
524
11.2M
    register alloc_change_t *cp;
525
526
11.2M
    if (mem->new_mask == 0)
527
10.5M
        return 0;    /* no saving */
528
687k
    cp = gs_alloc_struct((gs_memory_t *)mem, alloc_change_t,
529
687k
                         &st_alloc_change, "alloc_save_change");
530
687k
    if (cp == 0)
531
0
        return_error(gs_error_VMerror);
532
687k
    cp->next = mem->changes;
533
687k
    cp->where = 0;
534
687k
    cp->offset = AC_OFFSET_ALLOCATED;
535
687k
    make_null(&cp->contents);
536
687k
    *pcp = cp;
537
687k
    return 1;
538
687k
}
539
540
/* Remove an AC_OFFSET_ALLOCATED element. */
541
void
542
alloc_save_remove(gs_ref_memory_t *mem, ref_packed *obj, client_name_t cname)
543
693
{
544
693
    alloc_change_t **cpp = &mem->changes;
545
546
32.4k
    for (; *cpp != NULL;) {
547
31.7k
        alloc_change_t *cp = *cpp;
548
549
31.7k
        if (cp->offset == AC_OFFSET_ALLOCATED && cp->where == obj) {
550
693
            if (mem->scan_limit == cp)
551
0
                mem->scan_limit = cp->next;
552
693
            *cpp = cp->next;
553
693
            gs_free_object((gs_memory_t *)mem, cp, "alloc_save_remove");
554
693
        } else
555
31.0k
            cpp = &(*cpp)->next;
556
31.7k
    }
557
693
}
558
559
/* Filter save change lists. */
560
static inline void
561
alloc_save__filter_changes_in_space(gs_ref_memory_t *mem)
562
107k
{
563
    /* This is a special function, which is called
564
       from the garbager after setting marks and before collecting
565
       unused space. Therefore it just resets marks for
566
       elements being released instead releasing them really. */
567
107k
    alloc_change_t **cpp = &mem->changes;
568
569
518k
    for (; *cpp != NULL; ) {
570
411k
        alloc_change_t *cp = *cpp;
571
572
411k
        if (cp->offset == AC_OFFSET_ALLOCATED && !check_l_mark(cp->where)) {
573
248k
            obj_header_t *pre = (obj_header_t *)cp - 1;
574
575
248k
            *cpp = cp->next;
576
248k
            cp->where = 0;
577
248k
            if (mem->scan_limit == cp)
578
2
                mem->scan_limit = cp->next;
579
248k
            o_set_unmarked(pre);
580
248k
        } else
581
163k
            cpp = &(*cpp)->next;
582
411k
    }
583
107k
}
584
585
/* Filter save change lists. */
586
void
587
alloc_save__filter_changes(gs_ref_memory_t *memory)
588
89.1k
{
589
89.1k
    gs_ref_memory_t *mem = memory;
590
591
196k
    for  (; mem; mem = &mem->saved->state)
592
107k
        alloc_save__filter_changes_in_space(mem);
593
89.1k
}
594
595
/* Return (the id of) the innermost externally visible save object, */
596
/* i.e., the innermost save with a non-zero ID. */
597
ulong
598
alloc_save_current_id(const gs_dual_memory_t * dmem)
599
14.8k
{
600
14.8k
    const alloc_save_t *save = dmem->space_local->saved;
601
602
14.8k
    while (save != 0 && save->id == 0)
603
0
        save = save->state.saved;
604
14.8k
    if (save)
605
14.8k
        return save->id;
606
607
    /* This should never happen, if it does, return a totally
608
     * impossible value.
609
     */
610
0
    return (ulong)-1;
611
14.8k
}
612
alloc_save_t *
613
alloc_save_current(const gs_dual_memory_t * dmem)
614
14.8k
{
615
14.8k
    return alloc_find_save(dmem, alloc_save_current_id(dmem));
616
14.8k
}
617
618
/* Test whether a reference would be invalidated by a restore. */
619
bool
620
alloc_is_since_save(const void *vptr, const alloc_save_t * save)
621
195k
{
622
    /* A reference postdates a save iff it is in a clump allocated */
623
    /* since the save (including any carried-over inner clumps). */
624
625
195k
    const char *const ptr = (const char *)vptr;
626
195k
    register gs_ref_memory_t *mem = save->space_local;
627
628
195k
    if_debug2m('U', (gs_memory_t *)mem, "[U]is_since_save "PRI_INTPTR", "PRI_INTPTR":\n",
629
195k
               (intptr_t) ptr, (intptr_t) save);
630
195k
    if (mem->saved == 0) { /* This is a special case, the final 'restore' from */
631
        /* alloc_restore_all. */
632
8.88k
        return true;
633
8.88k
    }
634
    /* Check against clumps allocated since the save. */
635
    /* (There may have been intermediate saves as well.) */
636
186k
    for (;; mem = &mem->saved->state) {
637
186k
        if_debug1m('U', (gs_memory_t *)mem, "[U]checking mem="PRI_INTPTR"\n", (intptr_t) mem);
638
186k
        if (ptr_is_within_mem_clumps(ptr, mem)) {
639
1
            if_debug0m('U', (gs_memory_t *)mem, "[U+]found\n");
640
1
            return true;
641
1
        }
642
186k
        if_debug1m('U', (gs_memory_t *)mem, "[U-]not in any chunks belonging to "PRI_INTPTR"\n", (intptr_t) mem);
643
186k
        if (mem->saved == save) { /* We've checked all the more recent saves, */
644
            /* must be OK. */
645
186k
            break;
646
186k
        }
647
186k
    }
648
649
    /*
650
     * If we're about to do a global restore (a restore to the level 0),
651
     * and there is only one context using this global VM
652
     * (the normal case, in which global VM is saved by the
653
     * outermost save), we also have to check the global save.
654
     * Global saves can't be nested, which makes things easy.
655
     */
656
186k
    if (save->state.save_level == 0 /* Restoring to save level 0 - see bug 688157, 688161 */ &&
657
186k
        (mem = save->space_global) != save->space_local &&
658
186k
        save->space_global->num_contexts == 1
659
186k
        ) {
660
8.90k
        if_debug1m('U', (gs_memory_t *)mem, "[U]checking global mem="PRI_INTPTR"\n", (intptr_t) mem);
661
8.90k
        if (ptr_is_within_mem_clumps(ptr, mem)) {
662
0
            if_debug0m('U', (gs_memory_t *)mem, "[U+]  found\n");
663
0
            return true;
664
0
        }
665
8.90k
    }
666
186k
    return false;
667
668
186k
#undef ptr
669
186k
}
670
671
/* Test whether a name would be invalidated by a restore. */
672
bool
673
alloc_name_is_since_save(const gs_memory_t *mem,
674
                         const ref * pnref, const alloc_save_t * save)
675
9.45k
{
676
9.45k
    const name_string_t *pnstr;
677
678
9.45k
    if (!save->restore_names)
679
9.45k
        return false;
680
0
    pnstr = names_string_inline(mem->gs_lib_ctx->gs_name_table, pnref);
681
0
    if (pnstr->foreign_string)
682
0
        return false;
683
0
    return alloc_is_since_save(pnstr->string_bytes, save);
684
0
}
685
bool
686
alloc_name_index_is_since_save(const gs_memory_t *mem,
687
                               uint nidx, const alloc_save_t *save)
688
0
{
689
0
    const name_string_t *pnstr;
690
691
0
    if (!save->restore_names)
692
0
        return false;
693
0
    pnstr = names_index_string_inline(mem->gs_lib_ctx->gs_name_table, nidx);
694
0
    if (pnstr->foreign_string)
695
0
        return false;
696
0
    return alloc_is_since_save(pnstr->string_bytes, save);
697
0
}
698
699
/* Check whether any names have been created since a given save */
700
/* that might be released by the restore. */
701
bool
702
alloc_any_names_since_save(const alloc_save_t * save)
703
23.7k
{
704
23.7k
    return save->restore_names;
705
23.7k
}
706
707
/* Get the saved state with a given ID. */
708
alloc_save_t *
709
alloc_find_save(const gs_dual_memory_t * dmem, ulong sid)
710
37.6k
{
711
37.6k
    alloc_save_t *sprev = dmem->space_local->saved;
712
713
37.6k
    if (sid == 0)
714
0
        return 0;   /* invalid id */
715
37.6k
    while (sprev != 0) {
716
37.6k
        if (sprev->id == sid)
717
37.6k
            return sprev;
718
0
        sprev = sprev->state.saved;
719
0
    }
720
0
    return 0;
721
37.6k
}
722
723
/* Get the client data from a saved state. */
724
void *
725
alloc_save_client_data(const alloc_save_t * save)
726
14.8k
{
727
14.8k
    return save->client_data;
728
14.8k
}
729
730
/*
731
 * Do one step of restoring the state.  The client is responsible for
732
 * calling alloc_find_save to get the save object, and for ensuring that
733
 * there are no surviving pointers for which alloc_is_since_save is true.
734
 * Return true if the argument was the innermost save, in which case
735
 * this is the last (or only) step.
736
 * Note that "one step" may involve multiple internal steps,
737
 * if this is the outermost restore (which requires restoring both local
738
 * and global VM) or if we created extra save levels to reduce scanning.
739
 */
740
static void restore_finalize(gs_ref_memory_t *);
741
static void restore_space(gs_ref_memory_t *, gs_dual_memory_t *);
742
743
int
744
alloc_restore_step_in(gs_dual_memory_t *dmem, alloc_save_t * save)
745
14.8k
{
746
    /* Get save->space_* now, because the save object will be freed. */
747
14.8k
    gs_ref_memory_t *lmem = save->space_local;
748
14.8k
    gs_ref_memory_t *gmem = save->space_global;
749
14.8k
    gs_ref_memory_t *mem = lmem;
750
14.8k
    alloc_save_t *sprev;
751
14.8k
    int code;
752
753
    /* Finalize all objects before releasing resources or undoing changes. */
754
14.8k
    do {
755
14.8k
        ulong sid;
756
757
14.8k
        sprev = mem->saved;
758
14.8k
        sid = sprev->id;
759
14.8k
        restore_finalize(mem);  /* finalize objects */
760
14.8k
        mem = &sprev->state;
761
14.8k
        if (sid != 0)
762
14.8k
            break;
763
14.8k
    }
764
14.8k
    while (sprev != save);
765
14.8k
    if (mem->save_level == 0) {
766
        /* This is the outermost save, which might also */
767
        /* need to restore global VM. */
768
8.88k
        mem = gmem;
769
8.88k
        if (mem != lmem && mem->saved != 0) {
770
8.88k
            restore_finalize(mem);
771
8.88k
        }
772
8.88k
    }
773
774
    /* Do one (externally visible) step of restoring the state. */
775
14.8k
    mem = lmem;
776
14.8k
    do {
777
14.8k
        ulong sid;
778
779
14.8k
        sprev = mem->saved;
780
14.8k
        sid = sprev->id;
781
14.8k
        code = restore_resources(sprev, mem); /* release other resources */
782
14.8k
        if (code < 0)
783
0
            return code;
784
14.8k
        restore_space(mem, dmem); /* release memory */
785
14.8k
        if (sid != 0)
786
14.8k
            break;
787
14.8k
    }
788
14.8k
    while (sprev != save);
789
790
14.8k
    if (mem->save_level == 0) {
791
        /* This is the outermost save, which might also */
792
        /* need to restore global VM. */
793
8.88k
        mem = gmem;
794
8.88k
        if (mem != lmem && mem->saved != 0) {
795
8.88k
            code = restore_resources(mem->saved, mem);
796
8.88k
            if (code < 0)
797
0
                return code;
798
8.88k
            restore_space(mem, dmem);
799
8.88k
        }
800
8.88k
        alloc_set_not_in_save(dmem);
801
8.88k
    } else {     /* Set the l_new attribute in all slots that are now new. */
802
5.98k
        ulong scanned;
803
804
5.98k
        code = save_set_new(mem, true, false, &scanned);
805
5.98k
        if (code < 0)
806
0
            return code;
807
5.98k
    }
808
809
14.8k
    return sprev == save;
810
14.8k
}
811
/* Restore the memory of one space, by undoing changes and freeing */
812
/* memory allocated since the save. */
813
static void
814
restore_space(gs_ref_memory_t * mem, gs_dual_memory_t *dmem)
815
23.7k
{
816
23.7k
    alloc_save_t *save = mem->saved;
817
23.7k
    alloc_save_t saved;
818
819
23.7k
    print_save("restore", mem->space, save);
820
821
    /* Undo changes since the save. */
822
23.7k
    {
823
23.7k
        register alloc_change_t *cp = mem->changes;
824
825
700k
        while (cp) {
826
#ifdef DEBUG
827
            if (gs_debug_c('U')) {
828
                dmlputs((const gs_memory_t *)mem, "[U]restore");
829
                alloc_save_print((const gs_memory_t *)mem, cp, true);
830
            }
831
#endif
832
676k
            if (cp->offset == AC_OFFSET_ALLOCATED)
833
676k
                DO_NOTHING;
834
238k
            else
835
238k
            if (r_is_packed(&cp->contents))
836
32.1k
                *cp->where = *(ref_packed *) & cp->contents;
837
206k
            else
838
206k
                ref_assign_inline((ref *) cp->where, &cp->contents);
839
676k
            cp = cp->next;
840
676k
        }
841
23.7k
    }
842
843
    /* Free memory allocated since the save. */
844
    /* Note that this frees all clumps except the inner ones */
845
    /* belonging to this level. */
846
23.7k
    saved = *save;
847
23.7k
    restore_free(mem);
848
849
    /* Restore the allocator state. */
850
23.7k
    {
851
23.7k
        int num_contexts = mem->num_contexts; /* don't restore */
852
853
23.7k
        *mem = saved.state;
854
23.7k
        mem->num_contexts = num_contexts;
855
23.7k
    }
856
23.7k
    alloc_open_clump(mem);
857
858
    /* Make the allocator current if it was current before the save. */
859
23.7k
    if (saved.is_current) {
860
14.8k
        dmem->current = mem;
861
14.8k
        dmem->current_space = mem->space;
862
14.8k
    }
863
23.7k
}
864
865
/* Restore to the initial state, releasing all resources. */
866
/* The allocator is no longer usable after calling this routine! */
867
int
868
alloc_restore_all(i_ctx_t *i_ctx_p)
869
8.88k
{
870
    /*
871
     * Save the memory pointers, since freeing space_local will also
872
     * free dmem itself.
873
     */
874
8.88k
    gs_ref_memory_t *lmem = idmemory->space_local;
875
8.88k
    gs_ref_memory_t *gmem = idmemory->space_global;
876
8.88k
    gs_ref_memory_t *smem = idmemory->space_system;
877
878
8.88k
    gs_ref_memory_t *mem;
879
8.88k
    int code;
880
881
    /* Restore to a state outside any saves. */
882
18.1k
    while (lmem->save_level != 0) {
883
9.27k
        vm_save_t *vmsave = alloc_save_client_data(alloc_save_current(idmemory));
884
9.27k
        if (vmsave->gsave) {
885
9.27k
            gs_grestoreall_for_restore(i_ctx_p->pgs, vmsave->gsave);
886
9.27k
        }
887
9.27k
        vmsave->gsave = 0;
888
9.27k
        code = alloc_restore_step_in(idmemory, lmem->saved);
889
890
9.27k
        if (code < 0)
891
0
            return code;
892
9.27k
    }
893
894
    /* Finalize memory. */
895
8.88k
    restore_finalize(lmem);
896
8.88k
    if ((mem = (gs_ref_memory_t *)lmem->stable_memory) != lmem)
897
8.88k
        restore_finalize(mem);
898
8.88k
    if (gmem != lmem && gmem->num_contexts == 1) {
899
8.88k
        restore_finalize(gmem);
900
8.88k
        if ((mem = (gs_ref_memory_t *)gmem->stable_memory) != gmem)
901
8.88k
            restore_finalize(mem);
902
8.88k
    }
903
8.88k
    restore_finalize(smem);
904
905
    /* Release resources other than memory, using fake */
906
    /* save and memory objects. */
907
8.88k
    {
908
8.88k
        alloc_save_t empty_save;
909
910
8.88k
        empty_save.spaces = idmemory->spaces;
911
8.88k
        empty_save.restore_names = false; /* don't bother to release */
912
8.88k
        code = restore_resources(&empty_save, NULL);
913
8.88k
        if (code < 0)
914
0
            return code;
915
8.88k
    }
916
917
    /* Finally, release memory. */
918
8.88k
    restore_free(lmem);
919
8.88k
    if ((mem = (gs_ref_memory_t *)lmem->stable_memory) != lmem)
920
8.88k
        restore_free(mem);
921
8.88k
    if (gmem != lmem) {
922
8.88k
        if (!--(gmem->num_contexts)) {
923
8.88k
            restore_free(gmem);
924
8.88k
            if ((mem = (gs_ref_memory_t *)gmem->stable_memory) != gmem)
925
8.88k
                restore_free(mem);
926
8.88k
        }
927
8.88k
    }
928
8.88k
    restore_free(smem);
929
8.88k
    return 0;
930
8.88k
}
931
932
/*
933
 * Finalize objects that will be freed by a restore.
934
 * Note that we must temporarily disable the freeing operations
935
 * of the allocator while doing this.
936
 */
937
static void
938
restore_finalize(gs_ref_memory_t * mem)
939
68.1k
{
940
68.1k
    clump_t *cp;
941
68.1k
    clump_splay_walker sw;
942
943
68.1k
    alloc_close_clump(mem);
944
68.1k
    gs_enable_free((gs_memory_t *) mem, false);
945
1.86M
    for (cp = clump_splay_walk_bwd_init(&sw, mem); cp != 0; cp = clump_splay_walk_bwd(&sw)) {
946
13.0M
        SCAN_CLUMP_OBJECTS(cp)
947
13.0M
            DO_ALL
948
13.0M
            struct_proc_finalize((*finalize)) =
949
13.0M
            pre->o_type->finalize;
950
13.0M
        if (finalize != 0) {
951
525k
            if_debug2m('u', (gs_memory_t *)mem, "[u]restore finalizing %s "PRI_INTPTR"\n",
952
525k
                       struct_type_name_string(pre->o_type),
953
525k
                       (intptr_t) (pre + 1));
954
525k
            (*finalize) ((gs_memory_t *) mem, pre + 1);
955
525k
        }
956
13.0M
        END_OBJECTS_SCAN
957
1.79M
    }
958
68.1k
    gs_enable_free((gs_memory_t *) mem, true);
959
68.1k
}
960
961
/* Release resources for a restore */
962
static int
963
restore_resources(alloc_save_t * sprev, gs_ref_memory_t * mem)
964
32.6k
{
965
32.6k
    int code;
966
#ifdef DEBUG
967
    if (mem) {
968
        /* Note restoring of the file list. */
969
        if_debug4m('u', (gs_memory_t *)mem, "[u%u]file_restore "PRI_INTPTR" => "PRI_INTPTR" for "PRI_INTPTR"\n",
970
                   mem->space, (intptr_t)mem->streams,
971
                   (intptr_t)sprev->state.streams, (intptr_t)sprev);
972
    }
973
#endif
974
975
    /* Remove entries from font and character caches. */
976
32.6k
    code = font_restore(sprev);
977
32.6k
    if (code < 0)
978
0
        return code;
979
980
    /* Adjust the name table. */
981
32.6k
    if (sprev->restore_names)
982
0
        names_restore(mem->gs_lib_ctx->gs_name_table, sprev);
983
32.6k
    return 0;
984
32.6k
}
985
986
/* Release memory for a restore. */
987
static void
988
restore_free(gs_ref_memory_t * mem)
989
68.1k
{
990
    /* Free clumps allocated since the save. */
991
68.1k
    gs_free_all((gs_memory_t *) mem);
992
68.1k
}
993
994
/* Forget a save, by merging this level with the next outer one. */
995
static void file_forget_save(gs_ref_memory_t *);
996
static void combine_space(gs_ref_memory_t *);
997
static void forget_changes(gs_ref_memory_t *);
998
int
999
alloc_forget_save_in(gs_dual_memory_t *dmem, alloc_save_t * save)
1000
0
{
1001
0
    gs_ref_memory_t *mem = save->space_local;
1002
0
    alloc_save_t *sprev;
1003
0
    ulong scanned;
1004
0
    int code;
1005
1006
0
    print_save("forget_save", mem->space, save);
1007
1008
    /* Iteratively combine the current level with the previous one. */
1009
0
    do {
1010
0
        sprev = mem->saved;
1011
0
        if (sprev->id != 0)
1012
0
            mem->save_level--;
1013
0
        if (mem->save_level != 0) {
1014
0
            alloc_change_t *chp = mem->changes;
1015
1016
0
            code = save_set_new(&sprev->state, true, false, &scanned);
1017
0
            if (code < 0)
1018
0
                return code;
1019
            /* Concatenate the changes chains. */
1020
0
            if (chp == 0)
1021
0
                mem->changes = sprev->state.changes;
1022
0
            else {
1023
0
                while (chp->next != 0)
1024
0
                    chp = chp->next;
1025
0
                chp->next = sprev->state.changes;
1026
0
            }
1027
0
            file_forget_save(mem);
1028
0
            combine_space(mem); /* combine memory */
1029
0
        } else {
1030
0
            forget_changes(mem);
1031
0
            code = save_set_new(mem, false, false, &scanned);
1032
0
            if (code < 0)
1033
0
                return code;
1034
0
            file_forget_save(mem);
1035
0
            combine_space(mem); /* combine memory */
1036
            /* This is the outermost save, which might also */
1037
            /* need to combine global VM. */
1038
0
            mem = save->space_global;
1039
0
            if (mem != save->space_local && mem->saved != 0) {
1040
0
                forget_changes(mem);
1041
0
                code = save_set_new(mem, false, false, &scanned);
1042
0
                if (code < 0)
1043
0
                    return code;
1044
0
                file_forget_save(mem);
1045
0
                combine_space(mem);
1046
0
            }
1047
0
            alloc_set_not_in_save(dmem);
1048
0
            break;   /* must be outermost */
1049
0
        }
1050
0
    }
1051
0
    while (sprev != save);
1052
0
    return 0;
1053
0
}
1054
/* Combine the clumps of the next outer level with those of the current one, */
1055
/* and free the bookkeeping structures. */
1056
static void
1057
combine_space(gs_ref_memory_t * mem)
1058
0
{
1059
0
    alloc_save_t *saved = mem->saved;
1060
0
    gs_ref_memory_t *omem = &saved->state;
1061
0
    clump_t *cp;
1062
0
    clump_splay_walker sw;
1063
1064
0
    alloc_close_clump(mem);
1065
0
    for (cp = clump_splay_walk_init(&sw, mem); cp != 0; cp = clump_splay_walk_fwd(&sw)) {
1066
0
        if (cp->outer == 0)
1067
0
            alloc_link_clump(cp, omem);
1068
0
        else {
1069
0
            clump_t *outer = cp->outer;
1070
1071
0
            outer->inner_count--;
1072
0
            if (mem->cc == cp)
1073
0
                mem->cc = outer;
1074
0
            if (mem->cfreed.cp == cp)
1075
0
                mem->cfreed.cp = outer;
1076
            /* "Free" the header of the inner clump, */
1077
            /* and any immediately preceding gap left by */
1078
            /* the GC having compacted the outer clump. */
1079
0
            {
1080
0
                obj_header_t *hp = (obj_header_t *) outer->cbot;
1081
1082
0
                hp->o_pad = 0;
1083
0
                hp->o_alone = 0;
1084
0
                hp->o_size = (char *)(cp->chead + 1)
1085
0
                    - (char *)(hp + 1);
1086
0
                hp->o_type = &st_bytes;
1087
                /* The following call is probably not safe. */
1088
#if 0       /* **************** */
1089
                gs_free_object((gs_memory_t *) mem,
1090
                               hp + 1, "combine_space(header)");
1091
#endif /* **************** */
1092
0
            }
1093
            /* Update the outer clump's allocation pointers. */
1094
0
            outer->cbot = cp->cbot;
1095
0
            outer->rcur = cp->rcur;
1096
0
            outer->rtop = cp->rtop;
1097
0
            outer->ctop = cp->ctop;
1098
0
            outer->has_refs |= cp->has_refs;
1099
0
            gs_free_object(mem->non_gc_memory, cp,
1100
0
                           "combine_space(inner)");
1101
0
        }
1102
0
    }
1103
    /* Update relevant parts of allocator state. */
1104
0
    mem->root = omem->root;
1105
0
    mem->allocated += omem->allocated;
1106
0
    mem->gc_allocated += omem->allocated;
1107
0
    mem->lost.objects += omem->lost.objects;
1108
0
    mem->lost.refs += omem->lost.refs;
1109
0
    mem->lost.strings += omem->lost.strings;
1110
0
    mem->saved = omem->saved;
1111
0
    mem->previous_status = omem->previous_status;
1112
0
    {       /* Concatenate free lists. */
1113
0
        int i;
1114
1115
0
        for (i = 0; i < num_freelists; i++) {
1116
0
            obj_header_t *olist = omem->freelists[i];
1117
0
            obj_header_t *list = mem->freelists[i];
1118
1119
0
            if (olist == 0);
1120
0
            else if (list == 0)
1121
0
                mem->freelists[i] = olist;
1122
0
            else {
1123
0
                while (*(obj_header_t **) list != 0)
1124
0
                    list = *(obj_header_t **) list;
1125
0
                *(obj_header_t **) list = olist;
1126
0
            }
1127
0
        }
1128
0
        if (omem->largest_free_size > mem->largest_free_size)
1129
0
            mem->largest_free_size = omem->largest_free_size;
1130
0
    }
1131
0
    gs_free_object((gs_memory_t *) mem, saved, "combine_space(saved)");
1132
0
    alloc_open_clump(mem);
1133
0
}
1134
/* Free the changes chain for a level 0 .forgetsave, */
1135
/* resetting the l_new flag in the changed refs. */
1136
static void
1137
forget_changes(gs_ref_memory_t * mem)
1138
0
{
1139
0
    register alloc_change_t *chp = mem->changes;
1140
0
    alloc_change_t *next;
1141
1142
0
    for (; chp; chp = next) {
1143
0
        ref_packed *prp = chp->where;
1144
1145
0
        if_debug1m('U', (gs_memory_t *)mem, "[U]forgetting change "PRI_INTPTR"\n", (intptr_t) chp);
1146
0
        if (chp->offset == AC_OFFSET_ALLOCATED)
1147
0
            DO_NOTHING;
1148
0
        else
1149
0
        if (!r_is_packed(prp))
1150
0
            r_clear_attrs((ref *) prp, l_new);
1151
0
        next = chp->next;
1152
0
        gs_free_object((gs_memory_t *) mem, chp, "forget_changes");
1153
0
    }
1154
0
    mem->changes = 0;
1155
0
}
1156
/* Update the streams list when forgetting a save. */
1157
static void
1158
file_forget_save(gs_ref_memory_t * mem)
1159
0
{
1160
0
    const alloc_save_t *save = mem->saved;
1161
0
    stream *streams = mem->streams;
1162
0
    stream *saved_streams = save->state.streams;
1163
1164
0
    if_debug4m('u', (gs_memory_t *)mem, "[u%d]file_forget_save "PRI_INTPTR" + "PRI_INTPTR" for "PRI_INTPTR"\n",
1165
0
               mem->space, (intptr_t) streams, (intptr_t) saved_streams,
1166
0
               (intptr_t) save);
1167
0
    if (streams == 0)
1168
0
        mem->streams = saved_streams;
1169
0
    else if (saved_streams != 0) {
1170
0
        while (streams->next != 0)
1171
0
            streams = streams->next;
1172
0
        streams->next = saved_streams;
1173
0
        saved_streams->prev = streams;
1174
0
    }
1175
0
}
1176
1177
static inline int
1178
mark_allocated(void *obj, bool to_new, uint *psize)
1179
215k
{
1180
215k
    obj_header_t *pre = (obj_header_t *)obj - 1;
1181
215k
    uint size = pre_obj_contents_size(pre);
1182
215k
    ref_packed *prp = (ref_packed *) (pre + 1);
1183
215k
    ref_packed *next = (ref_packed *) ((char *)prp + size);
1184
#ifdef ALIGNMENT_ALIASING_BUG
1185
                ref *rpref;
1186
# define RP_REF(rp) (rpref = (ref *)rp, rpref)
1187
#else
1188
19.8M
# define RP_REF(rp) ((ref *)rp)
1189
215k
#endif
1190
1191
215k
    if (pre->o_type != &st_refs) {
1192
        /* Must not happen. */
1193
0
        if_debug0('u', "Wrong object type when expected a ref.\n");
1194
0
        return_error(gs_error_Fatal);
1195
0
    }
1196
    /* We know that every block of refs ends with */
1197
    /* a full-size ref, so we only need the end check */
1198
    /* when we encounter one of those. */
1199
215k
    if (to_new)
1200
10.2M
        while (1) {
1201
10.2M
            if (r_is_packed(prp))
1202
510k
                prp++;
1203
9.77M
            else {
1204
9.77M
                RP_REF(prp)->tas.type_attrs |= l_new;
1205
9.77M
                prp += packed_per_ref;
1206
9.77M
                if (prp >= next)
1207
105k
                    break;
1208
9.77M
            }
1209
10.2M
    } else
1210
10.6M
        while (1) {
1211
10.6M
            if (r_is_packed(prp))
1212
530k
                prp++;
1213
10.1M
            else {
1214
10.1M
                RP_REF(prp)->tas.type_attrs &= ~l_new;
1215
10.1M
                prp += packed_per_ref;
1216
10.1M
                if (prp >= next)
1217
110k
                    break;
1218
10.1M
            }
1219
10.6M
        }
1220
215k
#undef RP_REF
1221
215k
    *psize = size;
1222
215k
    return 0;
1223
215k
}
1224
1225
/* Check if a block contains refs marked by garbager. */
1226
static bool
1227
check_l_mark(void *obj)
1228
305k
{
1229
305k
    obj_header_t *pre = (obj_header_t *)obj - 1;
1230
305k
    uint size = pre_obj_contents_size(pre);
1231
305k
    ref_packed *prp = (ref_packed *) (pre + 1);
1232
305k
    ref_packed *next = (ref_packed *) ((char *)prp + size);
1233
#ifdef ALIGNMENT_ALIASING_BUG
1234
                ref *rpref;
1235
# define RP_REF(rp) (rpref = (ref *)rp, rpref)
1236
#else
1237
305k
# define RP_REF(rp) ((ref *)rp)
1238
305k
#endif
1239
1240
    /* We know that every block of refs ends with */
1241
    /* a full-size ref, so we only need the end check */
1242
    /* when we encounter one of those. */
1243
725M
    while (1) {
1244
725M
        if (r_is_packed(prp)) {
1245
15.3M
            if (r_has_pmark(prp))
1246
360
                return true;
1247
15.3M
            prp++;
1248
709M
        } else {
1249
709M
            if (r_has_attr(RP_REF(prp), l_mark))
1250
57.2k
                return true;
1251
709M
            prp += packed_per_ref;
1252
709M
            if (prp >= next)
1253
248k
                return false;
1254
709M
        }
1255
725M
    }
1256
305k
#undef RP_REF
1257
305k
}
1258
1259
/* Set or reset the l_new attribute in every relevant slot. */
1260
/* This includes every slot on the current change chain, */
1261
/* and every (ref) slot allocated at this save level. */
1262
/* Return the number of bytes of data scanned. */
1263
static int
1264
save_set_new(gs_ref_memory_t * mem, bool to_new, bool set_limit, ulong *pscanned)
1265
11.9k
{
1266
11.9k
    ulong scanned = 0;
1267
11.9k
    int code;
1268
1269
    /* Handle the change chain. */
1270
11.9k
    code = save_set_new_changes(mem, to_new, set_limit);
1271
11.9k
    if (code < 0)
1272
0
        return code;
1273
1274
    /* Handle newly allocated ref objects. */
1275
62.0k
    SCAN_MEM_CLUMPS(mem, cp) {
1276
62.0k
        if (cp->has_refs) {
1277
32.3k
            bool has_refs = false;
1278
32.3k
            bool no_outer_clump = !(cp->outer != NULL && cp->ctop - cp->cbot > min_inner_clump_space);
1279
429k
            SCAN_CLUMP_OBJECTS(cp)
1280
429k
                DO_ALL
1281
429k
                if_debug3m('U', (gs_memory_t *)mem, "[U]set_new scan("PRI_INTPTR"(%u), %d)\n",
1282
429k
                           (intptr_t) pre, size, to_new);
1283
429k
            if (pre->o_type == &st_refs) {
1284
                /* These are refs, scan them. */
1285
107k
                ref_packed *prp = (ref_packed *) (pre + 1);
1286
107k
                uint size;
1287
                /* In order to avoid the garbager unnecessarily scanning for refs that may
1288
                   not exist, we reset the "has_refs" flag if we're doing a save (and leave
1289
                   it alone during a restore. This generally works because when we get here
1290
                   during a save, we've already created the inner clump, and during a restore,
1291
                   we've already restored to the outer clump.
1292
                   Where is goes wrong is when there isn't sufficient space left in the clump
1293
                   for any new allocations, so we won't have created the inner clump, and then
1294
                   the flag isn't retained. Spot that above, and only meddle with the flag here if
1295
                   an inner clump has been created.
1296
                 */
1297
107k
                has_refs = true && (to_new | no_outer_clump);
1298
107k
                code = mark_allocated(prp, to_new, &size);
1299
107k
                if (code < 0)
1300
0
                    return code;
1301
107k
                scanned += size;
1302
107k
            } else
1303
322k
                scanned += sizeof(obj_header_t);
1304
429k
            END_OBJECTS_SCAN
1305
32.3k
                cp->has_refs = has_refs;
1306
32.3k
        }
1307
62.0k
    }
1308
62.0k
    END_CLUMPS_SCAN
1309
11.9k
    if_debug2m('u', (gs_memory_t *)mem, "[u]set_new (%s) scanned %ld\n",
1310
11.9k
               (to_new ? "restore" : "save"), scanned);
1311
11.9k
    *pscanned = scanned;
1312
11.9k
    return 0;
1313
11.9k
}
1314
1315
/* Drop redundant elements from the changes list and set l_new. */
1316
static void
1317
drop_redundant_changes(gs_ref_memory_t * mem)
1318
0
{
1319
0
    register alloc_change_t *chp = mem->changes, *chp_back = NULL, *chp_forth;
1320
1321
    /* As we are trying to throw away redundant changes in an allocator instance
1322
       that has already been "saved", the active clump has already been "closed"
1323
       by alloc_save_space(). Using such an allocator (for example, by calling
1324
       gs_free_object() with it) can leave it in an unstable state, causing
1325
       problems for the garbage collector (specifically, the clump validator code).
1326
       So, before we might use it, open the current clump, and then close it again
1327
       when we're done.
1328
     */
1329
0
    alloc_open_clump(mem);
1330
1331
    /* First reverse the list and set all. */
1332
0
    for (; chp; chp = chp_forth) {
1333
0
        chp_forth = chp->next;
1334
0
        if (chp->offset != AC_OFFSET_ALLOCATED) {
1335
0
            ref_packed *prp = chp->where;
1336
1337
0
            if (!r_is_packed(prp)) {
1338
0
                ref *const rp = (ref *)prp;
1339
1340
0
                rp->tas.type_attrs |= l_new;
1341
0
            }
1342
0
        }
1343
0
        chp->next = chp_back;
1344
0
        chp_back = chp;
1345
0
    }
1346
0
    mem->changes = chp_back;
1347
0
    chp_back = NULL;
1348
    /* Then filter, reset and reverse again. */
1349
0
    for (chp = mem->changes; chp; chp = chp_forth) {
1350
0
        chp_forth = chp->next;
1351
0
        if (chp->offset != AC_OFFSET_ALLOCATED) {
1352
0
            ref_packed *prp = chp->where;
1353
1354
0
            if (!r_is_packed(prp)) {
1355
0
                ref *const rp = (ref *)prp;
1356
1357
0
                if ((rp->tas.type_attrs & l_new) == 0) {
1358
0
                    if (mem->scan_limit == chp)
1359
0
                        mem->scan_limit = chp_back;
1360
0
                    if (mem->changes == chp)
1361
0
                        mem->changes = chp_back;
1362
0
                    gs_free_object((gs_memory_t *)mem, chp, "alloc_save_remove");
1363
0
                    continue;
1364
0
                } else
1365
0
                    rp->tas.type_attrs &= ~l_new;
1366
0
            }
1367
0
        }
1368
0
        chp->next = chp_back;
1369
0
        chp_back = chp;
1370
0
    }
1371
0
    mem->changes = chp_back;
1372
1373
0
    alloc_close_clump(mem);
1374
0
}
1375
1376
/* Set or reset the l_new attribute on the changes chain. */
1377
static int
1378
save_set_new_changes(gs_ref_memory_t * mem, bool to_new, bool set_limit)
1379
11.9k
{
1380
11.9k
    register alloc_change_t *chp;
1381
11.9k
    register uint new = (to_new ? l_new : 0);
1382
11.9k
    ulong scanned = 0;
1383
1384
11.9k
    if (!to_new && mem->total_scanned_after_compacting > max_repeated_scan * 16) {
1385
0
        mem->total_scanned_after_compacting = 0;
1386
0
        drop_redundant_changes(mem);
1387
0
    }
1388
152k
    for (chp = mem->changes; chp; chp = chp->next) {
1389
140k
        if (chp->offset == AC_OFFSET_ALLOCATED) {
1390
107k
            if (chp->where != 0) {
1391
107k
                uint size;
1392
107k
                int code = mark_allocated((void *)chp->where, to_new, &size);
1393
1394
107k
                if (code < 0)
1395
0
                    return code;
1396
107k
                scanned += size;
1397
107k
            }
1398
107k
        } else {
1399
32.4k
            ref_packed *prp = chp->where;
1400
1401
32.4k
            if_debug3m('U', (gs_memory_t *)mem, "[U]set_new "PRI_INTPTR": ("PRI_INTPTR", %d)\n",
1402
32.4k
                       (intptr_t)chp, (intptr_t)prp, new);
1403
32.4k
            if (!r_is_packed(prp)) {
1404
32.4k
                ref *const rp = (ref *) prp;
1405
1406
32.4k
                rp->tas.type_attrs =
1407
32.4k
                    (rp->tas.type_attrs & ~l_new) + new;
1408
32.4k
            }
1409
32.4k
        }
1410
140k
        if (mem->scan_limit == chp)
1411
1
            break;
1412
140k
    }
1413
11.9k
    if (set_limit) {
1414
5.98k
        mem->total_scanned_after_compacting += scanned;
1415
5.98k
        if (scanned  + mem->total_scanned >= max_repeated_scan) {
1416
1
            mem->scan_limit = mem->changes;
1417
1
            mem->total_scanned = 0;
1418
1
        } else
1419
5.98k
            mem->total_scanned += scanned;
1420
5.98k
    }
1421
11.9k
    return 0;
1422
11.9k
}
1423
1424
gs_memory_t *
1425
gs_save_any_memory(const alloc_save_t *save)
1426
32.6k
{
1427
32.6k
    return((gs_memory_t *)save->space_local);
1428
32.6k
}