Coverage Report

Created: 2025-06-10 06:59

/src/ghostpdl/base/gdevdflt.c
Line
Count
Source (jump to first uncovered line)
1
/* Copyright (C) 2001-2025 Artifex Software, Inc.
2
   All Rights Reserved.
3
4
   This software is provided AS-IS with no warranty, either express or
5
   implied.
6
7
   This software is distributed under license and may not be copied,
8
   modified or distributed except as expressly authorized under the terms
9
   of the license contained in the file LICENSE in this distribution.
10
11
   Refer to licensing information at http://www.artifex.com or contact
12
   Artifex Software, Inc.,  39 Mesa Street, Suite 108A, San Francisco,
13
   CA 94129, USA, for further information.
14
*/
15
16
/* Default device implementation */
17
#include "math_.h"
18
#include "memory_.h"
19
#include "gx.h"
20
#include "gsstruct.h"
21
#include "gxobj.h"
22
#include "gserrors.h"
23
#include "gsropt.h"
24
#include "gxcomp.h"
25
#include "gxdevice.h"
26
#include "gxdevsop.h"
27
#include "gdevp14.h"        /* Needed to patch up the procs after compositor creation */
28
#include "gstrans.h"        /* For gs_pdf14trans_t */
29
#include "gxgstate.h"       /* for gs_image_state_s */
30
31
32
/* defined in gsdpram.c */
33
int gx_default_get_param(gx_device *dev, char *Param, void *list);
34
35
/* ---------------- Default device procedures ---------------- */
36
37
/*
38
 * Set a color model polarity to be additive or subtractive. In either
39
 * case, indicate an error (and don't modify the polarity) if the current
40
 * setting differs from the desired and is not GX_CINFO_POLARITY_UNKNOWN.
41
 */
42
static void
43
set_cinfo_polarity(gx_device * dev, gx_color_polarity_t new_polarity)
44
938k
{
45
#ifdef DEBUG
46
    /* sanity check */
47
    if (new_polarity == GX_CINFO_POLARITY_UNKNOWN) {
48
        dmprintf(dev->memory, "set_cinfo_polarity: illegal operand\n");
49
        return;
50
    }
51
#endif
52
    /*
53
     * The meory devices assume that single color devices are gray.
54
     * This may not be true if SeparationOrder is specified.  Thus only
55
     * change the value if the current value is unknown.
56
     */
57
938k
    if (dev->color_info.polarity == GX_CINFO_POLARITY_UNKNOWN)
58
0
        dev->color_info.polarity = new_polarity;
59
938k
}
60
61
static gx_color_index
62
(*get_encode_color(gx_device *dev))(gx_device *, const gx_color_value *)
63
2.91M
{
64
2.91M
    dev_proc_encode_color(*encode_proc);
65
66
    /* use encode_color if it has been provided */
67
2.91M
    if ((encode_proc = dev_proc(dev, encode_color)) == 0) {
68
938k
        if (dev->color_info.num_components == 1                          &&
69
938k
            dev_proc(dev, map_rgb_color) != 0) {
70
649k
            set_cinfo_polarity(dev, GX_CINFO_POLARITY_ADDITIVE);
71
649k
            encode_proc = gx_backwards_compatible_gray_encode;
72
649k
        } else  if ( (dev->color_info.num_components == 3    )           &&
73
288k
             (encode_proc = dev_proc(dev, map_rgb_color)) != 0  )
74
9.15k
            set_cinfo_polarity(dev, GX_CINFO_POLARITY_ADDITIVE);
75
279k
        else if ( dev->color_info.num_components == 4                    &&
76
279k
                 (encode_proc = dev_proc(dev, map_cmyk_color)) != 0   )
77
0
            set_cinfo_polarity(dev, GX_CINFO_POLARITY_SUBTRACTIVE);
78
938k
    }
79
80
    /*
81
     * If no encode_color procedure at this point, the color model had
82
     * better be monochrome (though not necessarily bi-level). In this
83
     * case, it is assumed to be additive, as that is consistent with
84
     * the pre-DeviceN code.
85
     *
86
     * If this is not the case, then the color model had better be known
87
     * to be separable and linear, for there is no other way to derive
88
     * an encoding. This is the case even for weakly linear and separable
89
     * color models with a known polarity.
90
     */
91
2.91M
    if (encode_proc == 0) {
92
279k
        if (dev->color_info.num_components == 1 && dev->color_info.depth != 0) {
93
279k
            set_cinfo_polarity(dev, GX_CINFO_POLARITY_ADDITIVE);
94
279k
            if (dev->color_info.max_gray == (1 << dev->color_info.depth) - 1)
95
279k
                encode_proc = gx_default_gray_fast_encode;
96
0
            else
97
0
                encode_proc = gx_default_gray_encode;
98
279k
            dev->color_info.separable_and_linear = GX_CINFO_SEP_LIN;
99
279k
        } else if (colors_are_separable_and_linear(&dev->color_info)) {
100
0
            gx_color_value  max_gray = dev->color_info.max_gray;
101
0
            gx_color_value  max_color = dev->color_info.max_color;
102
103
0
            if ( (max_gray & (max_gray + 1)) == 0  &&
104
0
                 (max_color & (max_color + 1)) == 0  )
105
                /* NB should be gx_default_fast_encode_color */
106
0
                encode_proc = gx_default_encode_color;
107
0
            else
108
0
                encode_proc = gx_default_encode_color;
109
0
        }
110
279k
    }
111
112
2.91M
    return encode_proc;
113
2.91M
}
114
115
/*
116
 * Determine if a color model has the properties of a DeviceRGB
117
 * color model. This procedure is, in all likelihood, high-grade
118
 * overkill, but since this is not a performance sensitive area
119
 * no harm is done.
120
 *
121
 * Since there is little benefit to checking the values 0, 1, or
122
 * 1/2, we use the values 1/4, 1/3, and 3/4 in their place. We
123
 * compare the results to see if the intensities match to within
124
 * a tolerance of .01, which is arbitrarily selected.
125
 */
126
127
static bool
128
is_like_DeviceRGB(gx_device * dev)
129
938k
{
130
938k
    frac                            cm_comp_fracs[3];
131
938k
    int                             i;
132
938k
    const gx_device                *cmdev;
133
938k
    const gx_cm_color_map_procs    *cmprocs;
134
135
938k
    if ( dev->color_info.num_components != 3                   ||
136
938k
         dev->color_info.polarity != GX_CINFO_POLARITY_ADDITIVE  )
137
929k
        return false;
138
139
9.15k
    cmprocs = dev_proc(dev, get_color_mapping_procs)(dev, &cmdev);
140
141
    /* check the values 1/4, 1/3, and 3/4 */
142
9.15k
    cmprocs->map_rgb(cmdev, 0, frac_1 / 4, frac_1 / 3, 3 * frac_1 / 4, cm_comp_fracs);
143
144
    /* verify results to .01 */
145
9.15k
    cm_comp_fracs[0] -= frac_1 / 4;
146
9.15k
    cm_comp_fracs[1] -= frac_1 / 3;
147
9.15k
    cm_comp_fracs[2] -= 3 * frac_1 / 4;
148
9.15k
    for ( i = 0;
149
36.6k
           i < 3                            &&
150
36.6k
           -frac_1 / 100 < cm_comp_fracs[i] &&
151
36.6k
           cm_comp_fracs[i] < frac_1 / 100;
152
27.4k
          i++ )
153
27.4k
        ;
154
9.15k
    return i == 3;
155
938k
}
156
157
/*
158
 * Similar to is_like_DeviceRGB, but for DeviceCMYK.
159
 */
160
static bool
161
is_like_DeviceCMYK(gx_device * dev)
162
0
{
163
0
    frac                            cm_comp_fracs[4];
164
0
    int                             i;
165
0
    const gx_device                *cmdev;
166
0
    const gx_cm_color_map_procs    *cmprocs;
167
168
0
    if ( dev->color_info.num_components != 4                      ||
169
0
         dev->color_info.polarity != GX_CINFO_POLARITY_SUBTRACTIVE  )
170
0
        return false;
171
172
0
    cmprocs = dev_proc(dev, get_color_mapping_procs)(dev, &cmdev);
173
    /* check the values 1/4, 1/3, 3/4, and 1/8 */
174
175
0
    cmprocs->map_cmyk(cmdev,
176
0
                      frac_1 / 4,
177
0
                      frac_1 / 3,
178
0
                      3 * frac_1 / 4,
179
0
                      frac_1 / 8,
180
0
                      cm_comp_fracs);
181
182
    /* verify results to .01 */
183
0
    cm_comp_fracs[0] -= frac_1 / 4;
184
0
    cm_comp_fracs[1] -= frac_1 / 3;
185
0
    cm_comp_fracs[2] -= 3 * frac_1 / 4;
186
0
    cm_comp_fracs[3] -= frac_1 / 8;
187
0
    for ( i = 0;
188
0
           i < 4                            &&
189
0
           -frac_1 / 100 < cm_comp_fracs[i] &&
190
0
           cm_comp_fracs[i] < frac_1 / 100;
191
0
          i++ )
192
0
        ;
193
0
    return i == 4;
194
0
}
195
196
/*
197
 * Two default decode_color procedures to use for monochrome devices.
198
 * These will make use of the map_color_rgb routine, and use the first
199
 * component of the returned value or its inverse.
200
 */
201
static int
202
gx_default_1_add_decode_color(
203
    gx_device *     dev,
204
    gx_color_index  color,
205
    gx_color_value  cv[1] )
206
0
{
207
0
    gx_color_value  rgb[3];
208
0
    int             code = dev_proc(dev, map_color_rgb)(dev, color, rgb);
209
210
0
    cv[0] = rgb[0];
211
0
    return code;
212
0
}
213
214
static int
215
gx_default_1_sub_decode_color(
216
    gx_device *     dev,
217
    gx_color_index  color,
218
    gx_color_value  cv[1] )
219
0
{
220
0
    gx_color_value  rgb[3];
221
0
    int             code = dev_proc(dev, map_color_rgb)(dev, color, rgb);
222
223
0
    cv[0] = gx_max_color_value - rgb[0];
224
0
    return code;
225
0
}
226
227
/*
228
 * A default decode_color procedure for DeviceCMYK color models.
229
 *
230
 * There is no generally accurate way of decode a DeviceCMYK color using
231
 * the map_color_rgb method. Unfortunately, there are many older devices
232
 * employ the DeviceCMYK color model but don't provide a decode_color
233
 * method. The code below works on the assumption of full undercolor
234
 * removal and black generation. This may not be accurate, but is the
235
 * best that can be done in the general case without other information.
236
 */
237
static int
238
gx_default_cmyk_decode_color(
239
    gx_device *     dev,
240
    gx_color_index  color,
241
    gx_color_value  cv[4] )
242
0
{
243
    /* The device may have been determined to be 'separable'. */
244
0
    if (colors_are_separable_and_linear(&dev->color_info))
245
0
        return gx_default_decode_color(dev, color, cv);
246
0
    else {
247
0
        int i, code = dev_proc(dev, map_color_rgb)(dev, color, cv);
248
0
        gx_color_value min_val = gx_max_color_value;
249
250
0
        for (i = 0; i < 3; i++) {
251
0
            if ((cv[i] = gx_max_color_value - cv[i]) < min_val)
252
0
                min_val = cv[i];
253
0
        }
254
0
        for (i = 0; i < 3; i++)
255
0
            cv[i] -= min_val;
256
0
        cv[3] = min_val;
257
258
0
        return code;
259
0
    }
260
0
}
261
262
/*
263
 * Special case default color decode routine for a canonical 1-bit per
264
 * component DeviceCMYK color model.
265
 */
266
static int
267
gx_1bit_cmyk_decode_color(
268
    gx_device *     dev,
269
    gx_color_index  color,
270
    gx_color_value  cv[4] )
271
0
{
272
0
    cv[0] = ((color & 0x8) != 0 ? gx_max_color_value : 0);
273
0
    cv[1] = ((color & 0x4) != 0 ? gx_max_color_value : 0);
274
0
    cv[2] = ((color & 0x2) != 0 ? gx_max_color_value : 0);
275
0
    cv[3] = ((color & 0x1) != 0 ? gx_max_color_value : 0);
276
0
    return 0;
277
0
}
278
279
static int
280
(*get_decode_color(gx_device * dev))(gx_device *, gx_color_index, gx_color_value *)
281
2.91M
{
282
    /* if a method has already been provided, use it */
283
2.91M
    if (dev_proc(dev, decode_color) != 0)
284
1.98M
        return dev_proc(dev, decode_color);
285
286
    /*
287
     * If a map_color_rgb method has been provided, we may be able to use it.
288
     * Currently this will always be the case, as a default value will be
289
     * provided this method. While this default may not be correct, we are not
290
     * introducing any new errors by using it.
291
     */
292
938k
    if (dev_proc(dev, map_color_rgb) != 0) {
293
294
        /* if the device has a DeviceRGB color model, use map_color_rgb */
295
938k
        if (is_like_DeviceRGB(dev))
296
9.15k
            return dev_proc(dev, map_color_rgb);
297
298
        /* If separable ande linear then use default */
299
929k
        if (colors_are_separable_and_linear(&dev->color_info))
300
279k
            return &gx_default_decode_color;
301
302
        /* gray devices can be handled based on their polarity */
303
649k
        if ( dev->color_info.num_components == 1 &&
304
649k
             dev->color_info.gray_index == 0       )
305
649k
            return dev->color_info.polarity == GX_CINFO_POLARITY_ADDITIVE
306
649k
                       ? &gx_default_1_add_decode_color
307
649k
                       : &gx_default_1_sub_decode_color;
308
309
        /*
310
         * There is no accurate way to decode colors for cmyk devices
311
         * using the map_color_rgb procedure. Unfortunately, this cases
312
         * arises with some frequency, so it is useful not to generate an
313
         * error in this case. The mechanism below assumes full undercolor
314
         * removal and black generation, which may not be accurate but are
315
         * the  best that can be done in the general case in the absence of
316
         * other information.
317
         *
318
         * As a hack to handle certain common devices, if the map_rgb_color
319
         * routine is cmyk_1bit_map_color_rgb, we provide a direct one-bit
320
         * decoder.
321
         */
322
0
        if (is_like_DeviceCMYK(dev)) {
323
0
            if (dev_proc(dev, map_color_rgb) == cmyk_1bit_map_color_rgb)
324
0
                return &gx_1bit_cmyk_decode_color;
325
0
            else
326
0
                return &gx_default_cmyk_decode_color;
327
0
        }
328
0
    }
329
330
    /*
331
     * The separable and linear case will already have been handled by
332
     * code in gx_device_fill_in_procs, so at this point we can only hope
333
     * the device doesn't use the decode_color method.
334
     */
335
0
    if (colors_are_separable_and_linear(&dev->color_info))
336
0
        return &gx_default_decode_color;
337
0
    else
338
0
        return &gx_error_decode_color;
339
0
}
340
341
/*
342
 * If a device has a linear and separable encode color function then
343
 * set up the comp_bits, comp_mask, and comp_shift fields.  Note:  This
344
 * routine assumes that the colorant shift factor decreases with the
345
 * component number.  See check_device_separable() for a general routine.
346
 */
347
void
348
set_linear_color_bits_mask_shift(gx_device * dev)
349
630
{
350
630
    int i;
351
630
    byte gray_index = dev->color_info.gray_index;
352
630
    gx_color_value max_gray = dev->color_info.max_gray;
353
630
    gx_color_value max_color = dev->color_info.max_color;
354
630
    int num_components = dev->color_info.num_components;
355
356
3.78k
#define comp_bits (dev->color_info.comp_bits)
357
1.89k
#define comp_mask (dev->color_info.comp_mask)
358
5.04k
#define comp_shift (dev->color_info.comp_shift)
359
630
    comp_shift[num_components - 1] = 0;
360
1.89k
    for ( i = num_components - 1 - 1; i >= 0; i-- ) {
361
1.26k
        comp_shift[i] = comp_shift[i + 1] +
362
1.26k
            ( i == gray_index ? ilog2(max_gray + 1) : ilog2(max_color + 1) );
363
1.26k
    }
364
2.52k
    for ( i = 0; i < num_components; i++ ) {
365
1.89k
        comp_bits[i] = ( i == gray_index ?
366
0
                         ilog2(max_gray + 1) :
367
1.89k
                         ilog2(max_color + 1) );
368
1.89k
        comp_mask[i] = (((gx_color_index)1 << comp_bits[i]) - 1)
369
1.89k
                                               << comp_shift[i];
370
1.89k
    }
371
630
#undef comp_bits
372
630
#undef comp_mask
373
630
#undef comp_shift
374
630
}
375
376
/* Determine if a number is a power of two.  Works only for integers. */
377
110k
#define is_power_of_two(x) ((((x) - 1) & (x)) == 0)
378
379
/* A brutish way to check if we are a HT device */
380
bool
381
device_is_contone(gx_device* pdev)
382
32.2k
{
383
32.2k
    if ((float)pdev->color_info.depth / (float)pdev->color_info.num_components >= 8)
384
32.2k
        return true;
385
0
    return false;
386
32.2k
}
387
388
/*
389
 * This routine attempts to determine if a device's encode_color procedure
390
 * produces gx_color_index values which are 'separable'.  A 'separable' value
391
 * means two things.  Each colorant has a group of bits in the gx_color_index
392
 * value which is associated with the colorant.  These bits are separate.
393
 * I.e. no bit is associated with more than one colorant.  If a colorant has
394
 * a value of zero then the bits associated with that colorant are zero.
395
 * These criteria allows the graphics library to build gx_color_index values
396
 * from the colorant values and not using the encode_color routine. This is
397
 * useful and necessary for overprinting, halftoning more
398
 * than four colorants, and the fast shading logic.  However this information
399
 * is not setup by the default device macros.  Thus we attempt to derive this
400
 * information.
401
 *
402
 * This routine can be fooled.  However it usually errors on the side of
403
 * assuing that a device is not separable.  In this case it does not create
404
 * any new problems.  In theory it can be fooled into believing that a device
405
 * is separable when it is not.  However we do not know of any real cases that
406
 * will fool it.
407
 */
408
void
409
check_device_separable(gx_device * dev)
410
2.07M
{
411
2.07M
    int i, j;
412
2.07M
    gx_device_color_info * pinfo = &(dev->color_info);
413
2.07M
    int num_components = pinfo->num_components;
414
2.07M
    byte comp_shift[GX_DEVICE_COLOR_MAX_COMPONENTS];
415
2.07M
    byte comp_bits[GX_DEVICE_COLOR_MAX_COMPONENTS];
416
2.07M
    gx_color_index comp_mask[GX_DEVICE_COLOR_MAX_COMPONENTS];
417
2.07M
    gx_color_index color_index;
418
2.07M
    gx_color_index current_bits = 0;
419
2.07M
    gx_color_value colorants[GX_DEVICE_COLOR_MAX_COMPONENTS] = { 0 };
420
421
    /* If this is already known then we do not need to do anything. */
422
2.07M
    if (pinfo->separable_and_linear != GX_CINFO_UNKNOWN_SEP_LIN)
423
1.38M
        return;
424
    /* If there is not an encode_color_routine then we cannot proceed. */
425
686k
    if (dev_proc(dev, encode_color) == NULL)
426
649k
        return;
427
    /*
428
     * If these values do not check then we should have an error.  However
429
     * we do not know what to do so we are simply exitting and hoping that
430
     * the device will clean up its values.
431
     */
432
36.9k
    if (pinfo->gray_index < num_components &&
433
36.9k
        (!pinfo->dither_grays || pinfo->dither_grays != (pinfo->max_gray + 1)))
434
0
            return;
435
36.9k
    if ((num_components > 1 || pinfo->gray_index != 0) &&
436
36.9k
        (!pinfo->dither_colors || pinfo->dither_colors != (pinfo->max_color + 1)))
437
0
        return;
438
    /*
439
     * If dither_grays or dither_colors is not a power of two then we assume
440
     * that the device is not separable.  In theory this not a requirement
441
     * but it has been true for all of the devices that we have seen so far.
442
     * This assumption also makes the logic in the next section easier.
443
     */
444
36.9k
    if (!is_power_of_two(pinfo->dither_grays)
445
36.9k
                    || !is_power_of_two(pinfo->dither_colors))
446
0
        return;
447
    /*
448
     * Use the encode_color routine to try to verify that the device is
449
     * separable and to determine the shift count, etc. for each colorant.
450
     */
451
36.9k
    color_index = dev_proc(dev, encode_color)(dev, colorants);
452
36.9k
    if (color_index != 0)
453
20
        return;    /* Exit if zero colorants produce a non zero index */
454
92.2k
    for (i = 0; i < num_components; i++) {
455
        /* Check this colorant = max with all others = 0 */
456
165k
        for (j = 0; j < num_components; j++)
457
110k
            colorants[j] = 0;
458
55.2k
        colorants[i] = gx_max_color_value;
459
55.2k
        color_index = dev_proc(dev, encode_color)(dev, colorants);
460
55.2k
        if (color_index == 0)  /* If no bits then we have a problem */
461
0
            return;
462
55.2k
        if (color_index & current_bits)  /* Check for overlapping bits */
463
0
            return;
464
55.2k
        current_bits |= color_index;
465
55.2k
        comp_mask[i] = color_index;
466
        /* Determine the shift count for the colorant */
467
274k
        for (j = 0; (color_index & 1) == 0 && color_index != 0; j++)
468
219k
            color_index >>= 1;
469
55.2k
        comp_shift[i] = j;
470
        /* Determine the bit count for the colorant */
471
302k
        for (j = 0; color_index != 0; j++) {
472
247k
            if ((color_index & 1) == 0) /* check for non-consecutive bits */
473
0
                return;
474
247k
            color_index >>= 1;
475
247k
        }
476
55.2k
        comp_bits[i] = j;
477
        /*
478
         * We could verify that the bit count matches the dither_grays or
479
         * dither_colors values, but this is not really required unless we
480
         * are halftoning.  Thus we are allowing for non equal colorant sizes.
481
         */
482
        /* Check for overlap with other colorant if they are all maxed */
483
165k
        for (j = 0; j < num_components; j++)
484
110k
            colorants[j] = gx_max_color_value;
485
55.2k
        colorants[i] = 0;
486
55.2k
        color_index = dev_proc(dev, encode_color)(dev, colorants);
487
55.2k
        if (color_index & comp_mask[i])  /* Check for overlapping bits */
488
0
            return;
489
55.2k
    }
490
    /* If we get to here then the device is very likely to be separable. */
491
36.9k
    pinfo->separable_and_linear = GX_CINFO_SEP_LIN;
492
92.2k
    for (i = 0; i < num_components; i++) {
493
55.2k
        pinfo->comp_shift[i] = comp_shift[i];
494
55.2k
        pinfo->comp_bits[i] = comp_bits[i];
495
55.2k
        pinfo->comp_mask[i] = comp_mask[i];
496
55.2k
    }
497
    /*
498
     * The 'gray_index' value allows one colorant to have a different number
499
     * of shades from the remainder.  Since the default macros only guess at
500
     * an appropriate value, we are setting its value based upon the data that
501
     * we just determined.  Note:  In some cases the macros set max_gray to 0
502
     * and dither_grays to 1.  This is not valid so ignore this case.
503
     */
504
36.9k
    for (i = 0; i < num_components; i++) {
505
36.9k
        int dither = 1 << comp_bits[i];
506
507
36.9k
        if (pinfo->dither_grays != 1 && dither == pinfo->dither_grays) {
508
36.9k
            pinfo->gray_index = i;
509
36.9k
            break;
510
36.9k
        }
511
36.9k
    }
512
36.9k
}
513
#undef is_power_of_two
514
515
/*
516
 * This routine attempts to determine if a device's encode_color procedure
517
 * produces values that are in keeping with "the standard encoding".
518
 * i.e. that given by pdf14_encode_color.
519
 *
520
 * It works by first checking to see if we are separable_and_linear. If not
521
 * we cannot hope to be the standard encoding.
522
 *
523
 * Then, we check to see if we are a dev device - if so, we must be
524
 * compatible.
525
 *
526
 * Failing that it checks to see if the encoding uses the appropriate
527
 * bit ranges for each individual color.
528
 *
529
 * If those (quick) tests pass, then we try the slower test of checking
530
 * the encodings. We can do this far faster than an exhaustive check, by
531
 * relying on the separability and linearity - we only need to check 256
532
 * possible values.
533
 *
534
 * The one tricky section there is to avoid the special case for
535
 * gx_no_color_index_value (which can occur when we have a 32bit
536
 * gx_color_index type, and a 4 component device, such as cmyk).
537
 * We allow the encoding to be off in the lower bits for that case.
538
 */
539
void check_device_compatible_encoding(gx_device *dev)
540
1.46M
{
541
1.46M
    gx_device_color_info * pinfo = &(dev->color_info);
542
1.46M
    int num_components = pinfo->num_components;
543
1.46M
    gx_color_index mul, color_index;
544
1.46M
    int i, j;
545
1.46M
    gx_color_value colorants[GX_DEVICE_COLOR_MAX_COMPONENTS];
546
1.46M
    bool deep = device_is_deep(dev);
547
548
1.46M
    if (pinfo->separable_and_linear == GX_CINFO_UNKNOWN_SEP_LIN)
549
0
        check_device_separable(dev);
550
1.46M
    if (pinfo->separable_and_linear != GX_CINFO_SEP_LIN)
551
1.46M
        return;
552
553
630
    if (dev_proc(dev, ret_devn_params)(dev) != NULL) {
554
        /* We know all devn devices are compatible. */
555
0
        pinfo->separable_and_linear = GX_CINFO_SEP_LIN_STANDARD;
556
0
        return;
557
0
    }
558
559
    /* Do the superficial quick checks */
560
2.52k
    for (i = 0; i < num_components; i++) {
561
1.89k
        int shift = (num_components-1-i)*(8<<deep);
562
1.89k
        if (pinfo->comp_shift[i] != shift)
563
0
            goto bad;
564
1.89k
        if (pinfo->comp_bits[i] != 8<<deep)
565
0
            goto bad;
566
1.89k
        if (pinfo->comp_mask[i] != ((gx_color_index)(deep ? 65535 : 255))<<shift)
567
0
            goto bad;
568
1.89k
    }
569
570
    /* OK, now we are going to be slower. */
571
630
    mul = 0;
572
2.52k
    for (i = 0; i < num_components; i++) {
573
1.89k
        mul = (mul<<(8<<deep)) | 1;
574
1.89k
    }
575
    /* In the deep case, we don't exhaustively test */
576
161k
    for (i = 0; i < 255; i++) {
577
642k
        for (j = 0; j < num_components; j++)
578
481k
            colorants[j] = i*257;
579
160k
        color_index = dev_proc(dev, encode_color)(dev, colorants);
580
160k
        if (color_index != i*mul*(deep ? 257 : 1) && (i*mul*(deep ? 257 : 1) != gx_no_color_index_value))
581
0
            goto bad;
582
160k
    }
583
    /* If we reach here, then every value matched, except possibly the last one.
584
     * We'll allow that to differ just in the lowest bits. */
585
630
    if ((color_index | mul) != 255*mul*(deep ? 257 : 1))
586
0
        goto bad;
587
588
630
    pinfo->separable_and_linear = GX_CINFO_SEP_LIN_STANDARD;
589
630
    return;
590
0
bad:
591
0
    pinfo->separable_and_linear = GX_CINFO_SEP_LIN_NON_STANDARD;
592
0
}
593
594
int gx_default_no_copy_alpha_hl_color(gx_device * dev, const byte * data, int data_x, int raster, gx_bitmap_id id, int x, int y, int width, int height, const gx_drawing_color *pdcolor, int depth);
595
596
/* Fill in NULL procedures in a device procedure record. */
597
void
598
gx_device_fill_in_procs(register gx_device * dev)
599
2.91M
{
600
2.91M
    fill_dev_proc(dev, open_device, gx_default_open_device);
601
2.91M
    fill_dev_proc(dev, get_initial_matrix, gx_default_get_initial_matrix);
602
2.91M
    fill_dev_proc(dev, sync_output, gx_default_sync_output);
603
2.91M
    fill_dev_proc(dev, output_page, gx_default_output_page);
604
2.91M
    fill_dev_proc(dev, close_device, gx_default_close_device);
605
    /* see below for map_rgb_color */
606
2.91M
    fill_dev_proc(dev, map_color_rgb, gx_default_map_color_rgb);
607
    /* NOT fill_rectangle */
608
2.91M
    fill_dev_proc(dev, copy_mono, gx_default_copy_mono);
609
2.91M
    fill_dev_proc(dev, copy_color, gx_default_copy_color);
610
2.91M
    fill_dev_proc(dev, get_params, gx_default_get_params);
611
2.91M
    fill_dev_proc(dev, put_params, gx_default_put_params);
612
    /* see below for map_cmyk_color */
613
2.91M
    fill_dev_proc(dev, get_page_device, gx_default_get_page_device);
614
2.91M
    fill_dev_proc(dev, get_alpha_bits, gx_default_get_alpha_bits);
615
2.91M
    fill_dev_proc(dev, copy_alpha, gx_default_copy_alpha);
616
2.91M
    fill_dev_proc(dev, fill_path, gx_default_fill_path);
617
2.91M
    fill_dev_proc(dev, stroke_path, gx_default_stroke_path);
618
2.91M
    fill_dev_proc(dev, fill_mask, gx_default_fill_mask);
619
2.91M
    fill_dev_proc(dev, fill_trapezoid, gx_default_fill_trapezoid);
620
2.91M
    fill_dev_proc(dev, fill_parallelogram, gx_default_fill_parallelogram);
621
2.91M
    fill_dev_proc(dev, fill_triangle, gx_default_fill_triangle);
622
2.91M
    fill_dev_proc(dev, draw_thin_line, gx_default_draw_thin_line);
623
2.91M
    fill_dev_proc(dev, get_alpha_bits, gx_default_get_alpha_bits);
624
2.91M
    fill_dev_proc(dev, strip_tile_rectangle, gx_default_strip_tile_rectangle);
625
2.91M
    fill_dev_proc(dev, strip_copy_rop2, gx_default_strip_copy_rop2);
626
2.91M
    fill_dev_proc(dev, strip_tile_rect_devn, gx_default_strip_tile_rect_devn);
627
2.91M
    fill_dev_proc(dev, get_clipping_box, gx_default_get_clipping_box);
628
2.91M
    fill_dev_proc(dev, begin_typed_image, gx_default_begin_typed_image);
629
2.91M
    fill_dev_proc(dev, get_bits_rectangle, gx_default_get_bits_rectangle);
630
2.91M
    fill_dev_proc(dev, composite, gx_default_composite);
631
2.91M
    fill_dev_proc(dev, get_hardware_params, gx_default_get_hardware_params);
632
2.91M
    fill_dev_proc(dev, text_begin, gx_default_text_begin);
633
634
2.91M
    set_dev_proc(dev, encode_color, get_encode_color(dev));
635
2.91M
    if (dev->color_info.num_components == 3)
636
1.54M
        set_dev_proc(dev, map_rgb_color, dev_proc(dev, encode_color));
637
2.91M
    if (dev->color_info.num_components == 4)
638
0
        set_dev_proc(dev, map_cmyk_color, dev_proc(dev, encode_color));
639
640
2.91M
    if (colors_are_separable_and_linear(&dev->color_info)) {
641
1.84M
        fill_dev_proc(dev, encode_color, gx_default_encode_color);
642
1.84M
        fill_dev_proc(dev, map_cmyk_color, gx_default_encode_color);
643
1.84M
        fill_dev_proc(dev, map_rgb_color, gx_default_encode_color);
644
1.84M
    } else {
645
        /* if it isn't set now punt */
646
1.07M
        fill_dev_proc(dev, encode_color, gx_error_encode_color);
647
1.07M
        fill_dev_proc(dev, map_cmyk_color, gx_error_encode_color);
648
1.07M
        fill_dev_proc(dev, map_rgb_color, gx_error_encode_color);
649
1.07M
    }
650
651
    /*
652
     * Fill in the color mapping procedures and the component index
653
     * assignment procedure if they have not been provided by the client.
654
     *
655
     * Because it is difficult to provide default encoding procedures
656
     * that handle level inversion, this code needs to check both
657
     * the number of components and the polarity of color model.
658
     */
659
2.91M
    switch (dev->color_info.num_components) {
660
1.37M
    case 1:     /* DeviceGray or DeviceInvertGray */
661
        /*
662
         * If not gray then the device must provide the color
663
         * mapping procs.
664
         */
665
1.37M
        if (dev->color_info.polarity == GX_CINFO_POLARITY_ADDITIVE) {
666
1.37M
            fill_dev_proc( dev,
667
1.37M
                       get_color_mapping_procs,
668
1.37M
                       gx_default_DevGray_get_color_mapping_procs );
669
1.37M
        } else
670
0
            fill_dev_proc(dev, get_color_mapping_procs, gx_error_get_color_mapping_procs);
671
1.37M
        fill_dev_proc( dev,
672
1.37M
                       get_color_comp_index,
673
1.37M
                       gx_default_DevGray_get_color_comp_index );
674
1.37M
        break;
675
676
1.54M
    case 3:
677
1.54M
        if (dev->color_info.polarity == GX_CINFO_POLARITY_ADDITIVE) {
678
1.54M
            fill_dev_proc( dev,
679
1.54M
                       get_color_mapping_procs,
680
1.54M
                       gx_default_DevRGB_get_color_mapping_procs );
681
1.54M
            fill_dev_proc( dev,
682
1.54M
                       get_color_comp_index,
683
1.54M
                       gx_default_DevRGB_get_color_comp_index );
684
1.54M
        } else {
685
0
            fill_dev_proc(dev, get_color_mapping_procs, gx_error_get_color_mapping_procs);
686
0
            fill_dev_proc(dev, get_color_comp_index, gx_error_get_color_comp_index);
687
0
        }
688
1.54M
        break;
689
690
0
    case 4:
691
0
        fill_dev_proc(dev, get_color_mapping_procs, gx_default_DevCMYK_get_color_mapping_procs);
692
0
        fill_dev_proc(dev, get_color_comp_index, gx_default_DevCMYK_get_color_comp_index);
693
0
        break;
694
0
    default:    /* Unknown color model - set error handlers */
695
0
        if (dev_proc(dev, get_color_mapping_procs) == NULL) {
696
0
            fill_dev_proc(dev, get_color_mapping_procs, gx_error_get_color_mapping_procs);
697
0
            fill_dev_proc(dev, get_color_comp_index, gx_error_get_color_comp_index);
698
0
        }
699
2.91M
    }
700
701
2.91M
    set_dev_proc(dev, decode_color, get_decode_color(dev));
702
2.91M
    fill_dev_proc(dev, get_profile, gx_default_get_profile);
703
2.91M
    fill_dev_proc(dev, set_graphics_type_tag, gx_default_set_graphics_type_tag);
704
705
2.91M
    fill_dev_proc(dev, fill_rectangle_hl_color, gx_default_fill_rectangle_hl_color);
706
2.91M
    fill_dev_proc(dev, include_color_space, gx_default_include_color_space);
707
2.91M
    fill_dev_proc(dev, fill_linear_color_scanline, gx_default_fill_linear_color_scanline);
708
2.91M
    fill_dev_proc(dev, fill_linear_color_trapezoid, gx_default_fill_linear_color_trapezoid);
709
2.91M
    fill_dev_proc(dev, fill_linear_color_triangle, gx_default_fill_linear_color_triangle);
710
2.91M
    fill_dev_proc(dev, update_spot_equivalent_colors, gx_default_update_spot_equivalent_colors);
711
2.91M
    fill_dev_proc(dev, ret_devn_params, gx_default_ret_devn_params);
712
2.91M
    fill_dev_proc(dev, fillpage, gx_default_fillpage);
713
2.91M
    fill_dev_proc(dev, copy_alpha_hl_color, gx_default_no_copy_alpha_hl_color);
714
715
2.91M
    fill_dev_proc(dev, begin_transparency_group, gx_default_begin_transparency_group);
716
2.91M
    fill_dev_proc(dev, end_transparency_group, gx_default_end_transparency_group);
717
718
2.91M
    fill_dev_proc(dev, begin_transparency_mask, gx_default_begin_transparency_mask);
719
2.91M
    fill_dev_proc(dev, end_transparency_mask, gx_default_end_transparency_mask);
720
2.91M
    fill_dev_proc(dev, discard_transparency_layer, gx_default_discard_transparency_layer);
721
722
2.91M
    fill_dev_proc(dev, push_transparency_state, gx_default_push_transparency_state);
723
2.91M
    fill_dev_proc(dev, pop_transparency_state, gx_default_pop_transparency_state);
724
725
2.91M
    fill_dev_proc(dev, put_image, gx_default_put_image);
726
727
2.91M
    fill_dev_proc(dev, dev_spec_op, gx_default_dev_spec_op);
728
2.91M
    fill_dev_proc(dev, copy_planes, gx_default_copy_planes);
729
2.91M
    fill_dev_proc(dev, process_page, gx_default_process_page);
730
2.91M
    fill_dev_proc(dev, transform_pixel_region, gx_default_transform_pixel_region);
731
2.91M
    fill_dev_proc(dev, fill_stroke_path, gx_default_fill_stroke_path);
732
2.91M
    fill_dev_proc(dev, lock_pattern, gx_default_lock_pattern);
733
2.91M
}
734
735
736
int
737
gx_default_open_device(gx_device * dev)
738
28.4k
{
739
    /* Initialize the separable status if not known. */
740
28.4k
    check_device_separable(dev);
741
28.4k
    return 0;
742
28.4k
}
743
744
/* Get the initial matrix for a device with inverted Y. */
745
/* This includes essentially all printers and displays. */
746
/* Supports LeadingEdge, but no margins or viewports */
747
void
748
gx_default_get_initial_matrix(gx_device * dev, register gs_matrix * pmat)
749
2.03M
{
750
    /* NB this device has no paper margins */
751
2.03M
    double fs_res = dev->HWResolution[0] / 72.0;
752
2.03M
    double ss_res = dev->HWResolution[1] / 72.0;
753
754
2.03M
    switch(dev->LeadingEdge & LEADINGEDGE_MASK) {
755
0
    case 1: /* 90 degrees */
756
0
        pmat->xx = 0;
757
0
        pmat->xy = -ss_res;
758
0
        pmat->yx = -fs_res;
759
0
        pmat->yy = 0;
760
0
        pmat->tx = (float)dev->width;
761
0
        pmat->ty = (float)dev->height;
762
0
        break;
763
0
    case 2: /* 180 degrees */
764
0
        pmat->xx = -fs_res;
765
0
        pmat->xy = 0;
766
0
        pmat->yx = 0;
767
0
        pmat->yy = ss_res;
768
0
        pmat->tx = (float)dev->width;
769
0
        pmat->ty = 0;
770
0
        break;
771
0
    case 3: /* 270 degrees */
772
0
        pmat->xx = 0;
773
0
        pmat->xy = ss_res;
774
0
        pmat->yx = fs_res;
775
0
        pmat->yy = 0;
776
0
        pmat->tx = 0;
777
0
        pmat->ty = 0;
778
0
        break;
779
0
    default:
780
2.03M
    case 0:
781
2.03M
        pmat->xx = fs_res;
782
2.03M
        pmat->xy = 0;
783
2.03M
        pmat->yx = 0;
784
2.03M
        pmat->yy = -ss_res;
785
2.03M
        pmat->tx = 0;
786
2.03M
        pmat->ty = (float)dev->height;
787
        /****** tx/y is WRONG for devices with ******/
788
        /****** arbitrary initial matrix ******/
789
2.03M
        break;
790
2.03M
    }
791
2.03M
}
792
/* Get the initial matrix for a device with upright Y. */
793
/* This includes just a few printers and window systems. */
794
void
795
gx_upright_get_initial_matrix(gx_device * dev, register gs_matrix * pmat)
796
87.1k
{
797
87.1k
    pmat->xx = dev->HWResolution[0] / 72.0; /* x_pixels_per_inch */
798
87.1k
    pmat->xy = 0;
799
87.1k
    pmat->yx = 0;
800
87.1k
    pmat->yy = dev->HWResolution[1] / 72.0; /* y_pixels_per_inch */
801
    /****** tx/y is WRONG for devices with ******/
802
    /****** arbitrary initial matrix ******/
803
87.1k
    pmat->tx = 0;
804
87.1k
    pmat->ty = 0;
805
87.1k
}
806
807
int
808
gx_default_sync_output(gx_device * dev) /* lgtm [cpp/useless-expression] */
809
88.4k
{
810
88.4k
    return 0;
811
88.4k
}
812
813
int
814
gx_default_output_page(gx_device * dev, int num_copies, int flush)
815
1
{
816
1
    int code = dev_proc(dev, sync_output)(dev);
817
818
1
    if (code >= 0)
819
1
        code = gx_finish_output_page(dev, num_copies, flush);
820
1
    return code;
821
1
}
822
823
int
824
gx_default_close_device(gx_device * dev)
825
47.4k
{
826
47.4k
    return 0;
827
47.4k
}
828
829
gx_device *
830
gx_default_get_page_device(gx_device * dev)
831
31.9k
{
832
31.9k
    return NULL;
833
31.9k
}
834
gx_device *
835
gx_page_device_get_page_device(gx_device * dev)
836
1.27M
{
837
1.27M
    return dev;
838
1.27M
}
839
840
int
841
gx_default_get_alpha_bits(gx_device * dev, graphics_object_type type)
842
2.95M
{
843
2.95M
    return (type == go_text ? dev->color_info.anti_alias.text_bits :
844
2.95M
            dev->color_info.anti_alias.graphics_bits);
845
2.95M
}
846
847
void
848
gx_default_get_clipping_box(gx_device * dev, gs_fixed_rect * pbox)
849
850k
{
850
850k
    pbox->p.x = 0;
851
850k
    pbox->p.y = 0;
852
850k
    pbox->q.x = int2fixed(dev->width);
853
850k
    pbox->q.y = int2fixed(dev->height);
854
850k
}
855
void
856
gx_get_largest_clipping_box(gx_device * dev, gs_fixed_rect * pbox)
857
0
{
858
0
    pbox->p.x = min_fixed;
859
0
    pbox->p.y = min_fixed;
860
0
    pbox->q.x = max_fixed;
861
0
    pbox->q.y = max_fixed;
862
0
}
863
864
int
865
gx_no_composite(gx_device * dev, gx_device ** pcdev,
866
                        const gs_composite_t * pcte,
867
                        gs_gstate * pgs, gs_memory_t * memory,
868
                        gx_device *cdev)
869
0
{
870
0
    return_error(gs_error_unknownerror);  /* not implemented */
871
0
}
872
int
873
gx_default_composite(gx_device * dev, gx_device ** pcdev,
874
                             const gs_composite_t * pcte,
875
                             gs_gstate * pgs, gs_memory_t * memory,
876
                             gx_device *cdev)
877
913k
{
878
913k
    return pcte->type->procs.create_default_compositor
879
913k
        (pcte, pcdev, dev, pgs, memory);
880
913k
}
881
int
882
gx_null_composite(gx_device * dev, gx_device ** pcdev,
883
                          const gs_composite_t * pcte,
884
                          gs_gstate * pgs, gs_memory_t * memory,
885
                          gx_device *cdev)
886
0
{
887
0
    *pcdev = dev;
888
0
    return 0;
889
0
}
890
891
/*
892
 * Default handler for creating a compositor device when writing the clist. */
893
int
894
gx_default_composite_clist_write_update(const gs_composite_t *pcte, gx_device * dev,
895
                gx_device ** pcdev, gs_gstate * pgs, gs_memory_t * mem)
896
15.2k
{
897
15.2k
    *pcdev = dev;   /* Do nothing -> return the same device */
898
15.2k
    return 0;
899
15.2k
}
900
901
/* Default handler for adjusting a compositor's CTM. */
902
int
903
gx_default_composite_adjust_ctm(gs_composite_t *pcte, int x0, int y0, gs_gstate *pgs)
904
4.41M
{
905
4.41M
    return 0;
906
4.41M
}
907
908
/*
909
 * Default check for closing compositor.
910
 */
911
gs_compositor_closing_state
912
gx_default_composite_is_closing(const gs_composite_t *this, gs_composite_t **pcte, gx_device *dev)
913
0
{
914
0
    return COMP_ENQUEUE;
915
0
}
916
917
/*
918
 * Default check whether a next operation is friendly to the compositor.
919
 */
920
bool
921
gx_default_composite_is_friendly(const gs_composite_t *this, byte cmd0, byte cmd1)
922
101k
{
923
101k
    return false;
924
101k
}
925
926
/*
927
 * Default handler for updating the clist device when reading a compositing
928
 * device.
929
 */
930
int
931
gx_default_composite_clist_read_update(gs_composite_t *pxcte, gx_device * cdev,
932
                gx_device * tdev, gs_gstate * pgs, gs_memory_t * mem)
933
4.41M
{
934
4.41M
    return 0;     /* Do nothing */
935
4.41M
}
936
937
/*
938
 * Default handler for get_cropping returns no cropping.
939
 */
940
int
941
gx_default_composite_get_cropping(const gs_composite_t *pxcte, int *ry, int *rheight,
942
                                  int cropping_min, int cropping_max)
943
15.2k
{
944
15.2k
    return 0;     /* No cropping. */
945
15.2k
}
946
947
int
948
gx_default_initialize_device(gx_device *dev)
949
0
{
950
0
    return 0;
951
0
}
952
953
int
954
gx_default_dev_spec_op(gx_device *pdev, int dev_spec_op, void *data, int size)
955
10.0M
{
956
10.0M
    switch(dev_spec_op) {
957
0
        case gxdso_form_begin:
958
0
        case gxdso_form_end:
959
1.11k
        case gxdso_pattern_can_accum:
960
1.11k
        case gxdso_pattern_start_accum:
961
1.11k
        case gxdso_pattern_finish_accum:
962
42.6k
        case gxdso_pattern_load:
963
107k
        case gxdso_pattern_shading_area:
964
117k
        case gxdso_pattern_is_cpath_accum:
965
117k
        case gxdso_pattern_handles_clip_path:
966
117k
        case gxdso_is_pdf14_device:
967
5.68M
        case gxdso_supports_devn:
968
5.68M
        case gxdso_supports_hlcolor:
969
5.68M
        case gxdso_supports_saved_pages:
970
5.68M
        case gxdso_needs_invariant_palette:
971
5.69M
        case gxdso_supports_iccpostrender:
972
5.76M
        case gxdso_supports_alpha:
973
5.76M
        case gxdso_pdf14_sep_device:
974
5.79M
        case gxdso_supports_pattern_transparency:
975
5.79M
        case gxdso_overprintsim_state:
976
5.80M
        case gxdso_skip_icc_component_validation:
977
5.80M
            return 0;
978
28
        case gxdso_pattern_shfill_doesnt_need_path:
979
28
            return (dev_proc(pdev, fill_path) == gx_default_fill_path);
980
0
        case gxdso_is_std_cmyk_1bit:
981
0
            return (dev_proc(pdev, map_cmyk_color) == cmyk_1bit_map_cmyk_color);
982
0
        case gxdso_interpolate_antidropout:
983
0
            return pdev->color_info.use_antidropout_downscaler;
984
70.3k
        case gxdso_interpolate_threshold:
985
70.3k
            if ((pdev->color_info.num_components == 1 &&
986
70.3k
                 pdev->color_info.max_gray < 15) ||
987
70.3k
                (pdev->color_info.num_components > 1 &&
988
70.3k
                 pdev->color_info.max_color < 15)) {
989
                /* If we are a limited color device (i.e. we are halftoning)
990
                 * then only interpolate if we are upscaling by at least 4 */
991
0
                return 4;
992
0
            }
993
70.3k
            return 0; /* Otherwise no change */
994
409k
        case gxdso_get_dev_param:
995
409k
            {
996
409k
                dev_param_req_t *request = (dev_param_req_t *)data;
997
409k
                return gx_default_get_param(pdev, request->Param, request->list);
998
70.3k
            }
999
196k
        case gxdso_current_output_device:
1000
196k
            {
1001
196k
                *(gx_device **)data = pdev;
1002
196k
                return 0;
1003
70.3k
            }
1004
1.34k
        case gxdso_copy_color_is_fast:
1005
1.34k
            return (dev_proc(pdev, copy_color) != gx_default_copy_color);
1006
604k
        case gxdso_is_encoding_direct:
1007
604k
            if (pdev->color_info.depth != 8 * pdev->color_info.num_components)
1008
0
                return 0;
1009
604k
            return (dev_proc(pdev, encode_color) == gx_default_encode_color ||
1010
604k
                    dev_proc(pdev, encode_color) == gx_default_rgb_map_rgb_color);
1011
        /* Just ignore information about events */
1012
0
        case gxdso_event_info:
1013
0
            return 0;
1014
518k
        case gxdso_overprint_active:
1015
518k
            return 0;
1016
10.0M
    }
1017
10.0M
    return_error(gs_error_undefined);
1018
10.0M
}
1019
1020
int
1021
gx_default_fill_rectangle_hl_color(gx_device *pdev,
1022
    const gs_fixed_rect *rect,
1023
    const gs_gstate *pgs, const gx_drawing_color *pdcolor,
1024
    const gx_clip_path *pcpath)
1025
4
{
1026
4
    return_error(gs_error_rangecheck);
1027
4
}
1028
1029
int
1030
gx_default_include_color_space(gx_device *pdev, gs_color_space *cspace,
1031
        const byte *res_name, int name_length)
1032
0
{
1033
0
    return 0;
1034
0
}
1035
1036
/*
1037
 * If a device wants to determine an equivalent color for its spot colors then
1038
 * it needs to implement this method.  See comments at the start of
1039
 * src/gsequivc.c.
1040
 */
1041
int
1042
gx_default_update_spot_equivalent_colors(gx_device *pdev, const gs_gstate * pgs, const gs_color_space *pcs)
1043
635
{
1044
635
    return 0;
1045
635
}
1046
1047
/*
1048
 * If a device wants to determine implement support for spot colors then
1049
 * it needs to implement this method.
1050
 */
1051
gs_devn_params *
1052
gx_default_ret_devn_params(gx_device *pdev)
1053
1.41M
{
1054
1.41M
    return NULL;
1055
1.41M
}
1056
1057
int
1058
gx_default_process_page(gx_device *dev, gx_process_page_options_t *options)
1059
0
{
1060
0
    gs_int_rect rect;
1061
0
    int code = 0;
1062
0
    void *buffer = NULL;
1063
1064
    /* Possible future improvements in here could be given by us dividing the
1065
     * page up into n chunks, and spawning a thread per chunk to do the
1066
     * process_fn call on. n could be given by NumRenderingThreads. This
1067
     * would give us multi-core advantages even without clist. */
1068
0
    if (options->init_buffer_fn) {
1069
0
        code = options->init_buffer_fn(options->arg, dev, dev->memory, dev->width, dev->height, &buffer);
1070
0
        if (code < 0)
1071
0
            return code;
1072
0
    }
1073
1074
0
    rect.p.x = 0;
1075
0
    rect.p.y = 0;
1076
0
    rect.q.x = dev->width;
1077
0
    rect.q.y = dev->height;
1078
0
    if (options->process_fn)
1079
0
        code = options->process_fn(options->arg, dev, dev, &rect, buffer);
1080
0
    if (code >= 0 && options->output_fn)
1081
0
        code = options->output_fn(options->arg, dev, buffer);
1082
1083
0
    if (options->free_buffer_fn)
1084
0
        options->free_buffer_fn(options->arg, dev, dev->memory, buffer);
1085
1086
0
    return code;
1087
0
}
1088
1089
int
1090
gx_default_begin_transparency_group(gx_device *dev, const gs_transparency_group_params_t *ptgp, const gs_rect *pbbox, gs_gstate *pgs, gs_memory_t *mem)
1091
0
{
1092
0
    return 0;
1093
0
}
1094
1095
int
1096
gx_default_end_transparency_group(gx_device *dev, gs_gstate *pgs)
1097
0
{
1098
0
    return 0;
1099
0
}
1100
1101
int
1102
gx_default_begin_transparency_mask(gx_device *dev, const gx_transparency_mask_params_t *ptgp, const gs_rect *pbbox, gs_gstate *pgs, gs_memory_t *mem)
1103
0
{
1104
0
    return 0;
1105
0
}
1106
1107
int
1108
gx_default_end_transparency_mask(gx_device *dev, gs_gstate *pgs)
1109
0
{
1110
0
    return 0;
1111
0
}
1112
1113
int
1114
gx_default_discard_transparency_layer(gx_device *dev, gs_gstate *pgs)
1115
0
{
1116
0
    return 0;
1117
0
}
1118
1119
int
1120
gx_default_push_transparency_state(gx_device *dev, gs_gstate *pgs)
1121
0
{
1122
0
    return 0;
1123
0
}
1124
1125
int
1126
gx_default_pop_transparency_state(gx_device *dev, gs_gstate *pgs)
1127
0
{
1128
0
    return 0;
1129
0
}
1130
1131
int
1132
gx_default_put_image(gx_device *dev, gx_device *mdev, const byte **buffers, int num_chan, int x, int y, int width, int height, int row_stride, int alpha_plane_index, int tag_plane_index)
1133
0
{
1134
0
    return_error(gs_error_undefined);
1135
0
}
1136
1137
int
1138
gx_default_no_copy_alpha_hl_color(gx_device * dev, const byte * data, int data_x, int raster, gx_bitmap_id id, int x, int y, int width, int height, const gx_drawing_color *pdcolor, int depth)
1139
0
{
1140
0
    return_error(gs_error_undefined);
1141
0
}
1142
1143
int
1144
gx_default_copy_planes(gx_device *dev, const byte *data, int data_x, int raster, gx_bitmap_id id, int x, int y, int width, int height, int plane_height)
1145
0
{
1146
0
    return_error(gs_error_undefined);
1147
0
}
1148
1149
/* ---------------- Default per-instance procedures ---------------- */
1150
1151
int
1152
gx_default_install(gx_device * dev, gs_gstate * pgs)
1153
59.2k
{
1154
59.2k
    return 0;
1155
59.2k
}
1156
1157
int
1158
gx_default_begin_page(gx_device * dev, gs_gstate * pgs)
1159
69.9k
{
1160
69.9k
    return 0;
1161
69.9k
}
1162
1163
int
1164
gx_default_end_page(gx_device * dev, int reason, gs_gstate * pgs)
1165
79.1k
{
1166
79.1k
    return (reason != 2 ? 1 : 0);
1167
79.1k
}
1168
1169
void
1170
gx_default_set_graphics_type_tag(gx_device *dev, gs_graphics_type_tag_t graphics_type_tag)
1171
166k
{
1172
    /* set the tag but carefully preserve GS_DEVICE_ENCODES_TAGS */
1173
166k
    dev->graphics_type_tag = (dev->graphics_type_tag & GS_DEVICE_ENCODES_TAGS) | graphics_type_tag;
1174
166k
}
1175
1176
/* ---------------- Device subclassing procedures ---------------- */
1177
1178
/* Non-obvious code. The 'dest_procs' is the 'procs' memory occupied by the original device that we decided to subclass,
1179
 * 'src_procs' is the newly allocated piece of memory, to which we have already copied the content of the
1180
 * original device (including the procs), prototype is the device structure prototype for the subclassing device.
1181
 * Here we copy the methods from the prototype to the original device procs memory *but* if the original (src_procs)
1182
 * device had a NULL method, we make the new device procs have a NULL method too.
1183
 * The reason for ths is ugly, there are some places in the graphics library which explicitly check for
1184
 * a device having a NULL method and take different code paths depending on the result.
1185
 * Now in general we expect subclassing devices to implement *every* method, so if we didn't copy
1186
 * over NULL methods present in the original source device then the code path could be inappropriate for
1187
 * that underlying (now subclassed) device.
1188
 */
1189
/* November 10th 2017 Restored the original behaviour of the device methods, they should now never be NULL.
1190
 * Howwever, there are still places in the code which take different code paths if the device method is (now)
1191
 * the default device method, rather than a device-specific method.
1192
 * So instead of checking for NULL, we now need to check against the default implementation, and *NOT* copy the
1193
 * prototype (subclass device) method if the original device had the default implementation.
1194
 * I suspect a combination of forwarding and subclassing devices will not work properly for this reason.
1195
 */
1196
int gx_copy_device_procs(gx_device *dest, const gx_device *src, const gx_device *pprototype)
1197
9.15k
{
1198
9.15k
    gx_device prototype = *pprototype;
1199
1200
    /* In the new (as of 2021) world, the prototype does not contain
1201
     * device procs. We need to call the 'initialize_device_procs'
1202
     * function to properly populate the procs array. We can't write to
1203
     * the const prototype pointer we are passed in, so copy it to a
1204
     * local block, and initialize that instead, */
1205
9.15k
    prototype.initialize_device_procs(&prototype);
1206
    /* Fill in missing entries with the global defaults */
1207
9.15k
    gx_device_fill_in_procs(&prototype);
1208
1209
9.15k
    if (dest->initialize_device_procs == NULL)
1210
0
       dest->initialize_device_procs = prototype.initialize_device_procs;
1211
1212
9.15k
    set_dev_proc(dest, initialize_device, dev_proc(&prototype, initialize_device));
1213
9.15k
    set_dev_proc(dest, open_device, dev_proc(&prototype, open_device));
1214
9.15k
    set_dev_proc(dest, get_initial_matrix, dev_proc(&prototype, get_initial_matrix));
1215
9.15k
    set_dev_proc(dest, sync_output, dev_proc(&prototype, sync_output));
1216
9.15k
    set_dev_proc(dest, output_page, dev_proc(&prototype, output_page));
1217
9.15k
    set_dev_proc(dest, close_device, dev_proc(&prototype, close_device));
1218
9.15k
    set_dev_proc(dest, map_rgb_color, dev_proc(&prototype, map_rgb_color));
1219
9.15k
    set_dev_proc(dest, map_color_rgb, dev_proc(&prototype, map_color_rgb));
1220
9.15k
    set_dev_proc(dest, fill_rectangle, dev_proc(&prototype, fill_rectangle));
1221
9.15k
    set_dev_proc(dest, copy_mono, dev_proc(&prototype, copy_mono));
1222
9.15k
    set_dev_proc(dest, copy_color, dev_proc(&prototype, copy_color));
1223
9.15k
    set_dev_proc(dest, get_params, dev_proc(&prototype, get_params));
1224
9.15k
    set_dev_proc(dest, put_params, dev_proc(&prototype, put_params));
1225
9.15k
    set_dev_proc(dest, map_cmyk_color, dev_proc(&prototype, map_cmyk_color));
1226
9.15k
    set_dev_proc(dest, get_page_device, dev_proc(&prototype, get_page_device));
1227
9.15k
    set_dev_proc(dest, get_alpha_bits, dev_proc(&prototype, get_alpha_bits));
1228
9.15k
    set_dev_proc(dest, copy_alpha, dev_proc(&prototype, copy_alpha));
1229
9.15k
    set_dev_proc(dest, fill_path, dev_proc(&prototype, fill_path));
1230
9.15k
    set_dev_proc(dest, stroke_path, dev_proc(&prototype, stroke_path));
1231
9.15k
    set_dev_proc(dest, fill_trapezoid, dev_proc(&prototype, fill_trapezoid));
1232
9.15k
    set_dev_proc(dest, fill_parallelogram, dev_proc(&prototype, fill_parallelogram));
1233
9.15k
    set_dev_proc(dest, fill_triangle, dev_proc(&prototype, fill_triangle));
1234
9.15k
    set_dev_proc(dest, draw_thin_line, dev_proc(&prototype, draw_thin_line));
1235
9.15k
    set_dev_proc(dest, strip_tile_rectangle, dev_proc(&prototype, strip_tile_rectangle));
1236
9.15k
    set_dev_proc(dest, get_clipping_box, dev_proc(&prototype, get_clipping_box));
1237
9.15k
    set_dev_proc(dest, begin_typed_image, dev_proc(&prototype, begin_typed_image));
1238
9.15k
    set_dev_proc(dest, get_bits_rectangle, dev_proc(&prototype, get_bits_rectangle));
1239
9.15k
    set_dev_proc(dest, composite, dev_proc(&prototype, composite));
1240
9.15k
    set_dev_proc(dest, get_hardware_params, dev_proc(&prototype, get_hardware_params));
1241
9.15k
    set_dev_proc(dest, text_begin, dev_proc(&prototype, text_begin));
1242
9.15k
    set_dev_proc(dest, discard_transparency_layer, dev_proc(&prototype, discard_transparency_layer));
1243
9.15k
    set_dev_proc(dest, get_color_mapping_procs, dev_proc(&prototype, get_color_mapping_procs));
1244
9.15k
    set_dev_proc(dest, get_color_comp_index, dev_proc(&prototype, get_color_comp_index));
1245
9.15k
    set_dev_proc(dest, encode_color, dev_proc(&prototype, encode_color));
1246
9.15k
    set_dev_proc(dest, decode_color, dev_proc(&prototype, decode_color));
1247
9.15k
    set_dev_proc(dest, fill_rectangle_hl_color, dev_proc(&prototype, fill_rectangle_hl_color));
1248
9.15k
    set_dev_proc(dest, include_color_space, dev_proc(&prototype, include_color_space));
1249
9.15k
    set_dev_proc(dest, fill_linear_color_scanline, dev_proc(&prototype, fill_linear_color_scanline));
1250
9.15k
    set_dev_proc(dest, fill_linear_color_trapezoid, dev_proc(&prototype, fill_linear_color_trapezoid));
1251
9.15k
    set_dev_proc(dest, fill_linear_color_triangle, dev_proc(&prototype, fill_linear_color_triangle));
1252
9.15k
    set_dev_proc(dest, update_spot_equivalent_colors, dev_proc(&prototype, update_spot_equivalent_colors));
1253
9.15k
    set_dev_proc(dest, ret_devn_params, dev_proc(&prototype, ret_devn_params));
1254
9.15k
    set_dev_proc(dest, fillpage, dev_proc(&prototype, fillpage));
1255
9.15k
    set_dev_proc(dest, push_transparency_state, dev_proc(&prototype, push_transparency_state));
1256
9.15k
    set_dev_proc(dest, pop_transparency_state, dev_proc(&prototype, pop_transparency_state));
1257
9.15k
    set_dev_proc(dest, dev_spec_op, dev_proc(&prototype, dev_spec_op));
1258
9.15k
    set_dev_proc(dest, get_profile, dev_proc(&prototype, get_profile));
1259
9.15k
    set_dev_proc(dest, strip_copy_rop2, dev_proc(&prototype, strip_copy_rop2));
1260
9.15k
    set_dev_proc(dest, strip_tile_rect_devn, dev_proc(&prototype, strip_tile_rect_devn));
1261
9.15k
    set_dev_proc(dest, process_page, dev_proc(&prototype, process_page));
1262
9.15k
    set_dev_proc(dest, transform_pixel_region, dev_proc(&prototype, transform_pixel_region));
1263
9.15k
    set_dev_proc(dest, fill_stroke_path, dev_proc(&prototype, fill_stroke_path));
1264
9.15k
    set_dev_proc(dest, lock_pattern, dev_proc(&prototype, lock_pattern));
1265
1266
    /*
1267
     * We absolutely must set the 'set_graphics_type_tag' to the default subclass one
1268
     * even if the subclassed device is using the default. This is because the
1269
     * default implementation sets a flag in the device structure, and if we
1270
     * copy the default method, we'll end up setting the flag in the subclassing device
1271
     * instead of the subclassed device!
1272
     */
1273
9.15k
    set_dev_proc(dest, set_graphics_type_tag, dev_proc(&prototype, set_graphics_type_tag));
1274
1275
    /* These are the routines whose existence is checked against the default at
1276
     * some point in the code. The code path differs when the device implements a
1277
     * method other than the default, so the subclassing device needs to ensure that
1278
     * if the subclassed device has one of these methods set to the default, we
1279
     * do not overwrite the default method.
1280
     */
1281
9.15k
    if (dev_proc(src, fill_mask) != gx_default_fill_mask)
1282
0
        set_dev_proc(dest, fill_mask, dev_proc(&prototype, fill_mask));
1283
9.15k
    if (dev_proc(src, begin_transparency_group) != gx_default_begin_transparency_group)
1284
0
        set_dev_proc(dest, begin_transparency_group, dev_proc(&prototype, begin_transparency_group));
1285
9.15k
    if (dev_proc(src, end_transparency_group) != gx_default_end_transparency_group)
1286
0
        set_dev_proc(dest, end_transparency_group, dev_proc(&prototype, end_transparency_group));
1287
9.15k
    if (dev_proc(src, put_image) != gx_default_put_image)
1288
0
        set_dev_proc(dest, put_image, dev_proc(&prototype, put_image));
1289
9.15k
    if (dev_proc(src, copy_planes) != gx_default_copy_planes)
1290
0
        set_dev_proc(dest, copy_planes, dev_proc(&prototype, copy_planes));
1291
9.15k
    if (dev_proc(src, copy_alpha_hl_color) != gx_default_no_copy_alpha_hl_color)
1292
0
        set_dev_proc(dest, copy_alpha_hl_color, dev_proc(&prototype, copy_alpha_hl_color));
1293
1294
9.15k
    return 0;
1295
9.15k
}
1296
1297
int gx_device_subclass(gx_device *dev_to_subclass, gx_device *new_prototype, unsigned int private_data_size)
1298
9.15k
{
1299
9.15k
    gx_device *child_dev;
1300
9.15k
    void *psubclass_data;
1301
9.15k
    gs_memory_struct_type_t *a_std = NULL, *b_std = NULL;
1302
9.15k
    int dynamic = dev_to_subclass->stype_is_dynamic;
1303
9.15k
    char *ptr, *ptr1;
1304
1305
    /* If this happens we are stuffed, as there is no way to get hold
1306
     * of the original device's stype structure, which means we cannot
1307
     * allocate a replacement structure. Abort if so.
1308
     * Also abort if the new_prototype device struct is too large.
1309
     */
1310
9.15k
    if (!dev_to_subclass->stype ||
1311
9.15k
        dev_to_subclass->stype->ssize < new_prototype->params_size)
1312
4
        return_error(gs_error_VMerror);
1313
1314
    /* We make a 'stype' structure for our new device, and copy the old stype into it
1315
     * This means our new device will always have the 'stype_is_dynamic' flag set
1316
     */
1317
9.15k
    a_std = (gs_memory_struct_type_t *)
1318
9.15k
        gs_alloc_bytes_immovable(dev_to_subclass->memory->non_gc_memory, sizeof(*a_std),
1319
9.15k
                                 "gs_device_subclass(stype)");
1320
9.15k
    if (!a_std)
1321
0
        return_error(gs_error_VMerror);
1322
9.15k
    *a_std = *dev_to_subclass->stype;
1323
9.15k
    a_std->ssize = dev_to_subclass->params_size;
1324
1325
9.15k
    if (!dynamic) {
1326
9.15k
        b_std = (gs_memory_struct_type_t *)
1327
9.15k
            gs_alloc_bytes_immovable(dev_to_subclass->memory->non_gc_memory, sizeof(*b_std),
1328
9.15k
                                     "gs_device_subclass(stype)");
1329
9.15k
        if (!b_std) {
1330
0
            gs_free_const_object(dev_to_subclass->memory->non_gc_memory, a_std, "gs_device_subclass(stype)");
1331
0
            return_error(gs_error_VMerror);
1332
0
        }
1333
9.15k
    }
1334
1335
    /* Allocate a device structure for the new child device */
1336
9.15k
    child_dev = gs_alloc_struct_immovable(dev_to_subclass->memory->stable_memory, gx_device, a_std,
1337
9.15k
                                        "gs_device_subclass(device)");
1338
9.15k
    if (child_dev == 0) {
1339
0
        gs_free_const_object(dev_to_subclass->memory->non_gc_memory, a_std, "gs_device_subclass(stype)");
1340
0
        gs_free_const_object(dev_to_subclass->memory->non_gc_memory, b_std, "gs_device_subclass(stype)");
1341
0
        return_error(gs_error_VMerror);
1342
0
    }
1343
1344
    /* Make sure all methods are filled in, note this won't work for a forwarding device
1345
     * so forwarding devices will have to be filled in before being subclassed. This doesn't fill
1346
     * in the fill_rectangle proc, that gets done in the ultimate device's open proc.
1347
     */
1348
9.15k
    gx_device_fill_in_procs(dev_to_subclass);
1349
9.15k
    memcpy(child_dev, dev_to_subclass, dev_to_subclass->stype->ssize);
1350
9.15k
    child_dev->stype = a_std;
1351
9.15k
    child_dev->stype_is_dynamic = 1;
1352
1353
    /* At this point, the only counted reference to the child is from its parent, and we need it to use the right allocator */
1354
9.15k
    rc_init(child_dev, dev_to_subclass->memory->stable_memory, 1);
1355
1356
9.15k
    psubclass_data = (void *)gs_alloc_bytes(dev_to_subclass->memory->non_gc_memory, private_data_size, "subclass memory for subclassing device");
1357
9.15k
    if (psubclass_data == 0){
1358
0
        gs_free_const_object(dev_to_subclass->memory->non_gc_memory, b_std, "gs_device_subclass(stype)");
1359
        /* We *don't* want to run the finalize routine. This would free the stype and
1360
         * properly handle the icc_struct and PageList, but for devices with a custom
1361
         * finalize (eg psdcmyk) it might also free memory it had allocated, and we're
1362
         * still pointing at that memory in the parent.
1363
         */
1364
0
        a_std->finalize = NULL;
1365
0
        gs_set_object_type(dev_to_subclass->memory->stable_memory, child_dev, a_std);
1366
0
        gs_free_object(dev_to_subclass->memory->stable_memory, child_dev, "free subclass memory for subclassing device");
1367
0
        gs_free_const_object(dev_to_subclass->memory->non_gc_memory, a_std, "gs_device_subclass(stype)");
1368
0
        return_error(gs_error_VMerror);
1369
0
    }
1370
9.15k
    memset(psubclass_data, 0x00, private_data_size);
1371
1372
9.15k
    gx_copy_device_procs(dev_to_subclass, child_dev, new_prototype);
1373
9.15k
    dev_to_subclass->finalize = new_prototype->finalize;
1374
9.15k
    dev_to_subclass->dname = new_prototype->dname;
1375
9.15k
    if (dev_to_subclass->icc_struct)
1376
9.15k
        rc_increment(dev_to_subclass->icc_struct);
1377
9.15k
    if (dev_to_subclass->PageList)
1378
9.15k
        rc_increment(dev_to_subclass->PageList);
1379
9.15k
    if (dev_to_subclass->NupControl)
1380
9.15k
        rc_increment(dev_to_subclass->NupControl);
1381
1382
9.15k
    dev_to_subclass->page_procs = new_prototype->page_procs;
1383
9.15k
    gx_subclass_fill_in_page_procs(dev_to_subclass);
1384
1385
    /* In case the new device we're creating has already been initialised, copy
1386
     * its additional data.
1387
     */
1388
9.15k
    ptr = ((char *)dev_to_subclass) + sizeof(gx_device);
1389
9.15k
    ptr1 = ((char *)new_prototype) + sizeof(gx_device);
1390
9.15k
    memcpy(ptr, ptr1, new_prototype->params_size - sizeof(gx_device));
1391
1392
    /* If the original device's stype structure was dynamically allocated, we need
1393
     * to 'fixup' the contents, it's procs need to point to the new device's procs
1394
     * for instance.
1395
     */
1396
9.15k
    if (dynamic) {
1397
0
        if (new_prototype->stype) {
1398
0
            b_std = (gs_memory_struct_type_t *)dev_to_subclass->stype;
1399
0
            *b_std = *new_prototype->stype;
1400
0
            b_std->ssize = a_std->ssize;
1401
0
            dev_to_subclass->stype_is_dynamic = 1;
1402
0
        } else {
1403
0
            gs_free_const_object(child_dev->memory->non_gc_memory, dev_to_subclass->stype,
1404
0
                             "unsubclass");
1405
0
            dev_to_subclass->stype = NULL;
1406
0
            b_std = (gs_memory_struct_type_t *)new_prototype->stype;
1407
0
            dev_to_subclass->stype_is_dynamic = 0;
1408
0
        }
1409
0
    }
1410
9.15k
    else {
1411
9.15k
        *b_std = *new_prototype->stype;
1412
9.15k
        b_std->ssize = a_std->ssize;
1413
9.15k
        dev_to_subclass->stype_is_dynamic = 1;
1414
9.15k
    }
1415
9.15k
    dev_to_subclass->stype = b_std;
1416
    /* We have to patch up the "type" parameters that the memory manage/garbage
1417
     * collector will use, as well.
1418
     */
1419
9.15k
    gs_set_object_type(child_dev->memory, dev_to_subclass, b_std);
1420
1421
9.15k
    dev_to_subclass->subclass_data = psubclass_data;
1422
9.15k
    dev_to_subclass->child = child_dev;
1423
9.15k
    if (child_dev->parent) {
1424
0
        dev_to_subclass->parent = child_dev->parent;
1425
0
        child_dev->parent->child = dev_to_subclass;
1426
0
    }
1427
9.15k
    if (child_dev->child) {
1428
0
        child_dev->child->parent = child_dev;
1429
0
    }
1430
9.15k
    child_dev->parent = dev_to_subclass;
1431
1432
9.15k
    return 0;
1433
9.15k
}
1434
1435
void gx_device_unsubclass(gx_device *dev)
1436
0
{
1437
0
    generic_subclass_data *psubclass_data;
1438
0
    gx_device *parent, *child;
1439
0
    gs_memory_struct_type_t *a_std = 0, *b_std = 0;
1440
0
    int dynamic, ref_count;
1441
0
    gs_memory_t *rcmem;
1442
1443
    /* This should not happen... */
1444
0
    if (!dev)
1445
0
        return;
1446
1447
0
    ref_count = dev->rc.ref_count;
1448
0
    rcmem = dev->rc.memory;
1449
1450
0
    child = dev->child;
1451
0
    psubclass_data = (generic_subclass_data *)dev->subclass_data;
1452
0
    parent = dev->parent;
1453
0
    dynamic = dev->stype_is_dynamic;
1454
1455
    /* We need to account for the fact that we are removing ourselves from
1456
     * the device chain after a clist device has been pushed, due to a
1457
     * compositor action. Since we patched the clist 'composite'
1458
     * method (and target device) when it was pushed.
1459
     * A point to note; we *don't* want to change the forwarding device's
1460
     * 'target', because when we copy the child up to replace 'this' device
1461
     * we do still want the forwarding device to point here. NB its the *child*
1462
     * device that goes away.
1463
     */
1464
0
    if (psubclass_data != NULL && psubclass_data->forwarding_dev != NULL && psubclass_data->saved_compositor_method)
1465
0
        psubclass_data->forwarding_dev->procs.composite = psubclass_data->saved_compositor_method;
1466
1467
    /* If ths device's stype is dynamically allocated, keep a copy of it
1468
     * in case we might need it.
1469
     */
1470
0
    if (dynamic) {
1471
0
        a_std = (gs_memory_struct_type_t *)dev->stype;
1472
0
        if (child)
1473
0
            *a_std = *child->stype;
1474
0
    }
1475
1476
    /* If ths device has any private storage, free it now */
1477
0
    if (psubclass_data)
1478
0
        gs_free_object(dev->memory->non_gc_memory, psubclass_data, "gx_device_unsubclass");
1479
1480
    /* Copy the child device into ths device's memory */
1481
0
    if (child) {
1482
0
        b_std = (gs_memory_struct_type_t *)dev->stype;
1483
0
        rc_decrement(dev->icc_struct, "unsubclass device");
1484
0
        rc_increment(child->icc_struct);
1485
0
        memcpy(dev, child, child->stype->ssize);
1486
        /* Patch back the 'stype' in the memory manager */
1487
0
        gs_set_object_type(child->memory, dev, b_std);
1488
1489
0
        dev->stype = b_std;
1490
        /* The reference count of the subclassing device may have been
1491
         * changed (eg graphics states pointing to it) after we subclassed
1492
         * the device. We need to ensure that we do not overwrite this
1493
         * when we copy back the subclassed device.
1494
         */
1495
0
        dev->rc.ref_count = ref_count;
1496
0
        dev->rc.memory = rcmem;
1497
1498
        /* If we have a chain of devices, make sure the chain beyond the
1499
         * device we're unsubclassing doesn't get broken, we need to
1500
         * detach the lower chain and reattach it at the new highest level.
1501
         */
1502
0
        if (child->child)
1503
0
            child->child->parent = dev;
1504
0
        child->parent->child = child->child;
1505
0
    }
1506
1507
    /* How can we have a subclass device with no child ? Simples; when we
1508
     * hit the end of job restore, the devices are not freed in device
1509
     * chain order. To make sure we don't end up following stale pointers,
1510
     * when a device is freed we remove it from the chain and update
1511
     * any dangling pointers to NULL. When we later free the remaining
1512
     * devices it's possible that their child pointer can then be NULL.
1513
     */
1514
0
    if (child) {
1515
        /* We cannot afford to free the child device if its stype is not
1516
         * dynamic because we can't 'null' the finalise routine, and we
1517
         * cannot permit the device to be finalised because we have copied
1518
         * it up one level, not discarded it. (This shouldn't happen! Child
1519
         * devices are always created with a dynamic stype.) If this ever
1520
         * happens garbage collecton will eventually clean up the memory.
1521
         */
1522
0
        if (child->stype_is_dynamic) {
1523
            /* Make sure that nothing will try to follow the device chain,
1524
             * just security here. */
1525
0
            child->parent = NULL;
1526
0
            child->child = NULL;
1527
1528
            /* We *don't* want to run the finalize routine. This would free
1529
             * the stype and properly handle the icc_struct and PageList,
1530
             * but for devices with a custom finalize (eg psdcmyk) it might
1531
             * also free memory it had allocated, and we're still pointing
1532
             * at that memory in the parent. The indirection through a
1533
             * variable is just to get rid of const warnings.
1534
             */
1535
0
            b_std = (gs_memory_struct_type_t *)child->stype;
1536
0
            gs_free_const_object(dev->memory->non_gc_memory, b_std, "gs_device_unsubclass(stype)");
1537
            /* Make this into a generic device */
1538
0
            child->stype = &st_device;
1539
0
            child->stype_is_dynamic = false;
1540
1541
            /* We can't simply discard the child device, because there may be references to it elsewhere,
1542
               but equally, we really don't want it doing anything, so set the procs so actions are just discarded.
1543
             */
1544
0
            gx_copy_device_procs(child, (gx_device *)&gs_null_device, (gx_device *)&gs_null_device);
1545
1546
            /* Having changed the stype, we need to make sure the memory
1547
             * manager uses it. It keeps a copy in its own data structure,
1548
             * and would use that copy, which would mean it would call the
1549
             * finalize routine that we just patched out.
1550
             */
1551
0
            gs_set_object_type(dev->memory->stable_memory, child, child->stype);
1552
0
            child->finalize = NULL;
1553
            /* Now (finally) free the child memory */
1554
0
            rc_decrement(child, "gx_device_unsubclass(device)");
1555
0
        }
1556
0
    }
1557
0
    dev->parent = parent;
1558
1559
    /* If this device has a dynamic stype, we wnt to keep using it, but we copied
1560
     * the stype pointer from the child when we copied the rest of the device. So
1561
     * we update the stype pointer with the saved pointer to this device's stype.
1562
     */
1563
0
    if (dynamic) {
1564
0
        dev->stype = a_std;
1565
0
        dev->stype_is_dynamic = 1;
1566
0
    } else {
1567
0
        dev->stype_is_dynamic = 0;
1568
0
    }
1569
0
}
1570
1571
int gx_update_from_subclass(gx_device *dev)
1572
64.4k
{
1573
64.4k
    if (!dev->child)
1574
0
        return 0;
1575
1576
64.4k
    memcpy(&dev->color_info, &dev->child->color_info, sizeof(gx_device_color_info));
1577
64.4k
    memcpy(&dev->cached_colors, &dev->child->cached_colors, sizeof(gx_device_cached_colors_t));
1578
64.4k
    dev->max_fill_band = dev->child->max_fill_band;
1579
64.4k
    dev->width = dev->child->width;
1580
64.4k
    dev->height = dev->child->height;
1581
64.4k
    dev->pad = dev->child->pad;
1582
64.4k
    dev->log2_align_mod = dev->child->log2_align_mod;
1583
64.4k
    dev->max_fill_band = dev->child->max_fill_band;
1584
64.4k
    dev->num_planar_planes = dev->child->num_planar_planes;
1585
64.4k
    dev->LeadingEdge = dev->child->LeadingEdge;
1586
64.4k
    memcpy(&dev->ImagingBBox, &dev->child->ImagingBBox, sizeof(dev->child->ImagingBBox));
1587
64.4k
    dev->ImagingBBox_set = dev->child->ImagingBBox_set;
1588
64.4k
    memcpy(&dev->MediaSize, &dev->child->MediaSize, sizeof(dev->child->MediaSize));
1589
64.4k
    memcpy(&dev->HWResolution, &dev->child->HWResolution, sizeof(dev->child->HWResolution));
1590
64.4k
    memcpy(&dev->Margins, &dev->child->Margins, sizeof(dev->child->Margins));
1591
64.4k
    memcpy(&dev->HWMargins, &dev->child->HWMargins, sizeof(dev->child->HWMargins));
1592
64.4k
    dev->FirstPage = dev->child->FirstPage;
1593
64.4k
    dev->LastPage = dev->child->LastPage;
1594
64.4k
    dev->PageCount = dev->child->PageCount;
1595
64.4k
    dev->ShowpageCount = dev->child->ShowpageCount;
1596
64.4k
    dev->NumCopies = dev->child->NumCopies;
1597
64.4k
    dev->NumCopies_set = dev->child->NumCopies_set;
1598
64.4k
    dev->IgnoreNumCopies = dev->child->IgnoreNumCopies;
1599
64.4k
    dev->UseCIEColor = dev->child->UseCIEColor;
1600
64.4k
    dev->LockSafetyParams= dev->child->LockSafetyParams;
1601
64.4k
    dev->band_offset_x = dev->child->band_offset_y;
1602
64.4k
    dev->sgr = dev->child->sgr;
1603
64.4k
    dev->MaxPatternBitmap = dev->child->MaxPatternBitmap;
1604
64.4k
    dev->page_uses_transparency = dev->child->page_uses_transparency;
1605
64.4k
    memcpy(&dev->space_params, &dev->child->space_params, sizeof(gdev_space_params));
1606
64.4k
    dev->graphics_type_tag = dev->child->graphics_type_tag;
1607
1608
64.4k
    return 0;
1609
64.4k
}
1610
1611
int gx_subclass_composite(gx_device *dev, gx_device **pcdev, const gs_composite_t *pcte,
1612
    gs_gstate *pgs, gs_memory_t *memory, gx_device *cdev)
1613
0
{
1614
0
    pdf14_clist_device *p14dev;
1615
0
    generic_subclass_data *psubclass_data;
1616
0
    int code = 0;
1617
1618
0
    p14dev = (pdf14_clist_device *)dev;
1619
0
    psubclass_data = (generic_subclass_data *)p14dev->target->subclass_data;
1620
1621
0
    set_dev_proc(dev, composite, psubclass_data->saved_compositor_method);
1622
1623
0
    if (gs_is_pdf14trans_compositor(pcte) != 0 && strncmp(dev->dname, "pdf14clist", 10) == 0) {
1624
0
        const gs_pdf14trans_t * pdf14pct = (const gs_pdf14trans_t *) pcte;
1625
1626
0
        switch (pdf14pct->params.pdf14_op) {
1627
0
            case PDF14_POP_DEVICE:
1628
0
                {
1629
0
                    pdf14_clist_device *p14dev = (pdf14_clist_device *)dev;
1630
0
                    gx_device *subclass_device;
1631
1632
0
                    p14dev->target->color_info = p14dev->saved_target_color_info;
1633
0
                    if (p14dev->target->child) {
1634
0
                        p14dev->target->child->color_info = p14dev->saved_target_color_info;
1635
1636
0
                        set_dev_proc(p14dev->target->child, encode_color, p14dev->saved_target_encode_color);
1637
0
                        set_dev_proc(p14dev->target->child, decode_color, p14dev->saved_target_decode_color);
1638
0
                        set_dev_proc(p14dev->target->child, get_color_mapping_procs, p14dev->saved_target_get_color_mapping_procs);
1639
0
                        set_dev_proc(p14dev->target->child, get_color_comp_index, p14dev->saved_target_get_color_comp_index);
1640
0
                    }
1641
1642
0
                    pgs->get_cmap_procs = p14dev->save_get_cmap_procs;
1643
0
                    gx_set_cmap_procs(pgs, p14dev->target);
1644
1645
0
                    subclass_device = p14dev->target;
1646
0
                    p14dev->target = p14dev->target->child;
1647
1648
0
                    code = dev_proc(dev, composite)(dev, pcdev, pcte, pgs, memory, cdev);
1649
1650
0
                    p14dev->target = subclass_device;
1651
1652
                    /* We return 0, rather than 1, as we have not created
1653
                     * a new compositor that wraps dev. */
1654
0
                    if (code == 1)
1655
0
                        code = 0;
1656
0
                    return code;
1657
0
                }
1658
0
                break;
1659
0
            default:
1660
0
                code = dev_proc(dev, composite)(dev, pcdev, pcte, pgs, memory, cdev);
1661
0
                break;
1662
0
        }
1663
0
    } else {
1664
0
        code = dev_proc(dev, composite)(dev, pcdev, pcte, pgs, memory, cdev);
1665
0
    }
1666
0
    set_dev_proc(dev, composite, gx_subclass_composite);
1667
0
    return code;
1668
0
}
1669
1670
typedef enum
1671
{
1672
    transform_pixel_region_portrait,
1673
    transform_pixel_region_landscape,
1674
    transform_pixel_region_skew
1675
} transform_pixel_region_posture;
1676
1677
typedef struct gx_default_transform_pixel_region_state_s gx_default_transform_pixel_region_state_t;
1678
1679
typedef int (gx_default_transform_pixel_region_render_fn)(gx_device *dev, gx_default_transform_pixel_region_state_t *state, const unsigned char **buffer, int data_x, gx_cmapper_t *cmapper, const gs_gstate *pgs);
1680
1681
struct gx_default_transform_pixel_region_state_s
1682
{
1683
    gs_memory_t *mem;
1684
    gx_dda_fixed_point pixels;
1685
    gx_dda_fixed_point rows;
1686
    gs_int_rect clip;
1687
    int w;
1688
    int h;
1689
    int spp;
1690
    transform_pixel_region_posture posture;
1691
    gs_logical_operation_t lop;
1692
    byte *line;
1693
    gx_default_transform_pixel_region_render_fn *render;
1694
};
1695
1696
static void
1697
get_portrait_y_extent(gx_default_transform_pixel_region_state_t *state, int *iy, int *ih)
1698
373k
{
1699
373k
    fixed y0, y1;
1700
373k
    gx_dda_fixed row = state->rows.y;
1701
1702
373k
    y0 = dda_current(row);
1703
373k
    dda_next(row);
1704
373k
    y1 = dda_current(row);
1705
1706
373k
    if (y1 < y0) {
1707
1.69k
        fixed t = y1; y1 = y0; y0 = t;
1708
1.69k
    }
1709
1710
373k
    *iy = fixed2int_pixround_perfect(y0);
1711
373k
    *ih = fixed2int_pixround_perfect(y1) - *iy;
1712
373k
}
1713
1714
static void
1715
get_landscape_x_extent(gx_default_transform_pixel_region_state_t *state, int *ix, int *iw)
1716
0
{
1717
0
    fixed x0, x1;
1718
0
    gx_dda_fixed row = state->rows.x;
1719
1720
0
    x0 = dda_current(row);
1721
0
    dda_next(row);
1722
0
    x1 = dda_current(row);
1723
1724
0
    if (x1 < x0) {
1725
0
        fixed t = x1; x1 = x0; x0 = t;
1726
0
    }
1727
1728
0
    *ix = fixed2int_pixround_perfect(x0);
1729
0
    *iw = fixed2int_pixround_perfect(x1) - *ix;
1730
0
}
1731
1732
static void
1733
get_skew_extents(gx_default_transform_pixel_region_state_t *state, fixed *w, fixed *h)
1734
754
{
1735
754
    fixed x0, x1, y0, y1;
1736
754
    gx_dda_fixed_point row = state->rows;
1737
1738
754
    x0 = dda_current(row.x);
1739
754
    y0 = dda_current(row.y);
1740
754
    dda_next(row.x);
1741
754
    dda_next(row.y);
1742
754
    x1 = dda_current(row.x);
1743
754
    y1 = dda_current(row.y);
1744
1745
754
    *w = x1-x0;
1746
754
    *h = y1-y0;
1747
754
}
1748
1749
static int
1750
transform_pixel_region_render_portrait(gx_device *dev, gx_default_transform_pixel_region_state_t *state, const unsigned char **buffer, int data_x, gx_cmapper_t *cmapper, const gs_gstate *pgs)
1751
181k
{
1752
181k
    gs_logical_operation_t lop = state->lop;
1753
181k
    gx_dda_fixed_point pnext;
1754
181k
    int vci, vdi;
1755
181k
    int irun;     /* int x/rrun */
1756
181k
    int w = state->w;
1757
181k
    int h = state->h;
1758
181k
    int spp = state->spp;
1759
181k
    const byte *data = buffer[0] + data_x * spp;
1760
181k
    const byte *bufend = NULL;
1761
181k
    int code = 0;
1762
181k
    const byte *run = NULL;
1763
181k
    int k;
1764
181k
    gx_color_value *conc = &cmapper->conc[0];
1765
181k
    int to_rects;
1766
181k
    gx_cmapper_fn *mapper = cmapper->set_color;
1767
181k
    int minx, maxx;
1768
1769
181k
    if (h == 0)
1770
0
        return 0;
1771
1772
    /* Clip on Y */
1773
181k
    get_portrait_y_extent(state, &vci, &vdi);
1774
181k
    if (vci < state->clip.p.y)
1775
12.8k
        vdi += vci - state->clip.p.y, vci = state->clip.p.y;
1776
181k
    if (vci+vdi > state->clip.q.y)
1777
5.75k
        vdi = state->clip.q.y - vci;
1778
181k
    if (vdi <= 0)
1779
55.8k
        return 0;
1780
1781
125k
    pnext = state->pixels;
1782
125k
    dda_translate(pnext.x,  (-fixed_epsilon));
1783
125k
    irun = fixed2int_var_rounded(dda_current(pnext.x));
1784
125k
    if_debug5m('b', dev->memory, "[b]y=%d data_x=%d w=%d xt=%f yt=%f\n",
1785
125k
               vci, data_x, w, fixed2float(dda_current(pnext.x)), fixed2float(dda_current(pnext.y)));
1786
125k
    to_rects = (dev->color_info.depth != spp*8);
1787
125k
    if (to_rects == 0) {
1788
125k
        if (dev_proc(dev, dev_spec_op)(dev, gxdso_copy_color_is_fast, NULL, 0) <= 0)
1789
125k
            to_rects = 1;
1790
125k
    }
1791
1792
125k
    minx = state->clip.p.x;
1793
125k
    maxx = state->clip.q.x;
1794
125k
    bufend = data + w * spp;
1795
125k
    if (to_rects) {
1796
23.0M
        while (data < bufend) {
1797
            /* Find the length of the next run. It will either end when we hit
1798
             * the end of the source data, or when the pixel data differs. */
1799
22.9M
            run = data + spp;
1800
67.5M
            while (1) {
1801
67.5M
                dda_next(pnext.x);
1802
67.5M
                if (run >= bufend)
1803
125k
                    break;
1804
67.4M
                if (memcmp(run, data, spp))
1805
22.7M
                    break;
1806
44.6M
                run += spp;
1807
44.6M
            }
1808
            /* So we have a run of pixels from data to run that are all the same. */
1809
            /* This needs to be sped up */
1810
91.6M
            for (k = 0; k < spp; k++) {
1811
68.7M
                conc[k] = gx_color_value_from_byte(data[k]);
1812
68.7M
            }
1813
22.9M
            mapper(cmapper);
1814
            /* Fill the region between irun and fixed2int_var_rounded(pnext.x) */
1815
22.9M
            {
1816
22.9M
                int xi = irun;
1817
22.9M
                int wi = (irun = fixed2int_var_rounded(dda_current(pnext.x))) - xi;
1818
1819
22.9M
                if (wi < 0)
1820
417
                    xi += wi, wi = -wi;
1821
22.9M
                if (xi < minx)
1822
8.23k
                    wi += xi - minx, xi = minx;
1823
22.9M
                if (xi + wi > maxx)
1824
14.6k
                    wi = maxx - xi;
1825
22.9M
                if (wi > 0)
1826
21.7M
                    code = gx_fill_rectangle_device_rop(xi, vci, wi, vdi,
1827
22.9M
                                                        &cmapper->devc, dev, lop);
1828
22.9M
            }
1829
22.9M
            if (code < 0)
1830
0
                goto err;
1831
22.9M
            data = run;
1832
22.9M
        }
1833
125k
    } else {
1834
0
        int pending_left = irun;
1835
0
        int pending_right;
1836
0
        byte *out;
1837
0
        int depth = spp;
1838
0
        if (state->line == NULL) {
1839
0
            state->line = gs_alloc_bytes(state->mem,
1840
0
                                         (size_t)dev->width * depth,
1841
0
                                         "image line");
1842
0
            if (state->line == NULL)
1843
0
                return gs_error_VMerror;
1844
0
        }
1845
0
        out = state->line;
1846
1847
0
        if (minx < 0)
1848
0
            minx = 0;
1849
0
        if (maxx > dev->width)
1850
0
            maxx = dev->width;
1851
1852
0
        if (pending_left < minx)
1853
0
            pending_left = minx;
1854
0
        else if (pending_left > maxx)
1855
0
            pending_left = maxx;
1856
0
        pending_right = pending_left;
1857
1858
0
        while (data < bufend) {
1859
            /* Find the length of the next run. It will either end when we hit
1860
             * the end of the source data, or when the pixel data differs. */
1861
0
            run = data + spp;
1862
0
            while (1) {
1863
0
                dda_next(pnext.x);
1864
0
                if (run >= bufend)
1865
0
                    break;
1866
0
                if (memcmp(run, data, spp))
1867
0
                    break;
1868
0
                run += spp;
1869
0
            }
1870
            /* So we have a run of pixels from data to run that are all the same. */
1871
            /* This needs to be sped up */
1872
0
            for (k = 0; k < spp; k++) {
1873
0
                conc[k] = gx_color_value_from_byte(data[k]);
1874
0
            }
1875
0
            mapper(cmapper);
1876
            /* Fill the region between irun and fixed2int_var_rounded(pnext.x) */
1877
0
            {
1878
0
                int xi = irun;
1879
0
                int wi = (irun = fixed2int_var_rounded(dda_current(pnext.x))) - xi;
1880
1881
0
                if (wi < 0)
1882
0
                    xi += wi, wi = -wi;
1883
1884
0
                if (xi < minx)
1885
0
                    wi += xi - minx, xi = minx;
1886
0
                if (xi + wi > maxx)
1887
0
                    wi = maxx - xi;
1888
1889
0
                if (wi > 0) {
1890
0
                    if (color_is_pure(&cmapper->devc)) {
1891
0
                        gx_color_index color = cmapper->devc.colors.pure;
1892
0
                        int xii = xi * spp;
1893
1894
0
                        if (pending_left > xi)
1895
0
                            pending_left = xi;
1896
0
                        else
1897
0
                            pending_right = xi + wi;
1898
0
                        do {
1899
                            /* Excuse the double shifts below, that's to stop the
1900
                             * C compiler complaining if the color index type is
1901
                             * 32 bits. */
1902
0
                            switch(depth)
1903
0
                            {
1904
0
                            case 8: out[xii++] = ((color>>28)>>28) & 0xff;
1905
0
                            case 7: out[xii++] = ((color>>24)>>24) & 0xff;
1906
0
                            case 6: out[xii++] = ((color>>24)>>16) & 0xff;
1907
0
                            case 5: out[xii++] = ((color>>24)>>8) & 0xff;
1908
0
                            case 4: out[xii++] = (color>>24) & 0xff;
1909
0
                            case 3: out[xii++] = (color>>16) & 0xff;
1910
0
                            case 2: out[xii++] = (color>>8) & 0xff;
1911
0
                            case 1: out[xii++] = color & 0xff;
1912
0
                            }
1913
0
                        } while (--wi != 0);
1914
0
                    } else {
1915
0
                        if (pending_left != pending_right) {
1916
0
                            code = dev_proc(dev, copy_color)(dev, out, pending_left, 0, 0, pending_left, vci, pending_right - pending_left, vdi);
1917
0
                            if (code < 0)
1918
0
                                goto err;
1919
0
                        }
1920
0
                        pending_left = pending_right = xi + (pending_left > xi ? 0 : wi);
1921
0
                        code = gx_fill_rectangle_device_rop(xi, vci, wi, vdi,
1922
0
                                                            &cmapper->devc, dev, lop);
1923
0
                    }
1924
0
                }
1925
0
                if (code < 0)
1926
0
                    goto err;
1927
0
            }
1928
0
            data = run;
1929
0
        }
1930
0
        if (pending_left != pending_right) {
1931
0
            code = dev_proc(dev, copy_color)(dev, out, pending_left, 0, 0, pending_left, vci, pending_right - pending_left, vdi);
1932
0
            if (code < 0)
1933
0
                goto err;
1934
0
        }
1935
0
    }
1936
125k
    return 1;
1937
    /* Save position if error, in case we resume. */
1938
0
err:
1939
0
    buffer[0] = run;
1940
0
    return code;
1941
125k
}
1942
1943
static int
1944
transform_pixel_region_render_landscape(gx_device *dev, gx_default_transform_pixel_region_state_t *state, const unsigned char **buffer, int data_x, gx_cmapper_t *cmapper, const gs_gstate *pgs)
1945
0
{
1946
0
    gs_logical_operation_t lop = state->lop;
1947
0
    gx_dda_fixed_point pnext;
1948
0
    int vci, vdi;
1949
0
    int irun;     /* int x/rrun */
1950
0
    int w = state->w;
1951
0
    int h = state->h;
1952
0
    int spp = state->spp;
1953
0
    const byte *data = buffer[0] + data_x * spp;
1954
0
    const byte *bufend = NULL;
1955
0
    int code = 0;
1956
0
    const byte *run;
1957
0
    int k;
1958
0
    gx_color_value *conc = &cmapper->conc[0];
1959
0
    int to_rects;
1960
0
    gx_cmapper_fn *mapper = cmapper->set_color;
1961
0
    int miny, maxy;
1962
1963
0
    if (h == 0)
1964
0
        return 0;
1965
1966
    /* Clip on X */
1967
0
    get_landscape_x_extent(state, &vci, &vdi);
1968
0
    if (vci < state->clip.p.x)
1969
0
        vdi += vci - state->clip.p.x, vci = state->clip.p.x;
1970
0
    if (vci+vdi > state->clip.q.x)
1971
0
        vdi = state->clip.q.x - vci;
1972
0
    if (vdi <= 0)
1973
0
        return 0;
1974
1975
0
    pnext = state->pixels;
1976
0
    dda_translate(pnext.x,  (-fixed_epsilon));
1977
0
    irun = fixed2int_var_rounded(dda_current(pnext.y));
1978
0
    if_debug5m('b', dev->memory, "[b]y=%d data_x=%d w=%d xt=%f yt=%f\n",
1979
0
               vci, data_x, w, fixed2float(dda_current(pnext.x)), fixed2float(dda_current(pnext.y)));
1980
0
    to_rects = (dev->color_info.depth != spp*8);
1981
0
    if (to_rects == 0) {
1982
0
        if (dev_proc(dev, dev_spec_op)(dev, gxdso_copy_color_is_fast, NULL, 0) <= 0)
1983
0
            to_rects = 1;
1984
0
    }
1985
1986
0
    miny = state->clip.p.y;
1987
0
    maxy = state->clip.q.y;
1988
0
    bufend = data + w * spp;
1989
0
    while (data < bufend) {
1990
        /* Find the length of the next run. It will either end when we hit
1991
         * the end of the source data, or when the pixel data differs. */
1992
0
        run = data + spp;
1993
0
        while (1) {
1994
0
            dda_next(pnext.y);
1995
0
            if (run >= bufend)
1996
0
                break;
1997
0
            if (memcmp(run, data, spp))
1998
0
                break;
1999
0
            run += spp;
2000
0
        }
2001
        /* So we have a run of pixels from data to run that are all the same. */
2002
        /* This needs to be sped up */
2003
0
        for (k = 0; k < spp; k++) {
2004
0
            conc[k] = gx_color_value_from_byte(data[k]);
2005
0
        }
2006
0
        mapper(cmapper);
2007
        /* Fill the region between irun and fixed2int_var_rounded(pnext.y) */
2008
0
        {              /* 90 degree rotated rectangle */
2009
0
            int yi = irun;
2010
0
            int hi = (irun = fixed2int_var_rounded(dda_current(pnext.y))) - yi;
2011
2012
0
            if (hi < 0)
2013
0
                yi += hi, hi = -hi;
2014
0
            if (yi < miny)
2015
0
                hi += yi - miny, yi = miny;
2016
0
            if (yi + hi > maxy)
2017
0
                hi = maxy - yi;
2018
0
            if (hi > 0)
2019
0
                code = gx_fill_rectangle_device_rop(vci, yi, vdi, hi,
2020
0
                                                    &cmapper->devc, dev, lop);
2021
0
        }
2022
0
        if (code < 0)
2023
0
            goto err;
2024
0
        data = run;
2025
0
    }
2026
0
    return 1;
2027
    /* Save position if error, in case we resume. */
2028
0
err:
2029
0
    buffer[0] = run;
2030
0
    return code;
2031
0
}
2032
2033
static int
2034
transform_pixel_region_render_skew(gx_device *dev, gx_default_transform_pixel_region_state_t *state, const unsigned char **buffer, int data_x, gx_cmapper_t *cmapper, const gs_gstate *pgs)
2035
754
{
2036
754
    gs_logical_operation_t lop = state->lop;
2037
754
    gx_dda_fixed_point pnext;
2038
754
    fixed xprev, yprev;
2039
754
    fixed pdyx, pdyy;   /* edge of parallelogram */
2040
754
    int w = state->w;
2041
754
    int h = state->h;
2042
754
    int spp = state->spp;
2043
754
    const byte *data = buffer[0] + data_x * spp;
2044
754
    fixed xpos;     /* x ditto */
2045
754
    fixed ypos;     /* y ditto */
2046
754
    const byte *bufend = data + w * spp;
2047
754
    int code = 0;
2048
754
    int k;
2049
754
    byte initial_run[GX_DEVICE_COLOR_MAX_COMPONENTS] = { 0 };
2050
754
    const byte *prev = &initial_run[0];
2051
754
    gx_cmapper_fn *mapper = cmapper->set_color;
2052
754
    gx_color_value *conc = &cmapper->conc[0];
2053
2054
754
    if (h == 0)
2055
0
        return 0;
2056
754
    pnext = state->pixels;
2057
754
    get_skew_extents(state, &pdyx, &pdyy);
2058
754
    dda_translate(pnext.x,  (-fixed_epsilon));
2059
754
    xprev = dda_current(pnext.x);
2060
754
    yprev = dda_current(pnext.y);
2061
754
    if_debug4m('b', dev->memory, "[b]y=? data_x=%d w=%d xt=%f yt=%f\n",
2062
754
               data_x, w, fixed2float(xprev), fixed2float(yprev));
2063
754
    initial_run[0] = ~data[0];  /* Force intial setting */
2064
96.2k
    while (data < bufend) {
2065
95.4k
        dda_next(pnext.x);
2066
95.4k
        dda_next(pnext.y);
2067
95.4k
        xpos = dda_current(pnext.x);
2068
95.4k
        ypos = dda_current(pnext.y);
2069
2070
95.4k
        if (memcmp(prev, data, spp) != 0)
2071
38.5k
        {
2072
            /* This needs to be sped up */
2073
154k
            for (k = 0; k < spp; k++) {
2074
115k
                conc[k] = gx_color_value_from_byte(data[k]);
2075
115k
            }
2076
38.5k
            mapper(cmapper);
2077
38.5k
        }
2078
        /* Fill the region between */
2079
        /* xprev/yprev and xpos/ypos */
2080
        /* Parallelogram */
2081
95.4k
        code = (*dev_proc(dev, fill_parallelogram))
2082
95.4k
                    (dev, xprev, yprev, xpos - xprev, ypos - yprev, pdyx, pdyy,
2083
95.4k
                     &cmapper->devc, lop);
2084
95.4k
        xprev = xpos;
2085
95.4k
        yprev = ypos;
2086
95.4k
        if (code < 0)
2087
0
            goto err;
2088
95.4k
        prev = data;
2089
95.4k
        data += spp;
2090
95.4k
    }
2091
754
    return 1;
2092
    /* Save position if error, in case we resume. */
2093
0
err:
2094
    /* Only set buffer[0] if we've managed to set prev to something valid. */
2095
0
    if (prev != &initial_run[0]) buffer[0] = prev;
2096
0
    return code;
2097
754
}
2098
2099
static int
2100
gx_default_transform_pixel_region_begin(gx_device *dev, int w, int h, int spp,
2101
                             const gx_dda_fixed_point *pixels, const gx_dda_fixed_point *rows,
2102
                             const gs_int_rect *clip, gs_logical_operation_t lop,
2103
                             gx_default_transform_pixel_region_state_t **statep)
2104
15.1k
{
2105
15.1k
    gx_default_transform_pixel_region_state_t *state;
2106
15.1k
    gs_memory_t *mem = dev->memory->non_gc_memory;
2107
2108
15.1k
    *statep = state = (gx_default_transform_pixel_region_state_t *)gs_alloc_bytes(mem, sizeof(gx_default_transform_pixel_region_state_t), "gx_default_transform_pixel_region_state_t");
2109
15.1k
    if (state == NULL)
2110
0
        return gs_error_VMerror;
2111
15.1k
    state->mem = mem;
2112
15.1k
    state->rows = *rows;
2113
15.1k
    state->pixels = *pixels;
2114
15.1k
    state->clip = *clip;
2115
15.1k
    state->w = w;
2116
15.1k
    state->h = h;
2117
15.1k
    state->spp = spp;
2118
15.1k
    state->lop = lop;
2119
15.1k
    state->line = NULL;
2120
2121
    /* FIXME: Consider sheers here too. Probably happens rarely enough not to be worth it. */
2122
15.1k
    if (rows->x.step.dQ == 0 && rows->x.step.dR == 0 && pixels->y.step.dQ == 0 && pixels->y.step.dR == 0)
2123
15.0k
        state->posture = transform_pixel_region_portrait;
2124
10
    else if (rows->y.step.dQ == 0 && rows->y.step.dR == 0 && pixels->x.step.dQ == 0 && pixels->x.step.dR == 0)
2125
0
        state->posture = transform_pixel_region_landscape;
2126
10
    else
2127
10
        state->posture = transform_pixel_region_skew;
2128
2129
15.1k
    if (state->posture == transform_pixel_region_portrait)
2130
15.0k
        state->render = transform_pixel_region_render_portrait;
2131
10
    else if (state->posture == transform_pixel_region_landscape)
2132
0
        state->render = transform_pixel_region_render_landscape;
2133
10
    else
2134
10
        state->render = transform_pixel_region_render_skew;
2135
2136
15.1k
    return 0;
2137
15.1k
}
2138
2139
static void
2140
step_to_next_line(gx_default_transform_pixel_region_state_t *state)
2141
192k
{
2142
192k
    fixed x = dda_current(state->rows.x);
2143
192k
    fixed y = dda_current(state->rows.y);
2144
2145
192k
    dda_next(state->rows.x);
2146
192k
    dda_next(state->rows.y);
2147
192k
    x = dda_current(state->rows.x) - x;
2148
192k
    y = dda_current(state->rows.y) - y;
2149
192k
    dda_translate(state->pixels.x, x);
2150
192k
    dda_translate(state->pixels.y, y);
2151
192k
}
2152
2153
static int
2154
gx_default_transform_pixel_region_data_needed(gx_device *dev, gx_default_transform_pixel_region_state_t *state)
2155
192k
{
2156
192k
    if (state->posture == transform_pixel_region_portrait) {
2157
191k
        int iy, ih;
2158
2159
191k
        get_portrait_y_extent(state, &iy, &ih);
2160
2161
191k
        if (iy + ih < state->clip.p.y || iy >= state->clip.q.y) {
2162
            /* Skip this line. */
2163
10.4k
            step_to_next_line(state);
2164
10.4k
            return 0;
2165
10.4k
        }
2166
191k
    } else if (state->posture == transform_pixel_region_landscape) {
2167
0
        int ix, iw;
2168
2169
0
        get_landscape_x_extent(state, &ix, &iw);
2170
2171
0
        if (ix + iw < state->clip.p.x || ix >= state->clip.q.x) {
2172
            /* Skip this line. */
2173
0
            step_to_next_line(state);
2174
0
            return 0;
2175
0
        }
2176
0
    }
2177
2178
182k
    return 1;
2179
192k
}
2180
2181
static int
2182
gx_default_transform_pixel_region_process_data(gx_device *dev, gx_default_transform_pixel_region_state_t *state, const unsigned char **buffer, int data_x, gx_cmapper_t *cmapper, const gs_gstate *pgs)
2183
182k
{
2184
182k
    int ret = state->render(dev, state, buffer, data_x, cmapper, pgs);
2185
2186
182k
    step_to_next_line(state);
2187
182k
    return ret;
2188
182k
}
2189
2190
static int
2191
gx_default_transform_pixel_region_end(gx_device *dev, gx_default_transform_pixel_region_state_t *state)
2192
15.1k
{
2193
15.1k
    if (state) {
2194
15.1k
        gs_free_object(state->mem, state->line, "image line");
2195
15.1k
        gs_free_object(state->mem, state, "gx_default_transform_pixel_region_state_t");
2196
15.1k
    }
2197
15.1k
    return 0;
2198
15.1k
}
2199
2200
int
2201
gx_default_transform_pixel_region(gx_device *dev,
2202
                       transform_pixel_region_reason reason,
2203
                       transform_pixel_region_data *data)
2204
405k
{
2205
405k
    gx_default_transform_pixel_region_state_t *state = (gx_default_transform_pixel_region_state_t *)data->state;
2206
2207
405k
    switch (reason)
2208
405k
    {
2209
15.1k
    case transform_pixel_region_begin:
2210
15.1k
        return gx_default_transform_pixel_region_begin(dev, data->u.init.w, data->u.init.h, data->u.init.spp, data->u.init.pixels, data->u.init.rows, data->u.init.clip, data->u.init.lop, (gx_default_transform_pixel_region_state_t **)&data->state);
2211
192k
    case transform_pixel_region_data_needed:
2212
192k
        return gx_default_transform_pixel_region_data_needed(dev, state);
2213
182k
    case transform_pixel_region_process_data:
2214
182k
        return gx_default_transform_pixel_region_process_data(dev, state, data->u.process_data.buffer, data->u.process_data.data_x, data->u.process_data.cmapper, data->u.process_data.pgs);
2215
15.1k
    case transform_pixel_region_end:
2216
15.1k
        data->state = NULL;
2217
15.1k
        return gx_default_transform_pixel_region_end(dev, state);
2218
0
    default:
2219
0
        return gs_error_unknownerror;
2220
405k
    }
2221
405k
}