Coverage Report

Created: 2025-06-10 06:59

/src/ghostpdl/base/gsfunc0.c
Line
Count
Source (jump to first uncovered line)
1
/* Copyright (C) 2001-2023 Artifex Software, Inc.
2
   All Rights Reserved.
3
4
   This software is provided AS-IS with no warranty, either express or
5
   implied.
6
7
   This software is distributed under license and may not be copied,
8
   modified or distributed except as expressly authorized under the terms
9
   of the license contained in the file LICENSE in this distribution.
10
11
   Refer to licensing information at http://www.artifex.com or contact
12
   Artifex Software, Inc.,  39 Mesa Street, Suite 108A, San Francisco,
13
   CA 94129, USA, for further information.
14
*/
15
16
17
/* Implementation of FunctionType 0 (Sampled) Functions */
18
#include "math_.h"
19
#include "gx.h"
20
#include "gserrors.h"
21
#include "gsfunc0.h"
22
#include "gsparam.h"
23
#include "gxfarith.h"
24
#include "gxfunc.h"
25
#include "stream.h"
26
#include "gsccolor.h"           /* Only for GS_CLIENT_COLOR_MAX_COMPONENTS */
27
28
#define POLE_CACHE_DEBUG 0      /* A temporary development technology need.
29
                                   Remove after the beta testing. */
30
0
#define POLE_CACHE_GENERIC_1D 1 /* A temporary development technology need.
31
                                   Didn't decide yet - see fn_Sd_evaluate_cubic_cached_1d. */
32
0
#define POLE_CACHE_IGNORE 0     /* A temporary development technology need.
33
                                   Remove after the beta testing. */
34
35
2.67k
#define MAX_FAST_COMPS 8
36
37
typedef struct gs_function_Sd_s {
38
    gs_function_head_t head;
39
    gs_function_Sd_params_t params;
40
} gs_function_Sd_t;
41
42
/* GC descriptor */
43
private_st_function_Sd();
44
static
45
0
ENUM_PTRS_WITH(function_Sd_enum_ptrs, gs_function_Sd_t *pfn)
46
0
{
47
0
    index -= 6;
48
0
    if (index < st_data_source_max_ptrs)
49
0
        return ENUM_USING(st_data_source, &pfn->params.DataSource,
50
0
                          sizeof(pfn->params.DataSource), index);
51
0
    return ENUM_USING_PREFIX(st_function, st_data_source_max_ptrs);
52
0
}
53
0
ENUM_PTR3(0, gs_function_Sd_t, params.Encode, params.Decode, params.Size);
54
0
ENUM_PTR3(3, gs_function_Sd_t, params.pole, params.array_step, params.stream_step);
55
0
ENUM_PTRS_END
56
static
57
0
RELOC_PTRS_WITH(function_Sd_reloc_ptrs, gs_function_Sd_t *pfn)
58
0
{
59
0
    RELOC_PREFIX(st_function);
60
0
    RELOC_USING(st_data_source, &pfn->params.DataSource,
61
0
                sizeof(pfn->params.DataSource));
62
0
    RELOC_PTR3(gs_function_Sd_t, params.Encode, params.Decode, params.Size);
63
0
    RELOC_PTR3(gs_function_Sd_t, params.pole, params.array_step, params.stream_step);
64
0
}
65
0
RELOC_PTRS_END
66
67
/* Define the maximum plausible number of inputs and outputs */
68
/* for a Sampled function. */
69
#ifndef GS_CLIENT_SAMPLED_FN_MAX_COMPONENTS   /* Allow override with XCFLAGS */
70
1.09k
#  define max_Sd_m GS_CLIENT_COLOR_MAX_COMPONENTS
71
#  define max_Sd_n GS_CLIENT_COLOR_MAX_COMPONENTS
72
#else
73
#  define max_Sd_m GS_CLIENT_SAMPLED_FN_MAX_COMPONENTS
74
#  define max_Sd_n GS_CLIENT_SAMPLED_FN_MAX_COMPONENTS
75
#endif
76
77
/* Get one set of sample values. */
78
#define SETUP_SAMPLES(bps, nbytes)\
79
256k
        int n = pfn->params.n;\
80
256k
        byte buf[max_Sd_n * ((bps + 7) >> 3)];\
81
256k
        const byte *p;\
82
256k
        int i;\
83
256k
\
84
256k
        data_source_access(&pfn->params.DataSource, offset >> 3,\
85
256k
                           nbytes, buf, &p)
86
87
static int
88
fn_gets_1(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
89
0
{
90
0
    SETUP_SAMPLES(1, ((offset & 7) + n + 7) >> 3);
91
0
    for (i = 0; i < n; ++i) {
92
0
        samples[i] = (*p >> (~offset & 7)) & 1;
93
0
        if (!(++offset & 7))
94
0
            p++;
95
0
    }
96
0
    return 0;
97
0
}
98
static int
99
fn_gets_2(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
100
0
{
101
0
    SETUP_SAMPLES(2, (((offset & 7) >> 1) + n + 3) >> 2);
102
0
    for (i = 0; i < n; ++i) {
103
0
        samples[i] = (*p >> (6 - (offset & 7))) & 3;
104
0
        if (!((offset += 2) & 7))
105
0
            p++;
106
0
    }
107
0
    return 0;
108
0
}
109
static int
110
fn_gets_4(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
111
0
{
112
0
    SETUP_SAMPLES(4, (((offset & 7) >> 2) + n + 1) >> 1);
113
0
    for (i = 0; i < n; ++i) {
114
0
        samples[i] = ((offset ^= 4) & 4 ? *p >> 4 : *p++ & 0xf);
115
0
    }
116
0
    return 0;
117
0
}
118
static int
119
fn_gets_8(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
120
251k
{
121
251k
    SETUP_SAMPLES(8, n);
122
657k
    for (i = 0; i < n; ++i) {
123
405k
        samples[i] = *p++;
124
405k
    }
125
251k
    return 0;
126
251k
}
127
static int
128
fn_gets_12(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
129
0
{
130
0
    SETUP_SAMPLES(12, (((offset & 7) >> 2) + 3 * n + 1) >> 1);
131
0
    for (i = 0; i < n; ++i) {
132
0
        if (offset & 4)
133
0
            samples[i] = ((*p & 0xf) << 8) + p[1], p += 2;
134
0
        else
135
0
            samples[i] = (*p << 4) + (p[1] >> 4), p++;
136
0
        offset ^= 4;
137
0
    }
138
0
    return 0;
139
0
}
140
static int
141
fn_gets_16(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
142
4.20k
{
143
4.20k
    SETUP_SAMPLES(16, n * 2);
144
8.40k
    for (i = 0; i < n; ++i) {
145
4.20k
        samples[i] = (*p << 8) + p[1];
146
4.20k
        p += 2;
147
4.20k
    }
148
4.20k
    return 0;
149
4.20k
}
150
static int
151
fn_gets_24(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
152
0
{
153
0
    SETUP_SAMPLES(24, n * 3);
154
0
    for (i = 0; i < n; ++i) {
155
0
        samples[i] = (*p << 16) + (p[1] << 8) + p[2];
156
0
        p += 3;
157
0
    }
158
0
    return 0;
159
0
}
160
static int
161
fn_gets_32(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
162
0
{
163
0
    SETUP_SAMPLES(32, n * 4);
164
0
    for (i = 0; i < n; ++i) {
165
0
        samples[i] = (*p << 24) + (p[1] << 16) + (p[2] << 8) + p[3];
166
0
        p += 4;
167
0
    }
168
0
    return 0;
169
0
}
170
171
static int (*const fn_get_samples[]) (const gs_function_Sd_t * pfn,
172
                                       ulong offset, uint * samples) =
173
{
174
    0, fn_gets_1, fn_gets_2, 0, fn_gets_4, 0, 0, 0,
175
        fn_gets_8, 0, 0, 0, fn_gets_12, 0, 0, 0,
176
        fn_gets_16, 0, 0, 0, 0, 0, 0, 0,
177
        fn_gets_24, 0, 0, 0, 0, 0, 0, 0,
178
        fn_gets_32
179
};
180
181
/*
182
 * Compute a value by cubic interpolation.
183
 * f[] = f(0), f(1), f(2), f(3); 1 < x < 2.
184
 * The formula is derived from those presented in
185
 * http://www.cs.uwa.edu.au/undergraduate/units/233.413/Handouts/Lecture04.html
186
 * (thanks to Raph Levien for the reference).
187
 */
188
static double
189
interpolate_cubic(double x, double f0, double f1, double f2, double f3)
190
0
{
191
    /*
192
     * The parameter 'a' affects the contribution of the high-frequency
193
     * components.  The abovementioned source suggests a = -0.5.
194
     */
195
0
#define a (-0.5)
196
0
#define SQR(v) ((v) * (v))
197
0
#define CUBE(v) ((v) * (v) * (v))
198
0
    const double xm1 = x - 1, m2x = 2 - x, m3x = 3 - x;
199
0
    const double c =
200
0
        (a * CUBE(x) - 5 * a * SQR(x) + 8 * a * x - 4 * a) * f0 +
201
0
        ((a+2) * CUBE(xm1) - (a+3) * SQR(xm1) + 1) * f1 +
202
0
        ((a+2) * CUBE(m2x) - (a+3) * SQR(m2x) + 1) * f2 +
203
0
        (a * CUBE(m3x) - 5 * a * SQR(m3x) + 8 * a * m3x - 4 * a) * f3;
204
205
0
    if_debug6('~', "[~](%g, %g, %g, %g)order3(%g) => %g\n",
206
0
              f0, f1, f2, f3, x, c);
207
0
    return c;
208
0
#undef a
209
0
#undef SQR
210
0
#undef CUBE
211
0
}
212
213
/*
214
 * Compute a value by quadratic interpolation.
215
 * f[] = f(0), f(1), f(2); 0 < x < 1.
216
 *
217
 * We used to use a quadratic formula for this, derived from
218
 * f(0) = f0, f(1) = f1, f'(1) = (f2 - f0) / 2, but now we
219
 * match what we believe is Acrobat Reader's behavior.
220
 */
221
static inline double
222
interpolate_quadratic(double x, double f0, double f1, double f2)
223
0
{
224
0
    return interpolate_cubic(x + 1, f0, f0, f1, f2);
225
0
}
226
227
/* Calculate a result by multicubic interpolation. */
228
static void
229
fn_interpolate_cubic(const gs_function_Sd_t *pfn, const float *fparts,
230
                     const int *iparts, const ulong *factors,
231
                     float *samples, ulong offset, int m)
232
0
{
233
0
    int j;
234
235
0
top:
236
0
    if (m == 0) {
237
0
        uint sdata[max_Sd_n];
238
239
0
        (*fn_get_samples[pfn->params.BitsPerSample])(pfn, offset, sdata);
240
0
        for (j = pfn->params.n - 1; j >= 0; --j)
241
0
            samples[j] = (float)sdata[j];
242
0
    } else {
243
0
        float fpart = *fparts++;
244
0
        int ipart = *iparts++;
245
0
        ulong delta = *factors++;
246
0
        int size = pfn->params.Size[pfn->params.m - m];
247
0
        float samples1[max_Sd_n], samplesm1[max_Sd_n], samples2[max_Sd_n];
248
249
0
        --m;
250
0
        if (is_fzero(fpart))
251
0
            goto top;
252
0
        fn_interpolate_cubic(pfn, fparts, iparts, factors, samples,
253
0
                             offset, m);
254
0
        fn_interpolate_cubic(pfn, fparts, iparts, factors, samples1,
255
0
                             offset + delta, m);
256
        /* Ensure we don't try to access out of bounds. */
257
        /*
258
         * If size == 1, the only possible value for ipart and fpart is
259
         * 0, so we've already handled this case.
260
         */
261
0
        if (size == 2) { /* ipart = 0 */
262
            /* Use linear interpolation. */
263
0
            for (j = pfn->params.n - 1; j >= 0; --j)
264
0
                samples[j] += (samples1[j] - samples[j]) * fpart;
265
0
            return;
266
0
        }
267
0
        if (ipart == 0) {
268
            /* Use quadratic interpolation. */
269
0
            fn_interpolate_cubic(pfn, fparts, iparts, factors,
270
0
                                 samples2, offset + delta * 2, m);
271
0
            for (j = pfn->params.n - 1; j >= 0; --j)
272
0
                samples[j] =
273
0
                    interpolate_quadratic(fpart, samples[j],
274
0
                                          samples1[j], samples2[j]);
275
0
            return;
276
0
        }
277
        /* At this point we know ipart > 0, size >= 3. */
278
0
        fn_interpolate_cubic(pfn, fparts, iparts, factors, samplesm1,
279
0
                             offset - delta, m);
280
0
        if (ipart == size - 2) {
281
            /* Use quadratic interpolation. */
282
0
            for (j = pfn->params.n - 1; j >= 0; --j)
283
0
                samples[j] =
284
0
                    interpolate_quadratic(1 - fpart, samples1[j],
285
0
                                          samples[j], samplesm1[j]);
286
0
            return;
287
0
        }
288
        /* Now we know 0 < ipart < size - 2, size > 3. */
289
0
        fn_interpolate_cubic(pfn, fparts, iparts, factors,
290
0
                             samples2, offset + delta * 2, m);
291
0
        for (j = pfn->params.n - 1; j >= 0; --j)
292
0
            samples[j] =
293
0
                interpolate_cubic(fpart + 1, samplesm1[j], samples[j],
294
0
                                  samples1[j], samples2[j]);
295
0
    }
296
0
}
297
298
/* Calculate a result by multilinear interpolation. */
299
static void
300
fn_interpolate_linear(const gs_function_Sd_t *pfn, const float *fparts,
301
                 const ulong *factors, float *samples, ulong offset, int m)
302
231k
{
303
231k
    int j;
304
305
249k
top:
306
249k
    if (m == 0) {
307
160k
        uint sdata[max_Sd_n];
308
309
160k
        (*fn_get_samples[pfn->params.BitsPerSample])(pfn, offset, sdata);
310
469k
        for (j = pfn->params.n - 1; j >= 0; --j)
311
309k
            samples[j] = (float)sdata[j];
312
160k
    } else {
313
89.1k
        float fpart = *fparts++;
314
89.1k
        float samples1[max_Sd_n];
315
316
89.1k
        if (is_fzero(fpart)) {
317
17.9k
            ++factors;
318
17.9k
            --m;
319
17.9k
            goto top;
320
17.9k
        }
321
71.1k
        fn_interpolate_linear(pfn, fparts, factors + 1, samples,
322
71.1k
                              offset, m - 1);
323
71.1k
        fn_interpolate_linear(pfn, fparts, factors + 1, samples1,
324
71.1k
                              offset + *factors, m - 1);
325
203k
        for (j = pfn->params.n - 1; j >= 0; --j)
326
132k
            samples[j] += (samples1[j] - samples[j]) * fpart;
327
71.1k
    }
328
249k
}
329
330
static inline double
331
fn_Sd_encode(const gs_function_Sd_t *pfn, int i, double sample)
332
276k
{
333
276k
    float d0, d1, r0, r1;
334
276k
    double value;
335
276k
    int bps = pfn->params.BitsPerSample;
336
    /* x86 machines have problems with shifts if bps >= 32 */
337
276k
    uint max_samp = (bps < (sizeof(uint) * 8)) ? ((1 << bps) - 1) : max_uint;
338
339
276k
    if (pfn->params.Range)
340
276k
        r0 = pfn->params.Range[2 * i], r1 = pfn->params.Range[2 * i + 1];
341
0
    else
342
0
        r0 = 0, r1 = (float)max_samp;
343
276k
    if (pfn->params.Decode)
344
134k
        d0 = pfn->params.Decode[2 * i], d1 = pfn->params.Decode[2 * i + 1];
345
142k
    else
346
142k
        d0 = r0, d1 = r1;
347
348
276k
    value = sample * (d1 - d0) / max_samp + d0;
349
276k
    if (value < r0)
350
0
        value = r0;
351
276k
    else if (value > r1)
352
0
        value = r1;
353
276k
    return value;
354
276k
}
355
356
/* Evaluate a Sampled function. */
357
/* A generic algorithm with a recursion by dimentions. */
358
static int
359
fn_Sd_evaluate_general(const gs_function_t * pfn_common, const float *in, float *out)
360
89.1k
{
361
89.1k
    const gs_function_Sd_t *pfn = (const gs_function_Sd_t *)pfn_common;
362
89.1k
    int bps = pfn->params.BitsPerSample;
363
89.1k
    ulong offset = 0;
364
89.1k
    int i;
365
89.1k
    float encoded[max_Sd_m];
366
89.1k
    int iparts[max_Sd_m]; /* only needed for cubic interpolation */
367
89.1k
    ulong factors[max_Sd_m];
368
89.1k
    float samples[max_Sd_n];
369
370
    /* Encode the input values. */
371
372
178k
    for (i = 0; i < pfn->params.m; ++i) {
373
89.1k
        float d0 = pfn->params.Domain[2 * i],
374
89.1k
            d1 = pfn->params.Domain[2 * i + 1];
375
89.1k
        float arg = in[i], enc;
376
377
89.1k
        if (arg < d0)
378
0
            arg = d0;
379
89.1k
        else if (arg > d1)
380
0
            arg = d1;
381
89.1k
        if (pfn->params.Encode) {
382
42.7k
            float e0 = pfn->params.Encode[2 * i];
383
42.7k
            float e1 = pfn->params.Encode[2 * i + 1];
384
385
42.7k
            enc = (arg - d0) * (e1 - e0) / (d1 - d0) + e0;
386
42.7k
            if (enc < 0)
387
0
                encoded[i] = 0;
388
42.7k
            else if (enc >= pfn->params.Size[i] - 1)
389
5.79k
                encoded[i] = (float)pfn->params.Size[i] - 1;
390
36.9k
            else
391
36.9k
                encoded[i] = enc;
392
46.4k
        } else {
393
            /* arg is guaranteed to be in bounds, ergo so is enc */
394
                /* TODO: possible issue here.  if (pfn->params.Size[i] == 1 */
395
46.4k
            encoded[i] = (arg - d0) * (pfn->params.Size[i] - 1) / (d1 - d0);
396
46.4k
        }
397
89.1k
    }
398
399
    /* Look up and interpolate the output values. */
400
401
89.1k
    {
402
89.1k
        ulong factor = (ulong)bps * pfn->params.n;
403
404
178k
        for (i = 0; i < pfn->params.m; factor *= pfn->params.Size[i++]) {
405
89.1k
            int ipart = (int)encoded[i];
406
407
89.1k
            offset += (factors[i] = factor) * ipart;
408
89.1k
            iparts[i] = ipart;  /* only needed for cubic interpolation */
409
89.1k
            encoded[i] -= ipart;
410
89.1k
        }
411
89.1k
    }
412
89.1k
    if (pfn->params.Order == 3)
413
0
        fn_interpolate_cubic(pfn, encoded, iparts, factors, samples,
414
0
                             offset, pfn->params.m);
415
89.1k
    else
416
89.1k
        fn_interpolate_linear(pfn, encoded, factors, samples, offset,
417
89.1k
                              pfn->params.m);
418
419
    /* Encode the output values. */
420
421
266k
    for (i = 0; i < pfn->params.n; ++i)
422
176k
        out[i] = (float)fn_Sd_encode(pfn, i, samples[i]);
423
424
89.1k
    return 0;
425
89.1k
}
426
427
static const double double_stub = 1e90;
428
429
static inline void
430
fn_make_cubic_poles(double *p, double f0, double f1, double f2, double f3,
431
            const int pole_step_minor)
432
0
{   /* The following is poles of the polinomial,
433
       which represents interpolate_cubic in [1,2]. */
434
0
    const double a = -0.5;
435
436
0
    p[pole_step_minor * 1] = (a*f0 + 3*f1 - a*f2)/3.0;
437
0
    p[pole_step_minor * 2] = (-a*f1 + 3*f2 + a*f3)/3.0;
438
0
}
439
440
static void
441
fn_make_poles(double *p, const int pole_step, int power, int bias)
442
0
{
443
0
    const int pole_step_minor = pole_step / 3;
444
0
    switch(power) {
445
0
        case 1: /* A linear 3d power curve. */
446
            /* bias must be 0. */
447
0
            p[pole_step_minor * 1] = (2 * p[pole_step * 0] + 1 * p[pole_step * 1]) / 3;
448
0
            p[pole_step_minor * 2] = (1 * p[pole_step * 0] + 2 * p[pole_step * 1]) / 3;
449
0
            break;
450
0
        case 2:
451
            /* bias may be be 0 or 1. */
452
            /* Duplicate the beginning or the ending pole (the old code compatible). */
453
0
            fn_make_cubic_poles(p + pole_step * bias,
454
0
                    p[pole_step * 0], p[pole_step * bias],
455
0
                    p[pole_step * (1 + bias)], p[pole_step * 2],
456
0
                    pole_step_minor);
457
0
            break;
458
0
        case 3:
459
            /* bias must be 1. */
460
0
            fn_make_cubic_poles(p + pole_step * bias,
461
0
                    p[pole_step * 0], p[pole_step * 1], p[pole_step * 2], p[pole_step * 3],
462
0
                    pole_step_minor);
463
0
            break;
464
0
        default: /* Must not happen. */
465
0
           DO_NOTHING;
466
0
    }
467
0
}
468
469
/* Evaluate a Sampled function.
470
   A cubic interpolation with a pole cache.
471
   Allows a fast check for extreme suspection. */
472
/* This implementation is a particular case of 1 dimension.
473
   maybe we'll use as an optimisation of the generic case,
474
   so keep it for a while. */
475
static int
476
fn_Sd_evaluate_cubic_cached_1d(const gs_function_Sd_t *pfn, const float *in, float *out)
477
0
{
478
0
    float d0 = pfn->params.Domain[2 * 0];
479
0
    float d1 = pfn->params.Domain[2 * 0 + 1];
480
0
    const int pole_step_minor = pfn->params.n;
481
0
    const int pole_step = 3 * pole_step_minor;
482
0
    int i0; /* A cell index. */
483
0
    int ib, ie, i, k;
484
0
    double *p, t0, t1, tt;
485
0
486
0
    tt = (in[0] - d0) * (pfn->params.Size[0] - 1) / (d1 - d0);
487
0
    i0 = (int)floor(tt);
488
0
    ib = max(i0 - 1, 0);
489
0
    ie = min(pfn->params.Size[0], i0 + 3);
490
0
    for (i = ib; i < ie; i++) {
491
0
        if (pfn->params.pole[i * pole_step] == double_stub) {
492
0
            uint sdata[max_Sd_n];
493
0
            int bps = pfn->params.BitsPerSample;
494
0
495
0
            p = &pfn->params.pole[i * pole_step];
496
0
            fn_get_samples[pfn->params.BitsPerSample](pfn, (ulong)i * bps * pfn->params.n, sdata);
497
0
            for (k = 0; k < pfn->params.n; k++, p++)
498
0
                *p = fn_Sd_encode(pfn, k, (double)sdata[k]);
499
0
        }
500
0
    }
501
0
    p = &pfn->params.pole[i0 * pole_step];
502
0
    t0 = tt - i0;
503
0
    if (t0 == 0) {
504
0
        for (k = 0; k < pfn->params.n; k++, p++)
505
0
            out[k] = *p;
506
0
    } else {
507
0
        if (p[1 * pole_step_minor] == double_stub) {
508
0
            for (k = 0; k < pfn->params.n; k++)
509
0
                fn_make_poles(&pfn->params.pole[ib * pole_step + k], pole_step,
510
0
                        ie - ib - 1, i0 - ib);
511
0
        }
512
0
        t1 = 1 - t0;
513
0
        for (k = 0; k < pfn->params.n; k++, p++) {
514
0
            double y = p[0 * pole_step_minor] * t1 * t1 * t1 +
515
0
                       p[1 * pole_step_minor] * t1 * t1 * t0 * 3 +
516
0
                       p[2 * pole_step_minor] * t1 * t0 * t0 * 3 +
517
0
                       p[3 * pole_step_minor] * t0 * t0 * t0;
518
0
            if (y < pfn->params.Range[0])
519
0
                y = pfn->params.Range[0];
520
0
            if (y > pfn->params.Range[1])
521
0
                y = pfn->params.Range[1];
522
0
            out[k] = y;
523
0
        }
524
0
    }
525
0
    return 0;
526
0
}
527
528
static inline void
529
decode_argument(const gs_function_Sd_t *pfn, const float *in, double T[max_Sd_m], int I[max_Sd_m])
530
0
{
531
0
    int i;
532
533
0
    for (i = 0; i < pfn->params.m; i++) {
534
0
        float xi = in[i];
535
0
        float d0 = pfn->params.Domain[2 * i + 0];
536
0
        float d1 = pfn->params.Domain[2 * i + 1];
537
0
        double t;
538
539
0
        if (xi < d0)
540
0
            xi = d0;
541
0
        if (xi > d1)
542
0
            xi = d1;
543
0
        t = (xi - d0) * (pfn->params.Size[i] - 1) / (d1 - d0);
544
0
        I[i] = (int)floor(t);
545
0
        T[i] = t - I[i];
546
0
    }
547
0
}
548
549
static inline void
550
index_span(const gs_function_Sd_t *pfn, int *I, double *T, int ii, int *Ii, int *ib, int *ie)
551
0
{
552
0
    *Ii = I[ii];
553
0
    if (T[ii] != 0) {
554
0
        *ib = max(*Ii - 1, 0);
555
0
        *ie = min(pfn->params.Size[ii], *Ii + 3);
556
0
    } else {
557
0
        *ib = *Ii;
558
0
        *ie = *Ii + 1;
559
0
    }
560
0
}
561
562
static inline int
563
load_vector_to(const gs_function_Sd_t *pfn, int s_offset, double *V)
564
95.7k
{
565
95.7k
    uint sdata[max_Sd_n];
566
95.7k
    int k, code;
567
568
95.7k
    code = fn_get_samples[pfn->params.BitsPerSample](pfn, s_offset, sdata);
569
95.7k
    if (code < 0)
570
0
        return code;
571
195k
    for (k = 0; k < pfn->params.n; k++)
572
100k
        V[k] = fn_Sd_encode(pfn, k, (double)sdata[k]);
573
95.7k
    return 0;
574
95.7k
}
575
576
static inline int
577
load_vector(const gs_function_Sd_t *pfn, int a_offset, int s_offset)
578
0
{
579
0
    if (*(pfn->params.pole + a_offset) == double_stub) {
580
0
        uint sdata[max_Sd_n];
581
0
        int k, code;
582
583
0
        code = fn_get_samples[pfn->params.BitsPerSample](pfn, s_offset, sdata);
584
0
        if (code < 0)
585
0
            return code;
586
0
        for (k = 0; k < pfn->params.n; k++)
587
0
            *(pfn->params.pole + a_offset + k) = fn_Sd_encode(pfn, k, (double)sdata[k]);
588
0
    }
589
0
    return 0;
590
0
}
591
592
static inline void
593
interpolate_vector(const gs_function_Sd_t *pfn, int offset, int pole_step, int power, int bias)
594
0
{
595
0
    int k;
596
597
0
    for (k = 0; k < pfn->params.n; k++)
598
0
        fn_make_poles(pfn->params.pole + offset + k, pole_step, power, bias);
599
0
}
600
601
static inline void
602
interpolate_tensors(const gs_function_Sd_t *pfn, int *I, double *T,
603
        int offset, int pole_step, int power, int bias, int ii)
604
0
{
605
0
    if (ii < 0)
606
0
        interpolate_vector(pfn, offset, pole_step, power, bias);
607
0
    else {
608
0
        int s = pfn->params.array_step[ii];
609
0
        int Ii = I[ii];
610
611
0
        if (T[ii] == 0) {
612
0
            interpolate_tensors(pfn, I, T, offset + Ii * s, pole_step, power, bias, ii - 1);
613
0
        } else {
614
0
            int l;
615
616
0
            for (l = 0; l < 4; l++)
617
0
                interpolate_tensors(pfn, I, T, offset + Ii * s + l * s / 3, pole_step, power, bias, ii - 1);
618
0
        }
619
0
    }
620
0
}
621
622
static inline bool
623
is_tensor_done(const gs_function_Sd_t *pfn, int *I, double *T, int a_offset, int ii)
624
0
{
625
    /* Check an inner pole of the cell. */
626
0
    int i, o = 0;
627
628
0
    for (i = ii; i >= 0; i--) {
629
0
        o += I[i] * pfn->params.array_step[i];
630
0
        if (T[i] != 0)
631
0
            o += pfn->params.array_step[i] / 3;
632
0
    }
633
0
    if (*(pfn->params.pole + a_offset + o) != double_stub)
634
0
        return true;
635
0
    return false;
636
0
}
637
638
/* Creates a tensor of Bezier coefficients by node interpolation. */
639
static inline int
640
make_interpolation_tensor(const gs_function_Sd_t *pfn, int *I, double *T,
641
                            int a_offset, int s_offset, int ii)
642
0
{
643
    /* Well, this function isn't obvious. Trying to explain what it does.
644
645
       Suppose we have a 4x4x4...x4 hypercube of nodes, and we want to build
646
       a multicubic interpolation function for the inner 2x2x2...x2 hypercube.
647
       We represent the multicubic function with a tensor of Besier poles,
648
       and the size of the tensor is 4x4x....x4. Note that the corners
649
       of the tensor are equal to the corners of the 2x2x...x2 hypercube.
650
651
       We organize the 'pole' array so that a tensor of a cell
652
       occupies the cell, and tensors for neighbour cells have a common hyperplane.
653
654
       For a 1-dimentional case let the nodes are n0, n1, n2, n3.
655
       It defines 3 cells n0...n1, n1...n2, n2...n3.
656
       For the 2nd cell n1...n2 let the tensor coefficients are q10, q11, q12, q13.
657
       We choose a cubic approximation, in which tangents at nodes n1, n2
658
       are parallel to (n2 - n0) and (n3 - n1) correspondingly.
659
       (Well, this doesn't give a the minimal curvity, but likely it is
660
       what Adobe implementations do, see the bug 687352,
661
       and we agree that it's some reasonable).
662
663
       Then we have :
664
665
       q11 = n0
666
       q12 = (n0/2 + 3*n1 - n2/2)/3;
667
       q11 = (n1/2 + 3*n2 - n3/2)/3;
668
       q13 = n2
669
670
       When the source node array have an insufficient nomber of nodes
671
       along a dimension to determine tangents a cell
672
       (this happens near the array boundaries),
673
       we simply duplicate ending nodes. This solution is done
674
       for the compatibility to the old code, and definitely
675
       there exists a better one. Likely Adobe does the same.
676
677
       For a 2-dimensional case we apply the 1-dimentional case through
678
       the first dimension, and then construct a surface by varying the
679
       second coordinate as a parameter. It gives a bicubic surface,
680
       and the result doesn't depend on the order of coordinates
681
       (I proved the latter with Matematica 3.0).
682
       Then we know that an interpolation by one coordinate and
683
       a differentiation by another coordinate are interchangeble operators.
684
       Due to that poles of the interpolated function are same as
685
       interpolated poles of the function (well, we didn't spend time
686
       for a strong proof, but this fact was confirmed with testing the
687
       implementation with POLE_CACHE_DEBUG).
688
689
       Then we apply the 2-dimentional considerations recursively
690
       to all dimensions. This is exactly what the function does.
691
692
     */
693
0
    int code;
694
695
0
    if (ii < 0) {
696
0
        if (POLE_CACHE_IGNORE || *(pfn->params.pole + a_offset) == double_stub) {
697
0
            code = load_vector(pfn, a_offset, s_offset);
698
0
            if (code < 0)
699
0
                return code;
700
0
        }
701
0
    } else {
702
0
        int Ii, ib, ie, i;
703
0
        int sa = pfn->params.array_step[ii];
704
0
        int ss = pfn->params.stream_step[ii];
705
706
0
        index_span(pfn, I, T, ii, &Ii, &ib, &ie);
707
0
        if (POLE_CACHE_IGNORE || !is_tensor_done(pfn, I, T, a_offset, ii)) {
708
0
            for (i = ib; i < ie; i++) {
709
0
                code = make_interpolation_tensor(pfn, I, T,
710
0
                                a_offset + i * sa, s_offset + i * ss, ii - 1);
711
0
                if (code < 0)
712
0
                    return code;
713
0
            }
714
0
            if (T[ii] != 0)
715
0
                interpolate_tensors(pfn, I, T, a_offset + ib * sa, sa, ie - ib - 1,
716
0
                                Ii - ib, ii - 1);
717
0
        }
718
0
    }
719
0
    return 0;
720
0
}
721
722
/* Creates a subarray of samples. */
723
static inline int
724
make_interpolation_nodes(const gs_function_Sd_t *pfn, double *T0, double *T1,
725
                            int *I, double *T,
726
                            int a_offset, int s_offset, int ii)
727
0
{
728
0
    int code;
729
730
0
    if (ii < 0) {
731
0
        if (POLE_CACHE_IGNORE || *(pfn->params.pole + a_offset) == double_stub) {
732
0
            code = load_vector(pfn, a_offset, s_offset);
733
0
            if (code < 0)
734
0
                return code;
735
0
        }
736
0
        if (pfn->params.Order == 3) {
737
0
            code = make_interpolation_tensor(pfn, I, T, 0, 0, pfn->params.m - 1);
738
0
            if (code < 0)
739
0
                return code;
740
0
        }
741
0
    } else {
742
0
        int i;
743
0
        int i0 = (int)floor(T0[ii]);
744
0
        int i1 = (int)ceil(T1[ii]);
745
0
        int sa = pfn->params.array_step[ii];
746
0
        int ss = pfn->params.stream_step[ii];
747
748
0
        if (i0 < 0 || i0 >= pfn->params.Size[ii])
749
0
            return_error(gs_error_unregistered); /* Must not happen. */
750
0
        if (i1 < 0 || i1 >= pfn->params.Size[ii])
751
0
            return_error(gs_error_unregistered); /* Must not happen. */
752
0
        I[ii] = i0;
753
0
        T[ii] = (i1 > i0 ? 1 : 0);
754
0
        for (i = i0; i <= i1; i++) {
755
0
            code = make_interpolation_nodes(pfn, T0, T1, I, T,
756
0
                            a_offset + i * sa, s_offset + i * ss, ii - 1);
757
0
            if (code < 0)
758
0
                return code;
759
0
        }
760
0
    }
761
0
    return 0;
762
0
}
763
764
static inline int
765
evaluate_from_tenzor(const gs_function_Sd_t *pfn, int *I, double *T, int offset, int ii, double *y)
766
0
{
767
0
    int s = pfn->params.array_step[ii], k, l, code;
768
769
0
    if (ii < 0) {
770
0
        for (k = 0; k < pfn->params.n; k++)
771
0
            y[k] = *(pfn->params.pole + offset + k);
772
0
    } else if (T[ii] == 0) {
773
0
        return evaluate_from_tenzor(pfn, I, T, offset + s * I[ii], ii - 1, y);
774
0
    } else {
775
0
        double t0 = T[ii], t1 = 1 - t0;
776
0
        double p[4][max_Sd_n];
777
778
0
        for (l = 0; l < 4; l++) {
779
0
            code = evaluate_from_tenzor(pfn, I, T, offset + s * I[ii] + l * (s / 3), ii - 1, p[l]);
780
0
            if (code < 0)
781
0
                return code;
782
0
        }
783
0
        for (k = 0; k < pfn->params.n; k++)
784
0
            y[k] = p[0][k] * t1 * t1 * t1 +
785
0
                   p[1][k] * t1 * t1 * t0 * 3 +
786
0
                   p[2][k] * t1 * t0 * t0 * 3 +
787
0
           p[3][k] * t0 * t0 * t0;
788
0
    }
789
0
    return 0;
790
0
}
791
792
/* Evaluate a Sampled function. */
793
/* A cubic interpolation with pole cache. */
794
/* Allows a fast check for extreme suspection with is_tensor_monotonic. */
795
static int
796
fn_Sd_evaluate_multicubic_cached(const gs_function_Sd_t *pfn, const float *in, float *out)
797
0
{
798
0
    double T[max_Sd_m], y[max_Sd_n];
799
0
    int I[max_Sd_m], k, code;
800
801
0
    decode_argument(pfn, in, T, I);
802
0
    code = make_interpolation_tensor(pfn, I, T, 0, 0, pfn->params.m - 1);
803
0
    if (code < 0)
804
0
        return code;
805
0
    evaluate_from_tenzor(pfn, I, T, 0, pfn->params.m - 1, y);
806
0
    for (k = 0; k < pfn->params.n; k++) {
807
0
        double yk = y[k];
808
809
0
        if (yk < pfn->params.Range[k * 2 + 0])
810
0
            yk = pfn->params.Range[k * 2 + 0];
811
0
        if (yk > pfn->params.Range[k * 2 + 1])
812
0
            yk = pfn->params.Range[k * 2 + 1];
813
0
        out[k] = yk;
814
0
    }
815
0
    return 0;
816
0
}
817
818
/* Evaluate a Sampled function. */
819
static int
820
fn_Sd_evaluate(const gs_function_t * pfn_common, const float *in, float *out)
821
89.1k
{
822
89.1k
    const gs_function_Sd_t *pfn = (const gs_function_Sd_t *)pfn_common;
823
89.1k
    int code;
824
825
89.1k
    if (pfn->params.Order == 3) {
826
0
        if (POLE_CACHE_GENERIC_1D || pfn->params.m > 1)
827
0
            code = fn_Sd_evaluate_multicubic_cached(pfn, in, out);
828
0
        else
829
0
            code = fn_Sd_evaluate_cubic_cached_1d(pfn, in, out);
830
# if POLE_CACHE_DEBUG
831
        {   float y[max_Sd_n];
832
            int k, code1;
833
834
            code1 = fn_Sd_evaluate_general(pfn_common, in, y);
835
            if (code != code1)
836
                return_error(gs_error_unregistered); /* Must not happen. */
837
            for (k = 0; k < pfn->params.n; k++) {
838
                if (any_abs(y[k] - out[k]) > 1e-6 * (pfn->params.Range[k * 2 + 1] - pfn->params.Range[k * 2 + 0]))
839
                    return_error(gs_error_unregistered); /* Must not happen. */
840
            }
841
        }
842
# endif
843
0
    } else
844
89.1k
        code = fn_Sd_evaluate_general(pfn_common, in, out);
845
89.1k
    return code;
846
89.1k
}
847
848
/* Map a function subdomain to the sample index subdomain. */
849
static inline int
850
get_scaled_range(const gs_function_Sd_t *const pfn,
851
                   const float *lower, const float *upper,
852
                   int i, float *pw0, float *pw1)
853
506
{
854
506
    float d0 = pfn->params.Domain[i * 2 + 0], d1 = pfn->params.Domain[i * 2 + 1];
855
506
    float v0 = lower[i], v1 = upper[i];
856
506
    float e0, e1, w0, w1, w;
857
506
    const float small_noise = (float)1e-6;
858
859
506
    if (v0 < d0 || v0 > d1)
860
0
        return_error(gs_error_rangecheck);
861
506
    if (pfn->params.Encode)
862
180
        e0 = pfn->params.Encode[i * 2 + 0], e1 = pfn->params.Encode[i * 2 + 1];
863
326
    else
864
326
        e0 = 0, e1 = (float)pfn->params.Size[i] - 1;
865
506
    w0 = (v0 - d0) * (e1 - e0) / (d1 - d0) + e0;
866
506
    if (w0 < 0)
867
0
        w0 = 0;
868
506
    else if (w0 >= pfn->params.Size[i] - 1)
869
77
        w0 = (float)pfn->params.Size[i] - 1;
870
506
    w1 = (v1 - d0) * (e1 - e0) / (d1 - d0) + e0;
871
506
    if (w1 < 0)
872
0
        w1 = 0;
873
506
    else if (w1 >= pfn->params.Size[i] - 1)
874
94
        w1 = (float)pfn->params.Size[i] - 1;
875
506
    if (w0 > w1) {
876
71
        w = w0; w0 = w1; w1 = w;
877
71
    }
878
506
    if (floor(w0 + 1) - w0 < small_noise * any_abs(e1 - e0))
879
10
        w0 = (floor(w0) + 1);
880
506
    if (w1 - floor(w1) < small_noise * any_abs(e1 - e0))
881
280
        w1 = floor(w1);
882
506
    if (w0 > w1)
883
10
        w0 = w1;
884
506
    *pw0 = w0;
885
506
    *pw1 = w1;
886
506
    return 0;
887
506
}
888
889
/* Copy a tensor to a differently indexed pole array. */
890
static int
891
copy_poles(const gs_function_Sd_t *pfn, int *I, double *T0, double *T1, int a_offset,
892
                int ii, double *pole, int p_offset, int pole_step)
893
0
{
894
0
    int i, ei, sa, code;
895
0
    int order = pfn->params.Order;
896
897
0
    if (pole_step <= 0)
898
0
        return_error(gs_error_limitcheck); /* Too small buffer. */
899
0
    ei = (T0[ii] == T1[ii] ? 1 : order + 1);
900
0
    sa = pfn->params.array_step[ii];
901
0
    if (ii == 0) {
902
0
        for (i = 0; i < ei; i++)
903
0
            *(pole + p_offset + i * pole_step) =
904
0
                    *(pfn->params.pole + a_offset + I[ii] * sa + i * (sa / order));
905
0
    } else {
906
0
        for (i = 0; i < ei; i++) {
907
0
            code = copy_poles(pfn, I, T0, T1, a_offset + I[ii] * sa + i * (sa / order), ii - 1,
908
0
                            pole, p_offset + i * pole_step, pole_step / 4);
909
0
            if (code < 0)
910
0
                return code;
911
0
        }
912
0
    }
913
0
    return 0;
914
0
}
915
916
static inline void
917
subcurve(double *pole, int pole_step, double t0, double t1)
918
0
{
919
    /* Generated with subcurve.nb using Mathematica 3.0. */
920
0
    double q0 = pole[pole_step * 0];
921
0
    double q1 = pole[pole_step * 1];
922
0
    double q2 = pole[pole_step * 2];
923
0
    double q3 = pole[pole_step * 3];
924
0
    double t01 = t0 - 1, t11 = t1 - 1;
925
0
    double small = 1e-13;
926
927
0
#define Power2(a) (a) * (a)
928
0
#define Power3(a) (a) * (a) * (a)
929
0
    pole[pole_step * 0] = t0*(t0*(q3*t0 - 3*q2*t01) + 3*q1*Power2(t01)) - q0*Power3(t01);
930
0
    pole[pole_step * 1] = q1*t01*(-2*t0 - t1 + 3*t0*t1) + t0*(q2*t0 + 2*q2*t1 -
931
0
                            3*q2*t0*t1 + q3*t0*t1) - q0*t11*Power2(t01);
932
0
    pole[pole_step * 2] = t1*(2*q2*t0 + q2*t1 - 3*q2*t0*t1 + q3*t0*t1) +
933
0
                            q1*(-t0 - 2*t1 + 3*t0*t1)*t11 - q0*t01*Power2(t11);
934
0
    pole[pole_step * 3] = t1*(t1*(3*q2 - 3*q2*t1 + q3*t1) +
935
0
                            3*q1*Power2(t11)) - q0*Power3(t11);
936
0
#undef Power2
937
0
#undef Power3
938
0
    if (any_abs(pole[pole_step * 1] - pole[pole_step * 0]) < small)
939
0
        pole[pole_step * 1] = pole[pole_step * 0];
940
0
    if (any_abs(pole[pole_step * 2] - pole[pole_step * 3]) < small)
941
0
        pole[pole_step * 2] = pole[pole_step * 3];
942
0
}
943
944
static inline void
945
subline(double *pole, int pole_step, double t0, double t1)
946
0
{
947
0
    double q0 = pole[pole_step * 0];
948
0
    double q1 = pole[pole_step * 1];
949
950
0
    pole[pole_step * 0] = (1 - t0) * q0 + t0 * q1;
951
0
    pole[pole_step * 1] = (1 - t1) * q0 + t1 * q1;
952
0
}
953
954
static void
955
clamp_poles(double *T0, double *T1, int ii, int i, double * pole,
956
                int p_offset, int pole_step, int pole_step_i, int order)
957
0
{
958
0
    if (ii < 0) {
959
0
        if (order == 3)
960
0
            subcurve(pole + p_offset, pole_step_i, T0[i], T1[i]);
961
0
        else
962
0
            subline(pole + p_offset, pole_step_i, T0[i], T1[i]);
963
0
    } else if (i == ii) {
964
0
        clamp_poles(T0, T1, ii - 1, i, pole, p_offset, pole_step / 4, pole_step, order);
965
0
    } else {
966
0
        int j, ei = (T0[ii] == T1[ii] ? 1 : order + 1);
967
968
0
        for (j = 0; j < ei; j++)
969
0
            clamp_poles(T0, T1, ii - 1, i, pole, p_offset + j * pole_step,
970
0
                            pole_step / 4, pole_step_i, order);
971
0
    }
972
0
}
973
974
static inline int /* 3 - don't know, 2 - decreesing, 0 - constant, 1 - increasing. */
975
curve_monotonity(double *pole, int pole_step)
976
0
{
977
0
    double p0 = pole[pole_step * 0];
978
0
    double p1 = pole[pole_step * 1];
979
0
    double p2 = pole[pole_step * 2];
980
0
    double p3 = pole[pole_step * 3];
981
982
0
    if (p0 == p1 && any_abs(p1 - p2) < 1e-13 && p2 == p3)
983
0
        return 0;
984
0
    if (p0 <= p1 && p1 <= p2 && p2 <= p3)
985
0
        return 1;
986
0
    if (p0 >= p1 && p1 >= p2 && p2 >= p3)
987
0
        return 2;
988
    /* Maybe not monotonic.
989
       Don't want to solve quadratic equations, so return "don't know".
990
       This case should be rare.
991
     */
992
0
    return 3;
993
0
}
994
995
static inline int /* 2 - decreesing, 0 - constant, 1 - increasing. */
996
line_monotonity(double *pole, int pole_step)
997
0
{
998
0
    double p0 = pole[pole_step * 0];
999
0
    double p1 = pole[pole_step * 1];
1000
1001
0
    if (p1 - p0 > 1e-13)
1002
0
        return 1;
1003
0
    if (p0 - p1 > 1e-13)
1004
0
        return 2;
1005
0
    return 0;
1006
0
}
1007
1008
static int /* 3 bits per guide : 3 - non-monotonic or don't know,
1009
                    2 - decreesing, 0 - constant, 1 - increasing.
1010
                    The number of guides is order+1. */
1011
tensor_dimension_monotonity(const double *T0, const double *T1, int ii, int i0, double *pole,
1012
                int p_offset, int pole_step, int pole_step_i, int order)
1013
0
{
1014
0
    if (ii < 0) {
1015
0
        if (order == 3)
1016
0
            return curve_monotonity(pole + p_offset, pole_step_i);
1017
0
        else
1018
0
            return line_monotonity(pole + p_offset, pole_step_i);
1019
0
    } else if (i0 == ii) {
1020
        /* Delay the dimension till the end, and adjust pole_step. */
1021
0
        return tensor_dimension_monotonity(T0, T1, ii - 1, i0, pole, p_offset,
1022
0
                            pole_step / 4, pole_step, order);
1023
0
    } else {
1024
0
        int j, ei = (T0[ii] == T1[ii] ? 1 : order + 1), m = 0, mm;
1025
1026
0
        for (j = 0; j < ei; j++) {
1027
0
            mm = tensor_dimension_monotonity(T0, T1, ii - 1, i0, pole, p_offset + j * pole_step,
1028
0
                            pole_step/ 4, pole_step_i, order);
1029
0
            m |= mm << (j * 3);
1030
0
            if (mm == 3) {
1031
                /* If one guide is not monotonic, the dimension is not monotonic.
1032
                   Can return early. */
1033
0
                break;
1034
0
            }
1035
0
        }
1036
0
        return m;
1037
0
    }
1038
0
}
1039
1040
static inline int
1041
is_tensor_monotonic_by_dimension(const gs_function_Sd_t *pfn, int *I, double *T0, double *T1, int i0, int k,
1042
                    uint *mask /* 3 bits per guide : 3 - non-monotonic or don't know,
1043
                    2 - decreesing, 0 - constant, 1 - increasing.
1044
                    The number of guides is order+1. */)
1045
0
{
1046
0
    double pole[4*4*4]; /* For a while restricting with 3-in cubic functions.
1047
                 More arguments need a bigger buffer, but the rest of code is same. */
1048
0
    int i, code, ii = pfn->params.m - 1;
1049
0
    double TT0[3], TT1[3];
1050
1051
0
    *mask = 0;
1052
0
    if (ii >= 3) {
1053
         /* Unimplemented. We don't know practical cases,
1054
            because currently it is only called while decomposing a shading.  */
1055
0
        return_error(gs_error_limitcheck);
1056
0
    }
1057
0
    code = copy_poles(pfn, I, T0, T1, k, ii, pole, 0, count_of(pole) / 4);
1058
0
    if (code < 0)
1059
0
        return code;
1060
0
    for (i = ii; i >= 0; i--) {
1061
0
        TT0[i] = 0;
1062
0
        if (T0[i] != T1[i]) {
1063
0
            if (T0[i] != 0 || T1[i] != 1)
1064
0
                clamp_poles(T0, T1, ii, i, pole, 0, count_of(pole) / 4, -1, pfn->params.Order);
1065
0
            TT1[i] = 1;
1066
0
        } else
1067
0
            TT1[i] = 0;
1068
0
    }
1069
0
    *mask = tensor_dimension_monotonity(TT0, TT1, ii, i0, pole, 0,
1070
0
                        count_of(pole) / 4, 1, pfn->params.Order);
1071
0
    return 0;
1072
0
}
1073
1074
static int /* error code */
1075
is_lattice_monotonic_by_dimension(const gs_function_Sd_t *pfn, const double *T0, const double *T1,
1076
        int *I, double *S0, double *S1, int ii, int i0, int k,
1077
        uint *mask /* 3 bits per guide : 1 - non-monotonic or don't know, 0 - monotonic;
1078
                      The number of guides is order+1. */)
1079
0
{
1080
0
    if (ii == -1) {
1081
        /* fixme : could cache the cell monotonity against redundant evaluation. */
1082
0
        return is_tensor_monotonic_by_dimension(pfn, I, S0, S1, i0, k, mask);
1083
0
    } else {
1084
0
        int i1 = (ii > i0 ? ii : ii == 0 ? i0 : ii - 1); /* Delay the dimension i0 till the end of recursion. */
1085
0
        int j, code;
1086
0
        int bi = (int)floor(T0[i1]);
1087
0
        int ei = (int)floor(T1[i1]);
1088
0
        uint m, mm, m1 = 0x49249249 & ((1 << ((pfn->params.Order + 1) * 3)) - 1);
1089
1090
0
        if (floor(T1[i1]) == T1[i1])
1091
0
            ei --;
1092
0
        m = 0;
1093
0
        for (j = bi; j <= ei; j++) {
1094
            /* fixme : A better performance may be obtained with comparing central nodes with side ones. */
1095
0
            I[i1] = j;
1096
0
            S0[i1] = max(T0[i1] - j, 0);
1097
0
            S1[i1] = min(T1[i1] - j, 1);
1098
0
            code = is_lattice_monotonic_by_dimension(pfn, T0, T1, I, S0, S1, ii - 1, i0, k, &mm);
1099
0
            if (code < 0)
1100
0
                return code;
1101
0
            m |= mm;
1102
0
            if (m == m1) /* Don't return early - shadings need to know about all dimensions. */
1103
0
                break;
1104
0
        }
1105
0
        if (ii == 0) {
1106
            /* Detect non-monotonic guides. */
1107
0
            m = m & (m >> 1);
1108
0
        }
1109
0
        *mask = m;
1110
0
        return 0;
1111
0
    }
1112
0
}
1113
1114
static inline int /* error code */
1115
is_lattice_monotonic(const gs_function_Sd_t *pfn, const double *T0, const double *T1,
1116
         int *I, double *S0, double *S1,
1117
         int k, uint *mask /* 1 bit per dimension : 1 - non-monotonic or don't know,
1118
                      0 - monotonic. */)
1119
0
{
1120
0
    uint m, mm = 0;
1121
0
    int i, code;
1122
1123
0
    for (i = 0; i < pfn->params.m; i++) {
1124
0
        if (T0[i] != T1[i]) {
1125
0
            code = is_lattice_monotonic_by_dimension(pfn, T0, T1, I, S0, S1, pfn->params.m - 1, i, k, &m);
1126
0
            if (code < 0)
1127
0
                return code;
1128
0
            if (m)
1129
0
                mm |= 1 << i;
1130
0
        }
1131
0
    }
1132
0
    *mask = mm;
1133
0
    return 0;
1134
0
}
1135
1136
static int /* 3 bits per result : 3 - non-monotonic or don't know,
1137
               2 - decreesing, 0 - constant, 1 - increasing,
1138
               <0 - error. */
1139
fn_Sd_1arg_linear_monotonic_rec(const gs_function_Sd_t *const pfn, int i0, int i1,
1140
                                const double *V0, const double *V1)
1141
190k
{
1142
190k
    if (i1 - i0 <= 1) {
1143
95.5k
        int code = 0, i;
1144
1145
195k
        for (i = 0; i < pfn->params.n; i++) {
1146
99.5k
            if (V0[i] < V1[i])
1147
9.34k
                code |= 1 << (i * 3);
1148
90.1k
            else if (V0[i] > V1[i])
1149
1.22k
                code |= 2 << (i * 3);
1150
99.5k
        }
1151
95.5k
        return code;
1152
95.5k
    } else {
1153
95.3k
        double VV[MAX_FAST_COMPS];
1154
95.3k
        int ii = (i0 + i1) / 2, code, cod1;
1155
1156
95.3k
        code = load_vector_to(pfn, ii * pfn->params.n * pfn->params.BitsPerSample, VV);
1157
95.3k
        if (code < 0)
1158
0
            return code;
1159
95.3k
        if (code & (code >> 1))
1160
0
            return code; /* Not monotonic by some component of the result. */
1161
95.3k
        code = fn_Sd_1arg_linear_monotonic_rec(pfn, i0, ii, V0, VV);
1162
95.3k
        if (code < 0)
1163
0
            return code;
1164
95.3k
        cod1 = fn_Sd_1arg_linear_monotonic_rec(pfn, ii, i1, VV, V1);
1165
95.3k
        if (cod1 < 0)
1166
0
            return cod1;
1167
95.3k
        return code | cod1;
1168
95.3k
    }
1169
190k
}
1170
1171
static int
1172
fn_Sd_1arg_linear_monotonic(const gs_function_Sd_t *const pfn, double T0, double T1,
1173
                            uint *mask /* 1 - non-monotonic or don't know, 0 - monotonic. */)
1174
506
{
1175
506
    int i0 = (int)floor(T0);
1176
506
    int i1 = (int)ceil(T1), code;
1177
506
    double V0[MAX_FAST_COMPS], V1[MAX_FAST_COMPS];
1178
1179
506
    if (i1 - i0 > 1) {
1180
196
        code = load_vector_to(pfn, i0 * pfn->params.n * pfn->params.BitsPerSample, V0);
1181
196
        if (code < 0)
1182
0
            return code;
1183
196
        code = load_vector_to(pfn, i1 * pfn->params.n * pfn->params.BitsPerSample, V1);
1184
196
        if (code < 0)
1185
0
            return code;
1186
196
        code = fn_Sd_1arg_linear_monotonic_rec(pfn, i0, i1, V0, V1);
1187
196
        if (code < 0)
1188
0
            return code;
1189
196
        if (code & (code >> 1)) {
1190
0
            *mask = 1;
1191
0
            return 0;
1192
0
        }
1193
196
    }
1194
506
    *mask = 0;
1195
506
    return 1;
1196
506
}
1197
1198
0
#define DEBUG_Sd_1arg 0
1199
1200
/* Test whether a Sampled function is monotonic. */
1201
static int /* 1 = monotonic, 0 = not or don't know, <0 = error. */
1202
fn_Sd_is_monotonic_aux(const gs_function_Sd_t *const pfn,
1203
                   const float *lower, const float *upper,
1204
                   uint *mask /* 1 bit per dimension : 1 - non-monotonic or don't know,
1205
                      0 - monotonic. */)
1206
506
{
1207
506
    int i, code, ii = pfn->params.m - 1;
1208
506
    int I[4];
1209
506
    double T0[count_of(I)], T1[count_of(I)];
1210
506
    double S0[count_of(I)], S1[count_of(I)];
1211
506
    uint m, mm, m1;
1212
#   if DEBUG_Sd_1arg
1213
    int code1, mask1;
1214
#   endif
1215
1216
506
    if (ii >= count_of(T0)) {
1217
         /* Unimplemented. We don't know practical cases,
1218
            because currently it is only called while decomposing a shading.  */
1219
0
        return_error(gs_error_limitcheck);
1220
0
    }
1221
1.01k
    for (i = 0; i <= ii; i++) {
1222
506
        float w0, w1;
1223
1224
506
        code = get_scaled_range(pfn, lower, upper, i, &w0, &w1);
1225
506
        if (code < 0)
1226
0
            return code;
1227
506
        T0[i] = w0;
1228
506
        T1[i] = w1;
1229
506
    }
1230
506
    if (pfn->params.m == 1 && pfn->params.Order == 1 && pfn->params.n <= MAX_FAST_COMPS) {
1231
506
        code = fn_Sd_1arg_linear_monotonic(pfn, T0[0], T1[0], mask);
1232
506
# if !DEBUG_Sd_1arg
1233
506
            return code;
1234
# else
1235
            mask1 = *mask;
1236
            code1 = code;
1237
# endif
1238
506
    }
1239
0
    m1 = (1 << pfn->params.m )- 1;
1240
0
    code = make_interpolation_nodes(pfn, T0, T1, I, S0, 0, 0, ii);
1241
0
    if (code < 0)
1242
0
        return code;
1243
0
    mm = 0;
1244
0
    for (i = 0; i < pfn->params.n; i++) {
1245
0
        code = is_lattice_monotonic(pfn, T0, T1, I, S0, S1, i, &m);
1246
0
        if (code < 0)
1247
0
            return code;
1248
0
        mm |= m;
1249
0
        if (mm == m1) /* Don't return early - shadings need to know about all dimensions. */
1250
0
            break;
1251
0
    }
1252
#   if DEBUG_Sd_1arg
1253
        if (mask1 != mm)
1254
            return_error(gs_error_unregistered);
1255
        if (code1 != !mm)
1256
            return_error(gs_error_unregistered);
1257
#   endif
1258
0
    *mask = mm;
1259
0
    return !mm;
1260
0
}
1261
1262
/* Test whether a Sampled function is monotonic. */
1263
/* 1 = monotonic, 0 = don't know, <0 = error. */
1264
static int
1265
fn_Sd_is_monotonic(const gs_function_t * pfn_common,
1266
                   const float *lower, const float *upper, uint *mask)
1267
506
{
1268
506
    const gs_function_Sd_t *const pfn =
1269
506
        (const gs_function_Sd_t *)pfn_common;
1270
1271
506
    return fn_Sd_is_monotonic_aux(pfn, lower, upper, mask);
1272
506
}
1273
1274
/* Return Sampled function information. */
1275
static void
1276
fn_Sd_get_info(const gs_function_t *pfn_common, gs_function_info_t *pfi)
1277
0
{
1278
0
    const gs_function_Sd_t *const pfn =
1279
0
        (const gs_function_Sd_t *)pfn_common;
1280
0
    long size;
1281
0
    int i;
1282
1283
0
    gs_function_get_info_default(pfn_common, pfi);
1284
0
    pfi->DataSource = &pfn->params.DataSource;
1285
0
    for (i = 0, size = 1; i < pfn->params.m; ++i)
1286
0
        size *= pfn->params.Size[i];
1287
0
    pfi->data_size =
1288
0
        (size * pfn->params.n * pfn->params.BitsPerSample + 7) >> 3;
1289
0
}
1290
1291
/* Write Sampled function parameters on a parameter list. */
1292
static int
1293
fn_Sd_get_params(const gs_function_t *pfn_common, gs_param_list *plist)
1294
0
{
1295
0
    const gs_function_Sd_t *const pfn =
1296
0
        (const gs_function_Sd_t *)pfn_common;
1297
0
    int ecode = fn_common_get_params(pfn_common, plist);
1298
0
    int code;
1299
1300
0
    if (pfn->params.Order != 1) {
1301
0
        if ((code = param_write_int(plist, "Order", &pfn->params.Order)) < 0)
1302
0
            ecode = code;
1303
0
    }
1304
0
    if ((code = param_write_int(plist, "BitsPerSample",
1305
0
                                &pfn->params.BitsPerSample)) < 0)
1306
0
        ecode = code;
1307
0
    if (pfn->params.Encode) {
1308
0
        if ((code = param_write_float_values(plist, "Encode",
1309
0
                                             pfn->params.Encode,
1310
0
                                             2 * pfn->params.m, false)) < 0)
1311
0
            ecode = code;
1312
0
    }
1313
0
    if (pfn->params.Decode) {
1314
0
        if ((code = param_write_float_values(plist, "Decode",
1315
0
                                             pfn->params.Decode,
1316
0
                                             2 * pfn->params.n, false)) < 0)
1317
0
            ecode = code;
1318
0
    }
1319
0
    if (pfn->params.Size) {
1320
0
        if ((code = param_write_int_values(plist, "Size", pfn->params.Size,
1321
0
                                           pfn->params.m, false)) < 0)
1322
0
            ecode = code;
1323
0
    }
1324
0
    return ecode;
1325
0
}
1326
1327
/* Make a scaled copy of a Sampled function. */
1328
static int
1329
fn_Sd_make_scaled(const gs_function_Sd_t *pfn, gs_function_Sd_t **ppsfn,
1330
                  const gs_range_t *pranges, gs_memory_t *mem)
1331
0
{
1332
0
    gs_function_Sd_t *psfn =
1333
0
        gs_alloc_struct(mem, gs_function_Sd_t, &st_function_Sd,
1334
0
                        "fn_Sd_make_scaled");
1335
0
    int code;
1336
1337
0
    if (psfn == 0)
1338
0
        return_error(gs_error_VMerror);
1339
0
    psfn->params = pfn->params;
1340
0
    psfn->params.Encode = 0;    /* in case of failure */
1341
0
    psfn->params.Decode = 0;
1342
0
    psfn->params.Size =
1343
0
        fn_copy_values(pfn->params.Size, pfn->params.m, sizeof(int), mem);
1344
0
    if ((code = (psfn->params.Size == 0 ?
1345
0
                 gs_note_error(gs_error_VMerror) : 0)) < 0 ||
1346
0
        (code = fn_common_scale((gs_function_t *)psfn,
1347
0
                                (const gs_function_t *)pfn,
1348
0
                                pranges, mem)) < 0 ||
1349
0
        (code = fn_scale_pairs(&psfn->params.Encode, pfn->params.Encode,
1350
0
                               pfn->params.m, NULL, mem)) < 0 ||
1351
0
        (code = fn_scale_pairs(&psfn->params.Decode, pfn->params.Decode,
1352
0
                               pfn->params.n, pranges, mem)) < 0) {
1353
0
        gs_function_free((gs_function_t *)psfn, true, mem);
1354
0
    } else
1355
0
        *ppsfn = psfn;
1356
0
    return code;
1357
0
}
1358
1359
/* Free the parameters of a Sampled function. */
1360
void
1361
gs_function_Sd_free_params(gs_function_Sd_params_t * params, gs_memory_t * mem)
1362
1.10k
{
1363
1.10k
    gs_free_const_object(mem, params->Size, "Size");
1364
1.10k
    params->Size = NULL;
1365
1.10k
    gs_free_const_object(mem, params->Decode, "Decode");
1366
1.10k
    params->Decode = NULL;
1367
1.10k
    gs_free_const_object(mem, params->Encode, "Encode");
1368
1.10k
    params->Encode = NULL;
1369
1.10k
    fn_common_free_params((gs_function_params_t *) params, mem);
1370
1.10k
    if (params->DataSource.type == data_source_type_stream && params->DataSource.data.strm != NULL) {
1371
1.09k
        s_close_filters(&params->DataSource.data.strm, params->DataSource.data.strm->strm);
1372
1.09k
        params->DataSource.data.strm = NULL;
1373
1.09k
    }
1374
1.10k
    gs_free_object(mem, params->pole, "gs_function_Sd_free_params");
1375
1.10k
    params->pole = NULL;
1376
1.10k
    gs_free_object(mem, params->array_step, "gs_function_Sd_free_params");
1377
1.10k
    params->array_step = NULL;
1378
1.10k
    gs_free_object(mem, params->stream_step, "gs_function_Sd_free_params");
1379
1.10k
    params->stream_step = NULL;
1380
1.10k
}
1381
1382
/* aA helper for gs_function_Sd_serialize. */
1383
static int serialize_array(const float *a, int half_size, stream *s)
1384
0
{
1385
0
    uint n;
1386
0
    const float dummy[2] = {0, 0};
1387
0
    int i, code;
1388
1389
0
    if (a != NULL)
1390
0
        return sputs(s, (const byte *)a, sizeof(a[0]) * half_size * 2, &n);
1391
0
    for (i = 0; i < half_size; i++) {
1392
0
        code = sputs(s, (const byte *)dummy, sizeof(dummy), &n);
1393
0
        if (code < 0)
1394
0
            return code;
1395
0
    }
1396
0
    return 0;
1397
0
}
1398
1399
/* Serialize. */
1400
static int
1401
gs_function_Sd_serialize(const gs_function_t * pfn, stream *s)
1402
0
{
1403
0
    uint n;
1404
0
    const gs_function_Sd_params_t * p = (const gs_function_Sd_params_t *)&pfn->params;
1405
0
    gs_function_info_t info;
1406
0
    int code = fn_common_serialize(pfn, s);
1407
0
    ulong pos;
1408
0
    uint count;
1409
0
    byte buf[100];
1410
0
    const byte *ptr;
1411
1412
0
    if (code < 0)
1413
0
        return code;
1414
0
    code = sputs(s, (const byte *)&p->Order, sizeof(p->Order), &n);
1415
0
    if (code < 0)
1416
0
        return code;
1417
0
    code = sputs(s, (const byte *)&p->BitsPerSample, sizeof(p->BitsPerSample), &n);
1418
0
    if (code < 0)
1419
0
        return code;
1420
0
    code = serialize_array(p->Encode, p->m, s);
1421
0
    if (code < 0)
1422
0
        return code;
1423
0
    code = serialize_array(p->Decode, p->n, s);
1424
0
    if (code < 0)
1425
0
        return code;
1426
0
    gs_function_get_info(pfn, &info);
1427
0
    code = sputs(s, (const byte *)&info.data_size, sizeof(info.data_size), &n);
1428
0
    if (code < 0)
1429
0
        return code;
1430
0
    for (pos = 0; pos < info.data_size; pos += count) {
1431
0
        count = min(sizeof(buf), info.data_size - pos);
1432
0
        data_source_access_only(info.DataSource, pos, count, buf, &ptr);
1433
0
        code = sputs(s, ptr, count, &n);
1434
0
        if (code < 0)
1435
0
            return code;
1436
0
    }
1437
0
    return 0;
1438
0
}
1439
1440
/* Allocate and initialize a Sampled function. */
1441
int
1442
gs_function_Sd_init(gs_function_t ** ppfn,
1443
                  const gs_function_Sd_params_t * params, gs_memory_t * mem)
1444
1.09k
{
1445
1.09k
    static const gs_function_head_t function_Sd_head = {
1446
1.09k
        function_type_Sampled,
1447
1.09k
        {
1448
1.09k
            (fn_evaluate_proc_t) fn_Sd_evaluate,
1449
1.09k
            (fn_is_monotonic_proc_t) fn_Sd_is_monotonic,
1450
1.09k
            (fn_get_info_proc_t) fn_Sd_get_info,
1451
1.09k
            (fn_get_params_proc_t) fn_Sd_get_params,
1452
1.09k
            (fn_make_scaled_proc_t) fn_Sd_make_scaled,
1453
1.09k
            (fn_free_params_proc_t) gs_function_Sd_free_params,
1454
1.09k
            fn_common_free,
1455
1.09k
            (fn_serialize_proc_t) gs_function_Sd_serialize,
1456
1.09k
        }
1457
1.09k
    };
1458
1.09k
    int code;
1459
1.09k
    int i;
1460
1461
1.09k
    *ppfn = 0;      /* in case of error */
1462
1.09k
    code = fn_check_mnDR((const gs_function_params_t *)params,
1463
1.09k
                         params->m, params->n);
1464
1.09k
    if (code < 0)
1465
0
        return code;
1466
1.09k
    if (params->m > max_Sd_m)
1467
0
        return_error(gs_error_limitcheck);
1468
1.09k
    switch (params->Order) {
1469
0
        case 0:   /* use default */
1470
1.09k
        case 1:
1471
1.09k
        case 3:
1472
1.09k
            break;
1473
0
        default:
1474
0
            return_error(gs_error_rangecheck);
1475
1.09k
    }
1476
1.09k
    switch (params->BitsPerSample) {
1477
0
        case 1:
1478
0
        case 2:
1479
0
        case 4:
1480
1.08k
        case 8:
1481
1.08k
        case 12:
1482
1.09k
        case 16:
1483
1.09k
        case 24:
1484
1.09k
        case 32:
1485
1.09k
            break;
1486
0
        default:
1487
0
            return_error(gs_error_rangecheck);
1488
1.09k
    }
1489
2.21k
    for (i = 0; i < params->m; ++i)
1490
1.12k
        if (params->Size[i] <= 0)
1491
0
            return_error(gs_error_rangecheck);
1492
1.09k
    {
1493
1.09k
        gs_function_Sd_t *pfn =
1494
1.09k
            gs_alloc_struct(mem, gs_function_Sd_t, &st_function_Sd,
1495
1.09k
                            "gs_function_Sd_init");
1496
1.09k
        int bps, sa, ss, i, order, was;
1497
1498
1.09k
        if (pfn == 0)
1499
0
            return_error(gs_error_VMerror);
1500
1.09k
        pfn->params = *params;
1501
1.09k
        if (params->Order == 0)
1502
0
            pfn->params.Order = 1; /* default */
1503
1.09k
        pfn->params.pole = NULL;
1504
1.09k
        pfn->params.array_step = NULL;
1505
1.09k
        pfn->params.stream_step = NULL;
1506
1.09k
        pfn->head = function_Sd_head;
1507
1.09k
        pfn->params.array_size = 0;
1508
1.09k
        if (pfn->params.m == 1 && pfn->params.Order == 1 && pfn->params.n <= MAX_FAST_COMPS && !DEBUG_Sd_1arg) {
1509
            /* Won't use pole cache. Call fn_Sd_1arg_linear_monotonic instead. */
1510
1.07k
        } else {
1511
14
            pfn->params.array_step = (int *)gs_alloc_byte_array(mem,
1512
14
                                    max_Sd_m, sizeof(int), "gs_function_Sd_init");
1513
14
            pfn->params.stream_step = (int *)gs_alloc_byte_array(mem,
1514
14
                                    max_Sd_m, sizeof(int), "gs_function_Sd_init");
1515
14
            if (pfn->params.array_step == NULL || pfn->params.stream_step == NULL)
1516
0
                return_error(gs_error_VMerror);
1517
14
            bps = pfn->params.BitsPerSample;
1518
14
            sa = pfn->params.n;
1519
14
            ss = pfn->params.n * bps;
1520
14
            order = pfn->params.Order;
1521
56
            for (i = 0; i < pfn->params.m; i++) {
1522
42
                pfn->params.array_step[i] = sa * order;
1523
42
                was = sa;
1524
42
                sa = (pfn->params.Size[i] * order - (order - 1)) * sa;
1525
                /* If the calculation of sa went backwards then we overflowed! */
1526
42
                if (was > sa)
1527
0
                    return_error(gs_error_VMerror);
1528
42
                pfn->params.stream_step[i] = ss;
1529
42
                ss = pfn->params.Size[i] * ss;
1530
42
            }
1531
14
            pfn->params.pole = (double *)gs_alloc_byte_array(mem,
1532
14
                                    sa, sizeof(double), "gs_function_Sd_init");
1533
14
            if (pfn->params.pole == NULL)
1534
0
                return_error(gs_error_VMerror);
1535
92.2k
            for (i = 0; i < sa; i++)
1536
92.2k
                pfn->params.pole[i] = double_stub;
1537
14
            pfn->params.array_size = sa;
1538
14
        }
1539
1.09k
        *ppfn = (gs_function_t *) pfn;
1540
1.09k
    }
1541
0
    return 0;
1542
1.09k
}