Coverage Report

Created: 2025-06-10 06:59

/src/ghostpdl/base/gxshade.c
Line
Count
Source (jump to first uncovered line)
1
/* Copyright (C) 2001-2023 Artifex Software, Inc.
2
   All Rights Reserved.
3
4
   This software is provided AS-IS with no warranty, either express or
5
   implied.
6
7
   This software is distributed under license and may not be copied,
8
   modified or distributed except as expressly authorized under the terms
9
   of the license contained in the file LICENSE in this distribution.
10
11
   Refer to licensing information at http://www.artifex.com or contact
12
   Artifex Software, Inc.,  39 Mesa Street, Suite 108A, San Francisco,
13
   CA 94129, USA, for further information.
14
*/
15
16
17
/* Shading rendering support */
18
#include "math_.h"
19
#include "gx.h"
20
#include "gserrors.h"
21
#include "gsrect.h"
22
#include "gxcspace.h"
23
#include "gscindex.h"
24
#include "gscie.h"    /* requires gscspace.h */
25
#include "gxdevcli.h"
26
#include "gxgstate.h"
27
#include "gxdht.h"    /* for computing # of different colors */
28
#include "gxpaint.h"
29
#include "gxshade.h"
30
#include "gxshade4.h"
31
#include "gsicc.h"
32
#include "gsicc_cache.h"
33
#include "gxcdevn.h"
34
#include "gximage.h"
35
36
/* Define a maximum smoothness value. */
37
/* smoothness > 0.2 produces severely blocky output. */
38
#define MAX_SMOOTHNESS 0.2
39
40
/* ================ Packed coordinate streams ================ */
41
42
/* Forward references */
43
static int cs_next_packed_value(shade_coord_stream_t *, int, uint *);
44
static int cs_next_array_value(shade_coord_stream_t *, int, uint *);
45
static int cs_next_packed_decoded(shade_coord_stream_t *, int,
46
                                   const float[2], float *);
47
static int cs_next_array_decoded(shade_coord_stream_t *, int,
48
                                  const float[2], float *);
49
static void cs_packed_align(shade_coord_stream_t *cs, int radix);
50
static void cs_array_align(shade_coord_stream_t *cs, int radix);
51
static bool cs_eod(const shade_coord_stream_t * cs);
52
53
/* Initialize a packed value stream. */
54
void
55
shade_next_init(shade_coord_stream_t * cs,
56
                const gs_shading_mesh_params_t * params,
57
                const gs_gstate * pgs)
58
117
{
59
117
    cs->params = params;
60
117
    cs->pctm = &pgs->ctm;
61
117
    if (data_source_is_stream(params->DataSource)) {
62
        /*
63
         * Rewind the data stream iff it is reusable -- either a reusable
64
         * file or a reusable string.
65
         */
66
117
        stream *s = cs->s = params->DataSource.data.strm;
67
68
117
        if ((s->file != 0 && s->file_limit != max_long) ||
69
117
            (s->file == 0 && s->strm == 0)
70
117
            )
71
117
            sseek(s, 0);
72
117
    } else {
73
0
        s_init(&cs->ds, NULL);
74
0
        sread_string(&cs->ds, params->DataSource.data.str.data,
75
0
                     params->DataSource.data.str.size);
76
0
        cs->s = &cs->ds;
77
0
    }
78
117
    if (data_source_is_array(params->DataSource)) {
79
0
        cs->get_value = cs_next_array_value;
80
0
        cs->get_decoded = cs_next_array_decoded;
81
0
        cs->align = cs_array_align;
82
117
    } else {
83
117
        cs->get_value = cs_next_packed_value;
84
117
        cs->get_decoded = cs_next_packed_decoded;
85
117
        cs->align = cs_packed_align;
86
117
    }
87
117
    cs->is_eod = cs_eod;
88
117
    cs->left = 0;
89
117
    cs->ds_EOF = false;
90
117
    cs->first_patch = 1;
91
117
}
92
93
/* Check for the End-Of-Data state form a stream. */
94
static bool
95
cs_eod(const shade_coord_stream_t * cs)
96
78
{
97
78
    return cs->ds_EOF;
98
78
}
99
100
/* Get the next (integer) value from a packed value stream. */
101
/* 1 <= num_bits <= sizeof(uint) * 8. */
102
static int
103
cs_next_packed_value(shade_coord_stream_t * cs, int num_bits, uint * pvalue)
104
2.32M
{
105
2.32M
    uint bits = cs->bits;
106
2.32M
    int left = cs->left;
107
108
2.32M
    if (left >= num_bits) {
109
        /* We can satisfy this request with the current buffered bits. */
110
0
        cs->left = left -= num_bits;
111
0
        *pvalue = (bits >> left) & ((1 << num_bits) - 1);
112
2.32M
    } else {
113
        /* We need more bits. */
114
2.32M
        int needed = num_bits - left;
115
2.32M
        uint value = bits & ((1 << left) - 1);  /* all the remaining bits */
116
117
9.40M
        for (; needed >= 8; needed -= 8) {
118
7.07M
            int b = sgetc(cs->s);
119
120
7.07M
            if (b < 0) {
121
111
                cs->ds_EOF = true;
122
111
                return_error(gs_error_rangecheck);
123
111
            }
124
7.07M
            value = (value << 8) + b;
125
7.07M
        }
126
2.32M
        if (needed == 0) {
127
2.32M
            cs->left = 0;
128
2.32M
            *pvalue = value;
129
2.32M
        } else {
130
0
            int b = sgetc(cs->s);
131
132
0
            if (b < 0) {
133
0
                cs->ds_EOF = true;
134
0
                return_error(gs_error_rangecheck);
135
0
            }
136
0
            cs->bits = b;
137
0
            cs->left = left = 8 - needed;
138
0
            *pvalue = (value << needed) + (b >> left);
139
0
        }
140
2.32M
    }
141
2.32M
    return 0;
142
2.32M
}
143
144
/*
145
 * Get the next (integer) value from an unpacked array.  Note that
146
 * num_bits may be 0 if we are reading a coordinate or color value.
147
 */
148
static int
149
cs_next_array_value(shade_coord_stream_t * cs, int num_bits, uint * pvalue)
150
0
{
151
0
    float value;
152
0
    uint read;
153
154
0
    if (sgets(cs->s, (byte *)&value, sizeof(float), &read) < 0 ||
155
0
        read != sizeof(float)) {
156
0
        cs->ds_EOF = true;
157
0
        return_error(gs_error_rangecheck);
158
0
    }
159
0
    if (value < 0 || (num_bits != 0 && num_bits < sizeof(uint) * 8 &&
160
0
         value >= (1 << num_bits)) ||
161
0
        value != (uint)value
162
0
        )
163
0
        return_error(gs_error_rangecheck);
164
0
    *pvalue = (uint) value;
165
0
    return 0;
166
0
}
167
168
/* Get the next decoded floating point value. */
169
static int
170
cs_next_packed_decoded(shade_coord_stream_t * cs, int num_bits,
171
                       const float decode[2], float *pvalue)
172
2.27M
{
173
2.27M
    uint value;
174
2.27M
    int code = cs->get_value(cs, num_bits, &value);
175
2.27M
    double max_value = (double)(uint)
176
2.27M
        (num_bits == sizeof(uint) * 8 ? ~0 : ((1 << num_bits) - 1));
177
2.27M
    double dvalue = (double)value;
178
179
2.27M
    if (code < 0)
180
36
        return code;
181
2.27M
    *pvalue =
182
2.27M
        (decode == 0 ? dvalue / max_value :
183
2.27M
         decode[0] + dvalue * (decode[1] - decode[0]) / max_value);
184
2.27M
    return 0;
185
2.27M
}
186
187
/* Get the next floating point value from an array, without decoding. */
188
static int
189
cs_next_array_decoded(shade_coord_stream_t * cs, int num_bits,
190
                      const float decode[2], float *pvalue)
191
0
{
192
0
    float value;
193
0
    uint read;
194
195
0
    if (sgets(cs->s, (byte *)&value, sizeof(float), &read) < 0 ||
196
0
        read != sizeof(float)
197
0
    ) {
198
0
        cs->ds_EOF = true;
199
0
        return_error(gs_error_rangecheck);
200
0
    }
201
0
    *pvalue = value;
202
0
    return 0;
203
0
}
204
205
static void
206
cs_packed_align(shade_coord_stream_t *cs, int radix)
207
56.8k
{
208
56.8k
    cs->left = cs->left / radix * radix;
209
56.8k
}
210
211
static void
212
cs_array_align(shade_coord_stream_t *cs, int radix)
213
0
{
214
0
}
215
216
/* Get the next flag value. */
217
/* Note that this always starts a new data byte. */
218
int
219
shade_next_flag(shade_coord_stream_t * cs, int BitsPerFlag)
220
56.0k
{
221
56.0k
    uint flag;
222
56.0k
    int code;
223
224
56.0k
    cs->left = 0;   /* start a new byte if packed */
225
56.0k
    code = cs->get_value(cs, BitsPerFlag, &flag);
226
56.0k
    return (code < 0 ? code : flag);
227
56.0k
}
228
229
/* Get one or more coordinate pairs. */
230
int
231
shade_next_coords(shade_coord_stream_t * cs, gs_fixed_point * ppt,
232
                  int num_points)
233
429k
{
234
429k
    int num_bits = cs->params->BitsPerCoordinate;
235
429k
    const float *decode = cs->params->Decode;
236
429k
    int code = 0;
237
429k
    int i;
238
239
1.21M
    for (i = 0; i < num_points; ++i) {
240
790k
        float x, y;
241
242
790k
        if ((code = cs->get_decoded(cs, num_bits, decode, &x)) < 0 ||
243
790k
            (code = cs->get_decoded(cs, num_bits, decode + 2, &y)) < 0 ||
244
790k
            (code = gs_point_transform2fixed(cs->pctm, x, y, &ppt[i])) < 0
245
790k
            )
246
29
            break;
247
790k
    }
248
429k
    return code;
249
429k
}
250
251
/* Get a color.  Currently all this does is look up Indexed colors. */
252
int
253
shade_next_color(shade_coord_stream_t * cs, float *pc)
254
177k
{
255
177k
    const float *decode = cs->params->Decode + 4; /* skip coord decode */
256
177k
    const gs_color_space *pcs = cs->params->ColorSpace;
257
177k
    gs_color_space_index index = gs_color_space_get_index(pcs);
258
177k
    int num_bits = cs->params->BitsPerComponent;
259
260
177k
    if (index == gs_color_space_index_Indexed) {
261
0
        int ncomp = gs_color_space_num_components(gs_cspace_base_space(pcs));
262
0
        int ci;
263
0
        float cf;
264
0
        int code = cs->get_decoded(cs, num_bits, decode, &cf);
265
0
        gs_client_color cc;
266
0
        int i;
267
268
0
        if (code < 0)
269
0
            return code;
270
0
        if (cf < 0)
271
0
            return_error(gs_error_rangecheck);
272
0
        ci = (int)cf;
273
0
        if (ci >= gs_cspace_indexed_num_entries(pcs))
274
0
            return_error(gs_error_rangecheck);
275
0
        code = gs_cspace_indexed_lookup(pcs, ci, &cc);
276
0
        if (code < 0)
277
0
            return code;
278
0
        for (i = 0; i < ncomp; ++i)
279
0
            pc[i] = cc.paint.values[i];
280
177k
    } else {
281
177k
        int i, code;
282
177k
        int ncomp = (cs->params->Function != 0 ? 1 :
283
177k
                     gs_color_space_num_components(pcs));
284
285
869k
        for (i = 0; i < ncomp; ++i) {
286
692k
            if ((code = cs->get_decoded(cs, num_bits, decode + i * 2, &pc[i])) < 0)
287
7
                return code;
288
692k
            if (cs->params->Function) {
289
376
                gs_function_params_t *params = &cs->params->Function->params;
290
291
376
                if (pc[i] < params->Domain[i + i])
292
0
                    pc[i] = params->Domain[i + i];
293
376
                else if (pc[i] > params->Domain[i + i + 1])
294
0
                    pc[i] = params->Domain[i + i + 1];
295
376
            }
296
692k
        }
297
177k
    }
298
177k
    return 0;
299
177k
}
300
301
/* Get the next vertex for a mesh element. */
302
int
303
shade_next_vertex(shade_coord_stream_t * cs, shading_vertex_t * vertex, patch_color_t *c)
304
1.69k
{   /* Assuming p->c == c, provides a non-const access. */
305
1.69k
    int code = shade_next_coords(cs, &vertex->p, 1);
306
307
1.69k
    if (code >= 0)
308
1.69k
        code = shade_next_color(cs, c->cc.paint.values);
309
1.69k
    if (code >= 0)
310
1.69k
        cs->align(cs, 8); /* CET 09-47J.PS SpecialTestI04Test01. */
311
1.69k
    return code;
312
1.69k
}
313
314
/* ================ Shading rendering ================ */
315
316
/* Initialize the common parts of the recursion state. */
317
int
318
shade_init_fill_state(shading_fill_state_t * pfs, const gs_shading_t * psh,
319
                      gx_device * dev, gs_gstate * pgs)
320
2.20k
{
321
2.20k
    const gs_color_space *pcs = psh->params.ColorSpace;
322
2.20k
    float max_error = min(pgs->smoothness, MAX_SMOOTHNESS);
323
2.20k
    bool is_lab;
324
2.20k
    bool cs_lin_test;
325
2.20k
    int code;
326
327
    /*
328
     * There's no point in trying to achieve smoothness beyond what
329
     * the device can implement, i.e., the number of representable
330
     * colors times the number of halftone levels.
331
     */
332
2.20k
    long num_colors =
333
2.20k
        max(dev->color_info.max_gray, dev->color_info.max_color) + 1;
334
2.20k
    const gs_range *ranges = 0;
335
2.20k
    int ci;
336
2.20k
    gsicc_rendering_param_t rendering_params;
337
338
2.20k
    pfs->cs_always_linear = false;
339
2.20k
    pfs->dev = dev;
340
2.20k
    pfs->pgs = pgs;
341
2.20k
top:
342
2.20k
    pfs->direct_space = pcs;
343
2.20k
    pfs->num_components = gs_color_space_num_components(pcs);
344
2.20k
    switch ( gs_color_space_get_index(pcs) )
345
2.20k
        {
346
0
        case gs_color_space_index_Indexed:
347
0
            pcs = gs_cspace_base_space(pcs);
348
0
            goto top;
349
0
        case gs_color_space_index_CIEDEFG:
350
0
            ranges = pcs->params.defg->RangeDEFG.ranges;
351
0
            break;
352
0
        case gs_color_space_index_CIEDEF:
353
0
            ranges = pcs->params.def->RangeDEF.ranges;
354
0
            break;
355
0
        case gs_color_space_index_CIEABC:
356
0
            ranges = pcs->params.abc->RangeABC.ranges;
357
0
            break;
358
0
        case gs_color_space_index_CIEA:
359
0
            ranges = &pcs->params.a->RangeA;
360
0
            break;
361
1.60k
        case gs_color_space_index_ICC:
362
1.60k
            ranges = pcs->cmm_icc_profile_data->Range.ranges;
363
1.60k
            break;
364
596
        default:
365
596
            break;
366
2.20k
        }
367
2.20k
    if (num_colors <= 32) {
368
        /****** WRONG FOR MULTI-PLANE HALFTONES ******/
369
0
        num_colors *= pgs->dev_ht[HT_OBJTYPE_DEFAULT]->components[0].corder.num_levels;
370
0
    }
371
2.20k
    if (psh->head.type == 2 || psh->head.type == 3) {
372
2.08k
        max_error *= 0.25;
373
2.08k
        num_colors *= 2;
374
2.08k
    }
375
2.20k
    if (max_error < 1.0 / num_colors)
376
0
        max_error = 1.0 / num_colors;
377
8.06k
    for (ci = 0; ci < pfs->num_components; ++ci)
378
5.86k
        pfs->cc_max_error[ci] =
379
5.86k
            (ranges == 0 ? max_error :
380
5.86k
             max_error * (ranges[ci].rmax - ranges[ci].rmin));
381
2.20k
    if (pgs->has_transparency && pgs->trans_device != NULL) {
382
1.80k
        pfs->trans_device = pgs->trans_device;
383
1.80k
    } else {
384
404
        pfs->trans_device = dev;
385
404
    }
386
    /* If the CS is PS based and we have not yet converted to the ICC form
387
       then go ahead and do that now */
388
2.20k
    if (gs_color_space_is_PSCIE(pcs) && pcs->icc_equivalent == NULL) {
389
0
        code = gs_colorspace_set_icc_equivalent((gs_color_space *)pcs, &(is_lab), pgs->memory);
390
0
        if (code < 0)
391
0
            return code;
392
0
    }
393
2.20k
    rendering_params.black_point_comp = pgs->blackptcomp;
394
2.20k
    rendering_params.graphics_type_tag = GS_VECTOR_TAG;
395
2.20k
    rendering_params.override_icc = false;
396
2.20k
    rendering_params.preserve_black = gsBKPRESNOTSPECIFIED;
397
2.20k
    rendering_params.rendering_intent = pgs->renderingintent;
398
2.20k
    rendering_params.cmm = gsCMM_DEFAULT;
399
    /* Grab the icc link transform that we need now */
400
2.20k
    if (pcs->cmm_icc_profile_data != NULL) {
401
1.60k
        pfs->icclink = gsicc_get_link(pgs, pgs->trans_device, pcs, NULL,
402
1.60k
                                      &rendering_params, pgs->memory);
403
1.60k
        if (pfs->icclink == NULL)
404
2
            return_error(gs_error_VMerror);
405
1.60k
    } else {
406
596
        if (pcs->icc_equivalent != NULL ) {
407
            /* We have a PS equivalent ICC profile.  We may need to go
408
               through special range adjustments in this case */
409
0
            pfs->icclink = gsicc_get_link(pgs, pgs->trans_device,
410
0
                                          pcs->icc_equivalent, NULL,
411
0
                                          &rendering_params, pgs->memory);
412
0
            if (pfs->icclink == NULL)
413
0
                return_error(gs_error_VMerror);
414
596
        } else {
415
596
            pfs->icclink = NULL;
416
596
        }
417
596
    }
418
    /* Two possible cases of interest here for performance.  One is that the
419
    * icclink is NULL, which could occur if the source space were DeviceN or
420
    * a separation color space, while at the same time, the output device
421
    * supports these colorants (e.g. a separation device).   The other case is
422
    * that the icclink is the identity.  This could happen for example if the
423
    * source space were CMYK and we are going out to a CMYK device. For both
424
    * of these cases we can avoid going through the standard
425
    * color mappings to determine linearity. This is true, provided that the
426
    * transfer function is linear.  It is likely that we can improve
427
    * things even in cases where the transfer function is nonlinear, but for
428
    * now, we will punt on those and let them go through the longer processing
429
    * steps */
430
2.20k
    if (pfs->icclink == NULL)
431
596
            cs_lin_test = !(using_alt_color_space((gs_gstate*)pgs));
432
1.60k
    else
433
1.60k
        cs_lin_test = pfs->icclink->is_identity;
434
435
2.20k
    if (cs_lin_test && !gx_has_transfer(pgs, dev->color_info.num_components)) {
436
2.13k
        pfs->cs_always_linear = true;
437
2.13k
    }
438
439
#ifdef IGNORE_SPEC_MATCH_ADOBE_SHADINGS
440
    /* Per the spec. If the source space is DeviceN or Separation and the
441
       colorants are not supported (i.e. if we are using the alternate tint
442
       transform) the interpolation should occur in the source space to
443
       accommodate non-linear tint transform functions.
444
       e.g. We had a case where the transform function
445
       was an increasing staircase. Including that function in the
446
       gradient smoothness calculation gave us severe quantization. AR on
447
       the other hand is doing the interpolation in device color space
448
       and has a smooth result for that case. So AR is not following the spec. The
449
       bit below solves the issues for Type 4 and Type 5 shadings as
450
       this will avoid interpolations in source space. Type 6 and Type 7 will still
451
       have interpolations in the source space even if pfs->cs_always_linear == true.
452
       So the approach below does not solve those issues. To do that
453
       without changing the shading code, we could make a linear
454
       approximation to the alternate tint transform, which would
455
       ensure smoothness like what AR provides.
456
    */
457
    if ((gs_color_space_get_index(pcs) == gs_color_space_index_DeviceN ||
458
        gs_color_space_get_index(pcs) == gs_color_space_index_Separation) &&
459
        using_alt_color_space((gs_gstate*)pgs) && (psh->head.type == 4 ||
460
        psh->head.type == 5)) {
461
        pfs->cs_always_linear = true;
462
    }
463
#endif
464
465
2.20k
    return 0;
466
2.20k
}
467
468
/* Fill one piece of a shading. */
469
int
470
shade_fill_path(const shading_fill_state_t * pfs, gx_path * ppath,
471
                gx_device_color * pdevc, const gs_fixed_point *fill_adjust)
472
0
{
473
0
    gx_fill_params params;
474
475
0
    params.rule = -1;   /* irrelevant */
476
0
    params.adjust = *fill_adjust;
477
0
    params.flatness = 0;  /* irrelevant */
478
0
    return (*dev_proc(pfs->dev, fill_path)) (pfs->dev, pfs->pgs, ppath,
479
0
                                             &params, pdevc, NULL);
480
0
}