Coverage Report

Created: 2025-06-10 06:59

/src/ghostpdl/base/gxstroke.c
Line
Count
Source (jump to first uncovered line)
1
/* Copyright (C) 2001-2025 Artifex Software, Inc.
2
   All Rights Reserved.
3
4
   This software is provided AS-IS with no warranty, either express or
5
   implied.
6
7
   This software is distributed under license and may not be copied,
8
   modified or distributed except as expressly authorized under the terms
9
   of the license contained in the file LICENSE in this distribution.
10
11
   Refer to licensing information at http://www.artifex.com or contact
12
   Artifex Software, Inc.,  39 Mesa Street, Suite 108A, San Francisco,
13
   CA 94129, USA, for further information.
14
*/
15
16
17
/* Path stroking procedures for Ghostscript library */
18
#include "math_.h"
19
#include <stdlib.h> /* abs() */
20
#include "gx.h"
21
#include "gpcheck.h"
22
#include "gserrors.h"
23
#include "gsdcolor.h"
24
#include "gsptype1.h"
25
#include "gsptype2.h"
26
#include "gxfixed.h"
27
#include "gxfarith.h"
28
#include "gxmatrix.h"
29
#include "gscoord.h"
30
#include "gsdevice.h"
31
#include "gxdevice.h"
32
#include "gxhttile.h"
33
#include "gxgstate.h"
34
#include "gzline.h"
35
#include "gzpath.h"
36
#include "gzcpath.h"
37
#include "gxpaint.h"
38
#include "gsstate.h"            /* for gs_currentcpsimode */
39
#include "gzacpath.h"
40
41
/* RJW: There appears to be a difference in the xps and postscript models
42
 * (at least in as far as Microsofts implementation of xps and Acrobats of
43
 * postscript). Acrobat (and ghostscript) are happy to join a line segment
44
 * around a corner, even when the next segment is a dash gap. Microsofts
45
 * implementation of XPS does not.
46
 *
47
 * A test file that shows this up is tests_private/comparefiles/298-05.ps
48
 *
49
 * Enabling the following define would emulate xps behaviour here.
50
 */
51
#undef AVOID_JOINING_TO_DASH_GAPS
52
53
/*
54
 * We don't really know whether it's a good idea to take fill adjustment
55
 * into account for stroking.  Disregarding it means that strokes
56
 * come out thinner than fills; observing it produces heavy-looking
57
 * strokes at low resolutions.  But in any case, we must disregard it
58
 * when stroking zero-width lines.
59
 */
60
#define USE_FILL_ADJUSTMENT
61
62
#ifdef USE_FILL_ADJUSTMENT
63
#  define STROKE_ADJUSTMENT(thin, pgs, xy)\
64
2.05M
     (thin ? fixed_0 : (pgs)->fill_adjust.xy)
65
#else
66
#  define STROKE_ADJUSTMENT(thin, pgs, xy) fixed_0
67
#endif
68
69
/*
70
 * For some reason, we commented out the optimization for portrait,
71
 * landscape, and uniform (non-scaled) transformations.  We have no record
72
 * of why we did this, and we don't know what bugs re-enabling it may
73
 * introduce.
74
 */
75
#define OPTIMIZE_ORIENTATION
76
77
/*
78
 * Compute the amount by which to expand a stroked bounding box to account
79
 * for line width, caps and joins.  Return 0 if the result is exact, 1 if
80
 * it may be conservative, or gs_error_limitcheck if the result is too
81
 * large to fit in a gs_fixed_point.
82
 *
83
 * Because of square caps and miter and triangular joins, the maximum
84
 * expansion on each side (in user space) is
85
 *      K * line_width/2
86
 * where K is determined as follows:
87
 *      For round or butt caps, E = 1
88
 *      For square caps, E = sqrt(2)
89
 *        If the path is only a single line segment, K = E;
90
 *          if triangular joins, K = 2;
91
 *          if miter joins, K = max(miter_limit, E);
92
 *      otherwise, K = E.
93
 *
94
 * If the following conditions apply, K = E yields an exact result:
95
 *      - The CTM is of the form [X 0 0 Y] or [0 X Y 0].
96
 *      - Square or round caps are used, or all subpaths are closed.
97
 *      - All segments (including the implicit segment created by
98
 *        closepath) are vertical or horizontal lines.
99
 *
100
 * Note that these conditions are sufficient, but not necessary, to get an
101
 * exact result.  We choose this set of conditions because it is easy to
102
 * check and covers many common cases.  Clients that care always have the
103
 * option of using strokepath to get an exact result.
104
 */
105
static float join_expansion_factor(const gs_gstate *, gs_line_join);
106
int
107
gx_stroke_path_expansion(const gs_gstate * pgs, const gx_path * ppath,
108
                         gs_fixed_point * ppt)
109
167k
{
110
167k
    const subpath *psub;
111
167k
    const segment *pseg;
112
167k
    double cx = fabs(pgs->ctm.xx) + fabs(pgs->ctm.yx);
113
167k
    double cy = fabs(pgs->ctm.xy) + fabs(pgs->ctm.yy);
114
167k
    double expand = pgs->line_params.half_width;
115
167k
    int result = 1;
116
117
167k
    if (ppath == NULL) {
118
0
        ppt->x = ppt->y = 0;
119
0
        return 0;   /* no expansion */
120
0
    }
121
167k
    psub = ppath->first_subpath;
122
    /* Adjust the expansion (E) for square caps, if needed */
123
167k
    if (pgs->line_params.start_cap == gs_cap_square ||
124
167k
        pgs->line_params.end_cap == gs_cap_square)
125
19.7k
            expand *= 1.414213562;
126
127
    /* Check for whether an exact result can be computed easily. */
128
167k
    if (is_fzero2(pgs->ctm.xy, pgs->ctm.yx) ||
129
167k
        is_fzero2(pgs->ctm.xx, pgs->ctm.yy)
130
167k
        ) {
131
97.4k
        bool must_be_closed =
132
97.4k
            !(pgs->line_params.start_cap == gs_cap_square ||
133
97.4k
              pgs->line_params.start_cap == gs_cap_round  ||
134
97.4k
              pgs->line_params.end_cap   == gs_cap_square ||
135
97.4k
              pgs->line_params.end_cap   == gs_cap_round  ||
136
97.4k
              pgs->line_params.dash_cap  == gs_cap_square ||
137
97.4k
              pgs->line_params.dash_cap  == gs_cap_round);
138
97.4k
        gs_fixed_point prev;
139
140
97.4k
        prev.x = prev.y = 0; /* Quiet gcc warning. */
141
261k
        for (pseg = (const segment *)psub; pseg;
142
163k
             prev = pseg->pt, pseg = pseg->next
143
97.4k
             )
144
186k
            switch (pseg->type) {
145
63.3k
            case s_start:
146
63.3k
                if (((const subpath *)pseg)->curve_count ||
147
63.3k
                    (must_be_closed && !((const subpath *)pseg)->is_closed)
148
63.3k
                    )
149
19.6k
                    goto not_exact;
150
43.7k
                break;
151
96.0k
            case s_line:
152
96.0k
            case s_dash:
153
122k
            case s_line_close:
154
122k
                if (!(pseg->pt.x == prev.x || pseg->pt.y == prev.y))
155
2.78k
                    goto not_exact;
156
120k
                break;
157
120k
            case s_gap:
158
0
            default:            /* other/unknown segment type */
159
0
                goto not_exact;
160
186k
            }
161
75.0k
        result = 0;             /* exact result */
162
75.0k
    }
163
167k
not_exact:
164
167k
    if (result) {
165
92.1k
        if (!gx_path_has_curves(ppath) && gx_path_subpath_count(ppath) <= 1 &&
166
92.1k
            (psub == 0 || (pseg = psub->next) == 0 ||
167
83.5k
             (pseg = pseg->next) == 0 || pseg->type == s_line_close))
168
92.1k
            DO_NOTHING;
169
12.1k
        else {
170
12.1k
            float factor = join_expansion_factor(pgs, pgs->line_params.join);
171
172
12.1k
            if (pgs->line_params.curve_join >= 0)
173
0
                factor = max(factor, join_expansion_factor(pgs,
174
12.1k
                                (gs_line_join)pgs->line_params.curve_join));
175
12.1k
            expand *= factor;
176
12.1k
        }
177
92.1k
    }
178
179
    /* Short-cut gs_bbox_transform. */
180
167k
    {
181
167k
        float exx = expand * cx;
182
167k
        float exy = expand * cy;
183
167k
        int code = set_float2fixed_vars(ppt->x, exx);
184
185
167k
        if (code < 0)
186
66.6k
            return code;
187
100k
        code = set_float2fixed_vars(ppt->y, exy);
188
100k
        if (code < 0)
189
222
            return code;
190
100k
    }
191
192
100k
    return result;
193
100k
}
194
static float
195
join_expansion_factor(const gs_gstate *pgs, gs_line_join join)
196
12.1k
{
197
12.1k
    switch (join) {
198
9.96k
    case gs_join_miter: return pgs->line_params.miter_limit;
199
0
    case gs_join_triangle: return 2.0;
200
2.15k
    default: return 1.0;
201
12.1k
    }
202
12.1k
}
203
204
/*
205
 * Structure for a partial line (passed to the drawing routine).
206
 * Two of these are required to do joins right.
207
 * Each endpoint includes the two ends of the cap as well,
208
 * and the deltas for square, round, and triangular cap computation.
209
 *
210
 * The two base values for computing the caps of a partial line are the
211
 * width and the end cap delta.  The width value is one-half the line
212
 * width (suitably transformed) at 90 degrees counter-clockwise
213
 * (in device space, but with "90 degrees" interpreted in *user*
214
 * coordinates) at the end (as opposed to the origin) of the line.
215
 * The cdelta value is one-half the transformed line width in the same
216
 * direction as the line.  From these, we compute two other values at each
217
 * end of the line: co and ce, which are the ends of the cap.
218
 * Note that the cdelta values at o are the negatives of the values at e,
219
 * as are the offsets from p to co and ce.
220
 *
221
 * Initially, only o.p, e.p, e.cdelta, width, and thin are set.
222
 * compute_caps fills in the rest.
223
 */
224
typedef gs_fixed_point *p_ptr;
225
typedef struct endpoint_s {
226
    gs_fixed_point p;           /* the end of the line */
227
    gs_fixed_point co, ce;      /* ends of the cap, p +/- width */
228
    gs_fixed_point cdelta;      /* +/- cap length */
229
} endpoint;
230
typedef endpoint *ep_ptr;
231
typedef const endpoint *const_ep_ptr;
232
typedef struct partial_line_s {
233
    endpoint o;                 /* starting coordinate */
234
    endpoint e;                 /* ending coordinate */
235
    gs_fixed_point width;       /* one-half line width, see above */
236
    gs_fixed_point vector;      /* The line segment direction */
237
    bool thin;                  /* true if minimum-width line */
238
} partial_line;
239
typedef partial_line *pl_ptr;
240
241
/* As we stroke a path, we run through the line segments that make it up.
242
 * We gather each line segment together with any degenerate line segments
243
 * that follow it (call this set "prev"), and then 'join them' to the next
244
 * line segment (and any degenerate line segments that follow it) (if there
245
 * is one) (call this "current").
246
 *
247
 * In order to get the joins right we need to keep flags about both
248
 * prev and current, and whether they originally came from arcs.
249
 */
250
typedef enum note_flags {
251
252
    /* If set, all the line segments that make up current come from arcs. */
253
    nf_all_from_arc       = 1,
254
255
    /* If set, at least one of the line segments that make up current, come
256
     * from arcs. */
257
    nf_some_from_arc      = 2,
258
259
    /* If set then this segment should have a dash cap on the start rather
260
     * than a start cap. */
261
    nf_dash_head          = 4,
262
263
    /* If set then this segment should have a dash cap on the end rather
264
     * than an end cap. */
265
    nf_dash_tail          = 8,
266
267
    /* If set, all the line segments that make up prev come from arcs. */
268
    nf_prev_all_from_arc  = 16,
269
270
    /* If set, at least one of the line segment that make up prev, come from
271
     * arcs. */
272
    nf_prev_some_from_arc = 32,
273
274
    /* If set then prev should have a dash cap on the start rather
275
     * than a start cap. */
276
    nf_prev_dash_head     = 64,
277
278
    /* If set then prev should have a dash cap on the end rather
279
     * than an end cap. */
280
    nf_prev_dash_tail     = 128
281
282
} note_flags;
283
284
/* Macro to combine the prev and current arc_flags. After applying this
285
 * macro, the bits in the result have the following meanings:
286
 *  nf_all_from_arc    set if all the components of current and prev
287
 *                     come from an Arc.
288
 *  nf_some_from_arc   set if any of the components of current and
289
 *                     prev come from an Arc.
290
 *  nf_dash_head       set if prev should have a dash cap rather than
291
 *                     a start cap.
292
 *  nf_dash_tail       set if prev should have a dash cap rather than
293
 *                     an end cap.
294
 */
295
#define COMBINE_FLAGS(F) \
296
2.18M
    (((F>>4) | ((F) & nf_some_from_arc)) & \
297
2.18M
     (((F) & nf_all_from_arc) ? ~0 : ~nf_all_from_arc))
298
299
/* Assign a point.  Some compilers would do this with very slow code */
300
/* if we simply implemented it as an assignment. */
301
#define ASSIGN_POINT(pp, p)\
302
1.95M
  ((pp)->x = (p).x, (pp)->y = (p).y)
303
304
/* Other forward declarations */
305
static bool width_is_thin(pl_ptr);
306
static void adjust_stroke(gx_device *, pl_ptr, const gs_gstate *, bool, bool, note_flags);
307
static int line_join_points(const gx_line_params * pgs_lp,
308
                             pl_ptr plp, pl_ptr nplp,
309
                             gs_fixed_point * join_points,
310
                             const gs_matrix * pmat, gs_line_join join,
311
                             bool reflected);
312
static int line_join_points_fast_cw(const gx_line_params * pgs_lp,
313
                                    pl_ptr plp, pl_ptr nplp,
314
                                    gs_fixed_point * rjoin_points,
315
                                    const gs_matrix * pmat,
316
                                    gs_line_join join);
317
static int line_join_points_fast_ccw(const gx_line_params * pgs_lp,
318
                                     pl_ptr plp, pl_ptr nplp,
319
                                     gs_fixed_point * join_points,
320
                                     const gs_matrix * pmat,
321
                                     gs_line_join join);
322
static void compute_caps(pl_ptr);
323
static int add_points(gx_path *, const gs_fixed_point *,
324
                       int, bool);
325
static int add_pie_join(gx_path *, pl_ptr, pl_ptr, bool, bool);
326
static int add_pie_join_fast_cw(gx_path *, pl_ptr, pl_ptr, bool);
327
static int add_pie_join_fast_ccw(gx_path *, pl_ptr, pl_ptr, bool);
328
static int add_round_cap(gx_path *, const_ep_ptr);
329
static int add_pie_cap(gx_path *, const_ep_ptr);
330
static int cap_points(gs_line_cap, const_ep_ptr,
331
                       gs_fixed_point * /*[3] */ );
332
static int join_under_pie(gx_path *, pl_ptr, pl_ptr, bool);
333
334
int
335
gx_default_stroke_path_shading_or_pattern(gx_device        * pdev,
336
                                    const gs_gstate        * pgs_orig,
337
                                          gx_path          * ppath,
338
                                    const gx_stroke_params * params,
339
                                    const gx_drawing_color * pdevc,
340
                                    const gx_clip_path     * pcpath)
341
27
{
342
27
    gs_gstate *pgs = (gs_gstate *)pgs_orig; /* Nasty cast away const! */
343
27
    gs_logical_operation_t save_lop = gs_current_logical_op_inline(pgs);
344
27
    gx_device_cpath_accum adev;
345
27
    gx_device_color devc;
346
27
    gx_clip_path stroke_as_clip_path;
347
27
    int code;
348
27
    gs_fixed_rect dev_clip_rect = { {min_fixed, min_fixed}, {max_fixed, max_fixed}};
349
350
    /* We want to make a image of the stroke as a clip path, so
351
     * create an empty structure on the stack. */
352
27
    code = gx_cpath_init_local_shared_nested(&stroke_as_clip_path, NULL, pdev->memory, 1);
353
27
    if (code < 0)
354
0
        return code;
355
    /* Now we make an accumulator device that will fill that out. */
356
27
    gx_cpath_accum_begin(&adev, stroke_as_clip_path.path.memory, false);
357
27
    (*dev_proc(pdev, get_clipping_box))(pdev, &dev_clip_rect);
358
27
    gx_cpath_accum_set_cbox(&adev, &dev_clip_rect);
359
27
    set_nonclient_dev_color(&devc, 0); /* arbitrary, but not transparent */
360
27
    gs_set_logical_op_inline(pgs, lop_default);
361
    /* Stroke the path to the accumulator. */
362
27
    code = gx_stroke_path_only(ppath, NULL, (gx_device *)&adev, pgs, params,
363
27
                               &devc, pcpath);
364
    /* Now extract the accumulated path into stroke_as_clip_path. */
365
27
    if (code < 0 || (code = gx_cpath_accum_end(&adev, &stroke_as_clip_path)) < 0)
366
0
        gx_cpath_accum_discard(&adev);
367
27
    gs_set_logical_op_inline(pgs, save_lop);
368
27
    if (code >= 0)
369
27
    {
370
        /* Now, fill a rectangle with the original color through that
371
         * clip path. */
372
27
        gs_fixed_rect clip_box, shading_box;
373
27
        gs_int_rect cb;
374
27
        gx_device_clip cdev;
375
376
27
        gx_cpath_outer_box(&stroke_as_clip_path, &clip_box);
377
        /* This is horrid. If the pdevc is a shading color, then the
378
         * fill_rectangle routine requires us to have intersected it
379
         * with the shading rectangle first. If we don't do this,
380
         * ps3fts/470-01.ps goes wrong. */
381
27
        if (gx_dc_is_pattern2_color(pdevc) &&
382
27
            gx_dc_pattern2_get_bbox(pdevc, &shading_box) > 0)
383
0
        {
384
0
            rect_intersect(clip_box, shading_box);
385
0
        }
386
27
        cb.p.x = fixed2int_pixround(clip_box.p.x);
387
27
        cb.p.y = fixed2int_pixround(clip_box.p.y);
388
27
        cb.q.x = fixed2int_pixround(clip_box.q.x);
389
27
        cb.q.y = fixed2int_pixround(clip_box.q.y);
390
27
        gx_make_clip_device_on_stack(&cdev, &stroke_as_clip_path, pdev);
391
27
        code = pdevc->type->fill_rectangle(pdevc,
392
27
                        cb.p.x, cb.p.y, cb.q.x - cb.p.x, cb.q.y - cb.p.y,
393
27
                        (gx_device *)&cdev, pgs->log_op, NULL);
394
27
        gx_destroy_clip_device_on_stack(&cdev);
395
27
    }
396
27
    gx_cpath_free(&stroke_as_clip_path, "gx_default_stroke_path_shading_or_pattern");
397
398
27
    return code;
399
27
}
400
401
/* Define the default implementation of the device stroke_path procedure. */
402
int
403
gx_default_stroke_path(gx_device * dev, const gs_gstate * pgs,
404
                       gx_path * ppath, const gx_stroke_params * params,
405
                       const gx_drawing_color * pdevc,
406
                       const gx_clip_path * pcpath)
407
157k
{
408
157k
    if (gx_dc_is_pattern2_color(pdevc) ||
409
157k
        pdevc->type == &gx_dc_type_data_ht_colored ||
410
157k
        (gx_dc_is_pattern1_color(pdevc) &&
411
157k
         gx_pattern_tile_is_clist(pdevc->colors.pattern.p_tile)))
412
21
        return gx_default_stroke_path_shading_or_pattern(dev, pgs, ppath, params,
413
21
                                                         pdevc, pcpath);
414
157k
    else
415
157k
        return gx_stroke_path_only(ppath, (gx_path *) 0, dev, pgs, params,
416
157k
                                   pdevc, pcpath);
417
157k
}
418
419
/* Fill a partial stroked path.  Free variables: */
420
/* to_path, stroke_path_body, fill_params, always_thin, pgs, dev, pdevc, */
421
/* code, ppath, exit(label). */
422
#define FILL_STROKE_PATH(dev, thin, pcpath, final)\
423
1.19M
  if(to_path==&stroke_path_body && !gx_path_is_void(&stroke_path_body) &&\
424
1.19M
     (final || lop_is_idempotent(pgs->log_op))) {\
425
1.01M
    fill_params.adjust.x = STROKE_ADJUSTMENT(thin, pgs, x);\
426
1.01M
    fill_params.adjust.y = STROKE_ADJUSTMENT(thin, pgs, y);\
427
1.01M
    if (to_path_reverse != NULL) {\
428
0
        code = gx_join_path_and_reverse(to_path, to_path_reverse);\
429
0
        if(code < 0) goto exit;\
430
0
    }\
431
1.01M
    code = gx_fill_path_only(to_path, dev, pgs, &fill_params, pdevc, pcpath);\
432
1.01M
    gx_path_free(&stroke_path_body, "fill_stroke_path");\
433
1.01M
    if ( code < 0 ) goto exit;\
434
1.01M
    gx_path_init_local(&stroke_path_body, ppath->memory);\
435
1.01M
  }
436
437
/*
438
 * Define the internal procedures that stroke a partial_line
439
 * (the first pl_ptr argument).  If both partial_lines are non-null,
440
 * the procedure creates an appropriate join; otherwise, the procedure
441
 * creates an end cap.  If the first int is 0, the procedure also starts
442
 * with an appropriate cap.
443
 */
444
#define stroke_line_proc(proc)\
445
  int proc(gx_path *, gx_path *, bool ensure_closed, int, pl_ptr, pl_ptr,\
446
           const gx_device_color *, gx_device *, const gs_gstate *,\
447
           const gx_stroke_params *, const gs_fixed_rect *, int,\
448
           gs_line_join, bool, note_flags)
449
typedef stroke_line_proc((*stroke_line_proc_t));
450
451
static stroke_line_proc(stroke_add);
452
static stroke_line_proc(stroke_add_compat);
453
static stroke_line_proc(stroke_add_fast);
454
static stroke_line_proc(stroke_fill);
455
static int stroke_add_initial_cap_compat(gx_path * ppath, pl_ptr plp, bool adlust_longitude,
456
           const gx_device_color * pdevc, gx_device * dev,
457
           const gs_gstate * pgs);
458
459
/* Define the orientations we handle specially. */
460
typedef enum {
461
    orient_other = 0,
462
    orient_portrait,            /* [xx 0 0 yy tx ty] */
463
    orient_landscape            /* [0 xy yx 0 tx ty] */
464
} orientation;
465
466
/*
467
 * Internal function used to merge the 2 sides of a stroked path.
468
 * path contains the 'forward' side, rpath contains the 'reversed' side.
469
 * Reverse rpath, then append it to path.
470
 *
471
 * If path is closed, then rpath should be too. If path is open, then the
472
 * starting and ending points of both paths should be the same, so as to
473
 * guarantee a closed path.
474
 */
475
static int
476
gx_join_path_and_reverse(gx_path * path, gx_path * rpath)
477
0
{
478
0
    int code;
479
480
0
    if (gx_path_is_void(rpath))
481
0
        return 0;
482
0
     code = gx_path_append_reversed(rpath, path);
483
0
    if (code < 0)
484
0
        return code;
485
486
0
    gx_path_free(rpath, "gx_join_path_and_reverse");
487
0
    gx_path_init_local(rpath, path->memory);
488
489
0
    return gx_path_close_subpath(path);
490
0
}
491
492
/*
493
 * Stroke a path.  If to_path != 0, append the stroke outline to it;
494
 * if to_path == 0, draw the strokes on pdev.
495
 *
496
 * Note that gx_stroke_path_only with to_path != NULL may clip the path to
497
 * the clipping path, as for to_path == NULL.  This is almost never
498
 * what is wanted.
499
 */
500
static int
501
gx_stroke_path_only_aux(gx_path          *ppath, /* lgtm[cpp/use-of-goto] */
502
                        gx_path          *to_path,
503
                        gx_device        *pdev,
504
                  const gs_gstate        *pgs,
505
                  const gx_stroke_params *params,
506
                  const gx_device_color  *pdevc,
507
                  const gx_clip_path     *pcpath)
508
157k
{
509
157k
    bool CPSI_mode = gs_currentcpsimode(pgs->memory);
510
157k
    bool traditional = CPSI_mode | params->traditional;
511
157k
    stroke_line_proc_t line_proc =
512
157k
               ((to_path == 0 && !gx_dc_is_pattern1_color_clist_based(pdevc))
513
157k
                      ? (lop_is_idempotent(pgs->log_op) ? stroke_fill : stroke_add) :
514
157k
                        (traditional ? stroke_add_compat : stroke_add_fast));
515
157k
    gs_fixed_rect ibox, cbox;
516
157k
    gx_device_clip cdev;
517
157k
    gx_device *dev = pdev;
518
157k
    int code = 0;
519
157k
    gx_fill_params fill_params;
520
157k
    const gx_line_params *pgs_lp = gs_currentlineparams_inline(pgs);
521
157k
    int dash_count = pgs_lp->dash.pattern_size;
522
157k
    gx_path fpath, dpath;
523
157k
    gx_path stroke_path_body;
524
157k
    gx_path stroke_path_reverse;
525
157k
    gx_path *to_path_reverse = NULL;
526
157k
    const gx_path *spath;
527
157k
    float xx = pgs->ctm.xx, xy = pgs->ctm.xy;
528
157k
    float yx = pgs->ctm.yx, yy = pgs->ctm.yy;
529
    /*
530
     * We are dealing with a reflected coordinate system
531
     * if transform(1,0) is counter-clockwise from transform(0,1).
532
     * See the note in stroke_add for the algorithm.
533
     */
534
157k
    int uniform;
535
157k
    bool reflected;
536
157k
    orientation orient =
537
157k
        (
538
157k
#ifdef OPTIMIZE_ORIENTATION
539
157k
         is_fzero2(xy, yx) ?
540
85.6k
         (uniform = (xx == yy ? 1 : xx == -yy ? -1 : 0),
541
85.6k
          reflected = (uniform ? uniform < 0 : (xx < 0) != (yy < 0)),
542
85.6k
          orient_portrait) :
543
157k
         is_fzero2(xx, yy) ?
544
2.00k
         (uniform = (xy == yx ? -1 : xy == -yx ? 1 : 0),
545
2.00k
          reflected = (uniform ? uniform < 0 : (xy < 0) == (yx < 0)),
546
2.00k
          orient_landscape) :
547
    /* We should optimize uniform rotated coordinate systems */
548
    /* here as well, but we don't. */
549
71.3k
#endif
550
71.3k
         (uniform = 0,
551
69.3k
          reflected = xy * yx > xx * yy,
552
69.3k
          orient_other));
553
157k
    const segment_notes not_first = sn_not_first;
554
157k
    gs_line_join curve_join =
555
157k
        (pgs_lp->curve_join >= 0 ? (gs_line_join)pgs_lp->curve_join :
556
157k
         pgs_lp->join == gs_join_none || pgs_lp->join == gs_join_round ?
557
138k
            gs_join_bevel : pgs_lp->join);
558
157k
    float line_width = pgs_lp->half_width;      /* (*half* the line width) */
559
157k
    bool always_thin;
560
157k
    double line_width_and_scale;
561
157k
    double device_line_width_scale = 0; /* Quiet compiler. */
562
157k
    double device_dot_length = pgs_lp->dot_length * fixed_1;
563
157k
    const subpath *psub;
564
157k
    gs_matrix initial_matrix;
565
157k
    bool initial_matrix_reflected, flattened_path = false;
566
157k
    note_flags flags;
567
568
157k
    (*dev_proc(pdev, get_initial_matrix)) (pdev, &initial_matrix);
569
157k
    initial_matrix_reflected = initial_matrix.xy * initial_matrix.yx >
570
157k
                               initial_matrix.xx * initial_matrix.yy;
571
572
#ifdef DEBUG
573
    if (gs_debug_c('o')) {
574
        int i;
575
576
        dmlprintf4(ppath->memory, "[o]half_width=%f, start_cap=%d, end_cap=%d, dash_cap=%d,\n",
577
                   pgs_lp->half_width, (int)pgs_lp->start_cap,
578
                   (int)pgs_lp->end_cap, (int)pgs_lp->dash_cap);
579
        dmlprintf3(ppath->memory, "   join=%d, miter_limit=%f, miter_check=%f,\n",
580
                   (int)pgs_lp->join, pgs_lp->miter_limit,
581
                   pgs_lp->miter_check);
582
        dmlprintf1(ppath->memory, "   dash pattern=%d", dash_count);
583
        for (i = 0; i < dash_count; i++)
584
            dmprintf1(ppath->memory, ",%f", pgs_lp->dash.pattern[i]);
585
        dmputs(ppath->memory, ",\n");
586
        dmlprintf4(ppath->memory, "\toffset=%f, init(ink_on=%d, index=%d, dist_left=%f)\n",
587
                   pgs_lp->dash.offset, pgs_lp->dash.init_ink_on,
588
                   pgs_lp->dash.init_index, pgs_lp->dash.init_dist_left);
589
    }
590
#endif
591
592
157k
    gx_path_bbox(ppath, &ibox);
593
    /* Expand the path bounding box by the scaled line width. */
594
157k
    {
595
157k
        gs_fixed_point expansion;
596
597
157k
        if (gx_stroke_path_expansion(pgs, ppath, &expansion) < 0) {
598
            /* The expansion is so large it caused a limitcheck. */
599
66.6k
            ibox.p.x = ibox.p.y = min_fixed;
600
66.6k
            ibox.q.x = ibox.q.y = max_fixed;
601
90.4k
        } else {
602
90.4k
            expansion.x += pgs->fill_adjust.x;
603
90.4k
            expansion.y += pgs->fill_adjust.y;
604
            /*
605
             * It's theoretically possible for the following computations to
606
             * overflow, so we need to check for this.
607
             */
608
90.4k
            ibox.p.x = (ibox.p.x < min_fixed + expansion.x ? min_fixed :
609
90.4k
                        ibox.p.x - expansion.x);
610
90.4k
            ibox.p.y = (ibox.p.y < min_fixed + expansion.y ? min_fixed :
611
90.4k
                        ibox.p.y - expansion.y);
612
90.4k
            ibox.q.x = (ibox.q.x > max_fixed - expansion.x ? max_fixed :
613
90.4k
                        ibox.q.x + expansion.x);
614
90.4k
            ibox.q.y = (ibox.q.y > max_fixed - expansion.y ? max_fixed :
615
90.4k
                        ibox.q.y + expansion.y);
616
90.4k
        }
617
157k
    }
618
    /* Check the expanded bounding box against the clipping regions. */
619
157k
    if (pcpath)
620
121k
        gx_cpath_inner_box(pcpath, &cbox);
621
35.4k
    else if (pdevc)
622
35.4k
        (*dev_proc(pdev, get_clipping_box)) (pdev, &cbox);
623
20
    else {
624
        /* This is strokepath, not stroke.  Don't clip. */
625
20
        cbox = ibox;
626
20
    }
627
157k
    if (!rect_within(ibox, cbox)) {
628
        /* Intersect the path box and the clip bounding box. */
629
        /* If the intersection is empty, this call is a no-op. */
630
154k
        gs_fixed_rect bbox;
631
632
154k
        if (pcpath) {
633
119k
            gx_cpath_outer_box(pcpath, &bbox);
634
119k
            if_debug4m('f', ppath->memory, "   outer_box=(%g,%g),(%g,%g)\n",
635
119k
                       fixed2float(bbox.p.x), fixed2float(bbox.p.y),
636
119k
                       fixed2float(bbox.q.x), fixed2float(bbox.q.y));
637
119k
            rect_intersect(ibox, bbox);
638
119k
        } else
639
154k
            rect_intersect(ibox, cbox);
640
154k
        if (ibox.p.x >= ibox.q.x || ibox.p.y >= ibox.q.y) {
641
            /* Intersection of boxes is empty! */
642
92.8k
            return 0;
643
92.8k
        }
644
        /*
645
         * The path is neither entirely inside the inner clip box
646
         * nor entirely outside the outer clip box.
647
         * If we had to flatten the path, this is where we would
648
         * recompute its bbox and make the tests again,
649
         * but we don't bother right now.
650
         */
651
        /*
652
         * If there is a clipping path, set up a clipping device.
653
         * for stroke_fill because, because the latter uses low level methods
654
         * which don't accept a clipping path.
655
         * Note that in some cases stroke_fill appends the path to stroke_path_body
656
         * instead a real painting, and it is painted with FILL_STROKE_PATH.
657
         *
658
         * Contrary to that, FILL_STROKE_PATH paints a path with
659
         * the fill_path method, which handles a clipping path,
660
         * so we don't pass the clipper device to FILL_STROKE_PATH
661
         * to prevent an appearence of superposing clippers.
662
         */
663
61.4k
        if (pcpath && line_proc == stroke_fill) {
664
26.4k
            gx_make_clip_device_on_stack(&cdev, pcpath, pdev);
665
26.4k
            cdev.max_fill_band = pdev->max_fill_band;
666
26.4k
            dev = (gx_device *)&cdev;
667
26.4k
        }
668
61.4k
    }
669
64.1k
    fill_params.rule = gx_rule_winding_number;
670
64.1k
    fill_params.flatness = pgs->flatness;
671
64.1k
    if (line_width < 0)
672
0
        line_width = -line_width;
673
64.1k
    line_width_and_scale = line_width * (double)int2fixed(1);
674
64.1k
    if (is_fzero(line_width))
675
1.43k
        always_thin = true;
676
62.7k
    else {
677
62.7k
        float xa, ya;
678
679
62.7k
        switch (orient) {
680
60.1k
            case orient_portrait:
681
60.1k
                xa = xx, ya = yy;
682
60.1k
                goto sat;
683
1.32k
            case orient_landscape:
684
1.32k
                xa = xy, ya = yx;
685
61.4k
              sat:
686
61.4k
                if (xa < 0)
687
1.32k
                    xa = -xa;
688
61.4k
                if (ya < 0)
689
55.8k
                    ya = -ya;
690
61.4k
                always_thin = (max(xa, ya) * line_width < 0.5);
691
61.4k
                if (!always_thin && uniform) {  /* Precompute a value we'll need later. */
692
53.9k
                    device_line_width_scale = line_width_and_scale * xa;
693
53.9k
                }
694
61.4k
                break;
695
1.29k
            default:
696
1.29k
                {
697
                    /* The check is more complicated, but it's worth it. */
698
                    /* Compute radii of the transformed round brush. */
699
                    /* Let x = [a, sqrt(1-a^2)]'
700
                       radius^2 is an extremum of :
701
                       rr(a)=(CTM*x)^2 = (a*xx + sqrt(1 - a^2)*xy)^2 + (a*yx + sqrt(1 - a^2)*yy)^2
702
                       With solving D(rr(a),a)==0, got :
703
                       max_rr = (xx^2 + xy^2 + yx^2 + yy^2 + sqrt(((xy + yx)^2 + (xx - yy)^2)*((xy - yx)^2 + (xx + yy)^2)))/2.
704
                       r = sqrt(max_rr);
705
                       Well we could use eigenvalues of the quadratic form,
706
                       but it gives same result with a bigger calculus.
707
                     */
708
1.29k
                    double max_rr = ((double)(xx*xx + xy*xy + yx*yx + yy*yy) +
709
1.29k
                                     sqrt((double)((xy + yx)*(xy + yx) + (xx - yy)*(xx - yy)) *
710
1.29k
                                                  ((xy - yx)*(xy - yx) + (xx + yy)*(xx + yy))
711
1.29k
                                          )
712
1.29k
                                     )/2;
713
714
1.29k
                    always_thin = max_rr * line_width * line_width < 0.25;
715
1.29k
                }
716
62.7k
        }
717
62.7k
    }
718
64.1k
    if_debug7m('o', ppath->memory, "[o]ctm=(%g,%g,%g,%g,%g,%g) thin=%d\n",
719
64.1k
              xx, xy, yx, yy, pgs->ctm.tx, pgs->ctm.ty, always_thin);
720
64.1k
    if (device_dot_length != 0) {
721
        /*
722
         * Compute the dot length in device space.  We can't do this
723
         * quite right for non-uniform coordinate systems; too bad.
724
         */
725
0
        gs_matrix mat;
726
0
        const gs_matrix *pmat;
727
728
0
        if (pgs_lp->dot_length_absolute) {
729
0
            gs_deviceinitialmatrix(pdev, &mat);
730
0
            pmat = &mat;
731
0
        } else
732
0
            pmat = (const gs_matrix *)&pgs->ctm;
733
0
        device_dot_length *= fabs(pmat->xy) + fabs(pmat->yy);
734
0
    }
735
    /* Start by flattening the path.  We should do this on-the-fly.... */
736
64.1k
    if (!gx_path_has_curves(ppath) && !gx_path_has_long_segments(ppath)) {
737
        /* don't need to flatten */
738
58.1k
        if (!ppath->first_subpath) {
739
16.5k
            if (dev == (gx_device *)&cdev)
740
10.9k
                gx_destroy_clip_device_on_stack(&cdev);
741
16.5k
            return 0;
742
16.5k
        }
743
41.6k
        spath = ppath;
744
41.6k
    } else {
745
6.05k
        gx_path_init_local(&fpath, ppath->memory);
746
6.05k
        if ((code = gx_path_add_flattened_for_stroke(ppath, &fpath,
747
6.05k
            params->flatness, pgs)) < 0) {
748
0
            if (dev == (gx_device *)&cdev)
749
0
                gx_destroy_clip_device_on_stack(&cdev);
750
0
            return code;
751
0
        }
752
6.05k
        spath = &fpath;
753
6.05k
        flattened_path = true;
754
6.05k
    }
755
47.6k
    if (dash_count) {
756
2.08k
        float max_dash_len = 0;
757
2.08k
        float expand_squared;
758
2.08k
        int i;
759
2.08k
        float adjust = (float)pgs->fill_adjust.x;
760
2.08k
        if (adjust > (float)pgs->fill_adjust.y)
761
0
            adjust = (float)pgs->fill_adjust.y;
762
6.06k
        for (i = 0; i < dash_count; i++) {
763
3.97k
            if (max_dash_len < pgs_lp->dash.pattern[i])
764
2.40k
                max_dash_len = pgs_lp->dash.pattern[i];
765
3.97k
        }
766
2.08k
        expand_squared = pgs->ctm.xx * pgs->ctm.yy - pgs->ctm.xy * pgs->ctm.yx;
767
2.08k
        if (expand_squared < 0)
768
814
            expand_squared = -expand_squared;
769
2.08k
        expand_squared *= max_dash_len * max_dash_len;
770
        /* Wide lines in curves can show dashes up, so fudge to allow for
771
         * this. */
772
2.08k
        if (pgs->line_params.half_width > 1)
773
4
            adjust /= pgs->line_params.half_width;
774
2.08k
        if (expand_squared*65536.0f >= (float)(adjust*adjust)) {
775
2.08k
            gx_path_init_local(&dpath, ppath->memory);
776
2.08k
            code = gx_path_add_dash_expansion(spath, &dpath, pgs);
777
2.08k
            if (code < 0)
778
0
                goto exf;
779
2.08k
            spath = &dpath;
780
2.08k
        } else {
781
0
            dash_count = 0;
782
0
        }
783
2.08k
    }
784
47.6k
    if (to_path == 0) {
785
        /* We might try to defer this if it's expensive.... */
786
47.6k
        to_path = &stroke_path_body;
787
47.6k
        gx_path_init_local(&stroke_path_body, ppath->memory);
788
47.6k
    }
789
47.6k
    if (line_proc == stroke_add_fast) {
790
0
        to_path_reverse = &stroke_path_reverse;
791
0
        gx_path_init_local(&stroke_path_reverse, ppath->memory);
792
0
    }
793
202k
    for (psub = spath->first_subpath; psub != 0;) {
794
154k
        int index = 0;
795
154k
        const segment *pseg = (const segment *)psub;
796
154k
        fixed x = pseg->pt.x;
797
154k
        fixed y = pseg->pt.y;
798
154k
        bool is_closed = ((const subpath *)pseg)->is_closed;
799
154k
        partial_line pl, pl_prev, pl_first;
800
154k
        bool zero_length = true;
801
154k
        int pseg_notes = pseg->notes;
802
803
154k
        flags = nf_all_from_arc;
804
805
        /* Run through each segment in the current path, drawing each segment
806
         * delayed by 1 - that is, when we're looking at segment n, we draw
807
         * (or not) segment n-1. This delay allows us to always know whether
808
         * to join or cap the line. */
809
1.31M
        while ((pseg = pseg->next) != 0 &&
810
1.31M
               pseg->type != s_start
811
1.15M
            ) {
812
            /* Compute the width parameters in device space. */
813
            /* We work with unscaled values, for speed. */
814
1.15M
            fixed sx, udx, sy, udy;
815
1.15M
            bool is_dash_segment;
816
817
1.15M
            pseg_notes = pseg->notes;
818
819
1.16M
         d2:is_dash_segment = false;
820
1.16M
         d1:if (pseg->type == s_dash) {
821
12.0k
                dash_segment *pd = (dash_segment *)pseg;
822
823
12.0k
                sx = pd->pt.x;
824
12.0k
                sy = pd->pt.y;
825
12.0k
                udx = pd->tangent.x;
826
12.0k
                udy = pd->tangent.y;
827
12.0k
                is_dash_segment = true;
828
1.15M
            } else if (pseg->type == s_gap) {
829
0
                sx = pseg->pt.x;
830
0
                sy = pseg->pt.y;
831
0
                udx = sx - x;
832
0
                udy = sy - y;
833
0
                is_dash_segment = true;
834
1.15M
            } else {
835
1.15M
                sx = pseg->pt.x;
836
1.15M
                sy = pseg->pt.y;
837
1.15M
                udx = sx - x;
838
1.15M
                udy = sy - y;
839
1.15M
            }
840
1.16M
            zero_length &= ((udx | udy) == 0);
841
1.16M
            pl.o.p.x = x, pl.o.p.y = y;
842
1.16M
          d:flags = (((pseg_notes & sn_not_first) ?
843
761k
                      ((flags & nf_all_from_arc) | nf_some_from_arc) : 0) |
844
1.16M
                     ((pseg_notes & sn_dash_head) ? nf_dash_head : 0)    |
845
1.16M
                     ((pseg_notes & sn_dash_tail) ? nf_dash_tail : 0)    |
846
1.16M
                     (flags & ~nf_all_from_arc));
847
1.16M
            pl.e.p.x = sx, pl.e.p.y = sy;
848
1.16M
            if (!(udx | udy) || pseg->type == s_dash || pseg->type == s_gap) { /* degenerate or short */
849
                /*
850
                 * If this is the first segment of the subpath,
851
                 * check the entire subpath for degeneracy.
852
                 * Otherwise, ignore the degenerate segment.
853
                 */
854
28.1k
                if (index != 0 && pseg->type != s_dash && pseg->type != s_gap)
855
15.4k
                {
856
15.4k
                    if (pseg->next == NULL || pseg->next->type == s_start)
857
6.22k
                        continue;
858
9.17k
                    pseg = pseg->next;
859
                    /* We're skipping a degenerate path segment; if it was
860
                     * labelled as being the first from a curve, then make
861
                     * sure the one we're skipping to is also labelled as
862
                     * being the first from a curve, otherwise we can get
863
                     * improper joins being used. See Bug 696466. */
864
9.17k
                    pseg_notes = (((pseg_notes & sn_not_first) == 0) ?
865
7.42k
                                  (pseg->notes & ~sn_not_first) :
866
9.17k
                                  pseg->notes);
867
9.17k
                    goto d2;
868
15.4k
                }
869
                /* Check for a degenerate subpath. */
870
12.7k
                while ((pseg = pseg->next) != 0 &&
871
12.7k
                       pseg->type != s_start
872
12.7k
                    ) {
873
281
                    if (is_dash_segment)
874
60
                        break;
875
221
                    if (pseg->type == s_dash || pseg->type == s_gap)
876
0
                        goto d1;
877
221
                    sx = pseg->pt.x, udx = sx - x;
878
221
                    sy = pseg->pt.y, udy = sy - y;
879
221
                    if (udx | udy) {
880
194
                        zero_length = false;
881
194
                        goto d;
882
194
                    }
883
221
                }
884
12.5k
                if (pgs_lp->dot_length == 0 &&
885
12.5k
                    pgs_lp->start_cap != gs_cap_round &&
886
12.5k
                    pgs_lp->end_cap != gs_cap_round &&
887
12.5k
                    !is_dash_segment) {
888
                    /* From PLRM, stroke operator :
889
                       If a subpath is degenerate (consists of a single-point closed path
890
                       or of two or more points at the same coordinates),
891
                       stroke paints it only if round line caps have been specified */
892
480
                    break;
893
480
                }
894
                /*
895
                 * If the subpath is a dash, take the orientation from the dash segment.
896
                 * Otherwise orient the dot according to the previous segment if
897
                 * any, or else the next segment if any, or else
898
                 * according to the specified dot orientation.
899
                 */
900
12.0k
                {
901
                    /* When passing here, either pseg == NULL or it points to the
902
                       start of the next subpaph. So we can't use pseg
903
                       for determining the segment direction.
904
                       In same time, psub->last may help, so use it. */
905
12.0k
                    const segment *end = psub->last;
906
907
12.0k
                    if (is_dash_segment) {
908
                        /* Nothing. */
909
12.0k
                    } else if (end != 0 && (end->pt.x != x || end->pt.y != y))
910
0
                        sx = end->pt.x, sy = end->pt.y, udx = sx - x, udy = sy - y;
911
12.0k
                }
912
                /*
913
                 * Compute the properly oriented dot length, and then
914
                 * draw the dot like a very short line.
915
                 */
916
12.0k
                if ((udx | udy) == 0) {
917
14
                    if (is_fzero(pgs_lp->dot_orientation.xy)) {
918
                        /* Portrait orientation, dot length = X */
919
14
                        udx = fixed_1;
920
14
                    } else {
921
                        /* Landscape orientation, dot length = Y */
922
0
                        udy = fixed_1;
923
0
                    }
924
14
                }
925
12.0k
                if (sx == x && sy == y && (pseg == NULL || pseg->type == s_start)) {
926
11.6k
                    double scale = device_dot_length /
927
11.6k
                                hypot((double)udx, (double)udy);
928
11.6k
                    fixed udx1, udy1;
929
                    /*
930
                     * If we're using butt caps, make sure the "line" is
931
                     * long enough to show up.
932
                     * Don't apply this with always_thin, becase
933
                     * draw thin line always rounds the length up.
934
                     */
935
11.6k
                    if (!always_thin && (pgs_lp->start_cap == gs_cap_butt ||
936
11.6k
                                         pgs_lp->end_cap   == gs_cap_butt ||
937
11.6k
                                         pgs_lp->dash_cap  == gs_cap_butt)) {
938
0
                        fixed dmax = max(any_abs(udx), any_abs(udy));
939
940
0
                        if (dmax * scale < fixed_1)
941
0
                            scale = (float)fixed_1 / dmax;
942
0
                    }
943
11.6k
                    udx1 = (fixed) (udx * scale);
944
11.6k
                    udy1 = (fixed) (udy * scale);
945
11.6k
                    sx = x + udx1;
946
11.6k
                    sy = y + udy1;
947
11.6k
                }
948
                /*
949
                 * Back up 1 segment to keep the bookkeeping straight.
950
                 */
951
12.0k
                pseg = (pseg != 0 ? pseg->prev : psub->last);
952
12.0k
                if (!is_dash_segment)
953
14
                    goto d;
954
12.0k
                pl.e.p.x = sx;
955
12.0k
                pl.e.p.y = sy;
956
12.0k
            }
957
1.15M
            pl.vector.x = udx;
958
1.15M
            pl.vector.y = udy;
959
1.15M
            if (always_thin) {
960
117k
                pl.e.cdelta.x = pl.e.cdelta.y = 0;
961
117k
                pl.width.x = pl.width.y = 0;
962
117k
                pl.thin = true;
963
1.03M
            } else {
964
1.03M
                if (uniform != 0) {
965
                    /* We can save a lot of work in this case. */
966
                    /* We know orient != orient_other. */
967
847k
                    double dpx = udx, dpy = udy;
968
847k
                    double wl = device_line_width_scale /
969
847k
                    hypot(dpx, dpy);
970
971
847k
                    pl.e.cdelta.x = (fixed) (dpx * wl);
972
847k
                    pl.e.cdelta.y = (fixed) (dpy * wl);
973
                    /* The width is the cap delta rotated by */
974
                    /* 90 degrees. */
975
847k
                    if (initial_matrix_reflected)
976
846k
                        pl.width.x = pl.e.cdelta.y, pl.width.y = -pl.e.cdelta.x;
977
802
                    else
978
802
                        pl.width.x = -pl.e.cdelta.y, pl.width.y = pl.e.cdelta.x;
979
847k
                    pl.thin = false;    /* if not always_thin, */
980
                    /* then never thin. */
981
982
847k
                } else {
983
187k
                    gs_point dpt;       /* unscaled */
984
187k
                    float wl;
985
986
187k
                    code = gs_gstate_idtransform(pgs,
987
187k
                                                 (float)udx, (float)udy,
988
187k
                                                 &dpt);
989
187k
                    if (code < 0) {
990
18
                        dpt.x = 0; dpt.y = 0;
991
                        /* Swallow the error */
992
18
                        code = 0;
993
187k
                    } else {
994
187k
                        wl = line_width_and_scale /
995
187k
                            hypot(dpt.x, dpt.y);
996
                        /* Construct the width vector in */
997
                        /* user space, still unscaled. */
998
187k
                        dpt.x *= wl;
999
187k
                        dpt.y *= wl;
1000
187k
                    }
1001
1002
                    /*
1003
                     * We now compute both perpendicular
1004
                     * and (optionally) parallel half-widths,
1005
                     * as deltas in device space.  We use
1006
                     * a fixed-point, unscaled version of
1007
                     * gs_dtransform.  The second computation
1008
                     * folds in a 90-degree rotation (in user
1009
                     * space, before transforming) in the
1010
                     * direction that corresponds to counter-
1011
                     * clockwise in device space.
1012
                     */
1013
187k
                    pl.e.cdelta.x = (fixed) (dpt.x * xx);
1014
187k
                    pl.e.cdelta.y = (fixed) (dpt.y * yy);
1015
187k
                    if (orient != orient_portrait)
1016
21.9k
                        pl.e.cdelta.x += (fixed) (dpt.y * yx),
1017
21.9k
                            pl.e.cdelta.y += (fixed) (dpt.x * xy);
1018
187k
                    if (!reflected ^ initial_matrix_reflected)
1019
187k
                        dpt.x = -dpt.x, dpt.y = -dpt.y;
1020
187k
                    pl.width.x = (fixed) (dpt.y * xx),
1021
187k
                        pl.width.y = -(fixed) (dpt.x * yy);
1022
187k
                    if (orient != orient_portrait)
1023
21.9k
                        pl.width.x -= (fixed) (dpt.x * yx),
1024
21.9k
                            pl.width.y += (fixed) (dpt.y * xy);
1025
187k
                    pl.thin = width_is_thin(&pl);
1026
187k
                }
1027
1.03M
                if (!pl.thin) {
1028
1.03M
                    if (index)
1029
883k
                        dev->sgr.stroke_stored = false;
1030
1.03M
                    adjust_stroke(dev, &pl, pgs, false,
1031
1.03M
                            (pseg->prev == 0 || pseg->prev->type == s_start) &&
1032
1.03M
                            (pseg->next == 0 || pseg->next->type == s_start) &&
1033
1.03M
                            (zero_length || !is_closed),
1034
1.03M
                            COMBINE_FLAGS(flags));
1035
1.03M
                    compute_caps(&pl);
1036
1.03M
                }
1037
1.03M
            }
1038
1.15M
            if (index++) {
1039
997k
                gs_line_join join =
1040
997k
                    (pseg_notes & not_first ? curve_join : pgs_lp->join);
1041
997k
                int first;
1042
997k
                pl_ptr lptr;
1043
997k
                bool ensure_closed;
1044
1045
997k
                if (join == gs_join_none) {
1046
                    /* Fake the end of a subpath so we get */
1047
                    /* caps instead of joins. */
1048
0
                    first = 0;
1049
0
                    lptr = 0;
1050
0
                    index = 1;
1051
997k
                } else {
1052
997k
                    first = (is_closed ? 1 : index - 2);
1053
997k
                    lptr = &pl;
1054
997k
                }
1055
#ifdef AVOID_JOINING_TO_DASH_GAPS
1056
                if (is_dash_segment) /* Never join to a dash segment */
1057
                    lptr = NULL;
1058
#endif
1059
997k
                if (pseg->type == s_gap)
1060
0
                {
1061
0
                    lptr = NULL;
1062
                    /* We are always drawing one line segment behind, so make
1063
                     * sure we don't draw the next one. */
1064
0
                    index = 0;
1065
0
                }
1066
1067
997k
                ensure_closed = ((to_path == &stroke_path_body &&
1068
997k
                                  lop_is_idempotent(pgs->log_op)) ||
1069
997k
                                 (lptr == NULL ? true : lptr->thin));
1070
                /* Draw the PREVIOUS line segment, joining it to lptr (or
1071
                 * capping if lptr == NULL. */
1072
997k
                code = (*line_proc) (to_path, to_path_reverse, ensure_closed,
1073
997k
                                     first, &pl_prev, lptr,
1074
997k
                                     pdevc, dev, pgs, params, &cbox,
1075
997k
                                     uniform, join, initial_matrix_reflected,
1076
997k
                                     COMBINE_FLAGS(flags));
1077
997k
                if (code < 0)
1078
0
                    goto exit;
1079
997k
                FILL_STROKE_PATH(pdev, always_thin, pcpath, false);
1080
997k
            } else if (pseg->type == s_gap) {
1081
                /* If this segment is a gap, then we don't want to draw it
1082
                 * next time! */
1083
0
                index = 0;
1084
0
            } else
1085
154k
                pl_first = pl;
1086
1.15M
            pl_prev = pl;
1087
1.15M
            x = sx, y = sy;
1088
1.15M
            flags = (flags<<4) | nf_all_from_arc;
1089
1.15M
        }
1090
154k
        if (index) {
1091
            /* If closed, join back to start, else cap. */
1092
154k
            segment_notes notes = (pseg == 0 ?
1093
47.2k
                                   (const segment *)spath->first_subpath :
1094
154k
                                   pseg)->notes;
1095
154k
            gs_line_join join = (notes & not_first ? curve_join :
1096
154k
                                 pgs_lp->join);
1097
154k
            gs_line_cap cap;
1098
            /* For some reason, the Borland compiler requires the cast */
1099
            /* in the following statement. */
1100
154k
            pl_ptr lptr =
1101
154k
                (!is_closed || join == gs_join_none || zero_length ?
1102
127k
                 (pl_ptr) 0 : (pl_ptr) & pl_first);
1103
1104
#ifdef AVOID_JOINING_TO_DASH_GAPS
1105
            if (lptr && psub->type == s_dash)
1106
                lptr = NULL;
1107
#endif
1108
            /* If the subpath starts with a gap, then cap, don't join! */
1109
154k
            if (lptr && psub->type == s_start && psub->next && psub->next->type == s_gap)
1110
0
                lptr = NULL;
1111
1112
154k
            flags = (((notes & sn_not_first) ?
1113
154k
                      ((flags & nf_all_from_arc) | nf_some_from_arc) : 0) |
1114
154k
                     ((notes & sn_dash_head) ? nf_dash_head : 0) |
1115
154k
                     ((notes & sn_dash_tail) ? nf_dash_tail : 0) |
1116
154k
                     (flags & ~nf_all_from_arc));
1117
154k
            code = (*line_proc) (to_path, to_path_reverse, true,
1118
154k
                                 index - 1, &pl_prev, lptr, pdevc,
1119
154k
                                 dev, pgs, params, &cbox, uniform, join,
1120
154k
                                 initial_matrix_reflected,
1121
154k
                                 COMBINE_FLAGS(flags));
1122
154k
            if (code < 0)
1123
0
                goto exit;
1124
154k
            FILL_STROKE_PATH(pdev, always_thin, pcpath, false);
1125
154k
            cap = ((flags & nf_prev_dash_head) ?
1126
98.7k
                   pgs_lp->start_cap : pgs_lp->dash_cap);
1127
154k
            if (traditional && lptr == 0 && cap != gs_cap_butt) {
1128
                /* Create the initial cap at last. */
1129
114
                code = stroke_add_initial_cap_compat(to_path, &pl_first, index == 1, pdevc, dev, pgs);
1130
114
                if (code < 0)
1131
0
                    goto exit;
1132
114
                FILL_STROKE_PATH(pdev, always_thin, pcpath, false);
1133
114
            }
1134
154k
        }
1135
154k
        psub = (const subpath *)pseg;
1136
154k
    }
1137
47.6k
    if (to_path_reverse != NULL)
1138
0
        code = gx_join_path_and_reverse(to_path, to_path_reverse);
1139
47.6k
    FILL_STROKE_PATH(pdev, always_thin, pcpath, true);
1140
47.6k
  exit:
1141
47.6k
    if (dev == (gx_device *)&cdev)
1142
15.5k
        cdev.target->sgr = cdev.sgr;
1143
47.6k
    if (to_path == &stroke_path_body)
1144
47.6k
        gx_path_free(&stroke_path_body, "gx_stroke_path_only error");   /* (only needed if error) */
1145
47.6k
    if (to_path_reverse == &stroke_path_reverse)
1146
0
        gx_path_free(&stroke_path_reverse, "gx_stroke_path_only error");
1147
47.6k
  exf:
1148
47.6k
    if (dash_count)
1149
2.08k
        gx_path_free(&dpath, "gx_stroke_path exit(dash path)");
1150
    /* If we flattened the path then we set spath to &fpath. If we flattned the path then now we need to free fpath */
1151
47.6k
    if(flattened_path)
1152
6.05k
        gx_path_free(&fpath, "gx_stroke_path exit(flattened path)");
1153
47.6k
    if (dev == (gx_device *)&cdev)
1154
15.5k
        gx_destroy_clip_device_on_stack(&cdev);
1155
47.6k
    return code;
1156
47.6k
}
1157
1158
int
1159
gx_stroke_path_only(gx_path * ppath, gx_path * to_path, gx_device * pdev,
1160
               const gs_gstate * pgs, const gx_stroke_params * params,
1161
                 const gx_device_color * pdevc, const gx_clip_path * pcpath)
1162
157k
{
1163
157k
    return gx_stroke_path_only_aux(ppath, to_path, pdev, pgs, params, pdevc, pcpath);
1164
157k
}
1165
1166
/* ------ Internal routines ------ */
1167
1168
/*
1169
 * Test whether a line is thin, i.e., whether the half-width, measured
1170
 * perpendicular to the line in device space, is less than 0.5 pixel.
1171
 * Unfortunately, the width values we computed are perpendicular to the
1172
 * line in *user* space, so we may have to do some extra work.
1173
 */
1174
static bool
1175
width_is_thin(pl_ptr plp)
1176
187k
{
1177
187k
    fixed dx, dy, wx = plp->width.x, wy = plp->width.y;
1178
1179
    /* If the line is horizontal or vertical, things are easy. */
1180
187k
    if ((dy = plp->vector.y) == 0)
1181
18.8k
        return any_abs(wy) < fixed_half;
1182
168k
    if ((dx = plp->vector.x) == 0)
1183
24.2k
        return any_abs(wx) < fixed_half;
1184
1185
    /* For the longest time, we used to have a test here that
1186
     * attempted to trivially accept diagonal lines as being
1187
     * thin based on the components of the perpendicular
1188
     * width vector in device space as both being less than 0.5.
1189
     * Bug 702196 showed some examples where this was clearly
1190
     * wrong.
1191
     *
1192
     * The cause for this bug was that the 0.5 figure was wrong.
1193
     * For the point to be less than 1/2 a pixel perpendicular
1194
     * distant from the line, we'd need x^2 + y^2 < .5^2.
1195
     * For a 45 degree line, that'd be 2(x^2) < 1/4 = x^2 < 1/8
1196
     * or x < sqr(1/8). 45 degree line is the "worst case", so
1197
     * if both horizontal and vertical widths are less than
1198
     * sqr(1/8), the line is thin. sqr(1/8) = 0.35355339059.
1199
     * So, we should be using sqr(1/8) rather than 0.5.
1200
     *
1201
     * Fixing this did indeed produce many many progressions,
1202
     * but left just the odd file still showing problems.
1203
     *
1204
     * Further investigations show that those cases were due to
1205
     * the use of "non-uniform" scaling matrices, for example
1206
     * (83 0 0 51 0 0). With such matrices, it's possible for
1207
     * nearly horizontal lines to be thin, but nearly vertical
1208
     * ones to be thick (or vice versa). Having the style of
1209
     * line "pop" between thick and thin in a single stroke
1210
     * looks very noticeable.
1211
     *
1212
     * We could change the trivial optimisation below to only
1213
     * apply in the 'uniform' case, but that would never actually
1214
     * trigger (as tested on the cluster), because all such
1215
     * cases are caught by the "always_thin" condition in the
1216
     * caller.
1217
     *
1218
     * Just removing the trivial test and leaving the 'complicated'
1219
     * test below us would leave us vulnerable to "popping",
1220
     * so we disable both. In practice this makes no difference
1221
     * to the number of tests showing diffs in the cluster.
1222
     */
1223
#if 0 /* DISABLED TEST, see above */
1224
    {
1225
        /* thin_threshold = fixed sqr(1/8) - see above. */
1226
        const fixed thin_threshold = float2fixed(0.35355339059f);
1227
        if (any_abs(wx) < thin_threshold && any_abs(wy) < thin_threshold)
1228
            return true;
1229
    }
1230
1231
    /*
1232
     * We have to do this the hard way, by actually computing the
1233
     * perpendicular distance.  The distance from the point (U,V)
1234
     * from a line from (0,0) to (C,D) is
1235
     *      abs(C*V - D*U) / sqrt(C^2 + D^2)
1236
     * In this case, (U,V) is plp->width, and (C,D) is (dx,dy).
1237
     */
1238
    {
1239
        double C = dx, D = dy;
1240
        double num = C * wy - D * wx;
1241
        double denom = hypot(C, D);
1242
1243
        /* both num and denom are scaled by fixed_scale^2, */
1244
        /* so we don't need to do any de-scaling for the test. */
1245
        return fabs(num) < denom * 0.5;
1246
    }
1247
#else
1248
144k
    return false;
1249
168k
#endif
1250
168k
}
1251
1252
/* Adjust the endpoints and width of a stroke segment along a specified axis */
1253
static void
1254
adjust_stroke_transversal(pl_ptr plp, const gs_gstate * pgs, bool thin, bool horiz)
1255
21.4k
{
1256
21.4k
    fixed *pw;
1257
21.4k
    fixed *pov;
1258
21.4k
    fixed *pev;
1259
21.4k
    fixed w, w2;
1260
21.4k
    fixed adj2;
1261
1262
21.4k
    if (horiz) {
1263
        /* More horizontal stroke */
1264
17.7k
        pw = &plp->width.y, pov = &plp->o.p.y, pev = &plp->e.p.y;
1265
17.7k
        adj2 = STROKE_ADJUSTMENT(thin, pgs, y) << 1;
1266
17.7k
    } else {
1267
        /* More vertical stroke */
1268
3.66k
        pw = &plp->width.x, pov = &plp->o.p.x, pev = &plp->e.p.x;
1269
3.66k
        adj2 = STROKE_ADJUSTMENT(thin, pgs, x) << 1;
1270
3.66k
    }
1271
    /* Round the larger component of the width up or down, */
1272
    /* whichever way produces a result closer to the correct width. */
1273
    /* Note that just rounding the larger component */
1274
    /* may not produce the correct result. */
1275
21.4k
    w = *pw;
1276
21.4k
    if (w > 0)
1277
2.90k
        w2 = fixed_rounded(w << 1);     /* full line width */
1278
18.5k
    else
1279
18.5k
        w2 = -fixed_rounded(-w << 1);   /* full line width */
1280
21.4k
    if (w2 == 0 && *pw != 0) {
1281
        /* Make sure thin lines don't disappear. */
1282
0
        w2 = (*pw < 0 ? -fixed_1 + adj2 : fixed_1 - adj2);
1283
0
        *pw = arith_rshift_1(w2);
1284
0
    }
1285
    /* Only adjust the endpoints if the line is horizontal or vertical. */
1286
21.4k
    if (*pov == *pev) {
1287
        /* We're going to round the endpoint coordinates, so */
1288
        /* take the fill adjustment into account now. */
1289
21.4k
        if (w >= 0)
1290
2.90k
            w2 += adj2;
1291
18.5k
        else
1292
18.5k
            w2 = adj2 - w2;
1293
21.4k
        if (w2 & fixed_1)       /* odd width, move to half-pixel */
1294
4.28k
            *pov = *pev = fixed_floor(*pov) + fixed_half;
1295
17.1k
        else                    /* even width, move to pixel */
1296
17.1k
            *pov = *pev = fixed_rounded(*pov);
1297
1298
21.4k
    }
1299
21.4k
}
1300
1301
static void
1302
adjust_stroke_longitude(pl_ptr plp, const gs_gstate * pgs,
1303
                        bool thin, bool horiz,
1304
                        gs_line_cap start_cap, gs_line_cap end_cap)
1305
15.0k
{
1306
1307
15.0k
    fixed *pow = (horiz ? &plp->o.p.y : &plp->o.p.x);
1308
15.0k
    fixed *pew = (horiz ? &plp->e.p.y : &plp->e.p.x);
1309
1310
    /* Only adjust the endpoints if the line is horizontal or vertical.
1311
       Debugged with pdfwrite->ppmraw 72dpi file2.pdf */
1312
15.0k
    if (*pow == *pew) {
1313
15.0k
        fixed *pov = (horiz ? &plp->o.p.x : &plp->o.p.y);
1314
15.0k
        fixed *pev = (horiz ? &plp->e.p.x : &plp->e.p.y);
1315
15.0k
        fixed length = any_abs(*pov - *pev);
1316
15.0k
        fixed length_r, length_r_2;
1317
15.0k
        fixed mv = (*pov + *pev) / 2, mv_r;
1318
15.0k
        fixed adj2 = (horiz ? STROKE_ADJUSTMENT(thin, pgs, x)
1319
15.0k
                            : STROKE_ADJUSTMENT(thin, pgs, y)) << 1;
1320
1321
        /* fixme :
1322
           The best value for adjust_longitude is whether
1323
           the dash is isolated and doesn't cover entire segment.
1324
           The current data structure can't pass this info.
1325
           Therefore we restrict adjust_stroke_longitude with 1 pixel length.
1326
        */
1327
15.0k
        if (length > fixed_1) /* comparefiles/file2.pdf */
1328
4.69k
            return;
1329
10.3k
        if (start_cap == gs_cap_butt || end_cap == gs_cap_butt) {
1330
0
            length_r = fixed_rounded(length);
1331
0
            if (length_r < fixed_1)
1332
0
                length_r = fixed_1;
1333
0
            length_r_2 = length_r / 2;
1334
10.3k
        } else {
1335
            /* Account width for proper placing cap centers. */
1336
10.3k
            fixed width = any_abs(horiz ? plp->width.y : plp->width.x);
1337
1338
10.3k
            length_r = fixed_rounded(length + width * 2 + adj2);
1339
10.3k
            length_r_2 = fixed_rounded(length) / 2;
1340
10.3k
        }
1341
10.3k
        if (length_r & fixed_1)
1342
0
            mv_r = fixed_floor(mv) + fixed_half;
1343
10.3k
        else
1344
10.3k
            mv_r = fixed_floor(mv);
1345
10.3k
        if (*pov < *pev) {
1346
0
            *pov = mv_r - length_r_2;
1347
0
            *pev = mv_r + length_r_2;
1348
10.3k
        } else {
1349
10.3k
            *pov = mv_r + length_r_2;
1350
10.3k
            *pev = mv_r - length_r_2;
1351
10.3k
        }
1352
10.3k
    }
1353
15.0k
}
1354
1355
/* Adjust the endpoints and width of a stroke segment */
1356
/* to achieve more uniform rendering. */
1357
/* Only o.p, e.p, e.cdelta, and width have been set. */
1358
static void
1359
adjust_stroke(gx_device *dev, pl_ptr plp, const gs_gstate * pgs,
1360
              bool thin, bool adjust_longitude, note_flags flags)
1361
1.04M
{
1362
1.04M
    bool horiz, adjust = true;
1363
1.04M
    gs_line_cap start_cap = (flags & nf_dash_head ?
1364
2.75k
                             pgs->line_params.dash_cap :
1365
1.04M
                             pgs->line_params.start_cap);
1366
1.04M
    gs_line_cap end_cap   = (flags & nf_dash_tail ?
1367
3.02k
                             pgs->line_params.dash_cap :
1368
1.04M
                             pgs->line_params.end_cap);
1369
1370
    /* If stroke_adjustment is disabled, or this isn't a horizontal or
1371
     * vertical line, then bale. */
1372
1.04M
    if (!pgs->stroke_adjust || (plp->width.x != 0 && plp->width.y != 0)) {
1373
1.01M
        dev->sgr.stroke_stored = false;
1374
1.01M
        return;                 /* don't adjust */
1375
1.01M
    }
1376
    /* Recognizing gradients, which some obsolete software
1377
       represent as a set of parallel strokes.
1378
       Such strokes must not be adjusted - bug 687974. */
1379
21.4k
    if (dev->sgr.stroke_stored &&
1380
21.4k
        (start_cap == gs_cap_butt || end_cap == gs_cap_butt) &&
1381
21.4k
        dev->sgr.orig[3].x == plp->vector.x && dev->sgr.orig[3].y == plp->vector.y) {
1382
        /* Parallel. */
1383
70
        if ((int64_t)(plp->o.p.x - dev->sgr.orig[0].x) * plp->vector.x ==
1384
70
            (int64_t)(plp->o.p.y - dev->sgr.orig[0].y) * plp->vector.y &&
1385
70
            (int64_t)(plp->e.p.x - dev->sgr.orig[1].x) * plp->vector.x ==
1386
0
            (int64_t)(plp->e.p.y - dev->sgr.orig[1].y) * plp->vector.y) {
1387
            /* Transversal shift. */
1388
0
            if (any_abs(plp->o.p.x - dev->sgr.orig[0].x) <= any_abs(plp->width.x + dev->sgr.orig[2].x) &&
1389
0
                any_abs(plp->o.p.y - dev->sgr.orig[0].y) <= any_abs(plp->width.y + dev->sgr.orig[2].y) &&
1390
0
                any_abs(plp->e.p.x - dev->sgr.orig[1].x) <= any_abs(plp->width.x + dev->sgr.orig[2].x) &&
1391
0
                any_abs(plp->e.p.y - dev->sgr.orig[1].y) <= any_abs(plp->width.y + dev->sgr.orig[2].y)) {
1392
                /* The strokes were contacting or overlapping. */
1393
0
                if (any_abs(plp->o.p.x - dev->sgr.orig[0].x) >= any_abs(plp->width.x + dev->sgr.orig[2].x) / 2 &&
1394
0
                    any_abs(plp->o.p.y - dev->sgr.orig[0].y) >= any_abs(plp->width.y + dev->sgr.orig[2].y) / 2 &&
1395
0
                    any_abs(plp->e.p.x - dev->sgr.orig[1].x) >= any_abs(plp->width.x + dev->sgr.orig[2].x) / 2 &&
1396
0
                    any_abs(plp->e.p.y - dev->sgr.orig[1].y) >= any_abs(plp->width.y + dev->sgr.orig[2].y) / 2) {
1397
                    /* The strokes were not much overlapping. */
1398
0
                    if (!(any_abs(plp->o.p.x - dev->sgr.adjusted[0].x) <= any_abs(plp->width.x + dev->sgr.adjusted[2].x) &&
1399
0
                          any_abs(plp->o.p.y - dev->sgr.adjusted[0].y) <= any_abs(plp->width.y + dev->sgr.adjusted[2].y) &&
1400
0
                          any_abs(plp->e.p.x - dev->sgr.adjusted[1].x) <= any_abs(plp->width.x + dev->sgr.adjusted[2].x) &&
1401
0
                          any_abs(plp->e.p.y - dev->sgr.adjusted[1].y) <= any_abs(plp->width.y + dev->sgr.adjusted[2].y))) {
1402
                        /* they became not contacting.
1403
                           We should not have adjusted the last stroke. Since if we did,
1404
                           lets change the current one to restore the contact,
1405
                           so that we don't leave gaps when rasterising. See bug 687974.
1406
                         */
1407
0
                        fixed delta_w_x = (dev->sgr.adjusted[2].x - dev->sgr.orig[2].x);
1408
0
                        fixed delta_w_y = (dev->sgr.adjusted[2].y - dev->sgr.orig[2].y);
1409
0
                        fixed shift_o_x = (dev->sgr.adjusted[0].x - dev->sgr.orig[0].x);
1410
0
                        fixed shift_o_y = (dev->sgr.adjusted[0].y - dev->sgr.orig[0].y);
1411
0
                        fixed shift_e_x = (dev->sgr.adjusted[1].x - dev->sgr.orig[1].x); /* Must be same, but we prefer clarity. */
1412
0
                        fixed shift_e_y = (dev->sgr.adjusted[1].y - dev->sgr.orig[1].y);
1413
1414
0
                        if (plp->o.p.x < dev->sgr.orig[0].x ||
1415
0
                            (plp->o.p.x == dev->sgr.orig[0].x && plp->o.p.y < dev->sgr.orig[0].y)) {
1416
                            /* Left contact, adjust to keep the contact. */
1417
0
                            if_debug4m('O', dev->memory, "[O]don't adjust {{%f,%f},{%f,%f}}\n",
1418
0
                                       fixed2float(plp->o.p.x), fixed2float(plp->o.p.y),
1419
0
                                       fixed2float(plp->e.p.x), fixed2float(plp->e.p.y));
1420
0
                            plp->width.x += (shift_o_x - delta_w_x) / 2;
1421
0
                            plp->width.y += (shift_o_y - delta_w_y) / 2;
1422
0
                            plp->o.p.x += (shift_o_x - delta_w_x) / 2;
1423
0
                            plp->o.p.y += (shift_o_y - delta_w_y) / 2;
1424
0
                            plp->e.p.x += (shift_e_x - delta_w_x) / 2;
1425
0
                            plp->e.p.y += (shift_e_y - delta_w_y) / 2;
1426
0
                            adjust = false;
1427
0
                        } else {
1428
                            /* Right contact, adjust to keep the contact. */
1429
0
                            if_debug4m('O', dev->memory, "[O]don't adjust {{%f,%f},{%f,%f}}\n",
1430
0
                                       fixed2float(plp->o.p.x), fixed2float(plp->o.p.y),
1431
0
                                       fixed2float(plp->e.p.x), fixed2float(plp->e.p.y));
1432
0
                            plp->width.x -= (shift_o_x + delta_w_x) / 2;
1433
0
                            plp->width.y -= (shift_o_y + delta_w_y) / 2;
1434
0
                            plp->o.p.x += (shift_o_x + delta_w_x) / 2;
1435
0
                            plp->o.p.y += (shift_o_y + delta_w_y) / 2;
1436
0
                            plp->e.p.x += (shift_e_x + delta_w_x) / 2;
1437
0
                            plp->e.p.y += (shift_e_y + delta_w_y) / 2;
1438
0
                            adjust = false;
1439
0
                        }
1440
0
                    }
1441
0
                }
1442
0
            }
1443
0
        }
1444
70
    }
1445
21.4k
    if ((start_cap == gs_cap_butt) || (end_cap == gs_cap_butt)) {
1446
3.99k
        dev->sgr.stroke_stored = true;
1447
3.99k
        dev->sgr.orig[0] = plp->o.p;
1448
3.99k
        dev->sgr.orig[1] = plp->e.p;
1449
3.99k
        dev->sgr.orig[2] = plp->width;
1450
3.99k
        dev->sgr.orig[3] = plp->vector;
1451
3.99k
    } else
1452
17.4k
        dev->sgr.stroke_stored = false;
1453
21.4k
    if (adjust) {
1454
21.4k
        horiz = (any_abs(plp->width.x) <= any_abs(plp->width.y));
1455
21.4k
        adjust_stroke_transversal(plp, pgs, thin, horiz);
1456
21.4k
        if (adjust_longitude)
1457
15.0k
            adjust_stroke_longitude(plp, pgs, thin, horiz, start_cap, end_cap);
1458
21.4k
    }
1459
21.4k
    if ((start_cap == gs_cap_butt) || (end_cap == gs_cap_butt)) {
1460
3.99k
        dev->sgr.adjusted[0] = plp->o.p;
1461
3.99k
        dev->sgr.adjusted[1] = plp->e.p;
1462
3.99k
        dev->sgr.adjusted[2] = plp->width;
1463
3.99k
        dev->sgr.adjusted[3] = plp->vector;
1464
3.99k
    }
1465
21.4k
}
1466
1467
/* Compute the intersection of two lines.  This is a messy algorithm */
1468
/* that somehow ought to be useful in more places than just here.... */
1469
/* If the lines are (nearly) parallel, return -1 without setting *pi; */
1470
/* otherwise, return 0 if the intersection is beyond *pp1 and *pp2 in */
1471
/* the direction determined by *pd1 and *pd2, and 1 otherwise. */
1472
static int
1473
line_intersect(
1474
                  p_ptr pp1,    /* point on 1st line */
1475
                  p_ptr pd1,    /* slope of 1st line (dx,dy) */
1476
                  p_ptr pp2,    /* point on 2nd line */
1477
                  p_ptr pd2,    /* slope of 2nd line */
1478
                  p_ptr pi)
1479
1.05M
{                               /* return intersection here */
1480
    /* We don't have to do any scaling, the factors all work out right. */
1481
1.05M
    double u1 = pd1->x, v1 = pd1->y;
1482
1.05M
    double u2 = pd2->x, v2 = pd2->y;
1483
1.05M
    double denom = u1 * v2 - u2 * v1;
1484
1.05M
    double xdiff = pp2->x - pp1->x;
1485
1.05M
    double ydiff = pp2->y - pp1->y;
1486
1.05M
    double f1;
1487
1.05M
    double max_result = any_abs(denom) * (double)max_fixed;
1488
1489
#ifdef DEBUG
1490
    if (gs_debug_c('O')) {
1491
        dlprintf4("[o]Intersect %f,%f(%f/%f)",
1492
                  fixed2float(pp1->x), fixed2float(pp1->y),
1493
                  fixed2float(pd1->x), fixed2float(pd1->y));
1494
        dlprintf4(" & %f,%f(%f/%f),\n",
1495
                  fixed2float(pp2->x), fixed2float(pp2->y),
1496
                  fixed2float(pd2->x), fixed2float(pd2->y));
1497
        dlprintf3("\txdiff=%f ydiff=%f denom=%f ->\n",
1498
                  xdiff, ydiff, denom);
1499
    }
1500
#endif
1501
    /* Check for degenerate result. */
1502
1.05M
    if (any_abs(xdiff) >= max_result || any_abs(ydiff) >= max_result) {
1503
        /* The lines are nearly parallel, */
1504
        /* or one of them has zero length.  Punt. */
1505
774
        if_debug0('O', "\tdegenerate!\n");
1506
774
        return -1;
1507
774
    }
1508
1.05M
    f1 = (v2 * xdiff - u2 * ydiff) / denom;
1509
1.05M
    pi->x = pp1->x + (fixed) (f1 * u1);
1510
1.05M
    pi->y = pp1->y + (fixed) (f1 * v1);
1511
1.05M
    if_debug2('O', "\t%f,%f\n",
1512
1.05M
              fixed2float(pi->x), fixed2float(pi->y));
1513
1.05M
    return (f1 >= 0 && (v1 * xdiff >= u1 * ydiff ? denom >= 0 : denom < 0) ? 0 : 1);
1514
1.05M
}
1515
1516
/* Set up the width and delta parameters for a thin line. */
1517
/* We only approximate the width and height. */
1518
static void
1519
set_thin_widths(register pl_ptr plp)
1520
5.97k
{
1521
5.97k
    fixed dx = plp->e.p.x - plp->o.p.x, dy = plp->e.p.y - plp->o.p.y;
1522
1523
5.97k
#define TRSIGN(v, c) ((v) >= 0 ? (c) : -(c))
1524
5.97k
    if (any_abs(dx) > any_abs(dy)) {
1525
2.99k
        plp->width.x = plp->e.cdelta.y = 0;
1526
2.99k
        plp->width.y = plp->e.cdelta.x = TRSIGN(dx, fixed_half);
1527
2.99k
    } else {
1528
2.97k
        plp->width.y = plp->e.cdelta.x = 0;
1529
2.97k
        plp->width.x = -(plp->e.cdelta.y = TRSIGN(dy, fixed_half));
1530
2.97k
    }
1531
5.97k
#undef TRSIGN
1532
5.97k
}
1533
1534
/* Draw a line on the device. */
1535
/* Treat no join the same as a bevel join. */
1536
/* rpath should always be NULL, hence ensure_closed can be ignored */
1537
static int
1538
stroke_fill(gx_path * ppath, gx_path * rpath, bool ensure_closed, int first,
1539
            register pl_ptr plp, pl_ptr nplp, const gx_device_color * pdevc,
1540
            gx_device * dev, const gs_gstate * pgs,
1541
            const gx_stroke_params * params, const gs_fixed_rect * pbbox,
1542
            int uniform, gs_line_join join, bool reflected,
1543
            note_flags flags)
1544
1.11M
{
1545
1.11M
    const fixed lix = plp->o.p.x;
1546
1.11M
    const fixed liy = plp->o.p.y;
1547
1.11M
    const fixed litox = plp->e.p.x;
1548
1.11M
    const fixed litoy = plp->e.p.y;
1549
1550
    /* assert(lop_is_idempotent(pgs->log_op)); */
1551
1.11M
    if (plp->thin) {
1552
        /* Minimum-width line, don't have to be careful with caps/joins. */
1553
111k
        return (*dev_proc(dev, draw_thin_line))(dev, lix, liy, litox, litoy,
1554
111k
                                                pdevc, pgs->log_op,
1555
111k
                                                pgs->fill_adjust.x,
1556
111k
                                                pgs->fill_adjust.y);
1557
111k
    }
1558
    /* Check for being able to fill directly. */
1559
1.00M
    {
1560
1.00M
        const gx_line_params *pgs_lp = gs_currentlineparams_inline(pgs);
1561
1.00M
        gs_line_cap start_cap = (flags & nf_dash_head ?
1562
906k
                                 pgs_lp->dash_cap : pgs_lp->start_cap);
1563
1.00M
        gs_line_cap end_cap   = (flags & nf_dash_tail ?
1564
904k
                                 pgs_lp->dash_cap : pgs_lp->end_cap);
1565
1566
1.00M
        if (first != 0)
1567
882k
            start_cap = gs_cap_butt;
1568
1.00M
        if (nplp != 0)
1569
882k
            end_cap = gs_cap_butt;
1570
1.00M
        if (!plp->thin && (nplp == 0 || !nplp->thin)
1571
1.00M
            && (start_cap == gs_cap_butt || start_cap == gs_cap_square)
1572
1.00M
            && (end_cap   == gs_cap_butt || end_cap   == gs_cap_square)
1573
1.00M
            && (join == gs_join_bevel || join == gs_join_miter ||
1574
984k
                join == gs_join_none)
1575
1.00M
            && (pgs->fill_adjust.x | pgs->fill_adjust.y) == 0
1576
1.00M
            ) {
1577
0
            gs_fixed_point points[6];
1578
0
            int npoints, code;
1579
0
            fixed ax, ay, bx, by;
1580
1581
0
            npoints = cap_points(start_cap, &plp->o, points);
1582
0
            if (nplp == 0)
1583
0
                code = cap_points(end_cap, &plp->e, points + npoints);
1584
0
            else
1585
0
                code = line_join_points(pgs_lp, plp, nplp, points + npoints,
1586
0
                                        (uniform ? (gs_matrix *) 0 :
1587
0
                                         &ctm_only(pgs)), join, reflected);
1588
0
            if (code < 0)
1589
0
                goto general;
1590
            /* Make sure the parallelogram fill won't overflow. */
1591
0
#define SUB_OVERFLOWS(r, u, v)\
1592
0
  (((r = u - v) ^ u) < 0 && (u ^ v) < 0)
1593
0
            if (SUB_OVERFLOWS(ax, points[0].x, points[1].x) ||
1594
0
                SUB_OVERFLOWS(ay, points[0].y, points[1].y) ||
1595
0
                SUB_OVERFLOWS(bx, points[2].x, points[1].x) ||
1596
0
                SUB_OVERFLOWS(by, points[2].y, points[1].y)
1597
0
                )
1598
0
                goto general;
1599
0
#undef SUB_OVERFLOWS
1600
0
            if (nplp != 0) {
1601
0
                if (join == gs_join_miter) {
1602
                    /* Make sure we have a bevel and not a miter. */
1603
0
                    if (!(points[2].x == plp->e.co.x &&
1604
0
                          points[2].y == plp->e.co.y &&
1605
0
                          points[5].x == plp->e.ce.x &&
1606
0
                          points[5].y == plp->e.ce.y)
1607
0
                        )
1608
0
                        goto fill;
1609
0
                } {
1610
0
                    const gs_fixed_point *bevel = points + 2;
1611
1612
                    /* Identify which 3 points define the bevel triangle. */
1613
0
                    if (points[3].x == nplp->o.p.x &&
1614
0
                        points[3].y == nplp->o.p.y
1615
0
                        )
1616
0
                        ++bevel;
1617
                    /* Fill the bevel. */
1618
0
                    code = (*dev_proc(dev, fill_triangle)) (dev,
1619
0
                                                         bevel->x, bevel->y,
1620
0
                               bevel[1].x - bevel->x, bevel[1].y - bevel->y,
1621
0
                               bevel[2].x - bevel->x, bevel[2].y - bevel->y,
1622
0
                                                        pdevc, pgs->log_op);
1623
0
                    if (code < 0)
1624
0
                        return code;
1625
0
                }
1626
0
            }
1627
            /* Fill the body of the stroke. */
1628
0
            return (*dev_proc(dev, fill_parallelogram)) (dev,
1629
0
                                                   points[1].x, points[1].y,
1630
0
                                                         ax, ay, bx, by,
1631
0
                                                         pdevc, pgs->log_op);
1632
0
          fill:
1633
0
            code = add_points(ppath, points, npoints + code, true);
1634
0
            if (code < 0)
1635
0
                return code;
1636
0
            return gx_path_close_subpath(ppath);
1637
0
        }
1638
1.00M
    }
1639
    /* General case: construct a path for the fill algorithm. */
1640
1.00M
 general:
1641
1.00M
    return stroke_add(ppath, rpath, ensure_closed, first, plp, nplp, pdevc,
1642
1.00M
                      dev, pgs, params, pbbox, uniform, join, reflected,
1643
1.00M
                      flags);
1644
1.00M
}
1645
1646
/* Add a segment to the path.  This handles all the complex cases. */
1647
static int
1648
stroke_add(gx_path * ppath, gx_path * rpath, bool ensure_closed, int first,
1649
           pl_ptr plp, pl_ptr nplp, const gx_device_color * pdevc,
1650
           gx_device * dev, const gs_gstate * pgs,
1651
           const gx_stroke_params * params,
1652
           const gs_fixed_rect * ignore_pbbox, int uniform,
1653
           gs_line_join join, bool reflected, note_flags flags)
1654
1.04M
{
1655
1.04M
    const gx_line_params *pgs_lp = gs_currentlineparams_inline(pgs);
1656
1.04M
    gs_fixed_point points[8];
1657
1.04M
    int npoints;
1658
1.04M
    int code;
1659
1.04M
    bool moveto_first = true;
1660
1.04M
    gs_line_cap start_cap = (flags & nf_dash_head ?
1661
939k
                             pgs_lp->dash_cap : pgs_lp->start_cap);
1662
1.04M
    gs_line_cap end_cap   = (flags & nf_dash_tail ?
1663
937k
                             pgs_lp->dash_cap : pgs_lp->end_cap);
1664
1665
1.04M
    if (plp->thin) {
1666
        /* We didn't set up the endpoint parameters before, */
1667
        /* because the line was thin.  Do it now. */
1668
5.97k
        set_thin_widths(plp);
1669
5.97k
        adjust_stroke(dev, plp, pgs, true, first == 0 && nplp == 0, flags);
1670
5.97k
        compute_caps(plp);
1671
5.97k
    }
1672
    /* Create an initial cap if desired. */
1673
1.04M
    if (first == 0 && start_cap == gs_cap_round) {
1674
20.8k
        if ((code = gx_path_add_point(ppath, plp->o.co.x, plp->o.co.y)) < 0 ||
1675
20.8k
            (code = add_pie_cap(ppath, &plp->o)) < 0)
1676
0
            return code;
1677
20.8k
        npoints = 0;
1678
20.8k
        moveto_first = false;
1679
1.01M
    } else {
1680
1.01M
        if ((npoints = cap_points((first == 0 ? start_cap : gs_cap_butt),
1681
1.01M
                                  &plp->o, points)) < 0)
1682
0
            return npoints;
1683
1.01M
    }
1684
1.04M
    if (nplp == 0) {
1685
        /* Add a final cap. */
1686
125k
        if (end_cap == gs_cap_round) {
1687
20.8k
            ASSIGN_POINT(&points[npoints], plp->e.co);
1688
20.8k
            ++npoints;
1689
20.8k
            if ((code = add_points(ppath, points, npoints, moveto_first)) < 0)
1690
0
                return code;
1691
20.8k
            code = add_pie_cap(ppath, &plp->e);
1692
20.8k
            goto done;
1693
20.8k
        }
1694
104k
        code = cap_points(end_cap, &plp->e, points + npoints);
1695
915k
    } else if (nplp->thin) /* no join */
1696
5.99k
        code = cap_points(gs_cap_butt, &plp->e, points + npoints);
1697
909k
    else if (join == gs_join_round) {
1698
25.4k
        ASSIGN_POINT(&points[npoints], plp->e.co);
1699
25.4k
        ++npoints;
1700
25.4k
        if ((code = add_points(ppath, points, npoints, moveto_first)) < 0)
1701
0
            return code;
1702
25.4k
        code = add_pie_join(ppath, plp, nplp, reflected, true);
1703
25.4k
        goto done;
1704
883k
    } else if (flags & nf_all_from_arc) {
1705
        /* If all the segments in 'prev' and 'current' are from a curve
1706
         * then the join should actually be a round one, because it would
1707
         * have been round if we had flattened it enough. */
1708
603k
        ASSIGN_POINT(&points[npoints], plp->e.co);
1709
603k
        ++npoints;
1710
603k
        if ((code = add_points(ppath, points, npoints, moveto_first)) < 0)
1711
0
            return code;
1712
603k
        code = add_pie_join(ppath, plp, nplp, reflected, false);
1713
603k
        goto done;
1714
603k
    } else                      /* non-round join */
1715
280k
       code = line_join_points(pgs_lp, plp, nplp, points + npoints,
1716
280k
                                (uniform ? (gs_matrix *) 0 : &ctm_only(pgs)),
1717
280k
                                join, reflected);
1718
390k
    if (code < 0)
1719
0
        return code;
1720
390k
    code = add_points(ppath, points, npoints + code, moveto_first);
1721
1.04M
  done:
1722
1.04M
    if (code < 0)
1723
0
        return code;
1724
1.04M
    if ((flags & nf_some_from_arc) && (!plp->thin) &&
1725
1.04M
        (nplp != NULL) && (!nplp->thin))
1726
711k
        code = join_under_pie(ppath, plp, nplp, reflected);
1727
1.04M
    return gx_path_close_subpath(ppath);
1728
1.04M
}
1729
1730
/* When painting the 'underjoin' (the 'inside' of a join), we
1731
 * need to take special care if the curve is particularly wide as
1732
 * the leading edge of the underside of the first stroked segment
1733
 * may be beyond the leading edge of the underside of the second
1734
 * stroked segment. Similarly, the trailing edge of the second
1735
 * stroked segment may be behing the trailing edge of the first
1736
 * stroked segment. We detect those cases here.
1737
 *
1738
 * We detect the first case by projecting plp.width onto nplp.vector.
1739
 * If the projected vector is longer then nplp.vector, we have a
1740
 * problem.
1741
 *
1742
 * len_vector_squared = nplp.vector.x * nplp.vector.x + nplp.vector.y * nplp.nvector.y
1743
 * len_vector = sqr(len_vector_squared)
1744
 * len_projection_unnormalised = plp.width.x * nplp.vector.x + plp.width.y * nplp.vector.y
1745
 * len_projection = len_projection_unnormalised / len_vector
1746
 *
1747
 * len_projection > len_vector === len_projection_unnormalised > len_vector * len_vector
1748
 * === len_projection_unnormalised > len_vector_squared
1749
 */
1750
1751
#ifdef SLOWER_BUT_MORE_ACCURATE_STROKING
1752
static bool
1753
wide_underjoin(pl_ptr plp, pl_ptr nplp)
1754
{
1755
    double h_squared = (double)nplp->vector.x * nplp->vector.x + (double)nplp->vector.y * nplp->vector.y;
1756
    double dot = (double)plp->width.x * nplp->vector.x + (double)plp->width.y * nplp->vector.y;
1757
1758
    if (dot < 0)
1759
        dot = -dot;
1760
    if (dot > h_squared)
1761
        return 1;
1762
1763
    h_squared = (double)plp->vector.x * plp->vector.x + (double)plp->vector.y * plp->vector.y;
1764
    dot = (double)nplp->width.x * plp->vector.x + (double)nplp->width.y * plp->vector.y;
1765
    if (dot < 0)
1766
        dot = -dot;
1767
    if (dot > h_squared)
1768
        return 1;
1769
1770
    return 0;
1771
}
1772
#endif
1773
1774
static int
1775
check_miter(const gx_line_params * pgs_lp, pl_ptr plp, pl_ptr nplp,
1776
            const gs_matrix * pmat, p_ptr outp, p_ptr np, p_ptr mpt,
1777
            bool ccw0)
1778
273k
{
1779
    /*
1780
     * Check whether a miter join is appropriate.
1781
     * Let a, b be the angles of the two lines.
1782
     * We check tan(a-b) against the miter_check
1783
     * by using the following formula:
1784
     *      If tan(a)=u1/v1 and tan(b)=u2/v2, then
1785
     *      tan(a-b) = (u1*v2 - u2*v1) / (u1*u2 + v1*v2).
1786
     *
1787
     * We can do all the computations unscaled,
1788
     * because we're only concerned with ratios.
1789
     * However, if we have a non-uniform coordinate
1790
     * system (indicated by pmat != 0), we must do the
1791
     * computations in user space.
1792
     */
1793
273k
    float check;
1794
273k
    double u1, v1, u2, v2;
1795
273k
    double num, denom;
1796
273k
    int code;
1797
1798
    /*
1799
     * Don't bother with the miter check if the two
1800
     * points to be joined are very close together,
1801
     * namely, in the same square half-pixel.
1802
     */
1803
273k
    if (fixed2long(outp->x << 1) == fixed2long(np->x << 1) &&
1804
273k
        fixed2long(outp->y << 1) == fixed2long(np->y << 1))
1805
89.1k
        return 1;
1806
1807
184k
    check = pgs_lp->miter_check;
1808
184k
    u1 = plp->vector.y, v1 = plp->vector.x;
1809
184k
    u2 = -nplp->vector.y, v2 = -nplp->vector.x;
1810
1811
184k
    if (pmat) {
1812
30.5k
        gs_point pt;
1813
1814
30.5k
        code = gs_distance_transform_inverse(v1, u1, pmat, &pt);
1815
30.5k
        if (code < 0)
1816
0
        return code;
1817
30.5k
        v1 = pt.x, u1 = pt.y;
1818
30.5k
        code = gs_distance_transform_inverse(v2, u2, pmat, &pt);
1819
30.5k
        if (code < 0)
1820
0
            return code;
1821
30.5k
        v2 = pt.x, u2 = pt.y;
1822
        /*
1823
         * We need to recompute ccw according to the
1824
         * relative positions of the lines in user space.
1825
         * We repeat the computation described above,
1826
         * using the cdelta values instead of the widths.
1827
         * Because the definition of ccw above is inverted
1828
         * from the intuitive one (for historical reasons),
1829
         * we actually have to do the test backwards.
1830
         */
1831
30.5k
        ccw0 = v1 * u2 < v2 * u1;
1832
#ifdef DEBUG
1833
        {
1834
            double a1 = atan2(u1, v1), a2 = atan2(u2, v2), dif = a1 - a2;
1835
1836
            if (dif < 0)
1837
                dif += 2 * M_PI;
1838
            else if (dif >= 2 * M_PI)
1839
                dif -= 2 * M_PI;
1840
            if (dif != 0 && (dif < M_PI) != ccw0)
1841
                lprintf8("ccw wrong: tan(a1=%g)=%g/%g, tan(a2=%g)=%g,%g, dif=%g, ccw0=%d\n",
1842
                         a1, u1, v1, a2, u2, v2, dif, ccw0);
1843
        }
1844
#endif
1845
30.5k
    }
1846
184k
    num = u1 * v2 - u2 * v1;
1847
184k
    denom = u1 * u2 + v1 * v2;
1848
    /*
1849
     * We will want either tan(a-b) or tan(b-a)
1850
     * depending on the orientations of the lines.
1851
     * Fortunately we know the relative orientations already.
1852
     */
1853
184k
    if (!ccw0)          /* have plp - nplp, want vice versa */
1854
72.2k
        num = -num;
1855
#ifdef DEBUG
1856
    if (gs_debug_c('O')) {
1857
        dlprintf4("[o]Miter check: u1/v1=%f/%f, u2/v2=%f/%f,\n",
1858
                  u1, v1, u2, v2);
1859
        dlprintf3("        num=%f, denom=%f, check=%f\n",
1860
                  num, denom, check);
1861
    }
1862
#endif
1863
    /*
1864
     * If we define T = num / denom, then we want to use
1865
     * a miter join iff arctan(T) >= arctan(check).
1866
     * We know that both of these angles are in the 1st
1867
     * or 2nd quadrant, and since arctan is monotonic
1868
     * within each quadrant, we can do the comparisons
1869
     * on T and check directly, taking signs into account
1870
     * as follows:
1871
     *              sign(T) sign(check)     atan(T) >= atan(check)
1872
     *              ------- -----------     ----------------------
1873
     *              +       +               T >= check
1874
     *              -       +               true
1875
     *              +       -               false
1876
     *              -       -               T >= check
1877
     */
1878
184k
    if (num == 0 && denom == 0)
1879
0
        return_error(gs_error_unregistered); /* Must not happen. */
1880
184k
    if (denom < 0)
1881
101k
        num = -num, denom = -denom;
1882
    /* Now denom >= 0, so sign(num) = sign(T). */
1883
184k
    if (check > 0 ?
1884
184k
        (num < 0 || num >= denom * check) :
1885
184k
        (num < 0 && num >= denom * check)
1886
184k
        ) {
1887
        /* OK to use a miter join. */
1888
183k
        gs_fixed_point dirn1, dirn2;
1889
1890
183k
        dirn1.x = plp->e.cdelta.x;
1891
183k
        dirn1.y = plp->e.cdelta.y;
1892
        /* If this direction is small enough that we might have
1893
         * underflowed and the vector record is suitable for us
1894
         * to use to calculate a better one, then do so. */
1895
183k
        if ((abs(dirn1.x) + abs(dirn1.y) < 16) &&
1896
183k
            ((plp->vector.x != 0) || (plp->vector.y != 0)))
1897
0
        {
1898
0
            float scale = 65536.0;
1899
0
            if (abs(plp->vector.x) > abs(plp->vector.y))
1900
0
                scale /= abs(plp->vector.x);
1901
0
            else
1902
0
                scale /= abs(plp->vector.y);
1903
0
            dirn1.x = (fixed)(plp->vector.x*scale);
1904
0
            dirn1.y = (fixed)(plp->vector.y*scale);
1905
0
        }
1906
183k
        dirn2.x = nplp->o.cdelta.x;
1907
183k
        dirn2.y = nplp->o.cdelta.y;
1908
        /* If this direction is small enough that we might have
1909
         * underflowed and the vector record is suitable for us
1910
         * to use to calculate a better one, then do so. */
1911
183k
        if ((abs(dirn2.x) + abs(dirn2.y) < 16) &&
1912
183k
            ((nplp->vector.x != 0) || (nplp->vector.y != 0)))
1913
0
        {
1914
0
            float scale = 65536.0;
1915
0
            if (abs(nplp->vector.x) > abs(nplp->vector.y))
1916
0
                scale /= abs(nplp->vector.x);
1917
0
            else
1918
0
                scale /= abs(nplp->vector.y);
1919
0
            dirn2.x = (fixed)(-nplp->vector.x*scale);
1920
0
            dirn2.y = (fixed)(-nplp->vector.y*scale);
1921
0
        }
1922
183k
        if_debug0('O', "        ... passes.\n");
1923
        /* Compute the intersection of the extended edge lines. */
1924
183k
        if (line_intersect(outp, &dirn1, np, &dirn2, mpt) == 0)
1925
180k
            return 0;
1926
183k
    }
1927
3.90k
    return 1;
1928
184k
}
1929
1930
/* Add a segment to the path.
1931
 * This works by crafting 2 paths, one for each edge, that will later be
1932
 * merged together. */
1933
static int
1934
stroke_add_fast(gx_path * ppath, gx_path * rpath, bool ensure_closed, int first,
1935
                pl_ptr plp, pl_ptr nplp, const gx_device_color * pdevc,
1936
                gx_device * dev, const gs_gstate * pgs,
1937
                const gx_stroke_params * params,
1938
                const gs_fixed_rect * ignore_pbbox, int uniform,
1939
                gs_line_join join, bool reflected, note_flags flags)
1940
0
{
1941
0
    const gx_line_params *pgs_lp = gs_currentlineparams_inline(pgs);
1942
0
    gs_fixed_point points[8];
1943
0
    gs_fixed_point rpoints[8];
1944
0
    int npoints  = 0;
1945
0
    int nrpoints = 0;
1946
0
    int code;
1947
0
    bool moveto_first  = false;
1948
0
    bool rmoveto_first = false;
1949
0
    gs_line_cap start_cap, end_cap;
1950
0
    const gs_matrix *pmat = (uniform ? (const gs_matrix *)NULL : &ctm_only(pgs));
1951
0
    enum {
1952
0
        joinsense_cap = 0,
1953
0
        joinsense_cw = 1,
1954
0
        joinsense_ccw = 2,
1955
0
        joinsense_over = 4,
1956
0
        joinsense_under = 8,
1957
0
    } joinsense = joinsense_cap;
1958
1959
0
    if (plp->thin) {
1960
        /* We didn't set up the endpoint parameters before, */
1961
        /* because the line was thin.  Do it now. */
1962
0
        set_thin_widths(plp);
1963
0
        adjust_stroke(dev, plp, pgs, true, first == 0 && nplp == 0, flags);
1964
0
        compute_caps(plp);
1965
0
    }
1966
0
    start_cap = (flags & nf_dash_head ?
1967
0
                 pgs_lp->dash_cap : pgs_lp->start_cap);
1968
0
    end_cap   = (flags & nf_dash_tail ?
1969
0
                 pgs_lp->dash_cap : pgs_lp->end_cap);
1970
    /* If we're starting a new rpath here, we need to fake a new cap.
1971
     * Don't interfere if we would have been doing a cap anyway. */
1972
0
    if (gx_path_is_void(rpath) && (first != 0)) {
1973
0
        first = 0;
1974
0
        start_cap = gs_cap_butt;
1975
0
        end_cap   = gs_cap_butt;
1976
0
        moveto_first  = true;
1977
0
        rmoveto_first = true;
1978
0
    }
1979
0
    if (first == 0) {
1980
        /* Create an initial cap. */
1981
0
        if (start_cap == gs_cap_round) {
1982
0
            if ((code = gx_path_add_point(ppath, plp->o.co.x, plp->o.co.y)) < 0 ||
1983
0
                (code = add_pie_cap(ppath, &plp->o)) < 0)
1984
0
                return code;
1985
0
            moveto_first = false;
1986
0
        } else {
1987
0
            if ((npoints = cap_points(start_cap, &plp->o, points)) < 0)
1988
0
                return npoints;
1989
0
            moveto_first = true;
1990
0
        }
1991
0
        rmoveto_first = true;
1992
0
        ASSIGN_POINT(&rpoints[0], plp->o.co);
1993
0
        nrpoints = 1;
1994
0
    }
1995
    /* Add points to move us along the edges of this stroke */
1996
0
    ASSIGN_POINT(&points [npoints ], plp->e.co);
1997
0
    ASSIGN_POINT(&rpoints[nrpoints], plp->e.ce);
1998
0
    npoints++;
1999
0
    nrpoints++;
2000
2001
0
    if (nplp != NULL && !nplp->thin) {
2002
        /* We need to do a join. What sense is it it? */
2003
0
        double l, r;
2004
2005
0
        l = (double)(plp->width.x) /* x1 */ * (nplp->width.y) /* y2 */;
2006
0
        r = (double)(nplp->width.x) /* x2 */ * (plp->width.y) /* y1 */;
2007
2008
0
        if ((l == r) && (join == gs_join_round))
2009
0
             joinsense = joinsense_cap;
2010
0
        else if ((l > r) ^ reflected)
2011
0
             joinsense = joinsense_ccw | joinsense_over | joinsense_under;
2012
0
        else
2013
0
             joinsense = joinsense_cw | joinsense_over | joinsense_under;
2014
2015
0
        if (joinsense != joinsense_cap && join == gs_join_miter) {
2016
            /* We need to do a miter line join. Miters are 'special'
2017
             * in that we'd like to do them by adjusting the existing
2018
             * points, rather than adding new ones. */
2019
0
            gs_fixed_point mpt;
2020
0
            if (joinsense & joinsense_ccw) {
2021
                /* Underjoin (in reverse path):
2022
                 * A = plp->o.co, B = plp->e.ce, C = nplp->o.co, D = nplp->e.ce */
2023
0
                double xa =  plp->o.co.x, ya =  plp->o.co.y;
2024
0
                double xb =  plp->e.ce.x, yb =  plp->e.ce.y;
2025
0
                double xc = nplp->o.co.x, yc = nplp->o.co.y;
2026
0
                double xd = nplp->e.ce.x, yd = nplp->e.ce.y;
2027
0
                double xab = xa-xb, xac = xa-xc, xcd = xc-xd;
2028
0
                double yab = ya-yb, yac = ya-yc, ycd = yc-yd;
2029
0
                double t_num = xac * ycd - yac * xcd;
2030
0
                double t_den = xab * ycd - yab * xcd;
2031
0
                code = check_miter(pgs_lp, plp, nplp, pmat, &plp->e.co,
2032
0
                                   &nplp->o.ce, &mpt, true);
2033
0
                if (code < 0)
2034
0
                    return code;
2035
0
                if (code == 0) {
2036
0
                    points[npoints-1].x = mpt.x;
2037
0
                    points[npoints-1].y = mpt.y;
2038
0
                    if (ensure_closed) {
2039
0
                        points[npoints].x = nplp->o.ce.x;
2040
0
                        points[npoints].y = nplp->o.ce.y;
2041
0
                        npoints++;
2042
0
                    }
2043
0
                    joinsense &= ~joinsense_over;
2044
0
                } else
2045
0
                    join = gs_join_bevel;
2046
0
                if (t_den != 0 &&
2047
0
                    ((t_num >= 0 && t_num <= t_den) ||
2048
0
                     (t_num <= 0 && t_num >= t_den))) {
2049
0
                    double x = xa - xab * t_num / t_den;
2050
0
                    double y = ya - yab * t_num / t_den;
2051
0
                    rpoints[nrpoints-1].x = (fixed)x;
2052
0
                    rpoints[nrpoints-1].y = (fixed)y;
2053
0
                    joinsense &= ~joinsense_under;
2054
0
                }
2055
0
            } else {
2056
                /* Underjoin (in fwd path):
2057
                 * A = plp->o.ce, B = plp->e.co, C = nplp->o.ce, D = nplp->e.co */
2058
0
                double xa =  plp->o.ce.x, ya =  plp->o.ce.y;
2059
0
                double xb =  plp->e.co.x, yb =  plp->e.co.y;
2060
0
                double xc = nplp->o.ce.x, yc = nplp->o.ce.y;
2061
0
                double xd = nplp->e.co.x, yd = nplp->e.co.y;
2062
0
                double xab = xa-xb, xac = xa-xc, xcd = xc-xd;
2063
0
                double yab = ya-yb, yac = ya-yc, ycd = yc-yd;
2064
0
                double t_num = xac * ycd - yac * xcd;
2065
0
                double t_den = xab * ycd - yab * xcd;
2066
0
                code = check_miter(pgs_lp, plp, nplp, pmat, &plp->e.ce,
2067
0
                                   &nplp->o.co, &mpt, false);
2068
0
                if (code < 0)
2069
0
                    return code;
2070
0
                if (code == 0) {
2071
0
                    rpoints[nrpoints-1].x = mpt.x;
2072
0
                    rpoints[nrpoints-1].y = mpt.y;
2073
0
                    if (ensure_closed) {
2074
0
                        rpoints[nrpoints].x = nplp->o.co.x;
2075
0
                        rpoints[nrpoints].y = nplp->o.co.y;
2076
0
                        nrpoints++;
2077
0
                    }
2078
0
                    joinsense &= ~joinsense_over;
2079
0
                } else
2080
0
                    join = gs_join_bevel;
2081
0
                if (t_den != 0 &&
2082
0
                    ((t_num >= 0 && t_num <= t_den) ||
2083
0
                     (t_num <= 0 && t_num >= t_den)))   {
2084
0
                    double x = xa - xab * t_num / t_den;
2085
0
                    double y = ya - yab * t_num / t_den;
2086
0
                    points[npoints-1].x = (fixed)x;
2087
0
                    points[npoints-1].y = (fixed)y;
2088
0
                    joinsense &= ~joinsense_under;
2089
0
                }
2090
0
            }
2091
0
        }
2092
0
    }
2093
2094
0
    if ((code = add_points(ppath, points, npoints, moveto_first)) < 0)
2095
0
        return code;
2096
0
    if ((code = add_points(rpath, rpoints, nrpoints, rmoveto_first)) < 0)
2097
0
        return code;
2098
0
    npoints  = 0;
2099
0
    nrpoints = 0;
2100
2101
0
    if (nplp == 0) { /* Add a final cap. */
2102
0
        if (end_cap == gs_cap_round) {
2103
0
            code = add_pie_cap(ppath, &plp->e);
2104
0
        } else {
2105
0
            code = cap_points(end_cap, &plp->e, points);
2106
0
            npoints = code;
2107
0
        }
2108
0
    } else if (nplp->thin) { /* no join */
2109
0
        code = cap_points(gs_cap_butt, &plp->e, points);
2110
0
        npoints = code;
2111
0
    } else if (joinsense == joinsense_cap) {
2112
        /* Do a cap */
2113
0
        code = add_pie_cap(ppath, &plp->e);
2114
0
        if (code >= 0) {
2115
            /* If the next line is in the opposite direction as the current one
2116
             * we want to leave the point on the same side as it was
2117
             * originally. This is required for paths that come to a stop
2118
             * and then reverse themselves, but may produce more complexity
2119
             * than we'd really like at the ends of smooth beziers. */
2120
0
            if ((double)(plp->width.x) * nplp->width.x + (double)plp->width.y * nplp->width.y >= 0)
2121
0
                code = gx_path_add_line(ppath, plp->e.co.x, plp->e.co.y);
2122
0
        }
2123
0
    } else if (joinsense & joinsense_ccw) {
2124
        /* CCW rotation. Join in the forward path. "Underjoin" in the
2125
         * reverse path. */
2126
0
        if (joinsense & joinsense_over) {
2127
            /* RJW: Ideally we should include the "|| flags" clause in
2128
             * the following condition. This forces all joins between
2129
             * line segments generated from arcs to be round. This would
2130
             * solve some flatness issues, but makes some pathological
2131
             * cases incredibly slow. */
2132
0
            if (join == gs_join_round /* || (flags & nf_all_from_arc) */) {
2133
0
                code = add_pie_join_fast_ccw(ppath, plp, nplp, reflected);
2134
0
            } else { /* non-round join */
2135
0
                code = line_join_points_fast_ccw(pgs_lp, plp, nplp,
2136
0
                                                 points, pmat, join);
2137
0
                npoints = code;
2138
0
            }
2139
0
            if (code < 0)
2140
0
                return code;
2141
0
        }
2142
0
        if (joinsense & joinsense_under) {
2143
            /* The underjoin */
2144
0
#ifndef SLOWER_BUT_MORE_ACCURATE_STROKING
2145
0
            if ((flags & (nf_some_from_arc | nf_prev_some_from_arc)) == 0) {
2146
                /* RJW: This is an approximation. We ought to draw a line
2147
                 * back to nplp->o.p, and then independently fill any exposed
2148
                 * region under the curve with a round join. Sadly, that's
2149
                 * a) really hard to do, and b) makes certain pathological
2150
                 * filling cases MUCH slower due to the greater number of
2151
                 * "cross-segment" line segments this produces. Instead,
2152
                 * we just skip the line to the middle, and join across the
2153
                 * bottom instead. This is akin to what other graphics libs
2154
                 * do (such as fitz, libart, etc). It's not perfect but in
2155
                 * most cases it's close, and results in faster to fill
2156
                 * paths.
2157
                 */
2158
                /* RJW: This goes wrong for some paths, as the 'underjoin' wind
2159
                 * will be the wrong way. See bug 694971 */
2160
0
                code = gx_path_add_line(rpath, nplp->o.p.x, nplp->o.p.y);
2161
0
                if (code < 0)
2162
0
                    return code;
2163
0
            }
2164
#else
2165
            if (wide_underjoin(plp, nplp))
2166
            {
2167
                code = gx_path_add_line(rpath, nplp->o.p.x, nplp->o.p.y);
2168
                if (code < 0)
2169
                    return code;
2170
                if ((flags & (nf_some_from_arc | nf_prev_some_from_arc)) != 0) {
2171
                    code = gx_path_add_line(rpath, nplp->o.co.x, nplp->o.co.y);
2172
                    if (code < 0)
2173
                        return code;
2174
                    code = gx_path_add_line(rpath, plp->e.ce.x, plp->e.ce.y);
2175
                    if (code < 0)
2176
                        return code;
2177
                    code = gx_path_add_line(rpath, nplp->o.p.x, nplp->o.p.y);
2178
                    if (code < 0)
2179
                        return code;
2180
                }
2181
            }
2182
#endif
2183
0
            code = gx_path_add_line(rpath, nplp->o.co.x, nplp->o.co.y);
2184
0
        }
2185
0
    } else if (joinsense & joinsense) {
2186
        /* CW rotation. Join in the reverse path. "Underjoin" in the
2187
         * forward path. */
2188
0
        if (joinsense & joinsense_over) {
2189
            /* RJW: Ideally we should include the "|| flags" clause in
2190
             * the following condition. This forces all joins between
2191
             * line segments generated from arcs to be round. This would
2192
             * solve some flatness issues, but makes some pathological
2193
             * cases incredibly slow. */
2194
0
            if (join == gs_join_round /* || (flags & nf_all_from_arc) */) {
2195
0
                code = add_pie_join_fast_cw(rpath, plp, nplp, reflected);
2196
0
            } else { /* non-round join */
2197
0
                code = line_join_points_fast_cw(pgs_lp, plp, nplp,
2198
0
                                                rpoints, pmat, join);
2199
0
                nrpoints = code;
2200
0
            }
2201
0
            if (code < 0)
2202
0
                return code;
2203
0
        }
2204
0
        if (joinsense & joinsense_under) {
2205
            /* The underjoin */
2206
0
#ifndef SLOWER_BUT_MORE_ACCURATE_STROKING
2207
0
            if ((flags & (nf_some_from_arc | nf_prev_some_from_arc)) == 0 &&
2208
0
                join != gs_join_miter) {
2209
                /* RJW: This is an approximation. We ought to draw a line
2210
                 * back to nplp->o.p, and then independently fill any exposed
2211
                 * region under the curve with a round join. Sadly, that's
2212
                 * a) really hard to do, and b) makes certain pathological
2213
                 * filling cases MUCH slower due to the greater number of
2214
                 * "cross-segment" line segments this produces. Instead,
2215
                 * we just skip the line to the middle, and join across the
2216
                 * bottom instead. This is akin to what other graphics libs
2217
                 * do (such as fitz, libart, etc). It's not perfect but in
2218
                 * most cases it's close, and results in faster to fill
2219
                 * paths.
2220
                 */
2221
                /* RJW: This goes wrong for some paths, as the 'underjoin' wind
2222
                 * will be the wrong way. See bug 694971 */
2223
0
                code = gx_path_add_line(ppath, nplp->o.p.x, nplp->o.p.y);
2224
0
                if (code < 0)
2225
0
                    return code;
2226
0
            }
2227
#else
2228
            if (wide_underjoin(plp, nplp))
2229
            {
2230
                code = gx_path_add_line(ppath, nplp->o.p.x, nplp->o.p.y);
2231
                if (code < 0)
2232
                    return code;
2233
                if ((flags & (nf_some_from_arc | nf_prev_some_from_arc)) != 0) {
2234
                    code = gx_path_add_line(ppath, nplp->o.ce.x, nplp->o.ce.y);
2235
                    if (code < 0)
2236
                        return code;
2237
                    code = gx_path_add_line(ppath, plp->e.co.x, plp->e.co.y);
2238
                    if (code < 0)
2239
                        return code;
2240
                    code = gx_path_add_line(ppath, nplp->o.p.x, nplp->o.p.y);
2241
                    if (code < 0)
2242
                        return code;
2243
                }
2244
            }
2245
#endif
2246
0
            code = gx_path_add_line(ppath, nplp->o.ce.x, nplp->o.ce.y);
2247
0
        }
2248
0
    }
2249
0
    if (code < 0)
2250
0
        return code;
2251
0
    if (npoints > 0) {
2252
0
        code = add_points(ppath, points, npoints, false);
2253
0
        if (code < 0)
2254
0
            return code;
2255
0
    }
2256
0
    if (nrpoints > 0) {
2257
0
        code = add_points(rpath, rpoints, nrpoints, false);
2258
0
        if (code < 0)
2259
0
            return code;
2260
0
    }
2261
0
    if (ensure_closed)
2262
0
        return gx_join_path_and_reverse(ppath, rpath);
2263
0
    return 0;
2264
0
}
2265
2266
/* Add a CPSI-compatible segment to the path.  This handles all the complex
2267
 * cases.
2268
 *
2269
 * This method doesn't support start/end/dash caps, but it's only used from
2270
 * postscript, so it doesn't need to.
2271
 */
2272
static int
2273
stroke_add_compat(gx_path * ppath, gx_path *rpath, bool ensure_closed,
2274
                  int first, pl_ptr plp, pl_ptr nplp,
2275
                  const gx_device_color * pdevc, gx_device * dev,
2276
                  const gs_gstate * pgs,
2277
                  const gx_stroke_params * params,
2278
                  const gs_fixed_rect * ignore_pbbox, int uniform,
2279
                  gs_line_join join, bool reflected, note_flags flags)
2280
158
{
2281
    /* Actually it adds 2 contours : one for the segment itself,
2282
       and another one for line join or for the ending cap.
2283
       Note CPSI creates negative contours. */
2284
158
    const gx_line_params *pgs_lp = gs_currentlineparams_inline(pgs);
2285
158
    gs_fixed_point points[6];
2286
158
    int npoints;
2287
158
    bool const moveto_first = true; /* Keeping this code closer to "stroke_add". */
2288
158
    int code;
2289
2290
158
    if (plp->thin) {
2291
        /* We didn't set up the endpoint parameters before, */
2292
        /* because the line was thin.  Do it now. */
2293
0
        set_thin_widths(plp);
2294
0
        adjust_stroke(dev, plp, pgs, true, first == 0 && nplp == 0, flags);
2295
0
        compute_caps(plp);
2296
0
    }
2297
    /* The segment itself : */
2298
158
    ASSIGN_POINT(&points[0], plp->o.ce);
2299
158
    ASSIGN_POINT(&points[1], plp->e.co);
2300
158
    ASSIGN_POINT(&points[2], plp->e.ce);
2301
158
    ASSIGN_POINT(&points[3], plp->o.co);
2302
158
    code = add_points(ppath, points, 4, moveto_first);
2303
158
    if (code < 0)
2304
0
        return code;
2305
158
    code = gx_path_close_subpath(ppath);
2306
158
    if (code < 0)
2307
0
        return code;
2308
158
    npoints = 0;
2309
158
    if (nplp == 0) {
2310
        /* Add a final cap. */
2311
114
        if (pgs_lp->start_cap == gs_cap_butt)
2312
0
            return 0;
2313
114
        if (pgs_lp->start_cap == gs_cap_round) {
2314
114
            ASSIGN_POINT(&points[npoints], plp->e.co);
2315
114
            ++npoints;
2316
114
            if ((code = add_points(ppath, points, npoints, moveto_first)) < 0)
2317
0
                return code;
2318
114
            return add_round_cap(ppath, &plp->e);
2319
114
        }
2320
0
        ASSIGN_POINT(&points[0], plp->e.ce);
2321
0
        ++npoints;
2322
0
        ASSIGN_POINT(&points[npoints], plp->e.co);
2323
0
        ++npoints;
2324
0
        code = cap_points(pgs_lp->start_cap, &plp->e, points + npoints);
2325
0
        if (code < 0)
2326
0
            return code;
2327
0
        npoints += code;
2328
44
    } else if (join == gs_join_round) {
2329
0
        ASSIGN_POINT(&points[npoints], plp->e.co);
2330
0
        ++npoints;
2331
0
        if ((code = add_points(ppath, points, npoints, moveto_first)) < 0)
2332
0
            return code;
2333
0
        return add_round_cap(ppath, &plp->e);
2334
44
    } else if (nplp->thin) {    /* no join */
2335
0
        npoints = 0;
2336
44
    } else {                    /* non-round join */
2337
44
        bool ccw =
2338
44
            (double)(plp->width.x) /* x1 */ * (nplp->width.y) /* y2 */ >
2339
44
            (double)(nplp->width.x) /* x2 */ * (plp->width.y) /* y1 */;
2340
2341
44
        if (ccw ^ reflected) {
2342
44
            ASSIGN_POINT(&points[0], plp->e.co);
2343
44
            ++npoints;
2344
44
            code = line_join_points(pgs_lp, plp, nplp, points + npoints,
2345
44
                                    (uniform ? (gs_matrix *) 0 : &ctm_only(pgs)),
2346
44
                                    join, reflected);
2347
44
            if (code < 0)
2348
0
                return code;
2349
44
            code--; /* Drop the last point of the non-compatible mode. */
2350
44
            npoints += code;
2351
44
        } else {
2352
0
            code = line_join_points(pgs_lp, plp, nplp, points,
2353
0
                                    (uniform ? (gs_matrix *) 0 : &ctm_only(pgs)),
2354
0
                                    join, reflected);
2355
0
            if (code < 0)
2356
0
                return code;
2357
0
            ASSIGN_POINT(&points[0], plp->e.ce); /* Replace the starting point of the non-compatible mode. */
2358
0
            npoints = code;
2359
0
        }
2360
44
    }
2361
44
    code = add_points(ppath, points, npoints, moveto_first);
2362
44
    if (code < 0)
2363
0
        return code;
2364
44
    code = gx_path_close_subpath(ppath);
2365
44
    return code;
2366
44
}
2367
2368
/* Add a CPSI-compatible segment to the path.  This handles all the complex
2369
 * cases.
2370
 *
2371
 * This method doesn't support start/end/dash caps, but it's only used from
2372
 * postscript, so it doesn't need to.
2373
 */
2374
static int
2375
stroke_add_initial_cap_compat(gx_path * ppath, pl_ptr plp, bool adlust_longitude,
2376
           const gx_device_color * pdevc, gx_device * dev,
2377
           const gs_gstate * pgs)
2378
114
{
2379
114
    const gx_line_params *pgs_lp = gs_currentlineparams_inline(pgs);
2380
114
    gs_fixed_point points[5];
2381
114
    int npoints = 0;
2382
114
    int code;
2383
2384
114
    if (pgs_lp->start_cap == gs_cap_butt)
2385
0
        return 0;
2386
114
    if (plp->thin) {
2387
        /* We didn't set up the endpoint parameters before, */
2388
        /* because the line was thin.  Do it now. */
2389
0
        set_thin_widths(plp);
2390
0
        adjust_stroke(dev, plp, pgs, true, adlust_longitude, 0);
2391
0
        compute_caps(plp);
2392
0
    }
2393
    /* Create an initial cap if desired. */
2394
114
    if (pgs_lp->start_cap == gs_cap_round) {
2395
114
        if ((code = gx_path_add_point(ppath, plp->o.co.x, plp->o.co.y)) < 0 ||
2396
114
            (code = add_round_cap(ppath, &plp->o)) < 0
2397
114
            )
2398
0
            return code;
2399
114
        return 0;
2400
114
    } else {
2401
0
        ASSIGN_POINT(&points[0], plp->o.co);
2402
0
        ++npoints;
2403
0
        if ((code = cap_points(pgs_lp->start_cap, &plp->o, points + npoints)) < 0)
2404
0
            return npoints;
2405
0
        npoints += code;
2406
0
        ASSIGN_POINT(&points[npoints], plp->o.ce);
2407
0
        ++npoints;
2408
0
        code = add_points(ppath, points, npoints, true);
2409
0
        if (code < 0)
2410
0
            return code;
2411
0
        return gx_path_close_subpath(ppath);
2412
0
    }
2413
114
}
2414
2415
/* Add lines with a possible initial moveto. */
2416
static int
2417
add_points(gx_path * ppath, const gs_fixed_point * points, int npoints,
2418
           bool moveto_first)
2419
1.04M
{
2420
1.04M
    int code;
2421
2422
1.04M
    if (moveto_first) {
2423
1.02M
        code = gx_path_add_point(ppath, points[0].x, points[0].y);
2424
1.02M
        if (code < 0)
2425
0
            return code;
2426
1.02M
        return gx_path_add_lines(ppath, points + 1, npoints - 1);
2427
1.02M
    } else {
2428
20.8k
        return gx_path_add_lines(ppath, points, npoints);
2429
20.8k
    }
2430
1.04M
}
2431
2432
/* ---------------- Join computation ---------------- */
2433
2434
/* Compute the points for a bevel, miter, or triangle join. */
2435
/* Treat no join the same as a bevel join. */
2436
/* If pmat != 0, we must inverse-transform the distances for */
2437
/* the miter check. */
2438
static int
2439
line_join_points(const gx_line_params * pgs_lp, pl_ptr plp, pl_ptr nplp,
2440
                 gs_fixed_point * join_points, const gs_matrix * pmat,
2441
                 gs_line_join join, bool reflected)
2442
280k
{
2443
280k
#define jp1 join_points[0]
2444
280k
#define np1 join_points[1]
2445
280k
#define np2 join_points[2]
2446
280k
#define jp2 join_points[3]
2447
280k
#define jpx join_points[4]
2448
    /*
2449
     * Set np to whichever of nplp->o.co or .ce is outside
2450
     * the current line.  We observe that the point (x2,y2)
2451
     * is counter-clockwise from (x1,y1), relative to the origin,
2452
     * iff
2453
     *  (arctan(y2/x2) - arctan(y1/x1)) mod 2*pi < pi,
2454
     * taking the signs of xi and yi into account to determine
2455
     * the quadrants of the results.  It turns out that
2456
     * even though arctan is monotonic only in the 4th/1st
2457
     * quadrants and the 2nd/3rd quadrants, case analysis on
2458
     * the signs of xi and yi demonstrates that this test
2459
     * is equivalent to the much less expensive test
2460
     *  x1 * y2 > x2 * y1
2461
     * in all cases.
2462
     *
2463
     * In the present instance, x1,y1 are plp->width,
2464
     * x2,y2 are nplp->width, and the origin is
2465
     * their common point (plp->e.p, nplp->o.p).
2466
     * ccw will be true iff nplp.o.co (nplp.o.p + width) is
2467
     * counter-clockwise from plp.e.ce (plp.e.p + width),
2468
     * in which case we want tan(a-b) rather than tan(b-a).
2469
     *
2470
     * We make the test using double arithmetic only because
2471
     * the !@#&^*% C language doesn't give us access to
2472
     * the double-width-result multiplication operation
2473
     * that almost all CPUs provide!
2474
     */
2475
280k
    bool ccw =
2476
280k
        (double)(plp->width.x) /* x1 */ * (nplp->width.y) /* y2 */ >
2477
280k
        (double)(nplp->width.x) /* x2 */ * (plp->width.y) /* y1 */;
2478
280k
    bool ccw0 = ccw;
2479
280k
    p_ptr outp, np;
2480
280k
    int   code;
2481
280k
    gs_fixed_point mpt;
2482
2483
280k
    ccw ^= reflected;
2484
2485
    /* Initialize for a bevel join. */
2486
280k
    ASSIGN_POINT(&jp1, plp->e.co);
2487
280k
    ASSIGN_POINT(&jp2, plp->e.ce);
2488
2489
    /*
2490
     * Because of stroke adjustment, it is possible that
2491
     * plp->e.p != nplp->o.p.  For that reason, we must use
2492
     * nplp->o.p as np1 or np2.
2493
     */
2494
280k
    if (!ccw) {
2495
137k
        outp = &jp2;
2496
137k
        ASSIGN_POINT(&np2, nplp->o.co);
2497
137k
        ASSIGN_POINT(&np1, nplp->o.p);
2498
137k
        np = &np2;
2499
142k
    } else {
2500
142k
        outp = &jp1;
2501
142k
        ASSIGN_POINT(&np1, nplp->o.ce);
2502
142k
        ASSIGN_POINT(&np2, nplp->o.p);
2503
142k
        np = &np1;
2504
142k
    }
2505
280k
    if_debug1('O', "[O]use %s\n", (ccw ? "co (ccw)" : "ce (cw)"));
2506
2507
    /* Handle triangular joins now. */
2508
280k
    if (join == gs_join_triangle) {
2509
0
        fixed tpx = outp->x - nplp->o.p.x + np->x;
2510
0
        fixed tpy = outp->y - nplp->o.p.y + np->y;
2511
2512
0
        ASSIGN_POINT(&jpx, jp2);
2513
0
        if (!ccw) {
2514
            /* Insert tp between np2 and jp2. */
2515
0
            jp2.x = tpx, jp2.y = tpy;
2516
0
        } else {
2517
            /* Insert tp between jp1 and np1. */
2518
0
            ASSIGN_POINT(&jp2, np2);
2519
0
            ASSIGN_POINT(&np2, np1);
2520
0
            np1.x = tpx, np1.y = tpy;
2521
0
        }
2522
0
        return 5;
2523
0
    }
2524
280k
    if (join == gs_join_miter &&
2525
280k
        (code = check_miter(pgs_lp, plp, nplp, pmat, outp, np, &mpt, ccw0)) <= 0) {
2526
180k
        if (code < 0)
2527
0
            return code;
2528
180k
        ASSIGN_POINT(outp, mpt);
2529
180k
    }
2530
280k
    return 4;
2531
280k
}
2532
2533
static int
2534
line_join_points_fast_cw(const gx_line_params * pgs_lp,
2535
                         pl_ptr plp, pl_ptr nplp,
2536
                         gs_fixed_point * rjoin_points,
2537
                         const gs_matrix * pmat,
2538
                         gs_line_join join)
2539
0
{
2540
    /* rjoin_points will be added to a path that is currently at plp->e.ce.
2541
     */
2542
2543
    /* Join will be between plp->e.ce and nplp->o.co */
2544
0
    if (join == gs_join_triangle)
2545
0
    {
2546
0
        gs_fixed_point tp;
2547
2548
0
        tp.x = plp->e.ce.x - nplp->o.p.x + nplp->o.co.x;
2549
0
        tp.y = plp->e.ce.y - nplp->o.p.y + nplp->o.co.y;
2550
0
        ASSIGN_POINT(&rjoin_points[0], tp);
2551
0
        ASSIGN_POINT(&rjoin_points[1], nplp->o.co);
2552
0
        return 2;
2553
0
    }
2554
2555
    /* Set up for a Bevel join */
2556
0
    ASSIGN_POINT(&rjoin_points[0], nplp->o.co);
2557
2558
0
    return 1;
2559
0
}
2560
2561
static int
2562
line_join_points_fast_ccw(const gx_line_params * pgs_lp,
2563
                          pl_ptr plp, pl_ptr nplp,
2564
                          gs_fixed_point * join_points,
2565
                          const gs_matrix * pmat,
2566
                          gs_line_join join)
2567
0
{
2568
    /* join_points will be added to a path that is currently at plp->e.co.
2569
     */
2570
    /* Join will be between plp->e.co and nplp->o.ce */
2571
0
    if (join == gs_join_triangle)
2572
0
    {
2573
0
        gs_fixed_point tp;
2574
2575
0
        tp.x = plp->e.co.x - nplp->o.p.x + nplp->o.ce.x;
2576
0
        tp.y = plp->e.co.y - nplp->o.p.y + nplp->o.ce.y;
2577
0
        ASSIGN_POINT(&join_points[0], tp);
2578
0
        ASSIGN_POINT(&join_points[1], nplp->o.ce);
2579
0
        return 2;
2580
0
    }
2581
2582
    /* Set up for a Bevel join */
2583
0
    ASSIGN_POINT(&join_points[0], nplp->o.ce);
2584
2585
0
    return 1;
2586
0
}
2587
/* ---------------- Cap computations ---------------- */
2588
2589
/* Compute the endpoints of the two caps of a segment. */
2590
/* Only o.p, e.p, width, and cdelta have been set. */
2591
static void
2592
compute_caps(pl_ptr plp)
2593
1.04M
{
2594
1.04M
    fixed wx2 = plp->width.x;
2595
1.04M
    fixed wy2 = plp->width.y;
2596
2597
1.04M
    plp->o.co.x = plp->o.p.x + wx2, plp->o.co.y = plp->o.p.y + wy2;
2598
1.04M
    plp->o.cdelta.x = -plp->e.cdelta.x,
2599
1.04M
        plp->o.cdelta.y = -plp->e.cdelta.y;
2600
1.04M
    plp->o.ce.x = plp->o.p.x - wx2, plp->o.ce.y = plp->o.p.y - wy2;
2601
1.04M
    plp->e.co.x = plp->e.p.x - wx2, plp->e.co.y = plp->e.p.y - wy2;
2602
1.04M
    plp->e.ce.x = plp->e.p.x + wx2, plp->e.ce.y = plp->e.p.y + wy2;
2603
#ifdef DEBUG
2604
    if (gs_debug_c('O')) {
2605
        dlprintf4("[o]Stroke o=(%f,%f) e=(%f,%f)\n",
2606
                  fixed2float(plp->o.p.x), fixed2float(plp->o.p.y),
2607
                  fixed2float(plp->e.p.x), fixed2float(plp->e.p.y));
2608
        dlprintf4("\twxy=(%f,%f) lxy=(%f,%f)\n",
2609
                  fixed2float(wx2), fixed2float(wy2),
2610
                  fixed2float(plp->e.cdelta.x),
2611
                  fixed2float(plp->e.cdelta.y));
2612
    }
2613
#endif
2614
1.04M
}
2615
2616
#define px endp->p.x
2617
#define py endp->p.y
2618
#define xo endp->co.x
2619
#define yo endp->co.y
2620
#define xe endp->ce.x
2621
#define ye endp->ce.y
2622
#define cdx endp->cdelta.x
2623
#define cdy endp->cdelta.y
2624
2625
/* Add a round cap to a path. */
2626
/* Assume the current point is the cap origin (endp->co). */
2627
static int
2628
add_round_cap(gx_path * ppath, const_ep_ptr endp)
2629
228
{
2630
228
    int code;
2631
2632
    /*
2633
     * Per the Red Book, we draw a full circle, even though a semicircle
2634
     * is sufficient for the join.
2635
     */
2636
228
    if ((code = gx_path_add_partial_arc(ppath, px + cdx, py + cdy,
2637
228
                                        xo + cdx, yo + cdy,
2638
228
                                        quarter_arc_fraction)) < 0 ||
2639
228
        (code = gx_path_add_partial_arc(ppath, xe, ye, xe + cdx, ye + cdy,
2640
228
                                        quarter_arc_fraction)) < 0 ||
2641
228
        (code = gx_path_add_partial_arc(ppath, px - cdx, py - cdy,
2642
228
                                        xe - cdx, ye - cdy,
2643
228
                                        quarter_arc_fraction)) < 0 ||
2644
228
        (code = gx_path_add_partial_arc(ppath, xo, yo, xo - cdx, yo - cdy,
2645
228
                                        quarter_arc_fraction)) < 0 ||
2646
        /* The final point must be (xe,ye). */
2647
228
        (code = gx_path_add_line(ppath, xe, ye)) < 0
2648
228
        )
2649
0
        return code;
2650
228
    return 0;
2651
228
}
2652
2653
/* Add a semicircular cap to a path. */
2654
/* Assume the current point is the cap origin (endp->co). */
2655
static int
2656
add_pie_cap(gx_path * ppath, const_ep_ptr endp)
2657
41.7k
{
2658
41.7k
    int code;
2659
2660
41.7k
    if ((code = gx_path_add_partial_arc(ppath, px + cdx, py + cdy,
2661
41.7k
                                        xo + cdx, yo + cdy,
2662
41.7k
                                        quarter_arc_fraction)) < 0 ||
2663
41.7k
        (code = gx_path_add_partial_arc(ppath, xe, ye, xe + cdx, ye + cdy,
2664
41.7k
                                        quarter_arc_fraction)) < 0 ||
2665
41.7k
        (code = gx_path_add_line(ppath, xe, ye)) < 0)
2666
0
        return code;
2667
41.7k
    return 0;
2668
41.7k
}
2669
2670
static int
2671
do_pie_join(gx_path * ppath, gs_fixed_point *centre,
2672
            gs_fixed_point *current_orig, gs_fixed_point *current_tangent,
2673
            gs_fixed_point *final, gs_fixed_point *final_tangent, bool ccw,
2674
            gs_fixed_point *width)
2675
419k
{
2676
419k
    int code;
2677
419k
    double rad_squared, dist_squared, F;
2678
419k
    gs_fixed_point current, tangent, tangmeet;
2679
2680
419k
    tangent.x = current_tangent->x;
2681
419k
    tangent.y = current_tangent->y;
2682
419k
    current.x = current_orig->x;
2683
419k
    current.y = current_orig->y;
2684
2685
    /* Is the join more than 90 degrees? */
2686
419k
    if ((double)tangent.x * (double)final_tangent->x +
2687
419k
        (double)tangent.y * (double)final_tangent->y > 0) {
2688
        /* Yes, so do a quarter turn. */
2689
5.27k
        code = gx_path_add_partial_arc(ppath,
2690
5.27k
                                       centre->x + tangent.x,
2691
5.27k
                                       centre->y + tangent.y,
2692
                                       /* Point where tangents meet */
2693
5.27k
                                       current.x + tangent.x,
2694
5.27k
                                       current.y + tangent.y,
2695
5.27k
                                       quarter_arc_fraction);
2696
5.27k
        if (code < 0)
2697
0
            return code;
2698
5.27k
        current.x = centre->x + tangent.x;
2699
5.27k
        current.y = centre->y + tangent.y;
2700
5.27k
        if (ccw) {
2701
0
            int tmp = tangent.x;
2702
0
            tangent.x = -tangent.y;
2703
0
            tangent.y = tmp;
2704
5.27k
        } else {
2705
5.27k
            int tmp = tangent.x;
2706
5.27k
            tangent.x = tangent.y;
2707
5.27k
            tangent.y = -tmp;
2708
5.27k
        }
2709
5.27k
    }
2710
2711
    /* Now we are guaranteed that the remaining arc is 90 degrees or
2712
     * less. Find where the tangents meet for this final section. */
2713
419k
    if (line_intersect(&current, &tangent,
2714
419k
                       final, final_tangent, &tangmeet) != 0) {
2715
108k
        return gx_path_add_line(ppath, final->x, final->y);
2716
108k
    }
2717
311k
    current.x -= tangmeet.x;
2718
311k
    current.y -= tangmeet.y;
2719
311k
    dist_squared = ((double)current.x) * current.x +
2720
311k
                   ((double)current.y) * current.y;
2721
311k
    rad_squared  = ((double)width->x) * width->x +
2722
311k
                   ((double)width->y) * width->y;
2723
311k
    dist_squared /= rad_squared;
2724
311k
    F = (4.0/3.0)*(1/(1+sqrt(1+dist_squared)));
2725
311k
    return gx_path_add_partial_arc(ppath, final->x, final->y,
2726
419k
                                   tangmeet.x, tangmeet.y, F);
2727
419k
}
2728
2729
/* Add a pie shaped join to a path. */
2730
/* Assume the current point is the cap origin (endp->co). */
2731
static int
2732
add_pie_join(gx_path * ppath, pl_ptr plp, pl_ptr nplp, bool reflected,
2733
             bool cap)
2734
629k
{
2735
629k
    int code;
2736
629k
    gs_fixed_point *current, *final, *tangent, *final_tangent;
2737
629k
    double l, r;
2738
629k
    bool ccw;
2739
2740
629k
    l = (double)(plp->width.x) /* x1 */ * (nplp->width.y) /* y2 */;
2741
629k
    r = (double)(nplp->width.x) /* x2 */ * (plp->width.y) /* y1 */;
2742
2743
629k
    if (l == r) {
2744
        /* Colinear. Suppress drawing a cap unless the path reverses direction. */
2745
245k
        if (cap &&
2746
245k
            ((double)(plp->width.x) * (nplp->width.x) + (double)(nplp->width.y) * (plp->width.y)) < 0)
2747
71
            return add_pie_cap(ppath, &plp->e);
2748
244k
        else
2749
244k
            return gx_path_add_line(ppath, plp->e.ce.x, plp->e.ce.y);
2750
245k
    }
2751
2752
384k
    ccw = (l > r);
2753
2754
384k
    ccw ^= reflected;
2755
2756
    /* At this point, the current point is plp->e.co */
2757
384k
    if (ccw) {
2758
181k
        current       = & plp->e.co;
2759
181k
        final         = &nplp->o.ce;
2760
181k
        tangent       = & plp->e.cdelta;
2761
181k
        final_tangent = &nplp->o.cdelta;
2762
        /* Check for no join required */
2763
181k
        if (current->x == final->x && current->y == final->y) {
2764
0
            return gx_path_add_line(ppath, plp->e.ce.x, plp->e.ce.y);
2765
0
        }
2766
203k
    } else {
2767
203k
        current       = &nplp->o.co;
2768
203k
        final         = & plp->e.ce;
2769
203k
        tangent       = &nplp->o.cdelta;
2770
203k
        final_tangent = & plp->e.cdelta;
2771
203k
        code = gx_path_add_line(ppath, plp->e.p.x, plp->e.p.y);
2772
203k
        if (code < 0)
2773
0
            return code;
2774
203k
        code = gx_path_add_line(ppath, current->x, current->y);
2775
203k
        if (code < 0)
2776
0
            return code;
2777
203k
        if (current->x == final->x && current->y == final->y)
2778
0
            return 0;
2779
203k
    }
2780
2781
384k
    if ((code = do_pie_join(ppath, &plp->e.p, current, tangent,
2782
384k
                            final, final_tangent, !reflected, &plp->width)) < 0)
2783
0
        return code;
2784
384k
    if (ccw &&
2785
384k
        ((code = gx_path_add_line(ppath, plp->e.p.x, plp->e.p.y)) < 0 ||
2786
181k
         (code = gx_path_add_line(ppath, plp->e.ce.x, plp->e.ce.y)) < 0))
2787
0
        return code;
2788
2789
384k
    return 0;
2790
384k
}
2791
2792
/* Add a pie shaped join to a path. */
2793
static int
2794
add_pie_join_fast_cw(gx_path * rpath, pl_ptr plp, pl_ptr nplp, bool reflected)
2795
0
{
2796
    /* At this point, the current point is plp->e.ce */
2797
0
    if (plp->e.ce.x == nplp->o.co.x && plp->e.ce.y == nplp->o.co.y)
2798
0
        return 0;
2799
2800
0
    return do_pie_join(rpath, &plp->e.p, &plp->e.ce, &plp->e.cdelta,
2801
0
                       &nplp->o.co, &nplp->o.cdelta, reflected, &plp->width);
2802
0
}
2803
2804
static int
2805
add_pie_join_fast_ccw(gx_path * ppath, pl_ptr plp, pl_ptr nplp, bool reflected)
2806
0
{
2807
    /* At this point, the current point is plp->e.co */
2808
    /* Check for no join required */
2809
0
    if (plp->e.co.x == nplp->o.ce.x && plp->e.co.y == nplp->o.ce.y)
2810
0
        return 0;
2811
2812
0
    return do_pie_join(ppath, &plp->e.p, &plp->e.co, &plp->e.cdelta,
2813
0
                       &nplp->o.ce, &nplp->o.cdelta, !reflected, &plp->width);
2814
0
}
2815
2816
static int
2817
join_under_pie(gx_path * ppath, pl_ptr plp, pl_ptr nplp, bool reflected)
2818
711k
{
2819
711k
    int code;
2820
711k
    gs_fixed_point dirn1, dirn2, tangmeet;
2821
711k
    double l, r;
2822
711k
    bool ccw;
2823
2824
711k
    l = (double)(plp->width.x) /* x1 */ * (nplp->width.y) /* y2 */;
2825
711k
    r = (double)(nplp->width.x) /* x2 */ * (plp->width.y) /* y1 */;
2826
2827
711k
    if (l == r)
2828
262k
        return 0;
2829
2830
449k
    ccw = (l > r);
2831
2832
449k
    ccw ^= reflected;
2833
2834
449k
    if (ccw) {
2835
217k
        dirn1.x = - plp->width.x;
2836
217k
        dirn1.y = - plp->width.y;
2837
217k
        dirn2.x = -nplp->width.x;
2838
217k
        dirn2.y = -nplp->width.y;
2839
217k
        if (line_intersect(& plp->o.co, &dirn1,
2840
217k
                           &nplp->e.ce, &dirn2, &tangmeet) != 0)
2841
200k
            return 0;
2842
17.2k
        if ((code = gx_path_close_subpath(ppath)) < 0 ||
2843
17.2k
            (code = gx_path_add_point(ppath, tangmeet.x, tangmeet.y)) < 0  ||
2844
17.2k
            (code = gx_path_add_line(ppath,plp->o.co.x,plp->o.co.y)) < 0 ||
2845
17.2k
            (code = do_pie_join(ppath, &plp->e.p, &plp->o.co, &plp->o.cdelta,
2846
17.2k
                                &nplp->e.ce, &nplp->e.cdelta, !reflected,
2847
17.2k
                                &plp->width)))
2848
0
            return code;
2849
231k
    } else {
2850
231k
        if (line_intersect(& plp->o.ce, & plp->width,
2851
231k
                           &nplp->e.co, &nplp->width, &tangmeet) != 0)
2852
213k
            return 0;
2853
18.0k
        if ((code = gx_path_close_subpath(ppath)) < 0 ||
2854
18.0k
            (code = gx_path_add_point(ppath, tangmeet.x, tangmeet.y)) < 0  ||
2855
18.0k
            (code = gx_path_add_line(ppath,nplp->e.co.x,nplp->e.co.y)) < 0 ||
2856
18.0k
            (code = do_pie_join(ppath, &plp->e.p,&nplp->e.co,&nplp->e.cdelta,
2857
18.0k
                                &plp->o.ce, &plp->o.cdelta, !reflected,
2858
18.0k
                                &plp->width)))
2859
0
            return code;
2860
18.0k
    }
2861
35.2k
    return 0;
2862
449k
}
2863
2864
/* Compute the points for a non-round cap. */
2865
/* Return the number of points. */
2866
static int
2867
cap_points(gs_line_cap type, const_ep_ptr endp, gs_fixed_point *pts /*[3]*/)
2868
1.13M
{
2869
1.13M
#define PUT_POINT(i, px, py)\
2870
2.26M
  pts[i].x = (px), pts[i].y = (py)
2871
1.13M
    switch (type) {
2872
1.11M
        case gs_cap_butt:
2873
1.11M
            PUT_POINT(0, xo, yo);
2874
1.11M
            PUT_POINT(1, xe, ye);
2875
1.11M
            return 2;
2876
13.4k
        case gs_cap_square:
2877
13.4k
            PUT_POINT(0, xo + cdx, yo + cdy);
2878
13.4k
            PUT_POINT(1, xe + cdx, ye + cdy);
2879
13.4k
            return 2;
2880
0
        case gs_cap_triangle:   /* (not supported by PostScript) */
2881
0
            PUT_POINT(0, xo, yo);
2882
0
            PUT_POINT(1, px + cdx, py + cdy);
2883
0
            PUT_POINT(2, xe, ye);
2884
0
            return 3;
2885
0
        default:                /* can't happen */
2886
0
            return_error(gs_error_unregistered);
2887
1.13M
    }
2888
1.13M
#undef PUT_POINT
2889
1.13M
}