/src/ghostpdl/base/gsicc_create.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* Copyright (C) 2001-2025 Artifex Software, Inc. |
2 | | All Rights Reserved. |
3 | | |
4 | | This software is provided AS-IS with no warranty, either express or |
5 | | implied. |
6 | | |
7 | | This software is distributed under license and may not be copied, |
8 | | modified or distributed except as expressly authorized under the terms |
9 | | of the license contained in the file LICENSE in this distribution. |
10 | | |
11 | | Refer to licensing information at http://www.artifex.com or contact |
12 | | Artifex Software, Inc., 39 Mesa Street, Suite 108A, San Francisco, |
13 | | CA 94129, USA, for further information. |
14 | | */ |
15 | | |
16 | | |
17 | | /* This is the code that is used to convert the various PDF and PS CIE |
18 | | based color spaces to ICC profiles. This enables the use of an |
19 | | external CMS that is ICC centric to be used for ALL color management. |
20 | | |
21 | | The following spaces are handled: |
22 | | |
23 | | From PDF |
24 | | |
25 | | % Input Spaces |
26 | | |
27 | | CalRGB --> ICC 1-D LUTS and Matrix |
28 | | CalGray --> ICC 1-D LUT |
29 | | LAB --> ICC MLUT with a 2x2 sized table |
30 | | |
31 | | From PS |
32 | | |
33 | | %% Input Spaces |
34 | | |
35 | | CIEBasedABC --> ICC 1-D LUTs and Matrix |
36 | | CIEBasedA --> ICC 1-D LUT |
37 | | CIEBasedDEF --> 3-D MLUT plus 1-D LUTs |
38 | | CIEBasedDEFG --> 4-D MLUT pluse 1-D LUTs |
39 | | |
40 | | %% Output Spaces |
41 | | |
42 | | Type1 CRD --> ICC will have MLUT if render table present. |
43 | | |
44 | | A few notes: |
45 | | |
46 | | Required Tags for ALL profiles include: |
47 | | |
48 | | profileDescriptionTag |
49 | | copyrightTag |
50 | | mediaWhatePointTag |
51 | | chromaticAdaptationTag (V4 - when measurement data is for other than D50) |
52 | | |
53 | | For color input profiles: |
54 | | |
55 | | Required if N-component LUT-based: |
56 | | |
57 | | AToB0Tag (NOTE ONE WAY! BtoA0Tag is optional. Not true for |
58 | | display profiles.) |
59 | | |
60 | | Required if 3 component matrix based: |
61 | | |
62 | | redMatrixColumnTag |
63 | | greenMatrixColumnTag |
64 | | blueMatrixColumnTag |
65 | | redTRCTag |
66 | | greenTRCTag |
67 | | blueTRCTag |
68 | | |
69 | | Notes: |
70 | | |
71 | | 3-component can include AToB0Tag. |
72 | | Only CIEXYZ encoding can be used with matrix/TRC models. |
73 | | If CIELAB encoding is to be used, we must use LUT-based. |
74 | | |
75 | | For Monochrome input: |
76 | | |
77 | | Required: |
78 | | grayTRCTag |
79 | | |
80 | | Optional |
81 | | AToB0Tag |
82 | | |
83 | | For Color Display Profiles: |
84 | | |
85 | | Required if N-Component LUT-Based |
86 | | |
87 | | AtoB0Tag |
88 | | BToA0Tag (Note inverse required here). |
89 | | |
90 | | Required if 3 component matrix based display profiles |
91 | | |
92 | | redMatrixColumnTag |
93 | | greenMatrixColumnTag |
94 | | blueMatrixColumnTag |
95 | | redTRCTag |
96 | | greenTRCTag |
97 | | blueTRCTag |
98 | | |
99 | | Optional |
100 | | |
101 | | AtoB0Tag |
102 | | BToA0Tag (Note inverse required here). |
103 | | |
104 | | For Monochrome Display Profiles |
105 | | |
106 | | Required |
107 | | |
108 | | grayTRCTag |
109 | | |
110 | | Optional |
111 | | |
112 | | AtoB0Tag |
113 | | BtoA0Tag |
114 | | |
115 | | Note: All profile data must be encoded as big-endian |
116 | | |
117 | | */ |
118 | | |
119 | | #include "icc34.h" /* Note this header is needed even if lcms is not |
120 | | compiled as default CMS */ |
121 | | #include "string_.h" |
122 | | #include "gsmemory.h" |
123 | | #include "gx.h" |
124 | | #include <gp.h> |
125 | | |
126 | | #include "gxgstate.h" |
127 | | #include "gstypes.h" |
128 | | #include "gscspace.h" |
129 | | #include "gscie.h" |
130 | | #include "gsicc_create.h" |
131 | | #include "gxarith.h" |
132 | | #include "gsicc_manage.h" |
133 | | #include "gsicc_cache.h" |
134 | | #include "math_.h" |
135 | | #include "gscolor2.h" |
136 | | #include "gxcie.h" |
137 | | |
138 | | static void |
139 | | add_xyzdata(unsigned char *input_ptr, icS15Fixed16Number temp_XYZ[]); |
140 | | |
141 | | #define SAVEICCPROFILE 0 |
142 | 360 | #define HEADER_SIZE 128 |
143 | 360 | #define TAG_SIZE 12 |
144 | 549 | #define XYZPT_SIZE 12 |
145 | 1.75k | #define DATATYPE_SIZE 8 |
146 | 0 | #define CURVE_SIZE 512 |
147 | 0 | #define IDENT_CURVE_SIZE 0 |
148 | 480 | #define NUMBER_COMMON_TAGS 2 |
149 | 240 | #define icMultiUnicodeText 0x6d6c7563 /* 'mluc' v4 text type */ |
150 | 0 | #define icMultiFunctionAtoBType 0x6d414220 /* 'mAB ' v4 lutAtoBtype type */ |
151 | 240 | #define D50_X 0.9642f |
152 | 240 | #define D50_Y 1.0f |
153 | 240 | #define D50_Z 0.8249f |
154 | 0 | #define DEFAULT_TABLE_NSIZE 9 |
155 | 0 | #define FORWARD_V2_TABLE_SIZE 9 |
156 | 0 | #define BACKWARD_V2_TABLE_SIZE 33 |
157 | 0 | #define DEFAULT_TABLE_GRAYSIZE 128 |
158 | 0 | #define V2_COMMON_TAGS NUMBER_COMMON_TAGS + 1 |
159 | | |
160 | | typedef unsigned short u1Fixed15Number; |
161 | | #if SAVEICCPROFILE |
162 | | unsigned int icc_debug_index = 0; |
163 | | #endif |
164 | | |
165 | | typedef struct cielab_s { |
166 | | float lstar; |
167 | | float astar; |
168 | | float bstar; |
169 | | } cielab_t; |
170 | | |
171 | | static const char desc_name[] = "Ghostscript Internal Profile"; |
172 | | static const char copy_right[] = "Copyright Artifex Software 2009-2023"; |
173 | | |
174 | | typedef struct { |
175 | | icTagSignature sig; /* The tag signature */ |
176 | | icUInt32Number offset; /* Start of tag relative to |
177 | | * start of header, Spec |
178 | | * Clause 5 */ |
179 | | icUInt32Number size; /* Size in bytes */ |
180 | | unsigned char byte_padding; |
181 | | } gsicc_tag; |
182 | | /* In generating 2x2x2 approximations as well as cases |
183 | | where we will need to squash components together we |
184 | | will go to float and then to 16 bit tables, hence the |
185 | | float pointer. Otherwise we will keep the data |
186 | | in the existing byte form that it is in the CIEDEF(G) |
187 | | tables of postscript */ |
188 | | typedef struct { |
189 | | unsigned short *data_short; |
190 | | unsigned char *data_byte; /* Used for cases where we can |
191 | | use the table as is */ |
192 | | int clut_dims[4]; |
193 | | int clut_num_input; |
194 | | int clut_num_output; |
195 | | int clut_num_entries; /* Number of entries */ |
196 | | int clut_word_width; /* Word width of table, 1 or 2 */ |
197 | | } gsicc_clut; |
198 | | |
199 | | typedef struct { |
200 | | float *a_curves; |
201 | | gsicc_clut *clut; |
202 | | float *m_curves; |
203 | | gs_matrix3 *matrix; |
204 | | float *b_curves; |
205 | | int num_in; |
206 | | int num_out; |
207 | | gs_vector3 *white_point; |
208 | | gs_vector3 *black_point; |
209 | | float *cam; |
210 | | } gsicc_lutatob; |
211 | | |
212 | | static int |
213 | | get_padding(int x) |
214 | 1.11k | { |
215 | 1.11k | return (4 -x%4)%4; |
216 | 1.11k | } |
217 | | |
218 | | /* For some weird reason I cant link to the one in gscie.c */ |
219 | | static void |
220 | | gsicc_matrix_init(register gs_matrix3 * mat) |
221 | 0 | { |
222 | 0 | mat->is_identity = |
223 | 0 | mat->cu.u == 1.0 && is_fzero2(mat->cu.v, mat->cu.w) && |
224 | 0 | mat->cv.v == 1.0 && is_fzero2(mat->cv.u, mat->cv.w) && |
225 | 0 | mat->cw.w == 1.0 && is_fzero2(mat->cw.u, mat->cw.v); |
226 | 0 | } |
227 | | |
228 | | static void |
229 | | gsicc_make_diag_matrix(gs_matrix3 *matrix, gs_vector3 * vec) |
230 | 0 | { |
231 | 0 | matrix->cu.u = vec->u; |
232 | 0 | matrix->cv.v = vec->v; |
233 | 0 | matrix->cw.w = vec->w; |
234 | 0 | matrix->cu.v = 0; |
235 | 0 | matrix->cu.w = 0; |
236 | 0 | matrix->cw.u = 0; |
237 | 0 | matrix->cw.v = 0; |
238 | 0 | matrix->cv.u = 0; |
239 | 0 | matrix->cv.w = 0; |
240 | 0 | matrix->is_identity = (vec->u == 1.0)&&(vec->v == 1.0)&&(vec->w == 1.0); |
241 | 0 | } |
242 | | |
243 | | /* This function maps a gs matrix type to an ICC CLUT. This is required due to the |
244 | | multiple matrix and 1-D LUT forms for postscript management, which the ICC does not |
245 | | support (at least the older versions). clut is allocated externally */ |
246 | | static void |
247 | | gsicc_matrix3_to_mlut(gs_matrix3 *mat, unsigned short *clut) |
248 | 0 | { |
249 | | /* Step through the grid values */ |
250 | 0 | float grid_points[8][3]={{0,0,0}, |
251 | 0 | {0,0,1}, |
252 | 0 | {0,1,0}, |
253 | 0 | {0,1,1}, |
254 | 0 | {1,0,0}, |
255 | 0 | {1,0,1}, |
256 | 0 | {1,1,0}, |
257 | 0 | {1,1,1}}; |
258 | 0 | int k; |
259 | 0 | gs_vector3 input,output; |
260 | 0 | unsigned short *curr_ptr = clut, value; |
261 | 0 | float valueflt; |
262 | |
|
263 | 0 | for (k = 0; k < 8; k++) { |
264 | 0 | input.u = grid_points[k][0]; |
265 | 0 | input.v = grid_points[k][1]; |
266 | 0 | input.w = grid_points[k][2]; |
267 | 0 | cie_mult3(&input, mat, &output); |
268 | 0 | valueflt = output.u; |
269 | 0 | if (valueflt < 0) valueflt = 0; |
270 | 0 | if (valueflt > 1) valueflt = 1; |
271 | 0 | value = (unsigned short) (valueflt*65535.0); |
272 | 0 | *curr_ptr ++= value; |
273 | 0 | valueflt = output.v; |
274 | 0 | if (valueflt < 0) valueflt = 0; |
275 | 0 | if (valueflt > 1) valueflt = 1; |
276 | 0 | value = (unsigned short) (valueflt*65535.0); |
277 | 0 | *curr_ptr ++= value; |
278 | 0 | valueflt = output.w; |
279 | 0 | if (valueflt < 0) valueflt = 0; |
280 | 0 | if (valueflt > 1) valueflt = 1; |
281 | 0 | value = (unsigned short) (valueflt*65535.0); |
282 | 0 | *curr_ptr ++= value; |
283 | 0 | } |
284 | 0 | } |
285 | | |
286 | | static void |
287 | | apply_adaption(float matrix[], float in[], float out[]) |
288 | 429 | { |
289 | 429 | out[0] = matrix[0] * in[0] + matrix[1] * in[1] + matrix[2] * in[2]; |
290 | 429 | out[1] = matrix[3] * in[0] + matrix[4] * in[1] + matrix[5] * in[2]; |
291 | 429 | out[2] = matrix[6] * in[0] + matrix[7] * in[1] + matrix[8] * in[2]; |
292 | 429 | } |
293 | | |
294 | | /* This function mashes all the elements together into a single CLUT |
295 | | for the ICC profile. This is an approach of last resort, but |
296 | | guaranteed to work. */ |
297 | | static int |
298 | | gsicc_create_clut(const gs_color_space *pcs, gsicc_clut *clut, gs_range *ranges, |
299 | | gs_vector3 *white_point, bool range_adjust, float cam[], |
300 | | gs_memory_t *memory) |
301 | 0 | { |
302 | 0 | gs_gstate *pgs; |
303 | 0 | int code; |
304 | 0 | int num_points = clut->clut_num_entries; |
305 | 0 | int table_size = clut->clut_dims[0]; /* Same resolution in each direction*/ |
306 | 0 | int num_components = clut->clut_num_input; |
307 | 0 | int j,i,index; |
308 | 0 | float *input_samples[4], *fltptr; |
309 | 0 | gs_range *curr_range; |
310 | 0 | unsigned short *ptr_short; |
311 | 0 | gs_client_color cc; |
312 | 0 | frac xyz[3]; |
313 | 0 | float xyz_float[3]; |
314 | 0 | float temp; |
315 | 0 | gs_color_space_index cs_index; |
316 | | |
317 | | /* This completes the joint cache inefficiently so that |
318 | | we can sample through it and get our table entries */ |
319 | 0 | code = gx_cie_to_xyz_alloc(&pgs, pcs, memory); |
320 | 0 | if (code < 0) |
321 | 0 | return gs_rethrow(code, "Allocation of cie to xyz transform failed"); |
322 | 0 | cs_index = gs_color_space_get_index(pcs); |
323 | | |
324 | | /* Create the sample indices across the input ranges |
325 | | for each color component. When the concretization/remap occurs |
326 | | to be fed into this icc profile, we may will need to apply a linear |
327 | | map to the input if the range is something other than 0 to 1 */ |
328 | 0 | for (i = 0; i < num_components; i++) { |
329 | 0 | input_samples[i] = (float*) gs_alloc_bytes(memory, |
330 | 0 | sizeof(float)*table_size,"gsicc_create_clut"); |
331 | 0 | if (input_samples[i] == NULL) { |
332 | 0 | for (j = 0; j < i; j++) { |
333 | 0 | gs_free_object(memory, input_samples[j], "gsicc_create_clut"); |
334 | 0 | } |
335 | 0 | return gs_throw(gs_error_VMerror, "Allocation of input_sample arrays failed"); |
336 | 0 | } |
337 | 0 | fltptr = input_samples[i]; |
338 | 0 | curr_range = &(ranges[i]); |
339 | 0 | for (j = 0; j < table_size; j++ ) { |
340 | 0 | *fltptr ++= ((float) j/ (float) (table_size-1)) * |
341 | 0 | (curr_range->rmax - curr_range->rmin) + curr_range->rmin; |
342 | 0 | } |
343 | 0 | } |
344 | | /* Go through all the entries. |
345 | | Uniformly from min range to max range */ |
346 | 0 | ptr_short = clut->data_short; |
347 | 0 | for (i = 0; i < num_points; i++) { |
348 | 0 | switch (num_components) { |
349 | 0 | case 1: |
350 | | /* Get the input vector value */ |
351 | 0 | fltptr = input_samples[0]; |
352 | 0 | index = i%table_size; |
353 | 0 | cc.paint.values[0] = fltptr[index]; |
354 | 0 | break; |
355 | 0 | case 3: |
356 | | /* The first channel varies least rapidly in the ICC table */ |
357 | 0 | fltptr = input_samples[2]; |
358 | 0 | index = i%table_size; |
359 | 0 | cc.paint.values[2] = fltptr[index]; |
360 | 0 | fltptr = input_samples[1]; |
361 | 0 | index = (unsigned int) floor((float) i/(float) table_size)%table_size; |
362 | 0 | cc.paint.values[1] = fltptr[index]; |
363 | 0 | fltptr = input_samples[0]; |
364 | 0 | index = (unsigned int) floor((float) i/(float) (table_size* |
365 | 0 | table_size))%table_size; |
366 | 0 | cc.paint.values[0] = fltptr[index]; |
367 | 0 | break; |
368 | 0 | case 4: |
369 | | /* The first channel varies least rapidly in the ICC table */ |
370 | 0 | fltptr = input_samples[3]; |
371 | 0 | index = i%table_size; |
372 | 0 | cc.paint.values[3] = fltptr[index]; |
373 | 0 | fltptr = input_samples[2]; |
374 | 0 | index = (unsigned int) floor((float) i/(float) table_size)%table_size; |
375 | 0 | cc.paint.values[2] = fltptr[index]; |
376 | 0 | fltptr = input_samples[1]; |
377 | 0 | index = (unsigned int) floor((float) i/(float) (table_size* |
378 | 0 | table_size))%table_size; |
379 | 0 | cc.paint.values[1] = fltptr[index]; |
380 | 0 | fltptr = input_samples[0]; |
381 | 0 | index = (unsigned int) floor((float) i/(float) (table_size* |
382 | 0 | table_size*table_size))%table_size; |
383 | 0 | cc.paint.values[0] = fltptr[index]; |
384 | 0 | break; |
385 | 0 | default: |
386 | 0 | return_error(gs_error_rangecheck); /* Should never happen */ |
387 | 0 | } |
388 | | /* These special concretizations functions do not go through |
389 | | the ICC mapping like the procs associated with the color space */ |
390 | 0 | switch (cs_index) { |
391 | 0 | case gs_color_space_index_CIEA: |
392 | 0 | gx_psconcretize_CIEA(&cc, pcs, xyz, xyz_float, pgs); |
393 | | /* AR forces this case to always be achromatic. We will |
394 | | do the same even though it does not match the PS |
395 | | specification */ |
396 | | /* Use the resulting Y value to scale the D50 Illumination. |
397 | | note that we scale to the whitepoint here. Matrix out |
398 | | handles mapping to CIE D50 */ |
399 | 0 | xyz_float[0] = white_point->u * xyz_float[1]; |
400 | 0 | xyz_float[2] = white_point->w * xyz_float[1]; |
401 | 0 | break; |
402 | 0 | case gs_color_space_index_CIEABC: |
403 | 0 | gx_psconcretize_CIEABC(&cc, pcs, xyz, xyz_float, pgs); |
404 | 0 | break; |
405 | 0 | case gs_color_space_index_CIEDEF: |
406 | 0 | gx_psconcretize_CIEDEF(&cc, pcs, xyz, xyz_float, pgs); |
407 | 0 | break; |
408 | 0 | case gs_color_space_index_CIEDEFG: |
409 | 0 | gx_psconcretize_CIEDEFG(&cc, pcs, xyz, xyz_float, pgs); |
410 | 0 | break; |
411 | 0 | default: |
412 | 0 | return gs_throw(-1, "Invalid gs_color_space_index when creating ICC profile"); |
413 | 0 | } |
414 | | /* We need to map these values to D50 illuminant so that things work |
415 | | correctly with ICC profile */ |
416 | | /* apply_adaption(cam, xyz_float, xyz_adapt); */ |
417 | | |
418 | | /* Correct for range of ICC CIEXYZ table data */ |
419 | 0 | for (j = 0; j < 3; j++) { |
420 | 0 | temp = xyz_float[j]/(1 + 32767.0/32768); |
421 | 0 | if (temp < 0) temp = 0; |
422 | 0 | if (temp > 1) temp = 1; |
423 | 0 | *ptr_short ++= (unsigned int)(temp * 65535); |
424 | 0 | } |
425 | 0 | } |
426 | 0 | gx_cie_to_xyz_free(pgs); /* Free the joint cache we created */ |
427 | 0 | for (i = 0; i < num_components; i++) { |
428 | 0 | gs_free_object(memory, input_samples[i], "gsicc_create_clut"); |
429 | 0 | } |
430 | 0 | return 0; |
431 | 0 | } |
432 | | |
433 | | /* This function maps a gs vector type to an ICC CLUT. |
434 | | This is used in the CIEA type. clut is allocated |
435 | | externally. We may need to replace this with a range value. |
436 | | For now we are mapping to an output between 0 and the vector */ |
437 | | static void |
438 | | gsicc_vec_to_mlut(gs_vector3 *vec, unsigned short *clut) |
439 | 0 | { |
440 | 0 | unsigned short *curr_ptr = clut; |
441 | 0 | int temp; |
442 | |
|
443 | 0 | *curr_ptr ++= 0; |
444 | 0 | *curr_ptr ++= 0; |
445 | 0 | *curr_ptr ++= 0; |
446 | 0 | temp = (int)(vec->u * 65535); |
447 | 0 | if (temp > 65535) temp = 65535; |
448 | 0 | if (temp < 0) temp = 0; |
449 | 0 | *curr_ptr ++= temp; |
450 | 0 | temp = (int)(vec->v * 65535); |
451 | 0 | if (temp > 65535) temp = 65535; |
452 | 0 | if (temp < 0) temp = 0; |
453 | 0 | *curr_ptr ++= temp; |
454 | 0 | temp = (int)(vec->w * 65535); |
455 | 0 | if (temp > 65535) temp = 65535; |
456 | 0 | if (temp < 0) temp = 0; |
457 | 0 | *curr_ptr ++= temp; |
458 | 0 | } |
459 | | |
460 | | #if SAVEICCPROFILE |
461 | | /* Debug dump of internally created ICC profile for testing */ |
462 | | static void |
463 | | save_profile(const gs_memory_t *mem, unsigned char *buffer, char filename[], int buffer_size) |
464 | | { |
465 | | char full_file_name[50]; |
466 | | gp_file *fid; |
467 | | |
468 | | gs_snprintf(full_file_name,sizeof(full_file_name),"%d)Profile_%s.icc",icc_debug_index,filename); |
469 | | fid = gp_fopen(mem, full_file_name,"wb"); |
470 | | gp_fwrite(buffer,sizeof(unsigned char),buffer_size,fid); |
471 | | gp_fclose(fid); |
472 | | icc_debug_index++; |
473 | | } |
474 | | #endif |
475 | | |
476 | | static void |
477 | | write_bigendian_4bytes(unsigned char *curr_ptr,ulong input) |
478 | 8.71k | { |
479 | 8.71k | *curr_ptr++ = (0xff & (input >> 24)); |
480 | 8.71k | *curr_ptr++ = (0xff & (input >> 16)); |
481 | 8.71k | *curr_ptr++ = (0xff & (input >> 8)); |
482 | 8.71k | *curr_ptr++ = (0xff & input); |
483 | 8.71k | } |
484 | | |
485 | | static void |
486 | | write_bigendian_2bytes(unsigned char *curr_ptr,ushort input) |
487 | 806 | { |
488 | 806 | *curr_ptr++ = (0xff & (input >> 8)); |
489 | 806 | *curr_ptr++ = (0xff & input); |
490 | 806 | } |
491 | | |
492 | | static void |
493 | | setdatetime(icDateTimeNumber *datetime) |
494 | 120 | { |
495 | 120 | datetime->day = 0; |
496 | 120 | datetime->hours = 0; |
497 | 120 | datetime->minutes = 0; |
498 | 120 | datetime->month = 0; |
499 | 120 | datetime->seconds = 0; |
500 | 120 | datetime->year = 0; |
501 | 120 | } |
502 | | |
503 | | static icS15Fixed16Number |
504 | | double2XYZtype(float number_in) |
505 | 2.00k | { |
506 | 2.00k | short s; |
507 | 2.00k | unsigned short m; |
508 | | |
509 | 2.00k | if (number_in < 0) { |
510 | 249 | number_in = 0; |
511 | | #ifdef DEBUG |
512 | | gs_warn("Negative CIEXYZ in created ICC Profile"); |
513 | | #endif |
514 | 249 | } |
515 | | |
516 | 2.00k | s = (short) number_in; |
517 | 2.00k | m = (unsigned short) ((number_in - s) * 65536.0); |
518 | 2.00k | return (icS15Fixed16Number) ((s << 16) | m); |
519 | 2.00k | } |
520 | | |
521 | | static icS15Fixed16Number |
522 | | double2icS15Fixed16Number(float number_in) |
523 | 0 | { |
524 | 0 | short s; |
525 | 0 | unsigned short m; |
526 | 0 | icS15Fixed16Number temp; |
527 | 0 | float number; |
528 | |
|
529 | 0 | if (number_in < 0) { |
530 | 0 | number = -number_in; |
531 | 0 | s = (short) number; |
532 | 0 | m = (unsigned short) ((number - s) * 65536.0); |
533 | 0 | temp = (icS15Fixed16Number) ((s << 16) | m); |
534 | 0 | temp = -temp; |
535 | 0 | return temp; |
536 | 0 | } else { |
537 | 0 | s = (short) number_in; |
538 | 0 | m = (unsigned short) ((number_in - s) * 65536.0); |
539 | 0 | return (icS15Fixed16Number) ((s << 16) | m); |
540 | 0 | } |
541 | 0 | } |
542 | | |
543 | | static unsigned short |
544 | | float2u8Fixed8(float number_in) |
545 | 326 | { |
546 | 326 | return (unsigned short) (number_in * 256); |
547 | 326 | } |
548 | | |
549 | | static |
550 | | void init_common_tags(gsicc_tag tag_list[],int num_tags, int *last_tag) |
551 | 120 | { |
552 | | /* profileDescriptionTag |
553 | | copyrightTag */ |
554 | | |
555 | 120 | int curr_tag, temp_size; |
556 | | |
557 | 120 | if (*last_tag < 0) |
558 | 120 | curr_tag = 0; |
559 | 0 | else |
560 | 0 | curr_tag = (*last_tag)+1; |
561 | | |
562 | 120 | tag_list[curr_tag].offset = HEADER_SIZE+num_tags*TAG_SIZE + 4; |
563 | 120 | tag_list[curr_tag].sig = icSigProfileDescriptionTag; |
564 | | /* temp_size = DATATYPE_SIZE + 4 + strlen(desc_name) + 1 + 4 + 4 + 3 + 67; */ |
565 | 120 | temp_size = 2*strlen(desc_name) + 28; |
566 | | /* +1 for NULL + 4 + 4 for unicode + 3 + 67 script code */ |
567 | 120 | tag_list[curr_tag].byte_padding = get_padding(temp_size); |
568 | 120 | tag_list[curr_tag].size = temp_size + tag_list[curr_tag].byte_padding; |
569 | | |
570 | 120 | curr_tag++; |
571 | | |
572 | 120 | tag_list[curr_tag].offset = tag_list[curr_tag-1].offset + |
573 | 120 | tag_list[curr_tag-1].size; |
574 | 120 | tag_list[curr_tag].sig = icSigCopyrightTag; |
575 | | /* temp_size = DATATYPE_SIZE + strlen(copy_right) + 1; */ |
576 | 120 | temp_size = 2*strlen(copy_right) + 28; |
577 | 120 | tag_list[curr_tag].byte_padding = get_padding(temp_size); |
578 | 120 | tag_list[curr_tag].size = temp_size + tag_list[curr_tag].byte_padding; |
579 | 120 | *last_tag = curr_tag; |
580 | 120 | } |
581 | | |
582 | | /* Code to write out v4 text type which is a table of unicode text |
583 | | for different regions */ |
584 | | static void |
585 | | add_v4_text_tag(unsigned char *buffer,const char text[], gsicc_tag tag_list[], |
586 | | int curr_tag) |
587 | 240 | { |
588 | 240 | unsigned char *curr_ptr; |
589 | 240 | int k; |
590 | | |
591 | 240 | curr_ptr = buffer; |
592 | 240 | write_bigendian_4bytes(curr_ptr,icMultiUnicodeText); |
593 | 240 | curr_ptr += 4; |
594 | 240 | memset(curr_ptr,0,4); |
595 | 240 | curr_ptr += 4; |
596 | 240 | write_bigendian_4bytes(curr_ptr,1); /* Number of names */ |
597 | 240 | curr_ptr += 4; |
598 | 240 | write_bigendian_4bytes(curr_ptr,12); /* Record size */ |
599 | 240 | curr_ptr += 4; |
600 | 240 | write_bigendian_2bytes(curr_ptr,0x656e); /* ISO 639-1, en */ |
601 | 240 | curr_ptr += 2; |
602 | 240 | write_bigendian_2bytes(curr_ptr,0x5553); /* ISO 3166, US */ |
603 | 240 | curr_ptr += 2; |
604 | 240 | write_bigendian_4bytes(curr_ptr,2*strlen(text)); /* String length */ |
605 | 240 | curr_ptr += 4; |
606 | 240 | write_bigendian_4bytes(curr_ptr,28); /* Offset to string */ |
607 | 240 | curr_ptr += 4; |
608 | | /* String written as UTF-16BE. No NULL */ |
609 | 7.92k | for (k = 0; k < strlen(text); k++) { |
610 | 7.68k | *curr_ptr ++= 0; |
611 | 7.68k | *curr_ptr ++= text[k]; |
612 | 7.68k | } |
613 | 240 | memset(curr_ptr,0,tag_list[curr_tag].byte_padding); /* padding */ |
614 | 240 | } |
615 | | |
616 | | static void |
617 | | add_desc_tag(unsigned char *buffer, const char text[], gsicc_tag tag_list[], |
618 | | int curr_tag) |
619 | 0 | { |
620 | 0 | unsigned char *curr_ptr; |
621 | 0 | int len = strlen(text) + 1; |
622 | 0 | int k; |
623 | |
|
624 | 0 | curr_ptr = buffer; |
625 | 0 | write_bigendian_4bytes(curr_ptr, icSigTextDescriptionType); |
626 | 0 | curr_ptr += 4; |
627 | 0 | memset(curr_ptr, 0, 4); |
628 | 0 | curr_ptr += 4; |
629 | 0 | write_bigendian_4bytes(curr_ptr, len); |
630 | 0 | curr_ptr += 4; |
631 | 0 | for (k = 0; k < strlen(text); k++) { |
632 | 0 | *curr_ptr++ = text[k]; |
633 | 0 | } |
634 | 0 | memset(curr_ptr, 0, 12 + 67 + 1); |
635 | 0 | memset(curr_ptr, 0, tag_list[curr_tag].byte_padding); /* padding */ |
636 | 0 | } |
637 | | |
638 | | static void |
639 | | add_text_tag(unsigned char *buffer, const char text[], gsicc_tag tag_list[], |
640 | | int curr_tag) |
641 | 0 | { |
642 | 0 | unsigned char *curr_ptr; |
643 | 0 | int k; |
644 | |
|
645 | 0 | curr_ptr = buffer; |
646 | 0 | write_bigendian_4bytes(curr_ptr, icSigTextType); |
647 | 0 | curr_ptr += 4; |
648 | 0 | memset(curr_ptr, 0, 4); |
649 | 0 | curr_ptr += 4; |
650 | 0 | for (k = 0; k < strlen(text); k++) { |
651 | 0 | *curr_ptr++ = text[k]; |
652 | 0 | } |
653 | 0 | memset(curr_ptr, 0, 1); |
654 | 0 | memset(curr_ptr, 0, tag_list[curr_tag].byte_padding); /* padding */ |
655 | 0 | } |
656 | | |
657 | | static void |
658 | | add_common_tag_data(unsigned char *buffer,gsicc_tag tag_list[], int vers) |
659 | 120 | { |
660 | 120 | unsigned char *curr_ptr; |
661 | 120 | curr_ptr = buffer; |
662 | | |
663 | 120 | if (vers == 4) { |
664 | 120 | add_v4_text_tag(curr_ptr, desc_name, tag_list, 0); |
665 | 120 | curr_ptr += tag_list[0].size; |
666 | 120 | add_v4_text_tag(curr_ptr, copy_right, tag_list, 1); |
667 | 120 | } else { |
668 | 0 | add_desc_tag(curr_ptr, desc_name, tag_list, 0); |
669 | 0 | curr_ptr += tag_list[0].size; |
670 | 0 | add_text_tag(curr_ptr, copy_right, tag_list, 1); |
671 | 0 | } |
672 | 120 | } |
673 | | |
674 | | static |
675 | | void init_tag(gsicc_tag tag_list[], int *last_tag, icTagSignature tagsig, |
676 | | int datasize) |
677 | 875 | { |
678 | | /* This should never be called first. Common tags should be taken care of */ |
679 | | |
680 | 875 | int curr_tag = (*last_tag)+1; |
681 | | |
682 | 875 | tag_list[curr_tag].offset = tag_list[curr_tag-1].offset + |
683 | 875 | tag_list[curr_tag-1].size; |
684 | 875 | tag_list[curr_tag].sig = tagsig; |
685 | 875 | tag_list[curr_tag].byte_padding = get_padding(DATATYPE_SIZE + datasize); |
686 | 875 | tag_list[curr_tag].size = DATATYPE_SIZE + datasize + |
687 | 875 | tag_list[curr_tag].byte_padding; |
688 | 875 | *last_tag = curr_tag; |
689 | 875 | } |
690 | | |
691 | | static void |
692 | | setheader_common(icHeader *header, int vers) |
693 | 120 | { |
694 | | /* This needs to all be predefined for a simple copy. MJV todo */ |
695 | 120 | header->cmmId = 0; |
696 | 120 | if (vers == 4) |
697 | 120 | header->version = 0x04200000; |
698 | 0 | else |
699 | 0 | header->version = 0x02200000; |
700 | 120 | setdatetime(&(header->date)); |
701 | 120 | header->magic = icMagicNumber; |
702 | 120 | header->platform = icSigMacintosh; |
703 | 120 | header->flags = 0; |
704 | 120 | header->manufacturer = 0; |
705 | 120 | header->model = 0; |
706 | 120 | header->attributes[0] = 0; |
707 | 120 | header->attributes[1] = 0; |
708 | 120 | header->renderingIntent = 3; |
709 | 120 | header->illuminant.X = double2XYZtype((float) 0.9642); |
710 | 120 | header->illuminant.Y = double2XYZtype((float) 1.0); |
711 | 120 | header->illuminant.Z = double2XYZtype((float) 0.8249); |
712 | 120 | header->creator = 0; |
713 | | /* Version 4 includes a profile id, field which is an md5 sum */ |
714 | 120 | memset(header->reserved,0,44); |
715 | 120 | } |
716 | | |
717 | | static void |
718 | | copy_header(unsigned char *buffer,icHeader *header) |
719 | 120 | { |
720 | 120 | unsigned char *curr_ptr; |
721 | | |
722 | 120 | curr_ptr = buffer; |
723 | 120 | write_bigendian_4bytes(curr_ptr,header->size); |
724 | 120 | curr_ptr += 4; |
725 | 120 | memset(curr_ptr,0,4); |
726 | 120 | curr_ptr += 4; |
727 | 120 | write_bigendian_4bytes(curr_ptr,header->version); |
728 | 120 | curr_ptr += 4; |
729 | 120 | write_bigendian_4bytes(curr_ptr,header->deviceClass); |
730 | 120 | curr_ptr += 4; |
731 | 120 | write_bigendian_4bytes(curr_ptr,header->colorSpace); |
732 | 120 | curr_ptr += 4; |
733 | 120 | write_bigendian_4bytes(curr_ptr,header->pcs); |
734 | 120 | curr_ptr += 4; |
735 | | |
736 | | /* Date and time */ |
737 | 120 | memset(curr_ptr,0,12); |
738 | 120 | curr_ptr += 12; |
739 | 120 | write_bigendian_4bytes(curr_ptr,header->magic); |
740 | 120 | curr_ptr += 4; |
741 | 120 | write_bigendian_4bytes(curr_ptr,header->platform); |
742 | 120 | curr_ptr += 4; |
743 | 120 | memset(curr_ptr,0,24); |
744 | 120 | curr_ptr += 24; |
745 | 120 | write_bigendian_4bytes(curr_ptr,header->illuminant.X); |
746 | 120 | curr_ptr += 4; |
747 | 120 | write_bigendian_4bytes(curr_ptr,header->illuminant.Y); |
748 | 120 | curr_ptr += 4; |
749 | 120 | write_bigendian_4bytes(curr_ptr,header->illuminant.Z); |
750 | 120 | curr_ptr += 4; |
751 | 120 | memset(curr_ptr,0,48); |
752 | 120 | } |
753 | | |
754 | | static void |
755 | | copy_tagtable(unsigned char *buffer,gsicc_tag *tag_list, ulong num_tags) |
756 | 120 | { |
757 | 120 | unsigned int k; |
758 | 120 | unsigned char *curr_ptr; |
759 | | |
760 | 120 | curr_ptr = buffer; |
761 | 120 | write_bigendian_4bytes(curr_ptr,num_tags); |
762 | 120 | curr_ptr += 4; |
763 | 1.23k | for (k = 0; k < num_tags; k++) { |
764 | 1.11k | write_bigendian_4bytes(curr_ptr,tag_list[k].sig); |
765 | 1.11k | curr_ptr += 4; |
766 | 1.11k | write_bigendian_4bytes(curr_ptr,tag_list[k].offset); |
767 | 1.11k | curr_ptr += 4; |
768 | 1.11k | write_bigendian_4bytes(curr_ptr,tag_list[k].size); |
769 | 1.11k | curr_ptr += 4; |
770 | 1.11k | } |
771 | 120 | } |
772 | | |
773 | | static void |
774 | | get_D50(icS15Fixed16Number XYZ[]) |
775 | 120 | { |
776 | 120 | XYZ[0] = double2XYZtype(D50_X); |
777 | 120 | XYZ[1] = double2XYZtype(D50_Y); |
778 | 120 | XYZ[2] = double2XYZtype(D50_Z); |
779 | 120 | } |
780 | | |
781 | | static void |
782 | | get_XYZ(icS15Fixed16Number XYZ[], gs_vector3 *vector) |
783 | 0 | { |
784 | 0 | XYZ[0] = double2XYZtype(vector->u); |
785 | 0 | XYZ[1] = double2XYZtype(vector->v); |
786 | 0 | XYZ[2] = double2XYZtype(vector->w); |
787 | 0 | } |
788 | | |
789 | | static void |
790 | | get_XYZ_doubletr(icS15Fixed16Number XYZ[], float *vector) |
791 | 429 | { |
792 | 429 | XYZ[0] = double2XYZtype(vector[0]); |
793 | 429 | XYZ[1] = double2XYZtype(vector[1]); |
794 | 429 | XYZ[2] = double2XYZtype(vector[2]); |
795 | 429 | } |
796 | | |
797 | | static void |
798 | | scale_matrix(float *matrix_input,float scale_factor) |
799 | 0 | { |
800 | 0 | int k; |
801 | |
|
802 | 0 | for (k = 0; k < 9; k++) { |
803 | 0 | matrix_input[k] = matrix_input[k]/2.0; |
804 | 0 | } |
805 | 0 | } |
806 | | |
807 | | static void |
808 | | add_gammadata(unsigned char *input_ptr, unsigned short gamma, |
809 | | icTagTypeSignature curveType) |
810 | 326 | { |
811 | 326 | unsigned char *curr_ptr; |
812 | | |
813 | 326 | curr_ptr = input_ptr; |
814 | 326 | write_bigendian_4bytes(curr_ptr,curveType); |
815 | 326 | curr_ptr += 4; |
816 | 326 | memset(curr_ptr,0,4); |
817 | 326 | curr_ptr += 4; |
818 | | |
819 | | /* one entry for gamma */ |
820 | 326 | write_bigendian_4bytes(curr_ptr, 1); |
821 | 326 | curr_ptr += 4; |
822 | | |
823 | | /* The encode (8frac8) gamma, with padding */ |
824 | 326 | write_bigendian_2bytes(curr_ptr, gamma); |
825 | 326 | curr_ptr += 2; |
826 | | |
827 | | /* pad two bytes */ |
828 | 326 | memset(curr_ptr,0,2); |
829 | 326 | } |
830 | | |
831 | | static void |
832 | | add_xyzdata(unsigned char *input_ptr, icS15Fixed16Number temp_XYZ[]) |
833 | 549 | { |
834 | 549 | int j; |
835 | 549 | unsigned char *curr_ptr; |
836 | | |
837 | 549 | curr_ptr = input_ptr; |
838 | 549 | write_bigendian_4bytes(curr_ptr,icSigXYZType); |
839 | 549 | curr_ptr += 4; |
840 | 549 | memset(curr_ptr,0,4); |
841 | 549 | curr_ptr += 4; |
842 | 2.19k | for (j = 0; j < 3; j++) { |
843 | 1.64k | write_bigendian_4bytes(curr_ptr, temp_XYZ[j]); |
844 | 1.64k | curr_ptr += 4; |
845 | 1.64k | } |
846 | 549 | } |
847 | | |
848 | | /* If abc matrix is identity the abc and lmn curves can be mashed together */ |
849 | | static void |
850 | | merge_abc_lmn_curves(gx_cie_vector_cache *DecodeABC_caches, |
851 | | gx_cie_scalar_cache *DecodeLMN) |
852 | 0 | { |
853 | |
|
854 | 0 | } |
855 | | |
856 | | static void |
857 | | add_matrixwithbias(unsigned char *input_ptr, float *float_ptr_in, bool has_bias) |
858 | 0 | { |
859 | 0 | unsigned char *curr_ptr; |
860 | 0 | float *float_ptr = float_ptr_in; |
861 | 0 | int k; |
862 | | |
863 | | /* GS Matrix is coming in with data arranged in row ordered form */ |
864 | 0 | curr_ptr = input_ptr; |
865 | 0 | for (k = 0; k < 9; k++ ){ |
866 | 0 | write_bigendian_4bytes(curr_ptr, double2icS15Fixed16Number(*float_ptr)); |
867 | 0 | curr_ptr += 4; |
868 | 0 | float_ptr++; |
869 | 0 | } |
870 | 0 | if (has_bias){ |
871 | 0 | memset(curr_ptr,0,4*3); |
872 | 0 | } |
873 | 0 | } |
874 | | |
875 | | static void |
876 | | matrixmult(float leftmatrix[], int nlrow, int nlcol, |
877 | | float rightmatrix[], int nrrow, int nrcol, float result[]) |
878 | 480 | { |
879 | 480 | float *curr_row; |
880 | 480 | int k,l,j,ncols,nrows; |
881 | 480 | float sum; |
882 | | |
883 | 480 | nrows = nlrow; |
884 | 480 | ncols = nrcol; |
885 | 480 | if (nlcol == nrrow) { |
886 | 1.92k | for (k = 0; k < nrows; k++) { |
887 | 1.44k | curr_row = &(leftmatrix[k*nlcol]); |
888 | 4.32k | for (l = 0; l < ncols; l++) { |
889 | 2.88k | sum = 0.0; |
890 | 11.5k | for (j = 0; j < nlcol; j++) { |
891 | 8.64k | sum = sum + curr_row[j] * rightmatrix[j*nrcol+l]; |
892 | 8.64k | } |
893 | 2.88k | result[k*ncols+l] = sum; |
894 | 2.88k | } |
895 | 1.44k | } |
896 | 480 | } |
897 | 480 | } |
898 | | |
899 | | static void |
900 | | gsicc_create_copy_matrix3(float *src, float *des) |
901 | 0 | { |
902 | 0 | memcpy(des,src,9*sizeof(float)); |
903 | 0 | } |
904 | | |
905 | | static void |
906 | | gsicc_create_compute_cam( gs_vector3 *white_src, gs_vector3 *white_des, |
907 | | float *cam) |
908 | 120 | { |
909 | 120 | float cat02matrix[] = {0.7328f, 0.4296f, -0.1624f, |
910 | 120 | -0.7036f, 1.6975f, 0.0061f, |
911 | 120 | 0.003f, 0.0136f, 0.9834f}; |
912 | 120 | float cat02matrixinv[] = {1.0961f, -0.2789f, 0.1827f, |
913 | 120 | 0.4544f, 0.4735f, 0.0721f, |
914 | 120 | -0.0096f, -0.0057f, 1.0153f}; |
915 | 120 | float vonkries_diag[9]; |
916 | 120 | float temp_matrix[9]; |
917 | 120 | float lms_wp_src[3], lms_wp_des[3]; |
918 | 120 | int k; |
919 | | |
920 | 120 | matrixmult(cat02matrix,3,3,&(white_src->u),3,1,&(lms_wp_src[0])); |
921 | 120 | matrixmult(cat02matrix,3,3,&(white_des->u),3,1,&(lms_wp_des[0])); |
922 | 120 | memset(&(vonkries_diag[0]),0,sizeof(float)*9); |
923 | | |
924 | 480 | for (k = 0; k < 3; k++) { |
925 | 360 | if (lms_wp_src[k] > 0 ) { |
926 | 360 | vonkries_diag[k*3+k] = lms_wp_des[k]/lms_wp_src[k]; |
927 | 360 | } else { |
928 | 0 | vonkries_diag[k*3+k] = 1; |
929 | 0 | } |
930 | 360 | } |
931 | 120 | matrixmult(&(vonkries_diag[0]), 3, 3, &(cat02matrix[0]), 3, 3, |
932 | 120 | &(temp_matrix[0])); |
933 | 120 | matrixmult(&(cat02matrixinv[0]), 3, 3, &(temp_matrix[0]), 3, 3, &(cam[0])); |
934 | 120 | } |
935 | | |
936 | | static int |
937 | | gsicc_compute_cam(gsicc_lutatob *icc_luta2bparts, gs_memory_t *memory) |
938 | 0 | { |
939 | 0 | gs_vector3 d50; |
940 | |
|
941 | 0 | d50.u = D50_X; |
942 | 0 | d50.v = D50_Y; |
943 | 0 | d50.w = D50_Z; |
944 | | |
945 | | /* Calculate the chromatic adaptation matrix */ |
946 | 0 | icc_luta2bparts->cam = (float*) gs_alloc_bytes(memory, |
947 | 0 | 9 * sizeof(float), "gsicc_compute_cam"); |
948 | 0 | if (icc_luta2bparts->cam == NULL) { |
949 | 0 | return gs_throw(gs_error_VMerror, "Allocation of ICC cam failed"); |
950 | 0 | } |
951 | 0 | gsicc_create_compute_cam(icc_luta2bparts->white_point, &(d50), icc_luta2bparts->cam); |
952 | 0 | return 0; |
953 | 0 | } |
954 | | |
955 | | /* Compute the CAT02 transformation to get us from the Cal White |
956 | | point to the D50 white point. We could pack this in a chad tag |
957 | | and let the CMM worry about applying but it is safer if we just |
958 | | take care of it ourselves by mapping the primaries. This is what is |
959 | | also done for the table based data */ |
960 | | static float* |
961 | | gsicc_get_cat02_cam(float *curr_wp, gs_memory_t *memory) |
962 | 120 | { |
963 | 120 | gs_vector3 d50; |
964 | 120 | gs_vector3 wp; |
965 | 120 | float *cam; |
966 | | |
967 | 120 | wp.u = curr_wp[0]; |
968 | 120 | wp.v = curr_wp[1]; |
969 | 120 | wp.w = curr_wp[2]; |
970 | | |
971 | 120 | d50.u = D50_X; |
972 | 120 | d50.v = D50_Y; |
973 | 120 | d50.w = D50_Z; |
974 | | |
975 | 120 | cam = (float*)gs_alloc_bytes(memory, 9 * sizeof(float), "gsicc_get_cat02_cam"); |
976 | 120 | if (cam == NULL) { |
977 | 0 | gs_throw(gs_error_VMerror, "Allocation of cat02 matrix failed"); |
978 | 0 | return NULL; |
979 | 0 | } |
980 | 120 | gsicc_create_compute_cam(&wp, &(d50), cam); |
981 | | |
982 | 120 | return cam; |
983 | 120 | } |
984 | | |
985 | | static void |
986 | | add_ident_curves(unsigned char *input_ptr,int number_of_curves) |
987 | 0 | { |
988 | 0 | unsigned char *curr_ptr; |
989 | 0 | int k; |
990 | |
|
991 | 0 | curr_ptr = input_ptr; |
992 | 0 | for (k = 0; k < number_of_curves; k++) { |
993 | | /* Signature */ |
994 | 0 | write_bigendian_4bytes(curr_ptr,icSigCurveType); |
995 | 0 | curr_ptr += 4; |
996 | | /* Reserved */ |
997 | 0 | memset(curr_ptr,0,4); |
998 | 0 | curr_ptr += 4; |
999 | | /* Count */ |
1000 | 0 | write_bigendian_4bytes(curr_ptr, 0); |
1001 | 0 | curr_ptr += 4; |
1002 | 0 | } |
1003 | 0 | } |
1004 | | |
1005 | | static void |
1006 | | add_clutAtoB(unsigned char *input_ptr, gsicc_clut *clut) |
1007 | 0 | { |
1008 | 0 | unsigned char *curr_ptr = input_ptr; |
1009 | 0 | int k; |
1010 | 0 | int num_channels_in = clut->clut_num_input; |
1011 | 0 | int number_samples = clut->clut_num_entries; |
1012 | | |
1013 | | /* First write out the dimensions for each channel */ |
1014 | 0 | for (k = 0; k < num_channels_in; k++) { |
1015 | 0 | memset(curr_ptr, clut->clut_dims[k], 1); |
1016 | 0 | curr_ptr++; |
1017 | 0 | } |
1018 | | /* Set the remainder of the dimenensions */ |
1019 | 0 | memset(curr_ptr, 0, 16-num_channels_in); |
1020 | 0 | curr_ptr += (16-num_channels_in); |
1021 | | /* word size */ |
1022 | 0 | memset(curr_ptr, clut->clut_word_width, 1); |
1023 | 0 | curr_ptr++; |
1024 | | /* padding */ |
1025 | 0 | memset(curr_ptr, 0, 3); |
1026 | 0 | curr_ptr += 3; |
1027 | 0 | if (clut->data_byte != NULL) { |
1028 | | /* A byte table */ |
1029 | 0 | memcpy(curr_ptr,clut->data_byte,number_samples*3); |
1030 | 0 | } else { |
1031 | | /* A float table */ |
1032 | 0 | for ( k = 0; k < number_samples*3; k++ ) { |
1033 | 0 | write_bigendian_2bytes(curr_ptr,clut->data_short[k]); |
1034 | 0 | curr_ptr += 2; |
1035 | 0 | } |
1036 | 0 | } |
1037 | 0 | } |
1038 | | |
1039 | | static void |
1040 | | add_curve(unsigned char *input_ptr, float *curve_data, int num_samples) |
1041 | 0 | { |
1042 | 0 | unsigned char *curr_ptr; |
1043 | 0 | unsigned short value; |
1044 | 0 | int k; |
1045 | | |
1046 | | /* Signature */ |
1047 | 0 | curr_ptr = input_ptr; |
1048 | 0 | write_bigendian_4bytes(curr_ptr,icSigCurveType); |
1049 | 0 | curr_ptr += 4; |
1050 | | /* Reserved */ |
1051 | 0 | memset(curr_ptr,0,4); |
1052 | 0 | curr_ptr += 4; |
1053 | | /* Count */ |
1054 | 0 | write_bigendian_4bytes(curr_ptr, num_samples); |
1055 | 0 | curr_ptr += 4; |
1056 | | /* Now the data uInt16 Number 0 to 65535. For now assume input is 0 to 1. |
1057 | | Need to fix this. MJV */ |
1058 | 0 | for (k = 0; k < num_samples; k++) { |
1059 | 0 | if (curve_data[k] < 0) curve_data[k] = 0; |
1060 | 0 | if (curve_data[k] > 1) curve_data[k] = 1; |
1061 | 0 | value = (unsigned int) (curve_data[k]*65535.0); |
1062 | 0 | write_bigendian_2bytes(curr_ptr,value); |
1063 | 0 | curr_ptr+=2; |
1064 | 0 | } |
1065 | 0 | } |
1066 | | |
1067 | | /* See comments before add_lutAtoBtype about allowable forms, which will |
1068 | | explain much of these size calculations */ |
1069 | | static int |
1070 | | getsize_lutAtoBtype(gsicc_lutatob *lutatobparts) |
1071 | 0 | { |
1072 | 0 | int data_offset, mlut_size; |
1073 | 0 | int numout = lutatobparts->num_out; |
1074 | 0 | int numin = lutatobparts->num_in; |
1075 | 0 | int pad_bytes; |
1076 | |
|
1077 | 0 | data_offset = 32; |
1078 | | /* B curves always present */ |
1079 | 0 | if (lutatobparts->b_curves != NULL) { |
1080 | 0 | data_offset += (numout*(CURVE_SIZE*2+12)); |
1081 | 0 | } else { |
1082 | 0 | data_offset += (numout*(IDENT_CURVE_SIZE*2+12)); |
1083 | 0 | } |
1084 | | /* M curves present if Matrix is present */ |
1085 | 0 | if (lutatobparts->matrix != NULL ) { |
1086 | 0 | data_offset += (12*4); |
1087 | | /* M curves */ |
1088 | 0 | if (lutatobparts->m_curves != NULL) { |
1089 | 0 | data_offset += (numout*(CURVE_SIZE*2+12)); |
1090 | 0 | } else { |
1091 | 0 | data_offset += (numout*(IDENT_CURVE_SIZE*2+12)); |
1092 | 0 | } |
1093 | 0 | } |
1094 | | /* A curves present if clut is present */ |
1095 | 0 | if (lutatobparts->clut != NULL) { |
1096 | | /* We may need to pad the clut to make sure we are on a 4 byte boundary */ |
1097 | 0 | mlut_size = lutatobparts->clut->clut_num_entries * |
1098 | 0 | lutatobparts->clut->clut_word_width * 3; |
1099 | 0 | pad_bytes = (4 - mlut_size%4)%4; |
1100 | 0 | data_offset += (mlut_size + pad_bytes + 20); |
1101 | 0 | if (lutatobparts->a_curves != NULL) { |
1102 | 0 | data_offset += (numin*(CURVE_SIZE*2+12)); |
1103 | 0 | } else { |
1104 | 0 | data_offset += (numin*(IDENT_CURVE_SIZE*2+12)); |
1105 | 0 | } |
1106 | 0 | } |
1107 | 0 | return data_offset; |
1108 | 0 | } |
1109 | | |
1110 | | /* Note: ICC V4 fomat allows ONLY these forms |
1111 | | B |
1112 | | M - Matrix - B |
1113 | | A - CLUT - B |
1114 | | A - CLUT - M - Matrix - B |
1115 | | Other forms are created by making some of these items identity. In other words |
1116 | | the B curves must always be included. If CLUT is present, A curves must be present. |
1117 | | Also, if Matrix is present M curves must be present. A curves cannot be |
1118 | | present if CLUT is not present. */ |
1119 | | static void |
1120 | | add_lutAtoBtype(unsigned char *input_ptr, gsicc_lutatob *lutatobparts) |
1121 | 0 | { |
1122 | | /* We need to figure out all the offsets to the various objects based upon |
1123 | | which ones are actually present */ |
1124 | 0 | unsigned char *curr_ptr; |
1125 | 0 | long mlut_size = 0; /* silence compiler warning */ |
1126 | 0 | int data_offset; |
1127 | 0 | int k; |
1128 | 0 | int numout = lutatobparts->num_out; |
1129 | 0 | int numin = lutatobparts->num_in; |
1130 | 0 | int pad_bytes = 0; |
1131 | | |
1132 | | /* Signature */ |
1133 | 0 | curr_ptr = input_ptr; |
1134 | 0 | write_bigendian_4bytes(curr_ptr,icMultiFunctionAtoBType); |
1135 | 0 | curr_ptr += 4; |
1136 | | /* Reserved */ |
1137 | 0 | memset(curr_ptr,0,4); |
1138 | 0 | curr_ptr += 4; |
1139 | | /* Padded sizes */ |
1140 | 0 | *curr_ptr++ = numin; |
1141 | 0 | *curr_ptr++ = numout; |
1142 | 0 | memset(curr_ptr,0,2); |
1143 | 0 | curr_ptr += 2; |
1144 | | /* Note if data offset is zero, element is not present */ |
1145 | | /* offset to B curves (last curves) */ |
1146 | 0 | data_offset = 32; |
1147 | 0 | if (lutatobparts->b_curves == NULL) { |
1148 | | /* identity curve must be present */ |
1149 | 0 | write_bigendian_4bytes(curr_ptr,data_offset); |
1150 | 0 | data_offset += (numout*(IDENT_CURVE_SIZE*2+12)); |
1151 | 0 | } else { |
1152 | 0 | write_bigendian_4bytes(curr_ptr,data_offset); |
1153 | 0 | data_offset += (numout*(CURVE_SIZE*2+12)); |
1154 | 0 | } |
1155 | 0 | curr_ptr += 4; |
1156 | | /* offset to matrix and M curves */ |
1157 | 0 | if (lutatobparts->matrix == NULL) { |
1158 | 0 | memset(curr_ptr,0,4); /* Matrix */ |
1159 | 0 | curr_ptr += 4; |
1160 | 0 | memset(curr_ptr,0,4); /* M curves */ |
1161 | 0 | } else { |
1162 | 0 | write_bigendian_4bytes(curr_ptr,data_offset); |
1163 | 0 | data_offset += (12*4); |
1164 | 0 | curr_ptr += 4; |
1165 | | /* offset to M curves (Matrix curves -- only come with matrix) */ |
1166 | 0 | if (lutatobparts->m_curves == NULL) { |
1167 | | /* identity curve must be present */ |
1168 | 0 | write_bigendian_4bytes(curr_ptr,data_offset); |
1169 | 0 | data_offset += (numout*(IDENT_CURVE_SIZE*2+12)); |
1170 | 0 | } else { |
1171 | 0 | write_bigendian_4bytes(curr_ptr,data_offset); |
1172 | 0 | data_offset += (numout*(CURVE_SIZE*2+12)); |
1173 | 0 | } |
1174 | 0 | } |
1175 | 0 | curr_ptr += 4; |
1176 | | /* offset to CLUT and A curves */ |
1177 | 0 | if (lutatobparts->clut == NULL) { |
1178 | 0 | memset(curr_ptr,0,4); /* CLUT */ |
1179 | 0 | curr_ptr += 4; |
1180 | 0 | memset(curr_ptr,0,4); /* A curves */ |
1181 | 0 | } else { |
1182 | 0 | write_bigendian_4bytes(curr_ptr,data_offset); |
1183 | 0 | mlut_size = (long)lutatobparts->clut->clut_num_entries * |
1184 | 0 | lutatobparts->clut->clut_word_width * 3; |
1185 | 0 | pad_bytes = (4 - mlut_size%4)%4; |
1186 | 0 | data_offset += (mlut_size + pad_bytes + 20); |
1187 | 0 | curr_ptr += 4; |
1188 | | /* offset to A curves (first curves) */ |
1189 | 0 | if (lutatobparts->a_curves == NULL || lutatobparts->clut == NULL) { |
1190 | | /* identity curve must be present */ |
1191 | 0 | write_bigendian_4bytes(curr_ptr,data_offset); |
1192 | 0 | data_offset += (numin*(IDENT_CURVE_SIZE*2+12)); |
1193 | 0 | } else { |
1194 | 0 | write_bigendian_4bytes(curr_ptr,data_offset); |
1195 | 0 | data_offset += (numin*(CURVE_SIZE*2+12)); |
1196 | 0 | } |
1197 | 0 | } |
1198 | 0 | curr_ptr += 4; |
1199 | | /* Header is completed */ |
1200 | | /* Now write out the various parts (i.e. curves, matrix and clut) */ |
1201 | | /* First the B curves */ |
1202 | 0 | if (lutatobparts->b_curves != NULL) { |
1203 | 0 | for (k = 0; k < numout; k++) { |
1204 | 0 | add_curve(curr_ptr, (lutatobparts->b_curves)+k*CURVE_SIZE, CURVE_SIZE); |
1205 | 0 | curr_ptr += (12 + CURVE_SIZE*2); |
1206 | 0 | } |
1207 | 0 | } else { |
1208 | 0 | add_ident_curves(curr_ptr,numout); |
1209 | 0 | curr_ptr += numout*(12 + IDENT_CURVE_SIZE*2); |
1210 | 0 | } |
1211 | | /* Then the matrix */ |
1212 | 0 | if (lutatobparts->matrix != NULL) { |
1213 | 0 | add_matrixwithbias(curr_ptr,(float*) lutatobparts->matrix,true); |
1214 | 0 | curr_ptr += (12*4); |
1215 | | /* M curves */ |
1216 | 0 | if (lutatobparts->m_curves != NULL) { |
1217 | 0 | for (k = 0; k < numout; k++) { |
1218 | 0 | add_curve(curr_ptr, (lutatobparts->m_curves)+k*CURVE_SIZE, CURVE_SIZE); |
1219 | 0 | curr_ptr += (12 + CURVE_SIZE*2); |
1220 | 0 | } |
1221 | 0 | } else { |
1222 | 0 | add_ident_curves(curr_ptr,numout); |
1223 | 0 | curr_ptr += numout*(12 + IDENT_CURVE_SIZE*2); |
1224 | 0 | } |
1225 | 0 | } |
1226 | | /* Then the clut */ |
1227 | 0 | if (lutatobparts->clut != NULL) { |
1228 | 0 | add_clutAtoB(curr_ptr, lutatobparts->clut); |
1229 | 0 | curr_ptr += (20 + mlut_size); |
1230 | 0 | memset(curr_ptr,0,pad_bytes); /* 4 byte boundary */ |
1231 | 0 | curr_ptr += pad_bytes; |
1232 | | /* The A curves */ |
1233 | 0 | if (lutatobparts->a_curves != NULL) { |
1234 | 0 | for (k = 0; k < numin; k++) { |
1235 | 0 | add_curve(curr_ptr, (lutatobparts->a_curves)+k*CURVE_SIZE, |
1236 | 0 | CURVE_SIZE); |
1237 | 0 | curr_ptr += (12 + CURVE_SIZE*2); |
1238 | 0 | } |
1239 | 0 | } else { |
1240 | 0 | add_ident_curves(curr_ptr,numin); |
1241 | 0 | curr_ptr += numin*(12 + IDENT_CURVE_SIZE*2); |
1242 | 0 | } |
1243 | |
|
1244 | 0 | } |
1245 | 0 | } |
1246 | | |
1247 | | /* This creates an ICC profile from the PDF calGray and calRGB definitions */ |
1248 | | cmm_profile_t* |
1249 | | gsicc_create_from_cal(float *white, float *black, float *gamma, float *matrix, |
1250 | | gs_memory_t *memory, int num_colors) |
1251 | 120 | { |
1252 | 120 | icProfile iccprofile; |
1253 | 120 | icHeader *header = &(iccprofile.header); |
1254 | 120 | int profile_size,k; |
1255 | 120 | int num_tags; |
1256 | 120 | gsicc_tag *tag_list; |
1257 | 120 | unsigned short encode_gamma; |
1258 | 120 | unsigned char *curr_ptr; |
1259 | 120 | int last_tag; |
1260 | 120 | icS15Fixed16Number temp_XYZ[3]; |
1261 | 120 | int tag_location; |
1262 | 120 | icTagSignature TRC_Tags[3] = {icSigRedTRCTag, icSigGreenTRCTag, |
1263 | 120 | icSigBlueTRCTag}; |
1264 | 120 | int trc_tag_size; |
1265 | 120 | unsigned char *buffer; |
1266 | 120 | cmm_profile_t *result; |
1267 | 120 | float *cat02; |
1268 | 120 | float black_adapt[3]; |
1269 | | |
1270 | | /* Fill in the common stuff */ |
1271 | 120 | setheader_common(header, 4); |
1272 | 120 | header->pcs = icSigXYZData; |
1273 | 120 | profile_size = HEADER_SIZE; |
1274 | 120 | header->deviceClass = icSigInputClass; |
1275 | 120 | if (num_colors == 3) { |
1276 | 103 | header->colorSpace = icSigRgbData; |
1277 | 103 | num_tags = 10; /* common (2) + rXYZ,gXYZ,bXYZ,rTRC,gTRC,bTRC,bkpt,wtpt */ |
1278 | 103 | } else if (num_colors == 1) { |
1279 | 17 | header->colorSpace = icSigGrayData; |
1280 | 17 | num_tags = 5; /* common (2) + GrayTRC,bkpt,wtpt */ |
1281 | 17 | TRC_Tags[0] = icSigGrayTRCTag; |
1282 | 17 | } else { |
1283 | 0 | return NULL; |
1284 | 0 | } |
1285 | 120 | tag_list = (gsicc_tag*) gs_alloc_bytes(memory, |
1286 | 120 | sizeof(gsicc_tag)*num_tags,"gsicc_create_from_cal"); |
1287 | 120 | if (tag_list == NULL) |
1288 | 0 | return NULL; |
1289 | | /* Let us precompute the sizes of everything and all our offsets */ |
1290 | 120 | profile_size += TAG_SIZE*num_tags; |
1291 | 120 | profile_size += 4; /* number of tags.... */ |
1292 | 120 | last_tag = -1; |
1293 | 120 | init_common_tags(tag_list, num_tags, &last_tag); |
1294 | 120 | if (num_colors == 3) { |
1295 | 103 | init_tag(tag_list, &last_tag, icSigRedColorantTag, XYZPT_SIZE); |
1296 | 103 | init_tag(tag_list, &last_tag, icSigGreenColorantTag, XYZPT_SIZE); |
1297 | 103 | init_tag(tag_list, &last_tag, icSigBlueColorantTag, XYZPT_SIZE); |
1298 | 103 | } |
1299 | 120 | init_tag(tag_list, &last_tag, icSigMediaWhitePointTag, XYZPT_SIZE); |
1300 | 120 | init_tag(tag_list, &last_tag, icSigMediaBlackPointTag, XYZPT_SIZE); |
1301 | | /* 4 for count, 2 for gamma, Extra 2 bytes for 4 byte alignment requirement */ |
1302 | 120 | trc_tag_size = 8; |
1303 | 446 | for (k = 0; k < num_colors; k++) { |
1304 | 326 | init_tag(tag_list, &last_tag, TRC_Tags[k], trc_tag_size); |
1305 | 326 | } |
1306 | 1.23k | for(k = 0; k < num_tags; k++) { |
1307 | 1.11k | profile_size += tag_list[k].size; |
1308 | 1.11k | } |
1309 | | /* Now we can go ahead and fill our buffer with the data. Profile |
1310 | | buffer data is in non-gc memory */ |
1311 | 120 | buffer = gs_alloc_bytes(memory->non_gc_memory, |
1312 | 120 | profile_size, "gsicc_create_from_cal"); |
1313 | 120 | if (buffer == NULL) { |
1314 | 0 | gs_free_object(memory, tag_list, "gsicc_create_from_cal"); |
1315 | 0 | return NULL; |
1316 | 0 | } |
1317 | 120 | curr_ptr = buffer; |
1318 | | /* The header */ |
1319 | 120 | header->size = profile_size; |
1320 | 120 | copy_header(curr_ptr,header); |
1321 | 120 | curr_ptr += HEADER_SIZE; |
1322 | | /* Tag table */ |
1323 | 120 | copy_tagtable(curr_ptr,tag_list,num_tags); |
1324 | 120 | curr_ptr += TAG_SIZE*num_tags; |
1325 | 120 | curr_ptr += 4; |
1326 | | /* Now the data. Must be in same order as we created the tag table */ |
1327 | | /* First the common tags */ |
1328 | 120 | add_common_tag_data(curr_ptr, tag_list, 4); |
1329 | 360 | for (k = 0; k< NUMBER_COMMON_TAGS; k++) { |
1330 | 240 | curr_ptr += tag_list[k].size; |
1331 | 240 | } |
1332 | 120 | tag_location = NUMBER_COMMON_TAGS; |
1333 | | |
1334 | | /* Get the cat02 matrix */ |
1335 | 120 | cat02 = gsicc_get_cat02_cam(white, memory); |
1336 | 120 | if (cat02 == NULL) |
1337 | 0 | { |
1338 | 0 | gs_rethrow(gs_error_VMerror, "Creation of cat02 matrix / ICC profile failed"); |
1339 | 0 | return NULL; |
1340 | 0 | } |
1341 | | |
1342 | | /* The matrix */ |
1343 | 120 | if (num_colors == 3) { |
1344 | 412 | for ( k = 0; k < 3; k++ ) { |
1345 | 309 | float primary[3]; |
1346 | | /* Apply the cat02 matrix to the primaries */ |
1347 | 309 | apply_adaption(cat02, &(matrix[k * 3]), &(primary[0])); |
1348 | 309 | get_XYZ_doubletr(temp_XYZ, &(primary[0])); |
1349 | 309 | add_xyzdata(curr_ptr, temp_XYZ); |
1350 | 309 | curr_ptr += tag_list[tag_location].size; |
1351 | 309 | tag_location++; |
1352 | 309 | } |
1353 | 103 | } |
1354 | | /* White and black points. WP is D50 */ |
1355 | 120 | get_D50(temp_XYZ); |
1356 | 120 | add_xyzdata(curr_ptr,temp_XYZ); |
1357 | 120 | curr_ptr += tag_list[tag_location].size; |
1358 | 120 | tag_location++; |
1359 | | /* Black point. Apply cat02*/ |
1360 | 120 | apply_adaption(cat02, black, &(black_adapt[0])); |
1361 | 120 | get_XYZ_doubletr(temp_XYZ, &(black_adapt[0])); |
1362 | 120 | add_xyzdata(curr_ptr,temp_XYZ); |
1363 | 120 | curr_ptr += tag_list[tag_location].size; |
1364 | 120 | tag_location++; |
1365 | | /* Now the gamma values */ |
1366 | 446 | for (k = 0; k < num_colors; k++) { |
1367 | 326 | encode_gamma = float2u8Fixed8(gamma[k]); |
1368 | 326 | add_gammadata(curr_ptr, encode_gamma, icSigCurveType); |
1369 | 326 | curr_ptr += tag_list[tag_location].size; |
1370 | 326 | tag_location++; |
1371 | 326 | } |
1372 | 120 | result = gsicc_profile_new(NULL, memory, NULL, 0); |
1373 | 120 | if (result == NULL) |
1374 | 0 | { |
1375 | 0 | gs_throw(gs_error_VMerror, "Creation of ICC profile failed"); |
1376 | 0 | return NULL; |
1377 | 0 | } |
1378 | 120 | result->buffer = buffer; |
1379 | 120 | result->buffer_size = profile_size; |
1380 | 120 | result->num_comps = num_colors; |
1381 | 120 | if (num_colors == 3) { |
1382 | 103 | result->data_cs = gsRGB; |
1383 | 103 | result->default_match = CAL_RGB; |
1384 | 103 | } else { |
1385 | 17 | result->data_cs = gsGRAY; |
1386 | 17 | result->default_match = CAL_GRAY; |
1387 | 17 | } |
1388 | | /* Set the hash code */ |
1389 | 120 | gsicc_get_icc_buff_hash(buffer, &(result->hashcode), result->buffer_size); |
1390 | 120 | result->hash_is_valid = true; |
1391 | | /* Free up the tag list */ |
1392 | 120 | gs_free_object(memory, tag_list, "gsicc_create_from_cal"); |
1393 | 120 | gs_free_object(memory, cat02, "gsicc_create_from_cal"); |
1394 | | |
1395 | | #if SAVEICCPROFILE |
1396 | | /* Dump the buffer to a file for testing if its a valid ICC profile */ |
1397 | | if (num_colors == 3) |
1398 | | save_profile(memory,buffer,"from_calRGB",profile_size); |
1399 | | else |
1400 | | save_profile(memory,buffer,"from_calGray",profile_size); |
1401 | | #endif |
1402 | 120 | return result; |
1403 | 120 | } |
1404 | | |
1405 | | static void |
1406 | | gsicc_create_free_luta2bpart(gs_memory_t *memory, gsicc_lutatob *icc_luta2bparts) |
1407 | 0 | { |
1408 | | /* Note that white_point, black_point and matrix are not allocated but |
1409 | | are on the local stack */ |
1410 | 0 | gs_free_object(memory, icc_luta2bparts->a_curves, |
1411 | 0 | "gsicc_create_free_luta2bpart"); |
1412 | 0 | gs_free_object(memory, icc_luta2bparts->b_curves, |
1413 | 0 | "gsicc_create_free_luta2bpart"); |
1414 | 0 | gs_free_object(memory, icc_luta2bparts->m_curves, |
1415 | 0 | "gsicc_create_free_luta2bpart"); |
1416 | 0 | gs_free_object(memory, icc_luta2bparts->cam, |
1417 | 0 | "gsicc_create_free_luta2bpart"); |
1418 | 0 | if (icc_luta2bparts->clut) { |
1419 | | /* Note, data_byte is handled externally. We do not free that member here */ |
1420 | 0 | gs_free_object(memory, icc_luta2bparts->clut->data_short, |
1421 | 0 | "gsicc_create_free_luta2bpart"); |
1422 | 0 | gs_free_object(memory, icc_luta2bparts->clut, |
1423 | 0 | "gsicc_create_free_luta2bpart"); |
1424 | 0 | } |
1425 | 0 | } |
1426 | | |
1427 | | static void |
1428 | | gsicc_create_init_luta2bpart(gsicc_lutatob *icc_luta2bparts) |
1429 | 0 | { |
1430 | 0 | icc_luta2bparts->a_curves = NULL; |
1431 | 0 | icc_luta2bparts->b_curves = NULL; |
1432 | 0 | icc_luta2bparts->clut = NULL; |
1433 | 0 | icc_luta2bparts->m_curves = NULL; |
1434 | 0 | icc_luta2bparts->cam = NULL; |
1435 | 0 | icc_luta2bparts->matrix = NULL; |
1436 | 0 | icc_luta2bparts->white_point = NULL; |
1437 | 0 | icc_luta2bparts->black_point = NULL; |
1438 | 0 | icc_luta2bparts->num_in = 0; |
1439 | 0 | icc_luta2bparts->num_out = 0; |
1440 | 0 | } |
1441 | | |
1442 | | static void |
1443 | | gsicc_create_initialize_clut(gsicc_clut *clut) |
1444 | 0 | { |
1445 | 0 | int k; |
1446 | |
|
1447 | 0 | clut->clut_num_entries = clut->clut_dims[0]; |
1448 | 0 | for (k = 1; k < clut->clut_num_input; k++) { |
1449 | 0 | clut->clut_num_entries *= clut->clut_dims[k]; |
1450 | 0 | } |
1451 | 0 | clut->data_byte = NULL; |
1452 | 0 | clut->data_short = NULL; |
1453 | 0 | } |
1454 | | |
1455 | | /* A common form used for most of the PS CIE color spaces */ |
1456 | | static int |
1457 | | create_lutAtoBprofile(unsigned char **pp_buffer_in, icHeader *header, |
1458 | | gsicc_lutatob *lutatobparts, bool yonly, bool mashedLUT, |
1459 | | gs_memory_t *memory) |
1460 | 0 | { |
1461 | 0 | int num_tags = 5; /* common (2), AToB0Tag,bkpt, wtpt */ |
1462 | 0 | int k; |
1463 | 0 | gsicc_tag *tag_list; |
1464 | 0 | int profile_size, last_tag, tag_location, tag_size; |
1465 | 0 | unsigned char *buffer,*curr_ptr; |
1466 | 0 | icS15Fixed16Number temp_XYZ[3]; |
1467 | 0 | gs_vector3 d50; |
1468 | 0 | float *cam; |
1469 | 0 | gs_matrix3 temp_matrix; |
1470 | 0 | float lmn_vector[3],d50_cieA[3]; |
1471 | |
|
1472 | 0 | profile_size = HEADER_SIZE; |
1473 | 0 | tag_list = (gsicc_tag*) gs_alloc_bytes(memory, sizeof(gsicc_tag)*num_tags, |
1474 | 0 | "create_lutAtoBprofile"); |
1475 | 0 | if (tag_list == NULL) |
1476 | 0 | return gs_throw(gs_error_VMerror, "Allocation of ICC tag list failed"); |
1477 | | |
1478 | | /* Let us precompute the sizes of everything and all our offsets */ |
1479 | 0 | profile_size += TAG_SIZE*num_tags; |
1480 | 0 | profile_size += 4; /* number of tags.... */ |
1481 | 0 | last_tag = -1; |
1482 | 0 | init_common_tags(tag_list, num_tags, &last_tag); |
1483 | 0 | init_tag(tag_list, &last_tag, icSigMediaWhitePointTag, XYZPT_SIZE); |
1484 | 0 | init_tag(tag_list, &last_tag, icSigMediaBlackPointTag, XYZPT_SIZE); |
1485 | | |
1486 | | /* Get the tag size of the A2B0 with the lutAtoBType */ |
1487 | | /* Compensate for init_tag() adding DATATYPE_SIZE */ |
1488 | 0 | tag_size = getsize_lutAtoBtype(lutatobparts) - DATATYPE_SIZE; |
1489 | 0 | init_tag(tag_list, &last_tag, icSigAToB0Tag, tag_size); |
1490 | | /* Add all the tag sizes to get the new profile size */ |
1491 | 0 | for(k = 0; k < num_tags; k++) { |
1492 | 0 | profile_size += tag_list[k].size; |
1493 | 0 | } |
1494 | | /* End of tag table information */ |
1495 | | /* Now we can go ahead and fill our buffer with the data. Profile |
1496 | | is in non-gc memory */ |
1497 | 0 | buffer = gs_alloc_bytes(memory->non_gc_memory, profile_size, |
1498 | 0 | "create_lutAtoBprofile"); |
1499 | 0 | if (buffer == NULL) { |
1500 | 0 | gs_free_object(memory, tag_list, "create_lutAtoBprofile"); |
1501 | 0 | return gs_throw(gs_error_VMerror, "Allocation of ICC buffer failed"); |
1502 | 0 | } |
1503 | 0 | curr_ptr = buffer; |
1504 | | /* The header */ |
1505 | 0 | header->size = profile_size; |
1506 | 0 | copy_header(curr_ptr,header); |
1507 | 0 | curr_ptr += HEADER_SIZE; |
1508 | | /* Tag table */ |
1509 | 0 | copy_tagtable(curr_ptr, tag_list, num_tags); |
1510 | 0 | curr_ptr += TAG_SIZE * num_tags; |
1511 | 0 | curr_ptr += 4; |
1512 | | /* Now the data. Must be in same order as we created the tag table */ |
1513 | | /* First the common tags */ |
1514 | 0 | add_common_tag_data(curr_ptr, tag_list, 4); |
1515 | 0 | for (k = 0; k< NUMBER_COMMON_TAGS; k++) { |
1516 | 0 | curr_ptr += tag_list[k].size; |
1517 | 0 | } |
1518 | 0 | tag_location = NUMBER_COMMON_TAGS; |
1519 | | /* Here we take care of chromatic adapatation. Compute the |
1520 | | matrix. We will need to hit the data with the matrix and |
1521 | | store it in the profile. */ |
1522 | 0 | d50.u = D50_X; |
1523 | 0 | d50.v = D50_Y; |
1524 | 0 | d50.w = D50_Z; |
1525 | 0 | cam = (float*) gs_alloc_bytes(memory, 9 * sizeof(float), "create_lutAtoBprofile"); |
1526 | 0 | if (cam == NULL) { |
1527 | 0 | gs_free_object(memory, tag_list, "create_lutAtoBprofile"); |
1528 | 0 | gs_free_object(memory->non_gc_memory, buffer, "create_lutAtoBprofile"); |
1529 | 0 | return gs_throw(gs_error_VMerror, "Allocation of ICC cam failed"); |
1530 | 0 | } |
1531 | 0 | gsicc_create_compute_cam(lutatobparts->white_point, &(d50), cam); |
1532 | 0 | gs_free_object(memory, lutatobparts->cam, "create_lutAtoBprofile"); |
1533 | 0 | lutatobparts->cam = cam; |
1534 | 0 | get_D50(temp_XYZ); /* See Appendix D6 in spec */ |
1535 | 0 | add_xyzdata(curr_ptr, temp_XYZ); |
1536 | 0 | curr_ptr += tag_list[tag_location].size; |
1537 | 0 | tag_location++; |
1538 | 0 | get_XYZ(temp_XYZ, lutatobparts->black_point); |
1539 | 0 | add_xyzdata(curr_ptr, temp_XYZ); |
1540 | 0 | curr_ptr += tag_list[tag_location].size; |
1541 | 0 | tag_location++; |
1542 | | /* Multiply the matrix in the AtoB object by the cam so that the data |
1543 | | is in D50 */ |
1544 | 0 | if (lutatobparts->matrix == NULL) { |
1545 | 0 | gsicc_create_copy_matrix3(cam, (float*) &temp_matrix); |
1546 | 0 | lutatobparts->matrix = &temp_matrix; |
1547 | 0 | } else { |
1548 | 0 | if (yonly) { |
1549 | | /* Used for CIEBaseA case. Studies of CIEBasedA spaces |
1550 | | and AR rendering of these reveals that they only look |
1551 | | at the product sum of the MatrixA and the 2nd column of |
1552 | | the LM Matrix (if there is one). This is used as a Y |
1553 | | decode value from which to map between the black point |
1554 | | and the white point. The black point is actually ignored |
1555 | | and a black point of 0 is used. Essentialy we have |
1556 | | weighted versions of D50 in each column of the matrix |
1557 | | which ensures we stay on the achromatic axis */ |
1558 | 0 | lmn_vector[0] = lutatobparts->matrix->cv.u; |
1559 | 0 | lmn_vector[1] = lutatobparts->matrix->cv.v; |
1560 | 0 | lmn_vector[2] = lutatobparts->matrix->cv.w; |
1561 | 0 | if (mashedLUT) { |
1562 | | /* Table data already scaled */ |
1563 | 0 | d50_cieA[0] = D50_X; |
1564 | 0 | d50_cieA[1] = D50_Y; |
1565 | 0 | d50_cieA[2] = D50_Z; |
1566 | 0 | } else { |
1567 | | /* Need to do final scaling to ICC CIEXYZ range */ |
1568 | 0 | d50_cieA[0] = (float)(D50_X / (1.0 + (32767.0/32768.0))); |
1569 | 0 | d50_cieA[1] = (float)(D50_Y / (1.0 + (32767.0/32768.0))); |
1570 | 0 | d50_cieA[2] = (float)(D50_Z / (1.0 + (32767.0/32768.0))); |
1571 | 0 | } |
1572 | 0 | matrixmult(&(d50_cieA[0]), 3, 1, &(lmn_vector[0]), 1, 3, |
1573 | 0 | &(lutatobparts->matrix->cu.u)); |
1574 | 0 | } else { |
1575 | 0 | matrixmult(cam, 3, 3, &(lutatobparts->matrix->cu.u), 3, 3, |
1576 | 0 | &(temp_matrix.cu.u)); |
1577 | 0 | lutatobparts->matrix = &temp_matrix; |
1578 | 0 | } |
1579 | 0 | } |
1580 | | /* Now the AToB0Tag Data. Here this will include the M curves, the matrix |
1581 | | and the B curves. We may need to do some adustements with respect |
1582 | | to encode and decode. For now assume all is between 0 and 1. */ |
1583 | 0 | add_lutAtoBtype(curr_ptr, lutatobparts); |
1584 | 0 | *pp_buffer_in = buffer; |
1585 | 0 | gs_free_object(memory, tag_list, "create_lutAtoBprofile"); |
1586 | 0 | return 0; |
1587 | 0 | } |
1588 | | |
1589 | | /* Shared code between all the PS types whereby we mash together all the |
1590 | | components into a single CLUT. Not preferable in general but necessary |
1591 | | when the PS components do not map easily into the ICC forms */ |
1592 | | static int |
1593 | | gsicc_create_mashed_clut(gsicc_lutatob *icc_luta2bparts, |
1594 | | icHeader *header, gx_color_lookup_table *Table, |
1595 | | const gs_color_space *pcs, gs_range *ranges, |
1596 | | unsigned char **pp_buffer_in, int *profile_size_out, |
1597 | | bool range_adjust, gs_memory_t* memory) |
1598 | 0 | { |
1599 | 0 | int k; |
1600 | 0 | int code; |
1601 | 0 | gsicc_clut *clut; |
1602 | 0 | gs_matrix3 ident_matrix; |
1603 | 0 | gs_vector3 ones_vec; |
1604 | | |
1605 | | /* A table is going to be mashed form of all the transform */ |
1606 | | /* Allocate space for the clut */ |
1607 | 0 | clut = (gsicc_clut*) gs_alloc_bytes(memory, sizeof(gsicc_clut), |
1608 | 0 | "gsicc_create_mashed_clut"); |
1609 | 0 | if (clut == NULL) |
1610 | 0 | return gs_throw(gs_error_VMerror, "Allocation of ICC clut failed"); |
1611 | 0 | icc_luta2bparts->clut = clut; |
1612 | 0 | if ( icc_luta2bparts->num_in == 1 ) { |
1613 | | /* Use a larger sample for 1-D input */ |
1614 | 0 | clut->clut_dims[0] = DEFAULT_TABLE_GRAYSIZE; |
1615 | 0 | } else { |
1616 | 0 | for (k = 0; k < icc_luta2bparts->num_in; k++) { |
1617 | 0 | if (Table != NULL && Table->dims[k] > DEFAULT_TABLE_NSIZE ) { |
1618 | | /* If it has a table use the existing table size if |
1619 | | it is larger than our default size */ |
1620 | 0 | clut->clut_dims[k] = Table->dims[k]; |
1621 | 0 | } else { |
1622 | | /* If not, then use a default size */ |
1623 | 0 | clut->clut_dims[k] = DEFAULT_TABLE_NSIZE; |
1624 | 0 | } |
1625 | 0 | } |
1626 | 0 | } |
1627 | 0 | clut->clut_num_input = icc_luta2bparts->num_in; |
1628 | 0 | clut->clut_num_output = 3; /* CIEXYZ */ |
1629 | 0 | clut->clut_word_width = 2; /* 16 bit */ |
1630 | 0 | gsicc_create_initialize_clut(clut); |
1631 | | /* Allocate space for the table data */ |
1632 | 0 | clut->data_short = (unsigned short*) gs_alloc_bytes(memory, |
1633 | 0 | clut->clut_num_entries*3*sizeof(unsigned short),"gsicc_create_mashed_clut"); |
1634 | 0 | if (clut->data_short == NULL) { |
1635 | 0 | gs_free_object(memory, clut, "gsicc_create_mashed_clut"); |
1636 | 0 | return gs_throw(gs_error_VMerror, "Allocation of ICC clut short data failed"); |
1637 | 0 | } |
1638 | | /* Create the table */ |
1639 | 0 | code = gsicc_create_clut(pcs, clut, ranges, icc_luta2bparts->white_point, |
1640 | 0 | range_adjust, icc_luta2bparts->cam, memory); |
1641 | 0 | if (code < 0) { |
1642 | 0 | gs_free_object(memory, clut, "gsicc_create_mashed_clut"); |
1643 | 0 | return gs_rethrow(code, "Creation of ICC clut failed"); |
1644 | 0 | } |
1645 | | /* Initialize other parts. Also make sure acurves are reset since |
1646 | | they have been mashed into the table. */ |
1647 | 0 | gs_free_object(memory, icc_luta2bparts->a_curves, "gsicc_create_mashed_clut"); |
1648 | 0 | icc_luta2bparts->a_curves = NULL; |
1649 | 0 | icc_luta2bparts->b_curves = NULL; |
1650 | 0 | icc_luta2bparts->m_curves = NULL; |
1651 | 0 | ones_vec.u = 1; |
1652 | 0 | ones_vec.v = 1; |
1653 | 0 | ones_vec.w = 1; |
1654 | 0 | gsicc_make_diag_matrix(&ident_matrix,&ones_vec); |
1655 | 0 | icc_luta2bparts->matrix = &ident_matrix; |
1656 | | /* Now create the profile */ |
1657 | 0 | if (icc_luta2bparts->num_in == 1 ) { |
1658 | 0 | code = create_lutAtoBprofile(pp_buffer_in, header, icc_luta2bparts, true, |
1659 | 0 | true, memory); |
1660 | 0 | } else { |
1661 | 0 | code = create_lutAtoBprofile(pp_buffer_in, header, icc_luta2bparts, false, |
1662 | 0 | true, memory); |
1663 | 0 | } |
1664 | 0 | return code; |
1665 | 0 | } |
1666 | | |
1667 | | /* Shared code by ABC, DEF and DEFG compaction of ABC/LMN parts. This is used |
1668 | | when either MatrixABC is identity, LMN Decode is identity or MatrixLMN |
1669 | | is identity. This allows us to map into the ICC form and not have to mash |
1670 | | into a full CLUT */ |
1671 | | static int |
1672 | | gsicc_create_abc_merge(gsicc_lutatob *atob_parts, gs_matrix3 *matrixLMN, |
1673 | | gs_matrix3 *matrixABC, bool has_abc_procs, |
1674 | | bool has_lmn_procs, gx_cie_vector_cache *abc_caches, |
1675 | | gx_cie_scalar_cache *lmn_caches, gs_memory_t *memory) |
1676 | 0 | { |
1677 | 0 | gs_matrix3 temp_matrix; |
1678 | 0 | gs_matrix3 *matrix_ptr; |
1679 | 0 | float *curr_pos; |
1680 | | |
1681 | | /* Determine the matrix that we will be using */ |
1682 | 0 | if (!(matrixLMN->is_identity) && !(matrixABC->is_identity)){ |
1683 | | /* Use the product of the ABC and LMN matrices, since lmn_procs identity. |
1684 | | Product must be LMN_Matrix*ABC_Matrix */ |
1685 | 0 | cie_matrix_mult3(matrixLMN, matrixABC, &temp_matrix); |
1686 | 0 | cie_matrix_transpose3(&temp_matrix, atob_parts->matrix); |
1687 | 0 | } else { |
1688 | | /* Either ABC matrix or LMN matrix is identity */ |
1689 | 0 | if (matrixABC->is_identity) { |
1690 | 0 | matrix_ptr = matrixLMN; |
1691 | 0 | } else { |
1692 | 0 | matrix_ptr = matrixABC; |
1693 | 0 | } |
1694 | 0 | cie_matrix_transpose3(matrix_ptr, atob_parts->matrix); |
1695 | 0 | } |
1696 | | /* Merge the curves */ |
1697 | 0 | if (has_abc_procs && has_lmn_procs && matrixABC->is_identity) { |
1698 | | /* Merge the curves into the abc curves. no b curves */ |
1699 | 0 | merge_abc_lmn_curves(abc_caches, lmn_caches); |
1700 | 0 | has_lmn_procs = false; |
1701 | 0 | } |
1702 | | /* Figure out what curves get mapped to where. The only time we will use the b |
1703 | | curves is if matrixABC is not the identity and we have lmn procs */ |
1704 | 0 | if ( !(matrixABC->is_identity) && has_lmn_procs) { |
1705 | | /* A matrix followed by a curve */ |
1706 | 0 | atob_parts->b_curves = (float*) gs_alloc_bytes(memory, |
1707 | 0 | 3*CURVE_SIZE*sizeof(float),"gsicc_create_abc_merge"); |
1708 | 0 | if (atob_parts->b_curves == NULL) |
1709 | 0 | return gs_throw(gs_error_VMerror, "Allocation of ICC b curves failed"); |
1710 | 0 | curr_pos = atob_parts->b_curves; |
1711 | 0 | memcpy(curr_pos,&(lmn_caches[0].floats.values[0]),CURVE_SIZE*sizeof(float)); |
1712 | 0 | curr_pos += CURVE_SIZE; |
1713 | 0 | memcpy(curr_pos,&(lmn_caches[1].floats.values[0]),CURVE_SIZE*sizeof(float)); |
1714 | 0 | curr_pos += CURVE_SIZE; |
1715 | 0 | memcpy(curr_pos,&(lmn_caches[2].floats.values[0]),CURVE_SIZE*sizeof(float)); |
1716 | 0 | if (has_abc_procs) { |
1717 | | /* Also a curve before the matrix */ |
1718 | 0 | atob_parts->m_curves = (float*) gs_alloc_bytes(memory, |
1719 | 0 | 3*CURVE_SIZE*sizeof(float),"gsicc_create_abc_merge"); |
1720 | 0 | if (atob_parts->m_curves == NULL) { |
1721 | 0 | gs_free_object(memory, atob_parts->b_curves, "gsicc_create_abc_merge"); |
1722 | 0 | return gs_throw(gs_error_VMerror, "Allocation of ICC m curves failed"); |
1723 | 0 | } |
1724 | 0 | curr_pos = atob_parts->m_curves; |
1725 | 0 | memcpy(curr_pos,&(abc_caches[0].floats.values[0]),CURVE_SIZE*sizeof(float)); |
1726 | 0 | curr_pos += CURVE_SIZE; |
1727 | 0 | memcpy(curr_pos,&(abc_caches[1].floats.values[0]),CURVE_SIZE*sizeof(float)); |
1728 | 0 | curr_pos += CURVE_SIZE; |
1729 | 0 | memcpy(curr_pos,&(abc_caches[2].floats.values[0]),CURVE_SIZE*sizeof(float)); |
1730 | 0 | } |
1731 | 0 | } else { |
1732 | | /* Only one set of curves before a matrix. Need to check this to make sure |
1733 | | there is not an issue here and we have has_abc_procs true and |
1734 | | has_lmn_procs true */ |
1735 | 0 | if (has_abc_procs) { |
1736 | 0 | atob_parts->m_curves = (float*) gs_alloc_bytes(memory, |
1737 | 0 | 3*CURVE_SIZE*sizeof(float),"gsicc_create_abc_merge"); |
1738 | 0 | if (atob_parts->m_curves == NULL) |
1739 | 0 | return gs_throw(gs_error_VMerror, "Allocation of ICC m curves failed"); |
1740 | 0 | curr_pos = atob_parts->m_curves; |
1741 | 0 | memcpy(curr_pos,&(abc_caches[0].floats.values[0]),CURVE_SIZE*sizeof(float)); |
1742 | 0 | curr_pos += CURVE_SIZE; |
1743 | 0 | memcpy(curr_pos,&(abc_caches[1].floats.values[0]),CURVE_SIZE*sizeof(float)); |
1744 | 0 | curr_pos += CURVE_SIZE; |
1745 | 0 | memcpy(curr_pos,&(abc_caches[2].floats.values[0]),CURVE_SIZE*sizeof(float)); |
1746 | 0 | } |
1747 | 0 | if (has_lmn_procs) { |
1748 | 0 | atob_parts->m_curves = (float*) gs_alloc_bytes(memory, |
1749 | 0 | 3*CURVE_SIZE*sizeof(float),"gsicc_create_abc_merge"); |
1750 | 0 | if (atob_parts->m_curves == NULL) |
1751 | 0 | return gs_throw(gs_error_VMerror, "Allocation of ICC m curves failed"); |
1752 | 0 | curr_pos = atob_parts->m_curves; |
1753 | 0 | memcpy(curr_pos,&(lmn_caches[0].floats.values[0]),CURVE_SIZE*sizeof(float)); |
1754 | 0 | curr_pos += CURVE_SIZE; |
1755 | 0 | memcpy(curr_pos,&(lmn_caches[1].floats.values[0]),CURVE_SIZE*sizeof(float)); |
1756 | 0 | curr_pos += CURVE_SIZE; |
1757 | 0 | memcpy(curr_pos,&(lmn_caches[2].floats.values[0]),CURVE_SIZE*sizeof(float)); |
1758 | 0 | } |
1759 | 0 | } |
1760 | | /* Note that if the b_curves are null and we have a matrix we need to scale |
1761 | | the matrix values by 2. Otherwise an input value of 50% gray, which is |
1762 | | 32767 would get mapped to 32767 by the matrix. This will be interpreted |
1763 | | as a max XYZ value (s15.16) when it is eventually mapped to u16.16 due |
1764 | | to the mapping of X=Y by the identity table. If there are b_curves |
1765 | | these have an output that is 16 bit. */ |
1766 | 0 | if (atob_parts->b_curves == NULL) { |
1767 | 0 | scale_matrix((float*) atob_parts->matrix, 2.0); |
1768 | 0 | } |
1769 | 0 | return 0; |
1770 | 0 | } |
1771 | | |
1772 | | /* The ABC color space is modeled using the V4 lutAtoBType which has the |
1773 | | flexibility to model the various parameters. Simplified versions are used |
1774 | | it possible when certain parameters in the ABC color space definition are |
1775 | | the identity. */ |
1776 | | int |
1777 | | gsicc_create_fromabc(const gs_color_space *pcs, unsigned char **pp_buffer_in, |
1778 | | int *profile_size_out, gs_memory_t *memory, |
1779 | | gx_cie_vector_cache *abc_caches, |
1780 | | gx_cie_scalar_cache *lmn_caches, bool *islab) |
1781 | 0 | { |
1782 | 0 | icProfile iccprofile; |
1783 | 0 | icHeader *header = &(iccprofile.header); |
1784 | | #if SAVEICCPROFILE |
1785 | | int debug_catch = 1; |
1786 | | #endif |
1787 | 0 | int k; |
1788 | 0 | gs_matrix3 matrix_input_trans; |
1789 | 0 | gsicc_lutatob icc_luta2bparts; |
1790 | 0 | float *curr_pos; |
1791 | 0 | bool has_abc_procs = !((abc_caches->floats.params.is_identity && |
1792 | 0 | (abc_caches)[1].floats.params.is_identity && |
1793 | 0 | (abc_caches)[2].floats.params.is_identity)); |
1794 | 0 | bool has_lmn_procs = !((lmn_caches->floats.params.is_identity && |
1795 | 0 | (lmn_caches)[1].floats.params.is_identity && |
1796 | 0 | (lmn_caches)[2].floats.params.is_identity)); |
1797 | 0 | gs_cie_abc *pcie = pcs->params.abc; |
1798 | 0 | bool input_range_ok; |
1799 | 0 | int code; |
1800 | |
|
1801 | 0 | gsicc_create_init_luta2bpart(&icc_luta2bparts); |
1802 | 0 | gsicc_matrix_init(&(pcie->common.MatrixLMN)); /* Need this set now */ |
1803 | 0 | gsicc_matrix_init(&(pcie->MatrixABC)); /* Need this set now */ |
1804 | | /* Fill in the common stuff */ |
1805 | 0 | setheader_common(header, 4); |
1806 | | |
1807 | | /* We will use an input type class which keeps us from having to |
1808 | | create an inverse. We will keep the data a generic 3 color. |
1809 | | Since we are doing PS color management the PCS is XYZ */ |
1810 | 0 | header->colorSpace = icSigRgbData; |
1811 | 0 | header->deviceClass = icSigInputClass; |
1812 | 0 | header->pcs = icSigXYZData; |
1813 | 0 | icc_luta2bparts.num_in = 3; |
1814 | 0 | icc_luta2bparts.num_out = 3; |
1815 | 0 | icc_luta2bparts.white_point = &(pcie->common.points.WhitePoint); |
1816 | 0 | icc_luta2bparts.black_point = &(pcie->common.points.BlackPoint); |
1817 | | |
1818 | | /* Calculate the chromatic adaptation matrix */ |
1819 | 0 | code = gsicc_compute_cam(&icc_luta2bparts, memory); |
1820 | 0 | if (code < 0) { |
1821 | 0 | return gs_rethrow(code, "Create ICC from CIEABC failed"); |
1822 | 0 | } |
1823 | | |
1824 | | /* Detect if the space is CIELAB. We don't have access to pgs here though */ |
1825 | | /* *islab = cie_is_lab(pcie); This is not working yet */ |
1826 | 0 | *islab = false; |
1827 | | |
1828 | | /* Check what combination we have with respect to the various |
1829 | | LMN and ABC parameters. Depending upon the situation we |
1830 | | may be able to use a standard 3 channel input profile type. If we |
1831 | | do not have the LMN decode we can mash together the ABC and LMN |
1832 | | matrix. Also, if ABC is identity we can mash the ABC and LMN |
1833 | | decode procs. If we have an ABC matrix, LMN procs and an LMN |
1834 | | matrix we will need to create a small (2x2x2) CLUT for the ICC format. */ |
1835 | 0 | input_range_ok = check_range(&(pcie->RangeABC.ranges[0]), 3); |
1836 | 0 | if (!input_range_ok) { |
1837 | | /* We have a range problem at input */ |
1838 | 0 | code = gsicc_create_mashed_clut(&icc_luta2bparts, header, NULL, pcs, |
1839 | 0 | &(pcie->RangeABC.ranges[0]), pp_buffer_in, |
1840 | 0 | profile_size_out, true, memory); |
1841 | 0 | if (code < 0) |
1842 | 0 | return gs_rethrow(code, "Failed in ICC creation from ABC mashed. CLUT"); |
1843 | 0 | } else { |
1844 | 0 | if (pcie->MatrixABC.is_identity || !has_lmn_procs || |
1845 | 0 | pcie->common.MatrixLMN.is_identity) { |
1846 | | /* The merging of these parts into the curves/matrix/curves of the |
1847 | | lutAtoBtype portion can be used by abc, def and defg */ |
1848 | 0 | icc_luta2bparts.matrix = &matrix_input_trans; |
1849 | 0 | code = gsicc_create_abc_merge(&(icc_luta2bparts), &(pcie->common.MatrixLMN), |
1850 | 0 | &(pcie->MatrixABC), has_abc_procs, |
1851 | 0 | has_lmn_procs, pcie->caches.DecodeABC.caches, |
1852 | 0 | pcie->common.caches.DecodeLMN, memory); |
1853 | 0 | if (code < 0) |
1854 | 0 | return gs_rethrow(code, "Failed in ICC creation from ABC. Merge"); |
1855 | 0 | icc_luta2bparts.clut = NULL; |
1856 | | /* Create the profile. This is for the common generic form we will use |
1857 | | for almost everything. */ |
1858 | 0 | code = create_lutAtoBprofile(pp_buffer_in, header, &icc_luta2bparts, false, |
1859 | 0 | false, memory); |
1860 | 0 | if (code < 0) |
1861 | 0 | return gs_rethrow(code, "Failed in ICC creation from ABC. Profile"); |
1862 | 0 | } else { |
1863 | | /* This will be a bit more complex as we have an ABC matrix, LMN decode |
1864 | | and an LMN matrix. We will need to create an MLUT to handle this properly. |
1865 | | Any ABC decode will be handled as the A curves. ABC matrix will be the |
1866 | | MLUT, LMN decode will be the M curves. LMN matrix will be the Matrix |
1867 | | and b curves will be identity. */ |
1868 | 0 | if (has_abc_procs) { |
1869 | 0 | icc_luta2bparts.a_curves = (float*) gs_alloc_bytes(memory, |
1870 | 0 | 3*CURVE_SIZE*sizeof(float),"gsicc_create_fromabc"); |
1871 | 0 | if (icc_luta2bparts.a_curves == NULL) |
1872 | 0 | return gs_throw(gs_error_VMerror, "Allocation of ICC a curves failed"); |
1873 | | |
1874 | 0 | curr_pos = icc_luta2bparts.a_curves; |
1875 | 0 | memcpy(curr_pos,&(pcie->caches.DecodeABC.caches->floats.values[0]), |
1876 | 0 | CURVE_SIZE*sizeof(float)); |
1877 | 0 | curr_pos += CURVE_SIZE; |
1878 | 0 | memcpy(curr_pos,&((pcie->caches.DecodeABC.caches[1]).floats.values[0]), |
1879 | 0 | CURVE_SIZE*sizeof(float)); |
1880 | 0 | curr_pos += CURVE_SIZE; |
1881 | 0 | memcpy(curr_pos,&((pcie->caches.DecodeABC.caches[2]).floats.values[0]), |
1882 | 0 | CURVE_SIZE*sizeof(float)); |
1883 | 0 | } |
1884 | 0 | if (has_lmn_procs) { |
1885 | 0 | icc_luta2bparts.m_curves = (float*) gs_alloc_bytes(memory, |
1886 | 0 | 3*CURVE_SIZE*sizeof(float),"gsicc_create_fromabc"); |
1887 | 0 | if (icc_luta2bparts.m_curves == NULL) { |
1888 | 0 | gs_free_object(memory, icc_luta2bparts.a_curves, |
1889 | 0 | "gsicc_create_fromabc"); |
1890 | 0 | return gs_throw(gs_error_VMerror, "Allocation of ICC m curves failed"); |
1891 | 0 | } |
1892 | 0 | curr_pos = icc_luta2bparts.m_curves; |
1893 | 0 | memcpy(curr_pos,&(pcie->common.caches.DecodeLMN->floats.values[0]), |
1894 | 0 | CURVE_SIZE*sizeof(float)); |
1895 | 0 | curr_pos += CURVE_SIZE; |
1896 | 0 | memcpy(curr_pos,&((pcie->common.caches.DecodeLMN[1]).floats.values[0]), |
1897 | 0 | CURVE_SIZE*sizeof(float)); |
1898 | 0 | curr_pos += CURVE_SIZE; |
1899 | 0 | memcpy(curr_pos,&((pcie->common.caches.DecodeLMN[2]).floats.values[0]), |
1900 | 0 | CURVE_SIZE*sizeof(float)); |
1901 | 0 | } |
1902 | | /* Convert ABC matrix to 2x2x2 MLUT type */ |
1903 | 0 | icc_luta2bparts.clut = (gsicc_clut*) gs_alloc_bytes(memory, |
1904 | 0 | sizeof(gsicc_clut),"gsicc_create_fromabc"); |
1905 | 0 | if (icc_luta2bparts.clut == NULL) { |
1906 | 0 | gs_free_object(memory, icc_luta2bparts.a_curves, |
1907 | 0 | "gsicc_create_fromabc"); |
1908 | 0 | gs_free_object(memory, icc_luta2bparts.m_curves, |
1909 | 0 | "gsicc_create_fromabc"); |
1910 | 0 | return gs_throw(gs_error_VMerror, "Allocation of ICC clut failed"); |
1911 | 0 | } |
1912 | 0 | for (k = 0; k < 3; k++) { |
1913 | 0 | icc_luta2bparts.clut->clut_dims[k] = 2; |
1914 | 0 | } |
1915 | 0 | icc_luta2bparts.clut->clut_num_input = 3; |
1916 | 0 | icc_luta2bparts.clut->clut_num_output = 3; |
1917 | 0 | icc_luta2bparts.clut->clut_word_width = 2; |
1918 | 0 | gsicc_create_initialize_clut(icc_luta2bparts.clut); |
1919 | | /* 8 grid points, 3 outputs */ |
1920 | 0 | icc_luta2bparts.clut->data_short = |
1921 | 0 | (unsigned short*) gs_alloc_bytes(memory, |
1922 | 0 | 8*3*sizeof(short),"gsicc_create_fromabc"); |
1923 | 0 | if (icc_luta2bparts.clut->data_short == NULL) { |
1924 | 0 | gs_free_object(memory, icc_luta2bparts.a_curves, |
1925 | 0 | "gsicc_create_fromabc"); |
1926 | 0 | gs_free_object(memory, icc_luta2bparts.m_curves, |
1927 | 0 | "gsicc_create_fromabc"); |
1928 | 0 | gs_free_object(memory, icc_luta2bparts.clut, |
1929 | 0 | "gsicc_create_fromabc"); |
1930 | 0 | return gs_throw(gs_error_VMerror, "Allocation of ICC clut data failed"); |
1931 | 0 | } |
1932 | 0 | gsicc_matrix3_to_mlut(&(pcie->MatrixABC), icc_luta2bparts.clut->data_short); |
1933 | | /* LMN Matrix */ |
1934 | 0 | cie_matrix_transpose3(&(pcie->common.MatrixLMN), &matrix_input_trans); |
1935 | 0 | icc_luta2bparts.matrix = &matrix_input_trans; |
1936 | | /* Create the profile */ |
1937 | 0 | code = create_lutAtoBprofile(pp_buffer_in, header, &icc_luta2bparts, |
1938 | 0 | false, false, memory); |
1939 | 0 | if (code < 0) |
1940 | 0 | return code; |
1941 | 0 | } |
1942 | 0 | } |
1943 | 0 | gsicc_create_free_luta2bpart(memory, &icc_luta2bparts); |
1944 | 0 | *profile_size_out = header->size; |
1945 | | #if SAVEICCPROFILE |
1946 | | /* Dump the buffer to a file for testing if its a valid ICC profile */ |
1947 | | if(debug_catch) |
1948 | | save_profile(memory,*pp_buffer_in,"fromabc",header->size); |
1949 | | #endif |
1950 | 0 | return 0; |
1951 | 0 | } |
1952 | | |
1953 | | int |
1954 | | gsicc_create_froma(const gs_color_space *pcs, unsigned char **pp_buffer_in, |
1955 | | int *profile_size_out, gs_memory_t *memory, |
1956 | | gx_cie_vector_cache *a_cache, gx_cie_scalar_cache *lmn_caches) |
1957 | 0 | { |
1958 | 0 | icProfile iccprofile; |
1959 | 0 | icHeader *header = &(iccprofile.header); |
1960 | | #if SAVEICCPROFILE |
1961 | | int debug_catch = 1; |
1962 | | #endif |
1963 | 0 | gs_matrix3 matrix_input; |
1964 | 0 | float *curr_pos; |
1965 | 0 | bool has_a_proc = !(a_cache->floats.params.is_identity); |
1966 | 0 | bool has_lmn_procs = !(lmn_caches->floats.params.is_identity && |
1967 | 0 | (lmn_caches)[1].floats.params.is_identity && |
1968 | 0 | (lmn_caches)[2].floats.params.is_identity); |
1969 | 0 | gsicc_lutatob icc_luta2bparts; |
1970 | 0 | bool common_range_ok; |
1971 | 0 | gs_cie_a *pcie = pcs->params.a; |
1972 | 0 | bool input_range_ok; |
1973 | 0 | int code; |
1974 | |
|
1975 | 0 | gsicc_create_init_luta2bpart(&icc_luta2bparts); |
1976 | | /* Fill in the common stuff */ |
1977 | 0 | setheader_common(header, 4); |
1978 | | /* We will use an input type class which keeps us from having to |
1979 | | create an inverse. We will keep the data a generic 3 color. |
1980 | | Since we are doing PS color management the PCS is XYZ */ |
1981 | 0 | header->colorSpace = icSigGrayData; |
1982 | 0 | header->deviceClass = icSigInputClass; |
1983 | 0 | header->pcs = icSigXYZData; |
1984 | 0 | icc_luta2bparts.num_out = 3; |
1985 | 0 | icc_luta2bparts.num_in = 1; |
1986 | 0 | icc_luta2bparts.white_point = &(pcie->common.points.WhitePoint); |
1987 | 0 | icc_luta2bparts.black_point = &(pcie->common.points.BlackPoint); |
1988 | |
|
1989 | 0 | code = gsicc_compute_cam(&icc_luta2bparts, memory); |
1990 | 0 | if (code < 0) { |
1991 | 0 | return gs_rethrow(code, "Create from CIEA failed"); |
1992 | 0 | } |
1993 | | |
1994 | | /* Check the range values. If the internal ranges are outside of |
1995 | | 0 to 1 then we will need to sample as a full CLUT. The input |
1996 | | range can be different, but we we will correct for this. Finally |
1997 | | we need to worry about enforcing the achromatic constraint for the |
1998 | | CLUT if we are creating the entire thing. */ |
1999 | 0 | common_range_ok = check_range(&(pcie->common.RangeLMN.ranges[0]),3); |
2000 | 0 | if (!common_range_ok) { |
2001 | 0 | input_range_ok = check_range(&(pcie->RangeA),1); |
2002 | 0 | code = gsicc_create_mashed_clut(&icc_luta2bparts, header, NULL, pcs, |
2003 | 0 | &(pcie->RangeA), pp_buffer_in, profile_size_out, |
2004 | 0 | !input_range_ok, memory); |
2005 | 0 | if (code < 0) |
2006 | 0 | return gs_rethrow(code, "Failed to create ICC mashed CLUT"); |
2007 | 0 | } else { |
2008 | | /* We do not need to create a massive CLUT. Try to maintain |
2009 | | the objects as best we can */ |
2010 | | /* Since we are going from 1 gray input to 3 XYZ values, we will need |
2011 | | to include the MLUT for the 1 to 3 conversion applied by the matrix A. |
2012 | | Depending upon the other parameters we may have simpiler forms, but this |
2013 | | is required even when Matrix A is the identity. */ |
2014 | 0 | if (has_a_proc) { |
2015 | 0 | icc_luta2bparts.a_curves = (float*) gs_alloc_bytes(memory, |
2016 | 0 | CURVE_SIZE*sizeof(float),"gsicc_create_froma"); |
2017 | 0 | if (icc_luta2bparts.a_curves == NULL) |
2018 | 0 | return gs_throw(gs_error_VMerror, "Allocation of ICC a curves failed"); |
2019 | 0 | memcpy(icc_luta2bparts.a_curves, |
2020 | 0 | &(pcie->caches.DecodeA.floats.values[0]), |
2021 | 0 | CURVE_SIZE*sizeof(float)); |
2022 | 0 | } |
2023 | 0 | if (has_lmn_procs) { |
2024 | 0 | icc_luta2bparts.m_curves = (float*) gs_alloc_bytes(memory, |
2025 | 0 | 3*CURVE_SIZE*sizeof(float),"gsicc_create_froma"); |
2026 | 0 | if (icc_luta2bparts.m_curves == NULL) { |
2027 | 0 | gs_free_object(memory, icc_luta2bparts.a_curves, "gsicc_create_froma"); |
2028 | 0 | return gs_throw(gs_error_VMerror, "Allocation of ICC m curves failed"); |
2029 | 0 | } |
2030 | 0 | curr_pos = icc_luta2bparts.m_curves; |
2031 | 0 | memcpy(curr_pos,&(pcie->common.caches.DecodeLMN->floats.values[0]), |
2032 | 0 | CURVE_SIZE*sizeof(float)); |
2033 | 0 | curr_pos += CURVE_SIZE; |
2034 | 0 | memcpy(curr_pos,&((pcie->common.caches.DecodeLMN[1]).floats.values[0]), |
2035 | 0 | CURVE_SIZE*sizeof(float)); |
2036 | 0 | curr_pos += CURVE_SIZE; |
2037 | 0 | memcpy(curr_pos,&((pcie->common.caches.DecodeLMN[2]).floats.values[0]), |
2038 | 0 | CURVE_SIZE*sizeof(float)); |
2039 | 0 | } |
2040 | | /* Convert diagonal A matrix to 2x1 MLUT type */ |
2041 | 0 | icc_luta2bparts.clut = (gsicc_clut*) gs_alloc_bytes(memory, |
2042 | 0 | sizeof(gsicc_clut),"gsicc_create_froma"); /* 2 grid points 3 outputs */ |
2043 | 0 | if (icc_luta2bparts.clut == NULL) { |
2044 | 0 | gs_free_object(memory, icc_luta2bparts.a_curves, "gsicc_create_froma"); |
2045 | 0 | gs_free_object(memory, icc_luta2bparts.m_curves, "gsicc_create_froma"); |
2046 | 0 | return gs_throw(gs_error_VMerror, "Allocation of ICC clut failed"); |
2047 | 0 | } |
2048 | 0 | icc_luta2bparts.clut->clut_dims[0] = 2; |
2049 | 0 | icc_luta2bparts.clut->clut_num_input = 1; |
2050 | 0 | icc_luta2bparts.clut->clut_num_output = 3; |
2051 | 0 | icc_luta2bparts.clut->clut_word_width = 2; |
2052 | 0 | gsicc_create_initialize_clut(icc_luta2bparts.clut); |
2053 | | /* 2 grid points 3 outputs */ |
2054 | 0 | icc_luta2bparts.clut->data_short = (unsigned short*) |
2055 | 0 | gs_alloc_bytes(memory, 2 * 3 * sizeof(short), |
2056 | 0 | "gsicc_create_froma"); |
2057 | 0 | if (icc_luta2bparts.clut->data_short == NULL) { |
2058 | 0 | gs_free_object(memory, icc_luta2bparts.a_curves, "gsicc_create_froma"); |
2059 | 0 | gs_free_object(memory, icc_luta2bparts.m_curves, "gsicc_create_froma"); |
2060 | 0 | gs_free_object(memory, icc_luta2bparts.clut, "gsicc_create_froma"); |
2061 | 0 | return gs_throw(gs_error_VMerror, "Allocation of ICC clut data failed"); |
2062 | 0 | } |
2063 | | /* Studies of CIEBasedA spaces |
2064 | | and AR rendering of these reveals that they only look |
2065 | | at the product sum of the MatrixA and the 2nd column of |
2066 | | the LM Matrix (if there is one). This is used as a Y |
2067 | | decode value from which to map between the black point |
2068 | | and the white point. The black point is actually ignored |
2069 | | and a black point of 0 is used. */ |
2070 | 0 | gsicc_vec_to_mlut(&(pcie->MatrixA), icc_luta2bparts.clut->data_short); |
2071 | 0 | cie_matrix_transpose3(&(pcie->common.MatrixLMN), &matrix_input); |
2072 | | /* Encoding to ICC range happens in create_lutAtoBprofile */ |
2073 | 0 | icc_luta2bparts.matrix = &matrix_input; |
2074 | 0 | icc_luta2bparts.num_in = 1; |
2075 | 0 | icc_luta2bparts.num_out = 3; |
2076 | | /* Create the profile */ |
2077 | | /* Note Adobe only looks at the Y value for CIEBasedA spaces. |
2078 | | we will do the same */ |
2079 | 0 | code = create_lutAtoBprofile(pp_buffer_in, header, &icc_luta2bparts, true, |
2080 | 0 | false, memory); |
2081 | 0 | if (code < 0) |
2082 | 0 | return gs_rethrow(code, "Failed to create ICC AtoB Profile"); |
2083 | 0 | } |
2084 | 0 | *profile_size_out = header->size; |
2085 | 0 | gsicc_create_free_luta2bpart(memory, &icc_luta2bparts); |
2086 | | #if SAVEICCPROFILE |
2087 | | /* Dump the buffer to a file for testing if its a valid ICC profile */ |
2088 | | if(debug_catch) |
2089 | | save_profile(memory,*pp_buffer_in,"froma",header->size); |
2090 | | #endif |
2091 | 0 | return 0; |
2092 | 0 | } |
2093 | | |
2094 | | /* Common code shared by def and defg generation */ |
2095 | | static int |
2096 | | gsicc_create_defg_common(gs_cie_abc *pcie, gsicc_lutatob *icc_luta2bparts, |
2097 | | bool has_lmn_procs, bool has_abc_procs, |
2098 | | icHeader *header, gx_color_lookup_table *Table, |
2099 | | const gs_color_space *pcs, gs_range *ranges, |
2100 | | unsigned char **pp_buffer_in, int *profile_size_out, |
2101 | | gs_memory_t* memory) |
2102 | 0 | { |
2103 | 0 | gs_matrix3 matrix_input_trans; |
2104 | 0 | int k; |
2105 | 0 | bool input_range_ok; |
2106 | 0 | int code; |
2107 | |
|
2108 | 0 | gsicc_matrix_init(&(pcie->common.MatrixLMN)); /* Need this set now */ |
2109 | 0 | gsicc_matrix_init(&(pcie->MatrixABC)); /* Need this set now */ |
2110 | 0 | setheader_common(header, 4); |
2111 | | |
2112 | | /* We will use an input type class which keeps us from having to |
2113 | | create an inverse. We will keep the data a generic 3 color. |
2114 | | Since we are doing PS color management the PCS is XYZ */ |
2115 | 0 | header->deviceClass = icSigInputClass; |
2116 | 0 | header->pcs = icSigXYZData; |
2117 | 0 | icc_luta2bparts->num_out = 3; |
2118 | 0 | icc_luta2bparts->white_point = &(pcie->common.points.WhitePoint); |
2119 | 0 | icc_luta2bparts->black_point = &(pcie->common.points.BlackPoint); |
2120 | | |
2121 | | /* Calculate the chromatic adaptation matrix */ |
2122 | 0 | code = gsicc_compute_cam(icc_luta2bparts, memory); |
2123 | 0 | if (code < 0) { |
2124 | 0 | return gs_rethrow(code, "Create ICC from CIEABC failed"); |
2125 | 0 | } |
2126 | | |
2127 | | /* question now is, can we keep the table as it is, or do we need to merge |
2128 | | some of the def(g) parts. Some merging or operators into the table must occur |
2129 | | if we have MatrixABC, LMN Decode and Matrix LMN, otherwise we can encode |
2130 | | the table directly and squash the rest into the curves matrix curve portion |
2131 | | of the ICC form */ |
2132 | 0 | if ( (!(pcie->MatrixABC.is_identity) && has_lmn_procs && |
2133 | 0 | !(pcie->common.MatrixLMN.is_identity)) || 1 ) { |
2134 | | /* Table must take over some of the other elements. We are going to |
2135 | | go to a 16 bit table in this case. For now, we are going to |
2136 | | mash all the elements in the table. We may want to revisit this later. */ |
2137 | | /* We must complete the defg or def decode function such that it is within |
2138 | | the HIJ(K) range AND is scaled to index into the CLUT properly */ |
2139 | 0 | if (gs_color_space_get_index(pcs) == gs_color_space_index_CIEDEF) { |
2140 | 0 | input_range_ok = check_range(&(pcs->params.def->RangeDEF.ranges[0]),3); |
2141 | 0 | } else { |
2142 | 0 | input_range_ok = check_range(&(pcs->params.defg->RangeDEFG.ranges[0]),4); |
2143 | 0 | } |
2144 | 0 | code = gsicc_create_mashed_clut(icc_luta2bparts, header, Table, |
2145 | 0 | pcs, ranges, pp_buffer_in, profile_size_out, |
2146 | 0 | !input_range_ok, memory); |
2147 | 0 | if (code < 0) |
2148 | 0 | return gs_rethrow(code, "Failed to create ICC clut"); |
2149 | 0 | } else { |
2150 | | /* Table can stay as is. Handle the ABC/LMN portions via the curves |
2151 | | matrix curves operation */ |
2152 | 0 | icc_luta2bparts->matrix = &matrix_input_trans; |
2153 | 0 | code = gsicc_create_abc_merge(icc_luta2bparts, &(pcie->common.MatrixLMN), |
2154 | 0 | &(pcie->MatrixABC), has_abc_procs, |
2155 | 0 | has_lmn_procs, pcie->caches.DecodeABC.caches, |
2156 | 0 | pcie->common.caches.DecodeLMN, memory); |
2157 | 0 | if (code < 0) |
2158 | 0 | return gs_rethrow(code, "Failed to create ICC abc merge"); |
2159 | | |
2160 | | /* Get the table data */ |
2161 | 0 | icc_luta2bparts->clut = (gsicc_clut*) gs_alloc_bytes(memory, |
2162 | 0 | sizeof(gsicc_clut),"gsicc_create_defg_common"); |
2163 | 0 | if (icc_luta2bparts->clut == NULL) |
2164 | 0 | return gs_throw(gs_error_VMerror, "Allocation of ICC clut failed"); |
2165 | | |
2166 | 0 | for (k = 0; k < icc_luta2bparts->num_in; k++) { |
2167 | 0 | icc_luta2bparts->clut->clut_dims[k] = Table->dims[k]; |
2168 | 0 | } |
2169 | 0 | icc_luta2bparts->clut->clut_num_input = icc_luta2bparts->num_in; |
2170 | 0 | icc_luta2bparts->clut->clut_num_output = 3; |
2171 | 0 | icc_luta2bparts->clut->clut_word_width = 1; |
2172 | 0 | gsicc_create_initialize_clut(icc_luta2bparts->clut); |
2173 | | /* Get the PS table data directly */ |
2174 | 0 | icc_luta2bparts->clut->data_byte = (byte*) Table->table->data; |
2175 | | /* Create the profile. */ |
2176 | 0 | code = create_lutAtoBprofile(pp_buffer_in, header, icc_luta2bparts, false, |
2177 | 0 | false, memory); |
2178 | 0 | if (code < 0) |
2179 | 0 | return gs_rethrow(code, "Failed to create ICC lutAtoB"); |
2180 | 0 | } |
2181 | 0 | gsicc_create_free_luta2bpart(memory, icc_luta2bparts); |
2182 | 0 | *profile_size_out = header->size; |
2183 | 0 | return 0; |
2184 | 0 | } |
2185 | | |
2186 | | /* If we have an ABC matrix, a DecodeLMN and an LMN matrix we have to mash |
2187 | | together the table, Decode ABC (if present) and ABC matrix. */ |
2188 | | int |
2189 | | gsicc_create_fromdefg(const gs_color_space *pcs, unsigned char **pp_buffer_in, |
2190 | | int *profile_size_out, gs_memory_t *memory, |
2191 | | gx_cie_vector_cache *abc_caches, |
2192 | | gx_cie_scalar_cache *lmn_caches, |
2193 | | gx_cie_scalar_cache *defg_caches) |
2194 | 0 | { |
2195 | 0 | gs_cie_defg *pcie = pcs->params.defg; |
2196 | 0 | gsicc_lutatob icc_luta2bparts; |
2197 | 0 | icProfile iccprofile; |
2198 | 0 | icHeader *header = &(iccprofile.header); |
2199 | | #if SAVEICCPROFILE |
2200 | | int debug_catch = 1; |
2201 | | #endif |
2202 | 0 | float *curr_pos; |
2203 | 0 | bool has_abc_procs = !((abc_caches->floats.params.is_identity && |
2204 | 0 | (abc_caches)[1].floats.params.is_identity && |
2205 | 0 | (abc_caches)[2].floats.params.is_identity)); |
2206 | 0 | bool has_lmn_procs = !((lmn_caches->floats.params.is_identity && |
2207 | 0 | (lmn_caches)[1].floats.params.is_identity && |
2208 | 0 | (lmn_caches)[2].floats.params.is_identity)); |
2209 | 0 | bool has_defg_procs = !((defg_caches->floats.params.is_identity && |
2210 | 0 | (defg_caches)[1].floats.params.is_identity && |
2211 | 0 | (defg_caches)[2].floats.params.is_identity && |
2212 | 0 | (defg_caches)[3].floats.params.is_identity)); |
2213 | 0 | int code; |
2214 | | |
2215 | | /* Fill in the uncommon stuff */ |
2216 | 0 | gsicc_create_init_luta2bpart(&icc_luta2bparts); |
2217 | 0 | header->colorSpace = icSigCmykData; |
2218 | 0 | icc_luta2bparts.num_in = 4; |
2219 | | |
2220 | | /* The a curves stored as def procs */ |
2221 | 0 | if (has_defg_procs) { |
2222 | 0 | icc_luta2bparts.a_curves = (float*) gs_alloc_bytes(memory, |
2223 | 0 | 4*CURVE_SIZE*sizeof(float),"gsicc_create_fromdefg"); |
2224 | 0 | if (icc_luta2bparts.a_curves == NULL) |
2225 | 0 | return gs_throw(gs_error_VMerror, "Allocation of ICC a curves failed"); |
2226 | 0 | curr_pos = icc_luta2bparts.a_curves; |
2227 | 0 | memcpy(curr_pos,&(pcie->caches_defg.DecodeDEFG->floats.values[0]), |
2228 | 0 | CURVE_SIZE*sizeof(float)); |
2229 | 0 | curr_pos += CURVE_SIZE; |
2230 | 0 | memcpy(curr_pos,&((pcie->caches_defg.DecodeDEFG[1]).floats.values[0]), |
2231 | 0 | CURVE_SIZE*sizeof(float)); |
2232 | 0 | curr_pos += CURVE_SIZE; |
2233 | 0 | memcpy(curr_pos,&((pcie->caches_defg.DecodeDEFG[2]).floats.values[0]), |
2234 | 0 | CURVE_SIZE*sizeof(float)); |
2235 | 0 | curr_pos += CURVE_SIZE; |
2236 | 0 | memcpy(curr_pos,&((pcie->caches_defg.DecodeDEFG[3]).floats.values[0]), |
2237 | 0 | CURVE_SIZE*sizeof(float)); |
2238 | 0 | } |
2239 | | /* Note the recast. Should be OK since we only access common stuff in there */ |
2240 | 0 | code = gsicc_create_defg_common((gs_cie_abc*) pcie, &icc_luta2bparts, |
2241 | 0 | has_lmn_procs, has_abc_procs, |
2242 | 0 | header, &(pcie->Table), pcs, |
2243 | 0 | &(pcie->RangeDEFG.ranges[0]), |
2244 | 0 | pp_buffer_in, profile_size_out, memory); |
2245 | | #if SAVEICCPROFILE |
2246 | | /* Dump the buffer to a file for testing if its a valid ICC profile */ |
2247 | | if(debug_catch) |
2248 | | save_profile(memory,*pp_buffer_in,"fromdefg",header->size); |
2249 | | #endif |
2250 | 0 | return code; |
2251 | 0 | } |
2252 | | |
2253 | | int |
2254 | | gsicc_create_fromdef(const gs_color_space *pcs, unsigned char **pp_buffer_in, |
2255 | | int *profile_size_out, gs_memory_t *memory, |
2256 | | gx_cie_vector_cache *abc_caches, |
2257 | | gx_cie_scalar_cache *lmn_caches, |
2258 | | gx_cie_scalar_cache *def_caches) |
2259 | 0 | { |
2260 | 0 | gs_cie_def *pcie = pcs->params.def; |
2261 | 0 | gsicc_lutatob icc_luta2bparts; |
2262 | 0 | icProfile iccprofile; |
2263 | 0 | icHeader *header = &(iccprofile.header); |
2264 | | #if SAVEICCPROFILE |
2265 | | int debug_catch = 1; |
2266 | | #endif |
2267 | 0 | float *curr_pos; |
2268 | 0 | bool has_abc_procs = !((abc_caches->floats.params.is_identity && |
2269 | 0 | (abc_caches)[1].floats.params.is_identity && |
2270 | 0 | (abc_caches)[2].floats.params.is_identity)); |
2271 | 0 | bool has_lmn_procs = !((lmn_caches->floats.params.is_identity && |
2272 | 0 | (lmn_caches)[1].floats.params.is_identity && |
2273 | 0 | (lmn_caches)[2].floats.params.is_identity)); |
2274 | 0 | bool has_def_procs = !((def_caches->floats.params.is_identity && |
2275 | 0 | (def_caches)[1].floats.params.is_identity && |
2276 | 0 | (def_caches)[2].floats.params.is_identity)); |
2277 | 0 | int code; |
2278 | |
|
2279 | 0 | gsicc_create_init_luta2bpart(&icc_luta2bparts); |
2280 | |
|
2281 | 0 | header->colorSpace = icSigRgbData; |
2282 | 0 | icc_luta2bparts.num_in = 3; |
2283 | | |
2284 | | /* The a curves stored as def procs */ |
2285 | 0 | if (has_def_procs) { |
2286 | 0 | icc_luta2bparts.a_curves = (float*) gs_alloc_bytes(memory, |
2287 | 0 | 3*CURVE_SIZE*sizeof(float),"gsicc_create_fromdef"); |
2288 | 0 | if (icc_luta2bparts.a_curves == NULL) |
2289 | 0 | return gs_throw(gs_error_VMerror, "Allocation of ICC a curves failed"); |
2290 | 0 | curr_pos = icc_luta2bparts.a_curves; |
2291 | 0 | memcpy(curr_pos,&(pcie->caches_def.DecodeDEF->floats.values[0]), |
2292 | 0 | CURVE_SIZE*sizeof(float)); |
2293 | 0 | curr_pos += CURVE_SIZE; |
2294 | 0 | memcpy(curr_pos,&((pcie->caches_def.DecodeDEF[1]).floats.values[0]), |
2295 | 0 | CURVE_SIZE*sizeof(float)); |
2296 | 0 | curr_pos += CURVE_SIZE; |
2297 | 0 | memcpy(curr_pos,&((pcie->caches_def.DecodeDEF[2]).floats.values[0]), |
2298 | 0 | CURVE_SIZE*sizeof(float)); |
2299 | 0 | } |
2300 | 0 | code = gsicc_create_defg_common((gs_cie_abc*) pcie, &icc_luta2bparts, |
2301 | 0 | has_lmn_procs, has_abc_procs, header, |
2302 | 0 | &(pcie->Table), pcs, &(pcie->RangeDEF.ranges[0]), |
2303 | 0 | pp_buffer_in, profile_size_out, memory); |
2304 | | #if SAVEICCPROFILE |
2305 | | /* Dump the buffer to a file for testing if its a valid ICC profile */ |
2306 | | if(debug_catch) |
2307 | | save_profile(memory,*pp_buffer_in,"fromdef",header->size); |
2308 | | #endif |
2309 | 0 | return code; |
2310 | 0 | } |
2311 | | |
2312 | | void |
2313 | | gsicc_create_fromcrd(unsigned char *buffer, gs_memory_t *memory) |
2314 | 0 | { |
2315 | 0 | icProfile iccprofile; |
2316 | 0 | icHeader *header = &(iccprofile.header); |
2317 | |
|
2318 | 0 | setheader_common(header, 4); |
2319 | 0 | } |
2320 | | |
2321 | | /* V2 creation from current profile */ |
2322 | | |
2323 | 0 | #define TRC_V2_SIZE 256 |
2324 | | |
2325 | | static void |
2326 | | init_common_tagsv2(gsicc_tag tag_list[], int num_tags, int *last_tag) |
2327 | 0 | { |
2328 | | /* profileDescriptionTag copyrightTag */ |
2329 | 0 | int curr_tag, temp_size; |
2330 | |
|
2331 | 0 | if (*last_tag < 0) |
2332 | 0 | curr_tag = 0; |
2333 | 0 | else |
2334 | 0 | curr_tag = (*last_tag) + 1; |
2335 | |
|
2336 | 0 | tag_list[curr_tag].offset = HEADER_SIZE + num_tags * TAG_SIZE + 4; |
2337 | 0 | tag_list[curr_tag].sig = icSigProfileDescriptionTag; |
2338 | 0 | temp_size = DATATYPE_SIZE + 4 + strlen(desc_name) + 1 + 12 + 67; |
2339 | 0 | tag_list[curr_tag].byte_padding = get_padding(temp_size); |
2340 | 0 | tag_list[curr_tag].size = temp_size + tag_list[curr_tag].byte_padding; |
2341 | |
|
2342 | 0 | curr_tag++; |
2343 | |
|
2344 | 0 | tag_list[curr_tag].offset = tag_list[curr_tag - 1].offset + |
2345 | 0 | tag_list[curr_tag - 1].size; |
2346 | 0 | tag_list[curr_tag].sig = icSigCopyrightTag; |
2347 | 0 | temp_size = DATATYPE_SIZE + strlen(copy_right) + 1; |
2348 | 0 | tag_list[curr_tag].byte_padding = get_padding(temp_size); |
2349 | 0 | tag_list[curr_tag].size = temp_size + tag_list[curr_tag].byte_padding; |
2350 | 0 | *last_tag = curr_tag; |
2351 | 0 | } |
2352 | | |
2353 | | static int |
2354 | | getsize_lut16Type(int tablesize, int num_inputs, int num_outputs) |
2355 | 0 | { |
2356 | 0 | int clutsize; |
2357 | | |
2358 | | /* Header (-8 as we already include the type later) |
2359 | | plus linear curves (2 points each of 2 bytes) */ |
2360 | 0 | int size = 52 - 8 + 4 * num_inputs + 4 * num_outputs; |
2361 | 0 | clutsize = (int) pow(tablesize, num_inputs) * num_outputs * 2; |
2362 | 0 | return size + clutsize; |
2363 | 0 | } |
2364 | | |
2365 | | static int |
2366 | | getsize_lut8Type(int tablesize, int num_inputs, int num_outputs) |
2367 | 0 | { |
2368 | 0 | int clutsize; |
2369 | | |
2370 | | /* Header (-8 as we already include the type later) |
2371 | | plus linear curves (2 points each of 2 bytes) */ |
2372 | 0 | int size = 48 - 8 + 256 * num_inputs + 256 * num_outputs; |
2373 | 0 | clutsize = (int)pow(tablesize, num_inputs) * num_outputs; |
2374 | 0 | return size + clutsize; |
2375 | 0 | } |
2376 | | |
2377 | | |
2378 | | static byte* |
2379 | | write_v2_common_data(byte *buffer, int profile_size, icHeader *header, |
2380 | | gsicc_tag *tag_list, int num_tags, byte *mediawhitept) |
2381 | 0 | { |
2382 | 0 | byte *curr_ptr = buffer; |
2383 | 0 | int k; |
2384 | | |
2385 | | /* The header */ |
2386 | 0 | header->size = profile_size; |
2387 | 0 | copy_header(curr_ptr, header); |
2388 | 0 | curr_ptr += HEADER_SIZE; |
2389 | | |
2390 | | /* Tag table */ |
2391 | 0 | copy_tagtable(curr_ptr, tag_list, num_tags); |
2392 | 0 | curr_ptr += TAG_SIZE*num_tags; |
2393 | 0 | curr_ptr += 4; |
2394 | | |
2395 | | /* Common tags */ |
2396 | 0 | add_common_tag_data(curr_ptr, tag_list, 2); |
2397 | 0 | for (k = 0; k< NUMBER_COMMON_TAGS; k++) { |
2398 | 0 | curr_ptr += tag_list[k].size; |
2399 | 0 | } |
2400 | | |
2401 | | /* Media white point. Get from current profile */ |
2402 | 0 | write_bigendian_4bytes(curr_ptr, icSigXYZType); |
2403 | 0 | curr_ptr += 4; |
2404 | 0 | memset(curr_ptr, 0, 4); |
2405 | 0 | curr_ptr += 4; |
2406 | 0 | memcpy(curr_ptr, mediawhitept, 12); |
2407 | 0 | curr_ptr += 12; |
2408 | |
|
2409 | 0 | return curr_ptr; |
2410 | 0 | } |
2411 | | |
2412 | | static gsicc_link_t* |
2413 | | get_link(const gs_gstate *pgs, cmm_profile_t *src_profile, |
2414 | | cmm_profile_t *des_profile, gsicc_rendering_intents_t intent) |
2415 | 0 | { |
2416 | 0 | gsicc_rendering_param_t rendering_params; |
2417 | | |
2418 | | /* Now the main colorants. Get them and the TRC data from using the link |
2419 | | between the source profile and the CIEXYZ profile */ |
2420 | 0 | rendering_params.black_point_comp = gsBLACKPTCOMP_OFF; |
2421 | 0 | rendering_params.override_icc = false; |
2422 | 0 | rendering_params.preserve_black = gsBLACKPRESERVE_OFF; |
2423 | 0 | rendering_params.rendering_intent = intent; |
2424 | 0 | rendering_params.cmm = gsCMM_DEFAULT; |
2425 | 0 | return gsicc_get_link_profile(pgs, NULL, src_profile, des_profile, |
2426 | 0 | &rendering_params, pgs->memory, false); |
2427 | 0 | } |
2428 | | |
2429 | | static void |
2430 | | get_colorant(int index, gsicc_link_t *link, icS15Fixed16Number XYZ_Data[]) |
2431 | 0 | { |
2432 | 0 | unsigned short des[3], src[3]; |
2433 | 0 | int k; |
2434 | |
|
2435 | 0 | src[0] = 0; |
2436 | 0 | src[1] = 0; |
2437 | 0 | src[2] = 0; |
2438 | 0 | src[index] = 65535; |
2439 | 0 | (link->procs.map_color)(NULL, link, &src, &des, 2); |
2440 | 0 | for (k = 0; k < 3; k++) { |
2441 | 0 | XYZ_Data[k] = double2XYZtype((float)des[k] / 65535.0); |
2442 | 0 | } |
2443 | 0 | } |
2444 | | |
2445 | | static void |
2446 | | get_trc(int index, gsicc_link_t *link, float **htrc, int trc_size) |
2447 | 0 | { |
2448 | 0 | unsigned short des[3], src[3]; |
2449 | 0 | float max; |
2450 | 0 | float *ptrc = *htrc; |
2451 | 0 | int k; |
2452 | |
|
2453 | 0 | src[0] = 0; |
2454 | 0 | src[1] = 0; |
2455 | 0 | src[2] = 0; |
2456 | | |
2457 | | /* First get the max value for Y on the range */ |
2458 | 0 | src[index] = 65535; |
2459 | 0 | (link->procs.map_color)(NULL, link, &src, &des, 2); |
2460 | 0 | max = des[1]; |
2461 | |
|
2462 | 0 | for (k = 0; k < trc_size; k++) { |
2463 | 0 | src[index] = (unsigned short)((double)k * (double)65535 / (double)(trc_size - 1)); |
2464 | 0 | (link->procs.map_color)(NULL, link, &src, &des, 2); |
2465 | | /* Use Y */ |
2466 | 0 | ptrc[k] = (float)des[1] / max; |
2467 | 0 | } |
2468 | 0 | } |
2469 | | |
2470 | | static void |
2471 | | clean_lut(gsicc_clut *clut, gs_memory_t *memory) |
2472 | 0 | { |
2473 | 0 | if (clut->clut_word_width == 2) |
2474 | 0 | gs_free_object(memory, clut->data_short, "clean_lut"); |
2475 | 0 | else |
2476 | 0 | gs_free_object(memory, clut->data_byte, "clean_lut"); |
2477 | 0 | } |
2478 | | |
2479 | | /* This is used for the A2B0 type table and B2A0. */ |
2480 | | static int |
2481 | | create_clut_v2(gsicc_clut *clut, gsicc_link_t *link, int num_in, |
2482 | | int num_out, int table_size, gs_memory_t *memory, int bitdepth) |
2483 | 0 | { |
2484 | 0 | unsigned short *input_samples, *indexptr; |
2485 | 0 | unsigned short *ptr_short; |
2486 | 0 | byte *ptr_byte; |
2487 | 0 | int num_points, index; |
2488 | 0 | unsigned short input[4], output[4]; |
2489 | 0 | int kk, j, i; |
2490 | |
|
2491 | 0 | clut->clut_num_input = num_in; |
2492 | 0 | clut->clut_num_output = num_out; |
2493 | 0 | clut->clut_word_width = bitdepth; |
2494 | 0 | for (kk = 0; kk < num_in; kk++) |
2495 | 0 | clut->clut_dims[kk] = table_size; |
2496 | 0 | clut->clut_num_entries = (int) pow(table_size, num_in); |
2497 | 0 | num_points = clut->clut_num_entries; |
2498 | 0 | if (bitdepth == 2) { |
2499 | 0 | clut->data_byte = NULL; |
2500 | 0 | clut->data_short = (unsigned short*)gs_alloc_bytes(memory, |
2501 | 0 | (size_t)clut->clut_num_entries * num_out * |
2502 | 0 | sizeof(unsigned short), |
2503 | 0 | "create_clut_v2"); |
2504 | 0 | if (clut->data_short == NULL) |
2505 | 0 | return -1; |
2506 | 0 | } else { |
2507 | 0 | clut->data_short = NULL; |
2508 | 0 | clut->data_byte = (byte*)gs_alloc_bytes(memory, |
2509 | 0 | (size_t)clut->clut_num_entries * num_out, |
2510 | 0 | "create_clut_v2"); |
2511 | 0 | if (clut->data_byte == NULL) |
2512 | 0 | return -1; |
2513 | 0 | } |
2514 | | |
2515 | | /* Create the sample indices */ |
2516 | 0 | input_samples = (unsigned short*) gs_alloc_bytes(memory, |
2517 | 0 | sizeof(unsigned short)*table_size, "create_clut_v2"); |
2518 | 0 | if (input_samples == NULL) { |
2519 | 0 | return -1; |
2520 | 0 | } |
2521 | 0 | indexptr = input_samples; |
2522 | 0 | for (j = 0; j < table_size; j++) |
2523 | 0 | *indexptr++ = (unsigned short)(((double)j / (double)(table_size - 1)) * 65535.0); |
2524 | | |
2525 | | /* Now populate the table. Index 1 goes the slowest (e.g. R) */ |
2526 | 0 | ptr_short = clut->data_short; |
2527 | 0 | ptr_byte = clut->data_byte; |
2528 | 0 | for (i = 0; i < num_points; i++) { |
2529 | 0 | if (num_in == 1) { |
2530 | 0 | index = i%table_size; |
2531 | 0 | input[0] = input_samples[index]; |
2532 | 0 | } |
2533 | 0 | if (num_in == 3) { |
2534 | 0 | index = i%table_size; |
2535 | 0 | input[2] = input_samples[index]; |
2536 | 0 | index = (unsigned int)floor((float)i / (float)table_size) % table_size; |
2537 | 0 | input[1] = input_samples[index]; |
2538 | 0 | index = (unsigned int)floor((float)i / (float)(table_size* |
2539 | 0 | table_size)) % table_size; |
2540 | 0 | input[0] = input_samples[index]; |
2541 | 0 | } |
2542 | 0 | if (num_in == 4) { |
2543 | 0 | index = i%table_size; |
2544 | 0 | input[3] = input_samples[index]; |
2545 | 0 | index = (unsigned int)floor((float)i / (float)table_size) % table_size; |
2546 | 0 | input[2] = input_samples[index]; |
2547 | 0 | index = (unsigned int)floor((float)i / (float)(table_size* |
2548 | 0 | table_size)) % table_size; |
2549 | 0 | input[1] = input_samples[index]; |
2550 | 0 | index = (unsigned int)floor((float)i / (float)(table_size* |
2551 | 0 | table_size*table_size)) % table_size; |
2552 | 0 | input[0] = input_samples[index]; |
2553 | 0 | } |
2554 | 0 | if (link == NULL) { |
2555 | | /* gamut table case */ |
2556 | 0 | for (j = 0; j < num_out; j++) { |
2557 | 0 | if (bitdepth == 2) |
2558 | 0 | *ptr_short++ = 1; |
2559 | 0 | else |
2560 | 0 | *ptr_byte++ = 1; |
2561 | 0 | } |
2562 | 0 | } else { |
2563 | 0 | double temp; |
2564 | 0 | (link->procs.map_color)(NULL, link, input, output, 2); |
2565 | | |
2566 | | /* Note. We are using 16 bit for the forward table |
2567 | | (colorant to lab) and 8 bit for the backward table |
2568 | | (lab to colorant). A larger table is used for the backward |
2569 | | table to reduce quantization */ |
2570 | |
|
2571 | 0 | if (bitdepth == 2) { |
2572 | | /* Output is LAB 16 bit */ |
2573 | | /* Apply offset of 128 on a and b */ |
2574 | 0 | output[1] = output[1] - 128; |
2575 | 0 | output[2] = output[2] - 128; |
2576 | | /* Scale L to range 0 to 0xFF00 */ |
2577 | 0 | temp = (double)output[0] / 65535.0; |
2578 | 0 | temp = temp * 65280.0; |
2579 | 0 | output[0] = (unsigned short)temp; |
2580 | 0 | for (j = 0; j < num_out; j++) |
2581 | 0 | *ptr_short++ = output[j]; |
2582 | 0 | } else { |
2583 | | /* Output is colorant and 8 bit */ |
2584 | 0 | for (j = 0; j < num_out; j++) { |
2585 | 0 | double temp = (double)output[j] * 255.0 / 65535.0; |
2586 | 0 | *ptr_byte++ = (byte) temp; |
2587 | 0 | } |
2588 | 0 | } |
2589 | 0 | } |
2590 | 0 | } |
2591 | 0 | gs_free_object(memory, input_samples, "create_clut_v2"); |
2592 | 0 | return 0; |
2593 | 0 | } |
2594 | | |
2595 | | |
2596 | | /* Here we write out the lut16Type or lut8Type data V2. Curves are always linear, |
2597 | | matrix is the identity. Table data is unique and could be a forward |
2598 | | or inverse table */ |
2599 | | static byte* |
2600 | | add_lutType(byte *input_ptr, gsicc_clut *lut) |
2601 | 0 | { |
2602 | 0 | byte *curr_ptr; |
2603 | 0 | unsigned char numout = lut->clut_num_output; |
2604 | 0 | unsigned char numin = lut->clut_num_input; |
2605 | 0 | unsigned char tablesize = lut->clut_dims[0]; |
2606 | 0 | float ident[9] = { 1.0, 0, 0, 0, 1.0, 0, 0, 0, 1.0 }; |
2607 | 0 | int clut_size = lut->clut_num_entries * numout, k, j; |
2608 | | |
2609 | | /* Signature */ |
2610 | 0 | curr_ptr = input_ptr; |
2611 | 0 | if (lut->clut_word_width == 2) |
2612 | 0 | write_bigendian_4bytes(curr_ptr, icSigLut16Type); |
2613 | 0 | else |
2614 | 0 | write_bigendian_4bytes(curr_ptr, icSigLut8Type); |
2615 | 0 | curr_ptr += 4; |
2616 | | /* Reserved */ |
2617 | 0 | memset(curr_ptr, 0, 4); |
2618 | 0 | curr_ptr += 4; |
2619 | | /* Sizes padded */ |
2620 | 0 | *curr_ptr++ = numin; |
2621 | 0 | *curr_ptr++ = numout; |
2622 | 0 | *curr_ptr++ = tablesize; |
2623 | 0 | *curr_ptr++ = 0; |
2624 | | |
2625 | | /* Now the identity matrix */ |
2626 | 0 | add_matrixwithbias(curr_ptr, &(ident[0]), false); |
2627 | 0 | curr_ptr += (9 * 4); |
2628 | | |
2629 | | /* Input TRC are linear. 16 bit can have 2 points. 8 bit need 256 */ |
2630 | 0 | if (lut->clut_word_width == 2) { |
2631 | | /* Sizes */ |
2632 | 0 | write_bigendian_2bytes(curr_ptr, 2); |
2633 | 0 | curr_ptr += 2; |
2634 | 0 | write_bigendian_2bytes(curr_ptr, 2); |
2635 | 0 | curr_ptr += 2; |
2636 | | |
2637 | | /* Input table data. Linear. */ |
2638 | 0 | for (k = 0; k < numin; k++) { |
2639 | 0 | write_bigendian_2bytes(curr_ptr, 0); |
2640 | 0 | curr_ptr += 2; |
2641 | 0 | write_bigendian_2bytes(curr_ptr, 65535); |
2642 | 0 | curr_ptr += 2; |
2643 | 0 | } |
2644 | 0 | } else { |
2645 | | /* Input table data. Linear. */ |
2646 | 0 | for (k = 0; k < numin; k++) |
2647 | 0 | for (j = 0; j < 256; j++) |
2648 | 0 | *curr_ptr++ = j; |
2649 | 0 | } |
2650 | | |
2651 | | /* The CLUT. Write out each entry. */ |
2652 | 0 | if (lut->clut_word_width == 2) { |
2653 | 0 | for (k = 0; k < clut_size; k++) { |
2654 | 0 | write_bigendian_2bytes(curr_ptr, lut->data_short[k]); |
2655 | 0 | curr_ptr += 2; |
2656 | 0 | } |
2657 | 0 | } else { |
2658 | 0 | for (k = 0; k < clut_size; k++) |
2659 | 0 | *curr_ptr++ = lut->data_byte[k]; |
2660 | 0 | } |
2661 | | |
2662 | | /* Output table data. Linear. */ |
2663 | 0 | if (lut->clut_word_width == 2) { |
2664 | 0 | for (k = 0; k < numout; k++) { |
2665 | 0 | write_bigendian_2bytes(curr_ptr, 0); |
2666 | 0 | curr_ptr += 2; |
2667 | 0 | write_bigendian_2bytes(curr_ptr, 65535); |
2668 | 0 | curr_ptr += 2; |
2669 | 0 | } |
2670 | 0 | } else { |
2671 | 0 | for (k = 0; k < numout; k++) |
2672 | 0 | for (j = 0; j < 256; j++) |
2673 | 0 | *curr_ptr++ = j; |
2674 | 0 | } |
2675 | 0 | return curr_ptr; |
2676 | 0 | } |
2677 | | |
2678 | | static int |
2679 | | create_write_table_intent(const gs_gstate *pgs, gsicc_rendering_intents_t intent, |
2680 | | cmm_profile_t *src_profile, cmm_profile_t *des_profile, byte *curr_ptr, |
2681 | | int table_size, int bit_depth, int padding) |
2682 | 0 | { |
2683 | 0 | gsicc_link_t *link; |
2684 | 0 | int code; |
2685 | 0 | gsicc_clut clut; |
2686 | |
|
2687 | 0 | link = get_link(pgs, src_profile, des_profile, intent); |
2688 | 0 | if (link == NULL) |
2689 | 0 | return_error(gs_error_undefined); |
2690 | 0 | code = create_clut_v2(&clut, link, src_profile->num_comps, |
2691 | 0 | des_profile->num_comps, table_size, pgs->memory, bit_depth); |
2692 | 0 | if (code < 0) |
2693 | 0 | return code; |
2694 | 0 | curr_ptr = add_lutType(curr_ptr, &clut); |
2695 | 0 | memset(curr_ptr, 0, padding); |
2696 | 0 | clean_lut(&clut, pgs->memory); |
2697 | 0 | gsicc_release_link(link); |
2698 | 0 | return 0; |
2699 | 0 | } |
2700 | | |
2701 | | static void |
2702 | | gsicc_create_v2input(const gs_gstate *pgs, icHeader *header, cmm_profile_t *src_profile, |
2703 | | byte *mediawhitept, cmm_profile_t *lab_profile) |
2704 | 0 | { |
2705 | | /* Need to create the forward table only (Gray, RGB, CMYK to LAB) */ |
2706 | 0 | int num_tags = 4; /* 2 common + white + A2B0 */ |
2707 | 0 | int profile_size = HEADER_SIZE; |
2708 | 0 | gsicc_tag *tag_list; |
2709 | 0 | gs_memory_t *memory = src_profile->memory; |
2710 | 0 | int last_tag = -1; |
2711 | 0 | byte *buffer, *curr_ptr; |
2712 | 0 | gsicc_link_t *link; |
2713 | 0 | int tag_size; |
2714 | 0 | gsicc_clut clut; |
2715 | 0 | int code, k; |
2716 | | |
2717 | | /* Profile description tag, copyright tag white point and grayTRC */ |
2718 | 0 | tag_list = (gsicc_tag*)gs_alloc_bytes(memory, |
2719 | 0 | sizeof(gsicc_tag)*num_tags, "gsicc_create_v2input"); |
2720 | 0 | if (tag_list == NULL) |
2721 | 0 | return; |
2722 | | /* Let us precompute the sizes of everything and all our offsets */ |
2723 | 0 | profile_size += TAG_SIZE * num_tags; |
2724 | 0 | profile_size += 4; /* number of tags.... */ |
2725 | | |
2726 | | /* Common tags */ |
2727 | 0 | init_common_tagsv2(tag_list, num_tags, &last_tag); |
2728 | 0 | init_tag(tag_list, &last_tag, icSigMediaWhitePointTag, XYZPT_SIZE); |
2729 | | |
2730 | | /* Get the tag size of the A2B0 with the lut16Type */ |
2731 | 0 | tag_size = getsize_lut16Type(FORWARD_V2_TABLE_SIZE, src_profile->num_comps, 3); |
2732 | 0 | init_tag(tag_list, &last_tag, icSigAToB0Tag, tag_size); |
2733 | | |
2734 | | /* Now get the profile size */ |
2735 | 0 | for (k = 0; k < num_tags; k++) { |
2736 | 0 | profile_size += tag_list[k].size; |
2737 | 0 | } |
2738 | | |
2739 | | /* Allocate buffer */ |
2740 | 0 | buffer = gs_alloc_bytes(memory, profile_size, "gsicc_create_v2input"); |
2741 | 0 | if (buffer == NULL) { |
2742 | 0 | gs_free_object(memory, tag_list, "gsicc_create_v2input"); |
2743 | 0 | return; |
2744 | 0 | } |
2745 | | |
2746 | | /* Write out data */ |
2747 | 0 | curr_ptr = write_v2_common_data(buffer, profile_size, header, tag_list, |
2748 | 0 | num_tags, mediawhitept); |
2749 | | |
2750 | | /* Now the A2B0 Tag */ |
2751 | 0 | link = get_link(pgs, src_profile, lab_profile, gsPERCEPTUAL); |
2752 | 0 | if (link == NULL) { |
2753 | 0 | gs_free_object(memory, tag_list, "gsicc_create_v2input"); |
2754 | 0 | gs_free_object(memory, buffer, "gsicc_create_v2input"); |
2755 | 0 | return; |
2756 | 0 | } |
2757 | | |
2758 | | /* First create the data */ |
2759 | 0 | code = create_clut_v2(&clut, link, src_profile->num_comps, 3, |
2760 | 0 | FORWARD_V2_TABLE_SIZE, pgs->memory, 2); |
2761 | 0 | if (code < 0) { |
2762 | 0 | gs_free_object(memory, tag_list, "gsicc_create_v2input"); |
2763 | 0 | gs_free_object(memory, buffer, "gsicc_create_v2input"); |
2764 | 0 | return; |
2765 | 0 | } |
2766 | | |
2767 | | /* Now write it out */ |
2768 | 0 | curr_ptr = add_lutType(curr_ptr, &clut); |
2769 | 0 | memset(curr_ptr, 0, tag_list[last_tag].byte_padding); /* padding */ |
2770 | | |
2771 | | /* Clean up */ |
2772 | 0 | gsicc_release_link(link); |
2773 | 0 | clean_lut(&clut, pgs->memory); |
2774 | 0 | gs_free_object(memory, tag_list, "gsicc_create_v2input"); |
2775 | | /* Save the v2 data */ |
2776 | 0 | src_profile->v2_data = buffer; |
2777 | 0 | src_profile->v2_size = profile_size; |
2778 | |
|
2779 | | #if SAVEICCPROFILE |
2780 | | /* Dump the buffer to a file for testing if its a valid ICC profile */ |
2781 | | save_profile(memory,buffer, "V2InputType", profile_size); |
2782 | | #endif |
2783 | 0 | } |
2784 | | |
2785 | | static void |
2786 | | gsicc_create_v2output(const gs_gstate *pgs, icHeader *header, cmm_profile_t *src_profile, |
2787 | | byte *mediawhitept, cmm_profile_t *lab_profile) |
2788 | 0 | { |
2789 | | /* Need to create forward and backward table (Gray, RGB, CMYK to LAB and back) |
2790 | | and need to do this for all the intents */ |
2791 | 0 | int num_tags = 10; /* 2 common + white + A2B0 + B2A0 + A2B1 + B2A1 + A2B2 + B2A2 + gamut */ |
2792 | 0 | int profile_size = HEADER_SIZE; |
2793 | 0 | gsicc_tag *tag_list; |
2794 | 0 | gs_memory_t *memory = src_profile->memory; |
2795 | 0 | int last_tag = -1; |
2796 | 0 | byte *buffer, *curr_ptr; |
2797 | 0 | int tag_location; |
2798 | 0 | int tag_size; |
2799 | 0 | gsicc_clut gamutlut; |
2800 | 0 | int code, k; |
2801 | | |
2802 | | /* Profile description tag, copyright tag white point and grayTRC */ |
2803 | 0 | tag_list = (gsicc_tag*)gs_alloc_bytes(memory, |
2804 | 0 | sizeof(gsicc_tag)*num_tags, "gsicc_create_v2output"); |
2805 | 0 | if (tag_list == NULL) |
2806 | 0 | return; |
2807 | | /* Let us precompute the sizes of everything and all our offsets */ |
2808 | 0 | profile_size += TAG_SIZE * num_tags; |
2809 | 0 | profile_size += 4; /* number of tags.... */ |
2810 | | |
2811 | | /* Common tags */ |
2812 | 0 | init_common_tagsv2(tag_list, num_tags, &last_tag); |
2813 | 0 | init_tag(tag_list, &last_tag, icSigMediaWhitePointTag, XYZPT_SIZE); |
2814 | | |
2815 | | /* Get the tag size of the cluts with the lut16Type */ |
2816 | | /* Perceptual */ |
2817 | 0 | tag_size = getsize_lut16Type(FORWARD_V2_TABLE_SIZE, src_profile->num_comps, 3); |
2818 | 0 | init_tag(tag_list, &last_tag, icSigAToB0Tag, tag_size); |
2819 | 0 | tag_size = getsize_lut8Type(BACKWARD_V2_TABLE_SIZE, 3, src_profile->num_comps); |
2820 | 0 | init_tag(tag_list, &last_tag, icSigBToA0Tag, tag_size); |
2821 | | |
2822 | | /* Relative Colorimetric */ |
2823 | 0 | tag_size = getsize_lut16Type(FORWARD_V2_TABLE_SIZE, src_profile->num_comps, 3); |
2824 | 0 | init_tag(tag_list, &last_tag, icSigAToB1Tag, tag_size); |
2825 | 0 | tag_size = getsize_lut8Type(BACKWARD_V2_TABLE_SIZE, 3, src_profile->num_comps); |
2826 | 0 | init_tag(tag_list, &last_tag, icSigBToA1Tag, tag_size); |
2827 | | |
2828 | | /* Saturation */ |
2829 | 0 | tag_size = getsize_lut16Type(FORWARD_V2_TABLE_SIZE, src_profile->num_comps, 3); |
2830 | 0 | init_tag(tag_list, &last_tag, icSigAToB2Tag, tag_size); |
2831 | 0 | tag_size = getsize_lut8Type(BACKWARD_V2_TABLE_SIZE, 3, src_profile->num_comps); |
2832 | 0 | init_tag(tag_list, &last_tag, icSigBToA2Tag, tag_size); |
2833 | | |
2834 | | /* And finally the Gamut Tag. Since we can't determine gamut here this |
2835 | | is essentially a required place holder. Make it small */ |
2836 | 0 | tag_size = getsize_lut8Type(2, src_profile->num_comps, 1); |
2837 | 0 | init_tag(tag_list, &last_tag, icSigGamutTag, tag_size); |
2838 | | |
2839 | | /* Now get the profile size */ |
2840 | 0 | for (k = 0; k < num_tags; k++) { |
2841 | 0 | profile_size += tag_list[k].size; |
2842 | 0 | } |
2843 | | |
2844 | | /* Allocate buffer */ |
2845 | 0 | buffer = gs_alloc_bytes(memory, profile_size, "gsicc_create_v2output"); |
2846 | 0 | if (buffer == NULL) { |
2847 | 0 | gs_free_object(memory, tag_list, "gsicc_create_v2output"); |
2848 | 0 | return; |
2849 | 0 | } |
2850 | | |
2851 | | /* Write out data */ |
2852 | 0 | curr_ptr = write_v2_common_data(buffer, profile_size, header, tag_list, |
2853 | 0 | num_tags, mediawhitept); |
2854 | 0 | tag_location = V2_COMMON_TAGS; |
2855 | | |
2856 | | /* A2B0 */ |
2857 | 0 | if (create_write_table_intent(pgs, gsPERCEPTUAL, src_profile, lab_profile, |
2858 | 0 | curr_ptr, FORWARD_V2_TABLE_SIZE, 2, |
2859 | 0 | tag_list[tag_location].byte_padding) < 0) { |
2860 | 0 | gs_free_object(memory, tag_list, "gsicc_create_v2output"); |
2861 | 0 | return; |
2862 | 0 | } |
2863 | 0 | curr_ptr += tag_list[tag_location].size; |
2864 | 0 | tag_location++; |
2865 | | |
2866 | | /* B2A0 */ |
2867 | 0 | if (create_write_table_intent(pgs, gsPERCEPTUAL, lab_profile, src_profile, |
2868 | 0 | curr_ptr, BACKWARD_V2_TABLE_SIZE, 1, |
2869 | 0 | tag_list[tag_location].byte_padding) < 0) { |
2870 | 0 | gs_free_object(memory, tag_list, "gsicc_create_v2output"); |
2871 | 0 | return; |
2872 | 0 | } |
2873 | 0 | curr_ptr += tag_list[tag_location].size; |
2874 | 0 | tag_location++; |
2875 | | |
2876 | | /* A2B1 */ |
2877 | 0 | if (create_write_table_intent(pgs, gsRELATIVECOLORIMETRIC, src_profile, |
2878 | 0 | lab_profile, curr_ptr, FORWARD_V2_TABLE_SIZE, 2, |
2879 | 0 | tag_list[tag_location].byte_padding) < 0) { |
2880 | 0 | gs_free_object(memory, tag_list, "gsicc_create_v2output"); |
2881 | 0 | return; |
2882 | 0 | } |
2883 | 0 | curr_ptr += tag_list[tag_location].size; |
2884 | 0 | tag_location++; |
2885 | | |
2886 | | /* B2A1 */ |
2887 | 0 | if (create_write_table_intent(pgs, gsRELATIVECOLORIMETRIC, lab_profile, |
2888 | 0 | src_profile, curr_ptr, BACKWARD_V2_TABLE_SIZE, 1, |
2889 | 0 | tag_list[tag_location].byte_padding) < 0) { |
2890 | 0 | gs_free_object(memory, tag_list, "gsicc_create_v2output"); |
2891 | 0 | return; |
2892 | 0 | } |
2893 | 0 | curr_ptr += tag_list[tag_location].size; |
2894 | 0 | tag_location++; |
2895 | | |
2896 | | /* A2B2 */ |
2897 | 0 | if (create_write_table_intent(pgs, gsSATURATION, src_profile, lab_profile, |
2898 | 0 | curr_ptr, FORWARD_V2_TABLE_SIZE, 2, |
2899 | 0 | tag_list[tag_location].byte_padding) < 0) { |
2900 | 0 | gs_free_object(memory, tag_list, "gsicc_create_v2output"); |
2901 | 0 | return; |
2902 | 0 | } |
2903 | 0 | curr_ptr += tag_list[tag_location].size; |
2904 | 0 | tag_location++; |
2905 | | |
2906 | | /* B2A2 */ |
2907 | 0 | if (create_write_table_intent(pgs, gsSATURATION, lab_profile, src_profile, |
2908 | 0 | curr_ptr, BACKWARD_V2_TABLE_SIZE, 1, |
2909 | 0 | tag_list[tag_location].byte_padding) < 0) { |
2910 | 0 | gs_free_object(memory, tag_list, "gsicc_create_v2output"); |
2911 | 0 | return; |
2912 | 0 | } |
2913 | 0 | curr_ptr += tag_list[tag_location].size; |
2914 | 0 | tag_location++; |
2915 | | |
2916 | | /* Gamut tag, which is bogus */ |
2917 | 0 | code = create_clut_v2(&gamutlut, NULL, src_profile->num_comps, 1, 2, pgs->memory, 1); |
2918 | 0 | if (code < 0) { |
2919 | 0 | gs_free_object(memory, tag_list, "gsicc_create_v2output"); |
2920 | 0 | return; |
2921 | 0 | } |
2922 | | |
2923 | | /* Now write it out */ |
2924 | 0 | curr_ptr = add_lutType(curr_ptr, &gamutlut); |
2925 | 0 | memset(curr_ptr, 0, tag_list[tag_location].byte_padding); |
2926 | | |
2927 | | /* Done */ |
2928 | 0 | gs_free_object(memory, tag_list, "gsicc_create_v2output"); |
2929 | 0 | clean_lut(&gamutlut, pgs->memory); |
2930 | | |
2931 | | /* Save the v2 data */ |
2932 | 0 | src_profile->v2_data = buffer; |
2933 | 0 | src_profile->v2_size = profile_size; |
2934 | |
|
2935 | | #if SAVEICCPROFILE |
2936 | | /* Dump the buffer to a file for testing if its a valid ICC profile */ |
2937 | | save_profile(memory,buffer, "V2OutputType", profile_size); |
2938 | | #endif |
2939 | 0 | } |
2940 | | |
2941 | | static void |
2942 | | gsicc_create_v2displaygray(const gs_gstate *pgs, icHeader *header, cmm_profile_t *src_profile, |
2943 | | byte *mediawhitept, cmm_profile_t *xyz_profile) |
2944 | 0 | { |
2945 | 0 | int num_tags = 4; |
2946 | 0 | int profile_size = HEADER_SIZE; |
2947 | 0 | gsicc_tag *tag_list; |
2948 | 0 | gs_memory_t *memory = src_profile->memory; |
2949 | 0 | int last_tag = -1; |
2950 | | /* 4 for name, 4 reserved, 4 for number entries, 2*num_entries */ |
2951 | 0 | int trc_tag_size = 12 + 2 * TRC_V2_SIZE; |
2952 | 0 | byte *buffer, *curr_ptr; |
2953 | 0 | unsigned short des[3], src; |
2954 | 0 | float *trc; |
2955 | 0 | int tag_location; |
2956 | 0 | gsicc_link_t *link; |
2957 | 0 | float max; |
2958 | 0 | int k; |
2959 | | |
2960 | | /* Profile description tag, copyright tag white point and grayTRC */ |
2961 | 0 | tag_list = (gsicc_tag*)gs_alloc_bytes(memory, |
2962 | 0 | sizeof(gsicc_tag)*num_tags, "gsicc_createv2display_gray"); |
2963 | 0 | if (tag_list == NULL) |
2964 | 0 | return; |
2965 | | /* Let us precompute the sizes of everything and all our offsets */ |
2966 | 0 | profile_size += TAG_SIZE * num_tags; |
2967 | 0 | profile_size += 4; /* number of tags.... */ |
2968 | | |
2969 | | /* Common tags */ |
2970 | 0 | init_common_tagsv2(tag_list, num_tags, &last_tag); |
2971 | 0 | init_tag(tag_list, &last_tag, icSigMediaWhitePointTag, XYZPT_SIZE); |
2972 | 0 | init_tag(tag_list, &last_tag, icSigGrayTRCTag, trc_tag_size); |
2973 | | |
2974 | | /* Now get the profile size */ |
2975 | 0 | for (k = 0; k < num_tags; k++) { |
2976 | 0 | profile_size += tag_list[k].size; |
2977 | 0 | } |
2978 | | /* Allocate buffer */ |
2979 | 0 | buffer = gs_alloc_bytes(memory, profile_size, "gsicc_createv2display_gray"); |
2980 | 0 | if (buffer == NULL) { |
2981 | 0 | gs_free_object(memory, tag_list, "gsicc_createv2display_gray"); |
2982 | 0 | return; |
2983 | 0 | } |
2984 | | |
2985 | | /* Start writing out data to buffer */ |
2986 | 0 | curr_ptr = write_v2_common_data(buffer, profile_size, header, tag_list, |
2987 | 0 | num_tags, mediawhitept); |
2988 | 0 | tag_location = V2_COMMON_TAGS; |
2989 | | |
2990 | | /* Now the TRC. First collect the curve data and then write it out */ |
2991 | | /* Get the link between our gray profile and XYZ profile */ |
2992 | 0 | link = get_link(pgs, src_profile, xyz_profile, gsPERCEPTUAL); |
2993 | 0 | if (link == NULL) { |
2994 | 0 | gs_free_object(memory, tag_list, "gsicc_createv2display_gray"); |
2995 | 0 | gs_free_object(memory, buffer, "gsicc_createv2display_gray"); |
2996 | 0 | return; |
2997 | 0 | } |
2998 | | |
2999 | | /* First get the max value for Y on the range */ |
3000 | 0 | src = 65535; |
3001 | 0 | (link->procs.map_color)(NULL, link, &src, &(des[0]), 2); |
3002 | 0 | max = des[1]; |
3003 | |
|
3004 | 0 | trc = (float*) gs_alloc_bytes(memory, TRC_V2_SIZE * sizeof(float), "gsicc_createv2display_gray"); |
3005 | 0 | if (trc == NULL) { |
3006 | 0 | gsicc_release_link(link); |
3007 | 0 | gs_free_object(memory, tag_list, "gsicc_createv2display_gray"); |
3008 | 0 | gs_free_object(memory, buffer, "gsicc_createv2display_gray"); |
3009 | 0 | return; |
3010 | 0 | } |
3011 | 0 | for (k = 0; k < TRC_V2_SIZE; k++) { |
3012 | 0 | src = (unsigned short)((double)k * (double)65535 / (double)(TRC_V2_SIZE - 1)); |
3013 | 0 | (link->procs.map_color)(NULL, link, &src, &(des[0]), 2); |
3014 | 0 | trc[k] = (float)des[1] / max; |
3015 | 0 | } |
3016 | 0 | add_curve(curr_ptr, trc, TRC_V2_SIZE); |
3017 | 0 | curr_ptr += tag_list[tag_location].size; |
3018 | | |
3019 | | /* Clean up */ |
3020 | 0 | gsicc_release_link(link); |
3021 | 0 | gs_free_object(memory, tag_list, "gsicc_createv2display_gray"); |
3022 | 0 | gs_free_object(memory, trc, "gsicc_createv2display_gray"); |
3023 | | /* Save the v2 data */ |
3024 | 0 | src_profile->v2_data = buffer; |
3025 | 0 | src_profile->v2_size = profile_size; |
3026 | |
|
3027 | | #if SAVEICCPROFILE |
3028 | | /* Dump the buffer to a file for testing if its a valid ICC profile */ |
3029 | | save_profile(memory, buffer, "V2FromGray", profile_size); |
3030 | | #endif |
3031 | 0 | } |
3032 | | |
3033 | | static void |
3034 | | gsicc_create_v2displayrgb(const gs_gstate *pgs, icHeader *header, cmm_profile_t *src_profile, |
3035 | | byte *mediawhitept, cmm_profile_t *xyz_profile) |
3036 | 0 | { |
3037 | 0 | int num_tags = 9; |
3038 | 0 | int profile_size = HEADER_SIZE; |
3039 | 0 | gsicc_tag *tag_list; |
3040 | 0 | gs_memory_t *memory = src_profile->memory; |
3041 | 0 | int last_tag = -1; |
3042 | | /* 4 for name, 4 reserved, 4 for number entries, 2*num_entries */ |
3043 | 0 | int trc_tag_size = 12 + 2 * TRC_V2_SIZE; |
3044 | 0 | byte *buffer, *curr_ptr; |
3045 | 0 | float *trc; |
3046 | 0 | int tag_location; |
3047 | 0 | icS15Fixed16Number XYZ_Data[3]; |
3048 | 0 | gsicc_link_t *link; |
3049 | 0 | int k; |
3050 | | |
3051 | | /* Profile description tag, copyright tag white point RGB colorants and |
3052 | | RGB TRCs */ |
3053 | 0 | tag_list = (gsicc_tag*)gs_alloc_bytes(memory, |
3054 | 0 | sizeof(gsicc_tag)*num_tags, "gsicc_create_v2displayrgb"); |
3055 | 0 | if (tag_list == NULL) |
3056 | 0 | return; |
3057 | | /* Let us precompute the sizes of everything and all our offsets */ |
3058 | 0 | profile_size += TAG_SIZE * num_tags; |
3059 | 0 | profile_size += 4; /* number of tags.... */ |
3060 | | |
3061 | | /* Common tags + white point + RGB colorants + RGB TRCs */ |
3062 | 0 | init_common_tagsv2(tag_list, num_tags, &last_tag); |
3063 | 0 | init_tag(tag_list, &last_tag, icSigMediaWhitePointTag, XYZPT_SIZE); |
3064 | 0 | init_tag(tag_list, &last_tag, icSigRedColorantTag, XYZPT_SIZE); |
3065 | 0 | init_tag(tag_list, &last_tag, icSigGreenColorantTag, XYZPT_SIZE); |
3066 | 0 | init_tag(tag_list, &last_tag, icSigBlueColorantTag, XYZPT_SIZE); |
3067 | 0 | init_tag(tag_list, &last_tag, icSigRedTRCTag, trc_tag_size); |
3068 | 0 | init_tag(tag_list, &last_tag, icSigGreenTRCTag, trc_tag_size); |
3069 | 0 | init_tag(tag_list, &last_tag, icSigBlueTRCTag, trc_tag_size); |
3070 | | |
3071 | | /* Now get the profile size */ |
3072 | 0 | for (k = 0; k < num_tags; k++) { |
3073 | 0 | profile_size += tag_list[k].size; |
3074 | 0 | } |
3075 | | |
3076 | | /* Allocate buffer */ |
3077 | 0 | buffer = gs_alloc_bytes(memory, profile_size, "gsicc_create_v2displayrgb"); |
3078 | 0 | if (buffer == NULL) { |
3079 | 0 | gs_free_object(memory, tag_list, "gsicc_create_v2displayrgb"); |
3080 | 0 | return; |
3081 | 0 | } |
3082 | | |
3083 | | /* Start writing out data to buffer */ |
3084 | 0 | curr_ptr = write_v2_common_data(buffer, profile_size, header, tag_list, |
3085 | 0 | num_tags, mediawhitept); |
3086 | 0 | tag_location = V2_COMMON_TAGS; |
3087 | | |
3088 | | /* Now the main colorants. Get them and the TRC data from using the link |
3089 | | between the source profile and the CIEXYZ profile */ |
3090 | 0 | link = get_link(pgs, src_profile, xyz_profile, gsPERCEPTUAL); |
3091 | 0 | if (link == NULL) { |
3092 | 0 | gs_free_object(memory, tag_list, "gsicc_create_v2displayrgb"); |
3093 | 0 | gs_free_object(memory, buffer, "gsicc_create_v2displayrgb"); |
3094 | 0 | return; |
3095 | 0 | } |
3096 | | |
3097 | | /* Get the Red, Green and Blue colorants */ |
3098 | 0 | for (k = 0; k < 3; k++) { |
3099 | 0 | get_colorant(k, link, XYZ_Data); |
3100 | 0 | add_xyzdata(curr_ptr, XYZ_Data); |
3101 | 0 | curr_ptr += tag_list[tag_location].size; |
3102 | 0 | tag_location++; |
3103 | 0 | } |
3104 | | |
3105 | | /* Now the TRCs */ |
3106 | 0 | trc = (float*) gs_alloc_bytes(memory, TRC_V2_SIZE * sizeof(float), "gsicc_create_v2displayrgb"); |
3107 | 0 | if (trc == NULL) { |
3108 | 0 | gsicc_release_link(link); |
3109 | 0 | gs_free_object(memory, tag_list, "gsicc_create_v2displayrgb"); |
3110 | 0 | gs_free_object(memory, buffer, "gsicc_create_v2displayrgb"); |
3111 | 0 | return; |
3112 | 0 | } |
3113 | | |
3114 | 0 | for (k = 0; k < 3; k++) { |
3115 | 0 | get_trc(k, link, &trc, TRC_V2_SIZE); |
3116 | 0 | add_curve(curr_ptr, trc, TRC_V2_SIZE); |
3117 | 0 | curr_ptr += tag_list[tag_location].size; |
3118 | 0 | } |
3119 | | |
3120 | | /* Clean up */ |
3121 | 0 | gsicc_release_link(link); |
3122 | 0 | gs_free_object(memory, tag_list, "gsicc_create_v2displayrgb"); |
3123 | 0 | gs_free_object(memory, trc, "gsicc_create_v2displayrgb"); |
3124 | | /* Save the v2 data */ |
3125 | 0 | src_profile->v2_data = buffer; |
3126 | 0 | src_profile->v2_size = profile_size; |
3127 | |
|
3128 | | #if SAVEICCPROFILE |
3129 | | /* Dump the buffer to a file for testing if its a valid ICC profile */ |
3130 | | save_profile(memory,buffer, "V2FromRGB", profile_size); |
3131 | | #endif |
3132 | 0 | } |
3133 | | |
3134 | | static void |
3135 | | gsicc_create_v2display(const gs_gstate *pgs, icHeader *header, cmm_profile_t *src_profile, |
3136 | | byte *mediawhitept, cmm_profile_t *xyz_profile) |
3137 | 0 | { |
3138 | | /* Need to create matrix with the TRCs. Have to worry about gray |
3139 | | and RGB cases. */ |
3140 | 0 | if (header->colorSpace == icSigGrayData) |
3141 | 0 | gsicc_create_v2displaygray(pgs, header, src_profile, mediawhitept, xyz_profile); |
3142 | 0 | else |
3143 | 0 | gsicc_create_v2displayrgb(pgs, header, src_profile, mediawhitept, xyz_profile); |
3144 | 0 | } |
3145 | | |
3146 | | static int |
3147 | | readint32(byte *buff) |
3148 | 0 | { |
3149 | 0 | int out = 0; |
3150 | 0 | byte *ptr = buff; |
3151 | 0 | int k; |
3152 | |
|
3153 | 0 | for (k = 0; k < 4; k++) { |
3154 | 0 | int temp = ptr[k]; |
3155 | 0 | int shift = (3 - k) * 8; |
3156 | 0 | out += temp << shift; |
3157 | 0 | } |
3158 | 0 | return out; |
3159 | 0 | } |
3160 | | |
3161 | | /* Create special profile for going to/from CIEXYZ color space. We will use |
3162 | | this with lcms and the current profile to construct the structures in |
3163 | | a new V2 profile */ |
3164 | | static int |
3165 | | get_xyzprofile(cmm_profile_t *xyz_profile) |
3166 | 0 | { |
3167 | 0 | icProfile iccprofile; |
3168 | 0 | icHeader *header = &(iccprofile.header); |
3169 | 0 | int num_tags = 9; /* common (2) + rXYZ,gXYZ,bXYZ,rTRC,gTRC,bTRC,wtpt */ |
3170 | 0 | int profile_size = HEADER_SIZE; |
3171 | 0 | gsicc_tag *tag_list; |
3172 | 0 | int last_tag = -1; |
3173 | | /* 4 for name, 4 reserved, 4 for number entries. 0 entries implies linear */ |
3174 | 0 | int trc_tag_size = 12; |
3175 | 0 | byte *buffer, *curr_ptr, *tempptr; |
3176 | 0 | int tag_location; |
3177 | 0 | gs_memory_t *memory = xyz_profile->memory; |
3178 | 0 | icS15Fixed16Number temp_XYZ[3]; |
3179 | 0 | byte mediawhitept[12]; |
3180 | 0 | icS15Fixed16Number one, zero; |
3181 | 0 | int k, j; |
3182 | 0 | int code; |
3183 | | |
3184 | | /* Fill in the common stuff */ |
3185 | 0 | setheader_common(header, 2); |
3186 | | /* If we have to create a table we will do it in XYZ. If it is a matrix, |
3187 | | it is still XYZ */ |
3188 | 0 | header->pcs = icSigXYZData; |
3189 | 0 | header->colorSpace = icSigRgbData; |
3190 | 0 | header->deviceClass = icSigDisplayClass; |
3191 | | |
3192 | | /* Profile description tag, copyright tag white point and grayTRC */ |
3193 | 0 | tag_list = (gsicc_tag*)gs_alloc_bytes(memory, |
3194 | 0 | sizeof(gsicc_tag) * num_tags, "get_xyzprofile"); |
3195 | 0 | if (tag_list == NULL) |
3196 | 0 | return -1; |
3197 | | /* Let us precompute the sizes of everything and all our offsets */ |
3198 | 0 | profile_size += TAG_SIZE * num_tags; |
3199 | 0 | profile_size += 4; /* number of tags.... */ |
3200 | | |
3201 | | /* Common tags + white point + RGB colorants + RGB TRCs */ |
3202 | 0 | init_common_tagsv2(tag_list, num_tags, &last_tag); |
3203 | 0 | init_tag(tag_list, &last_tag, icSigMediaWhitePointTag, XYZPT_SIZE); |
3204 | 0 | init_tag(tag_list, &last_tag, icSigRedColorantTag, XYZPT_SIZE); |
3205 | 0 | init_tag(tag_list, &last_tag, icSigGreenColorantTag, XYZPT_SIZE); |
3206 | 0 | init_tag(tag_list, &last_tag, icSigBlueColorantTag, XYZPT_SIZE); |
3207 | 0 | init_tag(tag_list, &last_tag, icSigRedTRCTag, trc_tag_size); |
3208 | 0 | init_tag(tag_list, &last_tag, icSigGreenTRCTag, trc_tag_size); |
3209 | 0 | init_tag(tag_list, &last_tag, icSigBlueTRCTag, trc_tag_size); |
3210 | | |
3211 | | /* Now get the profile size */ |
3212 | 0 | for (k = 0; k < num_tags; k++) { |
3213 | 0 | profile_size += tag_list[k].size; |
3214 | 0 | } |
3215 | | |
3216 | | /* Allocate buffer */ |
3217 | 0 | buffer = gs_alloc_bytes(memory, profile_size, "get_xyzprofile"); |
3218 | 0 | if (buffer == NULL) { |
3219 | 0 | gs_free_object(memory, tag_list, "get_xyzprofile"); |
3220 | 0 | return -1; |
3221 | 0 | } |
3222 | | |
3223 | | /* Media white point for this profile is D50 */ |
3224 | 0 | get_D50(temp_XYZ); /* See Appendix D6 in spec */ |
3225 | 0 | tempptr = mediawhitept; |
3226 | 0 | for (j = 0; j < 3; j++) { |
3227 | 0 | write_bigendian_4bytes(tempptr, temp_XYZ[j]); |
3228 | 0 | tempptr += 4; |
3229 | 0 | } |
3230 | | |
3231 | | /* Start writing out data to buffer */ |
3232 | 0 | curr_ptr = write_v2_common_data(buffer, profile_size, header, tag_list, |
3233 | 0 | num_tags, mediawhitept); |
3234 | 0 | tag_location = V2_COMMON_TAGS; |
3235 | | /* Now lets add the Red Green and Blue colorant information */ |
3236 | 0 | one = double2XYZtype(1); |
3237 | 0 | zero = double2XYZtype(0); |
3238 | |
|
3239 | 0 | temp_XYZ[0] = one; |
3240 | 0 | temp_XYZ[1] = zero; |
3241 | 0 | temp_XYZ[2] = zero; |
3242 | 0 | add_xyzdata(curr_ptr, temp_XYZ); |
3243 | 0 | curr_ptr += tag_list[tag_location].size; |
3244 | 0 | tag_location++; |
3245 | |
|
3246 | 0 | temp_XYZ[0] = zero; |
3247 | 0 | temp_XYZ[1] = one; |
3248 | 0 | add_xyzdata(curr_ptr, temp_XYZ); |
3249 | 0 | curr_ptr += tag_list[tag_location].size; |
3250 | 0 | tag_location++; |
3251 | |
|
3252 | 0 | temp_XYZ[1] = zero; |
3253 | 0 | temp_XYZ[2] = one; |
3254 | 0 | add_xyzdata(curr_ptr, temp_XYZ); |
3255 | 0 | curr_ptr += tag_list[tag_location].size; |
3256 | 0 | tag_location++; |
3257 | | |
3258 | | /* And now the TRCs */ |
3259 | 0 | add_curve(curr_ptr, NULL, 0); |
3260 | 0 | curr_ptr += tag_list[tag_location].size; |
3261 | 0 | tag_location++; |
3262 | 0 | add_curve(curr_ptr, NULL, 0); |
3263 | 0 | curr_ptr += tag_list[tag_location].size; |
3264 | 0 | tag_location++; |
3265 | 0 | add_curve(curr_ptr, NULL, 0); |
3266 | | |
3267 | | /* Done */ |
3268 | 0 | gs_free_object(memory, tag_list, "get_xyzprofile"); |
3269 | 0 | xyz_profile->buffer = buffer; |
3270 | 0 | xyz_profile->buffer_size = profile_size; |
3271 | 0 | code = gsicc_init_profile_info(xyz_profile); |
3272 | | #if SAVEICCPROFILE |
3273 | | /* Dump the buffer to a file for testing if its a valid ICC profile */ |
3274 | | save_profile(memory,buffer, "XYZProfile", profile_size); |
3275 | | #endif |
3276 | 0 | return code; |
3277 | 0 | } |
3278 | | |
3279 | | static bool |
3280 | | get_mediawp(cmm_profile_t *src_profile, byte *mediawhitept) |
3281 | 0 | { |
3282 | 0 | byte *buffer = &(src_profile->buffer[128]); |
3283 | 0 | int num_tags = readint32(buffer); |
3284 | 0 | int tag_signature = -1; |
3285 | 0 | int offset; |
3286 | 0 | int k; |
3287 | 0 | int buffer_left = src_profile->buffer_size; |
3288 | |
|
3289 | 0 | if (buffer_left < 128) |
3290 | 0 | return false; |
3291 | 0 | buffer_left -= 128; |
3292 | |
|
3293 | 0 | if (buffer_left < 4) |
3294 | 0 | return false; |
3295 | | |
3296 | 0 | buffer += 4; |
3297 | 0 | buffer_left -= 4; |
3298 | | |
3299 | | /* Get to the tag table */ |
3300 | 0 | for (k = 0; k < num_tags; k++) { |
3301 | 0 | if (buffer_left < 12) |
3302 | 0 | return false; |
3303 | | |
3304 | 0 | tag_signature = readint32(buffer); |
3305 | 0 | if (tag_signature == icSigMediaWhitePointTag) |
3306 | 0 | break; |
3307 | 0 | buffer += 12; |
3308 | 0 | buffer_left -= 12; |
3309 | 0 | } |
3310 | 0 | if (tag_signature != icSigMediaWhitePointTag) |
3311 | 0 | return false; |
3312 | | |
3313 | 0 | if (buffer_left < 4) |
3314 | 0 | return false; |
3315 | | |
3316 | 0 | buffer += 4; |
3317 | 0 | buffer_left -= 4; |
3318 | |
|
3319 | 0 | offset = readint32(buffer); |
3320 | |
|
3321 | 0 | if (buffer_left < offset + 8) |
3322 | 0 | return false; |
3323 | | |
3324 | 0 | buffer = &(src_profile->buffer[offset + 8]); /* Add offset of 8 for XYZ tag and padding */ |
3325 | 0 | buffer_left = src_profile->buffer_size - (offset + 8); |
3326 | | |
3327 | | /* Data is already in the proper format. Just get the bytes */ |
3328 | 0 | if (buffer_left < 12) |
3329 | 0 | return false; |
3330 | | |
3331 | 0 | memcpy(mediawhitept, buffer, 12); |
3332 | 0 | return true; |
3333 | 0 | } |
3334 | | |
3335 | | static void |
3336 | | gsicc_create_v2(const gs_gstate *pgs, cmm_profile_t *src_profile) |
3337 | 0 | { |
3338 | 0 | icProfile iccprofile; |
3339 | 0 | icHeader *header = &(iccprofile.header); |
3340 | 0 | byte mediawhitept[12]; |
3341 | 0 | cmm_profile_t *xyz_profile; |
3342 | |
|
3343 | 0 | if (src_profile->v2_data != NULL) |
3344 | 0 | return; |
3345 | | |
3346 | | /* Fill in the common stuff */ |
3347 | 0 | setheader_common(header, 2); |
3348 | | |
3349 | | /* Get the data_cs of current profile */ |
3350 | 0 | switch (src_profile->data_cs) { |
3351 | 0 | case gsGRAY: |
3352 | 0 | header->colorSpace = icSigGrayData; |
3353 | 0 | break; |
3354 | 0 | case gsRGB: |
3355 | 0 | header->colorSpace = icSigRgbData; |
3356 | 0 | break; |
3357 | 0 | case gsCMYK: |
3358 | 0 | header->colorSpace = icSigCmykData; |
3359 | 0 | break; |
3360 | 0 | default: |
3361 | | #ifdef DEBUG |
3362 | | gs_warn("Failed in creating V2 ICC profile"); |
3363 | | #endif |
3364 | 0 | return; |
3365 | 0 | break; |
3366 | 0 | } |
3367 | | |
3368 | | /* Use the deviceClass from the source profile. */ |
3369 | 0 | header->deviceClass = gsicc_get_device_class(src_profile); |
3370 | | |
3371 | | /* Unfortunately we have to get the media white point also. lcms wrapped |
3372 | | up the method internally when it went to release 2 so we will do our |
3373 | | own*/ |
3374 | 0 | if (!get_mediawp(src_profile, &(mediawhitept[0]))) { |
3375 | | #ifdef DEBUG |
3376 | | gs_warn("Failed in creating V2 ICC profile"); |
3377 | | #endif |
3378 | 0 | return; |
3379 | 0 | } |
3380 | | |
3381 | | /* Also, we will want to create an XYZ ICC profile that we can use for |
3382 | | creating our data with lcms. If already created, this profile is |
3383 | | stored in the manager */ |
3384 | 0 | if (pgs->icc_manager->xyz_profile != NULL) { |
3385 | 0 | xyz_profile = pgs->icc_manager->xyz_profile; |
3386 | 0 | } else { |
3387 | 0 | xyz_profile = gsicc_profile_new(NULL, pgs->memory, NULL, 0); |
3388 | 0 | if (xyz_profile == NULL) { |
3389 | | #ifdef DEBUG |
3390 | | gs_warn("Failed in creating V2 ICC profile"); |
3391 | | #endif |
3392 | 0 | return; |
3393 | 0 | } |
3394 | 0 | if (get_xyzprofile(xyz_profile) != 0) { |
3395 | | #ifdef DEBUG |
3396 | | gs_warn("Failed in creating V2 ICC profile"); |
3397 | | #endif |
3398 | 0 | return; |
3399 | 0 | } |
3400 | 0 | pgs->icc_manager->xyz_profile = xyz_profile; |
3401 | 0 | } |
3402 | | |
3403 | | /* The type of stuff that we need to create */ |
3404 | 0 | switch (header->deviceClass) { |
3405 | 0 | case icSigInputClass: |
3406 | 0 | header->pcs = icSigLabData; |
3407 | 0 | gsicc_create_v2input(pgs, header, src_profile, mediawhitept, |
3408 | 0 | pgs->icc_manager->lab_profile); |
3409 | 0 | break; |
3410 | 0 | case icSigDisplayClass: |
3411 | 0 | header->pcs = icSigXYZData; |
3412 | 0 | gsicc_create_v2display(pgs, header, src_profile, mediawhitept, |
3413 | 0 | xyz_profile); |
3414 | 0 | break; |
3415 | 0 | case icSigOutputClass: |
3416 | 0 | header->pcs = icSigLabData; |
3417 | 0 | gsicc_create_v2output(pgs, header, src_profile, mediawhitept, |
3418 | 0 | pgs->icc_manager->lab_profile); |
3419 | 0 | break; |
3420 | 0 | default: |
3421 | | #ifdef DEBUG |
3422 | | gs_warn("Failed in creating V2 ICC profile"); |
3423 | | #endif |
3424 | 0 | return; |
3425 | 0 | break; |
3426 | 0 | } |
3427 | 0 | return; |
3428 | 0 | } |
3429 | | |
3430 | | /* While someone could create something that was not valid for now we will |
3431 | | just trust the version information in the header. Allow anything with |
3432 | | major version 2 */ |
3433 | | static bool |
3434 | | gsicc_create_isv2(cmm_profile_t *profile) |
3435 | 0 | { |
3436 | 0 | if (profile->vers == ICCVERS_UNKNOWN) { |
3437 | 0 | int majorvers = profile->buffer[8]; |
3438 | |
|
3439 | 0 | if (majorvers == 2) { |
3440 | 0 | profile->vers = ICCVERS_2; |
3441 | 0 | return true; |
3442 | 0 | } else { |
3443 | 0 | profile->vers = ICCVERS_NOT2; |
3444 | 0 | return false; |
3445 | 0 | } |
3446 | 0 | } |
3447 | 0 | if (profile->vers == ICCVERS_2) |
3448 | 0 | return true; |
3449 | 0 | else |
3450 | 0 | return false; |
3451 | 0 | } |
3452 | | |
3453 | | byte* |
3454 | | gsicc_create_getv2buffer(const gs_gstate *pgs, cmm_profile_t *srcprofile, |
3455 | | int *size) |
3456 | 0 | { |
3457 | 0 | if (gsicc_create_isv2(srcprofile)) { |
3458 | 0 | *size = srcprofile->buffer_size; |
3459 | 0 | return srcprofile->buffer; |
3460 | 0 | } |
3461 | | |
3462 | 0 | if (srcprofile->profile_handle == NULL) |
3463 | 0 | srcprofile->profile_handle = |
3464 | 0 | gsicc_get_profile_handle_buffer(srcprofile->buffer, |
3465 | 0 | srcprofile->buffer_size, pgs->memory); |
3466 | | |
3467 | | /* Need to create v2 profile */ |
3468 | 0 | gsicc_create_v2(pgs, srcprofile); |
3469 | |
|
3470 | 0 | *size = srcprofile->v2_size; |
3471 | 0 | return srcprofile->v2_data; |
3472 | 0 | } |