Coverage Report

Created: 2025-06-10 07:27

/src/ghostpdl/base/gxshade6.c
Line
Count
Source (jump to first uncovered line)
1
/* Copyright (C) 2001-2024 Artifex Software, Inc.
2
   All Rights Reserved.
3
4
   This software is provided AS-IS with no warranty, either express or
5
   implied.
6
7
   This software is distributed under license and may not be copied,
8
   modified or distributed except as expressly authorized under the terms
9
   of the license contained in the file LICENSE in this distribution.
10
11
   Refer to licensing information at http://www.artifex.com or contact
12
   Artifex Software, Inc.,  39 Mesa Street, Suite 108A, San Francisco,
13
   CA 94129, USA, for further information.
14
*/
15
16
17
/* Rendering for Coons and tensor patch shadings */
18
/*
19
   A contiguous non-overlapping decomposition
20
   of a tensor shading into linear color triangles.
21
 */
22
#include "memory_.h"
23
#include "gx.h"
24
#include "gserrors.h"
25
#include "gsmatrix.h"           /* for gscoord.h */
26
#include "gscoord.h"
27
#include "gscicach.h"
28
#include "gxcspace.h"
29
#include "gxdcolor.h"
30
#include "gxgstate.h"
31
#include "gxshade.h"
32
#include "gxdevcli.h"
33
#include "gxshade4.h"
34
#include "gxarith.h"
35
#include "gzpath.h"
36
#include "stdint_.h"
37
#include "math_.h"
38
#include "gsicc_cache.h"
39
#include "gxdevsop.h"
40
41
/* The original version of the shading code 'decompose's shadings into
42
 * smaller and smaller regions until they are smaller than 1 pixel, and then
43
 * fills them. (Either with a constant colour, or with a linear filled trap).
44
 *
45
 * Previous versions of the code (from svn revision 7936 until June 2011
46
 * (shortly after the switch to git)) changed this limit to be 1 point or 1
47
 * pixel (whichever is larger) (on the grounds that as resolution increases,
48
 * we are unlikely to be able to notice increasingly small inaccuracies in
49
 * the shading). Given how people abuse the resolution at which things are
50
 * rendered (especially when rendering to images that can subsequently be
51
 * zoomed), this seems a poor trade off. See bug 691152.
52
 *
53
 * The code has now been changed back to operate with the proper 1 pixel
54
 * decomposition, which will cost us performance in some cases. Should
55
 * people want to restore the previous operation, they should build with
56
 * MAX_SHADING_RESOLUTION predefined to 72. In general, this symbol can be
57
 * set to the maximum dpi that shading should ever be performed at. Leaving
58
 * it undefined will leave the default (1 pixel limit) in place.
59
 *
60
 * A possible future optimisation here may be to use different max shading
61
 * resolutions for linear and non-linear shadings; linear shadings appear to
62
 * result in calls to "fill linear traps", and non linear ones appear to
63
 * result in calls to "fill constant color". As such linear shadings are much
64
 * more forgiving of a higher decomposition threshold.
65
 */
66
67
#if NOFILL_TEST
68
static bool dbg_nofill = false;
69
#endif
70
#if SKIP_TEST
71
static int dbg_patch_cnt = 0;
72
static int dbg_quad_cnt = 0;
73
static int dbg_triangle_cnt = 0;
74
static int dbg_wedge_triangle_cnt = 0;
75
#endif
76
77
enum {
78
    min_linear_grades = 255 /* The minimal number of device color grades,
79
            required to apply linear color device functions. */
80
};
81
82
/* ================ Utilities ================ */
83
84
static int
85
allocate_color_stack(patch_fill_state_t *pfs, gs_memory_t *memory)
86
5.24k
{
87
5.24k
    if (pfs->color_stack != NULL)
88
0
        return 0;
89
5.24k
    pfs->color_stack_step = offset_of(patch_color_t, cc.paint.values[pfs->num_components]);
90
5.24k
    pfs->color_stack_step = (pfs->color_stack_step + sizeof(void *) - 1) / sizeof(void *) * sizeof(void *); /* Alignment */
91
92
5.24k
    pfs->color_stack_size = pfs->color_stack_step * SHADING_COLOR_STACK_SIZE;
93
5.24k
    pfs->color_stack = gs_alloc_bytes(memory, pfs->color_stack_size, "allocate_color_stack");
94
5.24k
    if (pfs->color_stack == NULL)
95
0
        return_error(gs_error_VMerror);
96
5.24k
    pfs->color_stack_limit = pfs->color_stack + pfs->color_stack_size;
97
5.24k
    pfs->color_stack_ptr = pfs->color_stack;
98
5.24k
    pfs->memory = memory;
99
5.24k
    return 0;
100
5.24k
}
101
102
static inline byte *
103
reserve_colors_inline(patch_fill_state_t *pfs, patch_color_t *c[], int n)
104
28.8M
{
105
28.8M
    int i;
106
28.8M
    byte *ptr0 = pfs->color_stack_ptr, *ptr = ptr0;
107
108
87.6M
    for (i = 0; i < n; i++, ptr += pfs->color_stack_step)
109
58.8M
        c[i] = (patch_color_t *)ptr;
110
28.8M
    if (ptr > pfs->color_stack_limit) {
111
0
        c[0] = NULL; /* safety. */
112
0
        return NULL;
113
0
    }
114
28.8M
    pfs->color_stack_ptr = ptr;
115
28.8M
    return ptr0;
116
28.8M
}
117
118
byte *
119
reserve_colors(patch_fill_state_t *pfs, patch_color_t *c[], int n)
120
86
{
121
86
    return reserve_colors_inline(pfs, c, n);
122
86
}
123
124
static inline void
125
release_colors_inline(patch_fill_state_t *pfs, byte *ptr, int n)
126
28.8M
{
127
#if 0 /* Saving the invariant for records. */
128
    pfs->color_stack_ptr = pfs->color_stack_step * n;
129
    assert((byte *)pfs->color_stack_ptr == ptr);
130
#else
131
28.8M
    pfs->color_stack_ptr = ptr;
132
28.8M
#endif
133
28.8M
}
134
void
135
release_colors(patch_fill_state_t *pfs, byte *ptr, int n)
136
86
{
137
86
    release_colors_inline(pfs, ptr, n);
138
86
}
139
140
/* Get colors for patch vertices. */
141
static int
142
shade_next_colors(shade_coord_stream_t * cs, patch_curve_t * curves,
143
                  int num_vertices)
144
25.8k
{
145
25.8k
    int i, code = 0;
146
147
101k
    for (i = 0; i < num_vertices && code >= 0; ++i) {
148
75.8k
        curves[i].vertex.cc[1] = 0; /* safety. (patch_fill may assume 2 arguments) */
149
75.8k
        code = shade_next_color(cs, curves[i].vertex.cc);
150
75.8k
    }
151
25.8k
    return code;
152
25.8k
}
153
154
/* Get a Bezier or tensor patch element. */
155
static int
156
shade_next_curve(shade_coord_stream_t * cs, patch_curve_t * curve)
157
63.8k
{
158
63.8k
    int code = shade_next_coords(cs, &curve->vertex.p, 1);
159
160
63.8k
    if (code >= 0)
161
63.8k
        code = shade_next_coords(cs, curve->control,
162
63.8k
                                 countof(curve->control));
163
63.8k
    return code;
164
63.8k
}
165
166
/*
167
 * Parse the next patch out of the input stream.  Return 1 if done,
168
 * 0 if patch, <0 on error.
169
 */
170
static int
171
shade_next_patch(shade_coord_stream_t * cs, int BitsPerFlag,
172
        patch_curve_t curve[4], gs_fixed_point interior[4] /* 0 for Coons patch */)
173
25.9k
{
174
25.9k
    int flag = shade_next_flag(cs, BitsPerFlag);
175
25.9k
    int num_colors, code;
176
177
25.9k
    if (flag < 0) {
178
28
        if (!cs->is_eod(cs))
179
0
            return_error(gs_error_rangecheck);
180
28
        return 1;               /* no more data */
181
28
    }
182
25.8k
    if (cs->first_patch && (flag & 3) != 0) {
183
0
        return_error(gs_error_rangecheck);
184
0
    }
185
25.8k
    cs->first_patch = 0;
186
25.8k
    switch (flag & 3) {
187
0
        default:
188
0
            return_error(gs_error_rangecheck);  /* not possible */
189
12.0k
        case 0:
190
12.0k
            if ((code = shade_next_curve(cs, &curve[0])) < 0 ||
191
12.0k
                (code = shade_next_coords(cs, &curve[1].vertex.p, 1)) < 0
192
12.0k
                )
193
6
                return code;
194
12.0k
            num_colors = 4;
195
12.0k
            goto vx;
196
3.67k
        case 1:
197
3.67k
            curve[0] = curve[1], curve[1].vertex = curve[2].vertex;
198
3.67k
            goto v3;
199
4.21k
        case 2:
200
4.21k
            curve[0] = curve[2], curve[1].vertex = curve[3].vertex;
201
4.21k
            goto v3;
202
5.91k
        case 3:
203
5.91k
            curve[1].vertex = curve[0].vertex, curve[0] = curve[3];
204
13.8k
v3:         num_colors = 2;
205
25.8k
vx:         if ((code = shade_next_coords(cs, curve[1].control, 2)) < 0 ||
206
25.8k
                (code = shade_next_curve(cs, &curve[2])) < 0 ||
207
25.8k
                (code = shade_next_curve(cs, &curve[3])) < 0 ||
208
25.8k
                (interior != 0 &&
209
25.8k
                 (code = shade_next_coords(cs, interior, 4)) < 0) ||
210
25.8k
                (code = shade_next_colors(cs, &curve[4 - num_colors],
211
25.8k
                                          num_colors)) < 0
212
25.8k
                )
213
28
                return code;
214
25.8k
            cs->align(cs, 8); /* See shade_next_vertex. */
215
25.8k
    }
216
25.8k
    return 0;
217
25.8k
}
218
219
static inline bool
220
is_linear_color_applicable(const patch_fill_state_t *pfs)
221
1.99M
{
222
1.99M
    if (!USE_LINEAR_COLOR_PROCS)
223
0
        return false;
224
1.99M
    if (!colors_are_separable_and_linear(&pfs->dev->color_info))
225
1.99M
        return false;
226
63
    if (gx_get_cmap_procs(pfs->pgs, pfs->dev)->is_halftoned(pfs->pgs, pfs->dev))
227
0
        return false;
228
63
    return true;
229
63
}
230
231
static int
232
alloc_patch_fill_memory(patch_fill_state_t *pfs, gs_memory_t *memory, const gs_color_space *pcs)
233
5.24k
{
234
5.24k
    int code;
235
236
5.24k
    pfs->memory = memory;
237
5.24k
#   if LAZY_WEDGES
238
5.24k
        code = wedge_vertex_list_elem_buffer_alloc(pfs);
239
5.24k
        if (code < 0)
240
0
            return code;
241
5.24k
#   endif
242
5.24k
    pfs->max_small_coord = 1 << ((sizeof(int64_t) * 8 - 1/*sign*/) / 3);
243
5.24k
    code = allocate_color_stack(pfs, memory);
244
5.24k
    if (code < 0)
245
0
        return code;
246
5.24k
    if (pfs->unlinear || pcs == NULL)
247
5.24k
        pfs->pcic = NULL;
248
7
    else {
249
7
        pfs->pcic = gs_color_index_cache_create(memory, pcs, pfs->dev, pfs->pgs, true, pfs->trans_device);
250
7
        if (pfs->pcic == NULL)
251
0
            return_error(gs_error_VMerror);
252
7
    }
253
5.24k
    return 0;
254
5.24k
}
255
256
int
257
init_patch_fill_state(patch_fill_state_t *pfs)
258
5.24k
{
259
    /* Warning : pfs->Function must be set in advance. */
260
5.24k
    const gs_color_space *pcs = pfs->direct_space;
261
5.24k
    gs_client_color fcc0, fcc1;
262
5.24k
    int i;
263
264
19.1k
    for (i = 0; i < pfs->num_components; i++) {
265
13.8k
        fcc0.paint.values[i] = -1000000;
266
13.8k
        fcc1.paint.values[i] = 1000000;
267
13.8k
    }
268
5.24k
    pcs->type->restrict_color(&fcc0, pcs);
269
5.24k
    pcs->type->restrict_color(&fcc1, pcs);
270
19.1k
    for (i = 0; i < pfs->num_components; i++)
271
13.8k
        pfs->color_domain.paint.values[i] = max(fcc1.paint.values[i] - fcc0.paint.values[i], 1);
272
5.24k
    pfs->vectorization = false; /* A stub for a while. Will use with pclwrite. */
273
5.24k
    pfs->maybe_self_intersecting = true;
274
5.24k
    pfs->monotonic_color = (pfs->Function == NULL);
275
5.24k
    pfs->function_arg_shift = 0;
276
5.24k
    pfs->linear_color = false;
277
5.24k
    pfs->inside = false;
278
5.24k
    pfs->n_color_args = 1;
279
#ifdef MAX_SHADING_RESOLUTION
280
    pfs->decomposition_limit = float2fixed(min(pfs->dev->HWResolution[0],
281
                                               pfs->dev->HWResolution[1]) / MAX_SHADING_RESOLUTION);
282
    pfs->decomposition_limit = max(pfs->decomposition_limit, fixed_1);
283
#else
284
5.24k
    pfs->decomposition_limit = fixed_1;
285
5.24k
#endif
286
5.24k
    pfs->fixed_flat = float2fixed(pfs->pgs->flatness);
287
    /* Restrict the pfs->smoothness with 1/min_linear_grades, because cs_is_linear
288
       can't provide a better precision due to the color
289
       representation with integers.
290
     */
291
5.24k
    pfs->smoothness = max(pfs->pgs->smoothness, 1.0 / min_linear_grades);
292
5.24k
    pfs->color_stack_size = 0;
293
5.24k
    pfs->color_stack_step = 0;
294
5.24k
    pfs->color_stack_ptr = NULL;
295
5.24k
    pfs->color_stack = NULL;
296
5.24k
    pfs->color_stack_limit = NULL;
297
5.24k
    pfs->unlinear = !is_linear_color_applicable(pfs);
298
5.24k
    pfs->pcic = NULL;
299
5.24k
    return alloc_patch_fill_memory(pfs, pfs->pgs->memory, pcs);
300
5.24k
}
301
302
bool
303
term_patch_fill_state(patch_fill_state_t *pfs)
304
5.24k
{
305
5.24k
    bool b = (pfs->color_stack_ptr != pfs->color_stack);
306
5.24k
#   if LAZY_WEDGES
307
5.24k
        wedge_vertex_list_elem_buffer_free(pfs);
308
5.24k
#   endif
309
5.24k
    if (pfs->color_stack)
310
5.24k
        gs_free_object(pfs->memory, pfs->color_stack, "term_patch_fill_state");
311
5.24k
    if (pfs->pcic != NULL)
312
7
        gs_color_index_cache_destroy(pfs->pcic);
313
5.24k
    return b;
314
5.24k
}
315
316
/* Resolve a patch color using the Function if necessary. */
317
static inline void
318
patch_resolve_color_inline(patch_color_t * ppcr, const patch_fill_state_t *pfs)
319
14.0M
{
320
14.0M
    if (pfs->Function) {
321
13.9M
        const gs_color_space *pcs = pfs->direct_space;
322
323
13.9M
        gs_function_evaluate(pfs->Function, ppcr->t, ppcr->cc.paint.values);
324
13.9M
        pcs->type->restrict_color(&ppcr->cc, pcs);
325
13.9M
    }
326
14.0M
}
327
328
void
329
patch_resolve_color(patch_color_t * ppcr, const patch_fill_state_t *pfs)
330
0
{
331
0
    patch_resolve_color_inline(ppcr, pfs);
332
0
}
333
334
/*
335
 * Calculate the interpolated color at a given point.
336
 * Note that we must do this twice for bilinear interpolation.
337
 * We use the name ppcr rather than ppc because an Apple compiler defines
338
 * ppc when compiling on PowerPC systems (!).
339
 */
340
static void
341
patch_interpolate_color(patch_color_t * ppcr, const patch_color_t * ppc0,
342
       const patch_color_t * ppc1, const patch_fill_state_t *pfs, double t)
343
36.6M
{
344
    /* The old code gives -IND on Intel. */
345
36.6M
    if (pfs->Function) {
346
13.8M
        ppcr->t[0] = ppc0->t[0] * (1 - t) + t * ppc1->t[0];
347
13.8M
        ppcr->t[1] = ppc0->t[1] * (1 - t) + t * ppc1->t[1];
348
13.8M
        patch_resolve_color_inline(ppcr, pfs);
349
22.7M
    } else {
350
22.7M
        int ci;
351
352
108M
        for (ci = pfs->num_components - 1; ci >= 0; --ci)
353
85.7M
            ppcr->cc.paint.values[ci] =
354
85.7M
                ppc0->cc.paint.values[ci] * (1 - t) + t * ppc1->cc.paint.values[ci];
355
22.7M
    }
356
36.6M
}
357
358
/* ================ Specific shadings ================ */
359
360
/*
361
 * The curves are stored in a clockwise or counter-clockwise order that maps
362
 * to the patch definition in a non-intuitive way.  The documentation
363
 * (pp. 277-281 of the PostScript Language Reference Manual, Third Edition)
364
 * says that the curves are in the order D1, C2, D2, C1.
365
 */
366
/* The starting points of the curves: */
367
0
#define D1START 0
368
0
#define C2START 1
369
0
#define D2START 3
370
0
#define C1START 0
371
/* The control points of the curves (x means reversed order): */
372
0
#define D1CTRL 0
373
0
#define C2CTRL 1
374
0
#define D2XCTRL 2
375
0
#define C1XCTRL 3
376
/* The end points of the curves: */
377
0
#define D1END 1
378
0
#define C2END 2
379
0
#define D2END 2
380
0
#define C1END 3
381
382
/* ---------------- Common code ---------------- */
383
384
/* Evaluate a curve at a given point. */
385
static void
386
curve_eval(gs_fixed_point * pt, const gs_fixed_point * p0,
387
           const gs_fixed_point * p1, const gs_fixed_point * p2,
388
           const gs_fixed_point * p3, double t)
389
0
{
390
0
    fixed a, b, c, d;
391
0
    fixed t01, t12;
392
393
0
    d = p0->x;
394
0
    curve_points_to_coefficients(d, p1->x, p2->x, p3->x,
395
0
                                 a, b, c, t01, t12);
396
0
    pt->x = (fixed) (((a * t + b) * t + c) * t + d);
397
0
    d = p0->y;
398
0
    curve_points_to_coefficients(d, p1->y, p2->y, p3->y,
399
0
                                 a, b, c, t01, t12);
400
0
    pt->y = (fixed) (((a * t + b) * t + c) * t + d);
401
0
    if_debug3('2', "[2]t=%g => (%g,%g)\n", t, fixed2float(pt->x),
402
0
              fixed2float(pt->y));
403
0
}
404
405
/* ---------------- Coons patch shading ---------------- */
406
407
/* Calculate the device-space coordinate corresponding to (u,v). */
408
static void
409
Cp_transform(gs_fixed_point * pt, const patch_curve_t curve[4],
410
             const gs_fixed_point ignore_interior[4], double u, double v)
411
0
{
412
0
    double co_u = 1.0 - u, co_v = 1.0 - v;
413
0
    gs_fixed_point c1u, d1v, c2u, d2v;
414
415
0
    curve_eval(&c1u, &curve[C1START].vertex.p,
416
0
               &curve[C1XCTRL].control[1], &curve[C1XCTRL].control[0],
417
0
               &curve[C1END].vertex.p, u);
418
0
    curve_eval(&d1v, &curve[D1START].vertex.p,
419
0
               &curve[D1CTRL].control[0], &curve[D1CTRL].control[1],
420
0
               &curve[D1END].vertex.p, v);
421
0
    curve_eval(&c2u, &curve[C2START].vertex.p,
422
0
               &curve[C2CTRL].control[0], &curve[C2CTRL].control[1],
423
0
               &curve[C2END].vertex.p, u);
424
0
    curve_eval(&d2v, &curve[D2START].vertex.p,
425
0
               &curve[D2XCTRL].control[1], &curve[D2XCTRL].control[0],
426
0
               &curve[D2END].vertex.p, v);
427
0
#define COMPUTE_COORD(xy)\
428
0
    pt->xy = (fixed)\
429
0
        ((co_v * c1u.xy + v * c2u.xy) + (co_u * d1v.xy + u * d2v.xy) -\
430
0
         (co_v * (co_u * curve[C1START].vertex.p.xy +\
431
0
                  u * curve[C1END].vertex.p.xy) +\
432
0
          v * (co_u * curve[C2START].vertex.p.xy +\
433
0
               u * curve[C2END].vertex.p.xy)))
434
0
    COMPUTE_COORD(x);
435
0
    COMPUTE_COORD(y);
436
0
#undef COMPUTE_COORD
437
0
    if_debug4('2', "[2](u=%g,v=%g) => (%g,%g)\n",
438
0
              u, v, fixed2float(pt->x), fixed2float(pt->y));
439
0
}
440
441
int
442
gs_shading_Cp_fill_rectangle(const gs_shading_t * psh0, const gs_rect * rect,
443
                             const gs_fixed_rect * rect_clip,
444
                             gx_device * dev, gs_gstate * pgs)
445
4
{
446
4
    const gs_shading_Cp_t * const psh = (const gs_shading_Cp_t *)psh0;
447
4
    patch_fill_state_t state;
448
4
    shade_coord_stream_t cs;
449
4
    patch_curve_t curve[4];
450
4
    int code;
451
452
4
    code = mesh_init_fill_state((mesh_fill_state_t *) &state,
453
4
                         (const gs_shading_mesh_t *)psh0, rect_clip, dev, pgs);
454
4
    if (code < 0) {
455
0
        if (state.icclink != NULL) gsicc_release_link(state.icclink);
456
0
        return code;
457
0
    }
458
4
    state.Function = psh->params.Function;
459
4
    code = init_patch_fill_state(&state);
460
4
    if(code < 0) {
461
0
        if (state.icclink != NULL) gsicc_release_link(state.icclink);
462
0
        return code;
463
0
    }
464
465
4
    curve[0].straight = curve[1].straight = curve[2].straight = curve[3].straight = false;
466
4
    shade_next_init(&cs, (const gs_shading_mesh_params_t *)&psh->params, pgs);
467
20
    while ((code = shade_next_patch(&cs, psh->params.BitsPerFlag,
468
20
                                    curve, NULL)) == 0 &&
469
20
           (code = patch_fill(&state, curve, NULL, Cp_transform)) >= 0
470
16
        ) {
471
16
        DO_NOTHING;
472
16
    }
473
4
    if (term_patch_fill_state(&state))
474
0
        return_error(gs_error_unregistered); /* Must not happen. */
475
4
    if (state.icclink != NULL) gsicc_release_link(state.icclink);
476
4
    return min(code, 0);
477
4
}
478
479
/* ---------------- Tensor product patch shading ---------------- */
480
481
/* Calculate the device-space coordinate corresponding to (u,v). */
482
static void
483
Tpp_transform(gs_fixed_point * pt, const patch_curve_t curve[4],
484
              const gs_fixed_point interior[4], double u, double v)
485
0
{
486
0
    double Bu[4], Bv[4];
487
0
    gs_fixed_point pts[4][4];
488
0
    int i, j;
489
0
    double x = 0, y = 0;
490
491
    /* Compute the Bernstein polynomials of u and v. */
492
0
    {
493
0
        double u2 = u * u, co_u = 1.0 - u, co_u2 = co_u * co_u;
494
0
        double v2 = v * v, co_v = 1.0 - v, co_v2 = co_v * co_v;
495
496
0
        Bu[0] = co_u * co_u2, Bu[1] = 3 * u * co_u2,
497
0
            Bu[2] = 3 * u2 * co_u, Bu[3] = u * u2;
498
0
        Bv[0] = co_v * co_v2, Bv[1] = 3 * v * co_v2,
499
0
            Bv[2] = 3 * v2 * co_v, Bv[3] = v * v2;
500
0
    }
501
502
    /* Arrange the points into an indexable order. */
503
0
    pts[0][0] = curve[0].vertex.p;
504
0
    pts[0][1] = curve[0].control[0];
505
0
    pts[0][2] = curve[0].control[1];
506
0
    pts[0][3] = curve[1].vertex.p;
507
0
    pts[1][3] = curve[1].control[0];
508
0
    pts[2][3] = curve[1].control[1];
509
0
    pts[3][3] = curve[2].vertex.p;
510
0
    pts[3][2] = curve[2].control[0];
511
0
    pts[3][1] = curve[2].control[1];
512
0
    pts[3][0] = curve[3].vertex.p;
513
0
    pts[2][0] = curve[3].control[0];
514
0
    pts[1][0] = curve[3].control[1];
515
0
    pts[1][1] = interior[0];
516
0
    pts[2][1] = interior[1];
517
0
    pts[2][2] = interior[2];
518
0
    pts[1][2] = interior[3];
519
520
    /* Now compute the actual point. */
521
0
    for (i = 0; i < 4; ++i)
522
0
        for (j = 0; j < 4; ++j) {
523
0
            double coeff = Bu[i] * Bv[j];
524
525
0
            x += pts[i][j].x * coeff, y += pts[i][j].y * coeff;
526
0
        }
527
0
    pt->x = (fixed)x, pt->y = (fixed)y;
528
0
}
529
530
int
531
gs_shading_Tpp_fill_rectangle(const gs_shading_t * psh0, const gs_rect * rect,
532
                             const gs_fixed_rect * rect_clip,
533
                              gx_device * dev, gs_gstate * pgs)
534
58
{
535
58
    const gs_shading_Tpp_t * const psh = (const gs_shading_Tpp_t *)psh0;
536
58
    patch_fill_state_t state;
537
58
    shade_coord_stream_t cs;
538
58
    patch_curve_t curve[4];
539
58
    gs_fixed_point interior[4];
540
58
    int code;
541
542
58
    code = mesh_init_fill_state((mesh_fill_state_t *) & state,
543
58
                         (const gs_shading_mesh_t *)psh0, rect_clip, dev, pgs);
544
58
    if (code < 0) {
545
0
        if (state.icclink != NULL) gsicc_release_link(state.icclink);
546
0
        return code;
547
0
    }
548
58
    state.Function = psh->params.Function;
549
58
    code = init_patch_fill_state(&state);
550
58
    if(code < 0)
551
0
        return code;
552
58
    curve[0].straight = curve[1].straight = curve[2].straight = curve[3].straight = false;
553
58
    shade_next_init(&cs, (const gs_shading_mesh_params_t *)&psh->params, pgs);
554
25.8k
    while ((code = shade_next_patch(&cs, psh->params.BitsPerFlag,
555
25.8k
                                    curve, interior)) == 0) {
556
        /*
557
         * The order of points appears to be consistent with that for Coons
558
         * patches, which is different from that documented in Red Book 3.
559
         */
560
25.8k
        gs_fixed_point swapped_interior[4];
561
562
25.8k
        swapped_interior[0] = interior[0];
563
25.8k
        swapped_interior[1] = interior[3];
564
25.8k
        swapped_interior[2] = interior[2];
565
25.8k
        swapped_interior[3] = interior[1];
566
25.8k
        code = patch_fill(&state, curve, swapped_interior, Tpp_transform);
567
25.8k
        if (code < 0)
568
0
            break;
569
25.8k
    }
570
58
    if (term_patch_fill_state(&state))
571
0
        return_error(gs_error_unregistered); /* Must not happen. */
572
58
    if (state.icclink != NULL) gsicc_release_link(state.icclink);
573
58
    return min(code, 0);
574
58
}
575
576
/*
577
    This algorithm performs a decomposition of the shading area
578
    into a set of constant color trapezoids, some of which
579
    may use the transpozed coordinate system.
580
581
    The target device assumes semi-open intrvals by X to be painted
582
    (See PLRM3, 7.5. Scan conversion details), i.e.
583
    it doesn't paint pixels which falls exactly to the right side.
584
    Note that with raster devices the algorithm doesn't paint pixels,
585
    whigh are partially covered by the shading area,
586
    but which's centers are outside the area.
587
588
    Pixels inside a monotonic part of the shading area are painted
589
    at once, but some exceptions may happen :
590
591
        - While flattening boundaries of a subpatch,
592
        to keep the plane coverage contiguity we insert wedges
593
        between neighbor subpatches, which use a different
594
        flattening factor. With non-monotonic curves
595
        those wedges may overlap or be self-overlapping, and a pixel
596
        is painted so many times as many wedges cover it. Fortunately
597
        the area of most wedges is zero or extremily small.
598
599
        - Since quazi-horizontal wedges may have a non-constant color,
600
        they can't decompose into constant color trapezoids with
601
        keeping the coverage contiguity. To represent them we
602
        apply the XY plane transposition. But with the transposition
603
        a semiopen interval can met a non-transposed one,
604
        so that some lines are not covered. Therefore we emulate
605
        closed intervals with expanding the transposed trapesoids in
606
        fixed_epsilon, and pixels at that boundary may be painted twice.
607
608
        - A boundary of a monotonic area can't compute in XY
609
        preciselly due to high order polynomial equations.
610
        Therefore the subdivision near the monotonity boundary
611
        may paint some pixels twice within same monotonic part.
612
613
    Non-monotonic areas slow down due to a tinny subdivision required.
614
615
    The target device may be either raster or vector.
616
    Vector devices should preciselly pass trapezoids to the output.
617
    Note that ends of sides of a trapesoid are not necessary
618
    the trapezoid's vertices. Converting this thing into
619
    an exact quadrangle may cause an arithmetic error,
620
    and the rounding must be done so that the coverage
621
    contiguity is not lost.
622
623
    When a device passes a trapezoid to it's output,
624
    a regular rounding would keep the coverage contiguity,
625
    except for the transposed trapesoids.
626
    If a transposed trapezoid is being transposed back,
627
    it doesn't become a canonic trapezoid, and a further
628
    decomposition is neccessary. But rounding errors here
629
    would break the coverage contiguity at boundaries
630
    of the tansposed part of the area.
631
632
    Devices, which have no transposed trapezoids and represent
633
    trapezoids only with 8 coordinates of vertices of the quadrangle
634
    (pclwrite is an example) may apply the backward transposition,
635
    and a clipping instead the further decomposition.
636
    Note that many clip regions may appear for all wedges.
637
    Note that in some cases the adjustment of the right side to be
638
    withdrown before the backward transposition.
639
 */
640
 /* We believe that a multiplication of 32-bit integers with a
641
    64-bit result is performed by modern platforms performs
642
    in hardware level. Therefore we widely use it here,
643
    but we minimize the usage of a multiplication of longer integers.
644
645
    Unfortunately we do need a multiplication of long integers
646
    in intersection_of_small_bars, because solving the linear system
647
    requires tripple multiples of 'fixed'. Therefore we retain
648
    of it's usage in the algorithm of the main branch.
649
    Configuration macro QUADRANGLES prevents it.
650
  */
651
652
typedef struct {
653
    gs_fixed_point pole[4][4]; /* [v][u] */
654
    patch_color_t *c[2][2];     /* [v][u] */
655
} tensor_patch;
656
657
typedef enum {
658
    interpatch_padding = 1, /* A Padding between patches for poorly designed documents. */
659
    inpatch_wedge = 2  /* Wedges while a patch decomposition. */
660
} wedge_type_t;
661
662
int
663
wedge_vertex_list_elem_buffer_alloc(patch_fill_state_t *pfs)
664
5.24k
{
665
5.24k
    const int max_level = LAZY_WEDGES_MAX_LEVEL;
666
5.24k
    gs_memory_t *memory = pfs->memory;
667
668
    /* We have 'max_level' levels, each of which divides 1 or 3 sides.
669
       LAZY_WEDGES stores all 2^level divisions until
670
       the other area of same bnoundary is processed.
671
       Thus the upper estimation of the buffer size is :
672
       max_level * (1 << max_level) * 3.
673
       Likely this estimation to be decreased to
674
       max_level * (1 << max_level) * 2.
675
       because 1 side of a triangle is always outside the division path.
676
       For now we set the smaller estimation for obtaining an experimental data
677
       from the wild. */
678
5.24k
    pfs->wedge_vertex_list_elem_count_max = max_level * (1 << max_level) * 2;
679
5.24k
    pfs->wedge_vertex_list_elem_buffer = (wedge_vertex_list_elem_t *)gs_alloc_bytes(memory,
680
5.24k
            sizeof(wedge_vertex_list_elem_t) * pfs->wedge_vertex_list_elem_count_max,
681
5.24k
            "alloc_wedge_vertex_list_elem_buffer");
682
5.24k
    if (pfs->wedge_vertex_list_elem_buffer == NULL)
683
0
        return_error(gs_error_VMerror);
684
5.24k
    pfs->free_wedge_vertex = NULL;
685
5.24k
    pfs->wedge_vertex_list_elem_count = 0;
686
5.24k
    return 0;
687
5.24k
}
688
689
void
690
wedge_vertex_list_elem_buffer_free(patch_fill_state_t *pfs)
691
5.24k
{
692
5.24k
    gs_memory_t *memory = pfs->memory;
693
694
5.24k
    gs_free_object(memory, pfs->wedge_vertex_list_elem_buffer,
695
5.24k
                "wedge_vertex_list_elem_buffer_free");
696
5.24k
    pfs->wedge_vertex_list_elem_buffer = NULL;
697
5.24k
    pfs->free_wedge_vertex = NULL;
698
5.24k
}
699
700
static inline wedge_vertex_list_elem_t *
701
wedge_vertex_list_elem_reserve(patch_fill_state_t *pfs)
702
5.27M
{
703
5.27M
    wedge_vertex_list_elem_t *e = pfs->free_wedge_vertex;
704
705
5.27M
    if (e != NULL) {
706
5.12M
        pfs->free_wedge_vertex = e->next;
707
5.12M
        return e;
708
5.12M
    }
709
148k
    if (pfs->wedge_vertex_list_elem_count < pfs->wedge_vertex_list_elem_count_max)
710
148k
        return pfs->wedge_vertex_list_elem_buffer + pfs->wedge_vertex_list_elem_count++;
711
0
    return NULL;
712
148k
}
713
714
static inline void
715
wedge_vertex_list_elem_release(patch_fill_state_t *pfs, wedge_vertex_list_elem_t *e)
716
5.27M
{
717
5.27M
    e->next = pfs->free_wedge_vertex;
718
5.27M
    pfs->free_wedge_vertex = e;
719
5.27M
}
720
721
static inline void
722
release_wedge_vertex_list_interval(patch_fill_state_t *pfs,
723
    wedge_vertex_list_elem_t *beg, wedge_vertex_list_elem_t *end)
724
2.59M
{
725
2.59M
    wedge_vertex_list_elem_t *e = beg->next, *ee;
726
727
2.59M
    beg->next = end;
728
2.59M
    end->prev = beg;
729
5.11M
    for (; e != end; e = ee) {
730
2.51M
        ee = e->next;
731
2.51M
        wedge_vertex_list_elem_release(pfs, e);
732
2.51M
    }
733
2.59M
}
734
735
static inline int
736
release_wedge_vertex_list(patch_fill_state_t *pfs, wedge_vertex_list_t *ll, int n)
737
1.37M
{
738
1.37M
    int i;
739
740
2.75M
    for (i = 0; i < n; i++) {
741
1.37M
        wedge_vertex_list_t *l = ll + i;
742
743
1.37M
        if (l->beg != NULL) {
744
1.37M
            if (l->end == NULL)
745
0
                return_error(gs_error_unregistered); /* Must not happen. */
746
1.37M
            release_wedge_vertex_list_interval(pfs, l->beg, l->end);
747
1.37M
            wedge_vertex_list_elem_release(pfs, l->beg);
748
1.37M
            wedge_vertex_list_elem_release(pfs, l->end);
749
1.37M
            l->beg = l->end = NULL;
750
1.37M
        } else if (l->end != NULL)
751
0
            return_error(gs_error_unregistered); /* Must not happen. */
752
1.37M
    }
753
1.37M
    return 0;
754
1.37M
}
755
756
static inline wedge_vertex_list_elem_t *
757
wedge_vertex_list_find(wedge_vertex_list_elem_t *beg, const wedge_vertex_list_elem_t *end,
758
            int level)
759
1.51M
{
760
1.51M
    wedge_vertex_list_elem_t *e = beg;
761
762
1.51M
    if (beg == NULL || end == NULL)
763
0
        return NULL; /* Must not happen. */
764
4.18M
    for (; e != end; e = e->next)
765
4.18M
        if (e->level == level)
766
1.51M
            return e;
767
0
    return NULL;
768
1.51M
}
769
770
static inline void
771
init_wedge_vertex_list(wedge_vertex_list_t *l, int n)
772
5.24M
{
773
5.24M
    memset(l, 0, sizeof(*l) * n);
774
5.24M
}
775
776
/* For a given set of poles in the tensor patch (for instance
777
 * [0][0], [0][1], [0][2], [0][3] or [0][2], [1][2], [2][2], [3][2])
778
 * return the number of subdivisions required to flatten the bezier
779
 * given by those poles to the required flatness.
780
 */
781
static inline int
782
curve_samples(patch_fill_state_t *pfs,
783
                const gs_fixed_point *pole, int pole_step, fixed fixed_flat)
784
1.20M
{
785
1.20M
    curve_segment s;
786
1.20M
    int k;
787
788
1.20M
    s.p1.x = pole[pole_step].x;
789
1.20M
    s.p1.y = pole[pole_step].y;
790
1.20M
    s.p2.x = pole[pole_step * 2].x;
791
1.20M
    s.p2.y = pole[pole_step * 2].y;
792
1.20M
    s.pt.x = pole[pole_step * 3].x;
793
1.20M
    s.pt.y = pole[pole_step * 3].y;
794
1.20M
    k = gx_curve_log2_samples(pole[0].x, pole[0].y, &s, fixed_flat);
795
1.20M
    {
796
1.20M
#       if LAZY_WEDGES || QUADRANGLES
797
1.20M
            int k1;
798
1.20M
            fixed L = any_abs(pole[pole_step * 1].x - pole[pole_step * 0].x) + any_abs(pole[pole_step * 1].y - pole[pole_step * 0].y) +
799
1.20M
                      any_abs(pole[pole_step * 2].x - pole[pole_step * 1].x) + any_abs(pole[pole_step * 2].y - pole[pole_step * 1].y) +
800
1.20M
                      any_abs(pole[pole_step * 3].x - pole[pole_step * 2].x) + any_abs(pole[pole_step * 3].y - pole[pole_step * 2].y);
801
1.20M
#       endif
802
803
1.20M
#       if LAZY_WEDGES
804
            /* Restrict lengths for a reasonable memory consumption : */
805
1.20M
            k1 = ilog2(L / fixed_1 / (1 << (LAZY_WEDGES_MAX_LEVEL - 1)));
806
1.20M
            k = max(k, k1);
807
1.20M
#       endif
808
#       if QUADRANGLES
809
            /* Restrict lengths for intersection_of_small_bars : */
810
            k = max(k, ilog2(L) - ilog2(pfs->max_small_coord));
811
#       endif
812
1.20M
    }
813
1.20M
    return 1 << k;
814
1.20M
}
815
816
static inline bool
817
intersection_of_small_bars(const gs_fixed_point q[4], int i0, int i1, int i2, int i3, fixed *ry, fixed *ey)
818
0
{
819
    /* This function is only used with QUADRANGLES. */
820
0
    return gx_intersect_small_bars(q[i0].x, q[i0].y, q[i1].x, q[i1].y, q[i2].x, q[i2].y, q[i3].x, q[i3].y, ry, ey);
821
0
}
822
823
static inline void
824
adjust_swapped_boundary(fixed *b, bool swap_axes)
825
12.6M
{
826
12.6M
    if (swap_axes) {
827
        /*  Sinse the rasterizer algorithm assumes semi-open interval
828
            when computing pixel coverage, we should expand
829
            the right side of the area. Otherwise a dropout can happen :
830
            if the left neighbour is painted with !swap_axes,
831
            the left side of this area appears to be the left side
832
            of the neighbour area, and the side is not included
833
            into both areas.
834
         */
835
4.24M
        *b += fixed_epsilon;
836
4.24M
    }
837
12.6M
}
838
839
static inline void
840
make_trapezoid(const gs_fixed_point q[4],
841
        int vi0, int vi1, int vi2, int vi3, fixed ybot, fixed ytop,
842
        bool swap_axes, bool orient, gs_fixed_edge *le, gs_fixed_edge *re)
843
3.61M
{
844
3.61M
    if (!orient) {
845
1.55M
        le->start = q[vi0];
846
1.55M
        le->end = q[vi1];
847
1.55M
        re->start = q[vi2];
848
1.55M
        re->end = q[vi3];
849
2.05M
    } else {
850
2.05M
        le->start = q[vi2];
851
2.05M
        le->end = q[vi3];
852
2.05M
        re->start = q[vi0];
853
2.05M
        re->end = q[vi1];
854
2.05M
    }
855
3.61M
    adjust_swapped_boundary(&re->start.x, swap_axes);
856
3.61M
    adjust_swapped_boundary(&re->end.x, swap_axes);
857
3.61M
}
858
859
static inline int
860
gx_shade_trapezoid(patch_fill_state_t *pfs, const gs_fixed_point q[4],
861
        int vi0, int vi1, int vi2, int vi3, fixed ybot0, fixed ytop0,
862
        bool swap_axes, const gx_device_color *pdevc, bool orient)
863
320k
{
864
320k
    gs_fixed_edge le, re;
865
320k
    int code;
866
320k
    fixed ybot = max(ybot0, swap_axes ? pfs->rect.p.x : pfs->rect.p.y);
867
320k
    fixed ytop = min(ytop0, swap_axes ? pfs->rect.q.x : pfs->rect.q.y);
868
320k
    fixed xleft  = (swap_axes ? pfs->rect.p.y : pfs->rect.p.x);
869
320k
    fixed xright = (swap_axes ? pfs->rect.q.y : pfs->rect.q.x);
870
871
320k
    if (ybot >= ytop)
872
146k
        return 0;
873
#   if NOFILL_TEST
874
        if (dbg_nofill)
875
            return 0;
876
#   endif
877
173k
    make_trapezoid(q, vi0, vi1, vi2, vi3, ybot, ytop, swap_axes, orient, &le, &re);
878
173k
    if (!pfs->inside) {
879
54.1k
        bool clip = false;
880
881
        /* We are asked to clip a trapezoid to a rectangle. If the rectangle
882
         * is entirely contained within the rectangle, then no clipping is
883
         * actually required. If the left edge is entirely to the right of
884
         * the rectangle, or the right edge is entirely to the left, we
885
         * clip away to nothing. If the left edge is entirely to the left of
886
         * the rectangle, then we can simplify it to a vertical edge along
887
         * the edge of the rectangle. Likewise with the right edge if it's
888
         * entirely to the right of the rectangle.*/
889
54.1k
        if (le.start.x > xright) {
890
9.79k
            if (le.end.x > xright) {
891
9
                return 0;
892
9
            }
893
9.78k
            clip = true;
894
44.3k
        } else if (le.end.x > xright) {
895
5.78k
            clip = true;
896
5.78k
        }
897
54.1k
        if (le.start.x < xleft) {
898
16.9k
            if (le.end.x < xleft) {
899
11.1k
                le.start.x = xleft;
900
11.1k
                le.end.x   = xleft;
901
11.1k
                le.start.y = ybot;
902
11.1k
                le.end.y   = ytop;
903
11.1k
            } else {
904
5.84k
                clip = true;
905
5.84k
            }
906
37.2k
        } else if (le.end.x < xleft) {
907
9.50k
            clip = true;
908
9.50k
        }
909
54.1k
        if (re.start.x < xleft) {
910
6.14k
            if (re.end.x < xleft) {
911
17
                return 0;
912
17
            }
913
6.12k
            clip = true;
914
48.0k
        } else if (re.end.x < xleft) {
915
9.38k
            clip = true;
916
9.38k
        }
917
54.1k
        if (re.start.x > xright) {
918
18.1k
            if (re.end.x > xright) {
919
8.31k
                re.start.x = xright;
920
8.31k
                re.end.x   = xright;
921
8.31k
                re.start.y = ybot;
922
8.31k
                re.end.y   = ytop;
923
9.86k
            } else {
924
9.86k
                clip = true;
925
9.86k
            }
926
35.9k
        } else if (re.end.x > xright) {
927
5.26k
            clip = true;
928
5.26k
        }
929
54.1k
        if (clip)
930
33.3k
        {
931
            /* Some form of clipping seems to be required. A certain amount
932
             * of horridness goes on here to ensure that we round 'outwards'
933
             * in all cases. */
934
33.3k
            gs_fixed_edge lenew, renew;
935
33.3k
            fixed ybl, ybr, ytl, ytr, ymid;
936
937
            /* Reduce the clipping region horizontally if possible. */
938
33.3k
            if (re.start.x > re.end.x) {
939
14.4k
                if (re.start.x < xright)
940
4.55k
                    xright = re.start.x;
941
18.9k
            } else if (re.end.x < xright)
942
5.73k
                xright = re.end.x;
943
33.3k
            if (le.start.x > le.end.x) {
944
14.3k
                if (le.end.x > xleft)
945
4.88k
                    xleft = le.end.x;
946
18.9k
            } else if (le.start.x > xleft)
947
5.29k
                xleft = le.start.x;
948
949
33.3k
            ybot = max(ybot, min(le.start.y, re.start.y));
950
33.3k
            ytop = min(ytop, max(le.end.y, re.end.y));
951
#if 0
952
            /* RJW: I've disabled this code a) because it doesn't make any
953
             * difference in the cluster tests, and b) because I think it's wrong.
954
             * Taking the first case as an example; just because the le.start.x
955
             * is > xright, does not mean that we can simply truncate the edge at
956
             * xright, as this may throw away part of the trap between ybot and
957
             * the new le.start.y. */
958
            /* Reduce the edges to the left/right of the clipping region. */
959
            /* Only in the 4 cases which can bring ytop/ybot closer */
960
            if (le.start.x > xright) {
961
                le.start.y += (fixed)((int64_t)(le.end.y-le.start.y)*
962
                                      (int64_t)(le.start.x-xright)/
963
                                      (int64_t)(le.start.x-le.end.x));
964
                le.start.x = xright;
965
            }
966
            if (re.start.x < xleft) {
967
                re.start.y += (fixed)((int64_t)(re.end.y-re.start.y)*
968
                                      (int64_t)(xleft-re.start.x)/
969
                                      (int64_t)(re.end.x-re.start.x));
970
                re.start.x = xleft;
971
            }
972
            if (le.end.x > xright) {
973
                le.end.y -= (fixed)((int64_t)(le.end.y-le.start.y)*
974
                                    (int64_t)(le.end.x-xright)/
975
                                    (int64_t)(le.end.x-le.start.x));
976
                le.end.x = xright;
977
            }
978
            if (re.end.x < xleft) {
979
                re.end.y -= (fixed)((int64_t)(re.end.y-re.start.y)*
980
                                    (int64_t)(xleft-re.end.x)/
981
                                    (int64_t)(re.start.x-re.end.x));
982
                re.end.x = xleft;
983
            }
984
#endif
985
986
33.3k
            if (ybot >= ytop)
987
0
                return 0;
988
            /* Follow the edges in, so that le.start.y == ybot etc. */
989
33.3k
            if (le.start.y < ybot) {
990
13.6k
                int round = ((le.end.x < le.start.x) ?
991
7.61k
                             (le.end.y-le.start.y-1) : 0);
992
13.6k
                le.start.x += (fixed)(((int64_t)(ybot-le.start.y)*
993
13.6k
                                       (int64_t)(le.end.x-le.start.x)-round)/
994
13.6k
                                      (int64_t)(le.end.y-le.start.y));
995
13.6k
                le.start.y = ybot;
996
13.6k
            }
997
33.3k
            if (le.end.y > ytop) {
998
13.6k
                int round = ((le.end.x > le.start.x) ?
999
6.92k
                             (le.end.y-le.start.y-1) : 0);
1000
13.6k
                le.end.x += (fixed)(((int64_t)(le.end.y-ytop)*
1001
13.6k
                                     (int64_t)(le.start.x-le.end.x)-round)/
1002
13.6k
                                    (int64_t)(le.end.y-le.start.y));
1003
13.6k
                le.end.y = ytop;
1004
13.6k
            }
1005
33.3k
            if ((le.start.x < xleft) && (le.end.x < xleft)) {
1006
1.07k
                le.start.x = xleft;
1007
1.07k
                le.end.x   = xleft;
1008
1.07k
                le.start.y = ybot;
1009
1.07k
                le.end.y   = ytop;
1010
1.07k
            }
1011
33.3k
            if (re.start.y < ybot) {
1012
13.6k
                int round = ((re.end.x > re.start.x) ?
1013
6.89k
                             (re.end.y-re.start.y-1) : 0);
1014
13.6k
                re.start.x += (fixed)(((int64_t)(ybot-re.start.y)*
1015
13.6k
                                       (int64_t)(re.end.x-re.start.x)+round)/
1016
13.6k
                                      (int64_t)(re.end.y-re.start.y));
1017
13.6k
                re.start.y = ybot;
1018
13.6k
            }
1019
33.3k
            if (re.end.y > ytop) {
1020
13.6k
                int round = ((re.end.x < re.start.x) ?
1021
7.65k
                             (re.end.y-re.start.y-1) : 0);
1022
13.6k
                re.end.x += (fixed)(((int64_t)(re.end.y-ytop)*
1023
13.6k
                                     (int64_t)(re.start.x-re.end.x)+round)/
1024
13.6k
                                    (int64_t)(re.end.y-re.start.y));
1025
13.6k
                re.end.y = ytop;
1026
13.6k
            }
1027
33.3k
            if ((re.start.x > xright) && (re.end.x > xright)) {
1028
556
                re.start.x = xright;
1029
556
                re.end.x   = xright;
1030
556
                re.start.y = ybot;
1031
556
                re.end.y   = ytop;
1032
556
            }
1033
            /* Now, check whether the left and right edges cross. Previously
1034
             * this comment said: "This can only happen (for well formed
1035
             * input) in the case where one of the edges was completely out
1036
             * of range and has now been pulled in to the edge of the clip
1037
             * region." I now do not believe this to be true. */
1038
33.3k
            if (le.start.x > re.start.x) {
1039
12.4k
                if (le.start.x == le.end.x) {
1040
5.78k
                    if (re.start.x == re.end.x)
1041
0
                        return 0;
1042
5.78k
                    ybot += (fixed)((int64_t)(re.end.y-re.start.y)*
1043
5.78k
                                    (int64_t)(le.start.x-re.start.x)/
1044
5.78k
                                    (int64_t)(re.end.x-re.start.x));
1045
5.78k
                    re.start.x = le.start.x;
1046
6.64k
                } else {
1047
6.64k
                    ybot += (fixed)((int64_t)(le.end.y-le.start.y)*
1048
6.64k
                                    (int64_t)(le.start.x-re.start.x)/
1049
6.64k
                                    (int64_t)(le.start.x-le.end.x));
1050
6.64k
                    le.start.x = re.start.x;
1051
6.64k
                }
1052
12.4k
                if (ybot >= ytop)
1053
4.74k
                    return 0;
1054
7.68k
                le.start.y = ybot;
1055
7.68k
                re.start.y = ybot;
1056
7.68k
            }
1057
28.6k
            if (le.end.x > re.end.x) {
1058
7.76k
                if (le.start.x == le.end.x) {
1059
5.00k
                    if (re.start.x == re.end.x)
1060
0
                        return 0;
1061
5.00k
                    ytop -= (fixed)((int64_t)(re.end.y-re.start.y)*
1062
5.00k
                                    (int64_t)(le.end.x-re.end.x)/
1063
5.00k
                                    (int64_t)(re.start.x-re.end.x));
1064
5.00k
                    re.end.x = le.end.x;
1065
5.00k
                } else {
1066
2.76k
                    ytop -= (fixed)((int64_t)(le.end.y-le.start.y)*
1067
2.76k
                                    (int64_t)(le.end.x-re.end.x)/
1068
2.76k
                                    (int64_t)(le.end.x-le.start.x));
1069
2.76k
                    le.end.x = re.end.x;
1070
2.76k
                }
1071
7.76k
                if (ybot >= ytop)
1072
4.38k
                    return 0;
1073
3.37k
                le.end.y = ytop;
1074
3.37k
                re.end.y = ytop;
1075
3.37k
            }
1076
            /* At this point we are guaranteed that le and re are constrained
1077
             * as tightly as possible to the ybot/ytop range, and that the
1078
             * entire ybot/ytop range will be marked at least somewhere. All
1079
             * we need to do now is to actually fill the region.
1080
             */
1081
24.2k
            lenew.start.x = xleft;
1082
24.2k
            lenew.start.y = ybot;
1083
24.2k
            lenew.end.x   = xleft;
1084
24.2k
            lenew.end.y   = ytop;
1085
24.2k
            renew.start.x = xright;
1086
24.2k
            renew.start.y = ybot;
1087
24.2k
            renew.end.x   = xright;
1088
24.2k
            renew.end.y   = ytop;
1089
            /* Figure out where the left edge intersects with the left at
1090
             * the bottom */
1091
24.2k
            ybl = ybot;
1092
24.2k
            if (le.start.x > le.end.x) {
1093
10.7k
                ybl += (fixed)((int64_t)(le.start.x-xleft) *
1094
10.7k
                               (int64_t)(le.end.y-le.start.y) /
1095
10.7k
                               (int64_t)(le.start.x-le.end.x));
1096
10.7k
                if (ybl > ytop)
1097
3.72k
                    ybl = ytop;
1098
10.7k
            }
1099
            /* Figure out where the right edge intersects with the right at
1100
             * the bottom */
1101
24.2k
            ybr = ybot;
1102
24.2k
            if (re.start.x < re.end.x) {
1103
8.96k
                ybr += (fixed)((int64_t)(xright-re.start.x) *
1104
8.96k
                               (int64_t)(re.end.y-re.start.y) /
1105
8.96k
                               (int64_t)(re.end.x-re.start.x));
1106
8.96k
                if (ybr > ytop)
1107
3.97k
                    ybr = ytop;
1108
8.96k
            }
1109
            /* Figure out where the left edge intersects with the left at
1110
             * the top */
1111
24.2k
            ytl = ytop;
1112
24.2k
            if (le.end.x > le.start.x) {
1113
9.19k
                ytl -= (fixed)((int64_t)(le.end.x-xleft) *
1114
9.19k
                               (int64_t)(le.end.y-le.start.y) /
1115
9.19k
                               (int64_t)(le.end.x-le.start.x));
1116
9.19k
                if (ytl < ybot)
1117
4.36k
                    ytl = ybot;
1118
9.19k
            }
1119
            /* Figure out where the right edge intersects with the right at
1120
             * the bottom */
1121
24.2k
            ytr = ytop;
1122
24.2k
            if (re.end.x < re.start.x) {
1123
11.2k
                ytr -= (fixed)((int64_t)(xright-re.end.x) *
1124
11.2k
                               (int64_t)(re.end.y-re.start.y) /
1125
11.2k
                               (int64_t)(re.start.x-re.end.x));
1126
11.2k
                if (ytr < ybot)
1127
3.67k
                    ytr = ybot;
1128
11.2k
            }
1129
            /* Check for the 2 cases where top and bottom diagonal extents
1130
             * overlap, and deal with them explicitly. */
1131
24.2k
            if (ytl < ybr) {
1132
                /*     |     |
1133
                 *  ---+-----+---
1134
                 *     | /222|
1135
                 *     |/111/|
1136
                 *     |000/ |
1137
                 *  ---+-----+---
1138
                 *     |     |
1139
                 */
1140
5.12k
                code = dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
1141
5.12k
                                        &lenew, &re, ybot, ytl,
1142
5.12k
                                        swap_axes, pdevc, pfs->pgs->log_op);
1143
5.12k
                if (code < 0)
1144
0
                    return code;
1145
5.12k
                code = dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
1146
5.12k
                                        &le, &re, ytl, ybr,
1147
5.12k
                                        swap_axes, pdevc, pfs->pgs->log_op);
1148
5.12k
                if (code < 0)
1149
0
                    return code;
1150
5.12k
                ybot = ybr;
1151
5.12k
                return dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
1152
5.12k
                                        &le, &renew, ybr, ytop,
1153
5.12k
                                        swap_axes, pdevc, pfs->pgs->log_op);
1154
19.1k
            } else if (ytr < ybl) {
1155
                /*     |     |
1156
                 *  ---+-----+----
1157
                 *     |555\ |
1158
                 *     |\444\|
1159
                 *     | \333|
1160
                 *  ---+-----+---
1161
                 *     |     |
1162
                 */
1163
6.25k
                code = dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
1164
6.25k
                                        &le, &renew, ybot, ytr,
1165
6.25k
                                        swap_axes, pdevc, pfs->pgs->log_op);
1166
6.25k
                if (code < 0)
1167
0
                    return code;
1168
6.25k
                code = dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
1169
6.25k
                                        &le, &re, ytr, ybl,
1170
6.25k
                                        swap_axes, pdevc, pfs->pgs->log_op);
1171
6.25k
                if (code < 0)
1172
0
                    return code;
1173
6.25k
                return dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
1174
6.25k
                                        &le, &re, ybl, ytop,
1175
6.25k
                                        swap_axes, pdevc, pfs->pgs->log_op);
1176
6.25k
            }
1177
            /* Fill in any section where both left and right edges are
1178
             * diagonal at the bottom */
1179
12.8k
            ymid = ybl;
1180
12.8k
            if (ymid > ybr)
1181
2.88k
                ymid = ybr;
1182
12.8k
            if (ymid > ybot) {
1183
                /*     |\   |          |   /|
1184
                 *     | \6/|    or    |\6/ |
1185
                 *  ---+----+---    ---+----+---
1186
                 *     |    |          |    |
1187
                 */
1188
1.64k
                code = dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
1189
1.64k
                                        &le, &re, ybot, ymid,
1190
1.64k
                                        swap_axes, pdevc, pfs->pgs->log_op);
1191
1.64k
                if (code < 0)
1192
0
                    return code;
1193
1.64k
                ybot = ymid;
1194
1.64k
            }
1195
            /* Fill in any section where both left and right edges are
1196
             * diagonal at the top */
1197
12.8k
            ymid = ytl;
1198
12.8k
            if (ymid < ytr)
1199
2.21k
                ymid = ytr;
1200
12.8k
            if (ymid < ytop) {
1201
                /*     |    |          |    |
1202
                 *  ---+----+---    ---+----+---
1203
                 *     |/7\ |    or    | /7\|
1204
                 *     |   \|          |/   |
1205
                 */
1206
2.04k
                code = dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
1207
2.04k
                                        &le, &re, ymid, ytop,
1208
2.04k
                                        swap_axes, pdevc, pfs->pgs->log_op);
1209
2.04k
                if (code < 0)
1210
0
                    return code;
1211
2.04k
                ytop = ymid;
1212
2.04k
            }
1213
            /* Now do the single diagonal cases at the bottom */
1214
12.8k
            if (ybl > ybot) {
1215
                /*     |    |
1216
                 *     |\666|
1217
                 *  ---+----+---
1218
                 *     |    |
1219
                 */
1220
2.88k
                code = dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
1221
2.88k
                                        &le, &renew, ybot, ybl,
1222
2.88k
                                        swap_axes, pdevc, pfs->pgs->log_op);
1223
2.88k
                if (code < 0)
1224
0
                    return code;
1225
2.88k
                ybot = ybl;
1226
9.96k
            } else if (ybr > ybot) {
1227
                /*     |    |
1228
                 *     |777/|
1229
                 *  ---+----+---
1230
                 *     |    |
1231
                 */
1232
2.08k
                code = dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
1233
2.08k
                                        &lenew, &re, ybot, ybr,
1234
2.08k
                                        swap_axes, pdevc, pfs->pgs->log_op);
1235
2.08k
                if (code < 0)
1236
0
                    return code;
1237
2.08k
                ybot = ybr;
1238
2.08k
            }
1239
            /* Now do the single diagonal cases at the top */
1240
12.8k
            if (ytl < ytop) {
1241
                /*     |    |
1242
                 *  ---+----+---
1243
                 *     |/888|
1244
                 *     |    |
1245
                 */
1246
2.21k
                code = dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
1247
2.21k
                                        &le, &renew, ytl, ytop,
1248
2.21k
                                        swap_axes, pdevc, pfs->pgs->log_op);
1249
2.21k
                if (code < 0)
1250
0
                    return code;
1251
2.21k
                ytop = ytl;
1252
10.6k
            } else if (ytr < ytop) {
1253
                /*     |    |
1254
                 *  ---+----+---
1255
                 *     |999\|
1256
                 *     |    |
1257
                 */
1258
2.90k
                code = dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
1259
2.90k
                                        &lenew, &re, ytr, ytop,
1260
2.90k
                                        swap_axes, pdevc, pfs->pgs->log_op);
1261
2.90k
                if (code < 0)
1262
0
                    return code;
1263
2.90k
                ytop = ytr;
1264
2.90k
            }
1265
            /* And finally just whatever rectangular section is left over in
1266
             * the middle */
1267
12.8k
            if (ybot > ytop)
1268
0
                return 0;
1269
12.8k
            return dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
1270
12.8k
                                        &lenew, &renew, ybot, ytop,
1271
12.8k
                                        swap_axes, pdevc, pfs->pgs->log_op);
1272
12.8k
        }
1273
54.1k
    }
1274
140k
    return dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
1275
140k
            &le, &re, ybot, ytop, swap_axes, pdevc, pfs->pgs->log_op);
1276
173k
}
1277
1278
static inline void
1279
dc2fc31(const patch_fill_state_t *pfs, gx_device_color *pdevc,
1280
            frac31 fc[GX_DEVICE_COLOR_MAX_COMPONENTS])
1281
0
{
1282
0
    int j;
1283
0
    const gx_device_color_info *cinfo = &pfs->trans_device->color_info;
1284
    /* Note trans device is actually either the transparency parent
1285
       device if transparency is present or the target device.  Basically
1286
       the device from which we want to get the color information from
1287
       for this */
1288
1289
0
    if (pdevc->type == &gx_dc_type_data_pure) {
1290
0
        for (j = 0; j < cinfo->num_components; j++) {
1291
0
                int shift = cinfo->comp_shift[j];
1292
0
                int bits = cinfo->comp_bits[j];
1293
1294
0
                fc[j] = ((pdevc->colors.pure >> shift) & ((1 << bits) - 1)) <<
1295
0
                        (sizeof(frac31) * 8 - 1 - bits);
1296
0
        }
1297
0
    } else {
1298
0
        for (j = 0; j < cinfo->num_components; j++) {
1299
0
                fc[j] = cv2frac31(pdevc->colors.devn.values[j]);
1300
0
        }
1301
0
    }
1302
0
}
1303
1304
51.9M
#define DEBUG_COLOR_INDEX_CACHE 0
1305
1306
static inline int
1307
patch_color_to_device_color_inline(const patch_fill_state_t *pfs,
1308
                                   const patch_color_t *c, gx_device_color *pdevc,
1309
                                   frac31 *frac_values)
1310
12.9M
{
1311
    /* Must return 2 if the color is not pure.
1312
       See try_device_linear_color.
1313
     */
1314
12.9M
    int code;
1315
12.9M
    gx_device_color devc;
1316
1317
12.9M
#ifdef PACIFY_VALGRIND
1318
    /* This is a hack to get us around some valgrind warnings seen
1319
     * when transparency is in use with the clist. We run through
1320
     * the shading code dealing with pfs->num_components components.
1321
     * I believe this is intended to match the source space of the
1322
     * shading, as we have to perform all shadings in the source
1323
     * space initially, and only convert after decomposition.
1324
     * When this reaches down to the clist writing phase, the
1325
     * clist writes pfs->dev->color_info.num_components color
1326
     * components to the clist. In the example I am using
1327
     *  pfs->num_components = 1
1328
     *  pfs->dev->color_info.num_components=3
1329
     * So valgrind complains that 2 of the 3 color components
1330
     * it is writing are uninitialised. Magically, it appears
1331
     * not to actually use them when read back though, so
1332
     * it suffices to blank them to kill the warnings now.
1333
     * If pfs->num_components > pfs->dev->color_info.num_components
1334
     * then we'll not be writing enough information to the clist
1335
     * and so hopefully we'll see bad rendering!
1336
     *
1337
     * An example that shows why this is required:
1338
     *  make gsdebugvg
1339
     *  valgrind --track-origins=yes debugbin/gs -sOutputFile=test.ps
1340
     *    -dMaxBitmap=1000 -sDEVICE=ps2write  -r300  -Z: -dNOPAUSE
1341
     *    -dBATCH -K2000000 -dClusterJob Bug693480.pdf
1342
     * (though ps2write is not implicated here).
1343
     */
1344
12.9M
     if (frac_values) {
1345
10.4k
        int i;
1346
10.4k
  int n = pfs->dev->color_info.num_components;
1347
10.4k
  for (i = pfs->num_components; i < n; i++) {
1348
0
            frac_values[i] = 0;
1349
0
  }
1350
10.4k
    }
1351
12.9M
#endif
1352
1353
12.9M
    if (DEBUG_COLOR_INDEX_CACHE && pdevc == NULL)
1354
0
        pdevc = &devc;
1355
12.9M
    if (pfs->pcic) {
1356
11.9k
        code = gs_cached_color_index(pfs->pcic, c->cc.paint.values, pdevc, frac_values);
1357
11.9k
        if (code < 0)
1358
0
            return code;
1359
11.9k
    }
1360
12.9M
    if (DEBUG_COLOR_INDEX_CACHE || pfs->pcic == NULL) {
1361
#       if DEBUG_COLOR_INDEX_CACHE
1362
        gx_color_index cindex = pdevc->colors.pure;
1363
#       endif
1364
12.9M
        gs_client_color fcc;
1365
12.9M
        const gs_color_space *pcs = pfs->direct_space;
1366
1367
12.9M
        if (pcs != NULL) {
1368
1369
12.9M
            if (pdevc == NULL)
1370
0
                pdevc = &devc;
1371
12.9M
            memcpy(fcc.paint.values, c->cc.paint.values,
1372
12.9M
                        sizeof(fcc.paint.values[0]) * pfs->num_components);
1373
12.9M
            code = pcs->type->remap_color(&fcc, pcs, pdevc, pfs->pgs,
1374
12.9M
                                      pfs->trans_device, gs_color_select_texture);
1375
12.9M
            if (code < 0)
1376
0
                return code;
1377
12.9M
            if (frac_values != NULL) {
1378
0
                if (!(pdevc->type == &gx_dc_type_data_devn ||
1379
0
                      pdevc->type == &gx_dc_type_data_pure))
1380
0
                    return 2;
1381
0
                dc2fc31(pfs, pdevc, frac_values);
1382
0
            }
1383
#           if DEBUG_COLOR_INDEX_CACHE
1384
            if (cindex != pdevc->colors.pure)
1385
                return_error(gs_error_unregistered);
1386
#           endif
1387
12.9M
        } else {
1388
            /* This is reserved for future extension,
1389
            when a linear color triangle with frac31 colors is being decomposed
1390
            during a clist rasterization. In this case frac31 colors are written into
1391
            the patch color, and pcs==NULL means an identity color mapping.
1392
            For a while we assume here pfs->pcic is also NULL. */
1393
0
            int j;
1394
0
            const gx_device_color_info *cinfo = &pfs->dev->color_info;
1395
1396
0
            for (j = 0; j < cinfo->num_components; j++)
1397
0
                frac_values[j] = (frac31)c->cc.paint.values[j];
1398
0
            pdevc->type = &gx_dc_type_data_pure;
1399
0
        }
1400
12.9M
    }
1401
12.9M
    return 0;
1402
12.9M
}
1403
1404
int
1405
patch_color_to_device_color(const patch_fill_state_t *pfs, const patch_color_t *c, gx_device_color *pdevc)
1406
0
{
1407
0
    return patch_color_to_device_color_inline(pfs, c, pdevc, NULL);
1408
0
}
1409
1410
static inline double
1411
color_span(const patch_fill_state_t *pfs, const patch_color_t *c0, const patch_color_t *c1)
1412
30.0M
{
1413
30.0M
    int n = pfs->num_components, i;
1414
30.0M
    double m;
1415
1416
    /* Dont want to copy colors, which are big things. */
1417
30.0M
    m = any_abs(c1->cc.paint.values[0] - c0->cc.paint.values[0]) / pfs->color_domain.paint.values[0];
1418
106M
    for (i = 1; i < n; i++)
1419
76.9M
        m = max(m, any_abs(c1->cc.paint.values[i] - c0->cc.paint.values[i]) / pfs->color_domain.paint.values[i]);
1420
30.0M
    return m;
1421
30.0M
}
1422
1423
static inline void
1424
color_diff(const patch_fill_state_t *pfs, const patch_color_t *c0, const patch_color_t *c1, patch_color_t *d)
1425
3.30M
{
1426
3.30M
    int n = pfs->num_components, i;
1427
1428
15.3M
    for (i = 0; i < n; i++)
1429
12.0M
        d->cc.paint.values[i] = c1->cc.paint.values[i] - c0->cc.paint.values[i];
1430
3.30M
}
1431
1432
static inline double
1433
color_norm(const patch_fill_state_t *pfs, const patch_color_t *c)
1434
3.29M
{
1435
3.29M
    int n = pfs->num_components, i;
1436
3.29M
    double m;
1437
1438
3.29M
    m = any_abs(c->cc.paint.values[0]) / pfs->color_domain.paint.values[0];
1439
12.0M
    for (i = 1; i < n; i++)
1440
8.75M
        m = max(m, any_abs(c->cc.paint.values[i]) / pfs->color_domain.paint.values[i]);
1441
3.29M
    return m;
1442
3.29M
}
1443
1444
static inline int
1445
isnt_color_monotonic(const patch_fill_state_t *pfs, const patch_color_t *c0, const patch_color_t *c1)
1446
2.12M
{   /* checks whether the color is monotonic in the n-dimensional interval,
1447
       where n is the number of parameters in c0->t, c1->t.
1448
       returns : 0 = monotonic,
1449
       bit 0 = not or don't know by t0,
1450
       bit 1 = not or don't know by t1,
1451
       <0 = error. */
1452
    /* When pfs->Function is not set, the color is monotonic.
1453
       In this case do not call this function because
1454
       it doesn't check whether pfs->Function is set.
1455
       Actually pfs->monotonic_color prevents that.
1456
     */
1457
    /* This assumes that the color space is always monotonic.
1458
       Non-monotonic color spaces are not recommended by PLRM,
1459
       and the result with them may be imprecise.
1460
     */
1461
2.12M
    uint mask;
1462
2.12M
    int code = gs_function_is_monotonic(pfs->Function, c0->t, c1->t, &mask);
1463
1464
2.12M
    if (code >= 0)
1465
2.12M
        return mask;
1466
4
    return code;
1467
2.12M
}
1468
1469
static inline bool
1470
covers_pixel_centers(fixed ybot, fixed ytop)
1471
3.96M
{
1472
3.96M
    return fixed_pixround(ybot) < fixed_pixround(ytop);
1473
3.96M
}
1474
1475
static inline int
1476
constant_color_trapezoid(patch_fill_state_t *pfs, gs_fixed_edge *le, gs_fixed_edge *re,
1477
        fixed ybot, fixed ytop, bool swap_axes, const patch_color_t *c)
1478
4.60M
{
1479
4.60M
    gx_device_color dc;
1480
4.60M
    int code;
1481
1482
#   if NOFILL_TEST
1483
        /* if (dbg_nofill)
1484
                return 0; */
1485
#   endif
1486
1487
4.60M
    code = patch_color_to_device_color_inline(pfs, c, &dc, NULL);
1488
4.60M
    if (code < 0)
1489
0
        return code;
1490
1491
4.60M
    dc.tag = device_current_tag(pfs->dev);
1492
1493
4.60M
    return dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
1494
4.60M
        le, re, ybot, ytop, swap_axes, &dc, pfs->pgs->log_op);
1495
4.60M
}
1496
1497
static inline float
1498
function_linearity(const patch_fill_state_t *pfs, const patch_color_t *c0, const patch_color_t *c1)
1499
16.4k
{
1500
16.4k
    float s = 0;
1501
1502
16.4k
    if (pfs->Function != NULL) {
1503
16.4k
        patch_color_t c;
1504
        /* Solaris 9 (Sun C 5.5) compiler cannot initialize a 'const' */
1505
        /* unless it is 'static const' */
1506
16.4k
        static const float q[2] = {(float)0.3, (float)0.7};
1507
16.4k
        int i, j;
1508
1509
49.4k
        for (j = 0; j < count_of(q); j++) {
1510
32.9k
            c.t[0] = c0->t[0] * (1 - q[j]) + c1->t[0] * q[j];
1511
32.9k
            c.t[1] = c0->t[1] * (1 - q[j]) + c1->t[1] * q[j];
1512
32.9k
            patch_resolve_color_inline(&c, pfs);
1513
97.6k
            for (i = 0; i < pfs->num_components; i++) {
1514
64.7k
                float v = c0->cc.paint.values[i] * (1 - q[j]) + c1->cc.paint.values[i] * q[j];
1515
64.7k
                float d = v - c.cc.paint.values[i];
1516
64.7k
                float s1 = any_abs(d) / pfs->color_domain.paint.values[i];
1517
1518
64.7k
                if (s1 > pfs->smoothness)
1519
0
                    return s1;
1520
64.7k
                if (s < s1)
1521
1.81k
                    s = s1;
1522
64.7k
            }
1523
32.9k
        }
1524
16.4k
    }
1525
16.4k
    return s;
1526
16.4k
}
1527
1528
static inline int
1529
is_color_linear(const patch_fill_state_t *pfs, const patch_color_t *c0, const patch_color_t *c1)
1530
2.42M
{   /* returns : 1 = linear, 0 = unlinear, <0 = error. */
1531
2.42M
    if (pfs->unlinear)
1532
2.41M
        return 1; /* Disable this check. */
1533
11.8k
    else {
1534
11.8k
        const gs_color_space *cs = pfs->direct_space;
1535
11.8k
        int code;
1536
11.8k
        float s = function_linearity(pfs, c0, c1);
1537
1538
11.8k
        if (s > pfs->smoothness)
1539
0
            return 0;
1540
11.8k
        if (pfs->cs_always_linear)
1541
0
            return 1;
1542
11.8k
        code = cs_is_linear(cs, pfs->pgs, pfs->trans_device,
1543
11.8k
                &c0->cc, &c1->cc, NULL, NULL, pfs->smoothness - s, pfs->icclink);
1544
11.8k
        if (code <= 0)
1545
0
            return code;
1546
11.8k
        return 1;
1547
11.8k
    }
1548
2.42M
}
1549
1550
static int
1551
decompose_linear_color(patch_fill_state_t *pfs, gs_fixed_edge *le, gs_fixed_edge *re,
1552
        fixed ybot, fixed ytop, bool swap_axes, const patch_color_t *c0,
1553
        const patch_color_t *c1)
1554
10.8M
{
1555
    /* Assuming a very narrow trapezoid - ignore the transversal color variation. */
1556
    /* Assuming the XY span is restricted with curve_samples.
1557
       It is important for intersection_of_small_bars to compute faster. */
1558
10.8M
    int code;
1559
10.8M
    patch_color_t *c;
1560
10.8M
    byte *color_stack_ptr;
1561
10.8M
    bool save_inside = pfs->inside;
1562
1563
10.8M
    if (!pfs->inside) {
1564
9.09M
        gs_fixed_rect r, r1;
1565
1566
9.09M
        if(swap_axes) {
1567
3.15M
            r.p.y = min(le->start.x, le->end.x);
1568
3.15M
            r.p.x = min(le->start.y, le->end.y);
1569
3.15M
            r.q.y = max(re->start.x, re->end.x);
1570
3.15M
            r.q.x = max(re->start.y, re->end.y);
1571
5.93M
        } else {
1572
5.93M
            r.p.x = min(le->start.x, le->end.x);
1573
5.93M
            r.p.y = min(le->start.y, le->end.y);
1574
5.93M
            r.q.x = max(re->start.x, re->end.x);
1575
5.93M
            r.q.y = max(re->start.y, re->end.y);
1576
5.93M
        }
1577
9.09M
        r1 = r;
1578
9.09M
        rect_intersect(r, pfs->rect);
1579
9.09M
        if (r.q.x <= r.p.x || r.q.y <= r.p.y)
1580
3.87M
            return 0;
1581
5.21M
        if (r1.p.x == r.p.x && r1.p.y == r.p.y &&
1582
5.21M
            r1.q.x == r.q.x && r1.q.y == r.q.y)
1583
1.02M
            pfs->inside = true;
1584
5.21M
    }
1585
6.93M
    color_stack_ptr = reserve_colors_inline(pfs, &c, 1);
1586
6.93M
    if (color_stack_ptr == NULL)
1587
0
        return_error(gs_error_unregistered); /* Must not happen. */
1588
    /* Use the recursive decomposition due to isnt_color_monotonic
1589
       based on fn_is_monotonic_proc_t is_monotonic,
1590
       which applies to intervals. */
1591
6.93M
    patch_interpolate_color(c, c0, c1, pfs, 0.5);
1592
6.93M
    if (ytop - ybot < pfs->decomposition_limit) /* Prevent an infinite color decomposition. */
1593
369k
        code = constant_color_trapezoid(pfs, le, re, ybot, ytop, swap_axes, c);
1594
6.56M
    else {
1595
6.56M
        bool monotonic_color_save = pfs->monotonic_color;
1596
6.56M
        bool linear_color_save = pfs->linear_color;
1597
1598
6.56M
        if (!pfs->monotonic_color) {
1599
1.91M
            code = isnt_color_monotonic(pfs, c0, c1);
1600
1.91M
            if (code < 0)
1601
4
                goto out;
1602
1.91M
            if (!code)
1603
1.53M
                pfs->monotonic_color = true;
1604
1.91M
        }
1605
6.56M
        if (pfs->monotonic_color && !pfs->linear_color) {
1606
2.41M
            code = is_color_linear(pfs, c0, c1);
1607
2.41M
            if (code < 0)
1608
0
                goto out;
1609
2.41M
            if (code > 0)
1610
2.41M
                pfs->linear_color =  true;
1611
2.41M
        }
1612
6.56M
        if (!pfs->unlinear && pfs->linear_color) {
1613
2.91k
            gx_device *pdev = pfs->dev;
1614
2.91k
            frac31 fc[2][GX_DEVICE_COLOR_MAX_COMPONENTS];
1615
2.91k
            gs_fill_attributes fa;
1616
2.91k
            gs_fixed_rect clip;
1617
1618
2.91k
            memset(fc, 0x99, sizeof(fc));
1619
1620
2.91k
            clip = pfs->rect;
1621
2.91k
            if (swap_axes) {
1622
1.44k
                fixed v;
1623
1624
1.44k
                v = clip.p.x; clip.p.x = clip.p.y; clip.p.y = v;
1625
1.44k
                v = clip.q.x; clip.q.x = clip.q.y; clip.q.y = v;
1626
                /* Don't need adjust_swapped_boundary here. */
1627
1.44k
            }
1628
2.91k
            clip.p.y = max(clip.p.y, ybot);
1629
2.91k
            clip.q.y = min(clip.q.y, ytop);
1630
2.91k
            fa.clip = &clip;
1631
2.91k
            fa.ht = NULL;
1632
2.91k
            fa.swap_axes = swap_axes;
1633
2.91k
            fa.lop = 0;
1634
2.91k
            fa.ystart = ybot;
1635
2.91k
            fa.yend = ytop;
1636
2.91k
            code = patch_color_to_device_color_inline(pfs, c0, NULL, fc[0]);
1637
2.91k
            if (code < 0)
1638
0
                goto out;
1639
2.91k
            if (code == 2) {
1640
                /* Must not happen. */
1641
0
                code=gs_note_error(gs_error_unregistered);
1642
0
                goto out;
1643
0
            }
1644
2.91k
            code = patch_color_to_device_color_inline(pfs, c1, NULL, fc[1]);
1645
2.91k
            if (code < 0)
1646
0
                goto out;
1647
2.91k
            code = dev_proc(pdev, fill_linear_color_trapezoid)(pdev, &fa,
1648
2.91k
                            &le->start, &le->end, &re->start, &re->end,
1649
2.91k
                            fc[0], fc[1], NULL, NULL);
1650
2.91k
            if (code == 1) {
1651
2.91k
                pfs->monotonic_color = monotonic_color_save;
1652
2.91k
                pfs->linear_color = linear_color_save;
1653
2.91k
                code = 0; /* The area is filled. */
1654
2.91k
                goto out;
1655
2.91k
            }
1656
0
            if (code < 0)
1657
0
                goto out;
1658
0
            else {      /* code == 0, the device requested to decompose the area. */
1659
0
                code = gs_note_error(gs_error_unregistered); /* Must not happen. */
1660
0
                goto out;
1661
0
            }
1662
0
        }
1663
6.56M
        if (!pfs->unlinear || !pfs->linear_color ||
1664
6.56M
                color_span(pfs, c0, c1) > pfs->smoothness) {
1665
2.33M
            fixed y = (ybot + ytop) / 2;
1666
1667
2.33M
            code = decompose_linear_color(pfs, le, re, ybot, y, swap_axes, c0, c);
1668
2.33M
            if (code >= 0)
1669
2.33M
                code = decompose_linear_color(pfs, le, re, y, ytop, swap_axes, c, c1);
1670
2.33M
        } else
1671
4.23M
            code = constant_color_trapezoid(pfs, le, re, ybot, ytop, swap_axes, c);
1672
6.56M
        pfs->monotonic_color = monotonic_color_save;
1673
6.56M
        pfs->linear_color = linear_color_save;
1674
6.56M
    }
1675
6.93M
out:
1676
6.93M
    pfs->inside = save_inside;
1677
6.93M
    release_colors_inline(pfs, color_stack_ptr, 1);
1678
6.93M
    return code;
1679
6.93M
}
1680
1681
static inline int
1682
linear_color_trapezoid(patch_fill_state_t *pfs, gs_fixed_point q[4], int i0, int i1, int i2, int i3,
1683
                fixed ybot, fixed ytop, bool swap_axes, const patch_color_t *c0, const patch_color_t *c1,
1684
                bool orient)
1685
3.44M
{
1686
    /* Assuming a very narrow trapezoid - ignore the transversal color change. */
1687
3.44M
    gs_fixed_edge le, re;
1688
1689
3.44M
    make_trapezoid(q, i0, i1, i2, i3, ybot, ytop, swap_axes, orient, &le, &re);
1690
3.44M
    return decompose_linear_color(pfs, &le, &re, ybot, ytop, swap_axes, c0, c1);
1691
3.44M
}
1692
1693
static int
1694
wedge_trap_decompose(patch_fill_state_t *pfs, gs_fixed_point q[4],
1695
        fixed ybot, fixed ytop, const patch_color_t *c0, const patch_color_t *c1,
1696
        bool swap_axes, bool self_intersecting)
1697
3.96M
{
1698
    /* Assuming a very narrow trapezoid - ignore the transversal color change. */
1699
3.96M
    fixed dx1, dy1, dx2, dy2;
1700
3.96M
    bool orient;
1701
1702
3.96M
    if (!pfs->vectorization && !covers_pixel_centers(ybot, ytop))
1703
521k
        return 0;
1704
3.44M
    if (ybot == ytop)
1705
0
        return 0;
1706
3.44M
    dx1 = q[1].x - q[0].x, dy1 = q[1].y - q[0].y;
1707
3.44M
    dx2 = q[2].x - q[0].x, dy2 = q[2].y - q[0].y;
1708
3.44M
    if ((int64_t)dx1 * dy2 != (int64_t)dy1 * dx2) {
1709
1.71M
        orient = ((int64_t)dx1 * dy2 > (int64_t)dy1 * dx2);
1710
1.71M
        return linear_color_trapezoid(pfs, q, 0, 1, 2, 3, ybot, ytop, swap_axes, c0, c1, orient);
1711
1.72M
    } else {
1712
1.72M
        fixed dx3 = q[3].x - q[0].x, dy3 = q[3].y - q[0].y;
1713
1714
1.72M
        orient = ((int64_t)dx1 * dy3 > (int64_t)dy1 * dx3);
1715
1.72M
        return linear_color_trapezoid(pfs, q, 0, 1, 2, 3, ybot, ytop, swap_axes, c0, c1, orient);
1716
1.72M
    }
1717
3.44M
}
1718
1719
static inline int
1720
fill_wedge_trap(patch_fill_state_t *pfs, const gs_fixed_point *p0, const gs_fixed_point *p1,
1721
            const gs_fixed_point *q0, const gs_fixed_point *q1, const patch_color_t *c0, const patch_color_t *c1,
1722
            bool swap_axes, bool self_intersecting)
1723
3.96M
{
1724
    /* We assume that the width of the wedge is close to zero,
1725
       so we can ignore the slope when computing transversal distances. */
1726
3.96M
    gs_fixed_point p[4];
1727
3.96M
    const patch_color_t *cc0, *cc1;
1728
1729
3.96M
    if (p0->y < p1->y) {
1730
2.02M
        p[2] = *p0;
1731
2.02M
        p[3] = *p1;
1732
2.02M
        cc0 = c0;
1733
2.02M
        cc1 = c1;
1734
2.02M
    } else {
1735
1.94M
        p[2] = *p1;
1736
1.94M
        p[3] = *p0;
1737
1.94M
        cc0 = c1;
1738
1.94M
        cc1 = c0;
1739
1.94M
    }
1740
3.96M
    p[0] = *q0;
1741
3.96M
    p[1] = *q1;
1742
3.96M
    return wedge_trap_decompose(pfs, p, p[2].y, p[3].y, cc0, cc1, swap_axes, self_intersecting);
1743
3.96M
}
1744
1745
static void
1746
split_curve_s(const gs_fixed_point *pole, gs_fixed_point *q0, gs_fixed_point *q1, int pole_step)
1747
8.79M
{
1748
    /*  This copies a code fragment from split_curve_midpoint,
1749
        substituting another data type.
1750
     */
1751
    /*
1752
     * We have to define midpoint carefully to avoid overflow.
1753
     * (If it overflows, something really pathological is going
1754
     * on, but we could get infinite recursion that way....)
1755
     */
1756
8.79M
#define midpoint(a,b)\
1757
105M
  (arith_rshift_1(a) + arith_rshift_1(b) + (((a) | (b)) & 1))
1758
8.79M
    fixed x12 = midpoint(pole[1 * pole_step].x, pole[2 * pole_step].x);
1759
8.79M
    fixed y12 = midpoint(pole[1 * pole_step].y, pole[2 * pole_step].y);
1760
1761
    /* q[0] and q[1] must not be the same as pole. */
1762
8.79M
    q0[1 * pole_step].x = midpoint(pole[0 * pole_step].x, pole[1 * pole_step].x);
1763
8.79M
    q0[1 * pole_step].y = midpoint(pole[0 * pole_step].y, pole[1 * pole_step].y);
1764
8.79M
    q1[2 * pole_step].x = midpoint(pole[2 * pole_step].x, pole[3 * pole_step].x);
1765
8.79M
    q1[2 * pole_step].y = midpoint(pole[2 * pole_step].y, pole[3 * pole_step].y);
1766
8.79M
    q0[2 * pole_step].x = midpoint(q0[1 * pole_step].x, x12);
1767
8.79M
    q0[2 * pole_step].y = midpoint(q0[1 * pole_step].y, y12);
1768
8.79M
    q1[1 * pole_step].x = midpoint(x12, q1[2 * pole_step].x);
1769
8.79M
    q1[1 * pole_step].y = midpoint(y12, q1[2 * pole_step].y);
1770
8.79M
    q0[0 * pole_step].x = pole[0 * pole_step].x;
1771
8.79M
    q0[0 * pole_step].y = pole[0 * pole_step].y;
1772
8.79M
    q0[3 * pole_step].x = q1[0 * pole_step].x = midpoint(q0[2 * pole_step].x, q1[1 * pole_step].x);
1773
8.79M
    q0[3 * pole_step].y = q1[0 * pole_step].y = midpoint(q0[2 * pole_step].y, q1[1 * pole_step].y);
1774
8.79M
    q1[3 * pole_step].x = pole[3 * pole_step].x;
1775
8.79M
    q1[3 * pole_step].y = pole[3 * pole_step].y;
1776
8.79M
#undef midpoint
1777
8.79M
}
1778
1779
static void
1780
split_curve(const gs_fixed_point pole[4], gs_fixed_point q0[4], gs_fixed_point q1[4])
1781
259k
{
1782
259k
    split_curve_s(pole, q0, q1, 1);
1783
259k
}
1784
1785
#ifdef SHADING_SWAP_AXES_FOR_PRECISION
1786
static inline void
1787
do_swap_axes(gs_fixed_point *p, int k)
1788
{
1789
    int i;
1790
1791
    for (i = 0; i < k; i++) {
1792
        p[i].x ^= p[i].y; p[i].y ^= p[i].x; p[i].x ^= p[i].y;
1793
    }
1794
}
1795
1796
static inline fixed
1797
span_x(const gs_fixed_point *p, int k)
1798
{
1799
    int i;
1800
    fixed xmin = p[0].x, xmax = p[0].x;
1801
1802
    for (i = 1; i < k; i++) {
1803
        xmin = min(xmin, p[i].x);
1804
        xmax = max(xmax, p[i].x);
1805
    }
1806
    return xmax - xmin;
1807
}
1808
1809
static inline fixed
1810
span_y(const gs_fixed_point *p, int k)
1811
{
1812
    int i;
1813
    fixed ymin = p[0].y, ymax = p[0].y;
1814
1815
    for (i = 1; i < k; i++) {
1816
        ymin = min(ymin, p[i].y);
1817
        ymax = max(ymax, p[i].y);
1818
    }
1819
    return ymax - ymin;
1820
}
1821
#endif
1822
1823
static inline fixed
1824
manhattan_dist(const gs_fixed_point *p0, const gs_fixed_point *p1)
1825
5.32M
{
1826
5.32M
    fixed dx = any_abs(p1->x - p0->x), dy = any_abs(p1->y - p0->y);
1827
1828
5.32M
    return max(dx, dy);
1829
5.32M
}
1830
1831
static inline int
1832
create_wedge_vertex_list(patch_fill_state_t *pfs, wedge_vertex_list_t *l,
1833
        const gs_fixed_point *p0, const gs_fixed_point *p1)
1834
1.37M
{
1835
1.37M
    if (l->end != NULL)
1836
0
        return_error(gs_error_unregistered); /* Must not happen. */
1837
1.37M
    l->beg = wedge_vertex_list_elem_reserve(pfs);
1838
1.37M
    l->end = wedge_vertex_list_elem_reserve(pfs);
1839
1.37M
    if (l->beg == NULL)
1840
0
        return_error(gs_error_unregistered); /* Must not happen. */
1841
1.37M
    if (l->end == NULL)
1842
0
        return_error(gs_error_unregistered); /* Must not happen. */
1843
1.37M
    l->beg->prev = l->end->next = NULL;
1844
1.37M
    l->beg->next = l->end;
1845
1.37M
    l->end->prev = l->beg;
1846
1.37M
    l->beg->p = *p0;
1847
1.37M
    l->end->p = *p1;
1848
1.37M
    l->beg->level = l->end->level = 0;
1849
1.37M
    return 0;
1850
1.37M
}
1851
1852
static inline int
1853
insert_wedge_vertex_list_elem(patch_fill_state_t *pfs, wedge_vertex_list_t *l,
1854
                              const gs_fixed_point *p, wedge_vertex_list_elem_t **r)
1855
2.51M
{
1856
2.51M
    wedge_vertex_list_elem_t *e = wedge_vertex_list_elem_reserve(pfs);
1857
1858
    /* We have got enough free elements due to the preliminary decomposition
1859
       of curves to LAZY_WEDGES_MAX_LEVEL, see curve_samples. */
1860
2.51M
    if (e == NULL)
1861
0
        return_error(gs_error_unregistered); /* Must not happen. */
1862
2.51M
    if (l->beg->next != l->end)
1863
0
        return_error(gs_error_unregistered); /* Must not happen. */
1864
2.51M
    if (l->end->prev != l->beg)
1865
0
        return_error(gs_error_unregistered); /* Must not happen. */
1866
2.51M
    e->next = l->end;
1867
2.51M
    e->prev = l->beg;
1868
2.51M
    e->p = *p;
1869
2.51M
    e->level = max(l->beg->level, l->end->level) + 1;
1870
2.51M
    e->divide_count = 0;
1871
2.51M
    l->beg->next = l->end->prev = e;
1872
2.51M
    {   int sx = l->beg->p.x < l->end->p.x ? 1 : -1;
1873
2.51M
        int sy = l->beg->p.y < l->end->p.y ? 1 : -1;
1874
1875
2.51M
        if ((p->x - l->beg->p.x) * sx < 0)
1876
0
            return_error(gs_error_unregistered); /* Must not happen. */
1877
2.51M
        if ((p->y - l->beg->p.y) * sy < 0)
1878
0
            return_error(gs_error_unregistered); /* Must not happen. */
1879
2.51M
        if ((l->end->p.x - p->x) * sx < 0)
1880
0
            return_error(gs_error_unregistered); /* Must not happen. */
1881
2.51M
        if ((l->end->p.y - p->y) * sy < 0)
1882
0
            return_error(gs_error_unregistered); /* Must not happen. */
1883
2.51M
    }
1884
2.51M
    *r = e;
1885
2.51M
    return 0;
1886
2.51M
}
1887
1888
static inline int
1889
open_wedge_median(patch_fill_state_t *pfs, wedge_vertex_list_t *l,
1890
        const gs_fixed_point *p0, const gs_fixed_point *p1, const gs_fixed_point *pm,
1891
        wedge_vertex_list_elem_t **r)
1892
3.66M
{
1893
3.66M
    wedge_vertex_list_elem_t *e;
1894
3.66M
    int code;
1895
1896
3.66M
    if (!l->last_side) {
1897
2.45M
        if (l->beg == NULL) {
1898
1.32M
            code = create_wedge_vertex_list(pfs, l, p0, p1);
1899
1.32M
            if (code < 0)
1900
0
                return code;
1901
1.32M
        }
1902
2.45M
        if (l->beg->p.x != p0->x)
1903
0
            return_error(gs_error_unregistered); /* Must not happen. */
1904
2.45M
        if (l->beg->p.y != p0->y)
1905
0
            return_error(gs_error_unregistered); /* Must not happen. */
1906
2.45M
        if (l->end->p.x != p1->x)
1907
0
            return_error(gs_error_unregistered); /* Must not happen. */
1908
2.45M
        if (l->end->p.y != p1->y)
1909
0
            return_error(gs_error_unregistered); /* Must not happen. */
1910
2.45M
        code = insert_wedge_vertex_list_elem(pfs, l, pm, &e);
1911
2.45M
        if (code < 0)
1912
0
            return code;
1913
2.45M
        e->divide_count++;
1914
2.45M
    } else if (l->beg == NULL) {
1915
48.4k
        code = create_wedge_vertex_list(pfs, l, p1, p0);
1916
48.4k
        if (code < 0)
1917
0
            return code;
1918
48.4k
        code = insert_wedge_vertex_list_elem(pfs, l, pm, &e);
1919
48.4k
        if (code < 0)
1920
0
            return code;
1921
48.4k
        e->divide_count++;
1922
1.16M
    } else {
1923
1.16M
        if (l->beg->p.x != p1->x)
1924
0
            return_error(gs_error_unregistered); /* Must not happen. */
1925
1.16M
        if (l->beg->p.y != p1->y)
1926
0
            return_error(gs_error_unregistered); /* Must not happen. */
1927
1.16M
        if (l->end->p.x != p0->x)
1928
0
            return_error(gs_error_unregistered); /* Must not happen. */
1929
1.16M
        if (l->end->p.y != p0->y)
1930
0
            return_error(gs_error_unregistered); /* Must not happen. */
1931
1.16M
        if (l->beg->next == l->end) {
1932
19.9k
            code = insert_wedge_vertex_list_elem(pfs, l, pm, &e);
1933
19.9k
            if (code < 0)
1934
0
                return code;
1935
19.9k
            e->divide_count++;
1936
1.14M
        } else {
1937
1.14M
            e = wedge_vertex_list_find(l->beg, l->end,
1938
1.14M
                        max(l->beg->level, l->end->level) + 1);
1939
1.14M
            if (e == NULL)
1940
0
                return_error(gs_error_unregistered); /* Must not happen. */
1941
1.14M
            if (e->p.x != pm->x || e->p.y != pm->y)
1942
0
                return_error(gs_error_unregistered); /* Must not happen. */
1943
1.14M
            e->divide_count++;
1944
1.14M
        }
1945
1.16M
    }
1946
3.66M
    *r = e;
1947
3.66M
    return 0;
1948
3.66M
}
1949
1950
static inline int
1951
make_wedge_median(patch_fill_state_t *pfs, wedge_vertex_list_t *l,
1952
        wedge_vertex_list_t *l0, bool forth,
1953
        const gs_fixed_point *p0, const gs_fixed_point *p1, const gs_fixed_point *pm)
1954
3.66M
{
1955
3.66M
    int code;
1956
1957
3.66M
    l->last_side = l0->last_side;
1958
3.66M
    if (!l->last_side ^ !forth) {
1959
2.10M
        code = open_wedge_median(pfs, l0, p0, p1, pm, &l->end);
1960
2.10M
        l->beg = l0->beg;
1961
2.10M
    } else {
1962
1.55M
        code = open_wedge_median(pfs, l0, p0, p1, pm, &l->beg);
1963
1.55M
        l->end = l0->end;
1964
1.55M
    }
1965
3.66M
    return code;
1966
3.66M
}
1967
1968
static int fill_wedge_from_list(patch_fill_state_t *pfs, const wedge_vertex_list_t *l,
1969
            const patch_color_t *c0, const patch_color_t *c1);
1970
1971
static inline int
1972
close_wedge_median(patch_fill_state_t *pfs, wedge_vertex_list_t *l,
1973
        const patch_color_t *c0, const patch_color_t *c1)
1974
3.66M
{
1975
3.66M
    int code;
1976
1977
3.66M
    if (!l->last_side)
1978
2.45M
        return 0;
1979
1.21M
    code = fill_wedge_from_list(pfs, l, c1, c0);
1980
1.21M
    if (code < 0)
1981
0
        return code;
1982
1.21M
    release_wedge_vertex_list_interval(pfs, l->beg, l->end);
1983
1.21M
    return 0;
1984
1.21M
}
1985
1986
static inline void
1987
move_wedge(wedge_vertex_list_t *l, const wedge_vertex_list_t *l0, bool forth)
1988
3.66M
{
1989
3.66M
    if (!l->last_side ^ !forth) {
1990
2.10M
        l->beg = l->end;
1991
2.10M
        l->end = l0->end;
1992
2.10M
    } else {
1993
1.55M
        l->end = l->beg;
1994
1.55M
        l->beg = l0->beg;
1995
1.55M
    }
1996
3.66M
}
1997
1998
static inline int
1999
fill_triangle_wedge_aux(patch_fill_state_t *pfs,
2000
            const shading_vertex_t *q0, const shading_vertex_t *q1, const shading_vertex_t *q2)
2001
1.98M
{   int code;
2002
1.98M
    const gs_fixed_point *p0, *p1, *p2;
2003
1.98M
    gs_fixed_point qq0, qq1, qq2;
2004
1.98M
    fixed dx = any_abs(q0->p.x - q1->p.x), dy = any_abs(q0->p.y - q1->p.y);
2005
1.98M
    bool swap_axes;
2006
2007
#   if SKIP_TEST
2008
        dbg_wedge_triangle_cnt++;
2009
#   endif
2010
1.98M
    if (dx > dy) {
2011
948k
        swap_axes = true;
2012
948k
        qq0.x = q0->p.y;
2013
948k
        qq0.y = q0->p.x;
2014
948k
        qq1.x = q1->p.y;
2015
948k
        qq1.y = q1->p.x;
2016
948k
        qq2.x = q2->p.y;
2017
948k
        qq2.y = q2->p.x;
2018
948k
        p0 = &qq0;
2019
948k
        p1 = &qq1;
2020
948k
        p2 = &qq2;
2021
1.03M
    } else {
2022
1.03M
        swap_axes = false;
2023
1.03M
        p0 = &q0->p;
2024
1.03M
        p1 = &q1->p;
2025
1.03M
        p2 = &q2->p;
2026
1.03M
    }
2027
    /* We decompose the thin triangle into 2 thin trapezoids.
2028
       An optimization with decomposing into 2 triangles
2029
       appears low useful, because the self_intersecting argument
2030
       with inline expansion does that job perfectly. */
2031
1.98M
    if (p0->y < p1->y) {
2032
1.01M
        code = fill_wedge_trap(pfs, p0, p2, p0, p1, q0->c, q2->c, swap_axes, false);
2033
1.01M
        if (code < 0)
2034
0
            return code;
2035
1.01M
        return fill_wedge_trap(pfs, p2, p1, p0, p1, q2->c, q1->c, swap_axes, false);
2036
1.01M
    } else {
2037
970k
        code = fill_wedge_trap(pfs, p0, p2, p1, p0, q0->c, q2->c, swap_axes, false);
2038
970k
        if (code < 0)
2039
2
            return code;
2040
970k
        return fill_wedge_trap(pfs, p2, p1, p1, p0, q2->c, q1->c, swap_axes, false);
2041
970k
    }
2042
1.98M
}
2043
2044
static inline int
2045
try_device_linear_color(patch_fill_state_t *pfs, bool wedge,
2046
        const shading_vertex_t *p0, const shading_vertex_t *p1,
2047
        const shading_vertex_t *p2)
2048
8.31M
{
2049
    /*  Returns :
2050
        <0 - error;
2051
        0 - success;
2052
        1 - decompose to linear color areas;
2053
        2 - decompose to constant color areas;
2054
     */
2055
8.31M
    int code;
2056
2057
8.31M
    if (pfs->unlinear)
2058
8.31M
        return 2;
2059
1.53k
    if (!wedge) {
2060
1.53k
        const gs_color_space *cs = pfs->direct_space;
2061
2062
1.53k
        if (cs != NULL) {
2063
1.53k
            float s0, s1, s2, s01, s012;
2064
2065
1.53k
            s0 = function_linearity(pfs, p0->c, p1->c);
2066
1.53k
            if (s0 > pfs->smoothness)
2067
0
                return 1;
2068
1.53k
            s1 = function_linearity(pfs, p1->c, p2->c);
2069
1.53k
            if (s1 > pfs->smoothness)
2070
0
                return 1;
2071
1.53k
            s2 = function_linearity(pfs, p2->c, p0->c);
2072
1.53k
            if (s2 > pfs->smoothness)
2073
0
                return 1;
2074
            /* fixme: check an inner color ? */
2075
1.53k
            s01 = max(s0, s1);
2076
1.53k
            s012 = max(s01, s2);
2077
1.53k
            if (pfs->cs_always_linear)
2078
0
                code = 1;
2079
1.53k
            else
2080
1.53k
                code = cs_is_linear(cs, pfs->pgs, pfs->trans_device,
2081
1.53k
                                  &p0->c->cc, &p1->c->cc, &p2->c->cc, NULL,
2082
1.53k
                                  pfs->smoothness - s012, pfs->icclink);
2083
1.53k
            if (code < 0)
2084
0
                return code;
2085
1.53k
            if (code == 0)
2086
0
                return 1;
2087
1.53k
        }
2088
1.53k
    }
2089
1.53k
    {   gx_device *pdev = pfs->dev;
2090
1.53k
        frac31 fc[3][GX_DEVICE_COLOR_MAX_COMPONENTS];
2091
1.53k
        gs_fill_attributes fa;
2092
1.53k
        gx_device_color dc[3];
2093
2094
1.53k
        fa.clip = &pfs->rect;
2095
1.53k
        fa.ht = NULL;
2096
1.53k
        fa.swap_axes = false;
2097
1.53k
        fa.lop = 0;
2098
1.53k
        code = patch_color_to_device_color_inline(pfs, p0->c, &dc[0], fc[0]);
2099
1.53k
        if (code != 0)
2100
0
            return code;
2101
1.53k
        if (!(dc[0].type == &gx_dc_type_data_pure ||
2102
1.53k
            dc[0].type == &gx_dc_type_data_devn))
2103
0
            return 2;
2104
1.53k
        if (!wedge) {
2105
1.53k
            code = patch_color_to_device_color_inline(pfs, p1->c, &dc[1], fc[1]);
2106
1.53k
            if (code != 0)
2107
0
                return code;
2108
1.53k
        }
2109
1.53k
        code = patch_color_to_device_color_inline(pfs, p2->c, &dc[2], fc[2]);
2110
1.53k
        if (code != 0)
2111
0
            return code;
2112
1.53k
        code = dev_proc(pdev, fill_linear_color_triangle)(pdev, &fa,
2113
1.53k
                        &p0->p, &p1->p, &p2->p,
2114
1.53k
                        fc[0], (wedge ? NULL : fc[1]), fc[2]);
2115
1.53k
        if (code == 1)
2116
1.53k
            return 0; /* The area is filled. */
2117
0
        if (code < 0)
2118
0
            return code;
2119
0
        else /* code == 0, the device requested to decompose the area. */
2120
0
            return 1;
2121
0
    }
2122
0
}
2123
2124
static inline int
2125
fill_triangle_wedge(patch_fill_state_t *pfs,
2126
            const shading_vertex_t *q0, const shading_vertex_t *q1, const shading_vertex_t *q2)
2127
3.46M
{
2128
3.46M
    if ((int64_t)(q1->p.x - q0->p.x) * (q2->p.y - q0->p.y) ==
2129
3.46M
        (int64_t)(q1->p.y - q0->p.y) * (q2->p.x - q0->p.x))
2130
1.48M
        return 0; /* Zero area. */
2131
    /*
2132
        Can't apply try_device_linear_color here
2133
        because didn't check is_color_linear.
2134
        Maybe need a decomposition.
2135
        Do same as for 'unlinear', and branch later.
2136
     */
2137
1.98M
    return fill_triangle_wedge_aux(pfs, q0, q1, q2);
2138
3.46M
}
2139
2140
static inline int
2141
fill_triangle_wedge_from_list(patch_fill_state_t *pfs,
2142
    const wedge_vertex_list_elem_t *beg, const wedge_vertex_list_elem_t *end,
2143
    const wedge_vertex_list_elem_t *mid,
2144
    const patch_color_t *c0, const patch_color_t *c1)
2145
1.37M
{
2146
1.37M
    shading_vertex_t p[3];
2147
1.37M
    patch_color_t *c;
2148
1.37M
    byte *color_stack_ptr = reserve_colors_inline(pfs, &c, 1);
2149
1.37M
    int code;
2150
2151
1.37M
    if (color_stack_ptr == NULL)
2152
0
        return_error(gs_error_unregistered); /* Must not happen. */
2153
1.37M
    p[2].c = c;
2154
1.37M
    p[0].p = beg->p;
2155
1.37M
    p[0].c = c0;
2156
1.37M
    p[1].p = end->p;
2157
1.37M
    p[1].c = c1;
2158
1.37M
    p[2].p = mid->p;
2159
1.37M
    patch_interpolate_color(c, c0, c1, pfs, 0.5);
2160
1.37M
    code = fill_triangle_wedge(pfs, &p[0], &p[1], &p[2]);
2161
1.37M
    release_colors_inline(pfs, color_stack_ptr, 1);
2162
1.37M
    return code;
2163
1.37M
}
2164
2165
static int
2166
fill_wedge_from_list_rec(patch_fill_state_t *pfs,
2167
            wedge_vertex_list_elem_t *beg, const wedge_vertex_list_elem_t *end,
2168
            int level, const patch_color_t *c0, const patch_color_t *c1)
2169
3.34M
{
2170
3.34M
    if (beg->next == end)
2171
822k
        return 0;
2172
2.51M
    else if (beg->next->next == end) {
2173
2.14M
        if (beg->next->divide_count != 1 && beg->next->divide_count != 2)
2174
0
            return_error(gs_error_unregistered); /* Must not happen. */
2175
2.14M
        if (beg->next->divide_count != 1)
2176
1.13M
            return 0;
2177
1.00M
        return fill_triangle_wedge_from_list(pfs, beg, end, beg->next, c0, c1);
2178
2.14M
    } else {
2179
374k
        gs_fixed_point p;
2180
374k
        wedge_vertex_list_elem_t *e;
2181
374k
        patch_color_t *c;
2182
374k
        int code;
2183
374k
        byte *color_stack_ptr = reserve_colors_inline(pfs, &c, 1);
2184
2185
374k
        if (color_stack_ptr == NULL)
2186
0
            return_error(gs_error_unregistered); /* Must not happen. */
2187
374k
        p.x = (beg->p.x + end->p.x) / 2;
2188
374k
        p.y = (beg->p.y + end->p.y) / 2;
2189
374k
        e = wedge_vertex_list_find(beg, end, level + 1);
2190
374k
        if (e == NULL)
2191
0
            return_error(gs_error_unregistered); /* Must not happen. */
2192
374k
        if (e->p.x != p.x || e->p.y != p.y)
2193
0
            return_error(gs_error_unregistered); /* Must not happen. */
2194
374k
        patch_interpolate_color(c, c0, c1, pfs, 0.5);
2195
374k
        code = fill_wedge_from_list_rec(pfs, beg, e, level + 1, c0, c);
2196
374k
        if (code >= 0)
2197
374k
            code = fill_wedge_from_list_rec(pfs, e, end, level + 1, c, c1);
2198
374k
        if (code >= 0) {
2199
374k
            if (e->divide_count != 1 && e->divide_count != 2)
2200
0
                return_error(gs_error_unregistered); /* Must not happen. */
2201
374k
            if (e->divide_count == 1)
2202
369k
                code = fill_triangle_wedge_from_list(pfs, beg, end, e, c0, c1);
2203
374k
        }
2204
374k
        release_colors_inline(pfs, color_stack_ptr, 1);
2205
374k
        return code;
2206
374k
    }
2207
3.34M
}
2208
2209
static int
2210
fill_wedge_from_list(patch_fill_state_t *pfs, const wedge_vertex_list_t *l,
2211
            const patch_color_t *c0, const patch_color_t *c1)
2212
2.59M
{
2213
2.59M
    return fill_wedge_from_list_rec(pfs, l->beg, l->end,
2214
2.59M
                    max(l->beg->level, l->end->level), c0, c1);
2215
2.59M
}
2216
2217
static inline int
2218
terminate_wedge_vertex_list(patch_fill_state_t *pfs, wedge_vertex_list_t *l,
2219
        const patch_color_t *c0, const patch_color_t *c1)
2220
17.2M
{
2221
17.2M
    if (l->beg != NULL) {
2222
1.37M
        int code = fill_wedge_from_list(pfs, l, c0, c1);
2223
2224
1.37M
        if (code < 0)
2225
0
            return code;
2226
1.37M
        return release_wedge_vertex_list(pfs, l, 1);
2227
1.37M
    }
2228
15.8M
    return 0;
2229
17.2M
}
2230
2231
static int
2232
wedge_by_triangles(patch_fill_state_t *pfs, int ka,
2233
        const gs_fixed_point pole[4], const patch_color_t *c0, const patch_color_t *c1)
2234
244k
{   /* Assuming ka >= 2, see fill_wedges. */
2235
244k
    gs_fixed_point q[2][4];
2236
244k
    patch_color_t *c;
2237
244k
    shading_vertex_t p[3];
2238
244k
    int code;
2239
244k
    byte *color_stack_ptr = reserve_colors_inline(pfs, &c, 1);
2240
2241
244k
    if (color_stack_ptr == NULL)
2242
0
        return_error(gs_error_unregistered); /* Must not happen. */
2243
244k
    p[2].c = c;
2244
244k
    split_curve(pole, q[0], q[1]);
2245
244k
    p[0].p = pole[0];
2246
244k
    p[0].c = c0;
2247
244k
    p[1].p = pole[3];
2248
244k
    p[1].c = c1;
2249
244k
    p[2].p = q[0][3];
2250
244k
    patch_interpolate_color(c, c0, c1, pfs, 0.5);
2251
244k
    code = fill_triangle_wedge(pfs, &p[0], &p[1], &p[2]);
2252
244k
    if (code >= 0) {
2253
244k
        if (ka == 2)
2254
124k
            goto out;
2255
119k
        code = wedge_by_triangles(pfs, ka / 2, q[0], c0, p[2].c);
2256
119k
    }
2257
119k
    if (code >= 0)
2258
119k
        code = wedge_by_triangles(pfs, ka / 2, q[1], p[2].c, c1);
2259
244k
out:
2260
244k
    release_colors_inline(pfs, color_stack_ptr, 1);
2261
244k
    return code;
2262
119k
}
2263
2264
int
2265
mesh_padding(patch_fill_state_t *pfs, const gs_fixed_point *p0, const gs_fixed_point *p1,
2266
            const patch_color_t *c0, const patch_color_t *c1)
2267
2.71M
{
2268
2.71M
    gs_fixed_point q0, q1;
2269
2.71M
    const patch_color_t *cc0, *cc1;
2270
2.71M
    fixed dx = p1->x - p0->x;
2271
2.71M
    fixed dy = p1->y - p0->y;
2272
2.71M
    bool swap_axes = (any_abs(dx) > any_abs(dy));
2273
2.71M
    gs_fixed_edge le, re;
2274
2.71M
    const fixed adjust = INTERPATCH_PADDING;
2275
2276
2.71M
    if (swap_axes) {
2277
519k
        if (p0->x < p1->x) {
2278
249k
            q0.x = p0->y;
2279
249k
            q0.y = p0->x;
2280
249k
            q1.x = p1->y;
2281
249k
            q1.y = p1->x;
2282
249k
            cc0 = c0;
2283
249k
            cc1 = c1;
2284
269k
        } else {
2285
269k
            q0.x = p1->y;
2286
269k
            q0.y = p1->x;
2287
269k
            q1.x = p0->y;
2288
269k
            q1.y = p0->x;
2289
269k
            cc0 = c1;
2290
269k
            cc1 = c0;
2291
269k
        }
2292
2.19M
    } else if (p0->y < p1->y) {
2293
211k
        q0 = *p0;
2294
211k
        q1 = *p1;
2295
211k
        cc0 = c0;
2296
211k
        cc1 = c1;
2297
1.98M
    } else {
2298
1.98M
        q0 = *p1;
2299
1.98M
        q1 = *p0;
2300
1.98M
        cc0 = c1;
2301
1.98M
        cc1 = c0;
2302
1.98M
    }
2303
2.71M
    le.start.x = q0.x - adjust;
2304
2.71M
    re.start.x = q0.x + adjust;
2305
2.71M
    le.start.y = re.start.y = q0.y - adjust;
2306
2.71M
    le.end.x = q1.x - adjust;
2307
2.71M
    re.end.x = q1.x + adjust;
2308
2.71M
    le.end.y = re.end.y = q1.y + adjust;
2309
2.71M
    adjust_swapped_boundary(&re.start.x, swap_axes);
2310
2.71M
    adjust_swapped_boundary(&re.end.x, swap_axes);
2311
2.71M
    return decompose_linear_color(pfs, &le, &re, le.start.y, le.end.y, swap_axes, cc0, cc1);
2312
    /* fixme : for a better performance and quality, we would like to
2313
       consider the bar as an oriented one and to know at what side of it the spot resides.
2314
       If we know that, we could expand only to outside the spot.
2315
       Note that if the boundary has a self-intersection,
2316
       we still need to expand to both directions.
2317
     */
2318
2.71M
}
2319
2320
static inline void
2321
bbox_of_points(gs_fixed_rect *r,
2322
        const gs_fixed_point *p0, const gs_fixed_point *p1,
2323
        const gs_fixed_point *p2, const gs_fixed_point *p3)
2324
3.86M
{
2325
3.86M
    r->p.x = r->q.x = p0->x;
2326
3.86M
    r->p.y = r->q.y = p0->y;
2327
2328
3.86M
    if (r->p.x > p1->x)
2329
1.46M
        r->p.x = p1->x;
2330
3.86M
    if (r->q.x < p1->x)
2331
1.45M
        r->q.x = p1->x;
2332
3.86M
    if (r->p.y > p1->y)
2333
1.43M
        r->p.y = p1->y;
2334
3.86M
    if (r->q.y < p1->y)
2335
1.45M
        r->q.y = p1->y;
2336
2337
3.86M
    if (r->p.x > p2->x)
2338
830k
        r->p.x = p2->x;
2339
3.86M
    if (r->q.x < p2->x)
2340
797k
        r->q.x = p2->x;
2341
3.86M
    if (r->p.y > p2->y)
2342
796k
        r->p.y = p2->y;
2343
3.86M
    if (r->q.y < p2->y)
2344
849k
        r->q.y = p2->y;
2345
2346
3.86M
    if (p3 == NULL)
2347
3.39M
        return;
2348
2349
473k
    if (r->p.x > p3->x)
2350
107k
        r->p.x = p3->x;
2351
473k
    if (r->q.x < p3->x)
2352
107k
        r->q.x = p3->x;
2353
473k
    if (r->p.y > p3->y)
2354
84.1k
        r->p.y = p3->y;
2355
473k
    if (r->q.y < p3->y)
2356
110k
        r->q.y = p3->y;
2357
473k
}
2358
2359
static int
2360
fill_wedges_aux(patch_fill_state_t *pfs, int k, int ka,
2361
        const gs_fixed_point pole[4], const patch_color_t *c0, const patch_color_t *c1,
2362
        int wedge_type)
2363
110k
{
2364
110k
    int code;
2365
2366
110k
    if (k > 1) {
2367
49.4k
        gs_fixed_point q[2][4];
2368
49.4k
        patch_color_t *c;
2369
49.4k
        bool save_inside = pfs->inside;
2370
49.4k
        byte *color_stack_ptr;
2371
2372
49.4k
        if (!pfs->inside) {
2373
44.0k
            gs_fixed_rect r, r1;
2374
2375
44.0k
            bbox_of_points(&r, &pole[0], &pole[1], &pole[2], &pole[3]);
2376
44.0k
            r.p.x -= INTERPATCH_PADDING;
2377
44.0k
            r.p.y -= INTERPATCH_PADDING;
2378
44.0k
            r.q.x += INTERPATCH_PADDING;
2379
44.0k
            r.q.y += INTERPATCH_PADDING;
2380
44.0k
            r1 = r;
2381
44.0k
            rect_intersect(r, pfs->rect);
2382
44.0k
            if (r.q.x <= r.p.x || r.q.y <= r.p.y)
2383
34.1k
                return 0;
2384
9.88k
            if (r1.p.x == r.p.x && r1.p.y == r.p.y &&
2385
9.88k
                r1.q.x == r.q.x && r1.q.y == r.q.y)
2386
1.89k
                pfs->inside = true;
2387
9.88k
        }
2388
15.3k
        color_stack_ptr = reserve_colors_inline(pfs, &c, 1);
2389
15.3k
        if (color_stack_ptr == NULL)
2390
0
            return_error(gs_error_unregistered); /* Must not happen. */
2391
15.3k
        patch_interpolate_color(c, c0, c1, pfs, 0.5);
2392
15.3k
        split_curve(pole, q[0], q[1]);
2393
15.3k
        code = fill_wedges_aux(pfs, k / 2, ka, q[0], c0, c, wedge_type);
2394
15.3k
        if (code >= 0)
2395
15.3k
            code = fill_wedges_aux(pfs, k / 2, ka, q[1], c, c1, wedge_type);
2396
15.3k
        release_colors_inline(pfs, color_stack_ptr, 1);
2397
15.3k
        pfs->inside = save_inside;
2398
15.3k
        return code;
2399
60.5k
    } else {
2400
60.5k
        if ((INTERPATCH_PADDING != 0) && (wedge_type & interpatch_padding)) {
2401
57.7k
            code = mesh_padding(pfs, &pole[0], &pole[3], c0, c1);
2402
57.7k
            if (code < 0)
2403
0
                return code;
2404
57.7k
        }
2405
60.5k
        if (ka >= 2 && (wedge_type & inpatch_wedge))
2406
5.20k
            return wedge_by_triangles(pfs, ka, pole, c0, c1);
2407
55.3k
        return 0;
2408
60.5k
    }
2409
110k
}
2410
2411
static int
2412
fill_wedges(patch_fill_state_t *pfs, int k0, int k1,
2413
        const gs_fixed_point *pole, int pole_step,
2414
        const patch_color_t *c0, const patch_color_t *c1,
2415
        int wedge_type)
2416
970k
{
2417
    /* Generate wedges between 2 variants of a curve flattening. */
2418
    /* k0, k1 is a power of 2. */
2419
970k
    gs_fixed_point p[4];
2420
2421
970k
    if (!(wedge_type & interpatch_padding) && k0 == k1)
2422
890k
        return 0; /* Wedges are zero area. */
2423
79.4k
    if (k0 > k1) { /* Swap if required, so that k0 <= k1 */
2424
0
        k0 ^= k1; k1 ^= k0; k0 ^= k1;
2425
0
    }
2426
79.4k
    p[0] = pole[0];
2427
79.4k
    p[1] = pole[pole_step];
2428
79.4k
    p[2] = pole[pole_step * 2];
2429
79.4k
    p[3] = pole[pole_step * 3];
2430
79.4k
    return fill_wedges_aux(pfs, k0, k1 / k0, p, c0, c1, wedge_type);
2431
970k
}
2432
2433
static inline void
2434
make_vertices(gs_fixed_point q[4], const quadrangle_patch *p)
2435
106k
{
2436
106k
    q[0] = p->p[0][0]->p;
2437
106k
    q[1] = p->p[0][1]->p;
2438
106k
    q[2] = p->p[1][1]->p;
2439
106k
    q[3] = p->p[1][0]->p;
2440
106k
}
2441
2442
static inline void
2443
wrap_vertices_by_y(gs_fixed_point q[4], const gs_fixed_point s[4])
2444
106k
{
2445
106k
    fixed y = s[0].y;
2446
106k
    int i = 0;
2447
2448
106k
    if (y > s[1].y)
2449
22.2k
        i = 1, y = s[1].y;
2450
106k
    if (y > s[2].y)
2451
8.19k
        i = 2, y = s[2].y;
2452
106k
    if (y > s[3].y)
2453
11.0k
        i = 3, y = s[3].y;
2454
106k
    q[0] = s[(i + 0) % 4];
2455
106k
    q[1] = s[(i + 1) % 4];
2456
106k
    q[2] = s[(i + 2) % 4];
2457
106k
    q[3] = s[(i + 3) % 4];
2458
106k
}
2459
2460
static int
2461
ordered_triangle(patch_fill_state_t *pfs, gs_fixed_edge *le, gs_fixed_edge *re, patch_color_t *c)
2462
8.25M
{
2463
8.25M
    gs_fixed_edge ue;
2464
8.25M
    int code;
2465
8.25M
    gx_device_color dc;
2466
2467
#   if NOFILL_TEST
2468
        if (dbg_nofill)
2469
            return 0;
2470
#   endif
2471
8.25M
    code = patch_color_to_device_color_inline(pfs, c, &dc, NULL);
2472
8.25M
    if (code < 0)
2473
0
        return code;
2474
8.25M
    if (le->end.y < re->end.y) {
2475
3.73M
        code = dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
2476
3.73M
            le, re, le->start.y, le->end.y, false, &dc, pfs->pgs->log_op);
2477
3.73M
        if (code >= 0) {
2478
3.73M
            ue.start = le->end;
2479
3.73M
            ue.end = re->end;
2480
3.73M
            code = dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
2481
3.73M
                &ue, re, le->end.y, re->end.y, false, &dc, pfs->pgs->log_op);
2482
3.73M
        }
2483
4.52M
    } else if (le->end.y > re->end.y) {
2484
3.58M
        code = dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
2485
3.58M
            le, re, le->start.y, re->end.y, false, &dc, pfs->pgs->log_op);
2486
3.58M
        if (code >= 0) {
2487
3.58M
            ue.start = re->end;
2488
3.58M
            ue.end = le->end;
2489
3.58M
            code = dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
2490
3.58M
                le, &ue, re->end.y, le->end.y, false, &dc, pfs->pgs->log_op);
2491
3.58M
        }
2492
3.58M
    } else
2493
935k
        code = dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
2494
935k
            le, re, le->start.y, le->end.y, false, &dc, pfs->pgs->log_op);
2495
8.25M
    return code;
2496
8.25M
}
2497
2498
static int
2499
constant_color_triangle(patch_fill_state_t *pfs,
2500
        const shading_vertex_t *p0, const shading_vertex_t *p1, const shading_vertex_t *p2)
2501
7.35M
{
2502
7.35M
    patch_color_t *c[2];
2503
7.35M
    gs_fixed_edge le, re;
2504
7.35M
    fixed dx0, dy0, dx1, dy1;
2505
7.35M
    const shading_vertex_t *pp;
2506
7.35M
    int i, code = 0;
2507
7.35M
    byte *color_stack_ptr = reserve_colors_inline(pfs, c, 2);
2508
2509
7.35M
    if (color_stack_ptr == NULL)
2510
0
        return_error(gs_error_unregistered); /* Must not happen. */
2511
7.35M
    patch_interpolate_color(c[0], p0->c, p1->c, pfs, 0.5);
2512
7.35M
    patch_interpolate_color(c[1], p2->c, c[0], pfs, 0.5);
2513
29.4M
    for (i = 0; i < 3; i++) {
2514
        /* fixme : does optimizer compiler expand this cycle ? */
2515
22.0M
        if (p0->p.y <= p1->p.y && p0->p.y <= p2->p.y) {
2516
8.25M
            le.start = re.start = p0->p;
2517
8.25M
            le.end = p1->p;
2518
8.25M
            re.end = p2->p;
2519
2520
8.25M
            dx0 = le.end.x - le.start.x;
2521
8.25M
            dy0 = le.end.y - le.start.y;
2522
8.25M
            dx1 = re.end.x - re.start.x;
2523
8.25M
            dy1 = re.end.y - re.start.y;
2524
8.25M
            if ((int64_t)dx0 * dy1 < (int64_t)dy0 * dx1)
2525
3.81M
                code = ordered_triangle(pfs, &le, &re, c[1]);
2526
4.44M
            else
2527
4.44M
                code = ordered_triangle(pfs, &re, &le, c[1]);
2528
8.25M
            if (code < 0)
2529
0
                break;
2530
8.25M
        }
2531
22.0M
        pp = p0; p0 = p1; p1 = p2; p2 = pp;
2532
22.0M
    }
2533
7.35M
    release_colors_inline(pfs, color_stack_ptr, 2);
2534
7.35M
    return code;
2535
7.35M
}
2536
2537
static inline int
2538
constant_color_quadrangle_aux(patch_fill_state_t *pfs, const quadrangle_patch *p, bool self_intersecting,
2539
        patch_color_t *c[3])
2540
106k
{
2541
    /* Assuming the XY span is restricted with curve_samples.
2542
       It is important for intersection_of_small_bars to compute faster. */
2543
106k
    gs_fixed_point q[4];
2544
106k
    fixed ry, ey;
2545
106k
    int code;
2546
106k
    bool swap_axes = false;
2547
106k
    gx_device_color dc;
2548
106k
    bool orient;
2549
2550
106k
    dc.tag = device_current_tag(pfs->dev);
2551
2552
106k
    patch_interpolate_color(c[1], p->p[0][0]->c, p->p[0][1]->c, pfs, 0.5);
2553
106k
    patch_interpolate_color(c[2], p->p[1][0]->c, p->p[1][1]->c, pfs, 0.5);
2554
106k
    patch_interpolate_color(c[0], c[1], c[2], pfs, 0.5);
2555
106k
    code = patch_color_to_device_color_inline(pfs, c[0], &dc, NULL);
2556
106k
    if (code < 0)
2557
0
        return code;
2558
106k
    {   gs_fixed_point qq[4];
2559
2560
106k
        make_vertices(qq, p);
2561
#ifdef SHADING_SWAP_AXES_FOR_PRECISION
2562
             /* Swapping axes may improve the precision,
2563
                but slows down due to the area expansion needed
2564
                in gx_shade_trapezoid. */
2565
            dx = span_x(qq, 4);
2566
            dy = span_y(qq, 4);
2567
            if (dy < dx) {
2568
                do_swap_axes(qq, 4);
2569
                swap_axes = true;
2570
            }
2571
#endif
2572
106k
        wrap_vertices_by_y(q, qq);
2573
106k
    }
2574
106k
    {   fixed dx1 = q[1].x - q[0].x, dy1 = q[1].y - q[0].y;
2575
106k
        fixed dx3 = q[3].x - q[0].x, dy3 = q[3].y - q[0].y;
2576
106k
        int64_t g13 = (int64_t)dx1 * dy3, h13 = (int64_t)dy1 * dx3;
2577
2578
106k
        if (g13 == h13) {
2579
241
            fixed dx2 = q[2].x - q[0].x, dy2 = q[2].y - q[0].y;
2580
241
            int64_t g23 = (int64_t)dx2 * dy3, h23 = (int64_t)dy2 * dx3;
2581
2582
241
            if (dx1 == 0 && dy1 == 0 && g23 == h23)
2583
0
                return 0;
2584
241
            if (g23 != h23) {
2585
241
                orient = (g23 > h23);
2586
241
                if (q[2].y <= q[3].y) {
2587
226
                    if ((code = gx_shade_trapezoid(pfs, q, 1, 2, 0, 3, q[1].y, q[2].y, swap_axes, &dc, orient)) < 0)
2588
0
                        return code;
2589
226
                    return gx_shade_trapezoid(pfs, q, 2, 3, 0, 3, q[2].y, q[3].y, swap_axes, &dc, orient);
2590
226
                } else {
2591
15
                    if ((code = gx_shade_trapezoid(pfs, q, 1, 2, 0, 3, q[1].y, q[3].y, swap_axes, &dc, orient)) < 0)
2592
0
                        return code;
2593
15
                    return gx_shade_trapezoid(pfs, q, 1, 2, 3, 2, q[3].y, q[2].y, swap_axes, &dc, orient);
2594
15
                }
2595
241
            } else {
2596
0
                int64_t g12 = (int64_t)dx1 * dy2, h12 = (int64_t)dy1 * dx2;
2597
2598
0
                if (dx3 == 0 && dy3 == 0 && g12 == h12)
2599
0
                    return 0;
2600
0
                orient = (g12 > h12);
2601
0
                if (q[1].y <= q[2].y) {
2602
0
                    if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 3, 2, q[0].y, q[1].y, swap_axes, &dc, orient)) < 0)
2603
0
                        return code;
2604
0
                    return gx_shade_trapezoid(pfs, q, 1, 2, 3, 2, q[1].y, q[2].y, swap_axes, &dc, orient);
2605
0
                } else {
2606
0
                    if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 3, 2, q[0].y, q[2].y, swap_axes, &dc, orient)) < 0)
2607
0
                        return code;
2608
0
                    return gx_shade_trapezoid(pfs, q, 0, 1, 2, 1, q[2].y, q[1].y, swap_axes, &dc, orient);
2609
0
                }
2610
0
            }
2611
241
        }
2612
106k
        orient = ((int64_t)dx1 * dy3 > (int64_t)dy1 * dx3);
2613
106k
    }
2614
106k
    if (q[1].y <= q[2].y && q[2].y <= q[3].y) {
2615
62.1k
        if (self_intersecting && intersection_of_small_bars(q, 0, 3, 1, 2, &ry, &ey)) {
2616
0
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 0, 3, q[0].y, q[1].y, swap_axes, &dc, orient)) < 0)
2617
0
                return code;
2618
0
            if ((code = gx_shade_trapezoid(pfs, q, 0, 3, 1, 2, q[1].y, ry + ey, swap_axes, &dc, orient)) < 0)
2619
0
                return code;
2620
0
            if ((code = gx_shade_trapezoid(pfs, q, 1, 2, 0, 3, ry, q[2].y, swap_axes, &dc, orient)) < 0)
2621
0
                return code;
2622
0
            return gx_shade_trapezoid(pfs, q, 0, 3, 2, 3, q[2].y, q[3].y, swap_axes, &dc, orient);
2623
62.1k
        } else {
2624
62.1k
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 0, 3, q[0].y, q[1].y, swap_axes, &dc, orient)) < 0)
2625
0
                return code;
2626
62.1k
            if ((code = gx_shade_trapezoid(pfs, q, 1, 2, 0, 3, q[1].y, q[2].y, swap_axes, &dc, orient)) < 0)
2627
0
                return code;
2628
62.1k
            return gx_shade_trapezoid(pfs, q, 2, 3, 0, 3, q[2].y, q[3].y, swap_axes, &dc, orient);
2629
62.1k
        }
2630
62.1k
    } else if (q[1].y <= q[3].y && q[3].y <= q[2].y) {
2631
21.0k
        if (self_intersecting && intersection_of_small_bars(q, 0, 3, 1, 2, &ry, &ey)) {
2632
0
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 0, 3, q[0].y, q[1].y, swap_axes, &dc, orient)) < 0)
2633
0
                return code;
2634
0
            if ((code = gx_shade_trapezoid(pfs, q, 1, 2, 0, 3, q[1].y, ry + ey, swap_axes, &dc, orient)) < 0)
2635
0
                return code;
2636
0
            if ((code = gx_shade_trapezoid(pfs, q, 0, 3, 1, 2, ry, q[3].y, swap_axes, &dc, orient)) < 0)
2637
0
                return code;
2638
0
            return gx_shade_trapezoid(pfs, q, 3, 2, 1, 2, q[3].y, q[2].y, swap_axes, &dc, orient);
2639
21.0k
        } else {
2640
21.0k
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 0, 3, q[0].y, q[1].y, swap_axes, &dc, orient)) < 0)
2641
0
                return code;
2642
21.0k
            if ((code = gx_shade_trapezoid(pfs, q, 1, 2, 0, 3, q[1].y, q[3].y, swap_axes, &dc, orient)) < 0)
2643
0
                return code;
2644
21.0k
            return gx_shade_trapezoid(pfs, q, 1, 2, 3, 2, q[3].y, q[2].y, swap_axes, &dc, orient);
2645
21.0k
        }
2646
23.5k
    } else if (q[2].y <= q[1].y && q[1].y <= q[3].y) {
2647
0
        if (self_intersecting && intersection_of_small_bars(q, 0, 1, 2, 3, &ry, &ey)) {
2648
0
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 0, 3, q[0].y, ry + ey, swap_axes, &dc, orient)) < 0)
2649
0
                return code;
2650
0
            if ((code = gx_shade_trapezoid(pfs, q, 2, 1, 2, 3, q[2].y, ry + ey, swap_axes, &dc, orient)) < 0)
2651
0
                return code;
2652
0
            if ((code = gx_shade_trapezoid(pfs, q, 2, 1, 0, 1, ry, q[1].y, swap_axes, &dc, orient)) < 0)
2653
0
                return code;
2654
0
            return gx_shade_trapezoid(pfs, q, 2, 3, 0, 3, ry, q[3].y, swap_axes, &dc, orient);
2655
0
        } else if (self_intersecting && intersection_of_small_bars(q, 0, 3, 1, 2, &ry, &ey)) {
2656
0
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 0, 3, q[0].y, ry + ey, swap_axes, &dc, orient)) < 0)
2657
0
                return code;
2658
0
            if ((code = gx_shade_trapezoid(pfs, q, 2, 1, 2, 3, q[2].y, ry + ey, swap_axes, &dc, orient)) < 0)
2659
0
                return code;
2660
0
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 2, 1, ry, q[1].y, swap_axes, &dc, orient)) < 0)
2661
0
                return code;
2662
0
            return gx_shade_trapezoid(pfs, q, 0, 3, 2, 3, ry, q[3].y, swap_axes, &dc, orient);
2663
0
        } else {
2664
0
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 0, 3, q[0].y, q[1].y, swap_axes, &dc, orient)) < 0)
2665
0
                return code;
2666
0
            if ((code = gx_shade_trapezoid(pfs, q, 2, 3, 2, 1, q[2].y, q[1].y, swap_axes, &dc, orient)) < 0)
2667
0
                return code;
2668
0
            return gx_shade_trapezoid(pfs, q, 2, 3, 0, 3, q[1].y, q[3].y, swap_axes, &dc, orient);
2669
0
        }
2670
23.5k
    } else if (q[2].y <= q[3].y && q[3].y <= q[1].y) {
2671
16
        if (self_intersecting && intersection_of_small_bars(q, 0, 1, 2, 3, &ry, &ey)) {
2672
            /* Same code as someone above. */
2673
0
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 0, 3, q[0].y, ry + ey, swap_axes, &dc, orient)) < 0)
2674
0
                return code;
2675
0
            if ((code = gx_shade_trapezoid(pfs, q, 2, 1, 2, 3, q[2].y, ry + ey, swap_axes, &dc, orient)) < 0)
2676
0
                return code;
2677
0
            if ((code = gx_shade_trapezoid(pfs, q, 2, 1, 0, 1, ry, q[1].y, swap_axes, &dc, orient)) < 0)
2678
0
                return code;
2679
0
            return gx_shade_trapezoid(pfs, q, 2, 3, 0, 3, ry, q[3].y, swap_axes, &dc, orient);
2680
16
        } else if (self_intersecting && intersection_of_small_bars(q, 0, 3, 2, 1, &ry, &ey)) {
2681
            /* Same code as someone above. */
2682
0
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 0, 3, q[0].y, ry + ey, swap_axes, &dc, orient)) < 0)
2683
0
                return code;
2684
0
            if ((code = gx_shade_trapezoid(pfs, q, 2, 1, 2, 3, q[2].y, ry + ey, swap_axes, &dc, orient)) < 0)
2685
0
                return code;
2686
0
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 2, 1, ry, q[1].y, swap_axes, &dc, orient)) < 0)
2687
0
                return code;
2688
0
            return gx_shade_trapezoid(pfs, q, 0, 3, 2, 3, ry, q[3].y, swap_axes, &dc, orient);
2689
16
        } else {
2690
16
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 0, 3, q[0].y, q[2].y, swap_axes, &dc, orient)) < 0)
2691
0
                return code;
2692
16
            if ((code = gx_shade_trapezoid(pfs, q, 2, 3, 0, 3, q[2].y, q[3].y, swap_axes, &dc, orient)) < 0)
2693
0
                return code;
2694
16
            return gx_shade_trapezoid(pfs, q, 0, 1, 2, 1, q[2].y, q[1].y, swap_axes, &dc, orient);
2695
16
        }
2696
23.5k
    } else if (q[3].y <= q[1].y && q[1].y <= q[2].y) {
2697
22.9k
        if (self_intersecting && intersection_of_small_bars(q, 0, 1, 3, 2, &ry, &ey)) {
2698
0
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 0, 3, q[0].y, q[3].y, swap_axes, &dc, orient)) < 0)
2699
0
                return code;
2700
0
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 3, 2, q[3].y, ry + ey, swap_axes, &dc, orient)) < 0)
2701
0
                return code;
2702
0
            if ((code = gx_shade_trapezoid(pfs, q, 3, 2, 0, 1, ry, q[1].y, swap_axes, &dc, orient)) < 0)
2703
0
                return code;
2704
0
            return gx_shade_trapezoid(pfs, q, 3, 2, 1, 2, q[1].y, q[2].y, swap_axes, &dc, orient);
2705
22.9k
        } else {
2706
22.9k
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 0, 3, q[0].y, q[3].y, swap_axes, &dc, orient)) < 0)
2707
0
                return code;
2708
22.9k
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 3, 2, q[3].y, q[1].y, swap_axes, &dc, orient)) < 0)
2709
0
                return code;
2710
22.9k
            return gx_shade_trapezoid(pfs, q, 1, 2, 3, 2, q[1].y, q[2].y, swap_axes, &dc, orient);
2711
22.9k
        }
2712
22.9k
    } else if (q[3].y <= q[2].y && q[2].y <= q[1].y) {
2713
609
        if (self_intersecting && intersection_of_small_bars(q, 0, 1, 2, 3, &ry, &ey)) {
2714
0
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 0, 3, q[0].y, q[3].y, swap_axes, &dc, orient)) < 0)
2715
0
                return code;
2716
0
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 3, 2, q[3].y, ry + ey, swap_axes, &dc, orient)) < 0)
2717
0
                return code;
2718
0
            if ((code = gx_shade_trapezoid(pfs, q, 3, 2, 0, 1, ry, q[2].y, swap_axes, &dc, orient)) < 0)
2719
0
                return code;
2720
0
            return gx_shade_trapezoid(pfs, q, 2, 1, 0, 1, q[2].y, q[1].y, swap_axes, &dc, orient);
2721
609
        } else {
2722
609
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 0, 3, q[0].y, q[3].y, swap_axes, &dc, orient)) < 0)
2723
0
                return code;
2724
609
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 3, 2, q[3].y, q[2].y, swap_axes, &dc, orient)) < 0)
2725
0
                return code;
2726
609
            return gx_shade_trapezoid(pfs, q, 0, 1, 2, 1, q[2].y, q[1].y, swap_axes, &dc, orient);
2727
609
        }
2728
609
    } else {
2729
        /* Impossible. */
2730
0
        return_error(gs_error_unregistered);
2731
0
    }
2732
106k
}
2733
2734
int
2735
constant_color_quadrangle(patch_fill_state_t *pfs, const quadrangle_patch *p, bool self_intersecting)
2736
106k
{
2737
106k
    patch_color_t *c[3];
2738
106k
    byte *color_stack_ptr = reserve_colors_inline(pfs, c, 3);
2739
106k
    int code;
2740
2741
106k
    if (color_stack_ptr == NULL)
2742
0
        return_error(gs_error_unregistered); /* Must not happen. */
2743
106k
    code = constant_color_quadrangle_aux(pfs, p, self_intersecting, c);
2744
106k
    release_colors_inline(pfs, color_stack_ptr, 3);
2745
106k
    return code;
2746
106k
}
2747
2748
static inline void
2749
divide_quadrangle_by_v(patch_fill_state_t *pfs, quadrangle_patch *s0, quadrangle_patch *s1,
2750
            shading_vertex_t q[2], const quadrangle_patch *p, patch_color_t *c[2])
2751
114k
{
2752
114k
    q[0].c = c[0];
2753
114k
    q[1].c = c[1];
2754
114k
    q[0].p.x = (p->p[0][0]->p.x + p->p[1][0]->p.x) / 2;
2755
114k
    q[1].p.x = (p->p[0][1]->p.x + p->p[1][1]->p.x) / 2;
2756
114k
    q[0].p.y = (p->p[0][0]->p.y + p->p[1][0]->p.y) / 2;
2757
114k
    q[1].p.y = (p->p[0][1]->p.y + p->p[1][1]->p.y) / 2;
2758
114k
    patch_interpolate_color(c[0], p->p[0][0]->c, p->p[1][0]->c, pfs, 0.5);
2759
114k
    patch_interpolate_color(c[1], p->p[0][1]->c, p->p[1][1]->c, pfs, 0.5);
2760
114k
    s0->p[0][0] = p->p[0][0];
2761
114k
    s0->p[0][1] = p->p[0][1];
2762
114k
    s0->p[1][0] = s1->p[0][0] = &q[0];
2763
114k
    s0->p[1][1] = s1->p[0][1] = &q[1];
2764
114k
    s1->p[1][0] = p->p[1][0];
2765
114k
    s1->p[1][1] = p->p[1][1];
2766
114k
}
2767
2768
static inline void
2769
divide_quadrangle_by_u(patch_fill_state_t *pfs, quadrangle_patch *s0, quadrangle_patch *s1,
2770
            shading_vertex_t q[2], const quadrangle_patch *p, patch_color_t *c[2])
2771
282k
{
2772
282k
    q[0].c = c[0];
2773
282k
    q[1].c = c[1];
2774
282k
    q[0].p.x = (p->p[0][0]->p.x + p->p[0][1]->p.x) / 2;
2775
282k
    q[1].p.x = (p->p[1][0]->p.x + p->p[1][1]->p.x) / 2;
2776
282k
    q[0].p.y = (p->p[0][0]->p.y + p->p[0][1]->p.y) / 2;
2777
282k
    q[1].p.y = (p->p[1][0]->p.y + p->p[1][1]->p.y) / 2;
2778
282k
    patch_interpolate_color(c[0], p->p[0][0]->c, p->p[0][1]->c, pfs, 0.5);
2779
282k
    patch_interpolate_color(c[1], p->p[1][0]->c, p->p[1][1]->c, pfs, 0.5);
2780
282k
    s0->p[0][0] = p->p[0][0];
2781
282k
    s0->p[1][0] = p->p[1][0];
2782
282k
    s0->p[0][1] = s1->p[0][0] = &q[0];
2783
282k
    s0->p[1][1] = s1->p[1][0] = &q[1];
2784
282k
    s1->p[0][1] = p->p[0][1];
2785
282k
    s1->p[1][1] = p->p[1][1];
2786
282k
}
2787
2788
static inline int
2789
is_quadrangle_color_monotonic(const patch_fill_state_t *pfs, const quadrangle_patch *p,
2790
                              bool *not_monotonic_by_u, bool *not_monotonic_by_v)
2791
208k
{   /* returns : 1 = monotonic, 0 = don't know, <0 = error. */
2792
208k
    int code, r;
2793
2794
208k
    code = isnt_color_monotonic(pfs, p->p[0][0]->c, p->p[1][1]->c);
2795
208k
    if (code <= 0)
2796
197k
        return code;
2797
11.1k
    r = code << pfs->function_arg_shift;
2798
11.1k
    if (r & 1)
2799
0
        *not_monotonic_by_u = true;
2800
11.1k
    if (r & 2)
2801
11.1k
        *not_monotonic_by_v = true;
2802
11.1k
    return !code;
2803
208k
}
2804
2805
static inline void
2806
divide_bar(patch_fill_state_t *pfs,
2807
        const shading_vertex_t *p0, const shading_vertex_t *p1, int radix, shading_vertex_t *p,
2808
        patch_color_t *c)
2809
7.58M
{
2810
    /* Assuming p.c == c for providing a non-const access. */
2811
7.58M
    p->p.x = (fixed)((int64_t)p0->p.x * (radix - 1) + p1->p.x) / radix;
2812
7.58M
    p->p.y = (fixed)((int64_t)p0->p.y * (radix - 1) + p1->p.y) / radix;
2813
7.58M
    patch_interpolate_color(c, p0->c, p1->c, pfs, (double)(radix - 1) / radix);
2814
7.58M
}
2815
2816
static int
2817
triangle_by_4(patch_fill_state_t *pfs,
2818
        const shading_vertex_t *p0, const shading_vertex_t *p1, const shading_vertex_t *p2,
2819
        wedge_vertex_list_t *l01, wedge_vertex_list_t *l12, wedge_vertex_list_t *l20,
2820
        double cd, fixed sd)
2821
10.3M
{
2822
10.3M
    shading_vertex_t p01, p12, p20;
2823
10.3M
    patch_color_t *c[3];
2824
10.3M
    wedge_vertex_list_t L01, L12, L20, L[3];
2825
10.3M
    bool inside_save = pfs->inside;
2826
10.3M
    gs_fixed_rect r = {{0,0},{0,0}}, r1 =  {{0,0},{0,0}};
2827
10.3M
    int code = 0;
2828
10.3M
    byte *color_stack_ptr;
2829
10.3M
    const bool inside = pfs->inside; /* 'const' should help compiler to analyze initializations. */
2830
2831
10.3M
    if (!inside) {
2832
3.39M
        bbox_of_points(&r, &p0->p, &p1->p, &p2->p, NULL);
2833
3.39M
        r1 = r;
2834
3.39M
        rect_intersect(r, pfs->rect);
2835
3.39M
        if (r.q.x <= r.p.x || r.q.y <= r.p.y)
2836
2.04M
            return 0;
2837
3.39M
    }
2838
8.31M
    color_stack_ptr = reserve_colors_inline(pfs, c, 3);
2839
8.31M
    if(color_stack_ptr == NULL)
2840
0
        return_error(gs_error_unregistered);
2841
8.31M
    p01.c = c[0];
2842
8.31M
    p12.c = c[1];
2843
8.31M
    p20.c = c[2];
2844
8.31M
    code = try_device_linear_color(pfs, false, p0, p1, p2);
2845
8.31M
    switch(code) {
2846
1.53k
        case 0: /* The area is filled. */
2847
1.53k
            goto out;
2848
8.31M
        case 2: /* decompose to constant color areas */
2849
            /* Halftoned devices may do with some bigger areas
2850
               due to imprecise representation of a contone color.
2851
               So we multiply the decomposition limit by 4 for a faster rendering. */
2852
8.31M
            if (sd < pfs->decomposition_limit * 4) {
2853
2.24M
                code = constant_color_triangle(pfs, p2, p0, p1);
2854
2.24M
                goto out;
2855
2.24M
            }
2856
6.06M
            if (pfs->Function != NULL) {
2857
1.73M
                double d01 = color_span(pfs, p1->c, p0->c);
2858
1.73M
                double d12 = color_span(pfs, p2->c, p1->c);
2859
1.73M
                double d20 = color_span(pfs, p0->c, p2->c);
2860
2861
1.73M
                if (d01 <= pfs->smoothness / COLOR_CONTIGUITY &&
2862
1.73M
                    d12 <= pfs->smoothness / COLOR_CONTIGUITY &&
2863
1.73M
                    d20 <= pfs->smoothness / COLOR_CONTIGUITY) {
2864
1.31M
                    code = constant_color_triangle(pfs, p2, p0, p1);
2865
1.31M
                    goto out;
2866
1.31M
                }
2867
4.33M
            } else if (cd <= pfs->smoothness / COLOR_CONTIGUITY) {
2868
3.79M
                code = constant_color_triangle(pfs, p2, p0, p1);
2869
3.79M
                goto out;
2870
3.79M
            }
2871
956k
            break;
2872
956k
        case 1: /* decompose to linear color areas */
2873
0
            if (sd < pfs->decomposition_limit) {
2874
0
                code = constant_color_triangle(pfs, p2, p0, p1);
2875
0
                goto out;
2876
0
            }
2877
0
            break;
2878
0
        default: /* Error. */
2879
0
            goto out;
2880
8.31M
    }
2881
956k
    if (!inside) {
2882
260k
        if (r.p.x == r1.p.x && r.p.y == r1.p.y &&
2883
260k
            r.q.x == r1.q.x && r.q.y == r1.q.y)
2884
21.5k
            pfs->inside = true;
2885
260k
    }
2886
956k
    divide_bar(pfs, p0, p1, 2, &p01, c[0]);
2887
956k
    divide_bar(pfs, p1, p2, 2, &p12, c[1]);
2888
956k
    divide_bar(pfs, p2, p0, 2, &p20, c[2]);
2889
956k
    if (LAZY_WEDGES) {
2890
956k
        init_wedge_vertex_list(L, count_of(L));
2891
956k
        code = make_wedge_median(pfs, &L01, l01, true,  &p0->p, &p1->p, &p01.p);
2892
956k
        if (code >= 0)
2893
956k
            code = make_wedge_median(pfs, &L12, l12, true,  &p1->p, &p2->p, &p12.p);
2894
956k
        if (code >= 0)
2895
956k
            code = make_wedge_median(pfs, &L20, l20, false, &p2->p, &p0->p, &p20.p);
2896
956k
    } else {
2897
0
        code = fill_triangle_wedge(pfs, p0, p1, &p01);
2898
0
        if (code >= 0)
2899
0
            code = fill_triangle_wedge(pfs, p1, p2, &p12);
2900
0
        if (code >= 0)
2901
0
            code = fill_triangle_wedge(pfs, p2, p0, &p20);
2902
0
    }
2903
956k
    if (code >= 0)
2904
956k
        code = triangle_by_4(pfs, p0, &p01, &p20, &L01, &L[0], &L20, cd / 2, sd / 2);
2905
956k
    if (code >= 0) {
2906
956k
        if (LAZY_WEDGES) {
2907
956k
            move_wedge(&L01, l01, true);
2908
956k
            move_wedge(&L20, l20, false);
2909
956k
        }
2910
956k
        code = triangle_by_4(pfs, p1, &p12, &p01, &L12, &L[1], &L01, cd / 2, sd / 2);
2911
956k
    }
2912
956k
    if (code >= 0) {
2913
956k
        if (LAZY_WEDGES)
2914
956k
            move_wedge(&L12, l12, true);
2915
956k
        code = triangle_by_4(pfs, p2, &p20, &p12, &L20, &L[2], &L12, cd / 2, sd / 2);
2916
956k
    }
2917
956k
    if (code >= 0) {
2918
956k
        L[0].last_side = L[1].last_side = L[2].last_side = true;
2919
956k
        code = triangle_by_4(pfs, &p01, &p12, &p20, &L[1], &L[2], &L[0], cd / 2, sd / 2);
2920
956k
    }
2921
956k
    if (LAZY_WEDGES) {
2922
956k
        if (code >= 0)
2923
956k
            code = close_wedge_median(pfs, l01, p0->c, p1->c);
2924
956k
        if (code >= 0)
2925
956k
            code = close_wedge_median(pfs, l12, p1->c, p2->c);
2926
956k
        if (code >= 0)
2927
956k
            code = close_wedge_median(pfs, l20, p2->c, p0->c);
2928
956k
        if (code >= 0)
2929
956k
            code = terminate_wedge_vertex_list(pfs, &L[0], p01.c, p20.c);
2930
956k
        if (code >= 0)
2931
956k
            code = terminate_wedge_vertex_list(pfs, &L[1], p12.c, p01.c);
2932
956k
        if (code >= 0)
2933
956k
            code = terminate_wedge_vertex_list(pfs, &L[2], p20.c, p12.c);
2934
956k
    }
2935
956k
    pfs->inside = inside_save;
2936
8.31M
out:
2937
8.31M
    release_colors_inline(pfs, color_stack_ptr, 3);
2938
8.31M
    return code;
2939
956k
}
2940
2941
static inline int
2942
fill_triangle(patch_fill_state_t *pfs,
2943
        const shading_vertex_t *p0, const shading_vertex_t *p1, const shading_vertex_t *p2,
2944
        wedge_vertex_list_t *l01, wedge_vertex_list_t *l12, wedge_vertex_list_t *l20)
2945
6.53M
{
2946
6.53M
    fixed sd01 = max(any_abs(p1->p.x - p0->p.x), any_abs(p1->p.y - p0->p.y));
2947
6.53M
    fixed sd12 = max(any_abs(p2->p.x - p1->p.x), any_abs(p2->p.y - p1->p.y));
2948
6.53M
    fixed sd20 = max(any_abs(p0->p.x - p2->p.x), any_abs(p0->p.y - p2->p.y));
2949
6.53M
    fixed sd1 = max(sd01, sd12);
2950
6.53M
    fixed sd = max(sd1, sd20);
2951
6.53M
    double cd = 0;
2952
2953
#   if SKIP_TEST
2954
        dbg_triangle_cnt++;
2955
#   endif
2956
6.53M
    if (pfs->Function == NULL) {
2957
4.02M
        double d01 = color_span(pfs, p1->c, p0->c);
2958
4.02M
        double d12 = color_span(pfs, p2->c, p1->c);
2959
4.02M
        double d20 = color_span(pfs, p0->c, p2->c);
2960
4.02M
        double cd1 = max(d01, d12);
2961
2962
4.02M
        cd = max(cd1, d20);
2963
4.02M
    }
2964
6.53M
    return triangle_by_4(pfs, p0, p1, p2, l01, l12, l20, cd, sd);
2965
6.53M
}
2966
2967
static int
2968
small_mesh_triangle(patch_fill_state_t *pfs,
2969
        const shading_vertex_t *p0, const shading_vertex_t *p1, const shading_vertex_t *p2)
2970
1.60M
{
2971
1.60M
    int code;
2972
1.60M
    wedge_vertex_list_t l[3];
2973
2974
1.60M
    init_wedge_vertex_list(l, count_of(l));
2975
1.60M
    code = fill_triangle(pfs, p0, p1, p2, &l[0], &l[1], &l[2]);
2976
1.60M
    if (code < 0)
2977
0
        return code;
2978
1.60M
    code = terminate_wedge_vertex_list(pfs, &l[0], p0->c, p1->c);
2979
1.60M
    if (code < 0)
2980
0
        return code;
2981
1.60M
    code = terminate_wedge_vertex_list(pfs, &l[1], p1->c, p2->c);
2982
1.60M
    if (code < 0)
2983
0
        return code;
2984
1.60M
    return terminate_wedge_vertex_list(pfs, &l[2], p2->c, p0->c);
2985
1.60M
}
2986
2987
int
2988
gx_init_patch_fill_state_for_clist(gx_device *dev, patch_fill_state_t *pfs, gs_memory_t *memory)
2989
0
{
2990
0
    int i;
2991
2992
0
    pfs->dev = dev;
2993
0
    pfs->pgs = NULL;
2994
0
    pfs->direct_space = NULL;
2995
0
    pfs->num_components = dev->color_info.num_components;
2996
    /* pfs->cc_max_error[GS_CLIENT_COLOR_MAX_COMPONENTS] unused */
2997
0
    pfs->pshm = NULL;
2998
0
    pfs->Function = NULL;
2999
0
    pfs->function_arg_shift = 0;
3000
0
    pfs->vectorization = false; /* A stub for a while. Will use with pclwrite. */
3001
0
    pfs->n_color_args = 1; /* unused. */
3002
0
    pfs->max_small_coord = 0; /* unused. */
3003
0
    pfs->wedge_vertex_list_elem_buffer = NULL; /* fixme */
3004
0
    pfs->free_wedge_vertex = NULL; /* fixme */
3005
0
    pfs->wedge_vertex_list_elem_count = 0; /* fixme */
3006
0
    pfs->wedge_vertex_list_elem_count_max = 0; /* fixme */
3007
0
    for (i = 0; i < pfs->num_components; i++)
3008
0
        pfs->color_domain.paint.values[i] = (float)0x7fffffff;
3009
    /* decomposition_limit must be same as one in init_patch_fill_state */
3010
#ifdef MAX_SHADING_RESOLUTION
3011
    pfs->decomposition_limit = float2fixed(min(pfs->dev->HWResolution[0],
3012
                                               pfs->dev->HWResolution[1]) / MAX_SHADING_RESOLUTION);
3013
    pfs->decomposition_limit = max(pfs->decomposition_limit, fixed_1);
3014
#else
3015
0
    pfs->decomposition_limit = fixed_1;
3016
0
#endif
3017
0
    pfs->fixed_flat = 0; /* unused */
3018
0
    pfs->smoothness = 0; /* unused */
3019
0
    pfs->maybe_self_intersecting = false; /* unused */
3020
0
    pfs->monotonic_color = true;
3021
0
    pfs->linear_color = true;
3022
0
    pfs->unlinear = false; /* Because it is used when fill_linear_color_triangle was called. */
3023
0
    pfs->inside = false;
3024
0
    pfs->color_stack_size = 0;
3025
0
    pfs->color_stack_step = dev->color_info.num_components;
3026
0
    pfs->color_stack_ptr = NULL; /* fixme */
3027
0
    pfs->color_stack = NULL; /* fixme */
3028
0
    pfs->color_stack_limit = NULL; /* fixme */
3029
0
    pfs->pcic = NULL; /* Will do someday. */
3030
0
    pfs->trans_device = NULL;
3031
0
    pfs->icclink = NULL;
3032
0
    return alloc_patch_fill_memory(pfs, memory, NULL);
3033
0
}
3034
3035
/* A method for filling a small triangle that the device can't handle.
3036
   Used by clist playback. */
3037
int
3038
gx_fill_triangle_small(gx_device *dev, const gs_fill_attributes *fa,
3039
        const gs_fixed_point *p0, const gs_fixed_point *p1,
3040
        const gs_fixed_point *p2,
3041
        const frac31 *c0, const frac31 *c1, const frac31 *c2)
3042
0
{
3043
0
    patch_fill_state_t *pfs = fa->pfs;
3044
0
    patch_color_t c[3];
3045
0
    shading_vertex_t p[3];
3046
0
    uchar i;
3047
3048
    /* pfs->rect = *fa->clip; unused ? */
3049
0
    p[0].p = *p0;
3050
0
    p[1].p = *p1;
3051
0
    p[2].p = *p2;
3052
0
    p[0].c = &c[0];
3053
0
    p[1].c = &c[1];
3054
0
    p[2].c = &c[2];
3055
0
    c[0].t[0] = c[0].t[1] = c[1].t[0] = c[1].t[1] = c[2].t[0] = c[2].t[1] = 0; /* Dummy - not used. */
3056
0
    for (i = 0; i < dev->color_info.num_components; i++) {
3057
0
        c[0].cc.paint.values[i] = (float)c0[i];
3058
0
        c[1].cc.paint.values[i] = (float)c1[i];
3059
0
        c[2].cc.paint.values[i] = (float)c2[i];
3060
0
    }
3061
    /* fixme: the cycle above converts frac31 values into floats.
3062
       We don't like this because (1) it misses lower bits,
3063
       and (2) fixed point values can be faster on some platforms.
3064
       We could fix it with coding a template for small_mesh_triangle
3065
       and its callees until patch_color_to_device_color_inline.
3066
    */
3067
    /* fixme : this function is called from gxclrast.c
3068
       after dev->procs.fill_linear_color_triangle returns 0 - "subdivide".
3069
       After few moments small_mesh_triangle indirectly calls
3070
       same function with same arguments as a part of
3071
       try_device_linear_color in triangle_by_4.
3072
       Obviusly it will return zero again.
3073
       Actually we don't need the second call,
3074
       so optimize with skipping the second call.
3075
     */
3076
0
    return small_mesh_triangle(pfs, &p[0], &p[1], &p[2]);
3077
0
}
3078
3079
static int
3080
mesh_triangle_rec(patch_fill_state_t *pfs,
3081
        const shading_vertex_t *p0, const shading_vertex_t *p1, const shading_vertex_t *p2)
3082
1.94M
{
3083
1.94M
    pfs->unlinear = !is_linear_color_applicable(pfs);
3084
1.94M
    if (manhattan_dist(&p0->p, &p1->p) < pfs->max_small_coord &&
3085
1.94M
        manhattan_dist(&p1->p, &p2->p) < pfs->max_small_coord &&
3086
1.94M
        manhattan_dist(&p2->p, &p0->p) < pfs->max_small_coord)
3087
1.60M
        return small_mesh_triangle(pfs, p0, p1, p2);
3088
339k
    else {
3089
        /* Subdivide into 4 triangles with 3 triangle non-lazy wedges.
3090
           Doing so against the wedge_vertex_list_elem_buffer overflow.
3091
           We could apply a smarter method, dividing long sides
3092
           with no wedges and short sides with lazy wedges.
3093
           This needs to start wedges dynamically when
3094
           a side becomes short. We don't do so because the
3095
           number of checks per call significantly increases
3096
           and the logics is complicated, but the performance
3097
           advantage appears small due to big meshes are rare.
3098
         */
3099
339k
        shading_vertex_t p01, p12, p20;
3100
339k
        patch_color_t *c[3];
3101
339k
        int code;
3102
339k
        byte *color_stack_ptr = reserve_colors_inline(pfs, c, 3);
3103
3104
339k
        if (color_stack_ptr == NULL)
3105
0
            return_error(gs_error_unregistered); /* Must not happen. */
3106
339k
        p01.c = c[0];
3107
339k
        p12.c = c[1];
3108
339k
        p20.c = c[2];
3109
339k
        divide_bar(pfs, p0, p1, 2, &p01, c[0]);
3110
339k
        divide_bar(pfs, p1, p2, 2, &p12, c[1]);
3111
339k
        divide_bar(pfs, p2, p0, 2, &p20, c[2]);
3112
339k
        code = fill_triangle_wedge(pfs, p0, p1, &p01);
3113
339k
        if (code >= 0)
3114
339k
            code = fill_triangle_wedge(pfs, p1, p2, &p12);
3115
339k
        if (code >= 0)
3116
339k
            code = fill_triangle_wedge(pfs, p2, p0, &p20);
3117
339k
        if (code >= 0)
3118
339k
            code = mesh_triangle_rec(pfs, p0, &p01, &p20);
3119
339k
        if (code >= 0)
3120
339k
            code = mesh_triangle_rec(pfs, p1, &p12, &p01);
3121
339k
        if (code >= 0)
3122
339k
            code = mesh_triangle_rec(pfs, p2, &p20, &p12);
3123
339k
        if (code >= 0)
3124
339k
            code = mesh_triangle_rec(pfs, &p01, &p12, &p20);
3125
339k
        release_colors_inline(pfs, color_stack_ptr, 3);
3126
339k
        return code;
3127
339k
    }
3128
1.94M
}
3129
3130
int
3131
mesh_triangle(patch_fill_state_t *pfs,
3132
        const shading_vertex_t *p0, const shading_vertex_t *p1, const shading_vertex_t *p2)
3133
587k
{
3134
587k
    if ((*dev_proc(pfs->dev, dev_spec_op))(pfs->dev,
3135
587k
            gxdso_pattern_shading_area, NULL, 0) > 0) {
3136
        /* Inform the device with the shading coverage area.
3137
           First compute the sign of the area, because
3138
           all areas to be clipped in same direction. */
3139
0
        gx_device *pdev = pfs->dev;
3140
0
        gx_path path;
3141
0
        int code;
3142
0
        fixed d01x = p1->p.x - p0->p.x, d01y = p1->p.y - p0->p.y;
3143
0
        fixed d12x = p2->p.x - p1->p.x, d12y = p2->p.y - p1->p.y;
3144
0
        int64_t s1 = (int64_t)d01x * d12y - (int64_t)d01y * d12x;
3145
3146
0
        gx_path_init_local(&path, pdev->memory);
3147
0
        code = gx_path_add_point(&path, p0->p.x, p0->p.y);
3148
0
        if (code >= 0 && s1 >= 0)
3149
0
            code = gx_path_add_line(&path, p1->p.x, p1->p.y);
3150
0
        if (code >= 0)
3151
0
            code = gx_path_add_line(&path, p2->p.x, p2->p.y);
3152
0
        if (code >= 0 && s1 < 0)
3153
0
            code = gx_path_add_line(&path, p1->p.x, p1->p.y);
3154
0
        if (code >= 0)
3155
0
            code = gx_path_close_subpath(&path);
3156
0
        if (code >= 0)
3157
0
            code = (*dev_proc(pfs->dev, fill_path))(pdev, NULL, &path, NULL, NULL, NULL);
3158
0
        gx_path_free(&path, "mesh_triangle");
3159
0
        if (code < 0)
3160
0
            return code;
3161
0
    }
3162
587k
    return mesh_triangle_rec(pfs, p0, p1, p2);
3163
587k
}
3164
3165
static inline int
3166
triangles4(patch_fill_state_t *pfs, const quadrangle_patch *p, bool dummy_argument)
3167
1.23M
{
3168
1.23M
    shading_vertex_t p0001, p1011, q;
3169
1.23M
    patch_color_t *c[3];
3170
1.23M
    wedge_vertex_list_t l[4];
3171
1.23M
    int code;
3172
1.23M
    byte *color_stack_ptr = reserve_colors_inline(pfs, c, 3);
3173
3174
1.23M
    if(color_stack_ptr == NULL)
3175
0
        return_error(gs_error_unregistered); /* Must not happen. */
3176
1.23M
    p0001.c = c[0];
3177
1.23M
    p1011.c = c[1];
3178
1.23M
    q.c = c[2];
3179
1.23M
    init_wedge_vertex_list(l, count_of(l));
3180
1.23M
    divide_bar(pfs, p->p[0][0], p->p[0][1], 2, &p0001, c[0]);
3181
1.23M
    divide_bar(pfs, p->p[1][0], p->p[1][1], 2, &p1011, c[1]);
3182
1.23M
    divide_bar(pfs, &p0001, &p1011, 2, &q, c[2]);
3183
1.23M
    code = fill_triangle(pfs, p->p[0][0], p->p[0][1], &q, p->l0001, &l[0], &l[3]);
3184
1.23M
    if (code >= 0) {
3185
1.23M
        l[0].last_side = true;
3186
1.23M
        l[3].last_side = true;
3187
1.23M
        code = fill_triangle(pfs, p->p[0][1], p->p[1][1], &q, p->l0111, &l[1], &l[0]);
3188
1.23M
    }
3189
1.23M
    if (code >= 0) {
3190
1.23M
        l[1].last_side = true;
3191
1.23M
        code = fill_triangle(pfs, p->p[1][1], p->p[1][0], &q, p->l1110, &l[2], &l[1]);
3192
1.23M
    }
3193
1.23M
    if (code >= 0) {
3194
1.23M
        l[2].last_side = true;
3195
1.23M
        code = fill_triangle(pfs, p->p[1][0], p->p[0][0], &q, p->l1000, &l[3], &l[2]);
3196
1.23M
    }
3197
1.23M
    if (code >= 0)
3198
1.23M
        code = terminate_wedge_vertex_list(pfs, &l[0], p->p[0][1]->c, q.c);
3199
1.23M
    if (code >= 0)
3200
1.23M
        code = terminate_wedge_vertex_list(pfs, &l[1], p->p[1][1]->c, q.c);
3201
1.23M
    if (code >= 0)
3202
1.23M
        code = terminate_wedge_vertex_list(pfs, &l[2], p->p[1][0]->c, q.c);
3203
1.23M
    if (code >= 0)
3204
1.23M
        code = terminate_wedge_vertex_list(pfs, &l[3], q.c, p->p[0][0]->c);
3205
1.23M
    release_colors_inline(pfs, color_stack_ptr, 3);
3206
1.23M
    return code;
3207
1.23M
}
3208
3209
static inline int
3210
triangles2(patch_fill_state_t *pfs, const quadrangle_patch *p, bool dummy_argument)
3211
768
{
3212
768
    wedge_vertex_list_t l;
3213
768
    int code;
3214
3215
768
    init_wedge_vertex_list(&l, 1);
3216
768
    code = fill_triangle(pfs, p->p[0][0], p->p[0][1], p->p[1][1], p->l0001, p->l0111, &l);
3217
768
    if (code < 0)
3218
0
        return code;
3219
768
    l.last_side = true;
3220
768
    code = fill_triangle(pfs, p->p[1][1], p->p[1][0], p->p[0][0], p->l1110, p->l1000, &l);
3221
768
    if (code < 0)
3222
0
        return code;
3223
768
    code = terminate_wedge_vertex_list(pfs, &l, p->p[1][1]->c, p->p[0][0]->c);
3224
768
    if (code < 0)
3225
0
        return code;
3226
768
    return 0;
3227
768
}
3228
3229
static inline void
3230
make_quadrangle(const tensor_patch *p, shading_vertex_t qq[2][2],
3231
        wedge_vertex_list_t l[4], quadrangle_patch *q)
3232
1.05M
{
3233
1.05M
    qq[0][0].p = p->pole[0][0];
3234
1.05M
    qq[0][1].p = p->pole[0][3];
3235
1.05M
    qq[1][0].p = p->pole[3][0];
3236
1.05M
    qq[1][1].p = p->pole[3][3];
3237
1.05M
    qq[0][0].c = p->c[0][0];
3238
1.05M
    qq[0][1].c = p->c[0][1];
3239
1.05M
    qq[1][0].c = p->c[1][0];
3240
1.05M
    qq[1][1].c = p->c[1][1];
3241
1.05M
    q->p[0][0] = &qq[0][0];
3242
1.05M
    q->p[0][1] = &qq[0][1];
3243
1.05M
    q->p[1][0] = &qq[1][0];
3244
1.05M
    q->p[1][1] = &qq[1][1];
3245
1.05M
    q->l0001 = &l[0];
3246
1.05M
    q->l0111 = &l[1];
3247
1.05M
    q->l1110 = &l[2];
3248
1.05M
    q->l1000 = &l[3];
3249
1.05M
}
3250
3251
static inline int
3252
is_quadrangle_color_linear_by_u(const patch_fill_state_t *pfs, const quadrangle_patch *p)
3253
0
{   /* returns : 1 = linear, 0 = unlinear, <0 = error. */
3254
0
    int code;
3255
3256
0
    code = is_color_linear(pfs, p->p[0][0]->c, p->p[0][1]->c);
3257
0
    if (code <= 0)
3258
0
        return code;
3259
0
    return is_color_linear(pfs, p->p[1][0]->c, p->p[1][1]->c);
3260
0
}
3261
3262
static inline int
3263
is_quadrangle_color_linear_by_v(const patch_fill_state_t *pfs, const quadrangle_patch *p)
3264
2.24k
{   /* returns : 1 = linear, 0 = unlinear, <0 = error. */
3265
2.24k
    int code;
3266
3267
2.24k
    code = is_color_linear(pfs, p->p[0][0]->c, p->p[1][0]->c);
3268
2.24k
    if (code <= 0)
3269
0
        return code;
3270
2.24k
    return is_color_linear(pfs, p->p[0][1]->c, p->p[1][1]->c);
3271
2.24k
}
3272
3273
static inline int
3274
is_quadrangle_color_linear_by_diagonals(const patch_fill_state_t *pfs, const quadrangle_patch *p)
3275
2.24k
{   /* returns : 1 = linear, 0 = unlinear, <0 = error. */
3276
2.24k
    int code;
3277
3278
2.24k
    code = is_color_linear(pfs, p->p[0][0]->c, p->p[1][1]->c);
3279
2.24k
    if (code <= 0)
3280
0
        return code;
3281
2.24k
    return is_color_linear(pfs, p->p[0][1]->c, p->p[1][0]->c);
3282
2.24k
}
3283
3284
typedef enum {
3285
    color_change_small,
3286
    color_change_gradient,
3287
    color_change_linear,
3288
    color_change_bilinear,
3289
    color_change_general
3290
} color_change_type_t;
3291
3292
static inline color_change_type_t
3293
quadrangle_color_change(const patch_fill_state_t *pfs, const quadrangle_patch *p,
3294
                        bool is_big_u, bool is_big_v, double size_u, double size_v,
3295
                        bool *divide_u, bool *divide_v)
3296
1.64M
{
3297
1.64M
    patch_color_t d0001, d1011, d;
3298
1.64M
    double D, D0001, D1011, D0010, D0111, D0011, D0110;
3299
1.64M
    double Du, Dv;
3300
3301
1.64M
    color_diff(pfs, p->p[0][0]->c, p->p[0][1]->c, &d0001);
3302
1.64M
    color_diff(pfs, p->p[1][0]->c, p->p[1][1]->c, &d1011);
3303
1.64M
    D0001 = color_norm(pfs, &d0001);
3304
1.64M
    D1011 = color_norm(pfs, &d1011);
3305
1.64M
    D0010 = color_span(pfs, p->p[0][0]->c, p->p[1][0]->c);
3306
1.64M
    D0111 = color_span(pfs, p->p[0][1]->c, p->p[1][1]->c);
3307
1.64M
    D0011 = color_span(pfs, p->p[0][0]->c, p->p[1][1]->c);
3308
1.64M
    D0110 = color_span(pfs, p->p[0][1]->c, p->p[1][0]->c);
3309
1.64M
    if (pfs->unlinear) {
3310
1.64M
        if (D0001 <= pfs->smoothness && D1011 <= pfs->smoothness &&
3311
1.64M
            D0010 <= pfs->smoothness && D0111 <= pfs->smoothness &&
3312
1.64M
            D0011 <= pfs->smoothness && D0110 <= pfs->smoothness)
3313
1.22M
            return color_change_small;
3314
419k
        if (D0001 <= pfs->smoothness && D1011 <= pfs->smoothness) {
3315
128k
            if (!is_big_v) {
3316
                /* The color function looks uncontiguous. */
3317
22.7k
                return color_change_small;
3318
22.7k
            }
3319
105k
            *divide_v = true;
3320
105k
            return color_change_gradient;
3321
128k
        }
3322
291k
        if (D0010 <= pfs->smoothness && D0111 <= pfs->smoothness) {
3323
283k
            if (!is_big_u) {
3324
                /* The color function looks uncontiguous. */
3325
1.91k
                return color_change_small;
3326
1.91k
            }
3327
281k
            *divide_u = true;
3328
281k
            return color_change_gradient;
3329
283k
        }
3330
291k
    }
3331
10.4k
    color_diff(pfs, &d0001, &d1011, &d);
3332
10.4k
    Du = max(D0001, D1011);
3333
10.4k
    Dv = max(D0010, D0111);
3334
10.4k
    if (Du <= pfs->smoothness / 8 && Dv <= pfs->smoothness / 8)
3335
1.47k
        return color_change_small;
3336
9.02k
    if (Du <= pfs->smoothness / 8)
3337
768
        return color_change_linear;
3338
8.25k
    if (Dv <= pfs->smoothness / 8)
3339
0
        return color_change_linear;
3340
8.25k
    D = color_norm(pfs, &d);
3341
8.25k
    if (D <= pfs->smoothness)
3342
5.63k
        return color_change_bilinear;
3343
2.62k
#if 1
3344
2.62k
    if (Du > Dv && is_big_u)
3345
1.40k
        *divide_u = true;
3346
1.22k
    else if (Du < Dv && is_big_v)
3347
869
        *divide_v = true;
3348
355
    else if (is_big_u && size_u > size_v)
3349
135
        *divide_u = true;
3350
220
    else if (is_big_v && size_v > size_u)
3351
220
        *divide_v = true;
3352
0
    else if (is_big_u)
3353
0
        *divide_u = true;
3354
0
    else if (is_big_v)
3355
0
        *divide_v = true;
3356
0
    else {
3357
        /* The color function looks uncontiguous. */
3358
0
        return color_change_small;
3359
0
    }
3360
#else /* Disabled due to infinite recursion with -r200 09-57.PS
3361
         (Standard Test 6.4  - Range 6) (Test05). */
3362
    if (Du > Dv)
3363
        *divide_u = true;
3364
    else
3365
        *divide_v = true;
3366
#endif
3367
2.62k
    return color_change_general;
3368
2.62k
}
3369
3370
static int
3371
fill_quadrangle(patch_fill_state_t *pfs, const quadrangle_patch *p, bool big)
3372
1.85M
{
3373
    /* The quadrangle is flattened enough by V and U, so ignore inner poles. */
3374
    /* Assuming the XY span is restricted with curve_samples.
3375
       It is important for intersection_of_small_bars to compute faster. */
3376
1.85M
    quadrangle_patch s0, s1;
3377
1.85M
    wedge_vertex_list_t l0, l1, l2;
3378
1.85M
    int code;
3379
1.85M
    bool divide_u = false, divide_v = false, big1 = big;
3380
1.85M
    shading_vertex_t q[2];
3381
1.85M
    bool monotonic_color_save = pfs->monotonic_color;
3382
1.85M
    bool linear_color_save = pfs->linear_color;
3383
1.85M
    bool inside_save = pfs->inside;
3384
1.85M
    const bool inside = pfs->inside; /* 'const' should help compiler to analyze initializations. */
3385
1.85M
    gs_fixed_rect r = {{0,0},{0,0}}, r1 = {{0,0},{0,0}};
3386
    /* Warning : pfs->monotonic_color is not restored on error. */
3387
3388
1.85M
    if (!inside) {
3389
429k
        bbox_of_points(&r, &p->p[0][0]->p, &p->p[0][1]->p, &p->p[1][0]->p, &p->p[1][1]->p);
3390
429k
        r1 = r;
3391
429k
        rect_intersect(r, pfs->rect);
3392
429k
        if (r.q.x <= r.p.x || r.q.y <= r.p.y)
3393
115k
            return 0; /* Outside. */
3394
429k
    }
3395
1.73M
    if (big) {
3396
        /* Likely 'big' is an unuseful rudiment due to curve_samples
3397
           restricts lengthes. We keep it for a while because its implementation
3398
           isn't obvious and its time consumption is invisibly small.
3399
         */
3400
962k
        fixed size_u = max(max(any_abs(p->p[0][0]->p.x - p->p[0][1]->p.x),
3401
962k
                               any_abs(p->p[1][0]->p.x - p->p[1][1]->p.x)),
3402
962k
                           max(any_abs(p->p[0][0]->p.y - p->p[0][1]->p.y),
3403
962k
                               any_abs(p->p[1][0]->p.y - p->p[1][1]->p.y)));
3404
962k
        fixed size_v = max(max(any_abs(p->p[0][0]->p.x - p->p[1][0]->p.x),
3405
962k
                               any_abs(p->p[0][1]->p.x - p->p[1][1]->p.x)),
3406
962k
                           max(any_abs(p->p[0][0]->p.y - p->p[1][0]->p.y),
3407
962k
                               any_abs(p->p[0][1]->p.y - p->p[1][1]->p.y)));
3408
3409
962k
        if (QUADRANGLES && pfs->maybe_self_intersecting) {
3410
0
            if (size_v > pfs->max_small_coord) {
3411
                /* constant_color_quadrangle can't handle big self-intersecting areas
3412
                   because we don't want int64_t in it. */
3413
0
                divide_v = true;
3414
0
            } else if (size_u > pfs->max_small_coord) {
3415
                /* constant_color_quadrangle can't handle big self-intersecting areas,
3416
                   because we don't want int64_t in it. */
3417
0
                divide_u = true;
3418
0
            } else
3419
0
                big1 = false;
3420
0
        } else
3421
962k
            big1 = false;
3422
962k
    }
3423
1.73M
    if (!big1) {
3424
1.73M
        bool is_big_u = false, is_big_v = false;
3425
1.73M
        double d0001x = any_abs(p->p[0][0]->p.x - p->p[0][1]->p.x);
3426
1.73M
        double d1011x = any_abs(p->p[1][0]->p.x - p->p[1][1]->p.x);
3427
1.73M
        double d0001y = any_abs(p->p[0][0]->p.y - p->p[0][1]->p.y);
3428
1.73M
        double d1011y = any_abs(p->p[1][0]->p.y - p->p[1][1]->p.y);
3429
1.73M
        double d0010x = any_abs(p->p[0][0]->p.x - p->p[1][0]->p.x);
3430
1.73M
        double d0111x = any_abs(p->p[0][1]->p.x - p->p[1][1]->p.x);
3431
1.73M
        double d0010y = any_abs(p->p[0][0]->p.y - p->p[1][0]->p.y);
3432
1.73M
        double d0111y = any_abs(p->p[0][1]->p.y - p->p[1][1]->p.y);
3433
1.73M
        double size_u = max(max(d0001x, d1011x), max(d0001y, d1011y));
3434
1.73M
        double size_v = max(max(d0010x, d0111x), max(d0010y, d0111y));
3435
3436
1.73M
        if (size_u > pfs->decomposition_limit)
3437
1.64M
            is_big_u = true;
3438
1.73M
        if (size_v > pfs->decomposition_limit)
3439
254k
            is_big_v = true;
3440
1.48M
        else if (!is_big_u)
3441
82.8k
            return (QUADRANGLES || !pfs->maybe_self_intersecting ?
3442
81.0k
                        constant_color_quadrangle : triangles4)(pfs, p,
3443
82.8k
                            pfs->maybe_self_intersecting);
3444
1.65M
        if (!pfs->monotonic_color) {
3445
208k
            bool not_monotonic_by_u = false, not_monotonic_by_v = false;
3446
3447
208k
            code = is_quadrangle_color_monotonic(pfs, p, &not_monotonic_by_u, &not_monotonic_by_v);
3448
208k
            if (code < 0)
3449
0
                return code;
3450
208k
            if (is_big_u)
3451
207k
                divide_u = not_monotonic_by_u;
3452
208k
            if (is_big_v)
3453
28.6k
                divide_v = not_monotonic_by_v;
3454
208k
            if (!divide_u && !divide_v)
3455
200k
                pfs->monotonic_color = true;
3456
208k
        }
3457
1.65M
        if (pfs->monotonic_color && !pfs->linear_color) {
3458
942k
            if (divide_v && divide_u) {
3459
0
                if (size_u > size_v)
3460
0
                    divide_v = false;
3461
0
                else
3462
0
                    divide_u = false;
3463
942k
            } else if (!divide_u && !divide_v && !pfs->unlinear) {
3464
2.24k
                if (d0001x + d1011x + d0001y + d1011y > d0010x + d0111x + d0010y + d0111y) { /* fixme: use size_u, size_v */
3465
0
                    code = is_quadrangle_color_linear_by_u(pfs, p);
3466
0
                    if (code < 0)
3467
0
                        return code;
3468
0
                    divide_u = !code;
3469
0
                }
3470
2.24k
                if (is_big_v) {
3471
2.24k
                    code = is_quadrangle_color_linear_by_v(pfs, p);
3472
2.24k
                    if (code < 0)
3473
0
                        return code;
3474
2.24k
                    divide_v = !code;
3475
2.24k
                }
3476
2.24k
                if (is_big_u && is_big_v) {
3477
2.24k
                    code = is_quadrangle_color_linear_by_diagonals(pfs, p);
3478
2.24k
                    if (code < 0)
3479
0
                        return code;
3480
2.24k
                    if (!code) {
3481
0
                        if (d0001x + d1011x + d0001y + d1011y > d0010x + d0111x + d0010y + d0111y) { /* fixme: use size_u, size_v */
3482
0
                            divide_u = true;
3483
0
                            divide_v = false;
3484
0
                        } else {
3485
0
                            divide_v = true;
3486
0
                            divide_u = false;
3487
0
                        }
3488
0
                    }
3489
2.24k
                }
3490
2.24k
            }
3491
942k
            if (!divide_u && !divide_v)
3492
942k
                pfs->linear_color = true;
3493
942k
        }
3494
1.65M
        if (!pfs->linear_color) {
3495
            /* go to divide. */
3496
1.64M
        } else switch(quadrangle_color_change(pfs, p, is_big_u, is_big_v, size_u, size_v, &divide_u, &divide_v)) {
3497
1.24M
            case color_change_small:
3498
1.24M
                code = (QUADRANGLES || !pfs->maybe_self_intersecting ?
3499
1.14M
                            constant_color_quadrangle : triangles4)(pfs, p,
3500
1.24M
                                pfs->maybe_self_intersecting);
3501
1.24M
                pfs->monotonic_color = monotonic_color_save;
3502
1.24M
                pfs->linear_color = linear_color_save;
3503
1.24M
                return code;
3504
5.63k
            case color_change_bilinear:
3505
5.63k
                if (!QUADRANGLES) {
3506
5.63k
                    code = triangles4(pfs, p, true);
3507
5.63k
                    pfs->monotonic_color = monotonic_color_save;
3508
5.63k
                    pfs->linear_color = linear_color_save;
3509
5.63k
                    return code;
3510
5.63k
                }
3511
768
            case color_change_linear:
3512
768
                if (!QUADRANGLES) {
3513
768
                    code = triangles2(pfs, p, true);
3514
768
                    pfs->monotonic_color = monotonic_color_save;
3515
768
                    pfs->linear_color = linear_color_save;
3516
768
                    return code;
3517
768
                }
3518
386k
            case color_change_gradient:
3519
389k
            case color_change_general:
3520
389k
                ; /* goto divide. */
3521
1.64M
        }
3522
1.65M
    }
3523
397k
    if (!inside) {
3524
77.9k
        if (r.p.x == r1.p.x && r.p.y == r1.p.y &&
3525
77.9k
            r.q.x == r1.q.x && r.q.y == r1.q.y)
3526
22.6k
            pfs->inside = true;
3527
77.9k
    }
3528
397k
    if (LAZY_WEDGES)
3529
397k
        init_wedge_vertex_list(&l0, 1);
3530
397k
    if (divide_v) {
3531
114k
        patch_color_t *c[2];
3532
114k
        byte *color_stack_ptr = reserve_colors_inline(pfs, c, 2);
3533
3534
114k
        if(color_stack_ptr == NULL)
3535
0
            return_error(gs_error_unregistered); /* Must not happen. */
3536
114k
        q[0].c = c[0];
3537
114k
        q[1].c = c[1];
3538
114k
        divide_quadrangle_by_v(pfs, &s0, &s1, q, p, c);
3539
114k
        if (LAZY_WEDGES) {
3540
114k
            code = make_wedge_median(pfs, &l1, p->l0111, true,  &p->p[0][1]->p, &p->p[1][1]->p, &s0.p[1][1]->p);
3541
114k
            if (code >= 0)
3542
114k
                code = make_wedge_median(pfs, &l2, p->l1000, false, &p->p[1][0]->p, &p->p[0][0]->p, &s0.p[1][0]->p);
3543
114k
            if (code >= 0) {
3544
114k
                s0.l1110 = s1.l0001 = &l0;
3545
114k
                s0.l0111 = s1.l0111 = &l1;
3546
114k
                s0.l1000 = s1.l1000 = &l2;
3547
114k
                s0.l0001 = p->l0001;
3548
114k
                s1.l1110 = p->l1110;
3549
114k
            }
3550
114k
        } else {
3551
0
            code = fill_triangle_wedge(pfs, s0.p[0][0], s1.p[1][0], s0.p[1][0]);
3552
0
            if (code >= 0)
3553
0
                code = fill_triangle_wedge(pfs, s0.p[0][1], s1.p[1][1], s0.p[1][1]);
3554
0
        }
3555
114k
        if (code >= 0)
3556
114k
            code = fill_quadrangle(pfs, &s0, big1);
3557
114k
        if (code >= 0) {
3558
114k
            if (LAZY_WEDGES) {
3559
114k
                l0.last_side = true;
3560
114k
                move_wedge(&l1, p->l0111, true);
3561
114k
                move_wedge(&l2, p->l1000, false);
3562
114k
            }
3563
114k
            code = fill_quadrangle(pfs, &s1, big1);
3564
114k
        }
3565
114k
        if (LAZY_WEDGES) {
3566
114k
            if (code >= 0)
3567
114k
                code = close_wedge_median(pfs, p->l0111, p->p[0][1]->c, p->p[1][1]->c);
3568
114k
            if (code >= 0)
3569
114k
                code = close_wedge_median(pfs, p->l1000, p->p[1][0]->c, p->p[0][0]->c);
3570
114k
            if (code >= 0)
3571
114k
                code = terminate_wedge_vertex_list(pfs, &l0, s0.p[1][0]->c, s0.p[1][1]->c);
3572
114k
            release_colors_inline(pfs, color_stack_ptr, 2);
3573
114k
        }
3574
282k
    } else if (divide_u) {
3575
282k
        patch_color_t *c[2];
3576
282k
        byte *color_stack_ptr = reserve_colors_inline(pfs, c, 2);
3577
3578
282k
        if(color_stack_ptr == NULL)
3579
0
            return_error(gs_error_unregistered); /* Must not happen. */
3580
282k
        q[0].c = c[0];
3581
282k
        q[1].c = c[1];
3582
282k
        divide_quadrangle_by_u(pfs, &s0, &s1, q, p, c);
3583
282k
        if (LAZY_WEDGES) {
3584
282k
            code = make_wedge_median(pfs, &l1, p->l0001, true,  &p->p[0][0]->p, &p->p[0][1]->p, &s0.p[0][1]->p);
3585
282k
            if (code >= 0)
3586
282k
                code = make_wedge_median(pfs, &l2, p->l1110, false, &p->p[1][1]->p, &p->p[1][0]->p, &s0.p[1][1]->p);
3587
282k
            if (code >= 0) {
3588
282k
                s0.l0111 = s1.l1000 = &l0;
3589
282k
                s0.l0001 = s1.l0001 = &l1;
3590
282k
                s0.l1110 = s1.l1110 = &l2;
3591
282k
                s0.l1000 = p->l1000;
3592
282k
                s1.l0111 = p->l0111;
3593
282k
            }
3594
282k
        } else {
3595
0
            code = fill_triangle_wedge(pfs, s0.p[0][0], s1.p[0][1], s0.p[0][1]);
3596
0
            if (code >= 0)
3597
0
                code = fill_triangle_wedge(pfs, s0.p[1][0], s1.p[1][1], s0.p[1][1]);
3598
0
        }
3599
282k
        if (code >= 0)
3600
282k
            code = fill_quadrangle(pfs, &s0, big1);
3601
282k
        if (code >= 0) {
3602
282k
            if (LAZY_WEDGES) {
3603
282k
                l0.last_side = true;
3604
282k
                move_wedge(&l1, p->l0001, true);
3605
282k
                move_wedge(&l2, p->l1110, false);
3606
282k
            }
3607
282k
            code = fill_quadrangle(pfs, &s1, big1);
3608
282k
        }
3609
282k
        if (LAZY_WEDGES) {
3610
282k
            if (code >= 0)
3611
282k
                code = close_wedge_median(pfs, p->l0001, p->p[0][0]->c, p->p[0][1]->c);
3612
282k
            if (code >= 0)
3613
282k
                code = close_wedge_median(pfs, p->l1110, p->p[1][1]->c, p->p[1][0]->c);
3614
282k
            if (code >= 0)
3615
282k
                code = terminate_wedge_vertex_list(pfs, &l0, s0.p[0][1]->c, s0.p[1][1]->c);
3616
282k
            release_colors_inline(pfs, color_stack_ptr, 2);
3617
282k
        }
3618
282k
    } else
3619
0
        code = (QUADRANGLES || !pfs->maybe_self_intersecting ?
3620
0
                    constant_color_quadrangle : triangles4)(pfs, p,
3621
0
                        pfs->maybe_self_intersecting);
3622
397k
    pfs->monotonic_color = monotonic_color_save;
3623
397k
    pfs->linear_color = linear_color_save;
3624
397k
    pfs->inside = inside_save;
3625
397k
    return code;
3626
397k
}
3627
3628
/* This splits tensor patch p->pole[v][u] on u to give s0->pole[v][u] and s1->pole[v][u] */
3629
static inline void
3630
split_stripe(patch_fill_state_t *pfs, tensor_patch *s0, tensor_patch *s1, const tensor_patch *p, patch_color_t *c[2])
3631
1.70M
{
3632
1.70M
    s0->c[0][1] = c[0];
3633
1.70M
    s0->c[1][1] = c[1];
3634
1.70M
    split_curve_s(p->pole[0], s0->pole[0], s1->pole[0], 1);
3635
1.70M
    split_curve_s(p->pole[1], s0->pole[1], s1->pole[1], 1);
3636
1.70M
    split_curve_s(p->pole[2], s0->pole[2], s1->pole[2], 1);
3637
1.70M
    split_curve_s(p->pole[3], s0->pole[3], s1->pole[3], 1);
3638
1.70M
    s0->c[0][0] = p->c[0][0];
3639
1.70M
    s0->c[1][0] = p->c[1][0];
3640
1.70M
    s1->c[0][0] = s0->c[0][1];
3641
1.70M
    s1->c[1][0] = s0->c[1][1];
3642
1.70M
    patch_interpolate_color(s0->c[0][1], p->c[0][0], p->c[0][1], pfs, 0.5);
3643
1.70M
    patch_interpolate_color(s0->c[1][1], p->c[1][0], p->c[1][1], pfs, 0.5);
3644
1.70M
    s1->c[0][1] = p->c[0][1];
3645
1.70M
    s1->c[1][1] = p->c[1][1];
3646
1.70M
}
3647
3648
/* This splits tensor patch p->pole[v][u] on v to give s0->pole[v][u] and s1->pole[v][u] */
3649
static inline void
3650
split_patch(patch_fill_state_t *pfs, tensor_patch *s0, tensor_patch *s1, const tensor_patch *p, patch_color_t *c[2])
3651
429k
{
3652
429k
    s0->c[1][0] = c[0];
3653
429k
    s0->c[1][1] = c[1];
3654
429k
    split_curve_s(&p->pole[0][0], &s0->pole[0][0], &s1->pole[0][0], 4);
3655
429k
    split_curve_s(&p->pole[0][1], &s0->pole[0][1], &s1->pole[0][1], 4);
3656
429k
    split_curve_s(&p->pole[0][2], &s0->pole[0][2], &s1->pole[0][2], 4);
3657
429k
    split_curve_s(&p->pole[0][3], &s0->pole[0][3], &s1->pole[0][3], 4);
3658
429k
    s0->c[0][0] = p->c[0][0];
3659
429k
    s0->c[0][1] = p->c[0][1];
3660
429k
    s1->c[0][0] = s0->c[1][0];
3661
429k
    s1->c[0][1] = s0->c[1][1];
3662
429k
    patch_interpolate_color(s0->c[1][0], p->c[0][0], p->c[1][0], pfs, 0.5);
3663
429k
    patch_interpolate_color(s0->c[1][1], p->c[0][1], p->c[1][1], pfs, 0.5);
3664
429k
    s1->c[1][0] = p->c[1][0];
3665
429k
    s1->c[1][1] = p->c[1][1];
3666
429k
}
3667
3668
static inline void
3669
tensor_patch_bbox(gs_fixed_rect *r, const tensor_patch *p)
3670
2.73M
{
3671
2.73M
    int i, j;
3672
3673
2.73M
    r->p.x = r->q.x = p->pole[0][0].x;
3674
2.73M
    r->p.y = r->q.y = p->pole[0][0].y;
3675
13.6M
    for (i = 0; i < 4; i++) {
3676
54.7M
        for (j = 0; j < 4; j++) {
3677
43.8M
            const gs_fixed_point *q = &p->pole[i][j];
3678
3679
43.8M
            if (r->p.x > q->x)
3680
7.30M
                r->p.x = q->x;
3681
43.8M
            if (r->p.y > q->y)
3682
6.78M
                r->p.y = q->y;
3683
43.8M
            if (r->q.x < q->x)
3684
7.73M
                r->q.x = q->x;
3685
43.8M
            if (r->q.y < q->y)
3686
6.60M
                r->q.y = q->y;
3687
43.8M
        }
3688
10.9M
    }
3689
2.73M
}
3690
3691
static int
3692
decompose_stripe(patch_fill_state_t *pfs, const tensor_patch *p, int ku)
3693
3.85M
{
3694
3.85M
    if (ku > 1) {
3695
2.79M
        tensor_patch s0, s1;
3696
2.79M
        patch_color_t *c[2];
3697
2.79M
        int code;
3698
2.79M
        byte *color_stack_ptr;
3699
2.79M
        bool save_inside = pfs->inside;
3700
3701
2.79M
        if (!pfs->inside) {
3702
2.29M
            gs_fixed_rect r, r1;
3703
3704
2.29M
            tensor_patch_bbox(&r, p);
3705
2.29M
            r1 = r;
3706
2.29M
            rect_intersect(r, pfs->rect);
3707
2.29M
            if (r.q.x <= r.p.x || r.q.y <= r.p.y)
3708
1.09M
                return 0;
3709
1.20M
            if (r1.p.x == r.p.x && r1.p.y == r.p.y &&
3710
1.20M
                r1.q.x == r.q.x && r1.q.y == r.q.y)
3711
113k
                pfs->inside = true;
3712
1.20M
        }
3713
1.70M
        color_stack_ptr = reserve_colors_inline(pfs, c, 2);
3714
1.70M
        if(color_stack_ptr == NULL)
3715
0
            return_error(gs_error_unregistered); /* Must not happen. */
3716
1.70M
        split_stripe(pfs, &s0, &s1, p, c);
3717
1.70M
        code = decompose_stripe(pfs, &s0, ku / 2);
3718
1.70M
        if (code >= 0)
3719
1.70M
            code = decompose_stripe(pfs, &s1, ku / 2);
3720
1.70M
        release_colors_inline(pfs, color_stack_ptr, 2);
3721
1.70M
        pfs->inside = save_inside;
3722
1.70M
        return code;
3723
1.70M
    } else {
3724
1.05M
        quadrangle_patch q;
3725
1.05M
        shading_vertex_t qq[2][2];
3726
1.05M
        wedge_vertex_list_t l[4];
3727
1.05M
        int code;
3728
3729
1.05M
        init_wedge_vertex_list(l, count_of(l));
3730
1.05M
        make_quadrangle(p, qq, l, &q);
3731
#       if SKIP_TEST
3732
            dbg_quad_cnt++;
3733
#       endif
3734
1.05M
        code = fill_quadrangle(pfs, &q, true);
3735
1.05M
        if (code < 0)
3736
0
            return code;
3737
1.05M
        if (LAZY_WEDGES) {
3738
1.05M
            code = terminate_wedge_vertex_list(pfs, &l[0], q.p[0][0]->c, q.p[0][1]->c);
3739
1.05M
            if (code < 0)
3740
0
                return code;
3741
1.05M
            code = terminate_wedge_vertex_list(pfs, &l[1], q.p[0][1]->c, q.p[1][1]->c);
3742
1.05M
            if (code < 0)
3743
0
                return code;
3744
1.05M
            code = terminate_wedge_vertex_list(pfs, &l[2], q.p[1][1]->c, q.p[1][0]->c);
3745
1.05M
            if (code < 0)
3746
0
                return code;
3747
1.05M
            code = terminate_wedge_vertex_list(pfs, &l[3], q.p[1][0]->c, q.p[0][1]->c);
3748
1.05M
            if (code < 0)
3749
0
                return code;
3750
1.05M
        }
3751
1.05M
        return code;
3752
1.05M
    }
3753
3.85M
}
3754
3755
static int
3756
fill_stripe(patch_fill_state_t *pfs, const tensor_patch *p)
3757
445k
{
3758
    /* The stripe is flattened enough by V, so ignore inner poles. */
3759
445k
    int ku[4], kum, code;
3760
3761
    /* We would like to apply iterations for enumerating the kum curve parts,
3762
       but the roundinmg errors would be too complicated due to
3763
       the dependence on the direction. Note that neigbour
3764
       patches may use the opposite direction for same bounding curve.
3765
       We apply the recursive dichotomy, in which
3766
       the rounding errors do not depend on the direction. */
3767
445k
    ku[0] = curve_samples(pfs, p->pole[0], 1, pfs->fixed_flat);
3768
445k
    ku[3] = curve_samples(pfs, p->pole[3], 1, pfs->fixed_flat);
3769
445k
    kum = max(ku[0], ku[3]);
3770
445k
    code = fill_wedges(pfs, ku[0], kum, p->pole[0], 1, p->c[0][0], p->c[0][1], inpatch_wedge);
3771
445k
    if (code < 0)
3772
0
        return code;
3773
445k
    if (INTERPATCH_PADDING) {
3774
445k
        code = mesh_padding(pfs, &p->pole[0][0], &p->pole[3][0], p->c[0][0], p->c[1][0]);
3775
445k
        if (code < 0)
3776
2
            return code;
3777
445k
        code = mesh_padding(pfs, &p->pole[0][3], &p->pole[3][3], p->c[0][1], p->c[1][1]);
3778
445k
        if (code < 0)
3779
0
            return code;
3780
445k
    }
3781
445k
    code = decompose_stripe(pfs, p, kum);
3782
445k
    if (code < 0)
3783
0
        return code;
3784
445k
    return fill_wedges(pfs, ku[3], kum, p->pole[3], 1, p->c[1][0], p->c[1][1], inpatch_wedge);
3785
445k
}
3786
3787
static inline bool neqs(int *a, int b)
3788
972k
{   /* Unequal signs. Assuming -1, 0, 1 only. */
3789
972k
    if (*a * b < 0)
3790
411k
        return true;
3791
560k
    if (!*a)
3792
27.7k
        *a = b;
3793
560k
    return false;
3794
972k
}
3795
3796
static inline int
3797
vector_pair_orientation(const gs_fixed_point *p0, const gs_fixed_point *p1, const gs_fixed_point *p2)
3798
1.40M
{   fixed dx1 = p1->x - p0->x, dy1 = p1->y - p0->y;
3799
1.40M
    fixed dx2 = p2->x - p0->x, dy2 = p2->y - p0->y;
3800
1.40M
    int64_t vp = (int64_t)dx1 * dy2 - (int64_t)dy1 * dx2;
3801
3802
1.40M
    return (vp > 0 ? 1 : vp < 0 ? -1 : 0);
3803
1.40M
}
3804
3805
static inline bool
3806
is_x_bended(const tensor_patch *p)
3807
434k
{
3808
434k
    int sign = vector_pair_orientation(&p->pole[0][0], &p->pole[0][1], &p->pole[1][0]);
3809
3810
434k
    if (neqs(&sign, vector_pair_orientation(&p->pole[0][1], &p->pole[0][2], &p->pole[1][1])))
3811
240k
        return true;
3812
193k
    if (neqs(&sign, vector_pair_orientation(&p->pole[0][2], &p->pole[0][3], &p->pole[1][2])))
3813
124k
        return true;
3814
68.7k
    if (neqs(&sign, -vector_pair_orientation(&p->pole[0][3], &p->pole[0][2], &p->pole[1][3])))
3815
45.3k
        return true;
3816
3817
23.4k
    if (neqs(&sign, vector_pair_orientation(&p->pole[1][1], &p->pole[1][2], &p->pole[2][1])))
3818
157
        return true;
3819
23.2k
    if (neqs(&sign, vector_pair_orientation(&p->pole[1][1], &p->pole[1][2], &p->pole[2][1])))
3820
0
        return true;
3821
23.2k
    if (neqs(&sign, vector_pair_orientation(&p->pole[1][2], &p->pole[1][3], &p->pole[2][2])))
3822
55
        return true;
3823
23.1k
    if (neqs(&sign, -vector_pair_orientation(&p->pole[1][3], &p->pole[1][2], &p->pole[2][3])))
3824
145
        return true;
3825
3826
23.0k
    if (neqs(&sign, vector_pair_orientation(&p->pole[2][1], &p->pole[2][2], &p->pole[3][1])))
3827
129
        return true;
3828
22.9k
    if (neqs(&sign, vector_pair_orientation(&p->pole[2][1], &p->pole[2][2], &p->pole[3][1])))
3829
0
        return true;
3830
22.9k
    if (neqs(&sign, vector_pair_orientation(&p->pole[2][2], &p->pole[2][3], &p->pole[3][2])))
3831
91
        return true;
3832
22.8k
    if (neqs(&sign, -vector_pair_orientation(&p->pole[2][3], &p->pole[2][2], &p->pole[3][3])))
3833
150
        return true;
3834
3835
22.6k
    if (neqs(&sign, -vector_pair_orientation(&p->pole[3][1], &p->pole[3][2], &p->pole[2][1])))
3836
36
        return true;
3837
22.6k
    if (neqs(&sign, -vector_pair_orientation(&p->pole[3][1], &p->pole[3][2], &p->pole[2][1])))
3838
0
        return true;
3839
22.6k
    if (neqs(&sign, -vector_pair_orientation(&p->pole[3][2], &p->pole[3][3], &p->pole[2][2])))
3840
16
        return true;
3841
22.6k
    if (neqs(&sign, vector_pair_orientation(&p->pole[3][3], &p->pole[3][2], &p->pole[2][3])))
3842
31
        return true;
3843
22.5k
    return false;
3844
22.6k
}
3845
3846
static inline bool
3847
is_y_bended(const tensor_patch *p)
3848
0
{
3849
0
    int sign = vector_pair_orientation(&p->pole[0][0], &p->pole[1][0], &p->pole[0][1]);
3850
3851
0
    if (neqs(&sign, vector_pair_orientation(&p->pole[1][0], &p->pole[2][0], &p->pole[1][1])))
3852
0
        return true;
3853
0
    if (neqs(&sign, vector_pair_orientation(&p->pole[2][0], &p->pole[3][0], &p->pole[2][1])))
3854
0
        return true;
3855
0
    if (neqs(&sign, -vector_pair_orientation(&p->pole[3][0], &p->pole[2][0], &p->pole[3][1])))
3856
0
        return true;
3857
3858
0
    if (neqs(&sign, vector_pair_orientation(&p->pole[1][1], &p->pole[2][1], &p->pole[1][2])))
3859
0
        return true;
3860
0
    if (neqs(&sign, vector_pair_orientation(&p->pole[1][1], &p->pole[2][1], &p->pole[1][2])))
3861
0
        return true;
3862
0
    if (neqs(&sign, vector_pair_orientation(&p->pole[2][1], &p->pole[3][1], &p->pole[2][2])))
3863
0
        return true;
3864
0
    if (neqs(&sign, -vector_pair_orientation(&p->pole[3][1], &p->pole[2][1], &p->pole[3][2])))
3865
0
        return true;
3866
3867
0
    if (neqs(&sign, vector_pair_orientation(&p->pole[1][2], &p->pole[2][2], &p->pole[1][3])))
3868
0
        return true;
3869
0
    if (neqs(&sign, vector_pair_orientation(&p->pole[1][2], &p->pole[2][2], &p->pole[1][3])))
3870
0
        return true;
3871
0
    if (neqs(&sign, vector_pair_orientation(&p->pole[2][2], &p->pole[3][2], &p->pole[2][3])))
3872
0
        return true;
3873
0
    if (neqs(&sign, -vector_pair_orientation(&p->pole[3][2], &p->pole[2][2], &p->pole[3][3])))
3874
0
        return true;
3875
3876
0
    if (neqs(&sign, -vector_pair_orientation(&p->pole[1][3], &p->pole[2][3], &p->pole[1][2])))
3877
0
        return true;
3878
0
    if (neqs(&sign, -vector_pair_orientation(&p->pole[1][3], &p->pole[2][3], &p->pole[1][2])))
3879
0
        return true;
3880
0
    if (neqs(&sign, -vector_pair_orientation(&p->pole[2][3], &p->pole[3][3], &p->pole[2][2])))
3881
0
        return true;
3882
0
    if (neqs(&sign, vector_pair_orientation(&p->pole[3][3], &p->pole[2][3], &p->pole[3][2])))
3883
0
        return true;
3884
0
    return false;
3885
0
}
3886
3887
static inline bool
3888
is_curve_x_small(const patch_fill_state_t *pfs, const gs_fixed_point *pole, int pole_step, fixed fixed_flat)
3889
2.68M
{   /* Is curve within a single pixel, or smaller than half pixel ? */
3890
2.68M
    fixed xmin0 = min(pole[0 * pole_step].x, pole[1 * pole_step].x);
3891
2.68M
    fixed xmin1 = min(pole[2 * pole_step].x, pole[3 * pole_step].x);
3892
2.68M
    fixed xmin =  min(xmin0, xmin1);
3893
2.68M
    fixed xmax0 = max(pole[0 * pole_step].x, pole[1 * pole_step].x);
3894
2.68M
    fixed xmax1 = max(pole[2 * pole_step].x, pole[3 * pole_step].x);
3895
2.68M
    fixed xmax =  max(xmax0, xmax1);
3896
3897
2.68M
    if(xmax - xmin <= pfs->decomposition_limit)
3898
2.32M
        return true;
3899
365k
    return false;
3900
2.68M
}
3901
3902
static inline bool
3903
is_curve_y_small(const patch_fill_state_t *pfs, const gs_fixed_point *pole, int pole_step, fixed fixed_flat)
3904
1.84M
{   /* Is curve within a single pixel, or smaller than half pixel ? */
3905
1.84M
    fixed ymin0 = min(pole[0 * pole_step].y, pole[1 * pole_step].y);
3906
1.84M
    fixed ymin1 = min(pole[2 * pole_step].y, pole[3 * pole_step].y);
3907
1.84M
    fixed ymin =  min(ymin0, ymin1);
3908
1.84M
    fixed ymax0 = max(pole[0 * pole_step].y, pole[1 * pole_step].y);
3909
1.84M
    fixed ymax1 = max(pole[2 * pole_step].y, pole[3 * pole_step].y);
3910
1.84M
    fixed ymax =  max(ymax0, ymax1);
3911
3912
1.84M
    if (ymax - ymin <= pfs->decomposition_limit)
3913
1.77M
        return true;
3914
69.0k
    return false;
3915
1.84M
}
3916
3917
static inline bool
3918
is_patch_narrow(const patch_fill_state_t *pfs, const tensor_patch *p)
3919
857k
{
3920
857k
    if (!is_curve_x_small(pfs, &p->pole[0][0], 4, pfs->fixed_flat))
3921
159k
        return false;
3922
698k
    if (!is_curve_x_small(pfs, &p->pole[0][1], 4, pfs->fixed_flat))
3923
90.5k
        return false;
3924
607k
    if (!is_curve_x_small(pfs, &p->pole[0][2], 4, pfs->fixed_flat))
3925
85.1k
        return false;
3926
522k
    if (!is_curve_x_small(pfs, &p->pole[0][3], 4, pfs->fixed_flat))
3927
30.0k
        return false;
3928
492k
    if (!is_curve_y_small(pfs, &p->pole[0][0], 4, pfs->fixed_flat))
3929
23.1k
        return false;
3930
469k
    if (!is_curve_y_small(pfs, &p->pole[0][1], 4, pfs->fixed_flat))
3931
19.9k
        return false;
3932
449k
    if (!is_curve_y_small(pfs, &p->pole[0][2], 4, pfs->fixed_flat))
3933
11.2k
        return false;
3934
438k
    if (!is_curve_y_small(pfs, &p->pole[0][3], 4, pfs->fixed_flat))
3935
14.8k
        return false;
3936
423k
    return true;
3937
438k
}
3938
3939
static int
3940
fill_patch(patch_fill_state_t *pfs, const tensor_patch *p, int kv, int kv0, int kv1)
3941
898k
{
3942
898k
    if (kv <= 1) {
3943
857k
        if (is_patch_narrow(pfs, p))
3944
423k
            return fill_stripe(pfs, p);
3945
434k
        if (!is_x_bended(p))
3946
22.5k
            return fill_stripe(pfs, p);
3947
434k
    }
3948
452k
    {   tensor_patch s0, s1;
3949
452k
        patch_color_t *c[2];
3950
452k
        shading_vertex_t q0, q1, q2;
3951
452k
        int code = 0;
3952
452k
        byte *color_stack_ptr;
3953
452k
        bool save_inside = pfs->inside;
3954
3955
452k
        if (!pfs->inside) {
3956
443k
            gs_fixed_rect r, r1;
3957
3958
443k
            tensor_patch_bbox(&r, p);
3959
443k
            r.p.x -= INTERPATCH_PADDING;
3960
443k
            r.p.y -= INTERPATCH_PADDING;
3961
443k
            r.q.x += INTERPATCH_PADDING;
3962
443k
            r.q.y += INTERPATCH_PADDING;
3963
443k
            r1 = r;
3964
443k
            rect_intersect(r, pfs->rect);
3965
443k
            if (r.q.x <= r.p.x || r.q.y <= r.p.y)
3966
22.9k
                return 0;
3967
420k
            if (r1.p.x == r.p.x && r1.p.y == r.p.y &&
3968
420k
                r1.q.x == r.q.x && r1.q.y == r.q.y)
3969
1.16k
                pfs->inside = true;
3970
420k
        }
3971
429k
        color_stack_ptr = reserve_colors_inline(pfs, c, 2);
3972
429k
        if(color_stack_ptr == NULL)
3973
0
            return_error(gs_error_unregistered); /* Must not happen. */
3974
429k
        split_patch(pfs, &s0, &s1, p, c);
3975
429k
        if (kv0 <= 1) {
3976
413k
            q0.p = s0.pole[0][0];
3977
413k
            q0.c = s0.c[0][0];
3978
413k
            q1.p = s1.pole[3][0];
3979
413k
            q1.c = s1.c[1][0];
3980
413k
            q2.p = s0.pole[3][0];
3981
413k
            q2.c = s0.c[1][0];
3982
413k
            code = fill_triangle_wedge(pfs, &q0, &q1, &q2);
3983
413k
        }
3984
429k
        if (kv1 <= 1 && code >= 0) {
3985
413k
            q0.p = s0.pole[0][3];
3986
413k
            q0.c = s0.c[0][1];
3987
413k
            q1.p = s1.pole[3][3];
3988
413k
            q1.c = s1.c[1][1];
3989
413k
            q2.p = s0.pole[3][3];
3990
413k
            q2.c = s0.c[1][1];
3991
413k
            code = fill_triangle_wedge(pfs, &q0, &q1, &q2);
3992
413k
        }
3993
429k
        if (code >= 0)
3994
429k
            code = fill_patch(pfs, &s0, kv / 2, kv0 / 2, kv1 / 2);
3995
429k
        if (code >= 0)
3996
429k
            code = fill_patch(pfs, &s1, kv / 2, kv0 / 2, kv1 / 2);
3997
        /* fixme : To provide the precise filling order, we must
3998
           decompose left and right wedges into pieces by intersections
3999
           with stripes, and fill each piece with its stripe.
4000
           A lazy wedge list would be fine for storing
4001
           the necessary information.
4002
4003
           If the patch is created from a radial shading,
4004
           the wedge color appears a constant, so the filling order
4005
           isn't important. The order is important for other
4006
           self-overlapping patches, but the visible effect is
4007
           just a slight narrowing of the patch (as its lower layer appears
4008
           visible through the upper layer near the side).
4009
           This kind of dropout isn't harmful, because
4010
           contacting self-overlapping patches are painted
4011
           one after one by definition, so that a side coverage break
4012
           appears unavoidable by definition.
4013
4014
           Delaying this improvement because it is low importance.
4015
         */
4016
429k
        release_colors_inline(pfs, color_stack_ptr, 2);
4017
429k
        pfs->inside = save_inside;
4018
429k
        return code;
4019
429k
    }
4020
429k
}
4021
4022
static inline int64_t
4023
lcp1(int64_t p0, int64_t p3)
4024
268k
{   /* Computing the 1st pole of a 3d order besier, which appears a line. */
4025
268k
    return (p0 + p0 + p3);
4026
268k
}
4027
static inline int64_t
4028
lcp2(int64_t p0, int64_t p3)
4029
268k
{   /* Computing the 2nd pole of a 3d order besier, which appears a line. */
4030
268k
    return (p0 + p3 + p3);
4031
268k
}
4032
4033
static void
4034
patch_set_color(const patch_fill_state_t *pfs, patch_color_t *c, const float *cc)
4035
157k
{
4036
157k
    if (pfs->Function) {
4037
53.7k
        c->t[0] = cc[0];
4038
53.7k
        c->t[1] = cc[1];
4039
53.7k
    } else
4040
103k
        memcpy(c->cc.paint.values, cc, sizeof(c->cc.paint.values[0]) * pfs->num_components);
4041
157k
}
4042
4043
static void
4044
make_tensor_patch(const patch_fill_state_t *pfs, tensor_patch *p, const patch_curve_t curve[4],
4045
           const gs_fixed_point interior[4])
4046
39.2k
{
4047
39.2k
    const gs_color_space *pcs = pfs->direct_space;
4048
4049
39.2k
    p->pole[0][0] = curve[0].vertex.p;
4050
39.2k
    p->pole[1][0] = curve[0].control[0];
4051
39.2k
    p->pole[2][0] = curve[0].control[1];
4052
39.2k
    p->pole[3][0] = curve[1].vertex.p;
4053
39.2k
    p->pole[3][1] = curve[1].control[0];
4054
39.2k
    p->pole[3][2] = curve[1].control[1];
4055
39.2k
    p->pole[3][3] = curve[2].vertex.p;
4056
39.2k
    p->pole[2][3] = curve[2].control[0];
4057
39.2k
    p->pole[1][3] = curve[2].control[1];
4058
39.2k
    p->pole[0][3] = curve[3].vertex.p;
4059
39.2k
    p->pole[0][2] = curve[3].control[0];
4060
39.2k
    p->pole[0][1] = curve[3].control[1];
4061
39.2k
    if (interior != NULL) {
4062
25.8k
        p->pole[1][1] = interior[0];
4063
25.8k
        p->pole[1][2] = interior[1];
4064
25.8k
        p->pole[2][2] = interior[2];
4065
25.8k
        p->pole[2][1] = interior[3];
4066
25.8k
    } else {
4067
13.4k
        p->pole[1][1].x = (fixed)((3*(lcp1(p->pole[0][1].x, p->pole[3][1].x) +
4068
13.4k
                                      lcp1(p->pole[1][0].x, p->pole[1][3].x)) -
4069
13.4k
                                   lcp1(lcp1(p->pole[0][0].x, p->pole[0][3].x),
4070
13.4k
                                        lcp1(p->pole[3][0].x, p->pole[3][3].x)))/9);
4071
13.4k
        p->pole[1][2].x = (fixed)((3*(lcp1(p->pole[0][2].x, p->pole[3][2].x) +
4072
13.4k
                                      lcp2(p->pole[1][0].x, p->pole[1][3].x)) -
4073
13.4k
                                   lcp1(lcp2(p->pole[0][0].x, p->pole[0][3].x),
4074
13.4k
                                        lcp2(p->pole[3][0].x, p->pole[3][3].x)))/9);
4075
13.4k
        p->pole[2][1].x = (fixed)((3*(lcp2(p->pole[0][1].x, p->pole[3][1].x) +
4076
13.4k
                                      lcp1(p->pole[2][0].x, p->pole[2][3].x)) -
4077
13.4k
                                   lcp2(lcp1(p->pole[0][0].x, p->pole[0][3].x),
4078
13.4k
                                        lcp1(p->pole[3][0].x, p->pole[3][3].x)))/9);
4079
13.4k
        p->pole[2][2].x = (fixed)((3*(lcp2(p->pole[0][2].x, p->pole[3][2].x) +
4080
13.4k
                                      lcp2(p->pole[2][0].x, p->pole[2][3].x)) -
4081
13.4k
                                   lcp2(lcp2(p->pole[0][0].x, p->pole[0][3].x),
4082
13.4k
                                        lcp2(p->pole[3][0].x, p->pole[3][3].x)))/9);
4083
4084
13.4k
        p->pole[1][1].y = (fixed)((3*(lcp1(p->pole[0][1].y, p->pole[3][1].y) +
4085
13.4k
                                      lcp1(p->pole[1][0].y, p->pole[1][3].y)) -
4086
13.4k
                                   lcp1(lcp1(p->pole[0][0].y, p->pole[0][3].y),
4087
13.4k
                                        lcp1(p->pole[3][0].y, p->pole[3][3].y)))/9);
4088
13.4k
        p->pole[1][2].y = (fixed)((3*(lcp1(p->pole[0][2].y, p->pole[3][2].y) +
4089
13.4k
                                      lcp2(p->pole[1][0].y, p->pole[1][3].y)) -
4090
13.4k
                                   lcp1(lcp2(p->pole[0][0].y, p->pole[0][3].y),
4091
13.4k
                                        lcp2(p->pole[3][0].y, p->pole[3][3].y)))/9);
4092
13.4k
        p->pole[2][1].y = (fixed)((3*(lcp2(p->pole[0][1].y, p->pole[3][1].y) +
4093
13.4k
                                      lcp1(p->pole[2][0].y, p->pole[2][3].y)) -
4094
13.4k
                                   lcp2(lcp1(p->pole[0][0].y, p->pole[0][3].y),
4095
13.4k
                                        lcp1(p->pole[3][0].y, p->pole[3][3].y)))/9);
4096
13.4k
        p->pole[2][2].y = (fixed)((3*(lcp2(p->pole[0][2].y, p->pole[3][2].y) +
4097
13.4k
                                      lcp2(p->pole[2][0].y, p->pole[2][3].y)) -
4098
13.4k
                                   lcp2(lcp2(p->pole[0][0].y, p->pole[0][3].y),
4099
13.4k
                                        lcp2(p->pole[3][0].y, p->pole[3][3].y)))/9);
4100
13.4k
    }
4101
39.2k
    patch_set_color(pfs, p->c[0][0], curve[0].vertex.cc);
4102
39.2k
    patch_set_color(pfs, p->c[1][0], curve[1].vertex.cc);
4103
39.2k
    patch_set_color(pfs, p->c[1][1], curve[2].vertex.cc);
4104
39.2k
    patch_set_color(pfs, p->c[0][1], curve[3].vertex.cc);
4105
39.2k
    patch_resolve_color_inline(p->c[0][0], pfs);
4106
39.2k
    patch_resolve_color_inline(p->c[0][1], pfs);
4107
39.2k
    patch_resolve_color_inline(p->c[1][0], pfs);
4108
39.2k
    patch_resolve_color_inline(p->c[1][1], pfs);
4109
39.2k
    if (!pfs->Function) {
4110
25.8k
        pcs->type->restrict_color(&p->c[0][0]->cc, pcs);
4111
25.8k
        pcs->type->restrict_color(&p->c[0][1]->cc, pcs);
4112
25.8k
        pcs->type->restrict_color(&p->c[1][0]->cc, pcs);
4113
25.8k
        pcs->type->restrict_color(&p->c[1][1]->cc, pcs);
4114
25.8k
    }
4115
39.2k
}
4116
4117
int
4118
gx_shade_background(gx_device *pdev, const gs_fixed_rect *rect,
4119
        const gx_device_color *pdevc, gs_logical_operation_t log_op)
4120
7
{
4121
7
    gs_fixed_edge le, re;
4122
4123
7
    le.start.x = rect->p.x - INTERPATCH_PADDING;
4124
7
    le.start.y = rect->p.y - INTERPATCH_PADDING;
4125
7
    le.end.x = rect->p.x - INTERPATCH_PADDING;
4126
7
    le.end.y = rect->q.y + INTERPATCH_PADDING;
4127
7
    re.start.x = rect->q.x + INTERPATCH_PADDING;
4128
7
    re.start.y = rect->p.y - INTERPATCH_PADDING;
4129
7
    re.end.x = rect->q.x + INTERPATCH_PADDING;
4130
7
    re.end.y = rect->q.y + INTERPATCH_PADDING;
4131
7
    return dev_proc(pdev, fill_trapezoid)(pdev,
4132
7
            &le, &re, le.start.y, le.end.y, false, pdevc, log_op);
4133
7
}
4134
4135
int
4136
patch_fill(patch_fill_state_t *pfs, const patch_curve_t curve[4],
4137
           const gs_fixed_point interior[4],
4138
           void (*transform) (gs_fixed_point *, const patch_curve_t[4],
4139
                              const gs_fixed_point[4], double, double))
4140
39.2k
{
4141
39.2k
    tensor_patch p;
4142
39.2k
    patch_color_t *c[4];
4143
39.2k
    int kv[4], kvm, ku[4], kum;
4144
39.2k
    int code = 0;
4145
39.2k
    byte *color_stack_ptr = reserve_colors_inline(pfs, c, 4); /* Can't fail */
4146
4147
39.2k
    p.c[0][0] = c[0];
4148
39.2k
    p.c[0][1] = c[1];
4149
39.2k
    p.c[1][0] = c[2];
4150
39.2k
    p.c[1][1] = c[3];
4151
#if SKIP_TEST
4152
    dbg_patch_cnt++;
4153
    /*if (dbg_patch_cnt != 67 && dbg_patch_cnt != 78)
4154
        return 0;*/
4155
#endif
4156
    /* We decompose the patch into tiny quadrangles,
4157
       possibly inserting wedges between them against a dropout. */
4158
39.2k
    make_tensor_patch(pfs, &p, curve, interior);
4159
39.2k
    pfs->unlinear = !is_linear_color_applicable(pfs);
4160
39.2k
    pfs->linear_color = false;
4161
39.2k
    if ((*dev_proc(pfs->dev, dev_spec_op))(pfs->dev,
4162
39.2k
            gxdso_pattern_shading_area, NULL, 0) > 0) {
4163
        /* Inform the device with the shading coverage area.
4164
           First compute the sign of the area, because
4165
           all areas to be clipped in same direction. */
4166
0
        gx_device *pdev = pfs->dev;
4167
0
        gx_path path;
4168
0
        fixed d01x = (curve[1].vertex.p.x - curve[0].vertex.p.x) >> 1;
4169
0
        fixed d01y = (curve[1].vertex.p.y - curve[0].vertex.p.y) >> 1;
4170
0
        fixed d12x = (curve[2].vertex.p.x - curve[1].vertex.p.x) >> 1;
4171
0
        fixed d12y = (curve[2].vertex.p.y - curve[1].vertex.p.y) >> 1;
4172
0
        fixed d23x = (curve[3].vertex.p.x - curve[2].vertex.p.x) >> 1;
4173
0
        fixed d23y = (curve[3].vertex.p.y - curve[2].vertex.p.y) >> 1;
4174
0
        fixed d30x = (curve[0].vertex.p.x - curve[3].vertex.p.x) >> 1;
4175
0
        fixed d30y = (curve[0].vertex.p.y - curve[3].vertex.p.y) >> 1;
4176
0
        int64_t s1 = (int64_t)d01x * d12y - (int64_t)d01y * d12x;
4177
0
        int64_t s2 = (int64_t)d23x * d30y - (int64_t)d23y * d30x;
4178
0
        int s = (s1 + s2 > 0 ? 1 : 3), i, j, k, jj, l = (s == 1 ? 0 : 1);
4179
4180
0
        gx_path_init_local(&path, pdev->memory);
4181
0
        if (is_x_bended(&p) || is_y_bended(&p)) {
4182
            /* The patch possibly is self-overlapping,
4183
               so the patch coverage may fall outside the patch outline.
4184
               In this case we pass an empty path,
4185
               and the device must use a bitmap mask instead clipping. */
4186
0
        } else {
4187
0
            code = gx_path_add_point(&path, curve[0].vertex.p.x, curve[0].vertex.p.y);
4188
0
            for (i = k = 0; k < 4 && code >= 0; i = j, k++) {
4189
0
                j = (i + s) % 4, jj = (s == 1 ? i : j);
4190
0
                if (curve[jj].straight)
4191
0
                    code = gx_path_add_line(&path, curve[j].vertex.p.x,
4192
0
                                                curve[j].vertex.p.y);
4193
0
                else
4194
0
                    code = gx_path_add_curve(&path, curve[jj].control[l].x, curve[jj].control[l].y,
4195
0
                                                    curve[jj].control[(l + 1) & 1].x, curve[jj].control[(l + 1) & 1].y,
4196
0
                                                    curve[j].vertex.p.x,
4197
0
                                                    curve[j].vertex.p.y);
4198
0
            }
4199
0
            if (code >= 0)
4200
0
                code = gx_path_close_subpath(&path);
4201
0
        }
4202
0
        if (code >= 0)
4203
0
            code = (*dev_proc(pfs->dev, fill_path))(pdev, NULL, &path, NULL, NULL, NULL);
4204
0
        gx_path_free(&path, "patch_fill");
4205
0
        if (code < 0)
4206
0
            goto out;
4207
0
    }
4208
    /* How many subdivisions of the patch in the u and v direction? */
4209
39.2k
    kv[0] = curve_samples(pfs, &p.pole[0][0], 4, pfs->fixed_flat);
4210
39.2k
    kv[1] = curve_samples(pfs, &p.pole[0][1], 4, pfs->fixed_flat);
4211
39.2k
    kv[2] = curve_samples(pfs, &p.pole[0][2], 4, pfs->fixed_flat);
4212
39.2k
    kv[3] = curve_samples(pfs, &p.pole[0][3], 4, pfs->fixed_flat);
4213
39.2k
    kvm = max(max(kv[0], kv[1]), max(kv[2], kv[3]));
4214
39.2k
    ku[0] = curve_samples(pfs, p.pole[0], 1, pfs->fixed_flat);
4215
39.2k
    ku[1] = curve_samples(pfs, p.pole[1], 1, pfs->fixed_flat);
4216
39.2k
    ku[2] = curve_samples(pfs, p.pole[2], 1, pfs->fixed_flat);
4217
39.2k
    ku[3] = curve_samples(pfs, p.pole[3], 1, pfs->fixed_flat);
4218
39.2k
    kum = max(max(ku[0], ku[1]), max(ku[2], ku[3]));
4219
#   if NOFILL_TEST
4220
    dbg_nofill = false;
4221
#   endif
4222
39.2k
    code = fill_wedges(pfs, ku[0], kum, p.pole[0], 1, p.c[0][0], p.c[0][1],
4223
39.2k
        interpatch_padding | inpatch_wedge);
4224
39.2k
    if (code >= 0) {
4225
        /* We would like to apply iterations for enumerating the kvm curve parts,
4226
           but the roundinmg errors would be too complicated due to
4227
           the dependence on the direction. Note that neigbour
4228
           patches may use the opposite direction for same bounding curve.
4229
           We apply the recursive dichotomy, in which
4230
           the rounding errors do not depend on the direction. */
4231
#       if NOFILL_TEST
4232
            dbg_nofill = false;
4233
            code = fill_patch(pfs, &p, kvm, kv[0], kv[3]);
4234
            dbg_nofill = true;
4235
#       endif
4236
39.2k
            code = fill_patch(pfs, &p, kvm, kv[0], kv[3]);
4237
39.2k
    }
4238
39.2k
    if (code >= 0)
4239
39.2k
        code = fill_wedges(pfs, ku[3], kum, p.pole[3], 1, p.c[1][0], p.c[1][1],
4240
39.2k
                interpatch_padding | inpatch_wedge);
4241
39.2k
out:
4242
39.2k
    release_colors_inline(pfs, color_stack_ptr, 4);
4243
39.2k
    return code;
4244
39.2k
}