Coverage Report

Created: 2025-06-10 07:27

/src/ghostpdl/base/gxstroke.c
Line
Count
Source (jump to first uncovered line)
1
/* Copyright (C) 2001-2025 Artifex Software, Inc.
2
   All Rights Reserved.
3
4
   This software is provided AS-IS with no warranty, either express or
5
   implied.
6
7
   This software is distributed under license and may not be copied,
8
   modified or distributed except as expressly authorized under the terms
9
   of the license contained in the file LICENSE in this distribution.
10
11
   Refer to licensing information at http://www.artifex.com or contact
12
   Artifex Software, Inc.,  39 Mesa Street, Suite 108A, San Francisco,
13
   CA 94129, USA, for further information.
14
*/
15
16
17
/* Path stroking procedures for Ghostscript library */
18
#include "math_.h"
19
#include <stdlib.h> /* abs() */
20
#include "gx.h"
21
#include "gpcheck.h"
22
#include "gserrors.h"
23
#include "gsdcolor.h"
24
#include "gsptype1.h"
25
#include "gsptype2.h"
26
#include "gxfixed.h"
27
#include "gxfarith.h"
28
#include "gxmatrix.h"
29
#include "gscoord.h"
30
#include "gsdevice.h"
31
#include "gxdevice.h"
32
#include "gxhttile.h"
33
#include "gxgstate.h"
34
#include "gzline.h"
35
#include "gzpath.h"
36
#include "gzcpath.h"
37
#include "gxpaint.h"
38
#include "gsstate.h"            /* for gs_currentcpsimode */
39
#include "gzacpath.h"
40
41
/* RJW: There appears to be a difference in the xps and postscript models
42
 * (at least in as far as Microsofts implementation of xps and Acrobats of
43
 * postscript). Acrobat (and ghostscript) are happy to join a line segment
44
 * around a corner, even when the next segment is a dash gap. Microsofts
45
 * implementation of XPS does not.
46
 *
47
 * A test file that shows this up is tests_private/comparefiles/298-05.ps
48
 *
49
 * Enabling the following define would emulate xps behaviour here.
50
 */
51
#undef AVOID_JOINING_TO_DASH_GAPS
52
53
/*
54
 * We don't really know whether it's a good idea to take fill adjustment
55
 * into account for stroking.  Disregarding it means that strokes
56
 * come out thinner than fills; observing it produces heavy-looking
57
 * strokes at low resolutions.  But in any case, we must disregard it
58
 * when stroking zero-width lines.
59
 */
60
#define USE_FILL_ADJUSTMENT
61
62
#ifdef USE_FILL_ADJUSTMENT
63
#  define STROKE_ADJUSTMENT(thin, pgs, xy)\
64
79.9M
     (thin ? fixed_0 : (pgs)->fill_adjust.xy)
65
#else
66
#  define STROKE_ADJUSTMENT(thin, pgs, xy) fixed_0
67
#endif
68
69
/*
70
 * For some reason, we commented out the optimization for portrait,
71
 * landscape, and uniform (non-scaled) transformations.  We have no record
72
 * of why we did this, and we don't know what bugs re-enabling it may
73
 * introduce.
74
 */
75
#define OPTIMIZE_ORIENTATION
76
77
/*
78
 * Compute the amount by which to expand a stroked bounding box to account
79
 * for line width, caps and joins.  Return 0 if the result is exact, 1 if
80
 * it may be conservative, or gs_error_limitcheck if the result is too
81
 * large to fit in a gs_fixed_point.
82
 *
83
 * Because of square caps and miter and triangular joins, the maximum
84
 * expansion on each side (in user space) is
85
 *      K * line_width/2
86
 * where K is determined as follows:
87
 *      For round or butt caps, E = 1
88
 *      For square caps, E = sqrt(2)
89
 *        If the path is only a single line segment, K = E;
90
 *          if triangular joins, K = 2;
91
 *          if miter joins, K = max(miter_limit, E);
92
 *      otherwise, K = E.
93
 *
94
 * If the following conditions apply, K = E yields an exact result:
95
 *      - The CTM is of the form [X 0 0 Y] or [0 X Y 0].
96
 *      - Square or round caps are used, or all subpaths are closed.
97
 *      - All segments (including the implicit segment created by
98
 *        closepath) are vertical or horizontal lines.
99
 *
100
 * Note that these conditions are sufficient, but not necessary, to get an
101
 * exact result.  We choose this set of conditions because it is easy to
102
 * check and covers many common cases.  Clients that care always have the
103
 * option of using strokepath to get an exact result.
104
 */
105
static float join_expansion_factor(const gs_gstate *, gs_line_join);
106
int
107
gx_stroke_path_expansion(const gs_gstate * pgs, const gx_path * ppath,
108
                         gs_fixed_point * ppt)
109
794k
{
110
794k
    const subpath *psub;
111
794k
    const segment *pseg;
112
794k
    double cx = fabs(pgs->ctm.xx) + fabs(pgs->ctm.yx);
113
794k
    double cy = fabs(pgs->ctm.xy) + fabs(pgs->ctm.yy);
114
794k
    double expand = pgs->line_params.half_width;
115
794k
    int result = 1;
116
117
794k
    if (ppath == NULL) {
118
0
        ppt->x = ppt->y = 0;
119
0
        return 0;   /* no expansion */
120
0
    }
121
794k
    psub = ppath->first_subpath;
122
    /* Adjust the expansion (E) for square caps, if needed */
123
794k
    if (pgs->line_params.start_cap == gs_cap_square ||
124
794k
        pgs->line_params.end_cap == gs_cap_square)
125
63.4k
            expand *= 1.414213562;
126
127
    /* Check for whether an exact result can be computed easily. */
128
794k
    if (is_fzero2(pgs->ctm.xy, pgs->ctm.yx) ||
129
794k
        is_fzero2(pgs->ctm.xx, pgs->ctm.yy)
130
794k
        ) {
131
697k
        bool must_be_closed =
132
697k
            !(pgs->line_params.start_cap == gs_cap_square ||
133
697k
              pgs->line_params.start_cap == gs_cap_round  ||
134
697k
              pgs->line_params.end_cap   == gs_cap_square ||
135
697k
              pgs->line_params.end_cap   == gs_cap_round  ||
136
697k
              pgs->line_params.dash_cap  == gs_cap_square ||
137
697k
              pgs->line_params.dash_cap  == gs_cap_round);
138
697k
        gs_fixed_point prev;
139
140
697k
        prev.x = prev.y = 0; /* Quiet gcc warning. */
141
2.27M
        for (pseg = (const segment *)psub; pseg;
142
1.57M
             prev = pseg->pt, pseg = pseg->next
143
697k
             )
144
1.87M
            switch (pseg->type) {
145
684k
            case s_start:
146
684k
                if (((const subpath *)pseg)->curve_count ||
147
684k
                    (must_be_closed && !((const subpath *)pseg)->is_closed)
148
684k
                    )
149
77.2k
                    goto not_exact;
150
606k
                break;
151
995k
            case s_line:
152
995k
            case s_dash:
153
1.18M
            case s_line_close:
154
1.18M
                if (!(pseg->pt.x == prev.x || pseg->pt.y == prev.y))
155
219k
                    goto not_exact;
156
969k
                break;
157
969k
            case s_gap:
158
0
            default:            /* other/unknown segment type */
159
0
                goto not_exact;
160
1.87M
            }
161
401k
        result = 0;             /* exact result */
162
401k
    }
163
794k
not_exact:
164
794k
    if (result) {
165
393k
        if (!gx_path_has_curves(ppath) && gx_path_subpath_count(ppath) <= 1 &&
166
393k
            (psub == 0 || (pseg = psub->next) == 0 ||
167
315k
             (pseg = pseg->next) == 0 || pseg->type == s_line_close))
168
393k
            DO_NOTHING;
169
92.2k
        else {
170
92.2k
            float factor = join_expansion_factor(pgs, pgs->line_params.join);
171
172
92.2k
            if (pgs->line_params.curve_join >= 0)
173
0
                factor = max(factor, join_expansion_factor(pgs,
174
92.2k
                                (gs_line_join)pgs->line_params.curve_join));
175
92.2k
            expand *= factor;
176
92.2k
        }
177
393k
    }
178
179
    /* Short-cut gs_bbox_transform. */
180
794k
    {
181
794k
        float exx = expand * cx;
182
794k
        float exy = expand * cy;
183
794k
        int code = set_float2fixed_vars(ppt->x, exx);
184
185
794k
        if (code < 0)
186
106k
            return code;
187
688k
        code = set_float2fixed_vars(ppt->y, exy);
188
688k
        if (code < 0)
189
420
            return code;
190
688k
    }
191
192
688k
    return result;
193
688k
}
194
static float
195
join_expansion_factor(const gs_gstate *pgs, gs_line_join join)
196
92.2k
{
197
92.2k
    switch (join) {
198
78.1k
    case gs_join_miter: return pgs->line_params.miter_limit;
199
0
    case gs_join_triangle: return 2.0;
200
14.1k
    default: return 1.0;
201
92.2k
    }
202
92.2k
}
203
204
/*
205
 * Structure for a partial line (passed to the drawing routine).
206
 * Two of these are required to do joins right.
207
 * Each endpoint includes the two ends of the cap as well,
208
 * and the deltas for square, round, and triangular cap computation.
209
 *
210
 * The two base values for computing the caps of a partial line are the
211
 * width and the end cap delta.  The width value is one-half the line
212
 * width (suitably transformed) at 90 degrees counter-clockwise
213
 * (in device space, but with "90 degrees" interpreted in *user*
214
 * coordinates) at the end (as opposed to the origin) of the line.
215
 * The cdelta value is one-half the transformed line width in the same
216
 * direction as the line.  From these, we compute two other values at each
217
 * end of the line: co and ce, which are the ends of the cap.
218
 * Note that the cdelta values at o are the negatives of the values at e,
219
 * as are the offsets from p to co and ce.
220
 *
221
 * Initially, only o.p, e.p, e.cdelta, width, and thin are set.
222
 * compute_caps fills in the rest.
223
 */
224
typedef gs_fixed_point *p_ptr;
225
typedef struct endpoint_s {
226
    gs_fixed_point p;           /* the end of the line */
227
    gs_fixed_point co, ce;      /* ends of the cap, p +/- width */
228
    gs_fixed_point cdelta;      /* +/- cap length */
229
} endpoint;
230
typedef endpoint *ep_ptr;
231
typedef const endpoint *const_ep_ptr;
232
typedef struct partial_line_s {
233
    endpoint o;                 /* starting coordinate */
234
    endpoint e;                 /* ending coordinate */
235
    gs_fixed_point width;       /* one-half line width, see above */
236
    gs_fixed_point vector;      /* The line segment direction */
237
    bool thin;                  /* true if minimum-width line */
238
} partial_line;
239
typedef partial_line *pl_ptr;
240
241
/* As we stroke a path, we run through the line segments that make it up.
242
 * We gather each line segment together with any degenerate line segments
243
 * that follow it (call this set "prev"), and then 'join them' to the next
244
 * line segment (and any degenerate line segments that follow it) (if there
245
 * is one) (call this "current").
246
 *
247
 * In order to get the joins right we need to keep flags about both
248
 * prev and current, and whether they originally came from arcs.
249
 */
250
typedef enum note_flags {
251
252
    /* If set, all the line segments that make up current come from arcs. */
253
    nf_all_from_arc       = 1,
254
255
    /* If set, at least one of the line segments that make up current, come
256
     * from arcs. */
257
    nf_some_from_arc      = 2,
258
259
    /* If set then this segment should have a dash cap on the start rather
260
     * than a start cap. */
261
    nf_dash_head          = 4,
262
263
    /* If set then this segment should have a dash cap on the end rather
264
     * than an end cap. */
265
    nf_dash_tail          = 8,
266
267
    /* If set, all the line segments that make up prev come from arcs. */
268
    nf_prev_all_from_arc  = 16,
269
270
    /* If set, at least one of the line segment that make up prev, come from
271
     * arcs. */
272
    nf_prev_some_from_arc = 32,
273
274
    /* If set then prev should have a dash cap on the start rather
275
     * than a start cap. */
276
    nf_prev_dash_head     = 64,
277
278
    /* If set then prev should have a dash cap on the end rather
279
     * than an end cap. */
280
    nf_prev_dash_tail     = 128
281
282
} note_flags;
283
284
/* Macro to combine the prev and current arc_flags. After applying this
285
 * macro, the bits in the result have the following meanings:
286
 *  nf_all_from_arc    set if all the components of current and prev
287
 *                     come from an Arc.
288
 *  nf_some_from_arc   set if any of the components of current and
289
 *                     prev come from an Arc.
290
 *  nf_dash_head       set if prev should have a dash cap rather than
291
 *                     a start cap.
292
 *  nf_dash_tail       set if prev should have a dash cap rather than
293
 *                     an end cap.
294
 */
295
#define COMBINE_FLAGS(F) \
296
83.6M
    (((F>>4) | ((F) & nf_some_from_arc)) & \
297
83.6M
     (((F) & nf_all_from_arc) ? ~0 : ~nf_all_from_arc))
298
299
/* Assign a point.  Some compilers would do this with very slow code */
300
/* if we simply implemented it as an assignment. */
301
#define ASSIGN_POINT(pp, p)\
302
42.9M
  ((pp)->x = (p).x, (pp)->y = (p).y)
303
304
/* Other forward declarations */
305
static bool width_is_thin(pl_ptr);
306
static void adjust_stroke(gx_device *, pl_ptr, const gs_gstate *, bool, bool, note_flags);
307
static int line_join_points(const gx_line_params * pgs_lp,
308
                             pl_ptr plp, pl_ptr nplp,
309
                             gs_fixed_point * join_points,
310
                             const gs_matrix * pmat, gs_line_join join,
311
                             bool reflected);
312
static int line_join_points_fast_cw(const gx_line_params * pgs_lp,
313
                                    pl_ptr plp, pl_ptr nplp,
314
                                    gs_fixed_point * rjoin_points,
315
                                    const gs_matrix * pmat,
316
                                    gs_line_join join);
317
static int line_join_points_fast_ccw(const gx_line_params * pgs_lp,
318
                                     pl_ptr plp, pl_ptr nplp,
319
                                     gs_fixed_point * join_points,
320
                                     const gs_matrix * pmat,
321
                                     gs_line_join join);
322
static void compute_caps(pl_ptr);
323
static int add_points(gx_path *, const gs_fixed_point *,
324
                       int, bool);
325
static int add_pie_join(gx_path *, pl_ptr, pl_ptr, bool, bool);
326
static int add_pie_join_fast_cw(gx_path *, pl_ptr, pl_ptr, bool);
327
static int add_pie_join_fast_ccw(gx_path *, pl_ptr, pl_ptr, bool);
328
static int add_round_cap(gx_path *, const_ep_ptr);
329
static int add_pie_cap(gx_path *, const_ep_ptr);
330
static int cap_points(gs_line_cap, const_ep_ptr,
331
                       gs_fixed_point * /*[3] */ );
332
static int join_under_pie(gx_path *, pl_ptr, pl_ptr, bool);
333
334
int
335
gx_default_stroke_path_shading_or_pattern(gx_device        * pdev,
336
                                    const gs_gstate        * pgs_orig,
337
                                          gx_path          * ppath,
338
                                    const gx_stroke_params * params,
339
                                    const gx_drawing_color * pdevc,
340
                                    const gx_clip_path     * pcpath)
341
73.8k
{
342
73.8k
    gs_gstate *pgs = (gs_gstate *)pgs_orig; /* Nasty cast away const! */
343
73.8k
    gs_logical_operation_t save_lop = gs_current_logical_op_inline(pgs);
344
73.8k
    gx_device_cpath_accum adev;
345
73.8k
    gx_device_color devc;
346
73.8k
    gx_clip_path stroke_as_clip_path;
347
73.8k
    int code;
348
73.8k
    gs_fixed_rect dev_clip_rect = { {min_fixed, min_fixed}, {max_fixed, max_fixed}};
349
350
    /* We want to make a image of the stroke as a clip path, so
351
     * create an empty structure on the stack. */
352
73.8k
    code = gx_cpath_init_local_shared_nested(&stroke_as_clip_path, NULL, pdev->memory, 1);
353
73.8k
    if (code < 0)
354
0
        return code;
355
    /* Now we make an accumulator device that will fill that out. */
356
73.8k
    gx_cpath_accum_begin(&adev, stroke_as_clip_path.path.memory, false);
357
73.8k
    (*dev_proc(pdev, get_clipping_box))(pdev, &dev_clip_rect);
358
73.8k
    gx_cpath_accum_set_cbox(&adev, &dev_clip_rect);
359
73.8k
    set_nonclient_dev_color(&devc, 0); /* arbitrary, but not transparent */
360
73.8k
    gs_set_logical_op_inline(pgs, lop_default);
361
    /* Stroke the path to the accumulator. */
362
73.8k
    code = gx_stroke_path_only(ppath, NULL, (gx_device *)&adev, pgs, params,
363
73.8k
                               &devc, pcpath);
364
    /* Now extract the accumulated path into stroke_as_clip_path. */
365
73.8k
    if (code < 0 || (code = gx_cpath_accum_end(&adev, &stroke_as_clip_path)) < 0)
366
0
        gx_cpath_accum_discard(&adev);
367
73.8k
    gs_set_logical_op_inline(pgs, save_lop);
368
73.8k
    if (code >= 0)
369
73.8k
    {
370
        /* Now, fill a rectangle with the original color through that
371
         * clip path. */
372
73.8k
        gs_fixed_rect clip_box, shading_box;
373
73.8k
        gs_int_rect cb;
374
73.8k
        gx_device_clip cdev;
375
376
73.8k
        gx_cpath_outer_box(&stroke_as_clip_path, &clip_box);
377
        /* This is horrid. If the pdevc is a shading color, then the
378
         * fill_rectangle routine requires us to have intersected it
379
         * with the shading rectangle first. If we don't do this,
380
         * ps3fts/470-01.ps goes wrong. */
381
73.8k
        if (gx_dc_is_pattern2_color(pdevc) &&
382
73.8k
            gx_dc_pattern2_get_bbox(pdevc, &shading_box) > 0)
383
0
        {
384
0
            rect_intersect(clip_box, shading_box);
385
0
        }
386
73.8k
        cb.p.x = fixed2int_pixround(clip_box.p.x);
387
73.8k
        cb.p.y = fixed2int_pixround(clip_box.p.y);
388
73.8k
        cb.q.x = fixed2int_pixround(clip_box.q.x);
389
73.8k
        cb.q.y = fixed2int_pixround(clip_box.q.y);
390
73.8k
        gx_make_clip_device_on_stack(&cdev, &stroke_as_clip_path, pdev);
391
73.8k
        code = pdevc->type->fill_rectangle(pdevc,
392
73.8k
                        cb.p.x, cb.p.y, cb.q.x - cb.p.x, cb.q.y - cb.p.y,
393
73.8k
                        (gx_device *)&cdev, pgs->log_op, NULL);
394
73.8k
        gx_destroy_clip_device_on_stack(&cdev);
395
73.8k
    }
396
73.8k
    gx_cpath_free(&stroke_as_clip_path, "gx_default_stroke_path_shading_or_pattern");
397
398
73.8k
    return code;
399
73.8k
}
400
401
/* Define the default implementation of the device stroke_path procedure. */
402
int
403
gx_default_stroke_path(gx_device * dev, const gs_gstate * pgs,
404
                       gx_path * ppath, const gx_stroke_params * params,
405
                       const gx_drawing_color * pdevc,
406
                       const gx_clip_path * pcpath)
407
502k
{
408
502k
    if (gx_dc_is_pattern2_color(pdevc) ||
409
502k
        pdevc->type == &gx_dc_type_data_ht_colored ||
410
502k
        (gx_dc_is_pattern1_color(pdevc) &&
411
428k
         gx_pattern_tile_is_clist(pdevc->colors.pattern.p_tile)))
412
73.8k
        return gx_default_stroke_path_shading_or_pattern(dev, pgs, ppath, params,
413
73.8k
                                                         pdevc, pcpath);
414
428k
    else
415
428k
        return gx_stroke_path_only(ppath, (gx_path *) 0, dev, pgs, params,
416
428k
                                   pdevc, pcpath);
417
502k
}
418
419
/* Fill a partial stroked path.  Free variables: */
420
/* to_path, stroke_path_body, fill_params, always_thin, pgs, dev, pdevc, */
421
/* code, ppath, exit(label). */
422
#define FILL_STROKE_PATH(dev, thin, pcpath, final)\
423
44.1M
  if(to_path==&stroke_path_body && !gx_path_is_void(&stroke_path_body) &&\
424
44.1M
     (final || lop_is_idempotent(pgs->log_op))) {\
425
39.9M
    fill_params.adjust.x = STROKE_ADJUSTMENT(thin, pgs, x);\
426
39.9M
    fill_params.adjust.y = STROKE_ADJUSTMENT(thin, pgs, y);\
427
39.9M
    if (to_path_reverse != NULL) {\
428
0
        code = gx_join_path_and_reverse(to_path, to_path_reverse);\
429
0
        if(code < 0) goto exit;\
430
0
    }\
431
39.9M
    code = gx_fill_path_only(to_path, dev, pgs, &fill_params, pdevc, pcpath);\
432
39.9M
    gx_path_free(&stroke_path_body, "fill_stroke_path");\
433
39.9M
    if ( code < 0 ) goto exit;\
434
39.9M
    gx_path_init_local(&stroke_path_body, ppath->memory);\
435
39.9M
  }
436
437
/*
438
 * Define the internal procedures that stroke a partial_line
439
 * (the first pl_ptr argument).  If both partial_lines are non-null,
440
 * the procedure creates an appropriate join; otherwise, the procedure
441
 * creates an end cap.  If the first int is 0, the procedure also starts
442
 * with an appropriate cap.
443
 */
444
#define stroke_line_proc(proc)\
445
  int proc(gx_path *, gx_path *, bool ensure_closed, int, pl_ptr, pl_ptr,\
446
           const gx_device_color *, gx_device *, const gs_gstate *,\
447
           const gx_stroke_params *, const gs_fixed_rect *, int,\
448
           gs_line_join, bool, note_flags)
449
typedef stroke_line_proc((*stroke_line_proc_t));
450
451
static stroke_line_proc(stroke_add);
452
static stroke_line_proc(stroke_add_compat);
453
static stroke_line_proc(stroke_add_fast);
454
static stroke_line_proc(stroke_fill);
455
static int stroke_add_initial_cap_compat(gx_path * ppath, pl_ptr plp, bool adlust_longitude,
456
           const gx_device_color * pdevc, gx_device * dev,
457
           const gs_gstate * pgs);
458
459
/* Define the orientations we handle specially. */
460
typedef enum {
461
    orient_other = 0,
462
    orient_portrait,            /* [xx 0 0 yy tx ty] */
463
    orient_landscape            /* [0 xy yx 0 tx ty] */
464
} orientation;
465
466
/*
467
 * Internal function used to merge the 2 sides of a stroked path.
468
 * path contains the 'forward' side, rpath contains the 'reversed' side.
469
 * Reverse rpath, then append it to path.
470
 *
471
 * If path is closed, then rpath should be too. If path is open, then the
472
 * starting and ending points of both paths should be the same, so as to
473
 * guarantee a closed path.
474
 */
475
static int
476
gx_join_path_and_reverse(gx_path * path, gx_path * rpath)
477
0
{
478
0
    int code;
479
480
0
    if (gx_path_is_void(rpath))
481
0
        return 0;
482
0
     code = gx_path_append_reversed(rpath, path);
483
0
    if (code < 0)
484
0
        return code;
485
486
0
    gx_path_free(rpath, "gx_join_path_and_reverse");
487
0
    gx_path_init_local(rpath, path->memory);
488
489
0
    return gx_path_close_subpath(path);
490
0
}
491
492
/*
493
 * Stroke a path.  If to_path != 0, append the stroke outline to it;
494
 * if to_path == 0, draw the strokes on pdev.
495
 *
496
 * Note that gx_stroke_path_only with to_path != NULL may clip the path to
497
 * the clipping path, as for to_path == NULL.  This is almost never
498
 * what is wanted.
499
 */
500
static int
501
gx_stroke_path_only_aux(gx_path          *ppath, /* lgtm[cpp/use-of-goto] */
502
                        gx_path          *to_path,
503
                        gx_device        *pdev,
504
                  const gs_gstate        *pgs,
505
                  const gx_stroke_params *params,
506
                  const gx_device_color  *pdevc,
507
                  const gx_clip_path     *pcpath)
508
502k
{
509
502k
    bool CPSI_mode = gs_currentcpsimode(pgs->memory);
510
502k
    bool traditional = CPSI_mode | params->traditional;
511
502k
    stroke_line_proc_t line_proc =
512
502k
               ((to_path == 0 && !gx_dc_is_pattern1_color_clist_based(pdevc))
513
502k
                      ? (lop_is_idempotent(pgs->log_op) ? stroke_fill : stroke_add) :
514
502k
                        (traditional ? stroke_add_compat : stroke_add_fast));
515
502k
    gs_fixed_rect ibox, cbox;
516
502k
    gx_device_clip cdev;
517
502k
    gx_device *dev = pdev;
518
502k
    int code = 0;
519
502k
    gx_fill_params fill_params;
520
502k
    const gx_line_params *pgs_lp = gs_currentlineparams_inline(pgs);
521
502k
    int dash_count = pgs_lp->dash.pattern_size;
522
502k
    gx_path fpath, dpath;
523
502k
    gx_path stroke_path_body;
524
502k
    gx_path stroke_path_reverse;
525
502k
    gx_path *to_path_reverse = NULL;
526
502k
    const gx_path *spath;
527
502k
    float xx = pgs->ctm.xx, xy = pgs->ctm.xy;
528
502k
    float yx = pgs->ctm.yx, yy = pgs->ctm.yy;
529
    /*
530
     * We are dealing with a reflected coordinate system
531
     * if transform(1,0) is counter-clockwise from transform(0,1).
532
     * See the note in stroke_add for the algorithm.
533
     */
534
502k
    int uniform;
535
502k
    bool reflected;
536
502k
    orientation orient =
537
502k
        (
538
502k
#ifdef OPTIMIZE_ORIENTATION
539
502k
         is_fzero2(xy, yx) ?
540
418k
         (uniform = (xx == yy ? 1 : xx == -yy ? -1 : 0),
541
418k
          reflected = (uniform ? uniform < 0 : (xx < 0) != (yy < 0)),
542
418k
          orient_portrait) :
543
502k
         is_fzero2(xx, yy) ?
544
2.86k
         (uniform = (xy == yx ? -1 : xy == -yx ? 1 : 0),
545
2.86k
          reflected = (uniform ? uniform < 0 : (xy < 0) == (yx < 0)),
546
2.86k
          orient_landscape) :
547
    /* We should optimize uniform rotated coordinate systems */
548
    /* here as well, but we don't. */
549
83.6k
#endif
550
83.6k
         (uniform = 0,
551
80.7k
          reflected = xy * yx > xx * yy,
552
80.7k
          orient_other));
553
502k
    const segment_notes not_first = sn_not_first;
554
502k
    gs_line_join curve_join =
555
502k
        (pgs_lp->curve_join >= 0 ? (gs_line_join)pgs_lp->curve_join :
556
502k
         pgs_lp->join == gs_join_none || pgs_lp->join == gs_join_round ?
557
262k
            gs_join_bevel : pgs_lp->join);
558
502k
    float line_width = pgs_lp->half_width;      /* (*half* the line width) */
559
502k
    bool always_thin;
560
502k
    double line_width_and_scale;
561
502k
    double device_line_width_scale = 0; /* Quiet compiler. */
562
502k
    double device_dot_length = pgs_lp->dot_length * fixed_1;
563
502k
    const subpath *psub;
564
502k
    gs_matrix initial_matrix;
565
502k
    bool initial_matrix_reflected, flattened_path = false;
566
502k
    note_flags flags;
567
568
502k
    (*dev_proc(pdev, get_initial_matrix)) (pdev, &initial_matrix);
569
502k
    initial_matrix_reflected = initial_matrix.xy * initial_matrix.yx >
570
502k
                               initial_matrix.xx * initial_matrix.yy;
571
572
#ifdef DEBUG
573
    if (gs_debug_c('o')) {
574
        int i;
575
576
        dmlprintf4(ppath->memory, "[o]half_width=%f, start_cap=%d, end_cap=%d, dash_cap=%d,\n",
577
                   pgs_lp->half_width, (int)pgs_lp->start_cap,
578
                   (int)pgs_lp->end_cap, (int)pgs_lp->dash_cap);
579
        dmlprintf3(ppath->memory, "   join=%d, miter_limit=%f, miter_check=%f,\n",
580
                   (int)pgs_lp->join, pgs_lp->miter_limit,
581
                   pgs_lp->miter_check);
582
        dmlprintf1(ppath->memory, "   dash pattern=%d", dash_count);
583
        for (i = 0; i < dash_count; i++)
584
            dmprintf1(ppath->memory, ",%f", pgs_lp->dash.pattern[i]);
585
        dmputs(ppath->memory, ",\n");
586
        dmlprintf4(ppath->memory, "\toffset=%f, init(ink_on=%d, index=%d, dist_left=%f)\n",
587
                   pgs_lp->dash.offset, pgs_lp->dash.init_ink_on,
588
                   pgs_lp->dash.init_index, pgs_lp->dash.init_dist_left);
589
    }
590
#endif
591
592
502k
    gx_path_bbox(ppath, &ibox);
593
    /* Expand the path bounding box by the scaled line width. */
594
502k
    {
595
502k
        gs_fixed_point expansion;
596
597
502k
        if (gx_stroke_path_expansion(pgs, ppath, &expansion) < 0) {
598
            /* The expansion is so large it caused a limitcheck. */
599
96.1k
            ibox.p.x = ibox.p.y = min_fixed;
600
96.1k
            ibox.q.x = ibox.q.y = max_fixed;
601
406k
        } else {
602
406k
            expansion.x += pgs->fill_adjust.x;
603
406k
            expansion.y += pgs->fill_adjust.y;
604
            /*
605
             * It's theoretically possible for the following computations to
606
             * overflow, so we need to check for this.
607
             */
608
406k
            ibox.p.x = (ibox.p.x < min_fixed + expansion.x ? min_fixed :
609
406k
                        ibox.p.x - expansion.x);
610
406k
            ibox.p.y = (ibox.p.y < min_fixed + expansion.y ? min_fixed :
611
406k
                        ibox.p.y - expansion.y);
612
406k
            ibox.q.x = (ibox.q.x > max_fixed - expansion.x ? max_fixed :
613
406k
                        ibox.q.x + expansion.x);
614
406k
            ibox.q.y = (ibox.q.y > max_fixed - expansion.y ? max_fixed :
615
406k
                        ibox.q.y + expansion.y);
616
406k
        }
617
502k
    }
618
    /* Check the expanded bounding box against the clipping regions. */
619
502k
    if (pcpath)
620
123k
        gx_cpath_inner_box(pcpath, &cbox);
621
378k
    else if (pdevc)
622
378k
        (*dev_proc(pdev, get_clipping_box)) (pdev, &cbox);
623
179
    else {
624
        /* This is strokepath, not stroke.  Don't clip. */
625
179
        cbox = ibox;
626
179
    }
627
502k
    if (!rect_within(ibox, cbox)) {
628
        /* Intersect the path box and the clip bounding box. */
629
        /* If the intersection is empty, this call is a no-op. */
630
296k
        gs_fixed_rect bbox;
631
632
296k
        if (pcpath) {
633
116k
            gx_cpath_outer_box(pcpath, &bbox);
634
116k
            if_debug4m('f', ppath->memory, "   outer_box=(%g,%g),(%g,%g)\n",
635
116k
                       fixed2float(bbox.p.x), fixed2float(bbox.p.y),
636
116k
                       fixed2float(bbox.q.x), fixed2float(bbox.q.y));
637
116k
            rect_intersect(ibox, bbox);
638
116k
        } else
639
296k
            rect_intersect(ibox, cbox);
640
296k
        if (ibox.p.x >= ibox.q.x || ibox.p.y >= ibox.q.y) {
641
            /* Intersection of boxes is empty! */
642
89.2k
            return 0;
643
89.2k
        }
644
        /*
645
         * The path is neither entirely inside the inner clip box
646
         * nor entirely outside the outer clip box.
647
         * If we had to flatten the path, this is where we would
648
         * recompute its bbox and make the tests again,
649
         * but we don't bother right now.
650
         */
651
        /*
652
         * If there is a clipping path, set up a clipping device.
653
         * for stroke_fill because, because the latter uses low level methods
654
         * which don't accept a clipping path.
655
         * Note that in some cases stroke_fill appends the path to stroke_path_body
656
         * instead a real painting, and it is painted with FILL_STROKE_PATH.
657
         *
658
         * Contrary to that, FILL_STROKE_PATH paints a path with
659
         * the fill_path method, which handles a clipping path,
660
         * so we don't pass the clipper device to FILL_STROKE_PATH
661
         * to prevent an appearence of superposing clippers.
662
         */
663
207k
        if (pcpath && line_proc == stroke_fill) {
664
33.8k
            gx_make_clip_device_on_stack(&cdev, pcpath, pdev);
665
33.8k
            cdev.max_fill_band = pdev->max_fill_band;
666
33.8k
            dev = (gx_device *)&cdev;
667
33.8k
        }
668
207k
    }
669
413k
    fill_params.rule = gx_rule_winding_number;
670
413k
    fill_params.flatness = pgs->flatness;
671
413k
    if (line_width < 0)
672
0
        line_width = -line_width;
673
413k
    line_width_and_scale = line_width * (double)int2fixed(1);
674
413k
    if (is_fzero(line_width))
675
5.89k
        always_thin = true;
676
407k
    else {
677
407k
        float xa, ya;
678
679
407k
        switch (orient) {
680
387k
            case orient_portrait:
681
387k
                xa = xx, ya = yy;
682
387k
                goto sat;
683
1.99k
            case orient_landscape:
684
1.99k
                xa = xy, ya = yx;
685
389k
              sat:
686
389k
                if (xa < 0)
687
8.97k
                    xa = -xa;
688
389k
                if (ya < 0)
689
275k
                    ya = -ya;
690
389k
                always_thin = (max(xa, ya) * line_width < 0.5);
691
389k
                if (!always_thin && uniform) {  /* Precompute a value we'll need later. */
692
202k
                    device_line_width_scale = line_width_and_scale * xa;
693
202k
                }
694
389k
                break;
695
17.5k
            default:
696
17.5k
                {
697
                    /* The check is more complicated, but it's worth it. */
698
                    /* Compute radii of the transformed round brush. */
699
                    /* Let x = [a, sqrt(1-a^2)]'
700
                       radius^2 is an extremum of :
701
                       rr(a)=(CTM*x)^2 = (a*xx + sqrt(1 - a^2)*xy)^2 + (a*yx + sqrt(1 - a^2)*yy)^2
702
                       With solving D(rr(a),a)==0, got :
703
                       max_rr = (xx^2 + xy^2 + yx^2 + yy^2 + sqrt(((xy + yx)^2 + (xx - yy)^2)*((xy - yx)^2 + (xx + yy)^2)))/2.
704
                       r = sqrt(max_rr);
705
                       Well we could use eigenvalues of the quadratic form,
706
                       but it gives same result with a bigger calculus.
707
                     */
708
17.5k
                    double max_rr = ((double)(xx*xx + xy*xy + yx*yx + yy*yy) +
709
17.5k
                                     sqrt((double)((xy + yx)*(xy + yx) + (xx - yy)*(xx - yy)) *
710
17.5k
                                                  ((xy - yx)*(xy - yx) + (xx + yy)*(xx + yy))
711
17.5k
                                          )
712
17.5k
                                     )/2;
713
714
17.5k
                    always_thin = max_rr * line_width * line_width < 0.25;
715
17.5k
                }
716
407k
        }
717
407k
    }
718
413k
    if_debug7m('o', ppath->memory, "[o]ctm=(%g,%g,%g,%g,%g,%g) thin=%d\n",
719
413k
              xx, xy, yx, yy, pgs->ctm.tx, pgs->ctm.ty, always_thin);
720
413k
    if (device_dot_length != 0) {
721
        /*
722
         * Compute the dot length in device space.  We can't do this
723
         * quite right for non-uniform coordinate systems; too bad.
724
         */
725
0
        gs_matrix mat;
726
0
        const gs_matrix *pmat;
727
728
0
        if (pgs_lp->dot_length_absolute) {
729
0
            gs_deviceinitialmatrix(pdev, &mat);
730
0
            pmat = &mat;
731
0
        } else
732
0
            pmat = (const gs_matrix *)&pgs->ctm;
733
0
        device_dot_length *= fabs(pmat->xy) + fabs(pmat->yy);
734
0
    }
735
    /* Start by flattening the path.  We should do this on-the-fly.... */
736
413k
    if (!gx_path_has_curves(ppath) && !gx_path_has_long_segments(ppath)) {
737
        /* don't need to flatten */
738
381k
        if (!ppath->first_subpath) {
739
52.7k
            if (dev == (gx_device *)&cdev)
740
100
                gx_destroy_clip_device_on_stack(&cdev);
741
52.7k
            return 0;
742
52.7k
        }
743
328k
        spath = ppath;
744
328k
    } else {
745
31.6k
        gx_path_init_local(&fpath, ppath->memory);
746
31.6k
        if ((code = gx_path_add_flattened_for_stroke(ppath, &fpath,
747
31.6k
            params->flatness, pgs)) < 0) {
748
0
            if (dev == (gx_device *)&cdev)
749
0
                gx_destroy_clip_device_on_stack(&cdev);
750
0
            return code;
751
0
        }
752
31.6k
        spath = &fpath;
753
31.6k
        flattened_path = true;
754
31.6k
    }
755
360k
    if (dash_count) {
756
1.53k
        float max_dash_len = 0;
757
1.53k
        float expand_squared;
758
1.53k
        int i;
759
1.53k
        float adjust = (float)pgs->fill_adjust.x;
760
1.53k
        if (adjust > (float)pgs->fill_adjust.y)
761
0
            adjust = (float)pgs->fill_adjust.y;
762
4.67k
        for (i = 0; i < dash_count; i++) {
763
3.14k
            if (max_dash_len < pgs_lp->dash.pattern[i])
764
1.97k
                max_dash_len = pgs_lp->dash.pattern[i];
765
3.14k
        }
766
1.53k
        expand_squared = pgs->ctm.xx * pgs->ctm.yy - pgs->ctm.xy * pgs->ctm.yx;
767
1.53k
        if (expand_squared < 0)
768
935
            expand_squared = -expand_squared;
769
1.53k
        expand_squared *= max_dash_len * max_dash_len;
770
        /* Wide lines in curves can show dashes up, so fudge to allow for
771
         * this. */
772
1.53k
        if (pgs->line_params.half_width > 1)
773
37
            adjust /= pgs->line_params.half_width;
774
1.53k
        if (expand_squared*65536.0f >= (float)(adjust*adjust)) {
775
1.53k
            gx_path_init_local(&dpath, ppath->memory);
776
1.53k
            code = gx_path_add_dash_expansion(spath, &dpath, pgs);
777
1.53k
            if (code < 0)
778
0
                goto exf;
779
1.53k
            spath = &dpath;
780
1.53k
        } else {
781
0
            dash_count = 0;
782
0
        }
783
1.53k
    }
784
360k
    if (to_path == 0) {
785
        /* We might try to defer this if it's expensive.... */
786
360k
        to_path = &stroke_path_body;
787
360k
        gx_path_init_local(&stroke_path_body, ppath->memory);
788
360k
    }
789
360k
    if (line_proc == stroke_add_fast) {
790
0
        to_path_reverse = &stroke_path_reverse;
791
0
        gx_path_init_local(&stroke_path_reverse, ppath->memory);
792
0
    }
793
1.77M
    for (psub = spath->first_subpath; psub != 0;) {
794
1.41M
        int index = 0;
795
1.41M
        const segment *pseg = (const segment *)psub;
796
1.41M
        fixed x = pseg->pt.x;
797
1.41M
        fixed y = pseg->pt.y;
798
1.41M
        bool is_closed = ((const subpath *)pseg)->is_closed;
799
1.41M
        partial_line pl, pl_prev, pl_first;
800
1.41M
        bool zero_length = true;
801
1.41M
        int pseg_notes = pseg->notes;
802
803
1.41M
        flags = nf_all_from_arc;
804
805
        /* Run through each segment in the current path, drawing each segment
806
         * delayed by 1 - that is, when we're looking at segment n, we draw
807
         * (or not) segment n-1. This delay allows us to always know whether
808
         * to join or cap the line. */
809
45.2M
        while ((pseg = pseg->next) != 0 &&
810
45.2M
               pseg->type != s_start
811
43.7M
            ) {
812
            /* Compute the width parameters in device space. */
813
            /* We work with unscaled values, for speed. */
814
43.7M
            fixed sx, udx, sy, udy;
815
43.7M
            bool is_dash_segment;
816
817
43.7M
            pseg_notes = pseg->notes;
818
819
43.8M
         d2:is_dash_segment = false;
820
43.8M
         d1:if (pseg->type == s_dash) {
821
20.0k
                dash_segment *pd = (dash_segment *)pseg;
822
823
20.0k
                sx = pd->pt.x;
824
20.0k
                sy = pd->pt.y;
825
20.0k
                udx = pd->tangent.x;
826
20.0k
                udy = pd->tangent.y;
827
20.0k
                is_dash_segment = true;
828
43.8M
            } else if (pseg->type == s_gap) {
829
0
                sx = pseg->pt.x;
830
0
                sy = pseg->pt.y;
831
0
                udx = sx - x;
832
0
                udy = sy - y;
833
0
                is_dash_segment = true;
834
43.8M
            } else {
835
43.8M
                sx = pseg->pt.x;
836
43.8M
                sy = pseg->pt.y;
837
43.8M
                udx = sx - x;
838
43.8M
                udy = sy - y;
839
43.8M
            }
840
43.8M
            zero_length &= ((udx | udy) == 0);
841
43.8M
            pl.o.p.x = x, pl.o.p.y = y;
842
43.8M
          d:flags = (((pseg_notes & sn_not_first) ?
843
41.4M
                      ((flags & nf_all_from_arc) | nf_some_from_arc) : 0) |
844
43.8M
                     ((pseg_notes & sn_dash_head) ? nf_dash_head : 0)    |
845
43.8M
                     ((pseg_notes & sn_dash_tail) ? nf_dash_tail : 0)    |
846
43.8M
                     (flags & ~nf_all_from_arc));
847
43.8M
            pl.e.p.x = sx, pl.e.p.y = sy;
848
43.8M
            if (!(udx | udy) || pseg->type == s_dash || pseg->type == s_gap) { /* degenerate or short */
849
                /*
850
                 * If this is the first segment of the subpath,
851
                 * check the entire subpath for degeneracy.
852
                 * Otherwise, ignore the degenerate segment.
853
                 */
854
89.6k
                if (index != 0 && pseg->type != s_dash && pseg->type != s_gap)
855
61.3k
                {
856
61.3k
                    if (pseg->next == NULL || pseg->next->type == s_start)
857
20.9k
                        continue;
858
40.4k
                    pseg = pseg->next;
859
                    /* We're skipping a degenerate path segment; if it was
860
                     * labelled as being the first from a curve, then make
861
                     * sure the one we're skipping to is also labelled as
862
                     * being the first from a curve, otherwise we can get
863
                     * improper joins being used. See Bug 696466. */
864
40.4k
                    pseg_notes = (((pseg_notes & sn_not_first) == 0) ?
865
24.6k
                                  (pseg->notes & ~sn_not_first) :
866
40.4k
                                  pseg->notes);
867
40.4k
                    goto d2;
868
61.3k
                }
869
                /* Check for a degenerate subpath. */
870
70.2k
                while ((pseg = pseg->next) != 0 &&
871
70.2k
                       pseg->type != s_start
872
45.2k
                    ) {
873
45.2k
                    if (is_dash_segment)
874
598
                        break;
875
44.6k
                    if (pseg->type == s_dash || pseg->type == s_gap)
876
0
                        goto d1;
877
44.6k
                    sx = pseg->pt.x, udx = sx - x;
878
44.6k
                    sy = pseg->pt.y, udy = sy - y;
879
44.6k
                    if (udx | udy) {
880
2.66k
                        zero_length = false;
881
2.66k
                        goto d;
882
2.66k
                    }
883
44.6k
                }
884
25.5k
                if (pgs_lp->dot_length == 0 &&
885
25.5k
                    pgs_lp->start_cap != gs_cap_round &&
886
25.5k
                    pgs_lp->end_cap != gs_cap_round &&
887
25.5k
                    !is_dash_segment) {
888
                    /* From PLRM, stroke operator :
889
                       If a subpath is degenerate (consists of a single-point closed path
890
                       or of two or more points at the same coordinates),
891
                       stroke paints it only if round line caps have been specified */
892
1.07k
                    break;
893
1.07k
                }
894
                /*
895
                 * If the subpath is a dash, take the orientation from the dash segment.
896
                 * Otherwise orient the dot according to the previous segment if
897
                 * any, or else the next segment if any, or else
898
                 * according to the specified dot orientation.
899
                 */
900
24.5k
                {
901
                    /* When passing here, either pseg == NULL or it points to the
902
                       start of the next subpaph. So we can't use pseg
903
                       for determining the segment direction.
904
                       In same time, psub->last may help, so use it. */
905
24.5k
                    const segment *end = psub->last;
906
907
24.5k
                    if (is_dash_segment) {
908
                        /* Nothing. */
909
20.0k
                    } else if (end != 0 && (end->pt.x != x || end->pt.y != y))
910
0
                        sx = end->pt.x, sy = end->pt.y, udx = sx - x, udy = sy - y;
911
24.5k
                }
912
                /*
913
                 * Compute the properly oriented dot length, and then
914
                 * draw the dot like a very short line.
915
                 */
916
24.5k
                if ((udx | udy) == 0) {
917
4.45k
                    if (is_fzero(pgs_lp->dot_orientation.xy)) {
918
                        /* Portrait orientation, dot length = X */
919
4.45k
                        udx = fixed_1;
920
4.45k
                    } else {
921
                        /* Landscape orientation, dot length = Y */
922
0
                        udy = fixed_1;
923
0
                    }
924
4.45k
                }
925
24.5k
                if (sx == x && sy == y && (pseg == NULL || pseg->type == s_start)) {
926
22.7k
                    double scale = device_dot_length /
927
22.7k
                                hypot((double)udx, (double)udy);
928
22.7k
                    fixed udx1, udy1;
929
                    /*
930
                     * If we're using butt caps, make sure the "line" is
931
                     * long enough to show up.
932
                     * Don't apply this with always_thin, becase
933
                     * draw thin line always rounds the length up.
934
                     */
935
22.7k
                    if (!always_thin && (pgs_lp->start_cap == gs_cap_butt ||
936
19.1k
                                         pgs_lp->end_cap   == gs_cap_butt ||
937
19.1k
                                         pgs_lp->dash_cap  == gs_cap_butt)) {
938
0
                        fixed dmax = max(any_abs(udx), any_abs(udy));
939
940
0
                        if (dmax * scale < fixed_1)
941
0
                            scale = (float)fixed_1 / dmax;
942
0
                    }
943
22.7k
                    udx1 = (fixed) (udx * scale);
944
22.7k
                    udy1 = (fixed) (udy * scale);
945
22.7k
                    sx = x + udx1;
946
22.7k
                    sy = y + udy1;
947
22.7k
                }
948
                /*
949
                 * Back up 1 segment to keep the bookkeeping straight.
950
                 */
951
24.5k
                pseg = (pseg != 0 ? pseg->prev : psub->last);
952
24.5k
                if (!is_dash_segment)
953
4.45k
                    goto d;
954
20.0k
                pl.e.p.x = sx;
955
20.0k
                pl.e.p.y = sy;
956
20.0k
            }
957
43.7M
            pl.vector.x = udx;
958
43.7M
            pl.vector.y = udy;
959
43.7M
            if (always_thin) {
960
2.90M
                pl.e.cdelta.x = pl.e.cdelta.y = 0;
961
2.90M
                pl.width.x = pl.width.y = 0;
962
2.90M
                pl.thin = true;
963
40.8M
            } else {
964
40.8M
                if (uniform != 0) {
965
                    /* We can save a lot of work in this case. */
966
                    /* We know orient != orient_other. */
967
7.97M
                    double dpx = udx, dpy = udy;
968
7.97M
                    double wl = device_line_width_scale /
969
7.97M
                    hypot(dpx, dpy);
970
971
7.97M
                    pl.e.cdelta.x = (fixed) (dpx * wl);
972
7.97M
                    pl.e.cdelta.y = (fixed) (dpy * wl);
973
                    /* The width is the cap delta rotated by */
974
                    /* 90 degrees. */
975
7.97M
                    if (initial_matrix_reflected)
976
7.97M
                        pl.width.x = pl.e.cdelta.y, pl.width.y = -pl.e.cdelta.x;
977
814
                    else
978
814
                        pl.width.x = -pl.e.cdelta.y, pl.width.y = pl.e.cdelta.x;
979
7.97M
                    pl.thin = false;    /* if not always_thin, */
980
                    /* then never thin. */
981
982
32.8M
                } else {
983
32.8M
                    gs_point dpt;       /* unscaled */
984
32.8M
                    float wl;
985
986
32.8M
                    code = gs_gstate_idtransform(pgs,
987
32.8M
                                                 (float)udx, (float)udy,
988
32.8M
                                                 &dpt);
989
32.8M
                    if (code < 0) {
990
139
                        dpt.x = 0; dpt.y = 0;
991
                        /* Swallow the error */
992
139
                        code = 0;
993
32.8M
                    } else {
994
32.8M
                        wl = line_width_and_scale /
995
32.8M
                            hypot(dpt.x, dpt.y);
996
                        /* Construct the width vector in */
997
                        /* user space, still unscaled. */
998
32.8M
                        dpt.x *= wl;
999
32.8M
                        dpt.y *= wl;
1000
32.8M
                    }
1001
1002
                    /*
1003
                     * We now compute both perpendicular
1004
                     * and (optionally) parallel half-widths,
1005
                     * as deltas in device space.  We use
1006
                     * a fixed-point, unscaled version of
1007
                     * gs_dtransform.  The second computation
1008
                     * folds in a 90-degree rotation (in user
1009
                     * space, before transforming) in the
1010
                     * direction that corresponds to counter-
1011
                     * clockwise in device space.
1012
                     */
1013
32.8M
                    pl.e.cdelta.x = (fixed) (dpt.x * xx);
1014
32.8M
                    pl.e.cdelta.y = (fixed) (dpt.y * yy);
1015
32.8M
                    if (orient != orient_portrait)
1016
32.8M
                        pl.e.cdelta.x += (fixed) (dpt.y * yx),
1017
32.8M
                            pl.e.cdelta.y += (fixed) (dpt.x * xy);
1018
32.8M
                    if (!reflected ^ initial_matrix_reflected)
1019
32.8M
                        dpt.x = -dpt.x, dpt.y = -dpt.y;
1020
32.8M
                    pl.width.x = (fixed) (dpt.y * xx),
1021
32.8M
                        pl.width.y = -(fixed) (dpt.x * yy);
1022
32.8M
                    if (orient != orient_portrait)
1023
32.8M
                        pl.width.x -= (fixed) (dpt.x * yx),
1024
32.8M
                            pl.width.y += (fixed) (dpt.y * xy);
1025
32.8M
                    pl.thin = width_is_thin(&pl);
1026
32.8M
                }
1027
40.8M
                if (!pl.thin) {
1028
39.9M
                    if (index)
1029
38.7M
                        dev->sgr.stroke_stored = false;
1030
39.9M
                    adjust_stroke(dev, &pl, pgs, false,
1031
39.9M
                            (pseg->prev == 0 || pseg->prev->type == s_start) &&
1032
39.9M
                            (pseg->next == 0 || pseg->next->type == s_start) &&
1033
39.9M
                            (zero_length || !is_closed),
1034
39.9M
                            COMBINE_FLAGS(flags));
1035
39.9M
                    compute_caps(&pl);
1036
39.9M
                }
1037
40.8M
            }
1038
43.7M
            if (index++) {
1039
42.3M
                gs_line_join join =
1040
42.3M
                    (pseg_notes & not_first ? curve_join : pgs_lp->join);
1041
42.3M
                int first;
1042
42.3M
                pl_ptr lptr;
1043
42.3M
                bool ensure_closed;
1044
1045
42.3M
                if (join == gs_join_none) {
1046
                    /* Fake the end of a subpath so we get */
1047
                    /* caps instead of joins. */
1048
0
                    first = 0;
1049
0
                    lptr = 0;
1050
0
                    index = 1;
1051
42.3M
                } else {
1052
42.3M
                    first = (is_closed ? 1 : index - 2);
1053
42.3M
                    lptr = &pl;
1054
42.3M
                }
1055
#ifdef AVOID_JOINING_TO_DASH_GAPS
1056
                if (is_dash_segment) /* Never join to a dash segment */
1057
                    lptr = NULL;
1058
#endif
1059
42.3M
                if (pseg->type == s_gap)
1060
0
                {
1061
0
                    lptr = NULL;
1062
                    /* We are always drawing one line segment behind, so make
1063
                     * sure we don't draw the next one. */
1064
0
                    index = 0;
1065
0
                }
1066
1067
42.3M
                ensure_closed = ((to_path == &stroke_path_body &&
1068
42.3M
                                  lop_is_idempotent(pgs->log_op)) ||
1069
42.3M
                                 (lptr == NULL ? true : lptr->thin));
1070
                /* Draw the PREVIOUS line segment, joining it to lptr (or
1071
                 * capping if lptr == NULL. */
1072
42.3M
                code = (*line_proc) (to_path, to_path_reverse, ensure_closed,
1073
42.3M
                                     first, &pl_prev, lptr,
1074
42.3M
                                     pdevc, dev, pgs, params, &cbox,
1075
42.3M
                                     uniform, join, initial_matrix_reflected,
1076
42.3M
                                     COMBINE_FLAGS(flags));
1077
42.3M
                if (code < 0)
1078
0
                    goto exit;
1079
42.3M
                FILL_STROKE_PATH(pdev, always_thin, pcpath, false);
1080
42.3M
            } else if (pseg->type == s_gap) {
1081
                /* If this segment is a gap, then we don't want to draw it
1082
                 * next time! */
1083
0
                index = 0;
1084
0
            } else
1085
1.41M
                pl_first = pl;
1086
43.7M
            pl_prev = pl;
1087
43.7M
            x = sx, y = sy;
1088
43.7M
            flags = (flags<<4) | nf_all_from_arc;
1089
43.7M
        }
1090
1.41M
        if (index) {
1091
            /* If closed, join back to start, else cap. */
1092
1.41M
            segment_notes notes = (pseg == 0 ?
1093
360k
                                   (const segment *)spath->first_subpath :
1094
1.41M
                                   pseg)->notes;
1095
1.41M
            gs_line_join join = (notes & not_first ? curve_join :
1096
1.41M
                                 pgs_lp->join);
1097
1.41M
            gs_line_cap cap;
1098
            /* For some reason, the Borland compiler requires the cast */
1099
            /* in the following statement. */
1100
1.41M
            pl_ptr lptr =
1101
1.41M
                (!is_closed || join == gs_join_none || zero_length ?
1102
1.27M
                 (pl_ptr) 0 : (pl_ptr) & pl_first);
1103
1104
#ifdef AVOID_JOINING_TO_DASH_GAPS
1105
            if (lptr && psub->type == s_dash)
1106
                lptr = NULL;
1107
#endif
1108
            /* If the subpath starts with a gap, then cap, don't join! */
1109
1.41M
            if (lptr && psub->type == s_start && psub->next && psub->next->type == s_gap)
1110
0
                lptr = NULL;
1111
1112
1.41M
            flags = (((notes & sn_not_first) ?
1113
1.41M
                      ((flags & nf_all_from_arc) | nf_some_from_arc) : 0) |
1114
1.41M
                     ((notes & sn_dash_head) ? nf_dash_head : 0) |
1115
1.41M
                     ((notes & sn_dash_tail) ? nf_dash_tail : 0) |
1116
1.41M
                     (flags & ~nf_all_from_arc));
1117
1.41M
            code = (*line_proc) (to_path, to_path_reverse, true,
1118
1.41M
                                 index - 1, &pl_prev, lptr, pdevc,
1119
1.41M
                                 dev, pgs, params, &cbox, uniform, join,
1120
1.41M
                                 initial_matrix_reflected,
1121
1.41M
                                 COMBINE_FLAGS(flags));
1122
1.41M
            if (code < 0)
1123
0
                goto exit;
1124
1.41M
            FILL_STROKE_PATH(pdev, always_thin, pcpath, false);
1125
1.41M
            cap = ((flags & nf_prev_dash_head) ?
1126
955k
                   pgs_lp->start_cap : pgs_lp->dash_cap);
1127
1.41M
            if (traditional && lptr == 0 && cap != gs_cap_butt) {
1128
                /* Create the initial cap at last. */
1129
209
                code = stroke_add_initial_cap_compat(to_path, &pl_first, index == 1, pdevc, dev, pgs);
1130
209
                if (code < 0)
1131
0
                    goto exit;
1132
209
                FILL_STROKE_PATH(pdev, always_thin, pcpath, false);
1133
209
            }
1134
1.41M
        }
1135
1.41M
        psub = (const subpath *)pseg;
1136
1.41M
    }
1137
360k
    if (to_path_reverse != NULL)
1138
0
        code = gx_join_path_and_reverse(to_path, to_path_reverse);
1139
360k
    FILL_STROKE_PATH(pdev, always_thin, pcpath, true);
1140
360k
  exit:
1141
360k
    if (dev == (gx_device *)&cdev)
1142
33.7k
        cdev.target->sgr = cdev.sgr;
1143
360k
    if (to_path == &stroke_path_body)
1144
360k
        gx_path_free(&stroke_path_body, "gx_stroke_path_only error");   /* (only needed if error) */
1145
360k
    if (to_path_reverse == &stroke_path_reverse)
1146
0
        gx_path_free(&stroke_path_reverse, "gx_stroke_path_only error");
1147
360k
  exf:
1148
360k
    if (dash_count)
1149
1.53k
        gx_path_free(&dpath, "gx_stroke_path exit(dash path)");
1150
    /* If we flattened the path then we set spath to &fpath. If we flattned the path then now we need to free fpath */
1151
360k
    if(flattened_path)
1152
31.6k
        gx_path_free(&fpath, "gx_stroke_path exit(flattened path)");
1153
360k
    if (dev == (gx_device *)&cdev)
1154
33.7k
        gx_destroy_clip_device_on_stack(&cdev);
1155
360k
    return code;
1156
360k
}
1157
1158
int
1159
gx_stroke_path_only(gx_path * ppath, gx_path * to_path, gx_device * pdev,
1160
               const gs_gstate * pgs, const gx_stroke_params * params,
1161
                 const gx_device_color * pdevc, const gx_clip_path * pcpath)
1162
502k
{
1163
502k
    return gx_stroke_path_only_aux(ppath, to_path, pdev, pgs, params, pdevc, pcpath);
1164
502k
}
1165
1166
/* ------ Internal routines ------ */
1167
1168
/*
1169
 * Test whether a line is thin, i.e., whether the half-width, measured
1170
 * perpendicular to the line in device space, is less than 0.5 pixel.
1171
 * Unfortunately, the width values we computed are perpendicular to the
1172
 * line in *user* space, so we may have to do some extra work.
1173
 */
1174
static bool
1175
width_is_thin(pl_ptr plp)
1176
32.8M
{
1177
32.8M
    fixed dx, dy, wx = plp->width.x, wy = plp->width.y;
1178
1179
    /* If the line is horizontal or vertical, things are easy. */
1180
32.8M
    if ((dy = plp->vector.y) == 0)
1181
2.80M
        return any_abs(wy) < fixed_half;
1182
30.0M
    if ((dx = plp->vector.x) == 0)
1183
359k
        return any_abs(wx) < fixed_half;
1184
1185
    /* For the longest time, we used to have a test here that
1186
     * attempted to trivially accept diagonal lines as being
1187
     * thin based on the components of the perpendicular
1188
     * width vector in device space as both being less than 0.5.
1189
     * Bug 702196 showed some examples where this was clearly
1190
     * wrong.
1191
     *
1192
     * The cause for this bug was that the 0.5 figure was wrong.
1193
     * For the point to be less than 1/2 a pixel perpendicular
1194
     * distant from the line, we'd need x^2 + y^2 < .5^2.
1195
     * For a 45 degree line, that'd be 2(x^2) < 1/4 = x^2 < 1/8
1196
     * or x < sqr(1/8). 45 degree line is the "worst case", so
1197
     * if both horizontal and vertical widths are less than
1198
     * sqr(1/8), the line is thin. sqr(1/8) = 0.35355339059.
1199
     * So, we should be using sqr(1/8) rather than 0.5.
1200
     *
1201
     * Fixing this did indeed produce many many progressions,
1202
     * but left just the odd file still showing problems.
1203
     *
1204
     * Further investigations show that those cases were due to
1205
     * the use of "non-uniform" scaling matrices, for example
1206
     * (83 0 0 51 0 0). With such matrices, it's possible for
1207
     * nearly horizontal lines to be thin, but nearly vertical
1208
     * ones to be thick (or vice versa). Having the style of
1209
     * line "pop" between thick and thin in a single stroke
1210
     * looks very noticeable.
1211
     *
1212
     * We could change the trivial optimisation below to only
1213
     * apply in the 'uniform' case, but that would never actually
1214
     * trigger (as tested on the cluster), because all such
1215
     * cases are caught by the "always_thin" condition in the
1216
     * caller.
1217
     *
1218
     * Just removing the trivial test and leaving the 'complicated'
1219
     * test below us would leave us vulnerable to "popping",
1220
     * so we disable both. In practice this makes no difference
1221
     * to the number of tests showing diffs in the cluster.
1222
     */
1223
#if 0 /* DISABLED TEST, see above */
1224
    {
1225
        /* thin_threshold = fixed sqr(1/8) - see above. */
1226
        const fixed thin_threshold = float2fixed(0.35355339059f);
1227
        if (any_abs(wx) < thin_threshold && any_abs(wy) < thin_threshold)
1228
            return true;
1229
    }
1230
1231
    /*
1232
     * We have to do this the hard way, by actually computing the
1233
     * perpendicular distance.  The distance from the point (U,V)
1234
     * from a line from (0,0) to (C,D) is
1235
     *      abs(C*V - D*U) / sqrt(C^2 + D^2)
1236
     * In this case, (U,V) is plp->width, and (C,D) is (dx,dy).
1237
     */
1238
    {
1239
        double C = dx, D = dy;
1240
        double num = C * wy - D * wx;
1241
        double denom = hypot(C, D);
1242
1243
        /* both num and denom are scaled by fixed_scale^2, */
1244
        /* so we don't need to do any de-scaling for the test. */
1245
        return fabs(num) < denom * 0.5;
1246
    }
1247
#else
1248
29.7M
    return false;
1249
30.0M
#endif
1250
30.0M
}
1251
1252
/* Adjust the endpoints and width of a stroke segment along a specified axis */
1253
static void
1254
adjust_stroke_transversal(pl_ptr plp, const gs_gstate * pgs, bool thin, bool horiz)
1255
36.6k
{
1256
36.6k
    fixed *pw;
1257
36.6k
    fixed *pov;
1258
36.6k
    fixed *pev;
1259
36.6k
    fixed w, w2;
1260
36.6k
    fixed adj2;
1261
1262
36.6k
    if (horiz) {
1263
        /* More horizontal stroke */
1264
31.8k
        pw = &plp->width.y, pov = &plp->o.p.y, pev = &plp->e.p.y;
1265
31.8k
        adj2 = STROKE_ADJUSTMENT(thin, pgs, y) << 1;
1266
31.8k
    } else {
1267
        /* More vertical stroke */
1268
4.81k
        pw = &plp->width.x, pov = &plp->o.p.x, pev = &plp->e.p.x;
1269
4.81k
        adj2 = STROKE_ADJUSTMENT(thin, pgs, x) << 1;
1270
4.81k
    }
1271
    /* Round the larger component of the width up or down, */
1272
    /* whichever way produces a result closer to the correct width. */
1273
    /* Note that just rounding the larger component */
1274
    /* may not produce the correct result. */
1275
36.6k
    w = *pw;
1276
36.6k
    if (w > 0)
1277
5.36k
        w2 = fixed_rounded(w << 1);     /* full line width */
1278
31.3k
    else
1279
31.3k
        w2 = -fixed_rounded(-w << 1);   /* full line width */
1280
36.6k
    if (w2 == 0 && *pw != 0) {
1281
        /* Make sure thin lines don't disappear. */
1282
0
        w2 = (*pw < 0 ? -fixed_1 + adj2 : fixed_1 - adj2);
1283
0
        *pw = arith_rshift_1(w2);
1284
0
    }
1285
    /* Only adjust the endpoints if the line is horizontal or vertical. */
1286
36.6k
    if (*pov == *pev) {
1287
        /* We're going to round the endpoint coordinates, so */
1288
        /* take the fill adjustment into account now. */
1289
36.6k
        if (w >= 0)
1290
5.34k
            w2 += adj2;
1291
31.2k
        else
1292
31.2k
            w2 = adj2 - w2;
1293
36.6k
        if (w2 & fixed_1)       /* odd width, move to half-pixel */
1294
7.93k
            *pov = *pev = fixed_floor(*pov) + fixed_half;
1295
28.6k
        else                    /* even width, move to pixel */
1296
28.6k
            *pov = *pev = fixed_rounded(*pov);
1297
1298
36.6k
    }
1299
36.6k
}
1300
1301
static void
1302
adjust_stroke_longitude(pl_ptr plp, const gs_gstate * pgs,
1303
                        bool thin, bool horiz,
1304
                        gs_line_cap start_cap, gs_line_cap end_cap)
1305
26.8k
{
1306
1307
26.8k
    fixed *pow = (horiz ? &plp->o.p.y : &plp->o.p.x);
1308
26.8k
    fixed *pew = (horiz ? &plp->e.p.y : &plp->e.p.x);
1309
1310
    /* Only adjust the endpoints if the line is horizontal or vertical.
1311
       Debugged with pdfwrite->ppmraw 72dpi file2.pdf */
1312
26.8k
    if (*pow == *pew) {
1313
26.8k
        fixed *pov = (horiz ? &plp->o.p.x : &plp->o.p.y);
1314
26.8k
        fixed *pev = (horiz ? &plp->e.p.x : &plp->e.p.y);
1315
26.8k
        fixed length = any_abs(*pov - *pev);
1316
26.8k
        fixed length_r, length_r_2;
1317
26.8k
        fixed mv = (*pov + *pev) / 2, mv_r;
1318
26.8k
        fixed adj2 = (horiz ? STROKE_ADJUSTMENT(thin, pgs, x)
1319
26.8k
                            : STROKE_ADJUSTMENT(thin, pgs, y)) << 1;
1320
1321
        /* fixme :
1322
           The best value for adjust_longitude is whether
1323
           the dash is isolated and doesn't cover entire segment.
1324
           The current data structure can't pass this info.
1325
           Therefore we restrict adjust_stroke_longitude with 1 pixel length.
1326
        */
1327
26.8k
        if (length > fixed_1) /* comparefiles/file2.pdf */
1328
8.72k
            return;
1329
18.0k
        if (start_cap == gs_cap_butt || end_cap == gs_cap_butt) {
1330
0
            length_r = fixed_rounded(length);
1331
0
            if (length_r < fixed_1)
1332
0
                length_r = fixed_1;
1333
0
            length_r_2 = length_r / 2;
1334
18.0k
        } else {
1335
            /* Account width for proper placing cap centers. */
1336
18.0k
            fixed width = any_abs(horiz ? plp->width.y : plp->width.x);
1337
1338
18.0k
            length_r = fixed_rounded(length + width * 2 + adj2);
1339
18.0k
            length_r_2 = fixed_rounded(length) / 2;
1340
18.0k
        }
1341
18.0k
        if (length_r & fixed_1)
1342
0
            mv_r = fixed_floor(mv) + fixed_half;
1343
18.0k
        else
1344
18.0k
            mv_r = fixed_floor(mv);
1345
18.0k
        if (*pov < *pev) {
1346
0
            *pov = mv_r - length_r_2;
1347
0
            *pev = mv_r + length_r_2;
1348
18.0k
        } else {
1349
18.0k
            *pov = mv_r + length_r_2;
1350
18.0k
            *pev = mv_r - length_r_2;
1351
18.0k
        }
1352
18.0k
    }
1353
26.8k
}
1354
1355
/* Adjust the endpoints and width of a stroke segment */
1356
/* to achieve more uniform rendering. */
1357
/* Only o.p, e.p, e.cdelta, and width have been set. */
1358
static void
1359
adjust_stroke(gx_device *dev, pl_ptr plp, const gs_gstate * pgs,
1360
              bool thin, bool adjust_longitude, note_flags flags)
1361
39.9M
{
1362
39.9M
    bool horiz, adjust = true;
1363
39.9M
    gs_line_cap start_cap = (flags & nf_dash_head ?
1364
8.81k
                             pgs->line_params.dash_cap :
1365
39.9M
                             pgs->line_params.start_cap);
1366
39.9M
    gs_line_cap end_cap   = (flags & nf_dash_tail ?
1367
8.90k
                             pgs->line_params.dash_cap :
1368
39.9M
                             pgs->line_params.end_cap);
1369
1370
    /* If stroke_adjustment is disabled, or this isn't a horizontal or
1371
     * vertical line, then bale. */
1372
39.9M
    if (!pgs->stroke_adjust || (plp->width.x != 0 && plp->width.y != 0)) {
1373
39.9M
        dev->sgr.stroke_stored = false;
1374
39.9M
        return;                 /* don't adjust */
1375
39.9M
    }
1376
    /* Recognizing gradients, which some obsolete software
1377
       represent as a set of parallel strokes.
1378
       Such strokes must not be adjusted - bug 687974. */
1379
36.6k
    if (dev->sgr.stroke_stored &&
1380
36.6k
        (start_cap == gs_cap_butt || end_cap == gs_cap_butt) &&
1381
36.6k
        dev->sgr.orig[3].x == plp->vector.x && dev->sgr.orig[3].y == plp->vector.y) {
1382
        /* Parallel. */
1383
76
        if ((int64_t)(plp->o.p.x - dev->sgr.orig[0].x) * plp->vector.x ==
1384
76
            (int64_t)(plp->o.p.y - dev->sgr.orig[0].y) * plp->vector.y &&
1385
76
            (int64_t)(plp->e.p.x - dev->sgr.orig[1].x) * plp->vector.x ==
1386
0
            (int64_t)(plp->e.p.y - dev->sgr.orig[1].y) * plp->vector.y) {
1387
            /* Transversal shift. */
1388
0
            if (any_abs(plp->o.p.x - dev->sgr.orig[0].x) <= any_abs(plp->width.x + dev->sgr.orig[2].x) &&
1389
0
                any_abs(plp->o.p.y - dev->sgr.orig[0].y) <= any_abs(plp->width.y + dev->sgr.orig[2].y) &&
1390
0
                any_abs(plp->e.p.x - dev->sgr.orig[1].x) <= any_abs(plp->width.x + dev->sgr.orig[2].x) &&
1391
0
                any_abs(plp->e.p.y - dev->sgr.orig[1].y) <= any_abs(plp->width.y + dev->sgr.orig[2].y)) {
1392
                /* The strokes were contacting or overlapping. */
1393
0
                if (any_abs(plp->o.p.x - dev->sgr.orig[0].x) >= any_abs(plp->width.x + dev->sgr.orig[2].x) / 2 &&
1394
0
                    any_abs(plp->o.p.y - dev->sgr.orig[0].y) >= any_abs(plp->width.y + dev->sgr.orig[2].y) / 2 &&
1395
0
                    any_abs(plp->e.p.x - dev->sgr.orig[1].x) >= any_abs(plp->width.x + dev->sgr.orig[2].x) / 2 &&
1396
0
                    any_abs(plp->e.p.y - dev->sgr.orig[1].y) >= any_abs(plp->width.y + dev->sgr.orig[2].y) / 2) {
1397
                    /* The strokes were not much overlapping. */
1398
0
                    if (!(any_abs(plp->o.p.x - dev->sgr.adjusted[0].x) <= any_abs(plp->width.x + dev->sgr.adjusted[2].x) &&
1399
0
                          any_abs(plp->o.p.y - dev->sgr.adjusted[0].y) <= any_abs(plp->width.y + dev->sgr.adjusted[2].y) &&
1400
0
                          any_abs(plp->e.p.x - dev->sgr.adjusted[1].x) <= any_abs(plp->width.x + dev->sgr.adjusted[2].x) &&
1401
0
                          any_abs(plp->e.p.y - dev->sgr.adjusted[1].y) <= any_abs(plp->width.y + dev->sgr.adjusted[2].y))) {
1402
                        /* they became not contacting.
1403
                           We should not have adjusted the last stroke. Since if we did,
1404
                           lets change the current one to restore the contact,
1405
                           so that we don't leave gaps when rasterising. See bug 687974.
1406
                         */
1407
0
                        fixed delta_w_x = (dev->sgr.adjusted[2].x - dev->sgr.orig[2].x);
1408
0
                        fixed delta_w_y = (dev->sgr.adjusted[2].y - dev->sgr.orig[2].y);
1409
0
                        fixed shift_o_x = (dev->sgr.adjusted[0].x - dev->sgr.orig[0].x);
1410
0
                        fixed shift_o_y = (dev->sgr.adjusted[0].y - dev->sgr.orig[0].y);
1411
0
                        fixed shift_e_x = (dev->sgr.adjusted[1].x - dev->sgr.orig[1].x); /* Must be same, but we prefer clarity. */
1412
0
                        fixed shift_e_y = (dev->sgr.adjusted[1].y - dev->sgr.orig[1].y);
1413
1414
0
                        if (plp->o.p.x < dev->sgr.orig[0].x ||
1415
0
                            (plp->o.p.x == dev->sgr.orig[0].x && plp->o.p.y < dev->sgr.orig[0].y)) {
1416
                            /* Left contact, adjust to keep the contact. */
1417
0
                            if_debug4m('O', dev->memory, "[O]don't adjust {{%f,%f},{%f,%f}}\n",
1418
0
                                       fixed2float(plp->o.p.x), fixed2float(plp->o.p.y),
1419
0
                                       fixed2float(plp->e.p.x), fixed2float(plp->e.p.y));
1420
0
                            plp->width.x += (shift_o_x - delta_w_x) / 2;
1421
0
                            plp->width.y += (shift_o_y - delta_w_y) / 2;
1422
0
                            plp->o.p.x += (shift_o_x - delta_w_x) / 2;
1423
0
                            plp->o.p.y += (shift_o_y - delta_w_y) / 2;
1424
0
                            plp->e.p.x += (shift_e_x - delta_w_x) / 2;
1425
0
                            plp->e.p.y += (shift_e_y - delta_w_y) / 2;
1426
0
                            adjust = false;
1427
0
                        } else {
1428
                            /* Right contact, adjust to keep the contact. */
1429
0
                            if_debug4m('O', dev->memory, "[O]don't adjust {{%f,%f},{%f,%f}}\n",
1430
0
                                       fixed2float(plp->o.p.x), fixed2float(plp->o.p.y),
1431
0
                                       fixed2float(plp->e.p.x), fixed2float(plp->e.p.y));
1432
0
                            plp->width.x -= (shift_o_x + delta_w_x) / 2;
1433
0
                            plp->width.y -= (shift_o_y + delta_w_y) / 2;
1434
0
                            plp->o.p.x += (shift_o_x + delta_w_x) / 2;
1435
0
                            plp->o.p.y += (shift_o_y + delta_w_y) / 2;
1436
0
                            plp->e.p.x += (shift_e_x + delta_w_x) / 2;
1437
0
                            plp->e.p.y += (shift_e_y + delta_w_y) / 2;
1438
0
                            adjust = false;
1439
0
                        }
1440
0
                    }
1441
0
                }
1442
0
            }
1443
0
        }
1444
76
    }
1445
36.6k
    if ((start_cap == gs_cap_butt) || (end_cap == gs_cap_butt)) {
1446
8.41k
        dev->sgr.stroke_stored = true;
1447
8.41k
        dev->sgr.orig[0] = plp->o.p;
1448
8.41k
        dev->sgr.orig[1] = plp->e.p;
1449
8.41k
        dev->sgr.orig[2] = plp->width;
1450
8.41k
        dev->sgr.orig[3] = plp->vector;
1451
8.41k
    } else
1452
28.2k
        dev->sgr.stroke_stored = false;
1453
36.6k
    if (adjust) {
1454
36.6k
        horiz = (any_abs(plp->width.x) <= any_abs(plp->width.y));
1455
36.6k
        adjust_stroke_transversal(plp, pgs, thin, horiz);
1456
36.6k
        if (adjust_longitude)
1457
26.8k
            adjust_stroke_longitude(plp, pgs, thin, horiz, start_cap, end_cap);
1458
36.6k
    }
1459
36.6k
    if ((start_cap == gs_cap_butt) || (end_cap == gs_cap_butt)) {
1460
8.41k
        dev->sgr.adjusted[0] = plp->o.p;
1461
8.41k
        dev->sgr.adjusted[1] = plp->e.p;
1462
8.41k
        dev->sgr.adjusted[2] = plp->width;
1463
8.41k
        dev->sgr.adjusted[3] = plp->vector;
1464
8.41k
    }
1465
36.6k
}
1466
1467
/* Compute the intersection of two lines.  This is a messy algorithm */
1468
/* that somehow ought to be useful in more places than just here.... */
1469
/* If the lines are (nearly) parallel, return -1 without setting *pi; */
1470
/* otherwise, return 0 if the intersection is beyond *pp1 and *pp2 in */
1471
/* the direction determined by *pd1 and *pd2, and 1 otherwise. */
1472
static int
1473
line_intersect(
1474
                  p_ptr pp1,    /* point on 1st line */
1475
                  p_ptr pd1,    /* slope of 1st line (dx,dy) */
1476
                  p_ptr pp2,    /* point on 2nd line */
1477
                  p_ptr pd2,    /* slope of 2nd line */
1478
                  p_ptr pi)
1479
9.52M
{                               /* return intersection here */
1480
    /* We don't have to do any scaling, the factors all work out right. */
1481
9.52M
    double u1 = pd1->x, v1 = pd1->y;
1482
9.52M
    double u2 = pd2->x, v2 = pd2->y;
1483
9.52M
    double denom = u1 * v2 - u2 * v1;
1484
9.52M
    double xdiff = pp2->x - pp1->x;
1485
9.52M
    double ydiff = pp2->y - pp1->y;
1486
9.52M
    double f1;
1487
9.52M
    double max_result = any_abs(denom) * (double)max_fixed;
1488
1489
#ifdef DEBUG
1490
    if (gs_debug_c('O')) {
1491
        dlprintf4("[o]Intersect %f,%f(%f/%f)",
1492
                  fixed2float(pp1->x), fixed2float(pp1->y),
1493
                  fixed2float(pd1->x), fixed2float(pd1->y));
1494
        dlprintf4(" & %f,%f(%f/%f),\n",
1495
                  fixed2float(pp2->x), fixed2float(pp2->y),
1496
                  fixed2float(pd2->x), fixed2float(pd2->y));
1497
        dlprintf3("\txdiff=%f ydiff=%f denom=%f ->\n",
1498
                  xdiff, ydiff, denom);
1499
    }
1500
#endif
1501
    /* Check for degenerate result. */
1502
9.52M
    if (any_abs(xdiff) >= max_result || any_abs(ydiff) >= max_result) {
1503
        /* The lines are nearly parallel, */
1504
        /* or one of them has zero length.  Punt. */
1505
1.34k
        if_debug0('O', "\tdegenerate!\n");
1506
1.34k
        return -1;
1507
1.34k
    }
1508
9.52M
    f1 = (v2 * xdiff - u2 * ydiff) / denom;
1509
9.52M
    pi->x = pp1->x + (fixed) (f1 * u1);
1510
9.52M
    pi->y = pp1->y + (fixed) (f1 * v1);
1511
9.52M
    if_debug2('O', "\t%f,%f\n",
1512
9.52M
              fixed2float(pi->x), fixed2float(pi->y));
1513
9.52M
    return (f1 >= 0 && (v1 * xdiff >= u1 * ydiff ? denom >= 0 : denom < 0) ? 0 : 1);
1514
9.52M
}
1515
1516
/* Set up the width and delta parameters for a thin line. */
1517
/* We only approximate the width and height. */
1518
static void
1519
set_thin_widths(register pl_ptr plp)
1520
12.3k
{
1521
12.3k
    fixed dx = plp->e.p.x - plp->o.p.x, dy = plp->e.p.y - plp->o.p.y;
1522
1523
12.3k
#define TRSIGN(v, c) ((v) >= 0 ? (c) : -(c))
1524
12.3k
    if (any_abs(dx) > any_abs(dy)) {
1525
6.23k
        plp->width.x = plp->e.cdelta.y = 0;
1526
6.23k
        plp->width.y = plp->e.cdelta.x = TRSIGN(dx, fixed_half);
1527
6.23k
    } else {
1528
6.13k
        plp->width.y = plp->e.cdelta.x = 0;
1529
6.13k
        plp->width.x = -(plp->e.cdelta.y = TRSIGN(dy, fixed_half));
1530
6.13k
    }
1531
12.3k
#undef TRSIGN
1532
12.3k
}
1533
1534
/* Draw a line on the device. */
1535
/* Treat no join the same as a bevel join. */
1536
/* rpath should always be NULL, hence ensure_closed can be ignored */
1537
static int
1538
stroke_fill(gx_path * ppath, gx_path * rpath, bool ensure_closed, int first,
1539
            register pl_ptr plp, pl_ptr nplp, const gx_device_color * pdevc,
1540
            gx_device * dev, const gs_gstate * pgs,
1541
            const gx_stroke_params * params, const gs_fixed_rect * pbbox,
1542
            int uniform, gs_line_join join, bool reflected,
1543
            note_flags flags)
1544
43.7M
{
1545
43.7M
    const fixed lix = plp->o.p.x;
1546
43.7M
    const fixed liy = plp->o.p.y;
1547
43.7M
    const fixed litox = plp->e.p.x;
1548
43.7M
    const fixed litoy = plp->e.p.y;
1549
1550
    /* assert(lop_is_idempotent(pgs->log_op)); */
1551
43.7M
    if (plp->thin) {
1552
        /* Minimum-width line, don't have to be careful with caps/joins. */
1553
3.82M
        return (*dev_proc(dev, draw_thin_line))(dev, lix, liy, litox, litoy,
1554
3.82M
                                                pdevc, pgs->log_op,
1555
3.82M
                                                pgs->fill_adjust.x,
1556
3.82M
                                                pgs->fill_adjust.y);
1557
3.82M
    }
1558
    /* Check for being able to fill directly. */
1559
39.9M
    {
1560
39.9M
        const gx_line_params *pgs_lp = gs_currentlineparams_inline(pgs);
1561
39.9M
        gs_line_cap start_cap = (flags & nf_dash_head ?
1562
38.9M
                                 pgs_lp->dash_cap : pgs_lp->start_cap);
1563
39.9M
        gs_line_cap end_cap   = (flags & nf_dash_tail ?
1564
38.9M
                                 pgs_lp->dash_cap : pgs_lp->end_cap);
1565
1566
39.9M
        if (first != 0)
1567
38.8M
            start_cap = gs_cap_butt;
1568
39.9M
        if (nplp != 0)
1569
38.8M
            end_cap = gs_cap_butt;
1570
39.9M
        if (!plp->thin && (nplp == 0 || !nplp->thin)
1571
39.9M
            && (start_cap == gs_cap_butt || start_cap == gs_cap_square)
1572
39.9M
            && (end_cap   == gs_cap_butt || end_cap   == gs_cap_square)
1573
39.9M
            && (join == gs_join_bevel || join == gs_join_miter ||
1574
39.8M
                join == gs_join_none)
1575
39.9M
            && (pgs->fill_adjust.x | pgs->fill_adjust.y) == 0
1576
39.9M
            ) {
1577
0
            gs_fixed_point points[6];
1578
0
            int npoints, code;
1579
0
            fixed ax, ay, bx, by;
1580
1581
0
            npoints = cap_points(start_cap, &plp->o, points);
1582
0
            if (nplp == 0)
1583
0
                code = cap_points(end_cap, &plp->e, points + npoints);
1584
0
            else
1585
0
                code = line_join_points(pgs_lp, plp, nplp, points + npoints,
1586
0
                                        (uniform ? (gs_matrix *) 0 :
1587
0
                                         &ctm_only(pgs)), join, reflected);
1588
0
            if (code < 0)
1589
0
                goto general;
1590
            /* Make sure the parallelogram fill won't overflow. */
1591
0
#define SUB_OVERFLOWS(r, u, v)\
1592
0
  (((r = u - v) ^ u) < 0 && (u ^ v) < 0)
1593
0
            if (SUB_OVERFLOWS(ax, points[0].x, points[1].x) ||
1594
0
                SUB_OVERFLOWS(ay, points[0].y, points[1].y) ||
1595
0
                SUB_OVERFLOWS(bx, points[2].x, points[1].x) ||
1596
0
                SUB_OVERFLOWS(by, points[2].y, points[1].y)
1597
0
                )
1598
0
                goto general;
1599
0
#undef SUB_OVERFLOWS
1600
0
            if (nplp != 0) {
1601
0
                if (join == gs_join_miter) {
1602
                    /* Make sure we have a bevel and not a miter. */
1603
0
                    if (!(points[2].x == plp->e.co.x &&
1604
0
                          points[2].y == plp->e.co.y &&
1605
0
                          points[5].x == plp->e.ce.x &&
1606
0
                          points[5].y == plp->e.ce.y)
1607
0
                        )
1608
0
                        goto fill;
1609
0
                } {
1610
0
                    const gs_fixed_point *bevel = points + 2;
1611
1612
                    /* Identify which 3 points define the bevel triangle. */
1613
0
                    if (points[3].x == nplp->o.p.x &&
1614
0
                        points[3].y == nplp->o.p.y
1615
0
                        )
1616
0
                        ++bevel;
1617
                    /* Fill the bevel. */
1618
0
                    code = (*dev_proc(dev, fill_triangle)) (dev,
1619
0
                                                         bevel->x, bevel->y,
1620
0
                               bevel[1].x - bevel->x, bevel[1].y - bevel->y,
1621
0
                               bevel[2].x - bevel->x, bevel[2].y - bevel->y,
1622
0
                                                        pdevc, pgs->log_op);
1623
0
                    if (code < 0)
1624
0
                        return code;
1625
0
                }
1626
0
            }
1627
            /* Fill the body of the stroke. */
1628
0
            return (*dev_proc(dev, fill_parallelogram)) (dev,
1629
0
                                                   points[1].x, points[1].y,
1630
0
                                                         ax, ay, bx, by,
1631
0
                                                         pdevc, pgs->log_op);
1632
0
          fill:
1633
0
            code = add_points(ppath, points, npoints + code, true);
1634
0
            if (code < 0)
1635
0
                return code;
1636
0
            return gx_path_close_subpath(ppath);
1637
0
        }
1638
39.9M
    }
1639
    /* General case: construct a path for the fill algorithm. */
1640
39.9M
 general:
1641
39.9M
    return stroke_add(ppath, rpath, ensure_closed, first, plp, nplp, pdevc,
1642
39.9M
                      dev, pgs, params, pbbox, uniform, join, reflected,
1643
39.9M
                      flags);
1644
39.9M
}
1645
1646
/* Add a segment to the path.  This handles all the complex cases. */
1647
static int
1648
stroke_add(gx_path * ppath, gx_path * rpath, bool ensure_closed, int first,
1649
           pl_ptr plp, pl_ptr nplp, const gx_device_color * pdevc,
1650
           gx_device * dev, const gs_gstate * pgs,
1651
           const gx_stroke_params * params,
1652
           const gs_fixed_rect * ignore_pbbox, int uniform,
1653
           gs_line_join join, bool reflected, note_flags flags)
1654
39.9M
{
1655
39.9M
    const gx_line_params *pgs_lp = gs_currentlineparams_inline(pgs);
1656
39.9M
    gs_fixed_point points[8];
1657
39.9M
    int npoints;
1658
39.9M
    int code;
1659
39.9M
    bool moveto_first = true;
1660
39.9M
    gs_line_cap start_cap = (flags & nf_dash_head ?
1661
38.9M
                             pgs_lp->dash_cap : pgs_lp->start_cap);
1662
39.9M
    gs_line_cap end_cap   = (flags & nf_dash_tail ?
1663
38.9M
                             pgs_lp->dash_cap : pgs_lp->end_cap);
1664
1665
39.9M
    if (plp->thin) {
1666
        /* We didn't set up the endpoint parameters before, */
1667
        /* because the line was thin.  Do it now. */
1668
12.3k
        set_thin_widths(plp);
1669
12.3k
        adjust_stroke(dev, plp, pgs, true, first == 0 && nplp == 0, flags);
1670
12.3k
        compute_caps(plp);
1671
12.3k
    }
1672
    /* Create an initial cap if desired. */
1673
39.9M
    if (first == 0 && start_cap == gs_cap_round) {
1674
88.9k
        if ((code = gx_path_add_point(ppath, plp->o.co.x, plp->o.co.y)) < 0 ||
1675
88.9k
            (code = add_pie_cap(ppath, &plp->o)) < 0)
1676
0
            return code;
1677
88.9k
        npoints = 0;
1678
88.9k
        moveto_first = false;
1679
39.8M
    } else {
1680
39.8M
        if ((npoints = cap_points((first == 0 ? start_cap : gs_cap_butt),
1681
39.8M
                                  &plp->o, points)) < 0)
1682
0
            return npoints;
1683
39.8M
    }
1684
39.9M
    if (nplp == 0) {
1685
        /* Add a final cap. */
1686
1.07M
        if (end_cap == gs_cap_round) {
1687
88.9k
            ASSIGN_POINT(&points[npoints], plp->e.co);
1688
88.9k
            ++npoints;
1689
88.9k
            if ((code = add_points(ppath, points, npoints, moveto_first)) < 0)
1690
0
                return code;
1691
88.9k
            code = add_pie_cap(ppath, &plp->e);
1692
88.9k
            goto done;
1693
88.9k
        }
1694
982k
        code = cap_points(end_cap, &plp->e, points + npoints);
1695
38.8M
    } else if (nplp->thin) /* no join */
1696
13.3k
        code = cap_points(gs_cap_butt, &plp->e, points + npoints);
1697
38.8M
    else if (join == gs_join_round) {
1698
103k
        ASSIGN_POINT(&points[npoints], plp->e.co);
1699
103k
        ++npoints;
1700
103k
        if ((code = add_points(ppath, points, npoints, moveto_first)) < 0)
1701
0
            return code;
1702
103k
        code = add_pie_join(ppath, plp, nplp, reflected, true);
1703
103k
        goto done;
1704
38.7M
    } else if (flags & nf_all_from_arc) {
1705
        /* If all the segments in 'prev' and 'current' are from a curve
1706
         * then the join should actually be a round one, because it would
1707
         * have been round if we had flattened it enough. */
1708
37.6M
        ASSIGN_POINT(&points[npoints], plp->e.co);
1709
37.6M
        ++npoints;
1710
37.6M
        if ((code = add_points(ppath, points, npoints, moveto_first)) < 0)
1711
0
            return code;
1712
37.6M
        code = add_pie_join(ppath, plp, nplp, reflected, false);
1713
37.6M
        goto done;
1714
37.6M
    } else                      /* non-round join */
1715
1.11M
       code = line_join_points(pgs_lp, plp, nplp, points + npoints,
1716
1.11M
                                (uniform ? (gs_matrix *) 0 : &ctm_only(pgs)),
1717
1.11M
                                join, reflected);
1718
2.11M
    if (code < 0)
1719
0
        return code;
1720
2.11M
    code = add_points(ppath, points, npoints + code, moveto_first);
1721
39.9M
  done:
1722
39.9M
    if (code < 0)
1723
0
        return code;
1724
39.9M
    if ((flags & nf_some_from_arc) && (!plp->thin) &&
1725
39.9M
        (nplp != NULL) && (!nplp->thin))
1726
38.1M
        code = join_under_pie(ppath, plp, nplp, reflected);
1727
39.9M
    return gx_path_close_subpath(ppath);
1728
39.9M
}
1729
1730
/* When painting the 'underjoin' (the 'inside' of a join), we
1731
 * need to take special care if the curve is particularly wide as
1732
 * the leading edge of the underside of the first stroked segment
1733
 * may be beyond the leading edge of the underside of the second
1734
 * stroked segment. Similarly, the trailing edge of the second
1735
 * stroked segment may be behing the trailing edge of the first
1736
 * stroked segment. We detect those cases here.
1737
 *
1738
 * We detect the first case by projecting plp.width onto nplp.vector.
1739
 * If the projected vector is longer then nplp.vector, we have a
1740
 * problem.
1741
 *
1742
 * len_vector_squared = nplp.vector.x * nplp.vector.x + nplp.vector.y * nplp.nvector.y
1743
 * len_vector = sqr(len_vector_squared)
1744
 * len_projection_unnormalised = plp.width.x * nplp.vector.x + plp.width.y * nplp.vector.y
1745
 * len_projection = len_projection_unnormalised / len_vector
1746
 *
1747
 * len_projection > len_vector === len_projection_unnormalised > len_vector * len_vector
1748
 * === len_projection_unnormalised > len_vector_squared
1749
 */
1750
1751
#ifdef SLOWER_BUT_MORE_ACCURATE_STROKING
1752
static bool
1753
wide_underjoin(pl_ptr plp, pl_ptr nplp)
1754
{
1755
    double h_squared = (double)nplp->vector.x * nplp->vector.x + (double)nplp->vector.y * nplp->vector.y;
1756
    double dot = (double)plp->width.x * nplp->vector.x + (double)plp->width.y * nplp->vector.y;
1757
1758
    if (dot < 0)
1759
        dot = -dot;
1760
    if (dot > h_squared)
1761
        return 1;
1762
1763
    h_squared = (double)plp->vector.x * plp->vector.x + (double)plp->vector.y * plp->vector.y;
1764
    dot = (double)nplp->width.x * plp->vector.x + (double)nplp->width.y * plp->vector.y;
1765
    if (dot < 0)
1766
        dot = -dot;
1767
    if (dot > h_squared)
1768
        return 1;
1769
1770
    return 0;
1771
}
1772
#endif
1773
1774
static int
1775
check_miter(const gx_line_params * pgs_lp, pl_ptr plp, pl_ptr nplp,
1776
            const gs_matrix * pmat, p_ptr outp, p_ptr np, p_ptr mpt,
1777
            bool ccw0)
1778
1.09M
{
1779
    /*
1780
     * Check whether a miter join is appropriate.
1781
     * Let a, b be the angles of the two lines.
1782
     * We check tan(a-b) against the miter_check
1783
     * by using the following formula:
1784
     *      If tan(a)=u1/v1 and tan(b)=u2/v2, then
1785
     *      tan(a-b) = (u1*v2 - u2*v1) / (u1*u2 + v1*v2).
1786
     *
1787
     * We can do all the computations unscaled,
1788
     * because we're only concerned with ratios.
1789
     * However, if we have a non-uniform coordinate
1790
     * system (indicated by pmat != 0), we must do the
1791
     * computations in user space.
1792
     */
1793
1.09M
    float check;
1794
1.09M
    double u1, v1, u2, v2;
1795
1.09M
    double num, denom;
1796
1.09M
    int code;
1797
1798
    /*
1799
     * Don't bother with the miter check if the two
1800
     * points to be joined are very close together,
1801
     * namely, in the same square half-pixel.
1802
     */
1803
1.09M
    if (fixed2long(outp->x << 1) == fixed2long(np->x << 1) &&
1804
1.09M
        fixed2long(outp->y << 1) == fixed2long(np->y << 1))
1805
353k
        return 1;
1806
1807
745k
    check = pgs_lp->miter_check;
1808
745k
    u1 = plp->vector.y, v1 = plp->vector.x;
1809
745k
    u2 = -nplp->vector.y, v2 = -nplp->vector.x;
1810
1811
745k
    if (pmat) {
1812
85.4k
        gs_point pt;
1813
1814
85.4k
        code = gs_distance_transform_inverse(v1, u1, pmat, &pt);
1815
85.4k
        if (code < 0)
1816
0
        return code;
1817
85.4k
        v1 = pt.x, u1 = pt.y;
1818
85.4k
        code = gs_distance_transform_inverse(v2, u2, pmat, &pt);
1819
85.4k
        if (code < 0)
1820
0
            return code;
1821
85.4k
        v2 = pt.x, u2 = pt.y;
1822
        /*
1823
         * We need to recompute ccw according to the
1824
         * relative positions of the lines in user space.
1825
         * We repeat the computation described above,
1826
         * using the cdelta values instead of the widths.
1827
         * Because the definition of ccw above is inverted
1828
         * from the intuitive one (for historical reasons),
1829
         * we actually have to do the test backwards.
1830
         */
1831
85.4k
        ccw0 = v1 * u2 < v2 * u1;
1832
#ifdef DEBUG
1833
        {
1834
            double a1 = atan2(u1, v1), a2 = atan2(u2, v2), dif = a1 - a2;
1835
1836
            if (dif < 0)
1837
                dif += 2 * M_PI;
1838
            else if (dif >= 2 * M_PI)
1839
                dif -= 2 * M_PI;
1840
            if (dif != 0 && (dif < M_PI) != ccw0)
1841
                lprintf8("ccw wrong: tan(a1=%g)=%g/%g, tan(a2=%g)=%g,%g, dif=%g, ccw0=%d\n",
1842
                         a1, u1, v1, a2, u2, v2, dif, ccw0);
1843
        }
1844
#endif
1845
85.4k
    }
1846
745k
    num = u1 * v2 - u2 * v1;
1847
745k
    denom = u1 * u2 + v1 * v2;
1848
    /*
1849
     * We will want either tan(a-b) or tan(b-a)
1850
     * depending on the orientations of the lines.
1851
     * Fortunately we know the relative orientations already.
1852
     */
1853
745k
    if (!ccw0)          /* have plp - nplp, want vice versa */
1854
199k
        num = -num;
1855
#ifdef DEBUG
1856
    if (gs_debug_c('O')) {
1857
        dlprintf4("[o]Miter check: u1/v1=%f/%f, u2/v2=%f/%f,\n",
1858
                  u1, v1, u2, v2);
1859
        dlprintf3("        num=%f, denom=%f, check=%f\n",
1860
                  num, denom, check);
1861
    }
1862
#endif
1863
    /*
1864
     * If we define T = num / denom, then we want to use
1865
     * a miter join iff arctan(T) >= arctan(check).
1866
     * We know that both of these angles are in the 1st
1867
     * or 2nd quadrant, and since arctan is monotonic
1868
     * within each quadrant, we can do the comparisons
1869
     * on T and check directly, taking signs into account
1870
     * as follows:
1871
     *              sign(T) sign(check)     atan(T) >= atan(check)
1872
     *              ------- -----------     ----------------------
1873
     *              +       +               T >= check
1874
     *              -       +               true
1875
     *              +       -               false
1876
     *              -       -               T >= check
1877
     */
1878
745k
    if (num == 0 && denom == 0)
1879
0
        return_error(gs_error_unregistered); /* Must not happen. */
1880
745k
    if (denom < 0)
1881
193k
        num = -num, denom = -denom;
1882
    /* Now denom >= 0, so sign(num) = sign(T). */
1883
745k
    if (check > 0 ?
1884
744k
        (num < 0 || num >= denom * check) :
1885
745k
        (num < 0 && num >= denom * check)
1886
745k
        ) {
1887
        /* OK to use a miter join. */
1888
701k
        gs_fixed_point dirn1, dirn2;
1889
1890
701k
        dirn1.x = plp->e.cdelta.x;
1891
701k
        dirn1.y = plp->e.cdelta.y;
1892
        /* If this direction is small enough that we might have
1893
         * underflowed and the vector record is suitable for us
1894
         * to use to calculate a better one, then do so. */
1895
701k
        if ((abs(dirn1.x) + abs(dirn1.y) < 16) &&
1896
701k
            ((plp->vector.x != 0) || (plp->vector.y != 0)))
1897
26
        {
1898
26
            float scale = 65536.0;
1899
26
            if (abs(plp->vector.x) > abs(plp->vector.y))
1900
0
                scale /= abs(plp->vector.x);
1901
26
            else
1902
26
                scale /= abs(plp->vector.y);
1903
26
            dirn1.x = (fixed)(plp->vector.x*scale);
1904
26
            dirn1.y = (fixed)(plp->vector.y*scale);
1905
26
        }
1906
701k
        dirn2.x = nplp->o.cdelta.x;
1907
701k
        dirn2.y = nplp->o.cdelta.y;
1908
        /* If this direction is small enough that we might have
1909
         * underflowed and the vector record is suitable for us
1910
         * to use to calculate a better one, then do so. */
1911
701k
        if ((abs(dirn2.x) + abs(dirn2.y) < 16) &&
1912
701k
            ((nplp->vector.x != 0) || (nplp->vector.y != 0)))
1913
26
        {
1914
26
            float scale = 65536.0;
1915
26
            if (abs(nplp->vector.x) > abs(nplp->vector.y))
1916
0
                scale /= abs(nplp->vector.x);
1917
26
            else
1918
26
                scale /= abs(nplp->vector.y);
1919
26
            dirn2.x = (fixed)(-nplp->vector.x*scale);
1920
26
            dirn2.y = (fixed)(-nplp->vector.y*scale);
1921
26
        }
1922
701k
        if_debug0('O', "        ... passes.\n");
1923
        /* Compute the intersection of the extended edge lines. */
1924
701k
        if (line_intersect(outp, &dirn1, np, &dirn2, mpt) == 0)
1925
692k
            return 0;
1926
701k
    }
1927
52.8k
    return 1;
1928
745k
}
1929
1930
/* Add a segment to the path.
1931
 * This works by crafting 2 paths, one for each edge, that will later be
1932
 * merged together. */
1933
static int
1934
stroke_add_fast(gx_path * ppath, gx_path * rpath, bool ensure_closed, int first,
1935
                pl_ptr plp, pl_ptr nplp, const gx_device_color * pdevc,
1936
                gx_device * dev, const gs_gstate * pgs,
1937
                const gx_stroke_params * params,
1938
                const gs_fixed_rect * ignore_pbbox, int uniform,
1939
                gs_line_join join, bool reflected, note_flags flags)
1940
0
{
1941
0
    const gx_line_params *pgs_lp = gs_currentlineparams_inline(pgs);
1942
0
    gs_fixed_point points[8];
1943
0
    gs_fixed_point rpoints[8];
1944
0
    int npoints  = 0;
1945
0
    int nrpoints = 0;
1946
0
    int code;
1947
0
    bool moveto_first  = false;
1948
0
    bool rmoveto_first = false;
1949
0
    gs_line_cap start_cap, end_cap;
1950
0
    const gs_matrix *pmat = (uniform ? (const gs_matrix *)NULL : &ctm_only(pgs));
1951
0
    enum {
1952
0
        joinsense_cap = 0,
1953
0
        joinsense_cw = 1,
1954
0
        joinsense_ccw = 2,
1955
0
        joinsense_over = 4,
1956
0
        joinsense_under = 8,
1957
0
    } joinsense = joinsense_cap;
1958
1959
0
    if (plp->thin) {
1960
        /* We didn't set up the endpoint parameters before, */
1961
        /* because the line was thin.  Do it now. */
1962
0
        set_thin_widths(plp);
1963
0
        adjust_stroke(dev, plp, pgs, true, first == 0 && nplp == 0, flags);
1964
0
        compute_caps(plp);
1965
0
    }
1966
0
    start_cap = (flags & nf_dash_head ?
1967
0
                 pgs_lp->dash_cap : pgs_lp->start_cap);
1968
0
    end_cap   = (flags & nf_dash_tail ?
1969
0
                 pgs_lp->dash_cap : pgs_lp->end_cap);
1970
    /* If we're starting a new rpath here, we need to fake a new cap.
1971
     * Don't interfere if we would have been doing a cap anyway. */
1972
0
    if (gx_path_is_void(rpath) && (first != 0)) {
1973
0
        first = 0;
1974
0
        start_cap = gs_cap_butt;
1975
0
        end_cap   = gs_cap_butt;
1976
0
        moveto_first  = true;
1977
0
        rmoveto_first = true;
1978
0
    }
1979
0
    if (first == 0) {
1980
        /* Create an initial cap. */
1981
0
        if (start_cap == gs_cap_round) {
1982
0
            if ((code = gx_path_add_point(ppath, plp->o.co.x, plp->o.co.y)) < 0 ||
1983
0
                (code = add_pie_cap(ppath, &plp->o)) < 0)
1984
0
                return code;
1985
0
            moveto_first = false;
1986
0
        } else {
1987
0
            if ((npoints = cap_points(start_cap, &plp->o, points)) < 0)
1988
0
                return npoints;
1989
0
            moveto_first = true;
1990
0
        }
1991
0
        rmoveto_first = true;
1992
0
        ASSIGN_POINT(&rpoints[0], plp->o.co);
1993
0
        nrpoints = 1;
1994
0
    }
1995
    /* Add points to move us along the edges of this stroke */
1996
0
    ASSIGN_POINT(&points [npoints ], plp->e.co);
1997
0
    ASSIGN_POINT(&rpoints[nrpoints], plp->e.ce);
1998
0
    npoints++;
1999
0
    nrpoints++;
2000
2001
0
    if (nplp != NULL && !nplp->thin) {
2002
        /* We need to do a join. What sense is it it? */
2003
0
        double l, r;
2004
2005
0
        l = (double)(plp->width.x) /* x1 */ * (nplp->width.y) /* y2 */;
2006
0
        r = (double)(nplp->width.x) /* x2 */ * (plp->width.y) /* y1 */;
2007
2008
0
        if ((l == r) && (join == gs_join_round))
2009
0
             joinsense = joinsense_cap;
2010
0
        else if ((l > r) ^ reflected)
2011
0
             joinsense = joinsense_ccw | joinsense_over | joinsense_under;
2012
0
        else
2013
0
             joinsense = joinsense_cw | joinsense_over | joinsense_under;
2014
2015
0
        if (joinsense != joinsense_cap && join == gs_join_miter) {
2016
            /* We need to do a miter line join. Miters are 'special'
2017
             * in that we'd like to do them by adjusting the existing
2018
             * points, rather than adding new ones. */
2019
0
            gs_fixed_point mpt;
2020
0
            if (joinsense & joinsense_ccw) {
2021
                /* Underjoin (in reverse path):
2022
                 * A = plp->o.co, B = plp->e.ce, C = nplp->o.co, D = nplp->e.ce */
2023
0
                double xa =  plp->o.co.x, ya =  plp->o.co.y;
2024
0
                double xb =  plp->e.ce.x, yb =  plp->e.ce.y;
2025
0
                double xc = nplp->o.co.x, yc = nplp->o.co.y;
2026
0
                double xd = nplp->e.ce.x, yd = nplp->e.ce.y;
2027
0
                double xab = xa-xb, xac = xa-xc, xcd = xc-xd;
2028
0
                double yab = ya-yb, yac = ya-yc, ycd = yc-yd;
2029
0
                double t_num = xac * ycd - yac * xcd;
2030
0
                double t_den = xab * ycd - yab * xcd;
2031
0
                code = check_miter(pgs_lp, plp, nplp, pmat, &plp->e.co,
2032
0
                                   &nplp->o.ce, &mpt, true);
2033
0
                if (code < 0)
2034
0
                    return code;
2035
0
                if (code == 0) {
2036
0
                    points[npoints-1].x = mpt.x;
2037
0
                    points[npoints-1].y = mpt.y;
2038
0
                    if (ensure_closed) {
2039
0
                        points[npoints].x = nplp->o.ce.x;
2040
0
                        points[npoints].y = nplp->o.ce.y;
2041
0
                        npoints++;
2042
0
                    }
2043
0
                    joinsense &= ~joinsense_over;
2044
0
                } else
2045
0
                    join = gs_join_bevel;
2046
0
                if (t_den != 0 &&
2047
0
                    ((t_num >= 0 && t_num <= t_den) ||
2048
0
                     (t_num <= 0 && t_num >= t_den))) {
2049
0
                    double x = xa - xab * t_num / t_den;
2050
0
                    double y = ya - yab * t_num / t_den;
2051
0
                    rpoints[nrpoints-1].x = (fixed)x;
2052
0
                    rpoints[nrpoints-1].y = (fixed)y;
2053
0
                    joinsense &= ~joinsense_under;
2054
0
                }
2055
0
            } else {
2056
                /* Underjoin (in fwd path):
2057
                 * A = plp->o.ce, B = plp->e.co, C = nplp->o.ce, D = nplp->e.co */
2058
0
                double xa =  plp->o.ce.x, ya =  plp->o.ce.y;
2059
0
                double xb =  plp->e.co.x, yb =  plp->e.co.y;
2060
0
                double xc = nplp->o.ce.x, yc = nplp->o.ce.y;
2061
0
                double xd = nplp->e.co.x, yd = nplp->e.co.y;
2062
0
                double xab = xa-xb, xac = xa-xc, xcd = xc-xd;
2063
0
                double yab = ya-yb, yac = ya-yc, ycd = yc-yd;
2064
0
                double t_num = xac * ycd - yac * xcd;
2065
0
                double t_den = xab * ycd - yab * xcd;
2066
0
                code = check_miter(pgs_lp, plp, nplp, pmat, &plp->e.ce,
2067
0
                                   &nplp->o.co, &mpt, false);
2068
0
                if (code < 0)
2069
0
                    return code;
2070
0
                if (code == 0) {
2071
0
                    rpoints[nrpoints-1].x = mpt.x;
2072
0
                    rpoints[nrpoints-1].y = mpt.y;
2073
0
                    if (ensure_closed) {
2074
0
                        rpoints[nrpoints].x = nplp->o.co.x;
2075
0
                        rpoints[nrpoints].y = nplp->o.co.y;
2076
0
                        nrpoints++;
2077
0
                    }
2078
0
                    joinsense &= ~joinsense_over;
2079
0
                } else
2080
0
                    join = gs_join_bevel;
2081
0
                if (t_den != 0 &&
2082
0
                    ((t_num >= 0 && t_num <= t_den) ||
2083
0
                     (t_num <= 0 && t_num >= t_den)))   {
2084
0
                    double x = xa - xab * t_num / t_den;
2085
0
                    double y = ya - yab * t_num / t_den;
2086
0
                    points[npoints-1].x = (fixed)x;
2087
0
                    points[npoints-1].y = (fixed)y;
2088
0
                    joinsense &= ~joinsense_under;
2089
0
                }
2090
0
            }
2091
0
        }
2092
0
    }
2093
2094
0
    if ((code = add_points(ppath, points, npoints, moveto_first)) < 0)
2095
0
        return code;
2096
0
    if ((code = add_points(rpath, rpoints, nrpoints, rmoveto_first)) < 0)
2097
0
        return code;
2098
0
    npoints  = 0;
2099
0
    nrpoints = 0;
2100
2101
0
    if (nplp == 0) { /* Add a final cap. */
2102
0
        if (end_cap == gs_cap_round) {
2103
0
            code = add_pie_cap(ppath, &plp->e);
2104
0
        } else {
2105
0
            code = cap_points(end_cap, &plp->e, points);
2106
0
            npoints = code;
2107
0
        }
2108
0
    } else if (nplp->thin) { /* no join */
2109
0
        code = cap_points(gs_cap_butt, &plp->e, points);
2110
0
        npoints = code;
2111
0
    } else if (joinsense == joinsense_cap) {
2112
        /* Do a cap */
2113
0
        code = add_pie_cap(ppath, &plp->e);
2114
0
        if (code >= 0) {
2115
            /* If the next line is in the opposite direction as the current one
2116
             * we want to leave the point on the same side as it was
2117
             * originally. This is required for paths that come to a stop
2118
             * and then reverse themselves, but may produce more complexity
2119
             * than we'd really like at the ends of smooth beziers. */
2120
0
            if ((double)(plp->width.x) * nplp->width.x + (double)plp->width.y * nplp->width.y >= 0)
2121
0
                code = gx_path_add_line(ppath, plp->e.co.x, plp->e.co.y);
2122
0
        }
2123
0
    } else if (joinsense & joinsense_ccw) {
2124
        /* CCW rotation. Join in the forward path. "Underjoin" in the
2125
         * reverse path. */
2126
0
        if (joinsense & joinsense_over) {
2127
            /* RJW: Ideally we should include the "|| flags" clause in
2128
             * the following condition. This forces all joins between
2129
             * line segments generated from arcs to be round. This would
2130
             * solve some flatness issues, but makes some pathological
2131
             * cases incredibly slow. */
2132
0
            if (join == gs_join_round /* || (flags & nf_all_from_arc) */) {
2133
0
                code = add_pie_join_fast_ccw(ppath, plp, nplp, reflected);
2134
0
            } else { /* non-round join */
2135
0
                code = line_join_points_fast_ccw(pgs_lp, plp, nplp,
2136
0
                                                 points, pmat, join);
2137
0
                npoints = code;
2138
0
            }
2139
0
            if (code < 0)
2140
0
                return code;
2141
0
        }
2142
0
        if (joinsense & joinsense_under) {
2143
            /* The underjoin */
2144
0
#ifndef SLOWER_BUT_MORE_ACCURATE_STROKING
2145
0
            if ((flags & (nf_some_from_arc | nf_prev_some_from_arc)) == 0) {
2146
                /* RJW: This is an approximation. We ought to draw a line
2147
                 * back to nplp->o.p, and then independently fill any exposed
2148
                 * region under the curve with a round join. Sadly, that's
2149
                 * a) really hard to do, and b) makes certain pathological
2150
                 * filling cases MUCH slower due to the greater number of
2151
                 * "cross-segment" line segments this produces. Instead,
2152
                 * we just skip the line to the middle, and join across the
2153
                 * bottom instead. This is akin to what other graphics libs
2154
                 * do (such as fitz, libart, etc). It's not perfect but in
2155
                 * most cases it's close, and results in faster to fill
2156
                 * paths.
2157
                 */
2158
                /* RJW: This goes wrong for some paths, as the 'underjoin' wind
2159
                 * will be the wrong way. See bug 694971 */
2160
0
                code = gx_path_add_line(rpath, nplp->o.p.x, nplp->o.p.y);
2161
0
                if (code < 0)
2162
0
                    return code;
2163
0
            }
2164
#else
2165
            if (wide_underjoin(plp, nplp))
2166
            {
2167
                code = gx_path_add_line(rpath, nplp->o.p.x, nplp->o.p.y);
2168
                if (code < 0)
2169
                    return code;
2170
                if ((flags & (nf_some_from_arc | nf_prev_some_from_arc)) != 0) {
2171
                    code = gx_path_add_line(rpath, nplp->o.co.x, nplp->o.co.y);
2172
                    if (code < 0)
2173
                        return code;
2174
                    code = gx_path_add_line(rpath, plp->e.ce.x, plp->e.ce.y);
2175
                    if (code < 0)
2176
                        return code;
2177
                    code = gx_path_add_line(rpath, nplp->o.p.x, nplp->o.p.y);
2178
                    if (code < 0)
2179
                        return code;
2180
                }
2181
            }
2182
#endif
2183
0
            code = gx_path_add_line(rpath, nplp->o.co.x, nplp->o.co.y);
2184
0
        }
2185
0
    } else if (joinsense & joinsense) {
2186
        /* CW rotation. Join in the reverse path. "Underjoin" in the
2187
         * forward path. */
2188
0
        if (joinsense & joinsense_over) {
2189
            /* RJW: Ideally we should include the "|| flags" clause in
2190
             * the following condition. This forces all joins between
2191
             * line segments generated from arcs to be round. This would
2192
             * solve some flatness issues, but makes some pathological
2193
             * cases incredibly slow. */
2194
0
            if (join == gs_join_round /* || (flags & nf_all_from_arc) */) {
2195
0
                code = add_pie_join_fast_cw(rpath, plp, nplp, reflected);
2196
0
            } else { /* non-round join */
2197
0
                code = line_join_points_fast_cw(pgs_lp, plp, nplp,
2198
0
                                                rpoints, pmat, join);
2199
0
                nrpoints = code;
2200
0
            }
2201
0
            if (code < 0)
2202
0
                return code;
2203
0
        }
2204
0
        if (joinsense & joinsense_under) {
2205
            /* The underjoin */
2206
0
#ifndef SLOWER_BUT_MORE_ACCURATE_STROKING
2207
0
            if ((flags & (nf_some_from_arc | nf_prev_some_from_arc)) == 0 &&
2208
0
                join != gs_join_miter) {
2209
                /* RJW: This is an approximation. We ought to draw a line
2210
                 * back to nplp->o.p, and then independently fill any exposed
2211
                 * region under the curve with a round join. Sadly, that's
2212
                 * a) really hard to do, and b) makes certain pathological
2213
                 * filling cases MUCH slower due to the greater number of
2214
                 * "cross-segment" line segments this produces. Instead,
2215
                 * we just skip the line to the middle, and join across the
2216
                 * bottom instead. This is akin to what other graphics libs
2217
                 * do (such as fitz, libart, etc). It's not perfect but in
2218
                 * most cases it's close, and results in faster to fill
2219
                 * paths.
2220
                 */
2221
                /* RJW: This goes wrong for some paths, as the 'underjoin' wind
2222
                 * will be the wrong way. See bug 694971 */
2223
0
                code = gx_path_add_line(ppath, nplp->o.p.x, nplp->o.p.y);
2224
0
                if (code < 0)
2225
0
                    return code;
2226
0
            }
2227
#else
2228
            if (wide_underjoin(plp, nplp))
2229
            {
2230
                code = gx_path_add_line(ppath, nplp->o.p.x, nplp->o.p.y);
2231
                if (code < 0)
2232
                    return code;
2233
                if ((flags & (nf_some_from_arc | nf_prev_some_from_arc)) != 0) {
2234
                    code = gx_path_add_line(ppath, nplp->o.ce.x, nplp->o.ce.y);
2235
                    if (code < 0)
2236
                        return code;
2237
                    code = gx_path_add_line(ppath, plp->e.co.x, plp->e.co.y);
2238
                    if (code < 0)
2239
                        return code;
2240
                    code = gx_path_add_line(ppath, nplp->o.p.x, nplp->o.p.y);
2241
                    if (code < 0)
2242
                        return code;
2243
                }
2244
            }
2245
#endif
2246
0
            code = gx_path_add_line(ppath, nplp->o.ce.x, nplp->o.ce.y);
2247
0
        }
2248
0
    }
2249
0
    if (code < 0)
2250
0
        return code;
2251
0
    if (npoints > 0) {
2252
0
        code = add_points(ppath, points, npoints, false);
2253
0
        if (code < 0)
2254
0
            return code;
2255
0
    }
2256
0
    if (nrpoints > 0) {
2257
0
        code = add_points(rpath, rpoints, nrpoints, false);
2258
0
        if (code < 0)
2259
0
            return code;
2260
0
    }
2261
0
    if (ensure_closed)
2262
0
        return gx_join_path_and_reverse(ppath, rpath);
2263
0
    return 0;
2264
0
}
2265
2266
/* Add a CPSI-compatible segment to the path.  This handles all the complex
2267
 * cases.
2268
 *
2269
 * This method doesn't support start/end/dash caps, but it's only used from
2270
 * postscript, so it doesn't need to.
2271
 */
2272
static int
2273
stroke_add_compat(gx_path * ppath, gx_path *rpath, bool ensure_closed,
2274
                  int first, pl_ptr plp, pl_ptr nplp,
2275
                  const gx_device_color * pdevc, gx_device * dev,
2276
                  const gs_gstate * pgs,
2277
                  const gx_stroke_params * params,
2278
                  const gs_fixed_rect * ignore_pbbox, int uniform,
2279
                  gs_line_join join, bool reflected, note_flags flags)
2280
229
{
2281
    /* Actually it adds 2 contours : one for the segment itself,
2282
       and another one for line join or for the ending cap.
2283
       Note CPSI creates negative contours. */
2284
229
    const gx_line_params *pgs_lp = gs_currentlineparams_inline(pgs);
2285
229
    gs_fixed_point points[6];
2286
229
    int npoints;
2287
229
    bool const moveto_first = true; /* Keeping this code closer to "stroke_add". */
2288
229
    int code;
2289
2290
229
    if (plp->thin) {
2291
        /* We didn't set up the endpoint parameters before, */
2292
        /* because the line was thin.  Do it now. */
2293
0
        set_thin_widths(plp);
2294
0
        adjust_stroke(dev, plp, pgs, true, first == 0 && nplp == 0, flags);
2295
0
        compute_caps(plp);
2296
0
    }
2297
    /* The segment itself : */
2298
229
    ASSIGN_POINT(&points[0], plp->o.ce);
2299
229
    ASSIGN_POINT(&points[1], plp->e.co);
2300
229
    ASSIGN_POINT(&points[2], plp->e.ce);
2301
229
    ASSIGN_POINT(&points[3], plp->o.co);
2302
229
    code = add_points(ppath, points, 4, moveto_first);
2303
229
    if (code < 0)
2304
0
        return code;
2305
229
    code = gx_path_close_subpath(ppath);
2306
229
    if (code < 0)
2307
0
        return code;
2308
229
    npoints = 0;
2309
229
    if (nplp == 0) {
2310
        /* Add a final cap. */
2311
221
        if (pgs_lp->start_cap == gs_cap_butt)
2312
12
            return 0;
2313
209
        if (pgs_lp->start_cap == gs_cap_round) {
2314
209
            ASSIGN_POINT(&points[npoints], plp->e.co);
2315
209
            ++npoints;
2316
209
            if ((code = add_points(ppath, points, npoints, moveto_first)) < 0)
2317
0
                return code;
2318
209
            return add_round_cap(ppath, &plp->e);
2319
209
        }
2320
0
        ASSIGN_POINT(&points[0], plp->e.ce);
2321
0
        ++npoints;
2322
0
        ASSIGN_POINT(&points[npoints], plp->e.co);
2323
0
        ++npoints;
2324
0
        code = cap_points(pgs_lp->start_cap, &plp->e, points + npoints);
2325
0
        if (code < 0)
2326
0
            return code;
2327
0
        npoints += code;
2328
8
    } else if (join == gs_join_round) {
2329
0
        ASSIGN_POINT(&points[npoints], plp->e.co);
2330
0
        ++npoints;
2331
0
        if ((code = add_points(ppath, points, npoints, moveto_first)) < 0)
2332
0
            return code;
2333
0
        return add_round_cap(ppath, &plp->e);
2334
8
    } else if (nplp->thin) {    /* no join */
2335
0
        npoints = 0;
2336
8
    } else {                    /* non-round join */
2337
8
        bool ccw =
2338
8
            (double)(plp->width.x) /* x1 */ * (nplp->width.y) /* y2 */ >
2339
8
            (double)(nplp->width.x) /* x2 */ * (plp->width.y) /* y1 */;
2340
2341
8
        if (ccw ^ reflected) {
2342
8
            ASSIGN_POINT(&points[0], plp->e.co);
2343
8
            ++npoints;
2344
8
            code = line_join_points(pgs_lp, plp, nplp, points + npoints,
2345
8
                                    (uniform ? (gs_matrix *) 0 : &ctm_only(pgs)),
2346
8
                                    join, reflected);
2347
8
            if (code < 0)
2348
0
                return code;
2349
8
            code--; /* Drop the last point of the non-compatible mode. */
2350
8
            npoints += code;
2351
8
        } else {
2352
0
            code = line_join_points(pgs_lp, plp, nplp, points,
2353
0
                                    (uniform ? (gs_matrix *) 0 : &ctm_only(pgs)),
2354
0
                                    join, reflected);
2355
0
            if (code < 0)
2356
0
                return code;
2357
0
            ASSIGN_POINT(&points[0], plp->e.ce); /* Replace the starting point of the non-compatible mode. */
2358
0
            npoints = code;
2359
0
        }
2360
8
    }
2361
8
    code = add_points(ppath, points, npoints, moveto_first);
2362
8
    if (code < 0)
2363
0
        return code;
2364
8
    code = gx_path_close_subpath(ppath);
2365
8
    return code;
2366
8
}
2367
2368
/* Add a CPSI-compatible segment to the path.  This handles all the complex
2369
 * cases.
2370
 *
2371
 * This method doesn't support start/end/dash caps, but it's only used from
2372
 * postscript, so it doesn't need to.
2373
 */
2374
static int
2375
stroke_add_initial_cap_compat(gx_path * ppath, pl_ptr plp, bool adlust_longitude,
2376
           const gx_device_color * pdevc, gx_device * dev,
2377
           const gs_gstate * pgs)
2378
209
{
2379
209
    const gx_line_params *pgs_lp = gs_currentlineparams_inline(pgs);
2380
209
    gs_fixed_point points[5];
2381
209
    int npoints = 0;
2382
209
    int code;
2383
2384
209
    if (pgs_lp->start_cap == gs_cap_butt)
2385
0
        return 0;
2386
209
    if (plp->thin) {
2387
        /* We didn't set up the endpoint parameters before, */
2388
        /* because the line was thin.  Do it now. */
2389
0
        set_thin_widths(plp);
2390
0
        adjust_stroke(dev, plp, pgs, true, adlust_longitude, 0);
2391
0
        compute_caps(plp);
2392
0
    }
2393
    /* Create an initial cap if desired. */
2394
209
    if (pgs_lp->start_cap == gs_cap_round) {
2395
209
        if ((code = gx_path_add_point(ppath, plp->o.co.x, plp->o.co.y)) < 0 ||
2396
209
            (code = add_round_cap(ppath, &plp->o)) < 0
2397
209
            )
2398
0
            return code;
2399
209
        return 0;
2400
209
    } else {
2401
0
        ASSIGN_POINT(&points[0], plp->o.co);
2402
0
        ++npoints;
2403
0
        if ((code = cap_points(pgs_lp->start_cap, &plp->o, points + npoints)) < 0)
2404
0
            return npoints;
2405
0
        npoints += code;
2406
0
        ASSIGN_POINT(&points[npoints], plp->o.ce);
2407
0
        ++npoints;
2408
0
        code = add_points(ppath, points, npoints, true);
2409
0
        if (code < 0)
2410
0
            return code;
2411
0
        return gx_path_close_subpath(ppath);
2412
0
    }
2413
209
}
2414
2415
/* Add lines with a possible initial moveto. */
2416
static int
2417
add_points(gx_path * ppath, const gs_fixed_point * points, int npoints,
2418
           bool moveto_first)
2419
39.9M
{
2420
39.9M
    int code;
2421
2422
39.9M
    if (moveto_first) {
2423
39.8M
        code = gx_path_add_point(ppath, points[0].x, points[0].y);
2424
39.8M
        if (code < 0)
2425
0
            return code;
2426
39.8M
        return gx_path_add_lines(ppath, points + 1, npoints - 1);
2427
39.8M
    } else {
2428
88.9k
        return gx_path_add_lines(ppath, points, npoints);
2429
88.9k
    }
2430
39.9M
}
2431
2432
/* ---------------- Join computation ---------------- */
2433
2434
/* Compute the points for a bevel, miter, or triangle join. */
2435
/* Treat no join the same as a bevel join. */
2436
/* If pmat != 0, we must inverse-transform the distances for */
2437
/* the miter check. */
2438
static int
2439
line_join_points(const gx_line_params * pgs_lp, pl_ptr plp, pl_ptr nplp,
2440
                 gs_fixed_point * join_points, const gs_matrix * pmat,
2441
                 gs_line_join join, bool reflected)
2442
1.11M
{
2443
1.11M
#define jp1 join_points[0]
2444
1.11M
#define np1 join_points[1]
2445
1.11M
#define np2 join_points[2]
2446
1.11M
#define jp2 join_points[3]
2447
1.11M
#define jpx join_points[4]
2448
    /*
2449
     * Set np to whichever of nplp->o.co or .ce is outside
2450
     * the current line.  We observe that the point (x2,y2)
2451
     * is counter-clockwise from (x1,y1), relative to the origin,
2452
     * iff
2453
     *  (arctan(y2/x2) - arctan(y1/x1)) mod 2*pi < pi,
2454
     * taking the signs of xi and yi into account to determine
2455
     * the quadrants of the results.  It turns out that
2456
     * even though arctan is monotonic only in the 4th/1st
2457
     * quadrants and the 2nd/3rd quadrants, case analysis on
2458
     * the signs of xi and yi demonstrates that this test
2459
     * is equivalent to the much less expensive test
2460
     *  x1 * y2 > x2 * y1
2461
     * in all cases.
2462
     *
2463
     * In the present instance, x1,y1 are plp->width,
2464
     * x2,y2 are nplp->width, and the origin is
2465
     * their common point (plp->e.p, nplp->o.p).
2466
     * ccw will be true iff nplp.o.co (nplp.o.p + width) is
2467
     * counter-clockwise from plp.e.ce (plp.e.p + width),
2468
     * in which case we want tan(a-b) rather than tan(b-a).
2469
     *
2470
     * We make the test using double arithmetic only because
2471
     * the !@#&^*% C language doesn't give us access to
2472
     * the double-width-result multiplication operation
2473
     * that almost all CPUs provide!
2474
     */
2475
1.11M
    bool ccw =
2476
1.11M
        (double)(plp->width.x) /* x1 */ * (nplp->width.y) /* y2 */ >
2477
1.11M
        (double)(nplp->width.x) /* x2 */ * (plp->width.y) /* y1 */;
2478
1.11M
    bool ccw0 = ccw;
2479
1.11M
    p_ptr outp, np;
2480
1.11M
    int   code;
2481
1.11M
    gs_fixed_point mpt;
2482
2483
1.11M
    ccw ^= reflected;
2484
2485
    /* Initialize for a bevel join. */
2486
1.11M
    ASSIGN_POINT(&jp1, plp->e.co);
2487
1.11M
    ASSIGN_POINT(&jp2, plp->e.ce);
2488
2489
    /*
2490
     * Because of stroke adjustment, it is possible that
2491
     * plp->e.p != nplp->o.p.  For that reason, we must use
2492
     * nplp->o.p as np1 or np2.
2493
     */
2494
1.11M
    if (!ccw) {
2495
645k
        outp = &jp2;
2496
645k
        ASSIGN_POINT(&np2, nplp->o.co);
2497
645k
        ASSIGN_POINT(&np1, nplp->o.p);
2498
645k
        np = &np2;
2499
645k
    } else {
2500
473k
        outp = &jp1;
2501
473k
        ASSIGN_POINT(&np1, nplp->o.ce);
2502
473k
        ASSIGN_POINT(&np2, nplp->o.p);
2503
473k
        np = &np1;
2504
473k
    }
2505
1.11M
    if_debug1('O', "[O]use %s\n", (ccw ? "co (ccw)" : "ce (cw)"));
2506
2507
    /* Handle triangular joins now. */
2508
1.11M
    if (join == gs_join_triangle) {
2509
0
        fixed tpx = outp->x - nplp->o.p.x + np->x;
2510
0
        fixed tpy = outp->y - nplp->o.p.y + np->y;
2511
2512
0
        ASSIGN_POINT(&jpx, jp2);
2513
0
        if (!ccw) {
2514
            /* Insert tp between np2 and jp2. */
2515
0
            jp2.x = tpx, jp2.y = tpy;
2516
0
        } else {
2517
            /* Insert tp between jp1 and np1. */
2518
0
            ASSIGN_POINT(&jp2, np2);
2519
0
            ASSIGN_POINT(&np2, np1);
2520
0
            np1.x = tpx, np1.y = tpy;
2521
0
        }
2522
0
        return 5;
2523
0
    }
2524
1.11M
    if (join == gs_join_miter &&
2525
1.11M
        (code = check_miter(pgs_lp, plp, nplp, pmat, outp, np, &mpt, ccw0)) <= 0) {
2526
692k
        if (code < 0)
2527
0
            return code;
2528
692k
        ASSIGN_POINT(outp, mpt);
2529
692k
    }
2530
1.11M
    return 4;
2531
1.11M
}
2532
2533
static int
2534
line_join_points_fast_cw(const gx_line_params * pgs_lp,
2535
                         pl_ptr plp, pl_ptr nplp,
2536
                         gs_fixed_point * rjoin_points,
2537
                         const gs_matrix * pmat,
2538
                         gs_line_join join)
2539
0
{
2540
    /* rjoin_points will be added to a path that is currently at plp->e.ce.
2541
     */
2542
2543
    /* Join will be between plp->e.ce and nplp->o.co */
2544
0
    if (join == gs_join_triangle)
2545
0
    {
2546
0
        gs_fixed_point tp;
2547
2548
0
        tp.x = plp->e.ce.x - nplp->o.p.x + nplp->o.co.x;
2549
0
        tp.y = plp->e.ce.y - nplp->o.p.y + nplp->o.co.y;
2550
0
        ASSIGN_POINT(&rjoin_points[0], tp);
2551
0
        ASSIGN_POINT(&rjoin_points[1], nplp->o.co);
2552
0
        return 2;
2553
0
    }
2554
2555
    /* Set up for a Bevel join */
2556
0
    ASSIGN_POINT(&rjoin_points[0], nplp->o.co);
2557
2558
0
    return 1;
2559
0
}
2560
2561
static int
2562
line_join_points_fast_ccw(const gx_line_params * pgs_lp,
2563
                          pl_ptr plp, pl_ptr nplp,
2564
                          gs_fixed_point * join_points,
2565
                          const gs_matrix * pmat,
2566
                          gs_line_join join)
2567
0
{
2568
    /* join_points will be added to a path that is currently at plp->e.co.
2569
     */
2570
    /* Join will be between plp->e.co and nplp->o.ce */
2571
0
    if (join == gs_join_triangle)
2572
0
    {
2573
0
        gs_fixed_point tp;
2574
2575
0
        tp.x = plp->e.co.x - nplp->o.p.x + nplp->o.ce.x;
2576
0
        tp.y = plp->e.co.y - nplp->o.p.y + nplp->o.ce.y;
2577
0
        ASSIGN_POINT(&join_points[0], tp);
2578
0
        ASSIGN_POINT(&join_points[1], nplp->o.ce);
2579
0
        return 2;
2580
0
    }
2581
2582
    /* Set up for a Bevel join */
2583
0
    ASSIGN_POINT(&join_points[0], nplp->o.ce);
2584
2585
0
    return 1;
2586
0
}
2587
/* ---------------- Cap computations ---------------- */
2588
2589
/* Compute the endpoints of the two caps of a segment. */
2590
/* Only o.p, e.p, width, and cdelta have been set. */
2591
static void
2592
compute_caps(pl_ptr plp)
2593
39.9M
{
2594
39.9M
    fixed wx2 = plp->width.x;
2595
39.9M
    fixed wy2 = plp->width.y;
2596
2597
39.9M
    plp->o.co.x = plp->o.p.x + wx2, plp->o.co.y = plp->o.p.y + wy2;
2598
39.9M
    plp->o.cdelta.x = -plp->e.cdelta.x,
2599
39.9M
        plp->o.cdelta.y = -plp->e.cdelta.y;
2600
39.9M
    plp->o.ce.x = plp->o.p.x - wx2, plp->o.ce.y = plp->o.p.y - wy2;
2601
39.9M
    plp->e.co.x = plp->e.p.x - wx2, plp->e.co.y = plp->e.p.y - wy2;
2602
39.9M
    plp->e.ce.x = plp->e.p.x + wx2, plp->e.ce.y = plp->e.p.y + wy2;
2603
#ifdef DEBUG
2604
    if (gs_debug_c('O')) {
2605
        dlprintf4("[o]Stroke o=(%f,%f) e=(%f,%f)\n",
2606
                  fixed2float(plp->o.p.x), fixed2float(plp->o.p.y),
2607
                  fixed2float(plp->e.p.x), fixed2float(plp->e.p.y));
2608
        dlprintf4("\twxy=(%f,%f) lxy=(%f,%f)\n",
2609
                  fixed2float(wx2), fixed2float(wy2),
2610
                  fixed2float(plp->e.cdelta.x),
2611
                  fixed2float(plp->e.cdelta.y));
2612
    }
2613
#endif
2614
39.9M
}
2615
2616
#define px endp->p.x
2617
#define py endp->p.y
2618
#define xo endp->co.x
2619
#define yo endp->co.y
2620
#define xe endp->ce.x
2621
#define ye endp->ce.y
2622
#define cdx endp->cdelta.x
2623
#define cdy endp->cdelta.y
2624
2625
/* Add a round cap to a path. */
2626
/* Assume the current point is the cap origin (endp->co). */
2627
static int
2628
add_round_cap(gx_path * ppath, const_ep_ptr endp)
2629
418
{
2630
418
    int code;
2631
2632
    /*
2633
     * Per the Red Book, we draw a full circle, even though a semicircle
2634
     * is sufficient for the join.
2635
     */
2636
418
    if ((code = gx_path_add_partial_arc(ppath, px + cdx, py + cdy,
2637
418
                                        xo + cdx, yo + cdy,
2638
418
                                        quarter_arc_fraction)) < 0 ||
2639
418
        (code = gx_path_add_partial_arc(ppath, xe, ye, xe + cdx, ye + cdy,
2640
418
                                        quarter_arc_fraction)) < 0 ||
2641
418
        (code = gx_path_add_partial_arc(ppath, px - cdx, py - cdy,
2642
418
                                        xe - cdx, ye - cdy,
2643
418
                                        quarter_arc_fraction)) < 0 ||
2644
418
        (code = gx_path_add_partial_arc(ppath, xo, yo, xo - cdx, yo - cdy,
2645
418
                                        quarter_arc_fraction)) < 0 ||
2646
        /* The final point must be (xe,ye). */
2647
418
        (code = gx_path_add_line(ppath, xe, ye)) < 0
2648
418
        )
2649
0
        return code;
2650
418
    return 0;
2651
418
}
2652
2653
/* Add a semicircular cap to a path. */
2654
/* Assume the current point is the cap origin (endp->co). */
2655
static int
2656
add_pie_cap(gx_path * ppath, const_ep_ptr endp)
2657
178k
{
2658
178k
    int code;
2659
2660
178k
    if ((code = gx_path_add_partial_arc(ppath, px + cdx, py + cdy,
2661
178k
                                        xo + cdx, yo + cdy,
2662
178k
                                        quarter_arc_fraction)) < 0 ||
2663
178k
        (code = gx_path_add_partial_arc(ppath, xe, ye, xe + cdx, ye + cdy,
2664
178k
                                        quarter_arc_fraction)) < 0 ||
2665
178k
        (code = gx_path_add_line(ppath, xe, ye)) < 0)
2666
0
        return code;
2667
178k
    return 0;
2668
178k
}
2669
2670
static int
2671
do_pie_join(gx_path * ppath, gs_fixed_point *centre,
2672
            gs_fixed_point *current_orig, gs_fixed_point *current_tangent,
2673
            gs_fixed_point *final, gs_fixed_point *final_tangent, bool ccw,
2674
            gs_fixed_point *width)
2675
4.37M
{
2676
4.37M
    int code;
2677
4.37M
    double rad_squared, dist_squared, F;
2678
4.37M
    gs_fixed_point current, tangent, tangmeet;
2679
2680
4.37M
    tangent.x = current_tangent->x;
2681
4.37M
    tangent.y = current_tangent->y;
2682
4.37M
    current.x = current_orig->x;
2683
4.37M
    current.y = current_orig->y;
2684
2685
    /* Is the join more than 90 degrees? */
2686
4.37M
    if ((double)tangent.x * (double)final_tangent->x +
2687
4.37M
        (double)tangent.y * (double)final_tangent->y > 0) {
2688
        /* Yes, so do a quarter turn. */
2689
59.2k
        code = gx_path_add_partial_arc(ppath,
2690
59.2k
                                       centre->x + tangent.x,
2691
59.2k
                                       centre->y + tangent.y,
2692
                                       /* Point where tangents meet */
2693
59.2k
                                       current.x + tangent.x,
2694
59.2k
                                       current.y + tangent.y,
2695
59.2k
                                       quarter_arc_fraction);
2696
59.2k
        if (code < 0)
2697
0
            return code;
2698
59.2k
        current.x = centre->x + tangent.x;
2699
59.2k
        current.y = centre->y + tangent.y;
2700
59.2k
        if (ccw) {
2701
1
            int tmp = tangent.x;
2702
1
            tangent.x = -tangent.y;
2703
1
            tangent.y = tmp;
2704
59.2k
        } else {
2705
59.2k
            int tmp = tangent.x;
2706
59.2k
            tangent.x = tangent.y;
2707
59.2k
            tangent.y = -tmp;
2708
59.2k
        }
2709
59.2k
    }
2710
2711
    /* Now we are guaranteed that the remaining arc is 90 degrees or
2712
     * less. Find where the tangents meet for this final section. */
2713
4.37M
    if (line_intersect(&current, &tangent,
2714
4.37M
                       final, final_tangent, &tangmeet) != 0) {
2715
2.63M
        return gx_path_add_line(ppath, final->x, final->y);
2716
2.63M
    }
2717
1.74M
    current.x -= tangmeet.x;
2718
1.74M
    current.y -= tangmeet.y;
2719
1.74M
    dist_squared = ((double)current.x) * current.x +
2720
1.74M
                   ((double)current.y) * current.y;
2721
1.74M
    rad_squared  = ((double)width->x) * width->x +
2722
1.74M
                   ((double)width->y) * width->y;
2723
1.74M
    dist_squared /= rad_squared;
2724
1.74M
    F = (4.0/3.0)*(1/(1+sqrt(1+dist_squared)));
2725
1.74M
    return gx_path_add_partial_arc(ppath, final->x, final->y,
2726
4.37M
                                   tangmeet.x, tangmeet.y, F);
2727
4.37M
}
2728
2729
/* Add a pie shaped join to a path. */
2730
/* Assume the current point is the cap origin (endp->co). */
2731
static int
2732
add_pie_join(gx_path * ppath, pl_ptr plp, pl_ptr nplp, bool reflected,
2733
             bool cap)
2734
37.7M
{
2735
37.7M
    int code;
2736
37.7M
    gs_fixed_point *current, *final, *tangent, *final_tangent;
2737
37.7M
    double l, r;
2738
37.7M
    bool ccw;
2739
2740
37.7M
    l = (double)(plp->width.x) /* x1 */ * (nplp->width.y) /* y2 */;
2741
37.7M
    r = (double)(nplp->width.x) /* x2 */ * (plp->width.y) /* y1 */;
2742
2743
37.7M
    if (l == r) {
2744
        /* Colinear. Suppress drawing a cap unless the path reverses direction. */
2745
33.5M
        if (cap &&
2746
33.5M
            ((double)(plp->width.x) * (nplp->width.x) + (double)(nplp->width.y) * (plp->width.y)) < 0)
2747
324
            return add_pie_cap(ppath, &plp->e);
2748
33.5M
        else
2749
33.5M
            return gx_path_add_line(ppath, plp->e.ce.x, plp->e.ce.y);
2750
33.5M
    }
2751
2752
4.21M
    ccw = (l > r);
2753
2754
4.21M
    ccw ^= reflected;
2755
2756
    /* At this point, the current point is plp->e.co */
2757
4.21M
    if (ccw) {
2758
1.96M
        current       = & plp->e.co;
2759
1.96M
        final         = &nplp->o.ce;
2760
1.96M
        tangent       = & plp->e.cdelta;
2761
1.96M
        final_tangent = &nplp->o.cdelta;
2762
        /* Check for no join required */
2763
1.96M
        if (current->x == final->x && current->y == final->y) {
2764
0
            return gx_path_add_line(ppath, plp->e.ce.x, plp->e.ce.y);
2765
0
        }
2766
2.25M
    } else {
2767
2.25M
        current       = &nplp->o.co;
2768
2.25M
        final         = & plp->e.ce;
2769
2.25M
        tangent       = &nplp->o.cdelta;
2770
2.25M
        final_tangent = & plp->e.cdelta;
2771
2.25M
        code = gx_path_add_line(ppath, plp->e.p.x, plp->e.p.y);
2772
2.25M
        if (code < 0)
2773
0
            return code;
2774
2.25M
        code = gx_path_add_line(ppath, current->x, current->y);
2775
2.25M
        if (code < 0)
2776
0
            return code;
2777
2.25M
        if (current->x == final->x && current->y == final->y)
2778
0
            return 0;
2779
2.25M
    }
2780
2781
4.21M
    if ((code = do_pie_join(ppath, &plp->e.p, current, tangent,
2782
4.21M
                            final, final_tangent, !reflected, &plp->width)) < 0)
2783
0
        return code;
2784
4.21M
    if (ccw &&
2785
4.21M
        ((code = gx_path_add_line(ppath, plp->e.p.x, plp->e.p.y)) < 0 ||
2786
1.96M
         (code = gx_path_add_line(ppath, plp->e.ce.x, plp->e.ce.y)) < 0))
2787
0
        return code;
2788
2789
4.21M
    return 0;
2790
4.21M
}
2791
2792
/* Add a pie shaped join to a path. */
2793
static int
2794
add_pie_join_fast_cw(gx_path * rpath, pl_ptr plp, pl_ptr nplp, bool reflected)
2795
0
{
2796
    /* At this point, the current point is plp->e.ce */
2797
0
    if (plp->e.ce.x == nplp->o.co.x && plp->e.ce.y == nplp->o.co.y)
2798
0
        return 0;
2799
2800
0
    return do_pie_join(rpath, &plp->e.p, &plp->e.ce, &plp->e.cdelta,
2801
0
                       &nplp->o.co, &nplp->o.cdelta, reflected, &plp->width);
2802
0
}
2803
2804
static int
2805
add_pie_join_fast_ccw(gx_path * ppath, pl_ptr plp, pl_ptr nplp, bool reflected)
2806
0
{
2807
    /* At this point, the current point is plp->e.co */
2808
    /* Check for no join required */
2809
0
    if (plp->e.co.x == nplp->o.ce.x && plp->e.co.y == nplp->o.ce.y)
2810
0
        return 0;
2811
2812
0
    return do_pie_join(ppath, &plp->e.p, &plp->e.co, &plp->e.cdelta,
2813
0
                       &nplp->o.ce, &nplp->o.cdelta, !reflected, &plp->width);
2814
0
}
2815
2816
static int
2817
join_under_pie(gx_path * ppath, pl_ptr plp, pl_ptr nplp, bool reflected)
2818
38.1M
{
2819
38.1M
    int code;
2820
38.1M
    gs_fixed_point dirn1, dirn2, tangmeet;
2821
38.1M
    double l, r;
2822
38.1M
    bool ccw;
2823
2824
38.1M
    l = (double)(plp->width.x) /* x1 */ * (nplp->width.y) /* y2 */;
2825
38.1M
    r = (double)(nplp->width.x) /* x2 */ * (plp->width.y) /* y1 */;
2826
2827
38.1M
    if (l == r)
2828
33.6M
        return 0;
2829
2830
4.44M
    ccw = (l > r);
2831
2832
4.44M
    ccw ^= reflected;
2833
2834
4.44M
    if (ccw) {
2835
2.08M
        dirn1.x = - plp->width.x;
2836
2.08M
        dirn1.y = - plp->width.y;
2837
2.08M
        dirn2.x = -nplp->width.x;
2838
2.08M
        dirn2.y = -nplp->width.y;
2839
2.08M
        if (line_intersect(& plp->o.co, &dirn1,
2840
2.08M
                           &nplp->e.ce, &dirn2, &tangmeet) != 0)
2841
1.99M
            return 0;
2842
84.2k
        if ((code = gx_path_close_subpath(ppath)) < 0 ||
2843
84.2k
            (code = gx_path_add_point(ppath, tangmeet.x, tangmeet.y)) < 0  ||
2844
84.2k
            (code = gx_path_add_line(ppath,plp->o.co.x,plp->o.co.y)) < 0 ||
2845
84.2k
            (code = do_pie_join(ppath, &plp->e.p, &plp->o.co, &plp->o.cdelta,
2846
84.2k
                                &nplp->e.ce, &nplp->e.cdelta, !reflected,
2847
84.2k
                                &plp->width)))
2848
0
            return code;
2849
2.36M
    } else {
2850
2.36M
        if (line_intersect(& plp->o.ce, & plp->width,
2851
2.36M
                           &nplp->e.co, &nplp->width, &tangmeet) != 0)
2852
2.28M
            return 0;
2853
77.7k
        if ((code = gx_path_close_subpath(ppath)) < 0 ||
2854
77.7k
            (code = gx_path_add_point(ppath, tangmeet.x, tangmeet.y)) < 0  ||
2855
77.7k
            (code = gx_path_add_line(ppath,nplp->e.co.x,nplp->e.co.y)) < 0 ||
2856
77.7k
            (code = do_pie_join(ppath, &plp->e.p,&nplp->e.co,&nplp->e.cdelta,
2857
77.7k
                                &plp->o.ce, &plp->o.cdelta, !reflected,
2858
77.7k
                                &plp->width)))
2859
0
            return code;
2860
77.7k
    }
2861
161k
    return 0;
2862
4.44M
}
2863
2864
/* Compute the points for a non-round cap. */
2865
/* Return the number of points. */
2866
static int
2867
cap_points(gs_line_cap type, const_ep_ptr endp, gs_fixed_point *pts /*[3]*/)
2868
40.8M
{
2869
40.8M
#define PUT_POINT(i, px, py)\
2870
81.6M
  pts[i].x = (px), pts[i].y = (py)
2871
40.8M
    switch (type) {
2872
40.8M
        case gs_cap_butt:
2873
40.8M
            PUT_POINT(0, xo, yo);
2874
40.8M
            PUT_POINT(1, xe, ye);
2875
40.8M
            return 2;
2876
33.3k
        case gs_cap_square:
2877
33.3k
            PUT_POINT(0, xo + cdx, yo + cdy);
2878
33.3k
            PUT_POINT(1, xe + cdx, ye + cdy);
2879
33.3k
            return 2;
2880
48
        case gs_cap_triangle:   /* (not supported by PostScript) */
2881
48
            PUT_POINT(0, xo, yo);
2882
48
            PUT_POINT(1, px + cdx, py + cdy);
2883
48
            PUT_POINT(2, xe, ye);
2884
48
            return 3;
2885
0
        default:                /* can't happen */
2886
0
            return_error(gs_error_unregistered);
2887
40.8M
    }
2888
40.8M
#undef PUT_POINT
2889
40.8M
}