/src/ghostpdl/obj/jchuff.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * jchuff.c |
3 | | * |
4 | | * Copyright (C) 1991-1997, Thomas G. Lane. |
5 | | * Modified 2006-2023 by Guido Vollbeding. |
6 | | * This file is part of the Independent JPEG Group's software. |
7 | | * For conditions of distribution and use, see the accompanying README file. |
8 | | * |
9 | | * This file contains Huffman entropy encoding routines. |
10 | | * Both sequential and progressive modes are supported in this single module. |
11 | | * |
12 | | * Much of the complexity here has to do with supporting output suspension. |
13 | | * If the data destination module demands suspension, we want to be able to |
14 | | * back up to the start of the current MCU. To do this, we copy state |
15 | | * variables into local working storage, and update them back to the |
16 | | * permanent JPEG objects only upon successful completion of an MCU. |
17 | | * |
18 | | * We do not support output suspension for the progressive JPEG mode, since |
19 | | * the library currently does not allow multiple-scan files to be written |
20 | | * with output suspension. |
21 | | */ |
22 | | |
23 | | #define JPEG_INTERNALS |
24 | | #include "jinclude.h" |
25 | | #include "jpeglib.h" |
26 | | |
27 | | |
28 | | /* The legal range of a DCT coefficient is |
29 | | * -1024 .. +1023 for 8-bit sample data precision; |
30 | | * -16384 .. +16383 for 12-bit sample data precision. |
31 | | * Hence the magnitude should always fit in sample data precision + 2 bits. |
32 | | */ |
33 | | |
34 | | /* Derived data constructed for each Huffman table */ |
35 | | |
36 | | typedef struct { |
37 | | unsigned int ehufco[256]; /* code for each symbol */ |
38 | | char ehufsi[256]; /* length of code for each symbol */ |
39 | | /* If no code has been allocated for a symbol S, ehufsi[S] contains 0 */ |
40 | | } c_derived_tbl; |
41 | | |
42 | | |
43 | | /* Expanded entropy encoder object for Huffman encoding. |
44 | | * |
45 | | * The savable_state subrecord contains fields that change within an MCU, |
46 | | * but must not be updated permanently until we complete the MCU. |
47 | | */ |
48 | | |
49 | | typedef struct { |
50 | | INT32 put_buffer; /* current bit-accumulation buffer */ |
51 | | int put_bits; /* # of bits now in it */ |
52 | | int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ |
53 | | } savable_state; |
54 | | |
55 | | /* This macro is to work around compilers with missing or broken |
56 | | * structure assignment. You'll need to fix this code if you have |
57 | | * such a compiler and you change MAX_COMPS_IN_SCAN. |
58 | | */ |
59 | | |
60 | | #ifndef NO_STRUCT_ASSIGN |
61 | 0 | #define ASSIGN_STATE(dest,src) ((dest) = (src)) |
62 | | #else |
63 | | #if MAX_COMPS_IN_SCAN == 4 |
64 | | #define ASSIGN_STATE(dest,src) \ |
65 | | ((dest).put_buffer = (src).put_buffer, \ |
66 | | (dest).put_bits = (src).put_bits, \ |
67 | | (dest).last_dc_val[0] = (src).last_dc_val[0], \ |
68 | | (dest).last_dc_val[1] = (src).last_dc_val[1], \ |
69 | | (dest).last_dc_val[2] = (src).last_dc_val[2], \ |
70 | | (dest).last_dc_val[3] = (src).last_dc_val[3]) |
71 | | #endif |
72 | | #endif |
73 | | |
74 | | |
75 | | typedef struct { |
76 | | struct jpeg_entropy_encoder pub; /* public fields */ |
77 | | |
78 | | savable_state saved; /* Bit buffer & DC state at start of MCU */ |
79 | | |
80 | | /* These fields are NOT loaded into local working state. */ |
81 | | unsigned int restarts_to_go; /* MCUs left in this restart interval */ |
82 | | int next_restart_num; /* next restart number to write (0-7) */ |
83 | | |
84 | | /* Pointers to derived tables (these workspaces have image lifespan) */ |
85 | | c_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS]; |
86 | | c_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS]; |
87 | | |
88 | | /* Statistics tables for optimization */ |
89 | | long * dc_count_ptrs[NUM_HUFF_TBLS]; |
90 | | long * ac_count_ptrs[NUM_HUFF_TBLS]; |
91 | | |
92 | | /* Following fields used only in progressive mode */ |
93 | | |
94 | | /* Mode flag: TRUE for optimization, FALSE for actual data output */ |
95 | | boolean gather_statistics; |
96 | | |
97 | | /* next_output_byte/free_in_buffer are local copies of cinfo->dest fields. |
98 | | */ |
99 | | JOCTET * next_output_byte; /* => next byte to write in buffer */ |
100 | | size_t free_in_buffer; /* # of byte spaces remaining in buffer */ |
101 | | j_compress_ptr cinfo; /* link to cinfo (needed for dump_buffer) */ |
102 | | |
103 | | /* Coding status for AC components */ |
104 | | int ac_tbl_no; /* the table number of the single component */ |
105 | | unsigned int EOBRUN; /* run length of EOBs */ |
106 | | unsigned int BE; /* # of buffered correction bits before MCU */ |
107 | | char * bit_buffer; /* buffer for correction bits (1 per char) */ |
108 | | /* packing correction bits tightly would save some space but cost time... */ |
109 | | } huff_entropy_encoder; |
110 | | |
111 | | typedef huff_entropy_encoder * huff_entropy_ptr; |
112 | | |
113 | | /* Working state while writing an MCU (sequential mode). |
114 | | * This struct contains all the fields that are needed by subroutines. |
115 | | */ |
116 | | |
117 | | typedef struct { |
118 | | JOCTET * next_output_byte; /* => next byte to write in buffer */ |
119 | | size_t free_in_buffer; /* # of byte spaces remaining in buffer */ |
120 | | savable_state cur; /* Current bit buffer & DC state */ |
121 | | j_compress_ptr cinfo; /* dump_buffer needs access to this */ |
122 | | } working_state; |
123 | | |
124 | | /* MAX_CORR_BITS is the number of bits the AC refinement correction-bit |
125 | | * buffer can hold. Larger sizes may slightly improve compression, but |
126 | | * 1000 is already well into the realm of overkill. |
127 | | * The minimum safe size is 64 bits. |
128 | | */ |
129 | | |
130 | 0 | #define MAX_CORR_BITS 1000 /* Max # of correction bits I can buffer */ |
131 | | |
132 | | /* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32. |
133 | | * We assume that int right shift is unsigned if INT32 right shift is, |
134 | | * which should be safe. |
135 | | */ |
136 | | |
137 | | #ifdef RIGHT_SHIFT_IS_UNSIGNED |
138 | | #define ISHIFT_TEMPS int ishift_temp; |
139 | | #define IRIGHT_SHIFT(x,shft) \ |
140 | | ((ishift_temp = (x)) < 0 ? \ |
141 | | (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \ |
142 | | (ishift_temp >> (shft))) |
143 | | #else |
144 | | #define ISHIFT_TEMPS |
145 | 0 | #define IRIGHT_SHIFT(x,shft) ((x) >> (shft)) |
146 | | #endif |
147 | | |
148 | | |
149 | | /* |
150 | | * Compute the derived values for a Huffman table. |
151 | | * This routine also performs some validation checks on the table. |
152 | | */ |
153 | | |
154 | | LOCAL(void) |
155 | | jpeg_make_c_derived_tbl (j_compress_ptr cinfo, boolean isDC, int tblno, |
156 | | c_derived_tbl ** pdtbl) |
157 | 0 | { |
158 | 0 | JHUFF_TBL *htbl; |
159 | 0 | c_derived_tbl *dtbl; |
160 | 0 | int p, i, l, lastp, si, maxsymbol; |
161 | 0 | char huffsize[257]; |
162 | 0 | unsigned int huffcode[257]; |
163 | 0 | unsigned int code; |
164 | | |
165 | | /* Note that huffsize[] and huffcode[] are filled in code-length order, |
166 | | * paralleling the order of the symbols themselves in htbl->huffval[]. |
167 | | */ |
168 | | |
169 | | /* Find the input Huffman table */ |
170 | 0 | if (tblno < 0 || tblno >= NUM_HUFF_TBLS) |
171 | 0 | ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); |
172 | 0 | htbl = |
173 | 0 | isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno]; |
174 | 0 | if (htbl == NULL) |
175 | 0 | htbl = jpeg_std_huff_table((j_common_ptr) cinfo, isDC, tblno); |
176 | | |
177 | | /* Allocate a workspace if we haven't already done so. */ |
178 | 0 | if (*pdtbl == NULL) |
179 | 0 | *pdtbl = (c_derived_tbl *) (*cinfo->mem->alloc_small) |
180 | 0 | ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(c_derived_tbl)); |
181 | 0 | dtbl = *pdtbl; |
182 | | |
183 | | /* Figure C.1: make table of Huffman code length for each symbol */ |
184 | |
|
185 | 0 | p = 0; |
186 | 0 | for (l = 1; l <= 16; l++) { |
187 | 0 | i = (int) htbl->bits[l]; |
188 | 0 | if (i < 0 || p + i > 256) /* protect against table overrun */ |
189 | 0 | ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); |
190 | 0 | while (i--) |
191 | 0 | huffsize[p++] = (char) l; |
192 | 0 | } |
193 | 0 | huffsize[p] = 0; |
194 | 0 | lastp = p; |
195 | | |
196 | | /* Figure C.2: generate the codes themselves */ |
197 | | /* We also validate that the counts represent a legal Huffman code tree. */ |
198 | |
|
199 | 0 | code = 0; |
200 | 0 | si = huffsize[0]; |
201 | 0 | p = 0; |
202 | 0 | while (huffsize[p]) { |
203 | 0 | while (((int) huffsize[p]) == si) { |
204 | 0 | huffcode[p++] = code; |
205 | 0 | code++; |
206 | 0 | } |
207 | | /* code is now 1 more than the last code used for codelength si; but |
208 | | * it must still fit in si bits, since no code is allowed to be all ones. |
209 | | */ |
210 | 0 | if (((INT32) code) >= (((INT32) 1) << si)) |
211 | 0 | ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); |
212 | 0 | code <<= 1; |
213 | 0 | si++; |
214 | 0 | } |
215 | | |
216 | | /* Figure C.3: generate encoding tables */ |
217 | | /* These are code and size indexed by symbol value */ |
218 | | |
219 | | /* Set all codeless symbols to have code length 0; |
220 | | * this lets us detect duplicate VAL entries here, and later |
221 | | * allows emit_bits to detect any attempt to emit such symbols. |
222 | | */ |
223 | 0 | MEMZERO(dtbl->ehufsi, SIZEOF(dtbl->ehufsi)); |
224 | | |
225 | | /* This is also a convenient place to check for out-of-range |
226 | | * and duplicated VAL entries. We allow 0..255 for AC symbols |
227 | | * but only 0..15 for DC. (We could constrain them further |
228 | | * based on data depth and mode, but this seems enough.) |
229 | | */ |
230 | 0 | maxsymbol = isDC ? 15 : 255; |
231 | |
|
232 | 0 | for (p = 0; p < lastp; p++) { |
233 | 0 | i = htbl->huffval[p]; |
234 | 0 | if (i < 0 || i > maxsymbol || dtbl->ehufsi[i]) |
235 | 0 | ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); |
236 | 0 | dtbl->ehufco[i] = huffcode[p]; |
237 | 0 | dtbl->ehufsi[i] = huffsize[p]; |
238 | 0 | } |
239 | 0 | } |
240 | | |
241 | | |
242 | | /* Outputting bytes to the file. |
243 | | * NB: these must be called only when actually outputting, |
244 | | * that is, entropy->gather_statistics == FALSE. |
245 | | */ |
246 | | |
247 | | /* Emit a byte, taking 'action' if must suspend. */ |
248 | | #define emit_byte_s(state,val,action) \ |
249 | 0 | { *(state)->next_output_byte++ = (JOCTET) (val); \ |
250 | 0 | if (--(state)->free_in_buffer == 0) \ |
251 | 0 | if (! dump_buffer_s(state)) \ |
252 | 0 | { action; } } |
253 | | |
254 | | /* Emit a byte */ |
255 | | #define emit_byte_e(entropy,val) \ |
256 | 0 | { *(entropy)->next_output_byte++ = (JOCTET) (val); \ |
257 | 0 | if (--(entropy)->free_in_buffer == 0) \ |
258 | 0 | dump_buffer_e(entropy); } |
259 | | |
260 | | |
261 | | LOCAL(boolean) |
262 | | dump_buffer_s (working_state * state) |
263 | | /* Empty the output buffer; return TRUE if successful, FALSE if must suspend */ |
264 | 0 | { |
265 | 0 | struct jpeg_destination_mgr * dest = state->cinfo->dest; |
266 | |
|
267 | 0 | if (! (*dest->empty_output_buffer) (state->cinfo)) |
268 | 0 | return FALSE; |
269 | | /* After a successful buffer dump, must reset buffer pointers */ |
270 | 0 | state->next_output_byte = dest->next_output_byte; |
271 | 0 | state->free_in_buffer = dest->free_in_buffer; |
272 | 0 | return TRUE; |
273 | 0 | } |
274 | | |
275 | | |
276 | | LOCAL(void) |
277 | | dump_buffer_e (huff_entropy_ptr entropy) |
278 | | /* Empty the output buffer; we do not support suspension in this case. */ |
279 | 0 | { |
280 | 0 | struct jpeg_destination_mgr * dest = entropy->cinfo->dest; |
281 | |
|
282 | 0 | if (! (*dest->empty_output_buffer) (entropy->cinfo)) |
283 | 0 | ERREXIT(entropy->cinfo, JERR_CANT_SUSPEND); |
284 | | /* After a successful buffer dump, must reset buffer pointers */ |
285 | 0 | entropy->next_output_byte = dest->next_output_byte; |
286 | 0 | entropy->free_in_buffer = dest->free_in_buffer; |
287 | 0 | } |
288 | | |
289 | | |
290 | | /* Outputting bits to the file */ |
291 | | |
292 | | /* Only the right 24 bits of put_buffer are used; the valid bits are |
293 | | * left-justified in this part. At most 16 bits can be passed to emit_bits |
294 | | * in one call, and we never retain more than 7 bits in put_buffer |
295 | | * between calls, so 24 bits are sufficient. |
296 | | */ |
297 | | |
298 | | INLINE |
299 | | LOCAL(boolean) |
300 | | emit_bits_s (working_state * state, unsigned int code, int size) |
301 | | /* Emit some bits; return TRUE if successful, FALSE if must suspend */ |
302 | 0 | { |
303 | | /* This routine is heavily used, so it's worth coding tightly. */ |
304 | 0 | register INT32 put_buffer; |
305 | 0 | register int put_bits; |
306 | | |
307 | | /* if size is 0, caller used an invalid Huffman table entry */ |
308 | 0 | if (size == 0) |
309 | 0 | ERREXIT(state->cinfo, JERR_HUFF_MISSING_CODE); |
310 | | |
311 | | /* mask off any extra bits in code */ |
312 | 0 | put_buffer = ((INT32) code) & ((((INT32) 1) << size) - 1); |
313 | | |
314 | | /* new number of bits in buffer */ |
315 | 0 | put_bits = size + state->cur.put_bits; |
316 | |
|
317 | 0 | put_buffer <<= 24 - put_bits; /* align incoming bits */ |
318 | | |
319 | | /* and merge with old buffer contents */ |
320 | 0 | put_buffer |= state->cur.put_buffer; |
321 | |
|
322 | 0 | while (put_bits >= 8) { |
323 | 0 | int c = (int) ((put_buffer >> 16) & 0xFF); |
324 | |
|
325 | 0 | emit_byte_s(state, c, return FALSE); |
326 | 0 | if (c == 0xFF) { /* need to stuff a zero byte? */ |
327 | 0 | emit_byte_s(state, 0, return FALSE); |
328 | 0 | } |
329 | 0 | put_buffer <<= 8; |
330 | 0 | put_bits -= 8; |
331 | 0 | } |
332 | | |
333 | 0 | state->cur.put_buffer = put_buffer; /* update state variables */ |
334 | 0 | state->cur.put_bits = put_bits; |
335 | |
|
336 | 0 | return TRUE; |
337 | 0 | } |
338 | | |
339 | | |
340 | | INLINE |
341 | | LOCAL(void) |
342 | | emit_bits_e (huff_entropy_ptr entropy, unsigned int code, int size) |
343 | | /* Emit some bits, unless we are in gather mode */ |
344 | 0 | { |
345 | | /* This routine is heavily used, so it's worth coding tightly. */ |
346 | 0 | register INT32 put_buffer; |
347 | 0 | register int put_bits; |
348 | | |
349 | | /* if size is 0, caller used an invalid Huffman table entry */ |
350 | 0 | if (size == 0) |
351 | 0 | ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE); |
352 | |
|
353 | 0 | if (entropy->gather_statistics) |
354 | 0 | return; /* do nothing if we're only getting stats */ |
355 | | |
356 | | /* mask off any extra bits in code */ |
357 | 0 | put_buffer = ((INT32) code) & ((((INT32) 1) << size) - 1); |
358 | | |
359 | | /* new number of bits in buffer */ |
360 | 0 | put_bits = size + entropy->saved.put_bits; |
361 | |
|
362 | 0 | put_buffer <<= 24 - put_bits; /* align incoming bits */ |
363 | | |
364 | | /* and merge with old buffer contents */ |
365 | 0 | put_buffer |= entropy->saved.put_buffer; |
366 | |
|
367 | 0 | while (put_bits >= 8) { |
368 | 0 | int c = (int) ((put_buffer >> 16) & 0xFF); |
369 | |
|
370 | 0 | emit_byte_e(entropy, c); |
371 | 0 | if (c == 0xFF) { /* need to stuff a zero byte? */ |
372 | 0 | emit_byte_e(entropy, 0); |
373 | 0 | } |
374 | 0 | put_buffer <<= 8; |
375 | 0 | put_bits -= 8; |
376 | 0 | } |
377 | |
|
378 | 0 | entropy->saved.put_buffer = put_buffer; /* update variables */ |
379 | 0 | entropy->saved.put_bits = put_bits; |
380 | 0 | } |
381 | | |
382 | | |
383 | | LOCAL(boolean) |
384 | | flush_bits_s (working_state * state) |
385 | 0 | { |
386 | 0 | if (! emit_bits_s(state, 0x7F, 7)) /* fill any partial byte with ones */ |
387 | 0 | return FALSE; |
388 | 0 | state->cur.put_buffer = 0; /* and reset bit-buffer to empty */ |
389 | 0 | state->cur.put_bits = 0; |
390 | 0 | return TRUE; |
391 | 0 | } |
392 | | |
393 | | |
394 | | LOCAL(void) |
395 | | flush_bits_e (huff_entropy_ptr entropy) |
396 | 0 | { |
397 | 0 | emit_bits_e(entropy, 0x7F, 7); /* fill any partial byte with ones */ |
398 | 0 | entropy->saved.put_buffer = 0; /* and reset bit-buffer to empty */ |
399 | 0 | entropy->saved.put_bits = 0; |
400 | 0 | } |
401 | | |
402 | | |
403 | | /* |
404 | | * Emit (or just count) a Huffman symbol. |
405 | | */ |
406 | | |
407 | | INLINE |
408 | | LOCAL(void) |
409 | | emit_dc_symbol (huff_entropy_ptr entropy, int tbl_no, int symbol) |
410 | 0 | { |
411 | 0 | if (entropy->gather_statistics) |
412 | 0 | entropy->dc_count_ptrs[tbl_no][symbol]++; |
413 | 0 | else { |
414 | 0 | c_derived_tbl * tbl = entropy->dc_derived_tbls[tbl_no]; |
415 | 0 | emit_bits_e(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]); |
416 | 0 | } |
417 | 0 | } |
418 | | |
419 | | |
420 | | INLINE |
421 | | LOCAL(void) |
422 | | emit_ac_symbol (huff_entropy_ptr entropy, int tbl_no, int symbol) |
423 | 0 | { |
424 | 0 | if (entropy->gather_statistics) |
425 | 0 | entropy->ac_count_ptrs[tbl_no][symbol]++; |
426 | 0 | else { |
427 | 0 | c_derived_tbl * tbl = entropy->ac_derived_tbls[tbl_no]; |
428 | 0 | emit_bits_e(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]); |
429 | 0 | } |
430 | 0 | } |
431 | | |
432 | | |
433 | | /* |
434 | | * Emit bits from a correction bit buffer. |
435 | | */ |
436 | | |
437 | | LOCAL(void) |
438 | | emit_buffered_bits (huff_entropy_ptr entropy, char * bufstart, |
439 | | unsigned int nbits) |
440 | 0 | { |
441 | 0 | if (entropy->gather_statistics) |
442 | 0 | return; /* no real work */ |
443 | | |
444 | 0 | while (nbits > 0) { |
445 | 0 | emit_bits_e(entropy, (unsigned int) (*bufstart), 1); |
446 | 0 | bufstart++; |
447 | 0 | nbits--; |
448 | 0 | } |
449 | 0 | } |
450 | | |
451 | | |
452 | | /* |
453 | | * Emit any pending EOBRUN symbol. |
454 | | */ |
455 | | |
456 | | LOCAL(void) |
457 | | emit_eobrun (huff_entropy_ptr entropy) |
458 | 0 | { |
459 | 0 | register int temp, nbits; |
460 | |
|
461 | 0 | if (entropy->EOBRUN > 0) { /* if there is any pending EOBRUN */ |
462 | 0 | temp = entropy->EOBRUN; |
463 | 0 | nbits = 0; |
464 | 0 | while ((temp >>= 1)) |
465 | 0 | nbits++; |
466 | | /* safety check: shouldn't happen given limited correction-bit buffer */ |
467 | 0 | if (nbits > 14) |
468 | 0 | ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE); |
469 | |
|
470 | 0 | emit_ac_symbol(entropy, entropy->ac_tbl_no, nbits << 4); |
471 | 0 | if (nbits) |
472 | 0 | emit_bits_e(entropy, entropy->EOBRUN, nbits); |
473 | |
|
474 | 0 | entropy->EOBRUN = 0; |
475 | | |
476 | | /* Emit any buffered correction bits */ |
477 | 0 | emit_buffered_bits(entropy, entropy->bit_buffer, entropy->BE); |
478 | 0 | entropy->BE = 0; |
479 | 0 | } |
480 | 0 | } |
481 | | |
482 | | |
483 | | /* |
484 | | * Emit a restart marker & resynchronize predictions. |
485 | | */ |
486 | | |
487 | | LOCAL(boolean) |
488 | | emit_restart_s (working_state * state, int restart_num) |
489 | 0 | { |
490 | 0 | int ci; |
491 | |
|
492 | 0 | if (! flush_bits_s(state)) |
493 | 0 | return FALSE; |
494 | | |
495 | 0 | emit_byte_s(state, 0xFF, return FALSE); |
496 | 0 | emit_byte_s(state, JPEG_RST0 + restart_num, return FALSE); |
497 | | |
498 | | /* Re-initialize DC predictions to 0 */ |
499 | 0 | for (ci = 0; ci < state->cinfo->comps_in_scan; ci++) |
500 | 0 | state->cur.last_dc_val[ci] = 0; |
501 | | |
502 | | /* The restart counter is not updated until we successfully write the MCU. */ |
503 | |
|
504 | 0 | return TRUE; |
505 | 0 | } |
506 | | |
507 | | |
508 | | LOCAL(void) |
509 | | emit_restart_e (huff_entropy_ptr entropy, int restart_num) |
510 | 0 | { |
511 | 0 | int ci; |
512 | |
|
513 | 0 | emit_eobrun(entropy); |
514 | |
|
515 | 0 | if (! entropy->gather_statistics) { |
516 | 0 | flush_bits_e(entropy); |
517 | 0 | emit_byte_e(entropy, 0xFF); |
518 | 0 | emit_byte_e(entropy, JPEG_RST0 + restart_num); |
519 | 0 | } |
520 | |
|
521 | 0 | if (entropy->cinfo->Ss == 0) { |
522 | | /* Re-initialize DC predictions to 0 */ |
523 | 0 | for (ci = 0; ci < entropy->cinfo->comps_in_scan; ci++) |
524 | 0 | entropy->saved.last_dc_val[ci] = 0; |
525 | 0 | } else { |
526 | | /* Re-initialize all AC-related fields to 0 */ |
527 | 0 | entropy->EOBRUN = 0; |
528 | 0 | entropy->BE = 0; |
529 | 0 | } |
530 | 0 | } |
531 | | |
532 | | |
533 | | /* |
534 | | * MCU encoding for DC initial scan (either spectral selection, |
535 | | * or first pass of successive approximation). |
536 | | */ |
537 | | |
538 | | METHODDEF(boolean) |
539 | | encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKARRAY MCU_data) |
540 | 0 | { |
541 | 0 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
542 | 0 | register int temp, temp2; |
543 | 0 | register int nbits; |
544 | 0 | int max_coef_bits; |
545 | 0 | int blkn, ci, tbl; |
546 | 0 | ISHIFT_TEMPS |
547 | |
|
548 | 0 | entropy->next_output_byte = cinfo->dest->next_output_byte; |
549 | 0 | entropy->free_in_buffer = cinfo->dest->free_in_buffer; |
550 | | |
551 | | /* Emit restart marker if needed */ |
552 | 0 | if (cinfo->restart_interval) |
553 | 0 | if (entropy->restarts_to_go == 0) |
554 | 0 | emit_restart_e(entropy, entropy->next_restart_num); |
555 | | |
556 | | /* Since we're encoding a difference, the range limit is twice as much. */ |
557 | 0 | max_coef_bits = cinfo->data_precision + 3; |
558 | | |
559 | | /* Encode the MCU data blocks */ |
560 | 0 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
561 | 0 | ci = cinfo->MCU_membership[blkn]; |
562 | 0 | tbl = cinfo->cur_comp_info[ci]->dc_tbl_no; |
563 | | |
564 | | /* Compute the DC value after the required point transform by Al. |
565 | | * This is simply an arithmetic right shift. |
566 | | */ |
567 | 0 | temp = IRIGHT_SHIFT((int) (MCU_data[blkn][0][0]), cinfo->Al); |
568 | | |
569 | | /* DC differences are figured on the point-transformed values. */ |
570 | 0 | if ((temp2 = temp - entropy->saved.last_dc_val[ci]) == 0) { |
571 | | /* Count/emit the Huffman-coded symbol for the number of bits */ |
572 | 0 | emit_dc_symbol(entropy, tbl, 0); |
573 | |
|
574 | 0 | continue; |
575 | 0 | } |
576 | | |
577 | 0 | entropy->saved.last_dc_val[ci] = temp; |
578 | | |
579 | | /* Encode the DC coefficient difference per section G.1.2.1 */ |
580 | 0 | if ((temp = temp2) < 0) { |
581 | 0 | temp = -temp; /* temp is abs value of input */ |
582 | | /* For a negative input, want temp2 = bitwise complement of abs(input) */ |
583 | | /* This code assumes we are on a two's complement machine */ |
584 | 0 | temp2--; |
585 | 0 | } |
586 | | |
587 | | /* Find the number of bits needed for the magnitude of the coefficient */ |
588 | 0 | nbits = 0; |
589 | 0 | do nbits++; /* there must be at least one 1 bit */ |
590 | 0 | while ((temp >>= 1)); |
591 | | /* Check for out-of-range coefficient values */ |
592 | 0 | if (nbits > max_coef_bits) |
593 | 0 | ERREXIT(cinfo, JERR_BAD_DCT_COEF); |
594 | | |
595 | | /* Count/emit the Huffman-coded symbol for the number of bits */ |
596 | 0 | emit_dc_symbol(entropy, tbl, nbits); |
597 | | |
598 | | /* Emit that number of bits of the value, if positive, */ |
599 | | /* or the complement of its magnitude, if negative. */ |
600 | 0 | emit_bits_e(entropy, (unsigned int) temp2, nbits); |
601 | 0 | } |
602 | |
|
603 | 0 | cinfo->dest->next_output_byte = entropy->next_output_byte; |
604 | 0 | cinfo->dest->free_in_buffer = entropy->free_in_buffer; |
605 | | |
606 | | /* Update restart-interval state too */ |
607 | 0 | if (cinfo->restart_interval) { |
608 | 0 | if (entropy->restarts_to_go == 0) { |
609 | 0 | entropy->restarts_to_go = cinfo->restart_interval; |
610 | 0 | entropy->next_restart_num++; |
611 | 0 | entropy->next_restart_num &= 7; |
612 | 0 | } |
613 | 0 | entropy->restarts_to_go--; |
614 | 0 | } |
615 | |
|
616 | 0 | return TRUE; |
617 | 0 | } |
618 | | |
619 | | |
620 | | /* |
621 | | * MCU encoding for AC initial scan (either spectral selection, |
622 | | * or first pass of successive approximation). |
623 | | */ |
624 | | |
625 | | METHODDEF(boolean) |
626 | | encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKARRAY MCU_data) |
627 | 0 | { |
628 | 0 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
629 | 0 | const int * natural_order; |
630 | 0 | JBLOCKROW block; |
631 | 0 | register int temp, temp2; |
632 | 0 | register int nbits; |
633 | 0 | register int r, k; |
634 | 0 | int Se, Al, max_coef_bits; |
635 | |
|
636 | 0 | entropy->next_output_byte = cinfo->dest->next_output_byte; |
637 | 0 | entropy->free_in_buffer = cinfo->dest->free_in_buffer; |
638 | | |
639 | | /* Emit restart marker if needed */ |
640 | 0 | if (cinfo->restart_interval) |
641 | 0 | if (entropy->restarts_to_go == 0) |
642 | 0 | emit_restart_e(entropy, entropy->next_restart_num); |
643 | |
|
644 | 0 | Se = cinfo->Se; |
645 | 0 | Al = cinfo->Al; |
646 | 0 | natural_order = cinfo->natural_order; |
647 | 0 | max_coef_bits = cinfo->data_precision + 2; |
648 | | |
649 | | /* Encode the MCU data block */ |
650 | 0 | block = MCU_data[0]; |
651 | | |
652 | | /* Encode the AC coefficients per section G.1.2.2, fig. G.3 */ |
653 | | |
654 | 0 | r = 0; /* r = run length of zeros */ |
655 | | |
656 | 0 | for (k = cinfo->Ss; k <= Se; k++) { |
657 | 0 | if ((temp = (*block)[natural_order[k]]) == 0) { |
658 | 0 | r++; |
659 | 0 | continue; |
660 | 0 | } |
661 | | /* We must apply the point transform by Al. For AC coefficients this |
662 | | * is an integer division with rounding towards 0. To do this portably |
663 | | * in C, we shift after obtaining the absolute value; so the code is |
664 | | * interwoven with finding the abs value (temp) and output bits (temp2). |
665 | | */ |
666 | 0 | if (temp < 0) { |
667 | 0 | temp = -temp; /* temp is abs value of input */ |
668 | | /* Apply the point transform, and watch out for case */ |
669 | | /* that nonzero coef is zero after point transform. */ |
670 | 0 | if ((temp >>= Al) == 0) { |
671 | 0 | r++; |
672 | 0 | continue; |
673 | 0 | } |
674 | | /* For a negative coef, want temp2 = bitwise complement of abs(coef) */ |
675 | 0 | temp2 = ~temp; |
676 | 0 | } else { |
677 | | /* Apply the point transform, and watch out for case */ |
678 | | /* that nonzero coef is zero after point transform. */ |
679 | 0 | if ((temp >>= Al) == 0) { |
680 | 0 | r++; |
681 | 0 | continue; |
682 | 0 | } |
683 | 0 | temp2 = temp; |
684 | 0 | } |
685 | | |
686 | | /* Emit any pending EOBRUN */ |
687 | 0 | if (entropy->EOBRUN > 0) |
688 | 0 | emit_eobrun(entropy); |
689 | | /* if run length > 15, must emit special run-length-16 codes (0xF0) */ |
690 | 0 | while (r > 15) { |
691 | 0 | emit_ac_symbol(entropy, entropy->ac_tbl_no, 0xF0); |
692 | 0 | r -= 16; |
693 | 0 | } |
694 | | |
695 | | /* Find the number of bits needed for the magnitude of the coefficient */ |
696 | 0 | nbits = 0; |
697 | 0 | do nbits++; /* there must be at least one 1 bit */ |
698 | 0 | while ((temp >>= 1)); |
699 | | /* Check for out-of-range coefficient values */ |
700 | 0 | if (nbits > max_coef_bits) |
701 | 0 | ERREXIT(cinfo, JERR_BAD_DCT_COEF); |
702 | | |
703 | | /* Count/emit Huffman symbol for run length / number of bits */ |
704 | 0 | emit_ac_symbol(entropy, entropy->ac_tbl_no, (r << 4) + nbits); |
705 | | |
706 | | /* Emit that number of bits of the value, if positive, */ |
707 | | /* or the complement of its magnitude, if negative. */ |
708 | 0 | emit_bits_e(entropy, (unsigned int) temp2, nbits); |
709 | |
|
710 | 0 | r = 0; /* reset zero run length */ |
711 | 0 | } |
712 | |
|
713 | 0 | if (r > 0) { /* If there are trailing zeroes, */ |
714 | 0 | entropy->EOBRUN++; /* count an EOB */ |
715 | 0 | if (entropy->EOBRUN == 0x7FFF) |
716 | 0 | emit_eobrun(entropy); /* force it out to avoid overflow */ |
717 | 0 | } |
718 | |
|
719 | 0 | cinfo->dest->next_output_byte = entropy->next_output_byte; |
720 | 0 | cinfo->dest->free_in_buffer = entropy->free_in_buffer; |
721 | | |
722 | | /* Update restart-interval state too */ |
723 | 0 | if (cinfo->restart_interval) { |
724 | 0 | if (entropy->restarts_to_go == 0) { |
725 | 0 | entropy->restarts_to_go = cinfo->restart_interval; |
726 | 0 | entropy->next_restart_num++; |
727 | 0 | entropy->next_restart_num &= 7; |
728 | 0 | } |
729 | 0 | entropy->restarts_to_go--; |
730 | 0 | } |
731 | |
|
732 | 0 | return TRUE; |
733 | 0 | } |
734 | | |
735 | | |
736 | | /* |
737 | | * MCU encoding for DC successive approximation refinement scan. |
738 | | * Note: we assume such scans can be multi-component, |
739 | | * although the spec is not very clear on the point. |
740 | | */ |
741 | | |
742 | | METHODDEF(boolean) |
743 | | encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKARRAY MCU_data) |
744 | 0 | { |
745 | 0 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
746 | 0 | int Al, blkn; |
747 | |
|
748 | 0 | entropy->next_output_byte = cinfo->dest->next_output_byte; |
749 | 0 | entropy->free_in_buffer = cinfo->dest->free_in_buffer; |
750 | | |
751 | | /* Emit restart marker if needed */ |
752 | 0 | if (cinfo->restart_interval) |
753 | 0 | if (entropy->restarts_to_go == 0) |
754 | 0 | emit_restart_e(entropy, entropy->next_restart_num); |
755 | |
|
756 | 0 | Al = cinfo->Al; |
757 | | |
758 | | /* Encode the MCU data blocks */ |
759 | 0 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
760 | | /* We simply emit the Al'th bit of the DC coefficient value. */ |
761 | 0 | emit_bits_e(entropy, (unsigned int) (MCU_data[blkn][0][0] >> Al), 1); |
762 | 0 | } |
763 | |
|
764 | 0 | cinfo->dest->next_output_byte = entropy->next_output_byte; |
765 | 0 | cinfo->dest->free_in_buffer = entropy->free_in_buffer; |
766 | | |
767 | | /* Update restart-interval state too */ |
768 | 0 | if (cinfo->restart_interval) { |
769 | 0 | if (entropy->restarts_to_go == 0) { |
770 | 0 | entropy->restarts_to_go = cinfo->restart_interval; |
771 | 0 | entropy->next_restart_num++; |
772 | 0 | entropy->next_restart_num &= 7; |
773 | 0 | } |
774 | 0 | entropy->restarts_to_go--; |
775 | 0 | } |
776 | |
|
777 | 0 | return TRUE; |
778 | 0 | } |
779 | | |
780 | | |
781 | | /* |
782 | | * MCU encoding for AC successive approximation refinement scan. |
783 | | */ |
784 | | |
785 | | METHODDEF(boolean) |
786 | | encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKARRAY MCU_data) |
787 | 0 | { |
788 | 0 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
789 | 0 | const int * natural_order; |
790 | 0 | JBLOCKROW block; |
791 | 0 | register int temp; |
792 | 0 | register int r, k; |
793 | 0 | int Se, Al; |
794 | 0 | int EOB; |
795 | 0 | char *BR_buffer; |
796 | 0 | unsigned int BR; |
797 | 0 | int absvalues[DCTSIZE2]; |
798 | |
|
799 | 0 | entropy->next_output_byte = cinfo->dest->next_output_byte; |
800 | 0 | entropy->free_in_buffer = cinfo->dest->free_in_buffer; |
801 | | |
802 | | /* Emit restart marker if needed */ |
803 | 0 | if (cinfo->restart_interval) |
804 | 0 | if (entropy->restarts_to_go == 0) |
805 | 0 | emit_restart_e(entropy, entropy->next_restart_num); |
806 | |
|
807 | 0 | Se = cinfo->Se; |
808 | 0 | Al = cinfo->Al; |
809 | 0 | natural_order = cinfo->natural_order; |
810 | | |
811 | | /* Encode the MCU data block */ |
812 | 0 | block = MCU_data[0]; |
813 | | |
814 | | /* It is convenient to make a pre-pass to determine the transformed |
815 | | * coefficients' absolute values and the EOB position. |
816 | | */ |
817 | 0 | EOB = 0; |
818 | 0 | for (k = cinfo->Ss; k <= Se; k++) { |
819 | 0 | temp = (*block)[natural_order[k]]; |
820 | | /* We must apply the point transform by Al. For AC coefficients this |
821 | | * is an integer division with rounding towards 0. To do this portably |
822 | | * in C, we shift after obtaining the absolute value. |
823 | | */ |
824 | 0 | if (temp < 0) |
825 | 0 | temp = -temp; /* temp is abs value of input */ |
826 | 0 | temp >>= Al; /* apply the point transform */ |
827 | 0 | absvalues[k] = temp; /* save abs value for main pass */ |
828 | 0 | if (temp == 1) |
829 | 0 | EOB = k; /* EOB = index of last newly-nonzero coef */ |
830 | 0 | } |
831 | | |
832 | | /* Encode the AC coefficients per section G.1.2.3, fig. G.7 */ |
833 | | |
834 | 0 | r = 0; /* r = run length of zeros */ |
835 | 0 | BR = 0; /* BR = count of buffered bits added now */ |
836 | 0 | BR_buffer = entropy->bit_buffer + entropy->BE; /* Append bits to buffer */ |
837 | |
|
838 | 0 | for (k = cinfo->Ss; k <= Se; k++) { |
839 | 0 | if ((temp = absvalues[k]) == 0) { |
840 | 0 | r++; |
841 | 0 | continue; |
842 | 0 | } |
843 | | |
844 | | /* Emit any required ZRLs, but not if they can be folded into EOB */ |
845 | 0 | while (r > 15 && k <= EOB) { |
846 | | /* emit any pending EOBRUN and the BE correction bits */ |
847 | 0 | emit_eobrun(entropy); |
848 | | /* Emit ZRL */ |
849 | 0 | emit_ac_symbol(entropy, entropy->ac_tbl_no, 0xF0); |
850 | 0 | r -= 16; |
851 | | /* Emit buffered correction bits that must be associated with ZRL */ |
852 | 0 | emit_buffered_bits(entropy, BR_buffer, BR); |
853 | 0 | BR_buffer = entropy->bit_buffer; /* BE bits are gone now */ |
854 | 0 | BR = 0; |
855 | 0 | } |
856 | | |
857 | | /* If the coef was previously nonzero, it only needs a correction bit. |
858 | | * NOTE: a straight translation of the spec's figure G.7 would suggest |
859 | | * that we also need to test r > 15. But if r > 15, we can only get here |
860 | | * if k > EOB, which implies that this coefficient is not 1. |
861 | | */ |
862 | 0 | if (temp > 1) { |
863 | | /* The correction bit is the next bit of the absolute value. */ |
864 | 0 | BR_buffer[BR++] = (char) (temp & 1); |
865 | 0 | continue; |
866 | 0 | } |
867 | | |
868 | | /* Emit any pending EOBRUN and the BE correction bits */ |
869 | 0 | emit_eobrun(entropy); |
870 | | |
871 | | /* Count/emit Huffman symbol for run length / number of bits */ |
872 | 0 | emit_ac_symbol(entropy, entropy->ac_tbl_no, (r << 4) + 1); |
873 | | |
874 | | /* Emit output bit for newly-nonzero coef */ |
875 | 0 | temp = ((*block)[natural_order[k]] < 0) ? 0 : 1; |
876 | 0 | emit_bits_e(entropy, (unsigned int) temp, 1); |
877 | | |
878 | | /* Emit buffered correction bits that must be associated with this code */ |
879 | 0 | emit_buffered_bits(entropy, BR_buffer, BR); |
880 | 0 | BR_buffer = entropy->bit_buffer; /* BE bits are gone now */ |
881 | 0 | BR = 0; |
882 | 0 | r = 0; /* reset zero run length */ |
883 | 0 | } |
884 | |
|
885 | 0 | if (r > 0 || BR > 0) { /* If there are trailing zeroes, */ |
886 | 0 | entropy->EOBRUN++; /* count an EOB */ |
887 | 0 | entropy->BE += BR; /* concat my correction bits to older ones */ |
888 | | /* We force out the EOB if we risk either: |
889 | | * 1. overflow of the EOB counter; |
890 | | * 2. overflow of the correction bit buffer during the next MCU. |
891 | | */ |
892 | 0 | if (entropy->EOBRUN == 0x7FFF || entropy->BE > (MAX_CORR_BITS-DCTSIZE2+1)) |
893 | 0 | emit_eobrun(entropy); |
894 | 0 | } |
895 | |
|
896 | 0 | cinfo->dest->next_output_byte = entropy->next_output_byte; |
897 | 0 | cinfo->dest->free_in_buffer = entropy->free_in_buffer; |
898 | | |
899 | | /* Update restart-interval state too */ |
900 | 0 | if (cinfo->restart_interval) { |
901 | 0 | if (entropy->restarts_to_go == 0) { |
902 | 0 | entropy->restarts_to_go = cinfo->restart_interval; |
903 | 0 | entropy->next_restart_num++; |
904 | 0 | entropy->next_restart_num &= 7; |
905 | 0 | } |
906 | 0 | entropy->restarts_to_go--; |
907 | 0 | } |
908 | |
|
909 | 0 | return TRUE; |
910 | 0 | } |
911 | | |
912 | | |
913 | | /* Encode a single block's worth of coefficients */ |
914 | | |
915 | | LOCAL(boolean) |
916 | | encode_one_block (working_state * state, JCOEFPTR block, int last_dc_val, |
917 | | c_derived_tbl *dctbl, c_derived_tbl *actbl) |
918 | 0 | { |
919 | 0 | register int temp, temp2; |
920 | 0 | register int nbits; |
921 | 0 | register int r, k; |
922 | 0 | int Se = state->cinfo->lim_Se; |
923 | 0 | int max_coef_bits = state->cinfo->data_precision + 3; |
924 | 0 | const int * natural_order = state->cinfo->natural_order; |
925 | | |
926 | | /* Encode the DC coefficient difference per section F.1.2.1 */ |
927 | |
|
928 | 0 | if ((temp = block[0] - last_dc_val) == 0) { |
929 | | /* Emit the Huffman-coded symbol for the number of bits */ |
930 | 0 | if (! emit_bits_s(state, dctbl->ehufco[0], dctbl->ehufsi[0])) |
931 | 0 | return FALSE; |
932 | 0 | } else { |
933 | 0 | if ((temp2 = temp) < 0) { |
934 | 0 | temp = -temp; /* temp is abs value of input */ |
935 | | /* For a negative input, want temp2 = bitwise complement of abs(input) */ |
936 | | /* This code assumes we are on a two's complement machine */ |
937 | 0 | temp2--; |
938 | 0 | } |
939 | | |
940 | | /* Find the number of bits needed for the magnitude of the coefficient */ |
941 | 0 | nbits = 0; |
942 | 0 | do nbits++; /* there must be at least one 1 bit */ |
943 | 0 | while ((temp >>= 1)); |
944 | | /* Check for out-of-range coefficient values. |
945 | | * Since we're encoding a difference, the range limit is twice as much. |
946 | | */ |
947 | 0 | if (nbits > max_coef_bits) |
948 | 0 | ERREXIT(state->cinfo, JERR_BAD_DCT_COEF); |
949 | | |
950 | | /* Emit the Huffman-coded symbol for the number of bits */ |
951 | 0 | if (! emit_bits_s(state, dctbl->ehufco[nbits], dctbl->ehufsi[nbits])) |
952 | 0 | return FALSE; |
953 | | |
954 | | /* Emit that number of bits of the value, if positive, */ |
955 | | /* or the complement of its magnitude, if negative. */ |
956 | 0 | if (! emit_bits_s(state, (unsigned int) temp2, nbits)) |
957 | 0 | return FALSE; |
958 | 0 | } |
959 | | |
960 | | /* Encode the AC coefficients per section F.1.2.2 */ |
961 | | |
962 | 0 | r = 0; /* r = run length of zeros */ |
963 | |
|
964 | 0 | for (k = 1; k <= Se; k++) { |
965 | 0 | if ((temp = block[natural_order[k]]) == 0) { |
966 | 0 | r++; |
967 | 0 | continue; |
968 | 0 | } |
969 | | |
970 | | /* if run length > 15, must emit special run-length-16 codes (0xF0) */ |
971 | 0 | while (r > 15) { |
972 | 0 | if (! emit_bits_s(state, actbl->ehufco[0xF0], actbl->ehufsi[0xF0])) |
973 | 0 | return FALSE; |
974 | 0 | r -= 16; |
975 | 0 | } |
976 | | |
977 | 0 | if ((temp2 = temp) < 0) { |
978 | 0 | temp = -temp; /* temp is abs value of input */ |
979 | | /* For a negative coef, want temp2 = bitwise complement of abs(coef) */ |
980 | | /* This code assumes we are on a two's complement machine */ |
981 | 0 | temp2--; |
982 | 0 | } |
983 | | |
984 | | /* Find the number of bits needed for the magnitude of the coefficient */ |
985 | 0 | nbits = 0; |
986 | 0 | do nbits++; /* there must be at least one 1 bit */ |
987 | 0 | while ((temp >>= 1)); |
988 | | /* Check for out-of-range coefficient values. |
989 | | * Use ">=" instead of ">" so can use the |
990 | | * same one larger limit from DC check here. |
991 | | */ |
992 | 0 | if (nbits >= max_coef_bits) |
993 | 0 | ERREXIT(state->cinfo, JERR_BAD_DCT_COEF); |
994 | | |
995 | | /* Emit Huffman symbol for run length / number of bits */ |
996 | 0 | temp = (r << 4) + nbits; |
997 | 0 | if (! emit_bits_s(state, actbl->ehufco[temp], actbl->ehufsi[temp])) |
998 | 0 | return FALSE; |
999 | | |
1000 | | /* Emit that number of bits of the value, if positive, */ |
1001 | | /* or the complement of its magnitude, if negative. */ |
1002 | 0 | if (! emit_bits_s(state, (unsigned int) temp2, nbits)) |
1003 | 0 | return FALSE; |
1004 | | |
1005 | 0 | r = 0; /* reset zero run length */ |
1006 | 0 | } |
1007 | | |
1008 | | /* If the last coef(s) were zero, emit an end-of-block code */ |
1009 | 0 | if (r > 0) |
1010 | 0 | if (! emit_bits_s(state, actbl->ehufco[0], actbl->ehufsi[0])) |
1011 | 0 | return FALSE; |
1012 | | |
1013 | 0 | return TRUE; |
1014 | 0 | } |
1015 | | |
1016 | | |
1017 | | /* |
1018 | | * Encode and output one MCU's worth of Huffman-compressed coefficients. |
1019 | | */ |
1020 | | |
1021 | | METHODDEF(boolean) |
1022 | | encode_mcu_huff (j_compress_ptr cinfo, JBLOCKARRAY MCU_data) |
1023 | 0 | { |
1024 | 0 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
1025 | 0 | working_state state; |
1026 | 0 | int blkn, ci; |
1027 | 0 | jpeg_component_info * compptr; |
1028 | | |
1029 | | /* Load up working state */ |
1030 | 0 | state.next_output_byte = cinfo->dest->next_output_byte; |
1031 | 0 | state.free_in_buffer = cinfo->dest->free_in_buffer; |
1032 | 0 | ASSIGN_STATE(state.cur, entropy->saved); |
1033 | 0 | state.cinfo = cinfo; |
1034 | | |
1035 | | /* Emit restart marker if needed */ |
1036 | 0 | if (cinfo->restart_interval) { |
1037 | 0 | if (entropy->restarts_to_go == 0) |
1038 | 0 | if (! emit_restart_s(&state, entropy->next_restart_num)) |
1039 | 0 | return FALSE; |
1040 | 0 | } |
1041 | | |
1042 | | /* Encode the MCU data blocks */ |
1043 | 0 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
1044 | 0 | ci = cinfo->MCU_membership[blkn]; |
1045 | 0 | compptr = cinfo->cur_comp_info[ci]; |
1046 | 0 | if (! encode_one_block(&state, |
1047 | 0 | MCU_data[blkn][0], state.cur.last_dc_val[ci], |
1048 | 0 | entropy->dc_derived_tbls[compptr->dc_tbl_no], |
1049 | 0 | entropy->ac_derived_tbls[compptr->ac_tbl_no])) |
1050 | 0 | return FALSE; |
1051 | | /* Update last_dc_val */ |
1052 | 0 | state.cur.last_dc_val[ci] = MCU_data[blkn][0][0]; |
1053 | 0 | } |
1054 | | |
1055 | | /* Completed MCU, so update state */ |
1056 | 0 | cinfo->dest->next_output_byte = state.next_output_byte; |
1057 | 0 | cinfo->dest->free_in_buffer = state.free_in_buffer; |
1058 | 0 | ASSIGN_STATE(entropy->saved, state.cur); |
1059 | | |
1060 | | /* Update restart-interval state too */ |
1061 | 0 | if (cinfo->restart_interval) { |
1062 | 0 | if (entropy->restarts_to_go == 0) { |
1063 | 0 | entropy->restarts_to_go = cinfo->restart_interval; |
1064 | 0 | entropy->next_restart_num++; |
1065 | 0 | entropy->next_restart_num &= 7; |
1066 | 0 | } |
1067 | 0 | entropy->restarts_to_go--; |
1068 | 0 | } |
1069 | |
|
1070 | 0 | return TRUE; |
1071 | 0 | } |
1072 | | |
1073 | | |
1074 | | /* |
1075 | | * Finish up at the end of a Huffman-compressed scan. |
1076 | | */ |
1077 | | |
1078 | | METHODDEF(void) |
1079 | | finish_pass_huff (j_compress_ptr cinfo) |
1080 | 0 | { |
1081 | 0 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
1082 | 0 | working_state state; |
1083 | |
|
1084 | 0 | if (cinfo->progressive_mode) { |
1085 | 0 | entropy->next_output_byte = cinfo->dest->next_output_byte; |
1086 | 0 | entropy->free_in_buffer = cinfo->dest->free_in_buffer; |
1087 | | |
1088 | | /* Flush out any buffered data */ |
1089 | 0 | emit_eobrun(entropy); |
1090 | 0 | flush_bits_e(entropy); |
1091 | |
|
1092 | 0 | cinfo->dest->next_output_byte = entropy->next_output_byte; |
1093 | 0 | cinfo->dest->free_in_buffer = entropy->free_in_buffer; |
1094 | 0 | } else { |
1095 | | /* Load up working state ... flush_bits needs it */ |
1096 | 0 | state.next_output_byte = cinfo->dest->next_output_byte; |
1097 | 0 | state.free_in_buffer = cinfo->dest->free_in_buffer; |
1098 | 0 | ASSIGN_STATE(state.cur, entropy->saved); |
1099 | 0 | state.cinfo = cinfo; |
1100 | | |
1101 | | /* Flush out the last data */ |
1102 | 0 | if (! flush_bits_s(&state)) |
1103 | 0 | ERREXIT(cinfo, JERR_CANT_SUSPEND); |
1104 | | |
1105 | | /* Update state */ |
1106 | 0 | cinfo->dest->next_output_byte = state.next_output_byte; |
1107 | 0 | cinfo->dest->free_in_buffer = state.free_in_buffer; |
1108 | 0 | ASSIGN_STATE(entropy->saved, state.cur); |
1109 | 0 | } |
1110 | 0 | } |
1111 | | |
1112 | | |
1113 | | /* |
1114 | | * Huffman coding optimization. |
1115 | | * |
1116 | | * We first scan the supplied data and count the number of uses of each symbol |
1117 | | * that is to be Huffman-coded. (This process MUST agree with the code above.) |
1118 | | * Then we build a Huffman coding tree for the observed counts. |
1119 | | * Symbols which are not needed at all for the particular image are not |
1120 | | * assigned any code, which saves space in the DHT marker as well as in |
1121 | | * the compressed data. |
1122 | | */ |
1123 | | |
1124 | | |
1125 | | /* Process a single block's worth of coefficients */ |
1126 | | |
1127 | | LOCAL(void) |
1128 | | htest_one_block (j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val, |
1129 | | long dc_counts[], long ac_counts[]) |
1130 | 0 | { |
1131 | 0 | register int temp; |
1132 | 0 | register int nbits; |
1133 | 0 | register int r, k; |
1134 | 0 | int Se = cinfo->lim_Se; |
1135 | 0 | int max_coef_bits = cinfo->data_precision + 3; |
1136 | 0 | const int * natural_order = cinfo->natural_order; |
1137 | | |
1138 | | /* Encode the DC coefficient difference per section F.1.2.1 */ |
1139 | |
|
1140 | 0 | if ((temp = block[0] - last_dc_val) == 0) { |
1141 | | /* Count the Huffman symbol for the number of bits */ |
1142 | 0 | dc_counts[0]++; |
1143 | 0 | } else { |
1144 | 0 | if (temp < 0) |
1145 | 0 | temp = -temp; /* temp is abs value of input */ |
1146 | | |
1147 | | /* Find the number of bits needed for the magnitude of the coefficient */ |
1148 | 0 | nbits = 0; |
1149 | 0 | do nbits++; /* there must be at least one 1 bit */ |
1150 | 0 | while ((temp >>= 1)); |
1151 | | /* Check for out-of-range coefficient values. |
1152 | | * Since we're encoding a difference, the range limit is twice as much. |
1153 | | */ |
1154 | 0 | if (nbits > max_coef_bits) |
1155 | 0 | ERREXIT(cinfo, JERR_BAD_DCT_COEF); |
1156 | | |
1157 | | /* Count the Huffman symbol for the number of bits */ |
1158 | 0 | dc_counts[nbits]++; |
1159 | 0 | } |
1160 | | |
1161 | | /* Encode the AC coefficients per section F.1.2.2 */ |
1162 | |
|
1163 | 0 | r = 0; /* r = run length of zeros */ |
1164 | |
|
1165 | 0 | for (k = 1; k <= Se; k++) { |
1166 | 0 | if ((temp = block[natural_order[k]]) == 0) { |
1167 | 0 | r++; |
1168 | 0 | continue; |
1169 | 0 | } |
1170 | | |
1171 | | /* if run length > 15, must emit special run-length-16 codes (0xF0) */ |
1172 | 0 | while (r > 15) { |
1173 | 0 | ac_counts[0xF0]++; |
1174 | 0 | r -= 16; |
1175 | 0 | } |
1176 | |
|
1177 | 0 | if (temp < 0) |
1178 | 0 | temp = -temp; /* temp is abs value of input */ |
1179 | | |
1180 | | /* Find the number of bits needed for the magnitude of the coefficient */ |
1181 | 0 | nbits = 0; |
1182 | 0 | do nbits++; /* there must be at least one 1 bit */ |
1183 | 0 | while ((temp >>= 1)); |
1184 | | /* Check for out-of-range coefficient values. |
1185 | | * Use ">=" instead of ">" so can use the |
1186 | | * same one larger limit from DC check here. |
1187 | | */ |
1188 | 0 | if (nbits >= max_coef_bits) |
1189 | 0 | ERREXIT(cinfo, JERR_BAD_DCT_COEF); |
1190 | | |
1191 | | /* Count Huffman symbol for run length / number of bits */ |
1192 | 0 | ac_counts[(r << 4) + nbits]++; |
1193 | |
|
1194 | 0 | r = 0; /* reset zero run length */ |
1195 | 0 | } |
1196 | | |
1197 | | /* If the last coef(s) were zero, emit an end-of-block code */ |
1198 | 0 | if (r > 0) |
1199 | 0 | ac_counts[0]++; |
1200 | 0 | } |
1201 | | |
1202 | | |
1203 | | /* |
1204 | | * Trial-encode one MCU's worth of Huffman-compressed coefficients. |
1205 | | * No data is actually output, so no suspension return is possible. |
1206 | | */ |
1207 | | |
1208 | | METHODDEF(boolean) |
1209 | | encode_mcu_gather (j_compress_ptr cinfo, JBLOCKARRAY MCU_data) |
1210 | 0 | { |
1211 | 0 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
1212 | 0 | int blkn, ci; |
1213 | 0 | jpeg_component_info * compptr; |
1214 | | |
1215 | | /* Take care of restart intervals if needed */ |
1216 | 0 | if (cinfo->restart_interval) { |
1217 | 0 | if (entropy->restarts_to_go == 0) { |
1218 | | /* Re-initialize DC predictions to 0 */ |
1219 | 0 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) |
1220 | 0 | entropy->saved.last_dc_val[ci] = 0; |
1221 | | /* Update restart state */ |
1222 | 0 | entropy->restarts_to_go = cinfo->restart_interval; |
1223 | 0 | } |
1224 | 0 | entropy->restarts_to_go--; |
1225 | 0 | } |
1226 | |
|
1227 | 0 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
1228 | 0 | ci = cinfo->MCU_membership[blkn]; |
1229 | 0 | compptr = cinfo->cur_comp_info[ci]; |
1230 | 0 | htest_one_block(cinfo, MCU_data[blkn][0], entropy->saved.last_dc_val[ci], |
1231 | 0 | entropy->dc_count_ptrs[compptr->dc_tbl_no], |
1232 | 0 | entropy->ac_count_ptrs[compptr->ac_tbl_no]); |
1233 | 0 | entropy->saved.last_dc_val[ci] = MCU_data[blkn][0][0]; |
1234 | 0 | } |
1235 | |
|
1236 | 0 | return TRUE; |
1237 | 0 | } |
1238 | | |
1239 | | |
1240 | | /* |
1241 | | * Generate the best Huffman code table for the given counts, fill htbl. |
1242 | | * |
1243 | | * The JPEG standard requires that no symbol be assigned a codeword of all |
1244 | | * one bits (so that padding bits added at the end of a compressed segment |
1245 | | * can't look like a valid code). Because of the canonical ordering of |
1246 | | * codewords, this just means that there must be an unused slot in the |
1247 | | * longest codeword length category. Section K.2 of the JPEG spec suggests |
1248 | | * reserving such a slot by pretending that symbol 256 is a valid symbol |
1249 | | * with count 1. In theory that's not optimal; giving it count zero but |
1250 | | * including it in the symbol set anyway should give a better Huffman code. |
1251 | | * But the theoretically better code actually seems to come out worse in |
1252 | | * practice, because it produces more all-ones bytes (which incur stuffed |
1253 | | * zero bytes in the final file). In any case the difference is tiny. |
1254 | | * |
1255 | | * The JPEG standard requires Huffman codes to be no more than 16 bits long. |
1256 | | * If some symbols have a very small but nonzero probability, the Huffman tree |
1257 | | * must be adjusted to meet the code length restriction. We currently use |
1258 | | * the adjustment method suggested in JPEG section K.2. This method is *not* |
1259 | | * optimal; it may not choose the best possible limited-length code. But |
1260 | | * typically only very-low-frequency symbols will be given less-than-optimal |
1261 | | * lengths, so the code is almost optimal. Experimental comparisons against |
1262 | | * an optimal limited-length-code algorithm indicate that the difference is |
1263 | | * microscopic --- usually less than a hundredth of a percent of total size. |
1264 | | * So the extra complexity of an optimal algorithm doesn't seem worthwhile. |
1265 | | */ |
1266 | | |
1267 | | LOCAL(void) |
1268 | | jpeg_gen_optimal_table (j_compress_ptr cinfo, JHUFF_TBL * htbl, long freq[]) |
1269 | 0 | { |
1270 | 0 | #define MAX_CLEN 32 /* assumed maximum initial code length */ |
1271 | 0 | UINT8 bits[MAX_CLEN+1]; /* bits[k] = # of symbols with code length k */ |
1272 | 0 | int codesize[257]; /* codesize[k] = code length of symbol k */ |
1273 | 0 | int others[257]; /* next symbol in current branch of tree */ |
1274 | 0 | int c1, c2, i, j; |
1275 | 0 | UINT8 *p; |
1276 | 0 | long v; |
1277 | |
|
1278 | 0 | freq[256] = 1; /* make sure 256 has a nonzero count */ |
1279 | | /* Including the pseudo-symbol 256 in the Huffman procedure guarantees |
1280 | | * that no real symbol is given code-value of all ones, because 256 |
1281 | | * will be placed last in the largest codeword category. |
1282 | | * In the symbol list build procedure this element serves as sentinel |
1283 | | * for the zero run loop. |
1284 | | */ |
1285 | |
|
1286 | 0 | #ifndef DONT_USE_FANCY_HUFF_OPT |
1287 | | |
1288 | | /* Build list of symbols sorted in order of descending frequency */ |
1289 | | /* This approach has several benefits (thank to John Korejwa for the idea): |
1290 | | * 1. |
1291 | | * If a codelength category is split during the length limiting procedure |
1292 | | * below, the feature that more frequent symbols are assigned shorter |
1293 | | * codewords remains valid for the adjusted code. |
1294 | | * 2. |
1295 | | * To reduce consecutive ones in a Huffman data stream (thus reducing the |
1296 | | * number of stuff bytes in JPEG) it is preferable to follow 0 branches |
1297 | | * (and avoid 1 branches) as much as possible. This is easily done by |
1298 | | * assigning symbols to leaves of the Huffman tree in order of decreasing |
1299 | | * frequency, with no secondary sort based on codelengths. |
1300 | | * 3. |
1301 | | * The symbol list can be built independently from the assignment of code |
1302 | | * lengths by the Huffman procedure below. |
1303 | | * Note: The symbol list build procedure must be performed first, because |
1304 | | * the Huffman procedure assigning the codelengths clobbers the frequency |
1305 | | * counts! |
1306 | | */ |
1307 | | |
1308 | | /* Here we use the others array as a linked list of nonzero frequencies |
1309 | | * to be sorted. Already sorted elements are removed from the list. |
1310 | | */ |
1311 | | |
1312 | | /* Building list */ |
1313 | | |
1314 | | /* This item does not correspond to a valid symbol frequency and is used |
1315 | | * as starting index. |
1316 | | */ |
1317 | 0 | j = 256; |
1318 | |
|
1319 | 0 | for (i = 0;; i++) { |
1320 | 0 | if (freq[i] == 0) /* skip zero frequencies */ |
1321 | 0 | continue; |
1322 | 0 | if (i > 255) |
1323 | 0 | break; |
1324 | 0 | others[j] = i; /* this symbol value */ |
1325 | 0 | j = i; /* previous symbol value */ |
1326 | 0 | } |
1327 | 0 | others[j] = -1; /* mark end of list */ |
1328 | | |
1329 | | /* Sorting list */ |
1330 | |
|
1331 | 0 | p = htbl->huffval; |
1332 | 0 | while ((c1 = others[256]) >= 0) { |
1333 | 0 | v = freq[c1]; |
1334 | 0 | i = c1; /* first symbol value */ |
1335 | 0 | j = 256; /* pseudo symbol value for starting index */ |
1336 | 0 | while ((c2 = others[c1]) >= 0) { |
1337 | 0 | if (freq[c2] > v) { |
1338 | 0 | v = freq[c2]; |
1339 | 0 | i = c2; /* this symbol value */ |
1340 | 0 | j = c1; /* previous symbol value */ |
1341 | 0 | } |
1342 | 0 | c1 = c2; |
1343 | 0 | } |
1344 | 0 | others[j] = others[i]; /* remove this symbol i from list */ |
1345 | 0 | *p++ = (UINT8) i; |
1346 | 0 | } |
1347 | |
|
1348 | 0 | #endif /* DONT_USE_FANCY_HUFF_OPT */ |
1349 | | |
1350 | | /* This algorithm is explained in section K.2 of the JPEG standard */ |
1351 | |
|
1352 | 0 | MEMZERO(bits, SIZEOF(bits)); |
1353 | 0 | MEMZERO(codesize, SIZEOF(codesize)); |
1354 | 0 | for (i = 0; i < 257; i++) |
1355 | 0 | others[i] = -1; /* init links to empty */ |
1356 | | |
1357 | | /* Huffman's basic algorithm to assign optimal code lengths to symbols */ |
1358 | |
|
1359 | 0 | for (;;) { |
1360 | | /* Find the smallest nonzero frequency, set c1 = its symbol */ |
1361 | | /* In case of ties, take the larger symbol number */ |
1362 | 0 | c1 = -1; |
1363 | 0 | v = 1000000000L; |
1364 | 0 | for (i = 0; i <= 256; i++) { |
1365 | 0 | if (freq[i] && freq[i] <= v) { |
1366 | 0 | v = freq[i]; |
1367 | 0 | c1 = i; |
1368 | 0 | } |
1369 | 0 | } |
1370 | | |
1371 | | /* Find the next smallest nonzero frequency, set c2 = its symbol */ |
1372 | | /* In case of ties, take the larger symbol number */ |
1373 | 0 | c2 = -1; |
1374 | 0 | v = 1000000000L; |
1375 | 0 | for (i = 0; i <= 256; i++) { |
1376 | 0 | if (freq[i] && freq[i] <= v && i != c1) { |
1377 | 0 | v = freq[i]; |
1378 | 0 | c2 = i; |
1379 | 0 | } |
1380 | 0 | } |
1381 | | |
1382 | | /* Done if we've merged everything into one frequency */ |
1383 | 0 | if (c2 < 0) |
1384 | 0 | break; |
1385 | | |
1386 | | /* Else merge the two counts/trees */ |
1387 | 0 | freq[c1] += freq[c2]; |
1388 | 0 | freq[c2] = 0; |
1389 | | |
1390 | | /* Increment the codesize of everything in c1's tree branch */ |
1391 | 0 | codesize[c1]++; |
1392 | 0 | while (others[c1] >= 0) { |
1393 | 0 | c1 = others[c1]; |
1394 | 0 | codesize[c1]++; |
1395 | 0 | } |
1396 | |
|
1397 | 0 | others[c1] = c2; /* chain c2 onto c1's tree branch */ |
1398 | | |
1399 | | /* Increment the codesize of everything in c2's tree branch */ |
1400 | 0 | codesize[c2]++; |
1401 | 0 | while (others[c2] >= 0) { |
1402 | 0 | c2 = others[c2]; |
1403 | 0 | codesize[c2]++; |
1404 | 0 | } |
1405 | 0 | } |
1406 | | |
1407 | | /* Now count the number of symbols of each code length */ |
1408 | 0 | for (i = 0; i <= 256; i++) { |
1409 | 0 | if (codesize[i]) { |
1410 | | /* The JPEG standard seems to think that this can't happen, */ |
1411 | | /* but I'm paranoid... */ |
1412 | 0 | if (codesize[i] > MAX_CLEN) |
1413 | 0 | ERREXIT(cinfo, JERR_HUFF_CLEN_OUTOFBOUNDS); |
1414 | |
|
1415 | 0 | bits[codesize[i]]++; |
1416 | 0 | } |
1417 | 0 | } |
1418 | | |
1419 | | /* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure |
1420 | | * Huffman procedure assigned any such lengths, we must adjust the coding. |
1421 | | * Here is what the JPEG spec says about how this next bit works: |
1422 | | * Since symbols are paired for the longest Huffman code, the symbols are |
1423 | | * removed from this length category two at a time. The prefix for the pair |
1424 | | * (which is one bit shorter) is allocated to one of the pair; then, |
1425 | | * skipping the BITS entry for that prefix length, a code word from the next |
1426 | | * shortest nonzero BITS entry is converted into a prefix for two code words |
1427 | | * one bit longer. |
1428 | | */ |
1429 | |
|
1430 | 0 | for (i = MAX_CLEN; i > 16; i--) { |
1431 | 0 | while (bits[i] > 0) { |
1432 | 0 | j = i - 2; /* find length of new prefix to be used */ |
1433 | 0 | while (bits[j] == 0) { |
1434 | 0 | if (j == 0) |
1435 | 0 | ERREXIT(cinfo, JERR_HUFF_CLEN_OUTOFBOUNDS); |
1436 | 0 | j--; |
1437 | 0 | } |
1438 | |
|
1439 | 0 | bits[i] -= 2; /* remove two symbols */ |
1440 | 0 | bits[i-1]++; /* one goes in this length */ |
1441 | 0 | bits[j+1] += 2; /* two new symbols in this length */ |
1442 | 0 | bits[j]--; /* symbol of this length is now a prefix */ |
1443 | 0 | } |
1444 | 0 | } |
1445 | | |
1446 | | /* Remove the count for the pseudo-symbol 256 from the largest codelength */ |
1447 | 0 | while (bits[i] == 0) /* find largest codelength still in use */ |
1448 | 0 | i--; |
1449 | 0 | bits[i]--; |
1450 | | |
1451 | | /* Return final symbol counts (only for lengths 0..16) */ |
1452 | 0 | MEMCOPY(htbl->bits, bits, SIZEOF(htbl->bits)); |
1453 | |
|
1454 | | #ifdef DONT_USE_FANCY_HUFF_OPT |
1455 | | |
1456 | | /* Return a list of the symbols sorted by code length */ |
1457 | | /* Note: Due to the codelength changes made above, it can happen |
1458 | | * that more frequent symbols are assigned longer codewords. |
1459 | | */ |
1460 | | p = htbl->huffval; |
1461 | | for (i = 1; i <= MAX_CLEN; i++) { |
1462 | | for (j = 0; j <= 255; j++) { |
1463 | | if (codesize[j] == i) { |
1464 | | *p++ = (UINT8) j; |
1465 | | } |
1466 | | } |
1467 | | } |
1468 | | |
1469 | | #endif /* DONT_USE_FANCY_HUFF_OPT */ |
1470 | | |
1471 | | /* Set sent_table FALSE so updated table will be written to JPEG file. */ |
1472 | 0 | htbl->sent_table = FALSE; |
1473 | 0 | } |
1474 | | |
1475 | | |
1476 | | /* |
1477 | | * Finish up a statistics-gathering pass and create the new Huffman tables. |
1478 | | */ |
1479 | | |
1480 | | METHODDEF(void) |
1481 | | finish_pass_gather (j_compress_ptr cinfo) |
1482 | 0 | { |
1483 | 0 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
1484 | 0 | int ci, tbl; |
1485 | 0 | jpeg_component_info * compptr; |
1486 | 0 | JHUFF_TBL **htblptr; |
1487 | 0 | boolean did_dc[NUM_HUFF_TBLS]; |
1488 | 0 | boolean did_ac[NUM_HUFF_TBLS]; |
1489 | |
|
1490 | 0 | if (cinfo->progressive_mode) |
1491 | | /* Flush out buffered data (all we care about is counting the EOB symbol) */ |
1492 | 0 | emit_eobrun(entropy); |
1493 | | |
1494 | | /* It's important not to apply jpeg_gen_optimal_table more than once |
1495 | | * per table, because it clobbers the input frequency counts! |
1496 | | */ |
1497 | 0 | MEMZERO(did_dc, SIZEOF(did_dc)); |
1498 | 0 | MEMZERO(did_ac, SIZEOF(did_ac)); |
1499 | |
|
1500 | 0 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
1501 | 0 | compptr = cinfo->cur_comp_info[ci]; |
1502 | | /* DC needs no table for refinement scan */ |
1503 | 0 | if (cinfo->Ss == 0 && cinfo->Ah == 0) { |
1504 | 0 | tbl = compptr->dc_tbl_no; |
1505 | 0 | if (! did_dc[tbl]) { |
1506 | 0 | htblptr = & cinfo->dc_huff_tbl_ptrs[tbl]; |
1507 | 0 | if (*htblptr == NULL) |
1508 | 0 | *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo); |
1509 | 0 | jpeg_gen_optimal_table(cinfo, *htblptr, entropy->dc_count_ptrs[tbl]); |
1510 | 0 | did_dc[tbl] = TRUE; |
1511 | 0 | } |
1512 | 0 | } |
1513 | | /* AC needs no table when not present */ |
1514 | 0 | if (cinfo->Se) { |
1515 | 0 | tbl = compptr->ac_tbl_no; |
1516 | 0 | if (! did_ac[tbl]) { |
1517 | 0 | htblptr = & cinfo->ac_huff_tbl_ptrs[tbl]; |
1518 | 0 | if (*htblptr == NULL) |
1519 | 0 | *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo); |
1520 | 0 | jpeg_gen_optimal_table(cinfo, *htblptr, entropy->ac_count_ptrs[tbl]); |
1521 | 0 | did_ac[tbl] = TRUE; |
1522 | 0 | } |
1523 | 0 | } |
1524 | 0 | } |
1525 | 0 | } |
1526 | | |
1527 | | |
1528 | | /* |
1529 | | * Initialize for a Huffman-compressed scan. |
1530 | | * If gather_statistics is TRUE, we do not output anything during the scan, |
1531 | | * just count the Huffman symbols used and generate Huffman code tables. |
1532 | | */ |
1533 | | |
1534 | | METHODDEF(void) |
1535 | | start_pass_huff (j_compress_ptr cinfo, boolean gather_statistics) |
1536 | 0 | { |
1537 | 0 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
1538 | 0 | int ci, tbl; |
1539 | 0 | jpeg_component_info * compptr; |
1540 | |
|
1541 | 0 | if (gather_statistics) |
1542 | 0 | entropy->pub.finish_pass = finish_pass_gather; |
1543 | 0 | else |
1544 | 0 | entropy->pub.finish_pass = finish_pass_huff; |
1545 | |
|
1546 | 0 | if (cinfo->progressive_mode) { |
1547 | 0 | entropy->cinfo = cinfo; |
1548 | 0 | entropy->gather_statistics = gather_statistics; |
1549 | | |
1550 | | /* We assume jcmaster.c already validated the scan parameters. */ |
1551 | | |
1552 | | /* Select execution routine */ |
1553 | 0 | if (cinfo->Ah == 0) { |
1554 | 0 | if (cinfo->Ss == 0) |
1555 | 0 | entropy->pub.encode_mcu = encode_mcu_DC_first; |
1556 | 0 | else |
1557 | 0 | entropy->pub.encode_mcu = encode_mcu_AC_first; |
1558 | 0 | } else { |
1559 | 0 | if (cinfo->Ss == 0) |
1560 | 0 | entropy->pub.encode_mcu = encode_mcu_DC_refine; |
1561 | 0 | else { |
1562 | 0 | entropy->pub.encode_mcu = encode_mcu_AC_refine; |
1563 | | /* AC refinement needs a correction bit buffer */ |
1564 | 0 | if (entropy->bit_buffer == NULL) |
1565 | 0 | entropy->bit_buffer = (char *) (*cinfo->mem->alloc_small) |
1566 | 0 | ((j_common_ptr) cinfo, JPOOL_IMAGE, MAX_CORR_BITS * SIZEOF(char)); |
1567 | 0 | } |
1568 | 0 | } |
1569 | | |
1570 | | /* Initialize AC stuff */ |
1571 | 0 | entropy->ac_tbl_no = cinfo->cur_comp_info[0]->ac_tbl_no; |
1572 | 0 | entropy->EOBRUN = 0; |
1573 | 0 | entropy->BE = 0; |
1574 | 0 | } else { |
1575 | 0 | if (gather_statistics) |
1576 | 0 | entropy->pub.encode_mcu = encode_mcu_gather; |
1577 | 0 | else |
1578 | 0 | entropy->pub.encode_mcu = encode_mcu_huff; |
1579 | 0 | } |
1580 | |
|
1581 | 0 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
1582 | 0 | compptr = cinfo->cur_comp_info[ci]; |
1583 | | /* DC needs no table for refinement scan */ |
1584 | 0 | if (cinfo->Ss == 0 && cinfo->Ah == 0) { |
1585 | 0 | tbl = compptr->dc_tbl_no; |
1586 | 0 | if (gather_statistics) { |
1587 | | /* Check for invalid table index */ |
1588 | | /* (make_c_derived_tbl does this in the other path) */ |
1589 | 0 | if (tbl < 0 || tbl >= NUM_HUFF_TBLS) |
1590 | 0 | ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl); |
1591 | | /* Allocate and zero the statistics tables */ |
1592 | | /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */ |
1593 | 0 | if (entropy->dc_count_ptrs[tbl] == NULL) |
1594 | 0 | entropy->dc_count_ptrs[tbl] = (long *) (*cinfo->mem->alloc_small) |
1595 | 0 | ((j_common_ptr) cinfo, JPOOL_IMAGE, 257 * SIZEOF(long)); |
1596 | 0 | MEMZERO(entropy->dc_count_ptrs[tbl], 257 * SIZEOF(long)); |
1597 | 0 | } else { |
1598 | | /* Compute derived values for Huffman tables */ |
1599 | | /* We may do this more than once for a table, but it's not expensive */ |
1600 | 0 | jpeg_make_c_derived_tbl(cinfo, TRUE, tbl, |
1601 | 0 | & entropy->dc_derived_tbls[tbl]); |
1602 | 0 | } |
1603 | | /* Initialize DC predictions to 0 */ |
1604 | 0 | entropy->saved.last_dc_val[ci] = 0; |
1605 | 0 | } |
1606 | | /* AC needs no table when not present */ |
1607 | 0 | if (cinfo->Se) { |
1608 | 0 | tbl = compptr->ac_tbl_no; |
1609 | 0 | if (gather_statistics) { |
1610 | 0 | if (tbl < 0 || tbl >= NUM_HUFF_TBLS) |
1611 | 0 | ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl); |
1612 | 0 | if (entropy->ac_count_ptrs[tbl] == NULL) |
1613 | 0 | entropy->ac_count_ptrs[tbl] = (long *) (*cinfo->mem->alloc_small) |
1614 | 0 | ((j_common_ptr) cinfo, JPOOL_IMAGE, 257 * SIZEOF(long)); |
1615 | 0 | MEMZERO(entropy->ac_count_ptrs[tbl], 257 * SIZEOF(long)); |
1616 | 0 | } else { |
1617 | 0 | jpeg_make_c_derived_tbl(cinfo, FALSE, tbl, |
1618 | 0 | & entropy->ac_derived_tbls[tbl]); |
1619 | 0 | } |
1620 | 0 | } |
1621 | 0 | } |
1622 | | |
1623 | | /* Initialize bit buffer to empty */ |
1624 | 0 | entropy->saved.put_buffer = 0; |
1625 | 0 | entropy->saved.put_bits = 0; |
1626 | | |
1627 | | /* Initialize restart stuff */ |
1628 | 0 | entropy->restarts_to_go = cinfo->restart_interval; |
1629 | 0 | entropy->next_restart_num = 0; |
1630 | 0 | } |
1631 | | |
1632 | | |
1633 | | /* |
1634 | | * Module initialization routine for Huffman entropy encoding. |
1635 | | */ |
1636 | | |
1637 | | GLOBAL(void) |
1638 | | jinit_huff_encoder (j_compress_ptr cinfo) |
1639 | 0 | { |
1640 | 0 | huff_entropy_ptr entropy; |
1641 | 0 | int i; |
1642 | |
|
1643 | 0 | entropy = (huff_entropy_ptr) (*cinfo->mem->alloc_small) |
1644 | 0 | ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(huff_entropy_encoder)); |
1645 | 0 | cinfo->entropy = &entropy->pub; |
1646 | 0 | entropy->pub.start_pass = start_pass_huff; |
1647 | | |
1648 | | /* Mark tables unallocated */ |
1649 | 0 | for (i = 0; i < NUM_HUFF_TBLS; i++) { |
1650 | 0 | entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL; |
1651 | 0 | entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL; |
1652 | 0 | } |
1653 | |
|
1654 | 0 | if (cinfo->progressive_mode) |
1655 | 0 | entropy->bit_buffer = NULL; /* needed only in AC refinement scan */ |
1656 | 0 | } |