Coverage Report

Created: 2025-06-10 07:27

/src/ghostpdl/psi/isave.c
Line
Count
Source (jump to first uncovered line)
1
/* Copyright (C) 2001-2024 Artifex Software, Inc.
2
   All Rights Reserved.
3
4
   This software is provided AS-IS with no warranty, either express or
5
   implied.
6
7
   This software is distributed under license and may not be copied,
8
   modified or distributed except as expressly authorized under the terms
9
   of the license contained in the file LICENSE in this distribution.
10
11
   Refer to licensing information at http://www.artifex.com or contact
12
   Artifex Software, Inc.,  39 Mesa Street, Suite 108A, San Francisco,
13
   CA 94129, USA, for further information.
14
*/
15
16
17
/* Save/restore manager for Ghostscript interpreter */
18
#include "ghost.h"
19
#include "memory_.h"
20
#include "ierrors.h"
21
#include "gsexit.h"
22
#include "gsstruct.h"
23
#include "stream.h"   /* for linking for forgetsave */
24
#include "iastate.h"
25
#include "inamedef.h"
26
#include "iname.h"
27
#include "ipacked.h"
28
#include "isave.h"
29
#include "isstate.h"
30
#include "gsstate.h"
31
#include "store.h"    /* for ref_assign */
32
#include "ivmspace.h"
33
#include "igc.h"
34
#include "gsutil.h"   /* gs_next_ids prototype */
35
#include "icstate.h"
36
37
/* Structure descriptor */
38
private_st_alloc_save();
39
40
/* Define the maximum amount of data we are willing to scan repeatedly -- */
41
/* see below for details. */
42
static const long max_repeated_scan = 100000;
43
44
/* Define the minimum space for creating an inner clump. */
45
/* Must be at least sizeof(clump_head_t). */
46
static const long min_inner_clump_space = sizeof(clump_head_t) + 500;
47
48
/*
49
 * The logic for saving and restoring the state is complex.
50
 * Both the changes to individual objects, and the overall state
51
 * of the memory manager, must be saved and restored.
52
 */
53
54
/*
55
 * To save the state of the memory manager:
56
 *      Save the state of the current clump in which we are allocating.
57
 *      Shrink all clumps to their inner unallocated region.
58
 *      Save and reset the free block chains.
59
 * By doing this, we guarantee that no object older than the save
60
 * can be freed.
61
 *
62
 * To restore the state of the memory manager:
63
 *      Free all clumps newer than the save, and the descriptors for
64
 *        the inner clumps created by the save.
65
 *      Make current the clump that was current at the time of the save.
66
 *      Restore the state of the current clump.
67
 *
68
 * In addition to save ("start transaction") and restore ("abort transaction"),
69
 * we support forgetting a save ("commit transation").  To forget a save:
70
 *      Reassign to the next outer save all clumps newer than the save.
71
 *      Free the descriptors for the inners clump, updating their outer
72
 *        clumps to reflect additional allocations in the inner clumps.
73
 *      Concatenate the free block chains with those of the outer save.
74
 */
75
76
/*
77
 * For saving changes to individual objects, we add an "attribute" bit
78
 * (l_new) that logically belongs to the slot where the ref is stored,
79
 * not to the ref itself.  The bit means "the contents of this slot
80
 * have been changed, or the slot was allocated, since the last save."
81
 * To keep track of changes since the save, we associate a chain of
82
 * <slot, old_contents> pairs that remembers the old contents of slots.
83
 *
84
 * When creating an object, if the save level is non-zero:
85
 *      Set l_new in all slots.
86
 *
87
 * When storing into a slot, if the save level is non-zero:
88
 *      If l_new isn't set, save the address and contents of the slot
89
 *        on the current contents chain.
90
 *      Set l_new after storing the new value.
91
 *
92
 * To do a save:
93
 *      If the save level is non-zero:
94
 *              Reset l_new in all slots on the contents chain, and in all
95
 *                objects created since the previous save.
96
 *      Push the head of the contents chain, and reset the chain to empty.
97
 *
98
 * To do a restore:
99
 *      Check all the stacks to make sure they don't contain references
100
 *        to objects created since the save.
101
 *      Restore all the slots on the contents chain.
102
 *      Pop the contents chain head.
103
 *      If the save level is now non-zero:
104
 *              Scan the newly restored contents chain, and set l_new in all
105
 *                the slots it references.
106
 *              Scan all objects created since the previous save, and set
107
 *                l_new in all the slots of each object.
108
 *
109
 * To forget a save:
110
 *      If the save level is greater than 1:
111
 *              Set l_new as for a restore, per the next outer save.
112
 *              Concatenate the next outer contents chain to the end of
113
 *                the current one.
114
 *      If the save level is 1:
115
 *              Reset l_new as for a save.
116
 *              Free the contents chain.
117
 */
118
119
/*
120
 * A consequence of the foregoing algorithms is that the cost of a save is
121
 * proportional to the total amount of data allocated since the previous
122
 * save.  If a PostScript program reads in a large amount of setup code and
123
 * then uses save/restore heavily, each save/restore will be expensive.  To
124
 * mitigate this, we check to see how much data we have scanned at this save
125
 * level: if it is large, we do a second, invisible save.  This greatly
126
 * reduces the cost of inner saves, at the expense of possibly saving some
127
 * changes twice that otherwise would only have to be saved once.
128
 */
129
130
/*
131
 * The presence of global and local VM complicates the situation further.
132
 * There is a separate save chain and contents chain for each VM space.
133
 * When multiple contexts are fully implemented, save and restore will have
134
 * the following effects, according to the privacy status of the current
135
 * context's global and local VM:
136
 *      Private global, private local:
137
 *              The outermost save saves both global and local VM;
138
 *                otherwise, save only saves local VM.
139
 *      Shared global, private local:
140
 *              Save only saves local VM.
141
 *      Shared global, shared local:
142
 *              Save only saves local VM, and suspends all other contexts
143
 *                sharing the same local VM until the matching restore.
144
 * Since we do not currently implement multiple contexts, only the first
145
 * case is relevant.
146
 *
147
 * Note that when saving the contents of a slot, the choice of chain
148
 * is determined by the VM space in which the slot is allocated,
149
 * not by the current allocation mode.
150
 */
151
152
/* Tracing printout */
153
static void
154
print_save(const char *str, uint spacen, const alloc_save_t *sav)
155
574k
{
156
574k
  if_debug5('u', "[u]%s space %u "PRI_INTPTR": cdata = "PRI_INTPTR", id = %lu\n",\
157
574k
            str, spacen, (intptr_t)sav, (intptr_t)sav->client_data, (ulong)sav->id);
158
574k
}
159
160
/* A link to igcref.c . */
161
ptr_proc_reloc(igc_reloc_ref_ptr_nocheck, ref_packed);
162
163
static
164
CLEAR_MARKS_PROC(change_clear_marks)
165
2.29M
{
166
2.29M
    alloc_change_t *const ptr = (alloc_change_t *)vptr;
167
168
2.29M
    if (r_is_packed(&ptr->contents))
169
29.1k
        r_clear_pmark((ref_packed *) & ptr->contents);
170
2.26M
    else
171
2.26M
        r_clear_attrs(&ptr->contents, l_mark);
172
2.29M
}
173
static
174
9.12M
ENUM_PTRS_WITH(change_enum_ptrs, alloc_change_t *ptr) return 0;
175
2.28M
ENUM_PTR(0, alloc_change_t, next);
176
2.28M
case 1:
177
2.28M
    if (ptr->offset >= 0)
178
0
        ENUM_RETURN((byte *) ptr->where - ptr->offset);
179
2.28M
    else
180
2.28M
        if (ptr->offset != AC_OFFSET_ALLOCATED)
181
1.48M
            ENUM_RETURN_REF(ptr->where);
182
792k
        else {
183
            /* Don't enumerate ptr->where, because it
184
               needs a special processing with
185
               alloc_save__filter_changes. */
186
792k
            ENUM_RETURN(0);
187
792k
        }
188
2.28M
case 2:
189
2.28M
    ENUM_RETURN_REF(&ptr->contents);
190
9.12M
ENUM_PTRS_END
191
1.60M
static RELOC_PTRS_WITH(change_reloc_ptrs, alloc_change_t *ptr)
192
1.60M
{
193
1.60M
    RELOC_VAR(ptr->next);
194
1.60M
    switch (ptr->offset) {
195
0
        case AC_OFFSET_STATIC:
196
0
            break;
197
1.48M
        case AC_OFFSET_REF:
198
1.48M
            RELOC_REF_PTR_VAR(ptr->where);
199
1.48M
            break;
200
117k
        case AC_OFFSET_ALLOCATED:
201
            /* We know that ptr->where may point to an unmarked object
202
               because change_enum_ptrs skipped it,
203
               and we know it always points to same space
204
               because we took a special care when calling alloc_save_change_alloc.
205
               Therefore we must skip the check for the mark,
206
               which would happen if we call the regular relocation function
207
               igc_reloc_ref_ptr from RELOC_REF_PTR_VAR.
208
               Calling igc_reloc_ref_ptr_nocheck instead. */
209
117k
            { /* A sanity check. */
210
117k
                obj_header_t *pre = (obj_header_t *)ptr->where - 1;
211
212
117k
                if (pre->o_type != &st_refs)
213
0
                    gs_abort(gcst->heap);
214
117k
            }
215
117k
            if (ptr->where != 0 && !gcst->relocating_untraced)
216
103k
                ptr->where = igc_reloc_ref_ptr_nocheck(ptr->where, gcst);
217
117k
            break;
218
0
        default:
219
0
            {
220
0
                byte *obj = (byte *) ptr->where - ptr->offset;
221
222
0
                RELOC_VAR(obj);
223
0
                ptr->where = (ref_packed *) (obj + ptr->offset);
224
0
            }
225
0
            break;
226
1.60M
    }
227
1.60M
    if (r_is_packed(&ptr->contents))
228
29.1k
        r_clear_pmark((ref_packed *) & ptr->contents);
229
1.57M
    else {
230
1.57M
        RELOC_REF_VAR(ptr->contents);
231
1.57M
        r_clear_attrs(&ptr->contents, l_mark);
232
1.57M
    }
233
1.60M
}
234
1.60M
RELOC_PTRS_END
235
gs_private_st_complex_only(st_alloc_change, alloc_change_t, "alloc_change",
236
                change_clear_marks, change_enum_ptrs, change_reloc_ptrs, 0);
237
238
/* Debugging printout */
239
#ifdef DEBUG
240
static void
241
alloc_save_print(const gs_memory_t *mem, alloc_change_t * cp, bool print_current)
242
{
243
    dmprintf2(mem, " "PRI_INTPTR"x: "PRI_INTPTR": ", (intptr_t) cp, (intptr_t) cp->where);
244
    if (r_is_packed(&cp->contents)) {
245
        if (print_current)
246
            dmprintf2(mem, "saved=%x cur=%x\n", *(ref_packed *) & cp->contents,
247
                      *cp->where);
248
        else
249
            dmprintf1(mem, "%x\n", *(ref_packed *) & cp->contents);
250
    } else {
251
        if (print_current)
252
            dmprintf6(mem, "saved=%x %x %lx cur=%x %x %lx\n",
253
                      r_type_attrs(&cp->contents), r_size(&cp->contents),
254
                      (ulong) cp->contents.value.intval,
255
                      r_type_attrs((ref *) cp->where),
256
                      r_size((ref *) cp->where),
257
                      (ulong) ((ref *) cp->where)->value.intval);
258
        else
259
            dmprintf3(mem, "%x %x %lx\n",
260
                      r_type_attrs(&cp->contents), r_size(&cp->contents),
261
                      (ulong) cp->contents.value.intval);
262
    }
263
}
264
#endif
265
266
/* Forward references */
267
static int  restore_resources(alloc_save_t *, gs_ref_memory_t *);
268
static void restore_free(gs_ref_memory_t *);
269
static int  save_set_new(gs_ref_memory_t * mem, bool to_new, bool set_limit, ulong *pscanned);
270
static int  save_set_new_changes(gs_ref_memory_t *, bool, bool);
271
static bool check_l_mark(void *obj);
272
273
/* Initialize the save/restore machinery. */
274
void
275
alloc_save_init(gs_dual_memory_t * dmem)
276
10.8k
{
277
10.8k
    alloc_set_not_in_save(dmem);
278
10.8k
}
279
280
/* Record that we are in a save. */
281
static void
282
alloc_set_masks(gs_dual_memory_t *dmem, uint new_mask, uint test_mask)
283
343k
{
284
343k
    int i;
285
343k
    gs_ref_memory_t *mem;
286
287
343k
    dmem->new_mask = new_mask;
288
343k
    dmem->test_mask = test_mask;
289
1.71M
    for (i = 0; i < countof(dmem->spaces.memories.indexed); ++i)
290
1.37M
        if ((mem = dmem->spaces.memories.indexed[i]) != 0) {
291
1.03M
            mem->new_mask = new_mask, mem->test_mask = test_mask;
292
1.03M
            if (mem->stable_memory != (gs_memory_t *)mem) {
293
687k
                mem = (gs_ref_memory_t *)mem->stable_memory;
294
687k
                mem->new_mask = new_mask, mem->test_mask = test_mask;
295
687k
            }
296
1.03M
        }
297
343k
}
298
void
299
alloc_set_in_save(gs_dual_memory_t *dmem)
300
288k
{
301
288k
    alloc_set_masks(dmem, l_new, l_new);
302
288k
}
303
304
/* Record that we are not in a save. */
305
void
306
alloc_set_not_in_save(gs_dual_memory_t *dmem)
307
55.5k
{
308
55.5k
    alloc_set_masks(dmem, 0, ~0);
309
55.5k
}
310
311
/* Save the state. */
312
static alloc_save_t *alloc_save_space(gs_ref_memory_t *mem,
313
                                       gs_dual_memory_t *dmem,
314
                                       ulong sid);
315
static void
316
alloc_free_save(gs_ref_memory_t *mem, alloc_save_t *save, const char *scn)
317
0
{
318
0
    gs_ref_memory_t save_mem;
319
0
    save_mem = mem->saved->state;
320
0
    gs_free_object((gs_memory_t *)mem, save, scn);
321
    /* Free any inner clump structures.  This is the easiest way to do it. */
322
0
    restore_free(mem);
323
    /* Restore the 'saved' state - this pulls our object off the linked
324
     * list of states. Without this we hit a SEGV in the gc later. */
325
0
    *mem = save_mem;
326
0
}
327
int
328
alloc_save_state(gs_dual_memory_t * dmem, void *cdata, ulong *psid)
329
276k
{
330
276k
    gs_ref_memory_t *lmem = dmem->space_local;
331
276k
    gs_ref_memory_t *gmem = dmem->space_global;
332
276k
    ulong sid = gs_next_ids((const gs_memory_t *)lmem->stable_memory, 2);
333
276k
    bool global =
334
276k
        lmem->save_level == 0 && gmem != lmem &&
335
276k
        gmem->num_contexts == 1;
336
276k
    alloc_save_t *gsave =
337
276k
        (global ? alloc_save_space(gmem, dmem, sid + 1) : (alloc_save_t *) 0);
338
276k
    alloc_save_t *lsave = alloc_save_space(lmem, dmem, sid);
339
340
276k
    if (lsave == 0 || (global && gsave == 0)) {
341
        /* Only 1 of lsave or gsave will have been allocated, but
342
         * nevertheless (in case things change in future), we free
343
         * lsave, then gsave, so they 'pop' correctly when restoring
344
         * the mem->saved states. */
345
0
        if (lsave != 0)
346
0
            alloc_free_save(lmem, lsave, "alloc_save_state(local save)");
347
0
        if (gsave != 0)
348
0
            alloc_free_save(gmem, gsave, "alloc_save_state(global save)");
349
0
        return_error(gs_error_VMerror);
350
0
    }
351
276k
    if (gsave != 0) {
352
10.8k
        gsave->client_data = 0;
353
10.8k
        print_save("save", gmem->space, gsave);
354
        /* Restore names when we do the local restore. */
355
10.8k
        lsave->restore_names = gsave->restore_names;
356
10.8k
        gsave->restore_names = false;
357
10.8k
    }
358
276k
    lsave->id = sid;
359
276k
    lsave->client_data = cdata;
360
276k
    print_save("save", lmem->space, lsave);
361
    /* Reset the l_new attribute in all slots.  The only slots that */
362
    /* can have the attribute set are the ones on the changes chain, */
363
    /* and ones in objects allocated since the last save. */
364
276k
    if (lmem->save_level > 1) {
365
265k
        ulong scanned;
366
265k
        int code = save_set_new(&lsave->state, false, true, &scanned);
367
368
265k
        if (code < 0)
369
0
            return code;
370
#if 0 /* Disable invisible save levels. */
371
        if ((lsave->state.total_scanned += scanned) > max_repeated_scan) {
372
            /* Do a second, invisible save. */
373
            alloc_save_t *rsave;
374
375
            rsave = alloc_save_space(lmem, dmem, 0L);
376
            if (rsave != 0) {
377
                rsave->client_data = cdata;
378
#if 0 /* Bug 688153 */
379
                rsave->id = lsave->id;
380
                print_save("save", lmem->space, rsave);
381
                lsave->id = 0;  /* mark as invisible */
382
                rsave->state.save_level--; /* ditto */
383
                lsave->client_data = 0;
384
#else
385
                rsave->id = 0;  /* mark as invisible */
386
                print_save("save", lmem->space, rsave);
387
                rsave->state.save_level--; /* ditto */
388
                rsave->client_data = 0;
389
#endif
390
                /* Inherit the allocated space count -- */
391
                /* we need this for triggering a GC. */
392
                print_save("save", lmem->space, lsave);
393
            }
394
        }
395
#endif
396
265k
    }
397
398
276k
    alloc_set_in_save(dmem);
399
276k
    *psid = sid;
400
276k
    return 0;
401
276k
}
402
/* Save the state of one space (global or local). */
403
static alloc_save_t *
404
alloc_save_space(gs_ref_memory_t * mem, gs_dual_memory_t * dmem, ulong sid)
405
287k
{
406
287k
    gs_ref_memory_t save_mem;
407
287k
    alloc_save_t *save;
408
287k
    clump_t *cp;
409
287k
    clump_t *new_cc = NULL;
410
287k
    clump_splay_walker sw;
411
412
287k
    save_mem = *mem;
413
287k
    alloc_close_clump(mem);
414
287k
    mem->cc = NULL;
415
287k
    gs_memory_status((gs_memory_t *) mem, &mem->previous_status);
416
287k
    ialloc_reset(mem);
417
418
    /* Create inner clumps wherever it's worthwhile. */
419
420
1.84M
    for (cp = clump_splay_walk_init(&sw, &save_mem); cp != 0; cp = clump_splay_walk_fwd(&sw)) {
421
1.55M
        if (cp->ctop - cp->cbot > min_inner_clump_space) {
422
            /* Create an inner clump to cover only the unallocated part. */
423
783k
            clump_t *inner =
424
783k
                gs_raw_alloc_struct_immovable(mem->non_gc_memory, &st_clump,
425
783k
                                              "alloc_save_space(inner)");
426
427
783k
            if (inner == 0)
428
0
                break;   /* maybe should fail */
429
783k
            alloc_init_clump(inner, cp->cbot, cp->ctop, cp->sreloc != 0, cp);
430
783k
            alloc_link_clump(inner, mem);
431
783k
            if_debug2m('u', (gs_memory_t *)mem, "[u]inner clump: cbot="PRI_INTPTR" ctop="PRI_INTPTR"\n",
432
783k
                       (intptr_t) inner->cbot, (intptr_t) inner->ctop);
433
783k
            if (cp == save_mem.cc)
434
261k
                new_cc = inner;
435
783k
        }
436
1.55M
    }
437
287k
    mem->cc = new_cc;
438
287k
    alloc_open_clump(mem);
439
440
287k
    save = gs_alloc_struct((gs_memory_t *) mem, alloc_save_t,
441
287k
                           &st_alloc_save, "alloc_save_space(save)");
442
287k
    if_debug2m('u', (gs_memory_t *)mem, "[u]save space %u at "PRI_INTPTR"\n",
443
287k
               mem->space, (intptr_t) save);
444
287k
    if (save == 0) {
445
        /* Free the inner clump structures.  This is the easiest way. */
446
0
        restore_free(mem);
447
0
        *mem = save_mem;
448
0
        return 0;
449
0
    }
450
287k
    save->client_data = NULL;
451
287k
    save->state = save_mem;
452
287k
    save->spaces = dmem->spaces;
453
287k
    save->restore_names = (name_memory(mem) == (gs_memory_t *) mem);
454
287k
    save->is_current = (dmem->current == mem);
455
287k
    save->id = sid;
456
287k
    mem->saved = save;
457
287k
    if_debug2m('u', (gs_memory_t *)mem, "[u%u]file_save "PRI_INTPTR"\n",
458
287k
               mem->space, (intptr_t) mem->streams);
459
287k
    mem->streams = 0;
460
287k
    mem->total_scanned = 0;
461
287k
    mem->total_scanned_after_compacting = 0;
462
287k
    if (sid)
463
287k
        mem->save_level++;
464
287k
    return save;
465
287k
}
466
467
/* Record a state change that must be undone for restore, */
468
/* and mark it as having been saved. */
469
int
470
alloc_save_change_in(gs_ref_memory_t *mem, const ref * pcont,
471
                  ref_packed * where, client_name_t cname)
472
143M
{
473
143M
    register alloc_change_t *cp;
474
475
143M
    if (mem->new_mask == 0)
476
143M
        return 0;    /* no saving */
477
575k
    cp = gs_alloc_struct((gs_memory_t *)mem, alloc_change_t,
478
575k
                         &st_alloc_change, "alloc_save_change");
479
575k
    if (cp == 0)
480
0
        return -1;
481
575k
    cp->next = mem->changes;
482
575k
    cp->where = where;
483
575k
    if (pcont == NULL)
484
0
        cp->offset = AC_OFFSET_STATIC;
485
575k
    else if (r_is_array(pcont) || r_has_type(pcont, t_dictionary))
486
575k
        cp->offset = AC_OFFSET_REF;
487
0
    else if (r_is_struct(pcont))
488
0
        cp->offset = (byte *) where - (byte *) pcont->value.pstruct;
489
0
    else {
490
0
        if_debug3('u', "Bad type %u for save!  pcont = "PRI_INTPTR", where = "PRI_INTPTR"\n",
491
0
                 r_type(pcont), (intptr_t) pcont, (intptr_t) where);
492
0
        gs_abort((const gs_memory_t *)mem);
493
0
    }
494
575k
    if (r_is_packed(where))
495
36.7k
        *(ref_packed *)&cp->contents = *where;
496
539k
    else {
497
539k
        ref_assign_inline(&cp->contents, (ref *) where);
498
539k
        r_set_attrs((ref *) where, l_new);
499
539k
    }
500
575k
    mem->changes = cp;
501
#ifdef DEBUG
502
    if (gs_debug_c('U')) {
503
        dmlprintf1((const gs_memory_t *)mem, "[U]save(%s)", client_name_string(cname));
504
        alloc_save_print((const gs_memory_t *)mem, cp, false);
505
    }
506
#endif
507
575k
    return 0;
508
575k
}
509
int
510
alloc_save_change(gs_dual_memory_t * dmem, const ref * pcont,
511
                  ref_packed * where, client_name_t cname)
512
143M
{
513
143M
    gs_ref_memory_t *mem =
514
143M
        (pcont == NULL ? dmem->space_local :
515
143M
         dmem->spaces_indexed[r_space(pcont) >> r_space_shift]);
516
517
143M
    return alloc_save_change_in(mem, pcont, where, cname);
518
143M
}
519
520
/* Allocate a structure for recording an allocation event. */
521
int
522
alloc_save_change_alloc(gs_ref_memory_t *mem, client_name_t cname, alloc_change_t **pcp)
523
14.0M
{
524
14.0M
    register alloc_change_t *cp;
525
526
14.0M
    if (mem->new_mask == 0)
527
12.8M
        return 0;    /* no saving */
528
1.16M
    cp = gs_alloc_struct((gs_memory_t *)mem, alloc_change_t,
529
1.16M
                         &st_alloc_change, "alloc_save_change");
530
1.16M
    if (cp == 0)
531
0
        return_error(gs_error_VMerror);
532
1.16M
    cp->next = mem->changes;
533
1.16M
    cp->where = 0;
534
1.16M
    cp->offset = AC_OFFSET_ALLOCATED;
535
1.16M
    make_null(&cp->contents);
536
1.16M
    *pcp = cp;
537
1.16M
    return 1;
538
1.16M
}
539
540
/* Remove an AC_OFFSET_ALLOCATED element. */
541
void
542
alloc_save_remove(gs_ref_memory_t *mem, ref_packed *obj, client_name_t cname)
543
2.70k
{
544
2.70k
    alloc_change_t **cpp = &mem->changes;
545
546
101k
    for (; *cpp != NULL;) {
547
98.7k
        alloc_change_t *cp = *cpp;
548
549
98.7k
        if (cp->offset == AC_OFFSET_ALLOCATED && cp->where == obj) {
550
2.70k
            if (mem->scan_limit == cp)
551
0
                mem->scan_limit = cp->next;
552
2.70k
            *cpp = cp->next;
553
2.70k
            gs_free_object((gs_memory_t *)mem, cp, "alloc_save_remove");
554
2.70k
        } else
555
96.0k
            cpp = &(*cpp)->next;
556
98.7k
    }
557
2.70k
}
558
559
/* Filter save change lists. */
560
static inline void
561
alloc_save__filter_changes_in_space(gs_ref_memory_t *mem)
562
1.43M
{
563
    /* This is a special function, which is called
564
       from the garbager after setting marks and before collecting
565
       unused space. Therefore it just resets marks for
566
       elements being released instead releasing them really. */
567
1.43M
    alloc_change_t **cpp = &mem->changes;
568
569
3.70M
    for (; *cpp != NULL; ) {
570
2.26M
        alloc_change_t *cp = *cpp;
571
572
2.26M
        if (cp->offset == AC_OFFSET_ALLOCATED && !check_l_mark(cp->where)) {
573
675k
            obj_header_t *pre = (obj_header_t *)cp - 1;
574
575
675k
            *cpp = cp->next;
576
675k
            cp->where = 0;
577
675k
            if (mem->scan_limit == cp)
578
29
                mem->scan_limit = cp->next;
579
675k
            o_set_unmarked(pre);
580
675k
        } else
581
1.59M
            cpp = &(*cpp)->next;
582
2.26M
    }
583
1.43M
}
584
585
/* Filter save change lists. */
586
void
587
alloc_save__filter_changes(gs_ref_memory_t *memory)
588
111k
{
589
111k
    gs_ref_memory_t *mem = memory;
590
591
1.54M
    for  (; mem; mem = &mem->saved->state)
592
1.43M
        alloc_save__filter_changes_in_space(mem);
593
111k
}
594
595
/* Return (the id of) the innermost externally visible save object, */
596
/* i.e., the innermost save with a non-zero ID. */
597
ulong
598
alloc_save_current_id(const gs_dual_memory_t * dmem)
599
276k
{
600
276k
    const alloc_save_t *save = dmem->space_local->saved;
601
602
276k
    while (save != 0 && save->id == 0)
603
0
        save = save->state.saved;
604
276k
    if (save)
605
276k
        return save->id;
606
607
    /* This should never happen, if it does, return a totally
608
     * impossible value.
609
     */
610
0
    return (ulong)-1;
611
276k
}
612
alloc_save_t *
613
alloc_save_current(const gs_dual_memory_t * dmem)
614
276k
{
615
276k
    return alloc_find_save(dmem, alloc_save_current_id(dmem));
616
276k
}
617
618
/* Test whether a reference would be invalidated by a restore. */
619
bool
620
alloc_is_since_save(const void *vptr, const alloc_save_t * save)
621
586k
{
622
    /* A reference postdates a save iff it is in a clump allocated */
623
    /* since the save (including any carried-over inner clumps). */
624
625
586k
    const char *const ptr = (const char *)vptr;
626
586k
    register gs_ref_memory_t *mem = save->space_local;
627
628
586k
    if_debug2m('U', (gs_memory_t *)mem, "[U]is_since_save "PRI_INTPTR", "PRI_INTPTR":\n",
629
586k
               (intptr_t) ptr, (intptr_t) save);
630
586k
    if (mem->saved == 0) { /* This is a special case, the final 'restore' from */
631
        /* alloc_restore_all. */
632
10.8k
        return true;
633
10.8k
    }
634
    /* Check against clumps allocated since the save. */
635
    /* (There may have been intermediate saves as well.) */
636
575k
    for (;; mem = &mem->saved->state) {
637
575k
        if_debug1m('U', (gs_memory_t *)mem, "[U]checking mem="PRI_INTPTR"\n", (intptr_t) mem);
638
575k
        if (ptr_is_within_mem_clumps(ptr, mem)) {
639
2
            if_debug0m('U', (gs_memory_t *)mem, "[U+]found\n");
640
2
            return true;
641
2
        }
642
575k
        if_debug1m('U', (gs_memory_t *)mem, "[U-]not in any chunks belonging to "PRI_INTPTR"\n", (intptr_t) mem);
643
575k
        if (mem->saved == save) { /* We've checked all the more recent saves, */
644
            /* must be OK. */
645
575k
            break;
646
575k
        }
647
575k
    }
648
649
    /*
650
     * If we're about to do a global restore (a restore to the level 0),
651
     * and there is only one context using this global VM
652
     * (the normal case, in which global VM is saved by the
653
     * outermost save), we also have to check the global save.
654
     * Global saves can't be nested, which makes things easy.
655
     */
656
575k
    if (save->state.save_level == 0 /* Restoring to save level 0 - see bug 688157, 688161 */ &&
657
575k
        (mem = save->space_global) != save->space_local &&
658
575k
        save->space_global->num_contexts == 1
659
575k
        ) {
660
11.9k
        if_debug1m('U', (gs_memory_t *)mem, "[U]checking global mem="PRI_INTPTR"\n", (intptr_t) mem);
661
11.9k
        if (ptr_is_within_mem_clumps(ptr, mem)) {
662
0
            if_debug0m('U', (gs_memory_t *)mem, "[U+]  found\n");
663
0
            return true;
664
0
        }
665
11.9k
    }
666
575k
    return false;
667
668
575k
#undef ptr
669
575k
}
670
671
/* Test whether a name would be invalidated by a restore. */
672
bool
673
alloc_name_is_since_save(const gs_memory_t *mem,
674
                         const ref * pnref, const alloc_save_t * save)
675
10.4k
{
676
10.4k
    const name_string_t *pnstr;
677
678
10.4k
    if (!save->restore_names)
679
10.4k
        return false;
680
0
    pnstr = names_string_inline(mem->gs_lib_ctx->gs_name_table, pnref);
681
0
    if (pnstr->foreign_string)
682
0
        return false;
683
0
    return alloc_is_since_save(pnstr->string_bytes, save);
684
0
}
685
bool
686
alloc_name_index_is_since_save(const gs_memory_t *mem,
687
                               uint nidx, const alloc_save_t *save)
688
0
{
689
0
    const name_string_t *pnstr;
690
691
0
    if (!save->restore_names)
692
0
        return false;
693
0
    pnstr = names_index_string_inline(mem->gs_lib_ctx->gs_name_table, nidx);
694
0
    if (pnstr->foreign_string)
695
0
        return false;
696
0
    return alloc_is_since_save(pnstr->string_bytes, save);
697
0
}
698
699
/* Check whether any names have been created since a given save */
700
/* that might be released by the restore. */
701
bool
702
alloc_any_names_since_save(const alloc_save_t * save)
703
287k
{
704
287k
    return save->restore_names;
705
287k
}
706
707
/* Get the saved state with a given ID. */
708
alloc_save_t *
709
alloc_find_save(const gs_dual_memory_t * dmem, ulong sid)
710
300k
{
711
300k
    alloc_save_t *sprev = dmem->space_local->saved;
712
713
300k
    if (sid == 0)
714
0
        return 0;   /* invalid id */
715
307k
    while (sprev != 0) {
716
307k
        if (sprev->id == sid)
717
300k
            return sprev;
718
6.33k
        sprev = sprev->state.saved;
719
6.33k
    }
720
0
    return 0;
721
300k
}
722
723
/* Get the client data from a saved state. */
724
void *
725
alloc_save_client_data(const alloc_save_t * save)
726
276k
{
727
276k
    return save->client_data;
728
276k
}
729
730
/*
731
 * Do one step of restoring the state.  The client is responsible for
732
 * calling alloc_find_save to get the save object, and for ensuring that
733
 * there are no surviving pointers for which alloc_is_since_save is true.
734
 * Return true if the argument was the innermost save, in which case
735
 * this is the last (or only) step.
736
 * Note that "one step" may involve multiple internal steps,
737
 * if this is the outermost restore (which requires restoring both local
738
 * and global VM) or if we created extra save levels to reduce scanning.
739
 */
740
static void restore_finalize(gs_ref_memory_t *);
741
static void restore_space(gs_ref_memory_t *, gs_dual_memory_t *);
742
743
int
744
alloc_restore_step_in(gs_dual_memory_t *dmem, alloc_save_t * save)
745
276k
{
746
    /* Get save->space_* now, because the save object will be freed. */
747
276k
    gs_ref_memory_t *lmem = save->space_local;
748
276k
    gs_ref_memory_t *gmem = save->space_global;
749
276k
    gs_ref_memory_t *mem = lmem;
750
276k
    alloc_save_t *sprev;
751
276k
    int code;
752
753
    /* Finalize all objects before releasing resources or undoing changes. */
754
276k
    do {
755
276k
        ulong sid;
756
757
276k
        sprev = mem->saved;
758
276k
        sid = sprev->id;
759
276k
        restore_finalize(mem);  /* finalize objects */
760
276k
        mem = &sprev->state;
761
276k
        if (sid != 0)
762
276k
            break;
763
276k
    }
764
276k
    while (sprev != save);
765
276k
    if (mem->save_level == 0) {
766
        /* This is the outermost save, which might also */
767
        /* need to restore global VM. */
768
10.8k
        mem = gmem;
769
10.8k
        if (mem != lmem && mem->saved != 0) {
770
10.8k
            restore_finalize(mem);
771
10.8k
        }
772
10.8k
    }
773
774
    /* Do one (externally visible) step of restoring the state. */
775
276k
    mem = lmem;
776
276k
    do {
777
276k
        ulong sid;
778
779
276k
        sprev = mem->saved;
780
276k
        sid = sprev->id;
781
276k
        code = restore_resources(sprev, mem); /* release other resources */
782
276k
        if (code < 0)
783
0
            return code;
784
276k
        restore_space(mem, dmem); /* release memory */
785
276k
        if (sid != 0)
786
276k
            break;
787
276k
    }
788
276k
    while (sprev != save);
789
790
276k
    if (mem->save_level == 0) {
791
        /* This is the outermost save, which might also */
792
        /* need to restore global VM. */
793
10.8k
        mem = gmem;
794
10.8k
        if (mem != lmem && mem->saved != 0) {
795
10.8k
            code = restore_resources(mem->saved, mem);
796
10.8k
            if (code < 0)
797
0
                return code;
798
10.8k
            restore_space(mem, dmem);
799
10.8k
        }
800
10.8k
        alloc_set_not_in_save(dmem);
801
265k
    } else {     /* Set the l_new attribute in all slots that are now new. */
802
265k
        ulong scanned;
803
804
265k
        code = save_set_new(mem, true, false, &scanned);
805
265k
        if (code < 0)
806
0
            return code;
807
265k
    }
808
809
276k
    return sprev == save;
810
276k
}
811
/* Restore the memory of one space, by undoing changes and freeing */
812
/* memory allocated since the save. */
813
static void
814
restore_space(gs_ref_memory_t * mem, gs_dual_memory_t *dmem)
815
287k
{
816
287k
    alloc_save_t *save = mem->saved;
817
287k
    alloc_save_t saved;
818
819
287k
    print_save("restore", mem->space, save);
820
821
    /* Undo changes since the save. */
822
287k
    {
823
287k
        register alloc_change_t *cp = mem->changes;
824
825
1.34M
        while (cp) {
826
#ifdef DEBUG
827
            if (gs_debug_c('U')) {
828
                dmlputs((const gs_memory_t *)mem, "[U]restore");
829
                alloc_save_print((const gs_memory_t *)mem, cp, true);
830
            }
831
#endif
832
1.06M
            if (cp->offset == AC_OFFSET_ALLOCATED)
833
1.06M
                DO_NOTHING;
834
575k
            else
835
575k
            if (r_is_packed(&cp->contents))
836
36.7k
                *cp->where = *(ref_packed *) & cp->contents;
837
539k
            else
838
539k
                ref_assign_inline((ref *) cp->where, &cp->contents);
839
1.06M
            cp = cp->next;
840
1.06M
        }
841
287k
    }
842
843
    /* Free memory allocated since the save. */
844
    /* Note that this frees all clumps except the inner ones */
845
    /* belonging to this level. */
846
287k
    saved = *save;
847
287k
    restore_free(mem);
848
849
    /* Restore the allocator state. */
850
287k
    {
851
287k
        int num_contexts = mem->num_contexts; /* don't restore */
852
853
287k
        *mem = saved.state;
854
287k
        mem->num_contexts = num_contexts;
855
287k
    }
856
287k
    alloc_open_clump(mem);
857
858
    /* Make the allocator current if it was current before the save. */
859
287k
    if (saved.is_current) {
860
276k
        dmem->current = mem;
861
276k
        dmem->current_space = mem->space;
862
276k
    }
863
287k
}
864
865
/* Restore to the initial state, releasing all resources. */
866
/* The allocator is no longer usable after calling this routine! */
867
int
868
alloc_restore_all(i_ctx_t *i_ctx_p)
869
10.8k
{
870
    /*
871
     * Save the memory pointers, since freeing space_local will also
872
     * free dmem itself.
873
     */
874
10.8k
    gs_ref_memory_t *lmem = idmemory->space_local;
875
10.8k
    gs_ref_memory_t *gmem = idmemory->space_global;
876
10.8k
    gs_ref_memory_t *smem = idmemory->space_system;
877
878
10.8k
    gs_ref_memory_t *mem;
879
10.8k
    int code;
880
881
    /* Restore to a state outside any saves. */
882
281k
    while (lmem->save_level != 0) {
883
270k
        vm_save_t *vmsave = alloc_save_client_data(alloc_save_current(idmemory));
884
270k
        if (vmsave->gsave) {
885
270k
            gs_grestoreall_for_restore(i_ctx_p->pgs, vmsave->gsave);
886
270k
        }
887
270k
        vmsave->gsave = 0;
888
270k
        code = alloc_restore_step_in(idmemory, lmem->saved);
889
890
270k
        if (code < 0)
891
0
            return code;
892
270k
    }
893
894
    /* Finalize memory. */
895
10.8k
    restore_finalize(lmem);
896
10.8k
    if ((mem = (gs_ref_memory_t *)lmem->stable_memory) != lmem)
897
10.8k
        restore_finalize(mem);
898
10.8k
    if (gmem != lmem && gmem->num_contexts == 1) {
899
10.8k
        restore_finalize(gmem);
900
10.8k
        if ((mem = (gs_ref_memory_t *)gmem->stable_memory) != gmem)
901
10.8k
            restore_finalize(mem);
902
10.8k
    }
903
10.8k
    restore_finalize(smem);
904
905
    /* Release resources other than memory, using fake */
906
    /* save and memory objects. */
907
10.8k
    {
908
10.8k
        alloc_save_t empty_save;
909
910
10.8k
        empty_save.spaces = idmemory->spaces;
911
10.8k
        empty_save.restore_names = false; /* don't bother to release */
912
10.8k
        code = restore_resources(&empty_save, NULL);
913
10.8k
        if (code < 0)
914
0
            return code;
915
10.8k
    }
916
917
    /* Finally, release memory. */
918
10.8k
    restore_free(lmem);
919
10.8k
    if ((mem = (gs_ref_memory_t *)lmem->stable_memory) != lmem)
920
10.8k
        restore_free(mem);
921
10.8k
    if (gmem != lmem) {
922
10.8k
        if (!--(gmem->num_contexts)) {
923
10.8k
            restore_free(gmem);
924
10.8k
            if ((mem = (gs_ref_memory_t *)gmem->stable_memory) != gmem)
925
10.8k
                restore_free(mem);
926
10.8k
        }
927
10.8k
    }
928
10.8k
    restore_free(smem);
929
10.8k
    return 0;
930
10.8k
}
931
932
/*
933
 * Finalize objects that will be freed by a restore.
934
 * Note that we must temporarily disable the freeing operations
935
 * of the allocator while doing this.
936
 */
937
static void
938
restore_finalize(gs_ref_memory_t * mem)
939
341k
{
940
341k
    clump_t *cp;
941
341k
    clump_splay_walker sw;
942
943
341k
    alloc_close_clump(mem);
944
341k
    gs_enable_free((gs_memory_t *) mem, false);
945
2.93M
    for (cp = clump_splay_walk_bwd_init(&sw, mem); cp != 0; cp = clump_splay_walk_bwd(&sw)) {
946
21.7M
        SCAN_CLUMP_OBJECTS(cp)
947
21.7M
            DO_ALL
948
21.7M
            struct_proc_finalize((*finalize)) =
949
21.7M
            pre->o_type->finalize;
950
21.7M
        if (finalize != 0) {
951
648k
            if_debug2m('u', (gs_memory_t *)mem, "[u]restore finalizing %s "PRI_INTPTR"\n",
952
648k
                       struct_type_name_string(pre->o_type),
953
648k
                       (intptr_t) (pre + 1));
954
648k
            (*finalize) ((gs_memory_t *) mem, pre + 1);
955
648k
        }
956
21.7M
        END_OBJECTS_SCAN
957
2.59M
    }
958
341k
    gs_enable_free((gs_memory_t *) mem, true);
959
341k
}
960
961
/* Release resources for a restore */
962
static int
963
restore_resources(alloc_save_t * sprev, gs_ref_memory_t * mem)
964
297k
{
965
297k
    int code;
966
#ifdef DEBUG
967
    if (mem) {
968
        /* Note restoring of the file list. */
969
        if_debug4m('u', (gs_memory_t *)mem, "[u%u]file_restore "PRI_INTPTR" => "PRI_INTPTR" for "PRI_INTPTR"\n",
970
                   mem->space, (intptr_t)mem->streams,
971
                   (intptr_t)sprev->state.streams, (intptr_t)sprev);
972
    }
973
#endif
974
975
    /* Remove entries from font and character caches. */
976
297k
    code = font_restore(sprev);
977
297k
    if (code < 0)
978
0
        return code;
979
980
    /* Adjust the name table. */
981
297k
    if (sprev->restore_names)
982
0
        names_restore(mem->gs_lib_ctx->gs_name_table, sprev);
983
297k
    return 0;
984
297k
}
985
986
/* Release memory for a restore. */
987
static void
988
restore_free(gs_ref_memory_t * mem)
989
341k
{
990
    /* Free clumps allocated since the save. */
991
341k
    gs_free_all((gs_memory_t *) mem);
992
341k
}
993
994
/* Forget a save, by merging this level with the next outer one. */
995
static void file_forget_save(gs_ref_memory_t *);
996
static void combine_space(gs_ref_memory_t *);
997
static void forget_changes(gs_ref_memory_t *);
998
int
999
alloc_forget_save_in(gs_dual_memory_t *dmem, alloc_save_t * save)
1000
0
{
1001
0
    gs_ref_memory_t *mem = save->space_local;
1002
0
    alloc_save_t *sprev;
1003
0
    ulong scanned;
1004
0
    int code;
1005
1006
0
    print_save("forget_save", mem->space, save);
1007
1008
    /* Iteratively combine the current level with the previous one. */
1009
0
    do {
1010
0
        sprev = mem->saved;
1011
0
        if (sprev->id != 0)
1012
0
            mem->save_level--;
1013
0
        if (mem->save_level != 0) {
1014
0
            alloc_change_t *chp = mem->changes;
1015
1016
0
            code = save_set_new(&sprev->state, true, false, &scanned);
1017
0
            if (code < 0)
1018
0
                return code;
1019
            /* Concatenate the changes chains. */
1020
0
            if (chp == 0)
1021
0
                mem->changes = sprev->state.changes;
1022
0
            else {
1023
0
                while (chp->next != 0)
1024
0
                    chp = chp->next;
1025
0
                chp->next = sprev->state.changes;
1026
0
            }
1027
0
            file_forget_save(mem);
1028
0
            combine_space(mem); /* combine memory */
1029
0
        } else {
1030
0
            forget_changes(mem);
1031
0
            code = save_set_new(mem, false, false, &scanned);
1032
0
            if (code < 0)
1033
0
                return code;
1034
0
            file_forget_save(mem);
1035
0
            combine_space(mem); /* combine memory */
1036
            /* This is the outermost save, which might also */
1037
            /* need to combine global VM. */
1038
0
            mem = save->space_global;
1039
0
            if (mem != save->space_local && mem->saved != 0) {
1040
0
                forget_changes(mem);
1041
0
                code = save_set_new(mem, false, false, &scanned);
1042
0
                if (code < 0)
1043
0
                    return code;
1044
0
                file_forget_save(mem);
1045
0
                combine_space(mem);
1046
0
            }
1047
0
            alloc_set_not_in_save(dmem);
1048
0
            break;   /* must be outermost */
1049
0
        }
1050
0
    }
1051
0
    while (sprev != save);
1052
0
    return 0;
1053
0
}
1054
/* Combine the clumps of the next outer level with those of the current one, */
1055
/* and free the bookkeeping structures. */
1056
static void
1057
combine_space(gs_ref_memory_t * mem)
1058
0
{
1059
0
    alloc_save_t *saved = mem->saved;
1060
0
    gs_ref_memory_t *omem = &saved->state;
1061
0
    clump_t *cp;
1062
0
    clump_splay_walker sw;
1063
1064
0
    alloc_close_clump(mem);
1065
0
    for (cp = clump_splay_walk_init(&sw, mem); cp != 0; cp = clump_splay_walk_fwd(&sw)) {
1066
0
        if (cp->outer == 0)
1067
0
            alloc_link_clump(cp, omem);
1068
0
        else {
1069
0
            clump_t *outer = cp->outer;
1070
1071
0
            outer->inner_count--;
1072
0
            if (mem->cc == cp)
1073
0
                mem->cc = outer;
1074
0
            if (mem->cfreed.cp == cp)
1075
0
                mem->cfreed.cp = outer;
1076
            /* "Free" the header of the inner clump, */
1077
            /* and any immediately preceding gap left by */
1078
            /* the GC having compacted the outer clump. */
1079
0
            {
1080
0
                obj_header_t *hp = (obj_header_t *) outer->cbot;
1081
1082
0
                hp->o_pad = 0;
1083
0
                hp->o_alone = 0;
1084
0
                hp->o_size = (char *)(cp->chead + 1)
1085
0
                    - (char *)(hp + 1);
1086
0
                hp->o_type = &st_bytes;
1087
                /* The following call is probably not safe. */
1088
#if 0       /* **************** */
1089
                gs_free_object((gs_memory_t *) mem,
1090
                               hp + 1, "combine_space(header)");
1091
#endif /* **************** */
1092
0
            }
1093
            /* Update the outer clump's allocation pointers. */
1094
0
            outer->cbot = cp->cbot;
1095
0
            outer->rcur = cp->rcur;
1096
0
            outer->rtop = cp->rtop;
1097
0
            outer->ctop = cp->ctop;
1098
0
            outer->has_refs |= cp->has_refs;
1099
0
            gs_free_object(mem->non_gc_memory, cp,
1100
0
                           "combine_space(inner)");
1101
0
        }
1102
0
    }
1103
    /* Update relevant parts of allocator state. */
1104
0
    mem->root = omem->root;
1105
0
    mem->allocated += omem->allocated;
1106
0
    mem->gc_allocated += omem->allocated;
1107
0
    mem->lost.objects += omem->lost.objects;
1108
0
    mem->lost.refs += omem->lost.refs;
1109
0
    mem->lost.strings += omem->lost.strings;
1110
0
    mem->saved = omem->saved;
1111
0
    mem->previous_status = omem->previous_status;
1112
0
    {       /* Concatenate free lists. */
1113
0
        int i;
1114
1115
0
        for (i = 0; i < num_freelists; i++) {
1116
0
            obj_header_t *olist = omem->freelists[i];
1117
0
            obj_header_t *list = mem->freelists[i];
1118
1119
0
            if (olist == 0);
1120
0
            else if (list == 0)
1121
0
                mem->freelists[i] = olist;
1122
0
            else {
1123
0
                while (*(obj_header_t **) list != 0)
1124
0
                    list = *(obj_header_t **) list;
1125
0
                *(obj_header_t **) list = olist;
1126
0
            }
1127
0
        }
1128
0
        if (omem->largest_free_size > mem->largest_free_size)
1129
0
            mem->largest_free_size = omem->largest_free_size;
1130
0
    }
1131
0
    gs_free_object((gs_memory_t *) mem, saved, "combine_space(saved)");
1132
0
    alloc_open_clump(mem);
1133
0
}
1134
/* Free the changes chain for a level 0 .forgetsave, */
1135
/* resetting the l_new flag in the changed refs. */
1136
static void
1137
forget_changes(gs_ref_memory_t * mem)
1138
0
{
1139
0
    register alloc_change_t *chp = mem->changes;
1140
0
    alloc_change_t *next;
1141
1142
0
    for (; chp; chp = next) {
1143
0
        ref_packed *prp = chp->where;
1144
1145
0
        if_debug1m('U', (gs_memory_t *)mem, "[U]forgetting change "PRI_INTPTR"\n", (intptr_t) chp);
1146
0
        if (chp->offset == AC_OFFSET_ALLOCATED)
1147
0
            DO_NOTHING;
1148
0
        else
1149
0
        if (!r_is_packed(prp))
1150
0
            r_clear_attrs((ref *) prp, l_new);
1151
0
        next = chp->next;
1152
0
        gs_free_object((gs_memory_t *) mem, chp, "forget_changes");
1153
0
    }
1154
0
    mem->changes = 0;
1155
0
}
1156
/* Update the streams list when forgetting a save. */
1157
static void
1158
file_forget_save(gs_ref_memory_t * mem)
1159
0
{
1160
0
    const alloc_save_t *save = mem->saved;
1161
0
    stream *streams = mem->streams;
1162
0
    stream *saved_streams = save->state.streams;
1163
1164
0
    if_debug4m('u', (gs_memory_t *)mem, "[u%d]file_forget_save "PRI_INTPTR" + "PRI_INTPTR" for "PRI_INTPTR"\n",
1165
0
               mem->space, (intptr_t) streams, (intptr_t) saved_streams,
1166
0
               (intptr_t) save);
1167
0
    if (streams == 0)
1168
0
        mem->streams = saved_streams;
1169
0
    else if (saved_streams != 0) {
1170
0
        while (streams->next != 0)
1171
0
            streams = streams->next;
1172
0
        streams->next = saved_streams;
1173
0
        saved_streams->prev = streams;
1174
0
    }
1175
0
}
1176
1177
static inline int
1178
mark_allocated(void *obj, bool to_new, uint *psize)
1179
236k
{
1180
236k
    obj_header_t *pre = (obj_header_t *)obj - 1;
1181
236k
    uint size = pre_obj_contents_size(pre);
1182
236k
    ref_packed *prp = (ref_packed *) (pre + 1);
1183
236k
    ref_packed *next = (ref_packed *) ((char *)prp + size);
1184
#ifdef ALIGNMENT_ALIASING_BUG
1185
                ref *rpref;
1186
# define RP_REF(rp) (rpref = (ref *)rp, rpref)
1187
#else
1188
69.1M
# define RP_REF(rp) ((ref *)rp)
1189
236k
#endif
1190
1191
236k
    if (pre->o_type != &st_refs) {
1192
        /* Must not happen. */
1193
0
        if_debug0('u', "Wrong object type when expected a ref.\n");
1194
0
        return_error(gs_error_Fatal);
1195
0
    }
1196
    /* We know that every block of refs ends with */
1197
    /* a full-size ref, so we only need the end check */
1198
    /* when we encounter one of those. */
1199
236k
    if (to_new)
1200
25.7M
        while (1) {
1201
25.7M
            if (r_is_packed(prp))
1202
3.56M
                prp++;
1203
22.2M
            else {
1204
22.2M
                RP_REF(prp)->tas.type_attrs |= l_new;
1205
22.2M
                prp += packed_per_ref;
1206
22.2M
                if (prp >= next)
1207
111k
                    break;
1208
22.2M
            }
1209
25.7M
    } else
1210
70.8M
        while (1) {
1211
70.8M
            if (r_is_packed(prp))
1212
23.9M
                prp++;
1213
46.8M
            else {
1214
46.8M
                RP_REF(prp)->tas.type_attrs &= ~l_new;
1215
46.8M
                prp += packed_per_ref;
1216
46.8M
                if (prp >= next)
1217
125k
                    break;
1218
46.8M
            }
1219
70.8M
        }
1220
236k
#undef RP_REF
1221
236k
    *psize = size;
1222
236k
    return 0;
1223
236k
}
1224
1225
/* Check if a block contains refs marked by garbager. */
1226
static bool
1227
check_l_mark(void *obj)
1228
778k
{
1229
778k
    obj_header_t *pre = (obj_header_t *)obj - 1;
1230
778k
    uint size = pre_obj_contents_size(pre);
1231
778k
    ref_packed *prp = (ref_packed *) (pre + 1);
1232
778k
    ref_packed *next = (ref_packed *) ((char *)prp + size);
1233
#ifdef ALIGNMENT_ALIASING_BUG
1234
                ref *rpref;
1235
# define RP_REF(rp) (rpref = (ref *)rp, rpref)
1236
#else
1237
778k
# define RP_REF(rp) ((ref *)rp)
1238
778k
#endif
1239
1240
    /* We know that every block of refs ends with */
1241
    /* a full-size ref, so we only need the end check */
1242
    /* when we encounter one of those. */
1243
2.52G
    while (1) {
1244
2.52G
        if (r_is_packed(prp)) {
1245
22.0M
            if (r_has_pmark(prp))
1246
1.30k
                return true;
1247
22.0M
            prp++;
1248
2.50G
        } else {
1249
2.50G
            if (r_has_attr(RP_REF(prp), l_mark))
1250
101k
                return true;
1251
2.50G
            prp += packed_per_ref;
1252
2.50G
            if (prp >= next)
1253
675k
                return false;
1254
2.50G
        }
1255
2.52G
    }
1256
778k
#undef RP_REF
1257
778k
}
1258
1259
/* Set or reset the l_new attribute in every relevant slot. */
1260
/* This includes every slot on the current change chain, */
1261
/* and every (ref) slot allocated at this save level. */
1262
/* Return the number of bytes of data scanned. */
1263
static int
1264
save_set_new(gs_ref_memory_t * mem, bool to_new, bool set_limit, ulong *pscanned)
1265
530k
{
1266
530k
    ulong scanned = 0;
1267
530k
    int code;
1268
1269
    /* Handle the change chain. */
1270
530k
    code = save_set_new_changes(mem, to_new, set_limit);
1271
530k
    if (code < 0)
1272
0
        return code;
1273
1274
    /* Handle newly allocated ref objects. */
1275
1.24M
    SCAN_MEM_CLUMPS(mem, cp) {
1276
1.24M
        if (cp->has_refs) {
1277
55.5k
            bool has_refs = false;
1278
55.5k
            bool no_outer_clump = !(cp->outer != NULL && cp->ctop - cp->cbot > min_inner_clump_space);
1279
483k
            SCAN_CLUMP_OBJECTS(cp)
1280
483k
                DO_ALL
1281
483k
                if_debug3m('U', (gs_memory_t *)mem, "[U]set_new scan("PRI_INTPTR"(%u), %d)\n",
1282
483k
                           (intptr_t) pre, size, to_new);
1283
483k
            if (pre->o_type == &st_refs) {
1284
                /* These are refs, scan them. */
1285
118k
                ref_packed *prp = (ref_packed *) (pre + 1);
1286
118k
                uint size;
1287
                /* In order to avoid the garbager unnecessarily scanning for refs that may
1288
                   not exist, we reset the "has_refs" flag if we're doing a save (and leave
1289
                   it alone during a restore. This generally works because when we get here
1290
                   during a save, we've already created the inner clump, and during a restore,
1291
                   we've already restored to the outer clump.
1292
                   Where is goes wrong is when there isn't sufficient space left in the clump
1293
                   for any new allocations, so we won't have created the inner clump, and then
1294
                   the flag isn't retained. Spot that above, and only meddle with the flag here if
1295
                   an inner clump has been created.
1296
                 */
1297
118k
                has_refs = true && (to_new | no_outer_clump);
1298
118k
                code = mark_allocated(prp, to_new, &size);
1299
118k
                if (code < 0)
1300
0
                    return code;
1301
118k
                scanned += size;
1302
118k
            } else
1303
365k
                scanned += sizeof(obj_header_t);
1304
483k
            END_OBJECTS_SCAN
1305
55.5k
                cp->has_refs = has_refs;
1306
55.5k
        }
1307
1.24M
    }
1308
1.24M
    END_CLUMPS_SCAN
1309
530k
    if_debug2m('u', (gs_memory_t *)mem, "[u]set_new (%s) scanned %ld\n",
1310
530k
               (to_new ? "restore" : "save"), scanned);
1311
530k
    *pscanned = scanned;
1312
530k
    return 0;
1313
530k
}
1314
1315
/* Drop redundant elements from the changes list and set l_new. */
1316
static void
1317
drop_redundant_changes(gs_ref_memory_t * mem)
1318
0
{
1319
0
    register alloc_change_t *chp = mem->changes, *chp_back = NULL, *chp_forth;
1320
1321
    /* As we are trying to throw away redundant changes in an allocator instance
1322
       that has already been "saved", the active clump has already been "closed"
1323
       by alloc_save_space(). Using such an allocator (for example, by calling
1324
       gs_free_object() with it) can leave it in an unstable state, causing
1325
       problems for the garbage collector (specifically, the clump validator code).
1326
       So, before we might use it, open the current clump, and then close it again
1327
       when we're done.
1328
     */
1329
0
    alloc_open_clump(mem);
1330
1331
    /* First reverse the list and set all. */
1332
0
    for (; chp; chp = chp_forth) {
1333
0
        chp_forth = chp->next;
1334
0
        if (chp->offset != AC_OFFSET_ALLOCATED) {
1335
0
            ref_packed *prp = chp->where;
1336
1337
0
            if (!r_is_packed(prp)) {
1338
0
                ref *const rp = (ref *)prp;
1339
1340
0
                rp->tas.type_attrs |= l_new;
1341
0
            }
1342
0
        }
1343
0
        chp->next = chp_back;
1344
0
        chp_back = chp;
1345
0
    }
1346
0
    mem->changes = chp_back;
1347
0
    chp_back = NULL;
1348
    /* Then filter, reset and reverse again. */
1349
0
    for (chp = mem->changes; chp; chp = chp_forth) {
1350
0
        chp_forth = chp->next;
1351
0
        if (chp->offset != AC_OFFSET_ALLOCATED) {
1352
0
            ref_packed *prp = chp->where;
1353
1354
0
            if (!r_is_packed(prp)) {
1355
0
                ref *const rp = (ref *)prp;
1356
1357
0
                if ((rp->tas.type_attrs & l_new) == 0) {
1358
0
                    if (mem->scan_limit == chp)
1359
0
                        mem->scan_limit = chp_back;
1360
0
                    if (mem->changes == chp)
1361
0
                        mem->changes = chp_back;
1362
0
                    gs_free_object((gs_memory_t *)mem, chp, "alloc_save_remove");
1363
0
                    continue;
1364
0
                } else
1365
0
                    rp->tas.type_attrs &= ~l_new;
1366
0
            }
1367
0
        }
1368
0
        chp->next = chp_back;
1369
0
        chp_back = chp;
1370
0
    }
1371
0
    mem->changes = chp_back;
1372
1373
0
    alloc_close_clump(mem);
1374
0
}
1375
1376
/* Set or reset the l_new attribute on the changes chain. */
1377
static int
1378
save_set_new_changes(gs_ref_memory_t * mem, bool to_new, bool set_limit)
1379
530k
{
1380
530k
    register alloc_change_t *chp;
1381
530k
    register uint new = (to_new ? l_new : 0);
1382
530k
    ulong scanned = 0;
1383
1384
530k
    if (!to_new && mem->total_scanned_after_compacting > max_repeated_scan * 16) {
1385
0
        mem->total_scanned_after_compacting = 0;
1386
0
        drop_redundant_changes(mem);
1387
0
    }
1388
1.22M
    for (chp = mem->changes; chp; chp = chp->next) {
1389
694k
        if (chp->offset == AC_OFFSET_ALLOCATED) {
1390
118k
            if (chp->where != 0) {
1391
118k
                uint size;
1392
118k
                int code = mark_allocated((void *)chp->where, to_new, &size);
1393
1394
118k
                if (code < 0)
1395
0
                    return code;
1396
118k
                scanned += size;
1397
118k
            }
1398
575k
        } else {
1399
575k
            ref_packed *prp = chp->where;
1400
1401
575k
            if_debug3m('U', (gs_memory_t *)mem, "[U]set_new "PRI_INTPTR": ("PRI_INTPTR", %d)\n",
1402
575k
                       (intptr_t)chp, (intptr_t)prp, new);
1403
575k
            if (!r_is_packed(prp)) {
1404
575k
                ref *const rp = (ref *) prp;
1405
1406
575k
                rp->tas.type_attrs =
1407
575k
                    (rp->tas.type_attrs & ~l_new) + new;
1408
575k
            }
1409
575k
        }
1410
694k
        if (mem->scan_limit == chp)
1411
202
            break;
1412
694k
    }
1413
530k
    if (set_limit) {
1414
265k
        mem->total_scanned_after_compacting += scanned;
1415
265k
        if (scanned  + mem->total_scanned >= max_repeated_scan) {
1416
203
            mem->scan_limit = mem->changes;
1417
203
            mem->total_scanned = 0;
1418
203
        } else
1419
265k
            mem->total_scanned += scanned;
1420
265k
    }
1421
530k
    return 0;
1422
530k
}
1423
1424
gs_memory_t *
1425
gs_save_any_memory(const alloc_save_t *save)
1426
297k
{
1427
297k
    return((gs_memory_t *)save->space_local);
1428
297k
}