Coverage Report

Created: 2025-06-10 07:26

/src/ghostpdl/base/gsimage.c
Line
Count
Source (jump to first uncovered line)
1
/* Copyright (C) 2001-2023 Artifex Software, Inc.
2
   All Rights Reserved.
3
4
   This software is provided AS-IS with no warranty, either express or
5
   implied.
6
7
   This software is distributed under license and may not be copied,
8
   modified or distributed except as expressly authorized under the terms
9
   of the license contained in the file LICENSE in this distribution.
10
11
   Refer to licensing information at http://www.artifex.com or contact
12
   Artifex Software, Inc.,  39 Mesa Street, Suite 108A, San Francisco,
13
   CA 94129, USA, for further information.
14
*/
15
16
17
/* Image setup procedures for Ghostscript library */
18
#include "memory_.h"
19
#include "math_.h"
20
#include "gx.h"
21
#include "gserrors.h"
22
#include "gsstruct.h"
23
#include "gscspace.h"
24
#include "gsmatrix.h"   /* for gsiparam.h */
25
#include "gsimage.h"
26
#include "gxarith.h"    /* for igcd */
27
#include "gxdevice.h"
28
#include "gxiparam.h"
29
#include "gxpath.h"   /* for gx_effective_clip_path */
30
#include "gximask.h"
31
#include "gzstate.h"
32
#include "gsutil.h"
33
#include "gxdevsop.h"
34
#include "gximage.h"
35
36
/*
37
  The main internal invariant for the gs_image machinery is
38
  straightforward.  The state consists primarily of N plane buffers
39
  (planes[]).
40
*/
41
typedef struct image_enum_plane_s {
42
/*
43
  The state of each plane consists of:
44
45
  - A row buffer, aligned and (logically) large enough to hold one scan line
46
    for that plane.  (It may have to be reallocated if the plane width or
47
    depth changes.)  A row buffer is "full" if it holds exactly a full scan
48
    line.
49
*/
50
    gs_string row;
51
/*
52
  - A position within the row buffer, indicating how many initial bytes are
53
    occupied.
54
*/
55
    uint pos;
56
/*
57
  - A (retained) source string, which may be empty (size = 0).
58
*/
59
    gs_const_string source;
60
    /* The gs_string 'orig' is only set if the 'txfer_control' flag was set when
61
     * the 'source' string data was initally passed in. In this case we now control the lifetime
62
     * of the string. So when we empty the source string, free it. We need to know the actual
63
     * address of the string, and that gets modified in the peunum->planes->source and size
64
     * members, so we use 'orig' as both a marker for the control and the original size and location.
65
     */
66
    gs_const_string orig;
67
} image_enum_plane_t;
68
/*
69
  The possible states for each plane do not depend on the state of any other
70
  plane.  Either:
71
72
  - pos = 0, source.size = 0.
73
74
  - If the underlying image processor says the plane is currently wanted,
75
    either:
76
77
    - pos = 0, source.size >= one full row of data for this plane.  This
78
      case allows us to avoid copying the data from the source string to the
79
      row buffer if the client is providing data in blocks of at least one
80
      scan line.
81
82
    - pos = full, source.size may have any value.
83
84
    - pos > 0, pos < full, source.size = 0;
85
86
  - If the underlying image processor says the plane is not currently
87
    wanted:
88
89
    - pos = 0, source.size may have any value.
90
91
  This invariant holds at the beginning and end of each call on
92
  gs_image_next_planes.  Note that for each plane, the "plane wanted" status
93
  and size of a full row may change after each call of plane_data.  As
94
  documented in gxiparam.h, we assume that a call of plane_data can only
95
  change a plane's status from "wanted" to "not wanted", or change the width
96
  or depth of a wanted plane, if data for that plane was actually supplied
97
  (and used).
98
*/
99
100
/* Define the enumeration state for this interface layer. */
101
/*typedef struct gs_image_enum_s gs_image_enum; *//* in gsimage.h */
102
struct gs_image_enum_s {
103
    /* The following are set at initialization time. */
104
    gs_memory_t *memory;
105
    gx_device *dev;   /* if 0, just skip over the data */
106
    gx_image_enum_common_t *info; /* driver bookkeeping structure */
107
    int num_planes;
108
    int height;
109
    bool wanted_varies;
110
    /* The following are updated dynamically. */
111
    int plane_index;    /* index of next plane of data, */
112
                                /* only needed for gs_image_next */
113
    int y;
114
    bool error;
115
    byte wanted[GS_IMAGE_MAX_COMPONENTS]; /* cache gx_image_planes_wanted */
116
    byte client_wanted[GS_IMAGE_MAX_COMPONENTS]; /* see gsimage.h */
117
    image_enum_plane_t planes[GS_IMAGE_MAX_COMPONENTS]; /* see above */
118
    /*
119
     * To reduce setup for transferring complete rows, we maintain a
120
     * partially initialized parameter array for gx_image_plane_data_rows.
121
     * The data member is always set just before calling
122
     * gx_image_plane_data_rows; the data_x and raster members are reset
123
     * when needed.
124
     */
125
    gx_image_plane_t image_planes[GS_IMAGE_MAX_COMPONENTS];
126
};
127
128
gs_private_st_composite(st_gs_image_enum, gs_image_enum, "gs_image_enum",
129
                        gs_image_enum_enum_ptrs, gs_image_enum_reloc_ptrs);
130
0
#define gs_image_enum_num_ptrs 2
131
132
/* GC procedures */
133
static
134
0
ENUM_PTRS_WITH(gs_image_enum_enum_ptrs, gs_image_enum *eptr)
135
0
{
136
    /* Enumerate the data planes. */
137
0
    index -= gs_image_enum_num_ptrs;
138
0
    if (index < eptr->num_planes)
139
0
        ENUM_RETURN_STRING_PTR(gs_image_enum, planes[index].source);
140
0
    index -= eptr->num_planes;
141
0
    if (index < eptr->num_planes)
142
0
        ENUM_RETURN_STRING_PTR(gs_image_enum, planes[index].row);
143
0
    return 0;
144
0
}
145
0
ENUM_PTR(0, gs_image_enum, dev);
146
0
ENUM_PTR(1, gs_image_enum, info);
147
0
ENUM_PTRS_END
148
0
static RELOC_PTRS_WITH(gs_image_enum_reloc_ptrs, gs_image_enum *eptr)
149
0
{
150
0
    int i;
151
152
0
    RELOC_PTR(gs_image_enum, dev);
153
0
    RELOC_PTR(gs_image_enum, info);
154
0
    for (i = 0; i < eptr->num_planes; i++)
155
0
        RELOC_CONST_STRING_PTR(gs_image_enum, planes[i].source);
156
0
    for (i = 0; i < eptr->num_planes; i++)
157
0
        RELOC_STRING_PTR(gs_image_enum, planes[i].row);
158
0
}
159
0
RELOC_PTRS_END
160
161
static int
162
is_image_visible(const gs_image_common_t * pic, gs_gstate * pgs, gx_clip_path *pcpath)
163
33.4k
{
164
33.4k
    gs_rect image_rect = {{0, 0}, {0, 0}};
165
33.4k
    gs_rect device_rect;
166
33.4k
    gs_int_rect device_int_rect;
167
33.4k
    gs_matrix mat;
168
33.4k
    int code;
169
170
33.4k
    image_rect.q.x = pic->Width;
171
33.4k
    image_rect.q.y = pic->Height;
172
33.4k
    if (pic->ImageMatrix.xx == ctm_only(pgs).xx &&
173
33.4k
        pic->ImageMatrix.xy == ctm_only(pgs).xy &&
174
33.4k
        pic->ImageMatrix.yx == ctm_only(pgs).yx &&
175
33.4k
        pic->ImageMatrix.yy == ctm_only(pgs).yy) {
176
        /* Handle common special case separately to accept singular matrix */
177
7.86k
        mat.xx = mat.yy = 1.;
178
7.86k
        mat.yx = mat.xy = 0.;
179
7.86k
        mat.tx = ctm_only(pgs).tx - pic->ImageMatrix.tx;
180
7.86k
        mat.ty = ctm_only(pgs).ty - pic->ImageMatrix.ty;
181
25.6k
    } else {
182
25.6k
        code = gs_matrix_invert(&pic->ImageMatrix, &mat);
183
25.6k
        if (code < 0)
184
0
            return code;
185
25.6k
        code = gs_matrix_multiply(&mat, &ctm_only(pgs), &mat);
186
25.6k
        if (code < 0)
187
0
            return code;
188
25.6k
    }
189
33.4k
    code = gs_bbox_transform(&image_rect, &mat, &device_rect);
190
33.4k
    if (code < 0)
191
0
        return code;
192
33.4k
    device_int_rect.p.x = (int)floor(device_rect.p.x);
193
33.4k
    device_int_rect.p.y = (int)floor(device_rect.p.y);
194
33.4k
    device_int_rect.q.x = (int)ceil(device_rect.q.x);
195
33.4k
    device_int_rect.q.y = (int)ceil(device_rect.q.y);
196
33.4k
    if (!gx_cpath_rect_visible(pcpath, &device_int_rect))
197
7.28k
        return 0;
198
26.1k
    return 1;
199
33.4k
}
200
201
/* Create an image enumerator given image parameters and a graphics state. */
202
int
203
gs_image_begin_typed(const gs_image_common_t * pic, gs_gstate * pgs,
204
                     bool uses_color, bool image_is_text, gx_image_enum_common_t ** ppie)
205
33.4k
{
206
33.4k
    gx_device *dev = gs_currentdevice(pgs);
207
33.4k
    gx_clip_path *pcpath;
208
33.4k
    int code = gx_effective_clip_path(pgs, &pcpath);
209
33.4k
    gx_device *dev2 = dev;
210
33.4k
    gx_device_color dc_temp, *pdevc = gs_currentdevicecolor_inline(pgs);
211
212
33.4k
    if (code < 0)
213
0
        return code;
214
    /* Processing an image object operation, but this may be for a text object */
215
33.4k
    ensure_tag_is_set(pgs, pgs->device, image_is_text ? GS_TEXT_TAG : GS_IMAGE_TAG);  /* NB: may unset_dev_color */
216
217
33.4k
    if (uses_color) {
218
20.9k
        code = gx_set_dev_color(pgs);
219
20.9k
        if (code != 0)
220
2
            return code;
221
20.9k
        code = gs_gstate_color_load(pgs);
222
20.9k
        if (code < 0)
223
0
            return code;
224
20.9k
    }
225
226
33.4k
    if (pgs->overprint || (!pgs->overprint && dev_proc(pgs->device, dev_spec_op)(pgs->device,
227
33.3k
        gxdso_overprint_active, NULL, 0))) {
228
110
        gs_overprint_params_t op_params = { 0 };
229
230
110
        if_debug0m(gs_debug_flag_overprint, pgs->memory,
231
110
            "[overprint] Image Overprint\n");
232
110
        code = gs_do_set_overprint(pgs);
233
110
        if (code < 0)
234
0
            return code;
235
236
110
        op_params.op_state = OP_STATE_FILL;
237
110
        gs_gstate_update_overprint(pgs, &op_params);
238
239
110
        dev = gs_currentdevice(pgs);
240
110
        dev2 = dev;
241
110
    }
242
243
    /* Imagemask with shading color needs a special optimization
244
       with converting the image into a clipping.
245
       Check for such case after gs_gstate_color_load is done,
246
       because it can cause interpreter callout.
247
     */
248
33.4k
    if (pic->type->begin_typed_image == &gx_begin_image1) {
249
33.4k
        gs_image_t *image = (gs_image_t *)pic;
250
251
33.4k
        if(image->ImageMask) {
252
20.9k
            bool transpose = false;
253
20.9k
            gs_matrix_double mat;
254
255
20.9k
            if((code = gx_image_compute_mat(pgs, NULL, &(image->ImageMatrix), &mat)) < 0)
256
2
                return code;
257
20.9k
            if ((any_abs(mat.xy) > any_abs(mat.xx)) && (any_abs(mat.yx) > any_abs(mat.yy)))
258
8.48k
                transpose = true;   /* pure landscape */
259
20.9k
            code = gx_image_fill_masked_start(dev, gs_currentdevicecolor_inline(pgs), transpose,
260
20.9k
                                              pcpath, pgs->memory, pgs->log_op, &dev2);
261
20.9k
            if (code < 0)
262
0
                return code;
263
20.9k
        }
264
33.4k
        if (dev->interpolate_control < 0) {   /* Force interpolation before begin_typed_image */
265
0
            ((gs_data_image_t *)pic)->Interpolate = true;
266
0
        }
267
33.4k
        else if (dev->interpolate_control == 0) {
268
33.4k
            ((gs_data_image_t *)pic)->Interpolate = false; /* Suppress interpolation */
269
33.4k
        }
270
33.4k
        if (dev2 != dev) {
271
27
            set_nonclient_dev_color(&dc_temp, 1);
272
27
            pdevc = &dc_temp;
273
27
        }
274
33.4k
    }
275
33.4k
    code = gx_device_begin_typed_image(dev2, (const gs_gstate *)pgs,
276
33.4k
                NULL, pic, NULL, pdevc, pcpath, pgs->memory, ppie);
277
33.4k
    if (code < 0)
278
10
        return code;
279
33.4k
    code = is_image_visible(pic, pgs, pcpath);
280
33.4k
    if (code < 0)
281
0
        return code;
282
33.4k
    if (!code)
283
7.28k
        (*ppie)->skipping = true;
284
33.4k
    return 0;
285
33.4k
}
286
287
/* Allocate an image enumerator. */
288
static void
289
image_enum_init(gs_image_enum * penum)
290
66.6k
{
291
    /* Clean pointers for GC. */
292
66.6k
    penum->info = 0;
293
66.6k
    penum->dev = 0;
294
66.6k
    penum->plane_index = 0;
295
66.6k
    penum->num_planes = 0;
296
66.6k
}
297
gs_image_enum *
298
gs_image_enum_alloc(gs_memory_t * mem, client_name_t cname)
299
33.4k
{
300
33.4k
    gs_image_enum *penum =
301
33.4k
        gs_alloc_struct(mem, gs_image_enum, &st_gs_image_enum, cname);
302
303
33.4k
    if (penum != 0) {
304
33.4k
        penum->memory = mem;
305
33.4k
        image_enum_init(penum);
306
33.4k
    }
307
33.4k
    return penum;
308
33.4k
}
309
310
/* Start processing an ImageType 1 image. */
311
int
312
gs_image_init(gs_image_enum * penum, const gs_image_t * pim, bool multi,
313
              bool image_is_text, gs_gstate * pgs)
314
7.85k
{
315
7.85k
    gs_image_t image;
316
7.85k
    gx_image_enum_common_t *pie;
317
7.85k
    int code;
318
319
7.85k
    image = *pim;
320
7.85k
    if (image.ImageMask) {
321
7.85k
        image.ColorSpace = NULL;
322
7.85k
        if (pgs->in_cachedevice <= 1)
323
7.85k
            image.adjust = false;
324
7.85k
    } else {
325
0
        if (pgs->in_cachedevice)
326
0
            return_error(gs_error_undefined);
327
0
        if (image.ColorSpace == NULL) {
328
            /*
329
             * Use of a non-current color space is potentially
330
             * incorrect, but it appears this case doesn't arise.
331
             */
332
0
            image.ColorSpace = gs_cspace_new_DeviceGray(pgs->memory);
333
0
            if (image.ColorSpace == NULL)
334
0
                return_error(gs_error_VMerror);
335
0
        }
336
0
    }
337
7.85k
    code = gs_image_begin_typed((const gs_image_common_t *)&image, pgs,
338
7.85k
                                image.ImageMask | image.CombineWithColor,
339
7.85k
                                image_is_text, &pie);
340
7.85k
    if (code < 0)
341
0
        return code;
342
7.85k
    return gs_image_enum_init(penum, pie, (const gs_data_image_t *)&image,
343
7.85k
                              pgs);
344
7.85k
}
345
346
/*
347
 * Return the number of bytes of data per row for a given plane.
348
 */
349
inline uint
350
gs_image_bytes_per_plane_row(const gs_image_enum * penum, int plane)
351
49.4k
{
352
49.4k
    const gx_image_enum_common_t *pie = penum->info;
353
354
49.4k
    return (pie->plane_widths[plane] * pie->plane_depths[plane] + 7) >> 3;
355
49.4k
}
356
357
/* Cache information when initializing, or after transferring plane data. */
358
static void
359
cache_planes(gs_image_enum *penum)
360
1.74M
{
361
1.74M
    int i;
362
363
1.74M
    if (penum->wanted_varies) {
364
41.4k
        penum->wanted_varies =
365
41.4k
            !gx_image_planes_wanted(penum->info, penum->wanted);
366
91.3k
        for (i = 0; i < penum->num_planes; ++i)
367
49.8k
            if (penum->wanted[i])
368
49.4k
                penum->image_planes[i].raster =
369
49.4k
                    gs_image_bytes_per_plane_row(penum, i);
370
390
            else
371
390
                penum->image_planes[i].data = 0;
372
41.4k
    }
373
1.74M
}
374
/* Advance to the next wanted plane. */
375
static void
376
next_plane(gs_image_enum *penum)
377
565k
{
378
565k
    int px = penum->plane_index;
379
380
565k
    do {
381
565k
        if (++px == penum->num_planes)
382
532k
            px = 0;
383
565k
    } while (!penum->wanted[px]);
384
565k
    penum->plane_index = px;
385
565k
}
386
/*
387
 * Initialize plane_index and (if appropriate) wanted and
388
 * wanted_varies at the beginning of a group of planes.
389
 */
390
static void
391
begin_planes(gs_image_enum *penum)
392
33.1k
{
393
33.1k
    cache_planes(penum);
394
33.1k
    penum->plane_index = -1;
395
33.1k
    next_plane(penum);
396
33.1k
}
397
398
int
399
gs_image_common_init(gs_image_enum * penum, gx_image_enum_common_t * pie,
400
            const gs_data_image_t * pim, gx_device * dev)
401
33.4k
{
402
    /*
403
     * HACK : For a compatibility with gs_image_cleanup_and_free_enum,
404
     * penum->memory must be initialized in advance
405
     * with the memory heap that owns *penum.
406
     */
407
33.4k
    int i;
408
409
33.4k
    if (pim->Width == 0 || pim->Height == 0) {
410
312
        gx_device *cdev = pie->dev;
411
412
312
        gx_image_end(pie, false);
413
312
        if (dev_proc(cdev, dev_spec_op)(cdev,
414
312
                    gxdso_pattern_is_cpath_accum, NULL, 0))
415
0
            gx_device_retain((gx_device *)cdev, false);
416
312
        return 1;
417
312
    }
418
33.1k
    image_enum_init(penum);
419
33.1k
    penum->dev = dev;
420
33.1k
    penum->info = pie;
421
33.1k
    penum->num_planes = pie->num_planes;
422
    /*
423
     * Note that for ImageType 3 InterleaveType 2, penum->height (the
424
     * expected number of data rows) differs from pim->Height (the height
425
     * of the source image in scan lines).  This doesn't normally cause
426
     * any problems, because penum->height is not used to determine when
427
     * all the data has been processed: that is up to the plane_data
428
     * procedure for the specific image type.
429
     */
430
33.1k
    penum->height = pim->Height;
431
66.3k
    for (i = 0; i < pie->num_planes; ++i) {
432
33.1k
        penum->planes[i].pos = 0;
433
33.1k
        penum->planes[i].source.size = 0; /* for gs_image_next_planes */
434
33.1k
        penum->planes[i].source.data = 0; /* for GC */
435
33.1k
        penum->planes[i].row.data = 0; /* for GC */
436
33.1k
        penum->planes[i].row.size = 0; /* ditto */
437
33.1k
        penum->image_planes[i].data_x = 0; /* just init once, never changes */
438
33.1k
    }
439
    /* Initialize the dynamic part of the state. */
440
33.1k
    penum->y = 0;
441
33.1k
    penum->error = false;
442
33.1k
    penum->wanted_varies = true;
443
33.1k
    begin_planes(penum);
444
33.1k
    return 0;
445
33.4k
}
446
447
/* Initialize an enumerator for a general image.
448
   penum->memory must be initialized in advance.
449
*/
450
int
451
gs_image_enum_init(gs_image_enum * penum, gx_image_enum_common_t * pie,
452
                   const gs_data_image_t * pim, gs_gstate *pgs)
453
33.4k
{
454
33.4k
    pgs->device->sgr.stroke_stored = false;
455
33.4k
    return gs_image_common_init(penum, pie, pim,
456
33.4k
                                (pgs->in_charpath ? NULL :
457
33.4k
                                 gs_currentdevice_inline(pgs)));
458
33.4k
}
459
460
/* Return the set of planes wanted. */
461
const byte *
462
gs_image_planes_wanted(gs_image_enum *penum)
463
0
{
464
0
    int i;
465
466
    /*
467
     * A plane is wanted at this interface if it is wanted by the
468
     * underlying machinery and has no buffered or retained data.
469
     */
470
0
    for (i = 0; i < penum->num_planes; ++i)
471
0
        penum->client_wanted[i] =
472
0
            (penum->wanted[i] &&
473
0
             penum->planes[i].pos + penum->planes[i].source.size <
474
0
               penum->image_planes[i].raster);
475
0
    return penum->client_wanted;
476
0
}
477
478
/*
479
 * Return the enumerator memory used for allocating the row buffers.
480
 * Because some PostScript files use save/restore within an image data
481
 * reading procedure, this must be a stable allocator.
482
 */
483
static gs_memory_t *
484
gs_image_row_memory(const gs_image_enum *penum)
485
2.69M
{
486
2.69M
    return gs_memory_stable(penum->memory);
487
2.69M
}
488
489
/* Free the row buffers when cleaning up. */
490
static void
491
free_row_buffers(gs_image_enum *penum, int num_planes, client_name_t cname)
492
33.4k
{
493
33.4k
    int i;
494
495
66.6k
    for (i = num_planes - 1; i >= 0; --i) {
496
33.1k
        if_debug3m('b', penum->memory, "[b]free plane %d row ("PRI_INTPTR",%u)\n",
497
33.1k
                   i, (intptr_t)penum->planes[i].row.data,
498
33.1k
                   penum->planes[i].row.size);
499
33.1k
        gs_free_string(gs_image_row_memory(penum), penum->planes[i].row.data,
500
33.1k
                       penum->planes[i].row.size, cname);
501
33.1k
        penum->planes[i].row.data = 0;
502
33.1k
        penum->planes[i].row.size = 0;
503
33.1k
    }
504
33.4k
}
505
506
/* Process the next piece of an image. */
507
int
508
gs_image_next(gs_image_enum * penum, const byte * dbytes, uint dsize,
509
              uint * pused)
510
532k
{
511
532k
    int px = penum->plane_index;
512
532k
    int num_planes = penum->num_planes;
513
532k
    int i, code;
514
532k
    uint used[GS_IMAGE_MAX_COMPONENTS];
515
532k
    gs_const_string plane_data[GS_IMAGE_MAX_COMPONENTS];
516
517
532k
    if (penum->planes[px].source.size != 0)
518
0
        return_error(gs_error_rangecheck);
519
1.06M
    for (i = 0; i < num_planes; i++)
520
532k
        plane_data[i].size = 0;
521
532k
    plane_data[px].data = dbytes;
522
532k
    plane_data[px].size = dsize;
523
532k
    penum->error = false;
524
532k
    code = gs_image_next_planes(penum, plane_data, used, false);
525
532k
    *pused = used[px];
526
532k
    if (code >= 0)
527
532k
        next_plane(penum);
528
532k
    return code;
529
532k
}
530
531
int
532
gs_image_next_planes(gs_image_enum * penum,
533
                     gs_const_string *plane_data /*[num_planes]*/,
534
                     uint *used /*[num_planes]*/, bool txfer_control)
535
2.35M
{
536
2.35M
    const int num_planes = penum->num_planes;
537
2.35M
    int i;
538
2.35M
    int code = 0;
539
540
#ifdef DEBUG
541
    if (gs_debug_c('b')) {
542
        int pi;
543
544
        for (pi = 0; pi < num_planes; ++pi)
545
            dmprintf6(penum->memory, "[b]plane %d source="PRI_INTPTR",%u pos=%u data="PRI_INTPTR",%u\n",
546
                     pi, (intptr_t)penum->planes[pi].source.data,
547
                     penum->planes[pi].source.size, penum->planes[pi].pos,
548
                     (intptr_t)plane_data[pi].data, plane_data[pi].size);
549
    }
550
#endif
551
4.71M
    for (i = 0; i < num_planes; ++i) {
552
2.35M
        used[i] = 0;
553
2.35M
        if (penum->wanted[i] && plane_data[i].size != 0) {
554
2.35M
            penum->planes[i].source.size = plane_data[i].size;
555
2.35M
            penum->planes[i].source.data = plane_data[i].data;
556
            /* The gs_string 'orig' in penum->planes is set here if the 'txfer_control' flag is set.
557
             * In this case we now control the lifetime of the string. We need to know the actual
558
             * address of the string, and that gets modified in the peunum->planes->source and size
559
             * members, so we use 'orig' as both a marker for the control and the originalsize and location.
560
             */
561
2.35M
            if (txfer_control) {
562
0
                penum->planes[i].orig.data = plane_data[i].data;
563
0
                penum->planes[i].orig.size = plane_data[i].size;
564
2.35M
            } else {
565
2.35M
                penum->planes[i].orig.data = NULL;
566
2.35M
                penum->planes[i].orig.size = 0;
567
2.35M
            }
568
2.35M
        }
569
2.35M
    }
570
4.03M
    for (;;) {
571
        /* If wanted can vary, only transfer 1 row at a time. */
572
4.03M
        int h = (penum->wanted_varies ? 1 : max_int);
573
574
        /* Move partial rows from source[] to row[]. */
575
8.08M
        for (i = 0; i < num_planes; ++i) {
576
4.05M
            int pos, size;
577
4.05M
            uint raster;
578
579
4.05M
            if (!penum->wanted[i])
580
393
                continue;  /* skip unwanted planes */
581
4.04M
            pos = penum->planes[i].pos;
582
4.04M
            size = penum->planes[i].source.size;
583
4.04M
            raster = penum->image_planes[i].raster;
584
4.04M
            if (size > 0) {
585
3.41M
                if (pos < raster && (pos != 0 || size < raster)) {
586
                    /* Buffer a partial row. */
587
2.63M
                    int copy = min(size, raster - pos);
588
2.63M
                    uint old_size = penum->planes[i].row.size;
589
2.63M
                    gs_memory_t *mem = gs_image_row_memory(penum);
590
591
                    /* Make sure the row buffer is fully allocated. */
592
2.63M
                    if (raster > old_size) {
593
7.62k
                        byte *old_data = penum->planes[i].row.data;
594
7.62k
                        byte *row =
595
7.62k
                            (old_data == 0 ?
596
7.62k
                             gs_alloc_string(mem, raster,
597
7.62k
                                             "gs_image_next(row)") :
598
7.62k
                             gs_resize_string(mem, old_data, old_size, raster,
599
7.62k
                                              "gs_image_next(row)"));
600
601
7.62k
                        if_debug5m('b', mem, "[b]plane %d row ("PRI_INTPTR",%u) => ("PRI_INTPTR",%u)\n",
602
7.62k
                                   i, (intptr_t)old_data, old_size,
603
7.62k
                                   (intptr_t)row, raster);
604
7.62k
                        if (row == 0) {
605
0
                            code = gs_note_error(gs_error_VMerror);
606
0
                            free_row_buffers(penum, i, "gs_image_next(row)");
607
0
                            break;
608
0
                        }
609
7.62k
                        penum->planes[i].row.data = row;
610
7.62k
                        penum->planes[i].row.size = raster;
611
7.62k
                    }
612
2.63M
                    memcpy(penum->planes[i].row.data + pos,
613
2.63M
                           penum->planes[i].source.data, copy);
614
2.63M
                    penum->planes[i].source.data += copy;
615
2.63M
                    penum->planes[i].source.size = size -= copy;
616
                    /* The gs_string 'orig' is only set if the 'txfer_control' flag was set when
617
                     * the 'source' string data was initally passed in. In this case we now control the lifetime
618
                     * of the string. So when we empty the source string, free it. We need to know the actual
619
                     * address of the string, and that gets modified in the peunum->planes->source and size
620
                     * members, so we use 'orig' as both a marker for the control and the originalsize and location.
621
                     */
622
2.63M
                    if (penum->planes[i].source.size == 0 && penum->planes[i].orig.size != 0) {
623
0
                        gs_free_string(mem, (byte *)penum->planes[i].orig.data, penum->planes[i].orig.size, "gs_image_next_planes");
624
0
                        penum->planes[i].orig.size = 0;
625
0
                        penum->planes[i].orig.data = NULL;
626
0
                    }
627
2.63M
                    penum->planes[i].pos = pos += copy;
628
2.63M
                    used[i] += copy;
629
2.63M
                }
630
3.41M
            }
631
4.04M
            if (h == 0)
632
54
                continue;  /* can't transfer any data this cycle */
633
4.04M
            if (pos == raster) {
634
                /*
635
                 * This plane will be transferred from the row buffer,
636
                 * so we can only transfer one row.
637
                 */
638
945k
                h = min(h, 1);
639
945k
                penum->image_planes[i].data = penum->planes[i].row.data;
640
3.10M
            } else if (pos == 0 && size >= raster) {
641
                /* We can transfer 1 or more planes from the source. */
642
778k
                if (raster) {
643
778k
                    h = min(h, size / raster);
644
778k
                    penum->image_planes[i].data = penum->planes[i].source.data;
645
778k
                }
646
0
                else
647
0
                    h = 0;
648
778k
            } else
649
2.32M
                h = 0;   /* not enough data in this plane */
650
4.04M
        }
651
4.03M
        if (h == 0 || code != 0)
652
2.32M
            break;
653
        /* Pass rows to the device. */
654
1.71M
        if (penum->dev == 0) {
655
            /*
656
             * ****** NOTE: THE FOLLOWING IS NOT CORRECT FOR ImageType 3
657
             * ****** InterleaveType 2, SINCE MASK HEIGHT AND IMAGE HEIGHT
658
             * ****** MAY DIFFER (BY AN INTEGER FACTOR).  ALSO, plane_depths[0]
659
             * ****** AND plane_widths[0] ARE NOT UPDATED.
660
         */
661
0
            if (penum->y + h < penum->height)
662
0
                code = 0;
663
0
            else
664
0
                h = penum->height - penum->y, code = 1;
665
1.71M
        } else {
666
1.71M
            code = gx_image_plane_data_rows(penum->info, penum->image_planes,
667
1.71M
                                            h, &h);
668
1.71M
            if_debug2m('b', penum->memory, "[b]used %d, code=%d\n", h, code);
669
1.71M
            penum->error = code < 0;
670
1.71M
        }
671
1.71M
        penum->y += h;
672
        /* Update positions and sizes. */
673
1.71M
        if (h == 0)
674
0
            break;
675
3.43M
        for (i = 0; i < num_planes; ++i) {
676
1.72M
            int count;
677
678
1.72M
            if (!penum->wanted[i])
679
388
                continue;
680
1.72M
            count = penum->image_planes[i].raster * h;
681
1.72M
            if (penum->planes[i].pos) {
682
                /* We transferred the row from the row buffer. */
683
945k
                penum->planes[i].pos = 0;
684
945k
            } else {
685
                /* We transferred the row(s) from the source. */
686
776k
                penum->planes[i].source.data += count;
687
776k
                penum->planes[i].source.size -= count;
688
                /* The gs_string 'orig' is only set if the 'txfer_control' flag was set when
689
                 * the 'source' string data was initally passed in. In this case we now control the lifetime
690
                 * of the string. So when we empty the source string, free it. We need to know the actual
691
                 * address of the string, and that gets modified in the peunum->planes->source and size
692
                 * members, so we use 'orig' as both a marker for the control and the originalsize and location.
693
                 */
694
776k
                if (penum->planes[i].source.size == 0 && penum->planes[i].orig.size != 0) {
695
0
                    gs_free_string(gs_image_row_memory(penum), (byte *)penum->planes[i].orig.data, penum->planes[i].orig.size, "gs_image_next_planes");
696
0
                    penum->planes[i].orig.size = 0;
697
0
                    penum->planes[i].orig.data = NULL;
698
0
                }
699
776k
                used[i] += count;
700
776k
            }
701
1.72M
        }
702
1.71M
        cache_planes(penum);
703
1.71M
        if (code != 0)
704
30.2k
            break;
705
1.71M
    }
706
    /* Return the retained data pointers. */
707
4.71M
    for (i = 0; i < num_planes; ++i)
708
2.35M
        plane_data[i] = penum->planes[i].source;
709
2.35M
    return code;
710
2.35M
}
711
712
/* Clean up after processing an image. */
713
/* Public for ghostpcl. */
714
int
715
gs_image_cleanup(gs_image_enum * penum, gs_gstate *pgs)
716
33.4k
{
717
33.4k
    int code = 0, code1;
718
719
33.4k
    free_row_buffers(penum, penum->num_planes, "gs_image_cleanup(row)");
720
33.4k
    if (penum->info != 0) {
721
33.1k
        if (dev_proc(penum->info->dev, dev_spec_op)(penum->info->dev,
722
33.1k
                    gxdso_pattern_is_cpath_accum, NULL, 0)) {
723
            /* Performing a conversion of imagemask into a clipping path. */
724
27
            gx_device *cdev = penum->info->dev;
725
726
27
            code = gx_image_end(penum->info, !penum->error); /* Releases penum->info . */
727
27
            code1 = gx_image_fill_masked_end(cdev, penum->dev, gs_currentdevicecolor_inline(pgs));
728
27
            if (code == 0)
729
27
                code = code1;
730
27
        } else
731
33.1k
            code = gx_image_end(penum->info, !penum->error);
732
33.1k
    }
733
    /* Don't free the local enumerator -- the client does that. */
734
735
33.4k
    return code;
736
33.4k
}
737
738
/* Clean up after processing an image and free the enumerator. */
739
int
740
gs_image_cleanup_and_free_enum(gs_image_enum * penum, gs_gstate *pgs)
741
33.4k
{
742
33.4k
    int code;
743
744
33.4k
    if (penum == NULL)
745
0
            return 0;
746
33.4k
    code = gs_image_cleanup(penum, pgs);
747
748
33.4k
    gs_free_object(penum->memory, penum, "gs_image_cleanup_and_free_enum");
749
33.4k
    return code;
750
33.4k
}