Coverage Report

Created: 2025-06-10 07:26

/src/ghostpdl/psi/isave.c
Line
Count
Source (jump to first uncovered line)
1
/* Copyright (C) 2001-2024 Artifex Software, Inc.
2
   All Rights Reserved.
3
4
   This software is provided AS-IS with no warranty, either express or
5
   implied.
6
7
   This software is distributed under license and may not be copied,
8
   modified or distributed except as expressly authorized under the terms
9
   of the license contained in the file LICENSE in this distribution.
10
11
   Refer to licensing information at http://www.artifex.com or contact
12
   Artifex Software, Inc.,  39 Mesa Street, Suite 108A, San Francisco,
13
   CA 94129, USA, for further information.
14
*/
15
16
17
/* Save/restore manager for Ghostscript interpreter */
18
#include "ghost.h"
19
#include "memory_.h"
20
#include "ierrors.h"
21
#include "gsexit.h"
22
#include "gsstruct.h"
23
#include "stream.h"   /* for linking for forgetsave */
24
#include "iastate.h"
25
#include "inamedef.h"
26
#include "iname.h"
27
#include "ipacked.h"
28
#include "isave.h"
29
#include "isstate.h"
30
#include "gsstate.h"
31
#include "store.h"    /* for ref_assign */
32
#include "ivmspace.h"
33
#include "igc.h"
34
#include "gsutil.h"   /* gs_next_ids prototype */
35
#include "icstate.h"
36
37
/* Structure descriptor */
38
private_st_alloc_save();
39
40
/* Define the maximum amount of data we are willing to scan repeatedly -- */
41
/* see below for details. */
42
static const long max_repeated_scan = 100000;
43
44
/* Define the minimum space for creating an inner clump. */
45
/* Must be at least sizeof(clump_head_t). */
46
static const long min_inner_clump_space = sizeof(clump_head_t) + 500;
47
48
/*
49
 * The logic for saving and restoring the state is complex.
50
 * Both the changes to individual objects, and the overall state
51
 * of the memory manager, must be saved and restored.
52
 */
53
54
/*
55
 * To save the state of the memory manager:
56
 *      Save the state of the current clump in which we are allocating.
57
 *      Shrink all clumps to their inner unallocated region.
58
 *      Save and reset the free block chains.
59
 * By doing this, we guarantee that no object older than the save
60
 * can be freed.
61
 *
62
 * To restore the state of the memory manager:
63
 *      Free all clumps newer than the save, and the descriptors for
64
 *        the inner clumps created by the save.
65
 *      Make current the clump that was current at the time of the save.
66
 *      Restore the state of the current clump.
67
 *
68
 * In addition to save ("start transaction") and restore ("abort transaction"),
69
 * we support forgetting a save ("commit transation").  To forget a save:
70
 *      Reassign to the next outer save all clumps newer than the save.
71
 *      Free the descriptors for the inners clump, updating their outer
72
 *        clumps to reflect additional allocations in the inner clumps.
73
 *      Concatenate the free block chains with those of the outer save.
74
 */
75
76
/*
77
 * For saving changes to individual objects, we add an "attribute" bit
78
 * (l_new) that logically belongs to the slot where the ref is stored,
79
 * not to the ref itself.  The bit means "the contents of this slot
80
 * have been changed, or the slot was allocated, since the last save."
81
 * To keep track of changes since the save, we associate a chain of
82
 * <slot, old_contents> pairs that remembers the old contents of slots.
83
 *
84
 * When creating an object, if the save level is non-zero:
85
 *      Set l_new in all slots.
86
 *
87
 * When storing into a slot, if the save level is non-zero:
88
 *      If l_new isn't set, save the address and contents of the slot
89
 *        on the current contents chain.
90
 *      Set l_new after storing the new value.
91
 *
92
 * To do a save:
93
 *      If the save level is non-zero:
94
 *              Reset l_new in all slots on the contents chain, and in all
95
 *                objects created since the previous save.
96
 *      Push the head of the contents chain, and reset the chain to empty.
97
 *
98
 * To do a restore:
99
 *      Check all the stacks to make sure they don't contain references
100
 *        to objects created since the save.
101
 *      Restore all the slots on the contents chain.
102
 *      Pop the contents chain head.
103
 *      If the save level is now non-zero:
104
 *              Scan the newly restored contents chain, and set l_new in all
105
 *                the slots it references.
106
 *              Scan all objects created since the previous save, and set
107
 *                l_new in all the slots of each object.
108
 *
109
 * To forget a save:
110
 *      If the save level is greater than 1:
111
 *              Set l_new as for a restore, per the next outer save.
112
 *              Concatenate the next outer contents chain to the end of
113
 *                the current one.
114
 *      If the save level is 1:
115
 *              Reset l_new as for a save.
116
 *              Free the contents chain.
117
 */
118
119
/*
120
 * A consequence of the foregoing algorithms is that the cost of a save is
121
 * proportional to the total amount of data allocated since the previous
122
 * save.  If a PostScript program reads in a large amount of setup code and
123
 * then uses save/restore heavily, each save/restore will be expensive.  To
124
 * mitigate this, we check to see how much data we have scanned at this save
125
 * level: if it is large, we do a second, invisible save.  This greatly
126
 * reduces the cost of inner saves, at the expense of possibly saving some
127
 * changes twice that otherwise would only have to be saved once.
128
 */
129
130
/*
131
 * The presence of global and local VM complicates the situation further.
132
 * There is a separate save chain and contents chain for each VM space.
133
 * When multiple contexts are fully implemented, save and restore will have
134
 * the following effects, according to the privacy status of the current
135
 * context's global and local VM:
136
 *      Private global, private local:
137
 *              The outermost save saves both global and local VM;
138
 *                otherwise, save only saves local VM.
139
 *      Shared global, private local:
140
 *              Save only saves local VM.
141
 *      Shared global, shared local:
142
 *              Save only saves local VM, and suspends all other contexts
143
 *                sharing the same local VM until the matching restore.
144
 * Since we do not currently implement multiple contexts, only the first
145
 * case is relevant.
146
 *
147
 * Note that when saving the contents of a slot, the choice of chain
148
 * is determined by the VM space in which the slot is allocated,
149
 * not by the current allocation mode.
150
 */
151
152
/* Tracing printout */
153
static void
154
print_save(const char *str, uint spacen, const alloc_save_t *sav)
155
55.3k
{
156
55.3k
  if_debug5('u', "[u]%s space %u "PRI_INTPTR": cdata = "PRI_INTPTR", id = %lu\n",\
157
55.3k
            str, spacen, (intptr_t)sav, (intptr_t)sav->client_data, (ulong)sav->id);
158
55.3k
}
159
160
/* A link to igcref.c . */
161
ptr_proc_reloc(igc_reloc_ref_ptr_nocheck, ref_packed);
162
163
static
164
CLEAR_MARKS_PROC(change_clear_marks)
165
481k
{
166
481k
    alloc_change_t *const ptr = (alloc_change_t *)vptr;
167
168
481k
    if (r_is_packed(&ptr->contents))
169
9.61k
        r_clear_pmark((ref_packed *) & ptr->contents);
170
471k
    else
171
471k
        r_clear_attrs(&ptr->contents, l_mark);
172
481k
}
173
static
174
1.92M
ENUM_PTRS_WITH(change_enum_ptrs, alloc_change_t *ptr) return 0;
175
481k
ENUM_PTR(0, alloc_change_t, next);
176
481k
case 1:
177
481k
    if (ptr->offset >= 0)
178
0
        ENUM_RETURN((byte *) ptr->where - ptr->offset);
179
481k
    else
180
481k
        if (ptr->offset != AC_OFFSET_ALLOCATED)
181
78.0k
            ENUM_RETURN_REF(ptr->where);
182
403k
        else {
183
            /* Don't enumerate ptr->where, because it
184
               needs a special processing with
185
               alloc_save__filter_changes. */
186
403k
            ENUM_RETURN(0);
187
403k
        }
188
481k
case 2:
189
481k
    ENUM_RETURN_REF(&ptr->contents);
190
1.92M
ENUM_PTRS_END
191
159k
static RELOC_PTRS_WITH(change_reloc_ptrs, alloc_change_t *ptr)
192
159k
{
193
159k
    RELOC_VAR(ptr->next);
194
159k
    switch (ptr->offset) {
195
0
        case AC_OFFSET_STATIC:
196
0
            break;
197
78.0k
        case AC_OFFSET_REF:
198
78.0k
            RELOC_REF_PTR_VAR(ptr->where);
199
78.0k
            break;
200
81.2k
        case AC_OFFSET_ALLOCATED:
201
            /* We know that ptr->where may point to an unmarked object
202
               because change_enum_ptrs skipped it,
203
               and we know it always points to same space
204
               because we took a special care when calling alloc_save_change_alloc.
205
               Therefore we must skip the check for the mark,
206
               which would happen if we call the regular relocation function
207
               igc_reloc_ref_ptr from RELOC_REF_PTR_VAR.
208
               Calling igc_reloc_ref_ptr_nocheck instead. */
209
81.2k
            { /* A sanity check. */
210
81.2k
                obj_header_t *pre = (obj_header_t *)ptr->where - 1;
211
212
81.2k
                if (pre->o_type != &st_refs)
213
0
                    gs_abort(gcst->heap);
214
81.2k
            }
215
81.2k
            if (ptr->where != 0 && !gcst->relocating_untraced)
216
80.7k
                ptr->where = igc_reloc_ref_ptr_nocheck(ptr->where, gcst);
217
81.2k
            break;
218
0
        default:
219
0
            {
220
0
                byte *obj = (byte *) ptr->where - ptr->offset;
221
222
0
                RELOC_VAR(obj);
223
0
                ptr->where = (ref_packed *) (obj + ptr->offset);
224
0
            }
225
0
            break;
226
159k
    }
227
159k
    if (r_is_packed(&ptr->contents))
228
9.59k
        r_clear_pmark((ref_packed *) & ptr->contents);
229
149k
    else {
230
149k
        RELOC_REF_VAR(ptr->contents);
231
149k
        r_clear_attrs(&ptr->contents, l_mark);
232
149k
    }
233
159k
}
234
159k
RELOC_PTRS_END
235
gs_private_st_complex_only(st_alloc_change, alloc_change_t, "alloc_change",
236
                change_clear_marks, change_enum_ptrs, change_reloc_ptrs, 0);
237
238
/* Debugging printout */
239
#ifdef DEBUG
240
static void
241
alloc_save_print(const gs_memory_t *mem, alloc_change_t * cp, bool print_current)
242
{
243
    dmprintf2(mem, " "PRI_INTPTR"x: "PRI_INTPTR": ", (intptr_t) cp, (intptr_t) cp->where);
244
    if (r_is_packed(&cp->contents)) {
245
        if (print_current)
246
            dmprintf2(mem, "saved=%x cur=%x\n", *(ref_packed *) & cp->contents,
247
                      *cp->where);
248
        else
249
            dmprintf1(mem, "%x\n", *(ref_packed *) & cp->contents);
250
    } else {
251
        if (print_current)
252
            dmprintf6(mem, "saved=%x %x %lx cur=%x %x %lx\n",
253
                      r_type_attrs(&cp->contents), r_size(&cp->contents),
254
                      (ulong) cp->contents.value.intval,
255
                      r_type_attrs((ref *) cp->where),
256
                      r_size((ref *) cp->where),
257
                      (ulong) ((ref *) cp->where)->value.intval);
258
        else
259
            dmprintf3(mem, "%x %x %lx\n",
260
                      r_type_attrs(&cp->contents), r_size(&cp->contents),
261
                      (ulong) cp->contents.value.intval);
262
    }
263
}
264
#endif
265
266
/* Forward references */
267
static int  restore_resources(alloc_save_t *, gs_ref_memory_t *);
268
static void restore_free(gs_ref_memory_t *);
269
static int  save_set_new(gs_ref_memory_t * mem, bool to_new, bool set_limit, ulong *pscanned);
270
static int  save_set_new_changes(gs_ref_memory_t *, bool, bool);
271
static bool check_l_mark(void *obj);
272
273
/* Initialize the save/restore machinery. */
274
void
275
alloc_save_init(gs_dual_memory_t * dmem)
276
9.22k
{
277
9.22k
    alloc_set_not_in_save(dmem);
278
9.22k
}
279
280
/* Record that we are in a save. */
281
static void
282
alloc_set_masks(gs_dual_memory_t *dmem, uint new_mask, uint test_mask)
283
73.8k
{
284
73.8k
    int i;
285
73.8k
    gs_ref_memory_t *mem;
286
287
73.8k
    dmem->new_mask = new_mask;
288
73.8k
    dmem->test_mask = test_mask;
289
369k
    for (i = 0; i < countof(dmem->spaces.memories.indexed); ++i)
290
295k
        if ((mem = dmem->spaces.memories.indexed[i]) != 0) {
291
221k
            mem->new_mask = new_mask, mem->test_mask = test_mask;
292
221k
            if (mem->stable_memory != (gs_memory_t *)mem) {
293
147k
                mem = (gs_ref_memory_t *)mem->stable_memory;
294
147k
                mem->new_mask = new_mask, mem->test_mask = test_mask;
295
147k
            }
296
221k
        }
297
73.8k
}
298
void
299
alloc_set_in_save(gs_dual_memory_t *dmem)
300
27.7k
{
301
27.7k
    alloc_set_masks(dmem, l_new, l_new);
302
27.7k
}
303
304
/* Record that we are not in a save. */
305
void
306
alloc_set_not_in_save(gs_dual_memory_t *dmem)
307
46.1k
{
308
46.1k
    alloc_set_masks(dmem, 0, ~0);
309
46.1k
}
310
311
/* Save the state. */
312
static alloc_save_t *alloc_save_space(gs_ref_memory_t *mem,
313
                                       gs_dual_memory_t *dmem,
314
                                       ulong sid);
315
static void
316
alloc_free_save(gs_ref_memory_t *mem, alloc_save_t *save, const char *scn)
317
0
{
318
0
    gs_ref_memory_t save_mem;
319
0
    save_mem = mem->saved->state;
320
0
    gs_free_object((gs_memory_t *)mem, save, scn);
321
    /* Free any inner clump structures.  This is the easiest way to do it. */
322
0
    restore_free(mem);
323
    /* Restore the 'saved' state - this pulls our object off the linked
324
     * list of states. Without this we hit a SEGV in the gc later. */
325
0
    *mem = save_mem;
326
0
}
327
int
328
alloc_save_state(gs_dual_memory_t * dmem, void *cdata, ulong *psid)
329
18.4k
{
330
18.4k
    gs_ref_memory_t *lmem = dmem->space_local;
331
18.4k
    gs_ref_memory_t *gmem = dmem->space_global;
332
18.4k
    ulong sid = gs_next_ids((const gs_memory_t *)lmem->stable_memory, 2);
333
18.4k
    bool global =
334
18.4k
        lmem->save_level == 0 && gmem != lmem &&
335
18.4k
        gmem->num_contexts == 1;
336
18.4k
    alloc_save_t *gsave =
337
18.4k
        (global ? alloc_save_space(gmem, dmem, sid + 1) : (alloc_save_t *) 0);
338
18.4k
    alloc_save_t *lsave = alloc_save_space(lmem, dmem, sid);
339
340
18.4k
    if (lsave == 0 || (global && gsave == 0)) {
341
        /* Only 1 of lsave or gsave will have been allocated, but
342
         * nevertheless (in case things change in future), we free
343
         * lsave, then gsave, so they 'pop' correctly when restoring
344
         * the mem->saved states. */
345
0
        if (lsave != 0)
346
0
            alloc_free_save(lmem, lsave, "alloc_save_state(local save)");
347
0
        if (gsave != 0)
348
0
            alloc_free_save(gmem, gsave, "alloc_save_state(global save)");
349
0
        return_error(gs_error_VMerror);
350
0
    }
351
18.4k
    if (gsave != 0) {
352
9.22k
        gsave->client_data = 0;
353
9.22k
        print_save("save", gmem->space, gsave);
354
        /* Restore names when we do the local restore. */
355
9.22k
        lsave->restore_names = gsave->restore_names;
356
9.22k
        gsave->restore_names = false;
357
9.22k
    }
358
18.4k
    lsave->id = sid;
359
18.4k
    lsave->client_data = cdata;
360
18.4k
    print_save("save", lmem->space, lsave);
361
    /* Reset the l_new attribute in all slots.  The only slots that */
362
    /* can have the attribute set are the ones on the changes chain, */
363
    /* and ones in objects allocated since the last save. */
364
18.4k
    if (lmem->save_level > 1) {
365
9.22k
        ulong scanned;
366
9.22k
        int code = save_set_new(&lsave->state, false, true, &scanned);
367
368
9.22k
        if (code < 0)
369
0
            return code;
370
#if 0 /* Disable invisible save levels. */
371
        if ((lsave->state.total_scanned += scanned) > max_repeated_scan) {
372
            /* Do a second, invisible save. */
373
            alloc_save_t *rsave;
374
375
            rsave = alloc_save_space(lmem, dmem, 0L);
376
            if (rsave != 0) {
377
                rsave->client_data = cdata;
378
#if 0 /* Bug 688153 */
379
                rsave->id = lsave->id;
380
                print_save("save", lmem->space, rsave);
381
                lsave->id = 0;  /* mark as invisible */
382
                rsave->state.save_level--; /* ditto */
383
                lsave->client_data = 0;
384
#else
385
                rsave->id = 0;  /* mark as invisible */
386
                print_save("save", lmem->space, rsave);
387
                rsave->state.save_level--; /* ditto */
388
                rsave->client_data = 0;
389
#endif
390
                /* Inherit the allocated space count -- */
391
                /* we need this for triggering a GC. */
392
                print_save("save", lmem->space, lsave);
393
            }
394
        }
395
#endif
396
9.22k
    }
397
398
18.4k
    alloc_set_in_save(dmem);
399
18.4k
    *psid = sid;
400
18.4k
    return 0;
401
18.4k
}
402
/* Save the state of one space (global or local). */
403
static alloc_save_t *
404
alloc_save_space(gs_ref_memory_t * mem, gs_dual_memory_t * dmem, ulong sid)
405
27.6k
{
406
27.6k
    gs_ref_memory_t save_mem;
407
27.6k
    alloc_save_t *save;
408
27.6k
    clump_t *cp;
409
27.6k
    clump_t *new_cc = NULL;
410
27.6k
    clump_splay_walker sw;
411
412
27.6k
    save_mem = *mem;
413
27.6k
    alloc_close_clump(mem);
414
27.6k
    mem->cc = NULL;
415
27.6k
    gs_memory_status((gs_memory_t *) mem, &mem->previous_status);
416
27.6k
    ialloc_reset(mem);
417
418
    /* Create inner clumps wherever it's worthwhile. */
419
420
883k
    for (cp = clump_splay_walk_init(&sw, &save_mem); cp != 0; cp = clump_splay_walk_fwd(&sw)) {
421
856k
        if (cp->ctop - cp->cbot > min_inner_clump_space) {
422
            /* Create an inner clump to cover only the unallocated part. */
423
371k
            clump_t *inner =
424
371k
                gs_raw_alloc_struct_immovable(mem->non_gc_memory, &st_clump,
425
371k
                                              "alloc_save_space(inner)");
426
427
371k
            if (inner == 0)
428
0
                break;   /* maybe should fail */
429
371k
            alloc_init_clump(inner, cp->cbot, cp->ctop, cp->sreloc != 0, cp);
430
371k
            alloc_link_clump(inner, mem);
431
371k
            if_debug2m('u', (gs_memory_t *)mem, "[u]inner clump: cbot="PRI_INTPTR" ctop="PRI_INTPTR"\n",
432
371k
                       (intptr_t) inner->cbot, (intptr_t) inner->ctop);
433
371k
            if (cp == save_mem.cc)
434
22.2k
                new_cc = inner;
435
371k
        }
436
856k
    }
437
27.6k
    mem->cc = new_cc;
438
27.6k
    alloc_open_clump(mem);
439
440
27.6k
    save = gs_alloc_struct((gs_memory_t *) mem, alloc_save_t,
441
27.6k
                           &st_alloc_save, "alloc_save_space(save)");
442
27.6k
    if_debug2m('u', (gs_memory_t *)mem, "[u]save space %u at "PRI_INTPTR"\n",
443
27.6k
               mem->space, (intptr_t) save);
444
27.6k
    if (save == 0) {
445
        /* Free the inner clump structures.  This is the easiest way. */
446
0
        restore_free(mem);
447
0
        *mem = save_mem;
448
0
        return 0;
449
0
    }
450
27.6k
    save->client_data = NULL;
451
27.6k
    save->state = save_mem;
452
27.6k
    save->spaces = dmem->spaces;
453
27.6k
    save->restore_names = (name_memory(mem) == (gs_memory_t *) mem);
454
27.6k
    save->is_current = (dmem->current == mem);
455
27.6k
    save->id = sid;
456
27.6k
    mem->saved = save;
457
27.6k
    if_debug2m('u', (gs_memory_t *)mem, "[u%u]file_save "PRI_INTPTR"\n",
458
27.6k
               mem->space, (intptr_t) mem->streams);
459
27.6k
    mem->streams = 0;
460
27.6k
    mem->total_scanned = 0;
461
27.6k
    mem->total_scanned_after_compacting = 0;
462
27.6k
    if (sid)
463
27.6k
        mem->save_level++;
464
27.6k
    return save;
465
27.6k
}
466
467
/* Record a state change that must be undone for restore, */
468
/* and mark it as having been saved. */
469
int
470
alloc_save_change_in(gs_ref_memory_t *mem, const ref * pcont,
471
                  ref_packed * where, client_name_t cname)
472
122M
{
473
122M
    register alloc_change_t *cp;
474
475
122M
    if (mem->new_mask == 0)
476
122M
        return 0;    /* no saving */
477
298k
    cp = gs_alloc_struct((gs_memory_t *)mem, alloc_change_t,
478
298k
                         &st_alloc_change, "alloc_save_change");
479
298k
    if (cp == 0)
480
0
        return -1;
481
298k
    cp->next = mem->changes;
482
298k
    cp->where = where;
483
298k
    if (pcont == NULL)
484
0
        cp->offset = AC_OFFSET_STATIC;
485
298k
    else if (r_is_array(pcont) || r_has_type(pcont, t_dictionary))
486
298k
        cp->offset = AC_OFFSET_REF;
487
0
    else if (r_is_struct(pcont))
488
0
        cp->offset = (byte *) where - (byte *) pcont->value.pstruct;
489
0
    else {
490
0
        if_debug3('u', "Bad type %u for save!  pcont = "PRI_INTPTR", where = "PRI_INTPTR"\n",
491
0
                 r_type(pcont), (intptr_t) pcont, (intptr_t) where);
492
0
        gs_abort((const gs_memory_t *)mem);
493
0
    }
494
298k
    if (r_is_packed(where))
495
21.6k
        *(ref_packed *)&cp->contents = *where;
496
276k
    else {
497
276k
        ref_assign_inline(&cp->contents, (ref *) where);
498
276k
        r_set_attrs((ref *) where, l_new);
499
276k
    }
500
298k
    mem->changes = cp;
501
#ifdef DEBUG
502
    if (gs_debug_c('U')) {
503
        dmlprintf1((const gs_memory_t *)mem, "[U]save(%s)", client_name_string(cname));
504
        alloc_save_print((const gs_memory_t *)mem, cp, false);
505
    }
506
#endif
507
298k
    return 0;
508
298k
}
509
int
510
alloc_save_change(gs_dual_memory_t * dmem, const ref * pcont,
511
                  ref_packed * where, client_name_t cname)
512
122M
{
513
122M
    gs_ref_memory_t *mem =
514
122M
        (pcont == NULL ? dmem->space_local :
515
122M
         dmem->spaces_indexed[r_space(pcont) >> r_space_shift]);
516
517
122M
    return alloc_save_change_in(mem, pcont, where, cname);
518
122M
}
519
520
/* Allocate a structure for recording an allocation event. */
521
int
522
alloc_save_change_alloc(gs_ref_memory_t *mem, client_name_t cname, alloc_change_t **pcp)
523
11.9M
{
524
11.9M
    register alloc_change_t *cp;
525
526
11.9M
    if (mem->new_mask == 0)
527
10.9M
        return 0;    /* no saving */
528
1.05M
    cp = gs_alloc_struct((gs_memory_t *)mem, alloc_change_t,
529
1.05M
                         &st_alloc_change, "alloc_save_change");
530
1.05M
    if (cp == 0)
531
0
        return_error(gs_error_VMerror);
532
1.05M
    cp->next = mem->changes;
533
1.05M
    cp->where = 0;
534
1.05M
    cp->offset = AC_OFFSET_ALLOCATED;
535
1.05M
    make_null(&cp->contents);
536
1.05M
    *pcp = cp;
537
1.05M
    return 1;
538
1.05M
}
539
540
/* Remove an AC_OFFSET_ALLOCATED element. */
541
void
542
alloc_save_remove(gs_ref_memory_t *mem, ref_packed *obj, client_name_t cname)
543
18
{
544
18
    alloc_change_t **cpp = &mem->changes;
545
546
18.9k
    for (; *cpp != NULL;) {
547
18.9k
        alloc_change_t *cp = *cpp;
548
549
18.9k
        if (cp->offset == AC_OFFSET_ALLOCATED && cp->where == obj) {
550
18
            if (mem->scan_limit == cp)
551
0
                mem->scan_limit = cp->next;
552
18
            *cpp = cp->next;
553
18
            gs_free_object((gs_memory_t *)mem, cp, "alloc_save_remove");
554
18
        } else
555
18.9k
            cpp = &(*cpp)->next;
556
18.9k
    }
557
18
}
558
559
/* Filter save change lists. */
560
static inline void
561
alloc_save__filter_changes_in_space(gs_ref_memory_t *mem)
562
110k
{
563
    /* This is a special function, which is called
564
       from the garbager after setting marks and before collecting
565
       unused space. Therefore it just resets marks for
566
       elements being released instead releasing them really. */
567
110k
    alloc_change_t **cpp = &mem->changes;
568
569
591k
    for (; *cpp != NULL; ) {
570
480k
        alloc_change_t *cp = *cpp;
571
572
480k
        if (cp->offset == AC_OFFSET_ALLOCATED && !check_l_mark(cp->where)) {
573
321k
            obj_header_t *pre = (obj_header_t *)cp - 1;
574
575
321k
            *cpp = cp->next;
576
321k
            cp->where = 0;
577
321k
            if (mem->scan_limit == cp)
578
0
                mem->scan_limit = cp->next;
579
321k
            o_set_unmarked(pre);
580
321k
        } else
581
158k
            cpp = &(*cpp)->next;
582
480k
    }
583
110k
}
584
585
/* Filter save change lists. */
586
void
587
alloc_save__filter_changes(gs_ref_memory_t *memory)
588
92.3k
{
589
92.3k
    gs_ref_memory_t *mem = memory;
590
591
203k
    for  (; mem; mem = &mem->saved->state)
592
110k
        alloc_save__filter_changes_in_space(mem);
593
92.3k
}
594
595
/* Return (the id of) the innermost externally visible save object, */
596
/* i.e., the innermost save with a non-zero ID. */
597
ulong
598
alloc_save_current_id(const gs_dual_memory_t * dmem)
599
18.4k
{
600
18.4k
    const alloc_save_t *save = dmem->space_local->saved;
601
602
18.4k
    while (save != 0 && save->id == 0)
603
0
        save = save->state.saved;
604
18.4k
    if (save)
605
18.4k
        return save->id;
606
607
    /* This should never happen, if it does, return a totally
608
     * impossible value.
609
     */
610
0
    return (ulong)-1;
611
18.4k
}
612
alloc_save_t *
613
alloc_save_current(const gs_dual_memory_t * dmem)
614
18.4k
{
615
18.4k
    return alloc_find_save(dmem, alloc_save_current_id(dmem));
616
18.4k
}
617
618
/* Test whether a reference would be invalidated by a restore. */
619
bool
620
alloc_is_since_save(const void *vptr, const alloc_save_t * save)
621
334k
{
622
    /* A reference postdates a save iff it is in a clump allocated */
623
    /* since the save (including any carried-over inner clumps). */
624
625
334k
    const char *const ptr = (const char *)vptr;
626
334k
    register gs_ref_memory_t *mem = save->space_local;
627
628
334k
    if_debug2m('U', (gs_memory_t *)mem, "[U]is_since_save "PRI_INTPTR", "PRI_INTPTR":\n",
629
334k
               (intptr_t) ptr, (intptr_t) save);
630
334k
    if (mem->saved == 0) { /* This is a special case, the final 'restore' from */
631
        /* alloc_restore_all. */
632
9.22k
        return true;
633
9.22k
    }
634
    /* Check against clumps allocated since the save. */
635
    /* (There may have been intermediate saves as well.) */
636
325k
    for (;; mem = &mem->saved->state) {
637
325k
        if_debug1m('U', (gs_memory_t *)mem, "[U]checking mem="PRI_INTPTR"\n", (intptr_t) mem);
638
325k
        if (ptr_is_within_mem_clumps(ptr, mem)) {
639
2
            if_debug0m('U', (gs_memory_t *)mem, "[U+]found\n");
640
2
            return true;
641
2
        }
642
325k
        if_debug1m('U', (gs_memory_t *)mem, "[U-]not in any chunks belonging to "PRI_INTPTR"\n", (intptr_t) mem);
643
325k
        if (mem->saved == save) { /* We've checked all the more recent saves, */
644
            /* must be OK. */
645
325k
            break;
646
325k
        }
647
325k
    }
648
649
    /*
650
     * If we're about to do a global restore (a restore to the level 0),
651
     * and there is only one context using this global VM
652
     * (the normal case, in which global VM is saved by the
653
     * outermost save), we also have to check the global save.
654
     * Global saves can't be nested, which makes things easy.
655
     */
656
325k
    if (save->state.save_level == 0 /* Restoring to save level 0 - see bug 688157, 688161 */ &&
657
325k
        (mem = save->space_global) != save->space_local &&
658
325k
        save->space_global->num_contexts == 1
659
325k
        ) {
660
9.22k
        if_debug1m('U', (gs_memory_t *)mem, "[U]checking global mem="PRI_INTPTR"\n", (intptr_t) mem);
661
9.22k
        if (ptr_is_within_mem_clumps(ptr, mem)) {
662
0
            if_debug0m('U', (gs_memory_t *)mem, "[U+]  found\n");
663
0
            return true;
664
0
        }
665
9.22k
    }
666
325k
    return false;
667
668
325k
#undef ptr
669
325k
}
670
671
/* Test whether a name would be invalidated by a restore. */
672
bool
673
alloc_name_is_since_save(const gs_memory_t *mem,
674
                         const ref * pnref, const alloc_save_t * save)
675
16.6k
{
676
16.6k
    const name_string_t *pnstr;
677
678
16.6k
    if (!save->restore_names)
679
16.6k
        return false;
680
0
    pnstr = names_string_inline(mem->gs_lib_ctx->gs_name_table, pnref);
681
0
    if (pnstr->foreign_string)
682
0
        return false;
683
0
    return alloc_is_since_save(pnstr->string_bytes, save);
684
0
}
685
bool
686
alloc_name_index_is_since_save(const gs_memory_t *mem,
687
                               uint nidx, const alloc_save_t *save)
688
0
{
689
0
    const name_string_t *pnstr;
690
691
0
    if (!save->restore_names)
692
0
        return false;
693
0
    pnstr = names_index_string_inline(mem->gs_lib_ctx->gs_name_table, nidx);
694
0
    if (pnstr->foreign_string)
695
0
        return false;
696
0
    return alloc_is_since_save(pnstr->string_bytes, save);
697
0
}
698
699
/* Check whether any names have been created since a given save */
700
/* that might be released by the restore. */
701
bool
702
alloc_any_names_since_save(const alloc_save_t * save)
703
27.6k
{
704
27.6k
    return save->restore_names;
705
27.6k
}
706
707
/* Get the saved state with a given ID. */
708
alloc_save_t *
709
alloc_find_save(const gs_dual_memory_t * dmem, ulong sid)
710
59.1k
{
711
59.1k
    alloc_save_t *sprev = dmem->space_local->saved;
712
713
59.1k
    if (sid == 0)
714
0
        return 0;   /* invalid id */
715
59.1k
    while (sprev != 0) {
716
59.1k
        if (sprev->id == sid)
717
59.1k
            return sprev;
718
0
        sprev = sprev->state.saved;
719
0
    }
720
0
    return 0;
721
59.1k
}
722
723
/* Get the client data from a saved state. */
724
void *
725
alloc_save_client_data(const alloc_save_t * save)
726
18.4k
{
727
18.4k
    return save->client_data;
728
18.4k
}
729
730
/*
731
 * Do one step of restoring the state.  The client is responsible for
732
 * calling alloc_find_save to get the save object, and for ensuring that
733
 * there are no surviving pointers for which alloc_is_since_save is true.
734
 * Return true if the argument was the innermost save, in which case
735
 * this is the last (or only) step.
736
 * Note that "one step" may involve multiple internal steps,
737
 * if this is the outermost restore (which requires restoring both local
738
 * and global VM) or if we created extra save levels to reduce scanning.
739
 */
740
static void restore_finalize(gs_ref_memory_t *);
741
static void restore_space(gs_ref_memory_t *, gs_dual_memory_t *);
742
743
int
744
alloc_restore_step_in(gs_dual_memory_t *dmem, alloc_save_t * save)
745
18.4k
{
746
    /* Get save->space_* now, because the save object will be freed. */
747
18.4k
    gs_ref_memory_t *lmem = save->space_local;
748
18.4k
    gs_ref_memory_t *gmem = save->space_global;
749
18.4k
    gs_ref_memory_t *mem = lmem;
750
18.4k
    alloc_save_t *sprev;
751
18.4k
    int code;
752
753
    /* Finalize all objects before releasing resources or undoing changes. */
754
18.4k
    do {
755
18.4k
        ulong sid;
756
757
18.4k
        sprev = mem->saved;
758
18.4k
        sid = sprev->id;
759
18.4k
        restore_finalize(mem);  /* finalize objects */
760
18.4k
        mem = &sprev->state;
761
18.4k
        if (sid != 0)
762
18.4k
            break;
763
18.4k
    }
764
18.4k
    while (sprev != save);
765
18.4k
    if (mem->save_level == 0) {
766
        /* This is the outermost save, which might also */
767
        /* need to restore global VM. */
768
9.22k
        mem = gmem;
769
9.22k
        if (mem != lmem && mem->saved != 0) {
770
9.22k
            restore_finalize(mem);
771
9.22k
        }
772
9.22k
    }
773
774
    /* Do one (externally visible) step of restoring the state. */
775
18.4k
    mem = lmem;
776
18.4k
    do {
777
18.4k
        ulong sid;
778
779
18.4k
        sprev = mem->saved;
780
18.4k
        sid = sprev->id;
781
18.4k
        code = restore_resources(sprev, mem); /* release other resources */
782
18.4k
        if (code < 0)
783
0
            return code;
784
18.4k
        restore_space(mem, dmem); /* release memory */
785
18.4k
        if (sid != 0)
786
18.4k
            break;
787
18.4k
    }
788
18.4k
    while (sprev != save);
789
790
18.4k
    if (mem->save_level == 0) {
791
        /* This is the outermost save, which might also */
792
        /* need to restore global VM. */
793
9.22k
        mem = gmem;
794
9.22k
        if (mem != lmem && mem->saved != 0) {
795
9.22k
            code = restore_resources(mem->saved, mem);
796
9.22k
            if (code < 0)
797
0
                return code;
798
9.22k
            restore_space(mem, dmem);
799
9.22k
        }
800
9.22k
        alloc_set_not_in_save(dmem);
801
9.22k
    } else {     /* Set the l_new attribute in all slots that are now new. */
802
9.22k
        ulong scanned;
803
804
9.22k
        code = save_set_new(mem, true, false, &scanned);
805
9.22k
        if (code < 0)
806
0
            return code;
807
9.22k
    }
808
809
18.4k
    return sprev == save;
810
18.4k
}
811
/* Restore the memory of one space, by undoing changes and freeing */
812
/* memory allocated since the save. */
813
static void
814
restore_space(gs_ref_memory_t * mem, gs_dual_memory_t *dmem)
815
27.6k
{
816
27.6k
    alloc_save_t *save = mem->saved;
817
27.6k
    alloc_save_t saved;
818
819
27.6k
    print_save("restore", mem->space, save);
820
821
    /* Undo changes since the save. */
822
27.6k
    {
823
27.6k
        register alloc_change_t *cp = mem->changes;
824
825
1.05M
        while (cp) {
826
#ifdef DEBUG
827
            if (gs_debug_c('U')) {
828
                dmlputs((const gs_memory_t *)mem, "[U]restore");
829
                alloc_save_print((const gs_memory_t *)mem, cp, true);
830
            }
831
#endif
832
1.02M
            if (cp->offset == AC_OFFSET_ALLOCATED)
833
1.02M
                DO_NOTHING;
834
298k
            else
835
298k
            if (r_is_packed(&cp->contents))
836
21.6k
                *cp->where = *(ref_packed *) & cp->contents;
837
276k
            else
838
276k
                ref_assign_inline((ref *) cp->where, &cp->contents);
839
1.02M
            cp = cp->next;
840
1.02M
        }
841
27.6k
    }
842
843
    /* Free memory allocated since the save. */
844
    /* Note that this frees all clumps except the inner ones */
845
    /* belonging to this level. */
846
27.6k
    saved = *save;
847
27.6k
    restore_free(mem);
848
849
    /* Restore the allocator state. */
850
27.6k
    {
851
27.6k
        int num_contexts = mem->num_contexts; /* don't restore */
852
853
27.6k
        *mem = saved.state;
854
27.6k
        mem->num_contexts = num_contexts;
855
27.6k
    }
856
27.6k
    alloc_open_clump(mem);
857
858
    /* Make the allocator current if it was current before the save. */
859
27.6k
    if (saved.is_current) {
860
18.4k
        dmem->current = mem;
861
18.4k
        dmem->current_space = mem->space;
862
18.4k
    }
863
27.6k
}
864
865
/* Restore to the initial state, releasing all resources. */
866
/* The allocator is no longer usable after calling this routine! */
867
int
868
alloc_restore_all(i_ctx_t *i_ctx_p)
869
9.22k
{
870
    /*
871
     * Save the memory pointers, since freeing space_local will also
872
     * free dmem itself.
873
     */
874
9.22k
    gs_ref_memory_t *lmem = idmemory->space_local;
875
9.22k
    gs_ref_memory_t *gmem = idmemory->space_global;
876
9.22k
    gs_ref_memory_t *smem = idmemory->space_system;
877
878
9.22k
    gs_ref_memory_t *mem;
879
9.22k
    int code;
880
881
    /* Restore to a state outside any saves. */
882
18.4k
    while (lmem->save_level != 0) {
883
9.26k
        vm_save_t *vmsave = alloc_save_client_data(alloc_save_current(idmemory));
884
9.26k
        if (vmsave->gsave) {
885
9.26k
            gs_grestoreall_for_restore(i_ctx_p->pgs, vmsave->gsave);
886
9.26k
        }
887
9.26k
        vmsave->gsave = 0;
888
9.26k
        code = alloc_restore_step_in(idmemory, lmem->saved);
889
890
9.26k
        if (code < 0)
891
0
            return code;
892
9.26k
    }
893
894
    /* Finalize memory. */
895
9.22k
    restore_finalize(lmem);
896
9.22k
    if ((mem = (gs_ref_memory_t *)lmem->stable_memory) != lmem)
897
9.22k
        restore_finalize(mem);
898
9.22k
    if (gmem != lmem && gmem->num_contexts == 1) {
899
9.22k
        restore_finalize(gmem);
900
9.22k
        if ((mem = (gs_ref_memory_t *)gmem->stable_memory) != gmem)
901
9.22k
            restore_finalize(mem);
902
9.22k
    }
903
9.22k
    restore_finalize(smem);
904
905
    /* Release resources other than memory, using fake */
906
    /* save and memory objects. */
907
9.22k
    {
908
9.22k
        alloc_save_t empty_save;
909
910
9.22k
        empty_save.spaces = idmemory->spaces;
911
9.22k
        empty_save.restore_names = false; /* don't bother to release */
912
9.22k
        code = restore_resources(&empty_save, NULL);
913
9.22k
        if (code < 0)
914
0
            return code;
915
9.22k
    }
916
917
    /* Finally, release memory. */
918
9.22k
    restore_free(lmem);
919
9.22k
    if ((mem = (gs_ref_memory_t *)lmem->stable_memory) != lmem)
920
9.22k
        restore_free(mem);
921
9.22k
    if (gmem != lmem) {
922
9.22k
        if (!--(gmem->num_contexts)) {
923
9.22k
            restore_free(gmem);
924
9.22k
            if ((mem = (gs_ref_memory_t *)gmem->stable_memory) != gmem)
925
9.22k
                restore_free(mem);
926
9.22k
        }
927
9.22k
    }
928
9.22k
    restore_free(smem);
929
9.22k
    return 0;
930
9.22k
}
931
932
/*
933
 * Finalize objects that will be freed by a restore.
934
 * Note that we must temporarily disable the freeing operations
935
 * of the allocator while doing this.
936
 */
937
static void
938
restore_finalize(gs_ref_memory_t * mem)
939
73.7k
{
940
73.7k
    clump_t *cp;
941
73.7k
    clump_splay_walker sw;
942
943
73.7k
    alloc_close_clump(mem);
944
73.7k
    gs_enable_free((gs_memory_t *) mem, false);
945
1.84M
    for (cp = clump_splay_walk_bwd_init(&sw, mem); cp != 0; cp = clump_splay_walk_bwd(&sw)) {
946
14.4M
        SCAN_CLUMP_OBJECTS(cp)
947
14.4M
            DO_ALL
948
14.4M
            struct_proc_finalize((*finalize)) =
949
14.4M
            pre->o_type->finalize;
950
14.4M
        if (finalize != 0) {
951
544k
            if_debug2m('u', (gs_memory_t *)mem, "[u]restore finalizing %s "PRI_INTPTR"\n",
952
544k
                       struct_type_name_string(pre->o_type),
953
544k
                       (intptr_t) (pre + 1));
954
544k
            (*finalize) ((gs_memory_t *) mem, pre + 1);
955
544k
        }
956
14.4M
        END_OBJECTS_SCAN
957
1.76M
    }
958
73.7k
    gs_enable_free((gs_memory_t *) mem, true);
959
73.7k
}
960
961
/* Release resources for a restore */
962
static int
963
restore_resources(alloc_save_t * sprev, gs_ref_memory_t * mem)
964
36.8k
{
965
36.8k
    int code;
966
#ifdef DEBUG
967
    if (mem) {
968
        /* Note restoring of the file list. */
969
        if_debug4m('u', (gs_memory_t *)mem, "[u%u]file_restore "PRI_INTPTR" => "PRI_INTPTR" for "PRI_INTPTR"\n",
970
                   mem->space, (intptr_t)mem->streams,
971
                   (intptr_t)sprev->state.streams, (intptr_t)sprev);
972
    }
973
#endif
974
975
    /* Remove entries from font and character caches. */
976
36.8k
    code = font_restore(sprev);
977
36.8k
    if (code < 0)
978
0
        return code;
979
980
    /* Adjust the name table. */
981
36.8k
    if (sprev->restore_names)
982
0
        names_restore(mem->gs_lib_ctx->gs_name_table, sprev);
983
36.8k
    return 0;
984
36.8k
}
985
986
/* Release memory for a restore. */
987
static void
988
restore_free(gs_ref_memory_t * mem)
989
73.7k
{
990
    /* Free clumps allocated since the save. */
991
73.7k
    gs_free_all((gs_memory_t *) mem);
992
73.7k
}
993
994
/* Forget a save, by merging this level with the next outer one. */
995
static void file_forget_save(gs_ref_memory_t *);
996
static void combine_space(gs_ref_memory_t *);
997
static void forget_changes(gs_ref_memory_t *);
998
int
999
alloc_forget_save_in(gs_dual_memory_t *dmem, alloc_save_t * save)
1000
0
{
1001
0
    gs_ref_memory_t *mem = save->space_local;
1002
0
    alloc_save_t *sprev;
1003
0
    ulong scanned;
1004
0
    int code;
1005
1006
0
    print_save("forget_save", mem->space, save);
1007
1008
    /* Iteratively combine the current level with the previous one. */
1009
0
    do {
1010
0
        sprev = mem->saved;
1011
0
        if (sprev->id != 0)
1012
0
            mem->save_level--;
1013
0
        if (mem->save_level != 0) {
1014
0
            alloc_change_t *chp = mem->changes;
1015
1016
0
            code = save_set_new(&sprev->state, true, false, &scanned);
1017
0
            if (code < 0)
1018
0
                return code;
1019
            /* Concatenate the changes chains. */
1020
0
            if (chp == 0)
1021
0
                mem->changes = sprev->state.changes;
1022
0
            else {
1023
0
                while (chp->next != 0)
1024
0
                    chp = chp->next;
1025
0
                chp->next = sprev->state.changes;
1026
0
            }
1027
0
            file_forget_save(mem);
1028
0
            combine_space(mem); /* combine memory */
1029
0
        } else {
1030
0
            forget_changes(mem);
1031
0
            code = save_set_new(mem, false, false, &scanned);
1032
0
            if (code < 0)
1033
0
                return code;
1034
0
            file_forget_save(mem);
1035
0
            combine_space(mem); /* combine memory */
1036
            /* This is the outermost save, which might also */
1037
            /* need to combine global VM. */
1038
0
            mem = save->space_global;
1039
0
            if (mem != save->space_local && mem->saved != 0) {
1040
0
                forget_changes(mem);
1041
0
                code = save_set_new(mem, false, false, &scanned);
1042
0
                if (code < 0)
1043
0
                    return code;
1044
0
                file_forget_save(mem);
1045
0
                combine_space(mem);
1046
0
            }
1047
0
            alloc_set_not_in_save(dmem);
1048
0
            break;   /* must be outermost */
1049
0
        }
1050
0
    }
1051
0
    while (sprev != save);
1052
0
    return 0;
1053
0
}
1054
/* Combine the clumps of the next outer level with those of the current one, */
1055
/* and free the bookkeeping structures. */
1056
static void
1057
combine_space(gs_ref_memory_t * mem)
1058
0
{
1059
0
    alloc_save_t *saved = mem->saved;
1060
0
    gs_ref_memory_t *omem = &saved->state;
1061
0
    clump_t *cp;
1062
0
    clump_splay_walker sw;
1063
1064
0
    alloc_close_clump(mem);
1065
0
    for (cp = clump_splay_walk_init(&sw, mem); cp != 0; cp = clump_splay_walk_fwd(&sw)) {
1066
0
        if (cp->outer == 0)
1067
0
            alloc_link_clump(cp, omem);
1068
0
        else {
1069
0
            clump_t *outer = cp->outer;
1070
1071
0
            outer->inner_count--;
1072
0
            if (mem->cc == cp)
1073
0
                mem->cc = outer;
1074
0
            if (mem->cfreed.cp == cp)
1075
0
                mem->cfreed.cp = outer;
1076
            /* "Free" the header of the inner clump, */
1077
            /* and any immediately preceding gap left by */
1078
            /* the GC having compacted the outer clump. */
1079
0
            {
1080
0
                obj_header_t *hp = (obj_header_t *) outer->cbot;
1081
1082
0
                hp->o_pad = 0;
1083
0
                hp->o_alone = 0;
1084
0
                hp->o_size = (char *)(cp->chead + 1)
1085
0
                    - (char *)(hp + 1);
1086
0
                hp->o_type = &st_bytes;
1087
                /* The following call is probably not safe. */
1088
#if 0       /* **************** */
1089
                gs_free_object((gs_memory_t *) mem,
1090
                               hp + 1, "combine_space(header)");
1091
#endif /* **************** */
1092
0
            }
1093
            /* Update the outer clump's allocation pointers. */
1094
0
            outer->cbot = cp->cbot;
1095
0
            outer->rcur = cp->rcur;
1096
0
            outer->rtop = cp->rtop;
1097
0
            outer->ctop = cp->ctop;
1098
0
            outer->has_refs |= cp->has_refs;
1099
0
            gs_free_object(mem->non_gc_memory, cp,
1100
0
                           "combine_space(inner)");
1101
0
        }
1102
0
    }
1103
    /* Update relevant parts of allocator state. */
1104
0
    mem->root = omem->root;
1105
0
    mem->allocated += omem->allocated;
1106
0
    mem->gc_allocated += omem->allocated;
1107
0
    mem->lost.objects += omem->lost.objects;
1108
0
    mem->lost.refs += omem->lost.refs;
1109
0
    mem->lost.strings += omem->lost.strings;
1110
0
    mem->saved = omem->saved;
1111
0
    mem->previous_status = omem->previous_status;
1112
0
    {       /* Concatenate free lists. */
1113
0
        int i;
1114
1115
0
        for (i = 0; i < num_freelists; i++) {
1116
0
            obj_header_t *olist = omem->freelists[i];
1117
0
            obj_header_t *list = mem->freelists[i];
1118
1119
0
            if (olist == 0);
1120
0
            else if (list == 0)
1121
0
                mem->freelists[i] = olist;
1122
0
            else {
1123
0
                while (*(obj_header_t **) list != 0)
1124
0
                    list = *(obj_header_t **) list;
1125
0
                *(obj_header_t **) list = olist;
1126
0
            }
1127
0
        }
1128
0
        if (omem->largest_free_size > mem->largest_free_size)
1129
0
            mem->largest_free_size = omem->largest_free_size;
1130
0
    }
1131
0
    gs_free_object((gs_memory_t *) mem, saved, "combine_space(saved)");
1132
0
    alloc_open_clump(mem);
1133
0
}
1134
/* Free the changes chain for a level 0 .forgetsave, */
1135
/* resetting the l_new flag in the changed refs. */
1136
static void
1137
forget_changes(gs_ref_memory_t * mem)
1138
0
{
1139
0
    register alloc_change_t *chp = mem->changes;
1140
0
    alloc_change_t *next;
1141
1142
0
    for (; chp; chp = next) {
1143
0
        ref_packed *prp = chp->where;
1144
1145
0
        if_debug1m('U', (gs_memory_t *)mem, "[U]forgetting change "PRI_INTPTR"\n", (intptr_t) chp);
1146
0
        if (chp->offset == AC_OFFSET_ALLOCATED)
1147
0
            DO_NOTHING;
1148
0
        else
1149
0
        if (!r_is_packed(prp))
1150
0
            r_clear_attrs((ref *) prp, l_new);
1151
0
        next = chp->next;
1152
0
        gs_free_object((gs_memory_t *) mem, chp, "forget_changes");
1153
0
    }
1154
0
    mem->changes = 0;
1155
0
}
1156
/* Update the streams list when forgetting a save. */
1157
static void
1158
file_forget_save(gs_ref_memory_t * mem)
1159
0
{
1160
0
    const alloc_save_t *save = mem->saved;
1161
0
    stream *streams = mem->streams;
1162
0
    stream *saved_streams = save->state.streams;
1163
1164
0
    if_debug4m('u', (gs_memory_t *)mem, "[u%d]file_forget_save "PRI_INTPTR" + "PRI_INTPTR" for "PRI_INTPTR"\n",
1165
0
               mem->space, (intptr_t) streams, (intptr_t) saved_streams,
1166
0
               (intptr_t) save);
1167
0
    if (streams == 0)
1168
0
        mem->streams = saved_streams;
1169
0
    else if (saved_streams != 0) {
1170
0
        while (streams->next != 0)
1171
0
            streams = streams->next;
1172
0
        streams->next = saved_streams;
1173
0
        saved_streams->prev = streams;
1174
0
    }
1175
0
}
1176
1177
static inline int
1178
mark_allocated(void *obj, bool to_new, uint *psize)
1179
343k
{
1180
343k
    obj_header_t *pre = (obj_header_t *)obj - 1;
1181
343k
    uint size = pre_obj_contents_size(pre);
1182
343k
    ref_packed *prp = (ref_packed *) (pre + 1);
1183
343k
    ref_packed *next = (ref_packed *) ((char *)prp + size);
1184
#ifdef ALIGNMENT_ALIASING_BUG
1185
                ref *rpref;
1186
# define RP_REF(rp) (rpref = (ref *)rp, rpref)
1187
#else
1188
62.3M
# define RP_REF(rp) ((ref *)rp)
1189
343k
#endif
1190
1191
343k
    if (pre->o_type != &st_refs) {
1192
        /* Must not happen. */
1193
0
        if_debug0('u', "Wrong object type when expected a ref.\n");
1194
0
        return_error(gs_error_Fatal);
1195
0
    }
1196
    /* We know that every block of refs ends with */
1197
    /* a full-size ref, so we only need the end check */
1198
    /* when we encounter one of those. */
1199
343k
    if (to_new)
1200
31.9M
        while (1) {
1201
31.9M
            if (r_is_packed(prp))
1202
877k
                prp++;
1203
31.0M
            else {
1204
31.0M
                RP_REF(prp)->tas.type_attrs |= l_new;
1205
31.0M
                prp += packed_per_ref;
1206
31.0M
                if (prp >= next)
1207
171k
                    break;
1208
31.0M
            }
1209
31.9M
    } else
1210
32.2M
        while (1) {
1211
32.2M
            if (r_is_packed(prp))
1212
885k
                prp++;
1213
31.3M
            else {
1214
31.3M
                RP_REF(prp)->tas.type_attrs &= ~l_new;
1215
31.3M
                prp += packed_per_ref;
1216
31.3M
                if (prp >= next)
1217
172k
                    break;
1218
31.3M
            }
1219
32.2M
        }
1220
343k
#undef RP_REF
1221
343k
    *psize = size;
1222
343k
    return 0;
1223
343k
}
1224
1225
/* Check if a block contains refs marked by garbager. */
1226
static bool
1227
check_l_mark(void *obj)
1228
402k
{
1229
402k
    obj_header_t *pre = (obj_header_t *)obj - 1;
1230
402k
    uint size = pre_obj_contents_size(pre);
1231
402k
    ref_packed *prp = (ref_packed *) (pre + 1);
1232
402k
    ref_packed *next = (ref_packed *) ((char *)prp + size);
1233
#ifdef ALIGNMENT_ALIASING_BUG
1234
                ref *rpref;
1235
# define RP_REF(rp) (rpref = (ref *)rp, rpref)
1236
#else
1237
402k
# define RP_REF(rp) ((ref *)rp)
1238
402k
#endif
1239
1240
    /* We know that every block of refs ends with */
1241
    /* a full-size ref, so we only need the end check */
1242
    /* when we encounter one of those. */
1243
54.2M
    while (1) {
1244
54.2M
        if (r_is_packed(prp)) {
1245
1.11M
            if (r_has_pmark(prp))
1246
30
                return true;
1247
1.11M
            prp++;
1248
53.1M
        } else {
1249
53.1M
            if (r_has_attr(RP_REF(prp), l_mark))
1250
80.7k
                return true;
1251
53.0M
            prp += packed_per_ref;
1252
53.0M
            if (prp >= next)
1253
321k
                return false;
1254
53.0M
        }
1255
54.2M
    }
1256
402k
#undef RP_REF
1257
402k
}
1258
1259
/* Set or reset the l_new attribute in every relevant slot. */
1260
/* This includes every slot on the current change chain, */
1261
/* and every (ref) slot allocated at this save level. */
1262
/* Return the number of bytes of data scanned. */
1263
static int
1264
save_set_new(gs_ref_memory_t * mem, bool to_new, bool set_limit, ulong *pscanned)
1265
18.4k
{
1266
18.4k
    ulong scanned = 0;
1267
18.4k
    int code;
1268
1269
    /* Handle the change chain. */
1270
18.4k
    code = save_set_new_changes(mem, to_new, set_limit);
1271
18.4k
    if (code < 0)
1272
0
        return code;
1273
1274
    /* Handle newly allocated ref objects. */
1275
122k
    SCAN_MEM_CLUMPS(mem, cp) {
1276
122k
        if (cp->has_refs) {
1277
81.6k
            bool has_refs = false;
1278
81.6k
            bool no_outer_clump = !(cp->outer != NULL && cp->ctop - cp->cbot > min_inner_clump_space);
1279
649k
            SCAN_CLUMP_OBJECTS(cp)
1280
649k
                DO_ALL
1281
649k
                if_debug3m('U', (gs_memory_t *)mem, "[U]set_new scan("PRI_INTPTR"(%u), %d)\n",
1282
649k
                           (intptr_t) pre, size, to_new);
1283
649k
            if (pre->o_type == &st_refs) {
1284
                /* These are refs, scan them. */
1285
171k
                ref_packed *prp = (ref_packed *) (pre + 1);
1286
171k
                uint size;
1287
                /* In order to avoid the garbager unnecessarily scanning for refs that may
1288
                   not exist, we reset the "has_refs" flag if we're doing a save (and leave
1289
                   it alone during a restore. This generally works because when we get here
1290
                   during a save, we've already created the inner clump, and during a restore,
1291
                   we've already restored to the outer clump.
1292
                   Where is goes wrong is when there isn't sufficient space left in the clump
1293
                   for any new allocations, so we won't have created the inner clump, and then
1294
                   the flag isn't retained. Spot that above, and only meddle with the flag here if
1295
                   an inner clump has been created.
1296
                 */
1297
171k
                has_refs = true && (to_new | no_outer_clump);
1298
171k
                code = mark_allocated(prp, to_new, &size);
1299
171k
                if (code < 0)
1300
0
                    return code;
1301
171k
                scanned += size;
1302
171k
            } else
1303
477k
                scanned += sizeof(obj_header_t);
1304
649k
            END_OBJECTS_SCAN
1305
81.6k
                cp->has_refs = has_refs;
1306
81.6k
        }
1307
122k
    }
1308
122k
    END_CLUMPS_SCAN
1309
18.4k
    if_debug2m('u', (gs_memory_t *)mem, "[u]set_new (%s) scanned %ld\n",
1310
18.4k
               (to_new ? "restore" : "save"), scanned);
1311
18.4k
    *pscanned = scanned;
1312
18.4k
    return 0;
1313
18.4k
}
1314
1315
/* Drop redundant elements from the changes list and set l_new. */
1316
static void
1317
drop_redundant_changes(gs_ref_memory_t * mem)
1318
0
{
1319
0
    register alloc_change_t *chp = mem->changes, *chp_back = NULL, *chp_forth;
1320
1321
    /* As we are trying to throw away redundant changes in an allocator instance
1322
       that has already been "saved", the active clump has already been "closed"
1323
       by alloc_save_space(). Using such an allocator (for example, by calling
1324
       gs_free_object() with it) can leave it in an unstable state, causing
1325
       problems for the garbage collector (specifically, the clump validator code).
1326
       So, before we might use it, open the current clump, and then close it again
1327
       when we're done.
1328
     */
1329
0
    alloc_open_clump(mem);
1330
1331
    /* First reverse the list and set all. */
1332
0
    for (; chp; chp = chp_forth) {
1333
0
        chp_forth = chp->next;
1334
0
        if (chp->offset != AC_OFFSET_ALLOCATED) {
1335
0
            ref_packed *prp = chp->where;
1336
1337
0
            if (!r_is_packed(prp)) {
1338
0
                ref *const rp = (ref *)prp;
1339
1340
0
                rp->tas.type_attrs |= l_new;
1341
0
            }
1342
0
        }
1343
0
        chp->next = chp_back;
1344
0
        chp_back = chp;
1345
0
    }
1346
0
    mem->changes = chp_back;
1347
0
    chp_back = NULL;
1348
    /* Then filter, reset and reverse again. */
1349
0
    for (chp = mem->changes; chp; chp = chp_forth) {
1350
0
        chp_forth = chp->next;
1351
0
        if (chp->offset != AC_OFFSET_ALLOCATED) {
1352
0
            ref_packed *prp = chp->where;
1353
1354
0
            if (!r_is_packed(prp)) {
1355
0
                ref *const rp = (ref *)prp;
1356
1357
0
                if ((rp->tas.type_attrs & l_new) == 0) {
1358
0
                    if (mem->scan_limit == chp)
1359
0
                        mem->scan_limit = chp_back;
1360
0
                    if (mem->changes == chp)
1361
0
                        mem->changes = chp_back;
1362
0
                    gs_free_object((gs_memory_t *)mem, chp, "alloc_save_remove");
1363
0
                    continue;
1364
0
                } else
1365
0
                    rp->tas.type_attrs &= ~l_new;
1366
0
            }
1367
0
        }
1368
0
        chp->next = chp_back;
1369
0
        chp_back = chp;
1370
0
    }
1371
0
    mem->changes = chp_back;
1372
1373
0
    alloc_close_clump(mem);
1374
0
}
1375
1376
/* Set or reset the l_new attribute on the changes chain. */
1377
static int
1378
save_set_new_changes(gs_ref_memory_t * mem, bool to_new, bool set_limit)
1379
18.4k
{
1380
18.4k
    register alloc_change_t *chp;
1381
18.4k
    register uint new = (to_new ? l_new : 0);
1382
18.4k
    ulong scanned = 0;
1383
1384
18.4k
    if (!to_new && mem->total_scanned_after_compacting > max_repeated_scan * 16) {
1385
0
        mem->total_scanned_after_compacting = 0;
1386
0
        drop_redundant_changes(mem);
1387
0
    }
1388
245k
    for (chp = mem->changes; chp; chp = chp->next) {
1389
227k
        if (chp->offset == AC_OFFSET_ALLOCATED) {
1390
171k
            if (chp->where != 0) {
1391
171k
                uint size;
1392
171k
                int code = mark_allocated((void *)chp->where, to_new, &size);
1393
1394
171k
                if (code < 0)
1395
0
                    return code;
1396
171k
                scanned += size;
1397
171k
            }
1398
171k
        } else {
1399
55.3k
            ref_packed *prp = chp->where;
1400
1401
55.3k
            if_debug3m('U', (gs_memory_t *)mem, "[U]set_new "PRI_INTPTR": ("PRI_INTPTR", %d)\n",
1402
55.3k
                       (intptr_t)chp, (intptr_t)prp, new);
1403
55.3k
            if (!r_is_packed(prp)) {
1404
55.3k
                ref *const rp = (ref *) prp;
1405
1406
55.3k
                rp->tas.type_attrs =
1407
55.3k
                    (rp->tas.type_attrs & ~l_new) + new;
1408
55.3k
            }
1409
55.3k
        }
1410
227k
        if (mem->scan_limit == chp)
1411
0
            break;
1412
227k
    }
1413
18.4k
    if (set_limit) {
1414
9.22k
        mem->total_scanned_after_compacting += scanned;
1415
9.22k
        if (scanned  + mem->total_scanned >= max_repeated_scan) {
1416
0
            mem->scan_limit = mem->changes;
1417
0
            mem->total_scanned = 0;
1418
0
        } else
1419
9.22k
            mem->total_scanned += scanned;
1420
9.22k
    }
1421
18.4k
    return 0;
1422
18.4k
}
1423
1424
gs_memory_t *
1425
gs_save_any_memory(const alloc_save_t *save)
1426
36.8k
{
1427
36.8k
    return((gs_memory_t *)save->space_local);
1428
36.8k
}