Coverage Report

Created: 2025-06-10 06:49

/src/ghostpdl/base/gsfunc0.c
Line
Count
Source (jump to first uncovered line)
1
/* Copyright (C) 2001-2023 Artifex Software, Inc.
2
   All Rights Reserved.
3
4
   This software is provided AS-IS with no warranty, either express or
5
   implied.
6
7
   This software is distributed under license and may not be copied,
8
   modified or distributed except as expressly authorized under the terms
9
   of the license contained in the file LICENSE in this distribution.
10
11
   Refer to licensing information at http://www.artifex.com or contact
12
   Artifex Software, Inc.,  39 Mesa Street, Suite 108A, San Francisco,
13
   CA 94129, USA, for further information.
14
*/
15
16
17
/* Implementation of FunctionType 0 (Sampled) Functions */
18
#include "math_.h"
19
#include "gx.h"
20
#include "gserrors.h"
21
#include "gsfunc0.h"
22
#include "gsparam.h"
23
#include "gxfarith.h"
24
#include "gxfunc.h"
25
#include "stream.h"
26
#include "gsccolor.h"           /* Only for GS_CLIENT_COLOR_MAX_COMPONENTS */
27
28
#define POLE_CACHE_DEBUG 0      /* A temporary development technology need.
29
                                   Remove after the beta testing. */
30
0
#define POLE_CACHE_GENERIC_1D 1 /* A temporary development technology need.
31
                                   Didn't decide yet - see fn_Sd_evaluate_cubic_cached_1d. */
32
0
#define POLE_CACHE_IGNORE 0     /* A temporary development technology need.
33
                                   Remove after the beta testing. */
34
35
0
#define MAX_FAST_COMPS 8
36
37
typedef struct gs_function_Sd_s {
38
    gs_function_head_t head;
39
    gs_function_Sd_params_t params;
40
} gs_function_Sd_t;
41
42
/* GC descriptor */
43
private_st_function_Sd();
44
static
45
0
ENUM_PTRS_WITH(function_Sd_enum_ptrs, gs_function_Sd_t *pfn)
46
0
{
47
0
    index -= 6;
48
0
    if (index < st_data_source_max_ptrs)
49
0
        return ENUM_USING(st_data_source, &pfn->params.DataSource,
50
0
                          sizeof(pfn->params.DataSource), index);
51
0
    return ENUM_USING_PREFIX(st_function, st_data_source_max_ptrs);
52
0
}
53
0
ENUM_PTR3(0, gs_function_Sd_t, params.Encode, params.Decode, params.Size);
54
0
ENUM_PTR3(3, gs_function_Sd_t, params.pole, params.array_step, params.stream_step);
55
0
ENUM_PTRS_END
56
static
57
0
RELOC_PTRS_WITH(function_Sd_reloc_ptrs, gs_function_Sd_t *pfn)
58
0
{
59
0
    RELOC_PREFIX(st_function);
60
0
    RELOC_USING(st_data_source, &pfn->params.DataSource,
61
0
                sizeof(pfn->params.DataSource));
62
0
    RELOC_PTR3(gs_function_Sd_t, params.Encode, params.Decode, params.Size);
63
0
    RELOC_PTR3(gs_function_Sd_t, params.pole, params.array_step, params.stream_step);
64
0
}
65
0
RELOC_PTRS_END
66
67
/* Define the maximum plausible number of inputs and outputs */
68
/* for a Sampled function. */
69
#ifndef GS_CLIENT_SAMPLED_FN_MAX_COMPONENTS   /* Allow override with XCFLAGS */
70
0
#  define max_Sd_m GS_CLIENT_COLOR_MAX_COMPONENTS
71
#  define max_Sd_n GS_CLIENT_COLOR_MAX_COMPONENTS
72
#else
73
#  define max_Sd_m GS_CLIENT_SAMPLED_FN_MAX_COMPONENTS
74
#  define max_Sd_n GS_CLIENT_SAMPLED_FN_MAX_COMPONENTS
75
#endif
76
77
/* Get one set of sample values. */
78
#define SETUP_SAMPLES(bps, nbytes)\
79
0
        int n = pfn->params.n;\
80
0
        byte buf[max_Sd_n * ((bps + 7) >> 3)];\
81
0
        const byte *p;\
82
0
        int i;\
83
0
\
84
0
        data_source_access(&pfn->params.DataSource, offset >> 3,\
85
0
                           nbytes, buf, &p)
86
87
static int
88
fn_gets_1(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
89
0
{
90
0
    SETUP_SAMPLES(1, ((offset & 7) + n + 7) >> 3);
91
0
    for (i = 0; i < n; ++i) {
92
0
        samples[i] = (*p >> (~offset & 7)) & 1;
93
0
        if (!(++offset & 7))
94
0
            p++;
95
0
    }
96
0
    return 0;
97
0
}
98
static int
99
fn_gets_2(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
100
0
{
101
0
    SETUP_SAMPLES(2, (((offset & 7) >> 1) + n + 3) >> 2);
102
0
    for (i = 0; i < n; ++i) {
103
0
        samples[i] = (*p >> (6 - (offset & 7))) & 3;
104
0
        if (!((offset += 2) & 7))
105
0
            p++;
106
0
    }
107
0
    return 0;
108
0
}
109
static int
110
fn_gets_4(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
111
0
{
112
0
    SETUP_SAMPLES(4, (((offset & 7) >> 2) + n + 1) >> 1);
113
0
    for (i = 0; i < n; ++i) {
114
0
        samples[i] = ((offset ^= 4) & 4 ? *p >> 4 : *p++ & 0xf);
115
0
    }
116
0
    return 0;
117
0
}
118
static int
119
fn_gets_8(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
120
0
{
121
0
    SETUP_SAMPLES(8, n);
122
0
    for (i = 0; i < n; ++i) {
123
0
        samples[i] = *p++;
124
0
    }
125
0
    return 0;
126
0
}
127
static int
128
fn_gets_12(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
129
0
{
130
0
    SETUP_SAMPLES(12, (((offset & 7) >> 2) + 3 * n + 1) >> 1);
131
0
    for (i = 0; i < n; ++i) {
132
0
        if (offset & 4)
133
0
            samples[i] = ((*p & 0xf) << 8) + p[1], p += 2;
134
0
        else
135
0
            samples[i] = (*p << 4) + (p[1] >> 4), p++;
136
0
        offset ^= 4;
137
0
    }
138
0
    return 0;
139
0
}
140
static int
141
fn_gets_16(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
142
0
{
143
0
    SETUP_SAMPLES(16, n * 2);
144
0
    for (i = 0; i < n; ++i) {
145
0
        samples[i] = (*p << 8) + p[1];
146
0
        p += 2;
147
0
    }
148
0
    return 0;
149
0
}
150
static int
151
fn_gets_24(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
152
0
{
153
0
    SETUP_SAMPLES(24, n * 3);
154
0
    for (i = 0; i < n; ++i) {
155
0
        samples[i] = (*p << 16) + (p[1] << 8) + p[2];
156
0
        p += 3;
157
0
    }
158
0
    return 0;
159
0
}
160
static int
161
fn_gets_32(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
162
0
{
163
0
    SETUP_SAMPLES(32, n * 4);
164
0
    for (i = 0; i < n; ++i) {
165
0
        samples[i] = (*p << 24) + (p[1] << 16) + (p[2] << 8) + p[3];
166
0
        p += 4;
167
0
    }
168
0
    return 0;
169
0
}
170
171
static int (*const fn_get_samples[]) (const gs_function_Sd_t * pfn,
172
                                       ulong offset, uint * samples) =
173
{
174
    0, fn_gets_1, fn_gets_2, 0, fn_gets_4, 0, 0, 0,
175
        fn_gets_8, 0, 0, 0, fn_gets_12, 0, 0, 0,
176
        fn_gets_16, 0, 0, 0, 0, 0, 0, 0,
177
        fn_gets_24, 0, 0, 0, 0, 0, 0, 0,
178
        fn_gets_32
179
};
180
181
/*
182
 * Compute a value by cubic interpolation.
183
 * f[] = f(0), f(1), f(2), f(3); 1 < x < 2.
184
 * The formula is derived from those presented in
185
 * http://www.cs.uwa.edu.au/undergraduate/units/233.413/Handouts/Lecture04.html
186
 * (thanks to Raph Levien for the reference).
187
 */
188
static double
189
interpolate_cubic(double x, double f0, double f1, double f2, double f3)
190
0
{
191
    /*
192
     * The parameter 'a' affects the contribution of the high-frequency
193
     * components.  The abovementioned source suggests a = -0.5.
194
     */
195
0
#define a (-0.5)
196
0
#define SQR(v) ((v) * (v))
197
0
#define CUBE(v) ((v) * (v) * (v))
198
0
    const double xm1 = x - 1, m2x = 2 - x, m3x = 3 - x;
199
0
    const double c =
200
0
        (a * CUBE(x) - 5 * a * SQR(x) + 8 * a * x - 4 * a) * f0 +
201
0
        ((a+2) * CUBE(xm1) - (a+3) * SQR(xm1) + 1) * f1 +
202
0
        ((a+2) * CUBE(m2x) - (a+3) * SQR(m2x) + 1) * f2 +
203
0
        (a * CUBE(m3x) - 5 * a * SQR(m3x) + 8 * a * m3x - 4 * a) * f3;
204
205
0
    if_debug6('~', "[~](%g, %g, %g, %g)order3(%g) => %g\n",
206
0
              f0, f1, f2, f3, x, c);
207
0
    return c;
208
0
#undef a
209
0
#undef SQR
210
0
#undef CUBE
211
0
}
212
213
/*
214
 * Compute a value by quadratic interpolation.
215
 * f[] = f(0), f(1), f(2); 0 < x < 1.
216
 *
217
 * We used to use a quadratic formula for this, derived from
218
 * f(0) = f0, f(1) = f1, f'(1) = (f2 - f0) / 2, but now we
219
 * match what we believe is Acrobat Reader's behavior.
220
 */
221
static inline double
222
interpolate_quadratic(double x, double f0, double f1, double f2)
223
0
{
224
0
    return interpolate_cubic(x + 1, f0, f0, f1, f2);
225
0
}
226
227
/* Calculate a result by multicubic interpolation. */
228
static void
229
fn_interpolate_cubic(const gs_function_Sd_t *pfn, const float *fparts,
230
                     const int *iparts, const ulong *factors,
231
                     float *samples, ulong offset, int m)
232
0
{
233
0
    int j;
234
235
0
top:
236
0
    if (m == 0) {
237
0
        uint sdata[max_Sd_n];
238
239
0
        (*fn_get_samples[pfn->params.BitsPerSample])(pfn, offset, sdata);
240
0
        for (j = pfn->params.n - 1; j >= 0; --j)
241
0
            samples[j] = (float)sdata[j];
242
0
    } else {
243
0
        float fpart = *fparts++;
244
0
        int ipart = *iparts++;
245
0
        ulong delta = *factors++;
246
0
        int size = pfn->params.Size[pfn->params.m - m];
247
0
        float samples1[max_Sd_n], samplesm1[max_Sd_n], samples2[max_Sd_n];
248
249
0
        --m;
250
0
        if (is_fzero(fpart))
251
0
            goto top;
252
0
        fn_interpolate_cubic(pfn, fparts, iparts, factors, samples,
253
0
                             offset, m);
254
0
        fn_interpolate_cubic(pfn, fparts, iparts, factors, samples1,
255
0
                             offset + delta, m);
256
        /* Ensure we don't try to access out of bounds. */
257
        /*
258
         * If size == 1, the only possible value for ipart and fpart is
259
         * 0, so we've already handled this case.
260
         */
261
0
        if (size == 2) { /* ipart = 0 */
262
            /* Use linear interpolation. */
263
0
            for (j = pfn->params.n - 1; j >= 0; --j)
264
0
                samples[j] += (samples1[j] - samples[j]) * fpart;
265
0
            return;
266
0
        }
267
0
        if (ipart == 0) {
268
            /* Use quadratic interpolation. */
269
0
            fn_interpolate_cubic(pfn, fparts, iparts, factors,
270
0
                                 samples2, offset + delta * 2, m);
271
0
            for (j = pfn->params.n - 1; j >= 0; --j)
272
0
                samples[j] =
273
0
                    interpolate_quadratic(fpart, samples[j],
274
0
                                          samples1[j], samples2[j]);
275
0
            return;
276
0
        }
277
        /* At this point we know ipart > 0, size >= 3. */
278
0
        fn_interpolate_cubic(pfn, fparts, iparts, factors, samplesm1,
279
0
                             offset - delta, m);
280
0
        if (ipart == size - 2) {
281
            /* Use quadratic interpolation. */
282
0
            for (j = pfn->params.n - 1; j >= 0; --j)
283
0
                samples[j] =
284
0
                    interpolate_quadratic(1 - fpart, samples1[j],
285
0
                                          samples[j], samplesm1[j]);
286
0
            return;
287
0
        }
288
        /* Now we know 0 < ipart < size - 2, size > 3. */
289
0
        fn_interpolate_cubic(pfn, fparts, iparts, factors,
290
0
                             samples2, offset + delta * 2, m);
291
0
        for (j = pfn->params.n - 1; j >= 0; --j)
292
0
            samples[j] =
293
0
                interpolate_cubic(fpart + 1, samplesm1[j], samples[j],
294
0
                                  samples1[j], samples2[j]);
295
0
    }
296
0
}
297
298
/* Calculate a result by multilinear interpolation. */
299
static void
300
fn_interpolate_linear(const gs_function_Sd_t *pfn, const float *fparts,
301
                 const ulong *factors, float *samples, ulong offset, int m)
302
0
{
303
0
    int j;
304
305
0
top:
306
0
    if (m == 0) {
307
0
        uint sdata[max_Sd_n];
308
309
0
        (*fn_get_samples[pfn->params.BitsPerSample])(pfn, offset, sdata);
310
0
        for (j = pfn->params.n - 1; j >= 0; --j)
311
0
            samples[j] = (float)sdata[j];
312
0
    } else {
313
0
        float fpart = *fparts++;
314
0
        float samples1[max_Sd_n];
315
316
0
        if (is_fzero(fpart)) {
317
0
            ++factors;
318
0
            --m;
319
0
            goto top;
320
0
        }
321
0
        fn_interpolate_linear(pfn, fparts, factors + 1, samples,
322
0
                              offset, m - 1);
323
0
        fn_interpolate_linear(pfn, fparts, factors + 1, samples1,
324
0
                              offset + *factors, m - 1);
325
0
        for (j = pfn->params.n - 1; j >= 0; --j)
326
0
            samples[j] += (samples1[j] - samples[j]) * fpart;
327
0
    }
328
0
}
329
330
static inline double
331
fn_Sd_encode(const gs_function_Sd_t *pfn, int i, double sample)
332
0
{
333
0
    float d0, d1, r0, r1;
334
0
    double value;
335
0
    int bps = pfn->params.BitsPerSample;
336
    /* x86 machines have problems with shifts if bps >= 32 */
337
0
    uint max_samp = (bps < (sizeof(uint) * 8)) ? ((1 << bps) - 1) : max_uint;
338
339
0
    if (pfn->params.Range)
340
0
        r0 = pfn->params.Range[2 * i], r1 = pfn->params.Range[2 * i + 1];
341
0
    else
342
0
        r0 = 0, r1 = (float)max_samp;
343
0
    if (pfn->params.Decode)
344
0
        d0 = pfn->params.Decode[2 * i], d1 = pfn->params.Decode[2 * i + 1];
345
0
    else
346
0
        d0 = r0, d1 = r1;
347
348
0
    value = sample * (d1 - d0) / max_samp + d0;
349
0
    if (value < r0)
350
0
        value = r0;
351
0
    else if (value > r1)
352
0
        value = r1;
353
0
    return value;
354
0
}
355
356
/* Evaluate a Sampled function. */
357
/* A generic algorithm with a recursion by dimentions. */
358
static int
359
fn_Sd_evaluate_general(const gs_function_t * pfn_common, const float *in, float *out)
360
0
{
361
0
    const gs_function_Sd_t *pfn = (const gs_function_Sd_t *)pfn_common;
362
0
    int bps = pfn->params.BitsPerSample;
363
0
    ulong offset = 0;
364
0
    int i;
365
0
    float encoded[max_Sd_m];
366
0
    int iparts[max_Sd_m]; /* only needed for cubic interpolation */
367
0
    ulong factors[max_Sd_m];
368
0
    float samples[max_Sd_n];
369
370
    /* Encode the input values. */
371
372
0
    for (i = 0; i < pfn->params.m; ++i) {
373
0
        float d0 = pfn->params.Domain[2 * i],
374
0
            d1 = pfn->params.Domain[2 * i + 1];
375
0
        float arg = in[i], enc;
376
377
0
        if (arg < d0)
378
0
            arg = d0;
379
0
        else if (arg > d1)
380
0
            arg = d1;
381
0
        if (pfn->params.Encode) {
382
0
            float e0 = pfn->params.Encode[2 * i];
383
0
            float e1 = pfn->params.Encode[2 * i + 1];
384
385
0
            enc = (arg - d0) * (e1 - e0) / (d1 - d0) + e0;
386
0
            if (enc < 0)
387
0
                encoded[i] = 0;
388
0
            else if (enc >= pfn->params.Size[i] - 1)
389
0
                encoded[i] = (float)pfn->params.Size[i] - 1;
390
0
            else
391
0
                encoded[i] = enc;
392
0
        } else {
393
            /* arg is guaranteed to be in bounds, ergo so is enc */
394
                /* TODO: possible issue here.  if (pfn->params.Size[i] == 1 */
395
0
            encoded[i] = (arg - d0) * (pfn->params.Size[i] - 1) / (d1 - d0);
396
0
        }
397
0
    }
398
399
    /* Look up and interpolate the output values. */
400
401
0
    {
402
0
        ulong factor = (ulong)bps * pfn->params.n;
403
404
0
        for (i = 0; i < pfn->params.m; factor *= pfn->params.Size[i++]) {
405
0
            int ipart = (int)encoded[i];
406
407
0
            offset += (factors[i] = factor) * ipart;
408
0
            iparts[i] = ipart;  /* only needed for cubic interpolation */
409
0
            encoded[i] -= ipart;
410
0
        }
411
0
    }
412
0
    if (pfn->params.Order == 3)
413
0
        fn_interpolate_cubic(pfn, encoded, iparts, factors, samples,
414
0
                             offset, pfn->params.m);
415
0
    else
416
0
        fn_interpolate_linear(pfn, encoded, factors, samples, offset,
417
0
                              pfn->params.m);
418
419
    /* Encode the output values. */
420
421
0
    for (i = 0; i < pfn->params.n; ++i)
422
0
        out[i] = (float)fn_Sd_encode(pfn, i, samples[i]);
423
424
0
    return 0;
425
0
}
426
427
static const double double_stub = 1e90;
428
429
static inline void
430
fn_make_cubic_poles(double *p, double f0, double f1, double f2, double f3,
431
            const int pole_step_minor)
432
0
{   /* The following is poles of the polinomial,
433
       which represents interpolate_cubic in [1,2]. */
434
0
    const double a = -0.5;
435
436
0
    p[pole_step_minor * 1] = (a*f0 + 3*f1 - a*f2)/3.0;
437
0
    p[pole_step_minor * 2] = (-a*f1 + 3*f2 + a*f3)/3.0;
438
0
}
439
440
static void
441
fn_make_poles(double *p, const int pole_step, int power, int bias)
442
0
{
443
0
    const int pole_step_minor = pole_step / 3;
444
0
    switch(power) {
445
0
        case 1: /* A linear 3d power curve. */
446
            /* bias must be 0. */
447
0
            p[pole_step_minor * 1] = (2 * p[pole_step * 0] + 1 * p[pole_step * 1]) / 3;
448
0
            p[pole_step_minor * 2] = (1 * p[pole_step * 0] + 2 * p[pole_step * 1]) / 3;
449
0
            break;
450
0
        case 2:
451
            /* bias may be be 0 or 1. */
452
            /* Duplicate the beginning or the ending pole (the old code compatible). */
453
0
            fn_make_cubic_poles(p + pole_step * bias,
454
0
                    p[pole_step * 0], p[pole_step * bias],
455
0
                    p[pole_step * (1 + bias)], p[pole_step * 2],
456
0
                    pole_step_minor);
457
0
            break;
458
0
        case 3:
459
            /* bias must be 1. */
460
0
            fn_make_cubic_poles(p + pole_step * bias,
461
0
                    p[pole_step * 0], p[pole_step * 1], p[pole_step * 2], p[pole_step * 3],
462
0
                    pole_step_minor);
463
0
            break;
464
0
        default: /* Must not happen. */
465
0
           DO_NOTHING;
466
0
    }
467
0
}
468
469
/* Evaluate a Sampled function.
470
   A cubic interpolation with a pole cache.
471
   Allows a fast check for extreme suspection. */
472
/* This implementation is a particular case of 1 dimension.
473
   maybe we'll use as an optimisation of the generic case,
474
   so keep it for a while. */
475
static int
476
fn_Sd_evaluate_cubic_cached_1d(const gs_function_Sd_t *pfn, const float *in, float *out)
477
0
{
478
0
    float d0 = pfn->params.Domain[2 * 0];
479
0
    float d1 = pfn->params.Domain[2 * 0 + 1];
480
0
    const int pole_step_minor = pfn->params.n;
481
0
    const int pole_step = 3 * pole_step_minor;
482
0
    int i0; /* A cell index. */
483
0
    int ib, ie, i, k;
484
0
    double *p, t0, t1, tt;
485
0
486
0
    tt = (in[0] - d0) * (pfn->params.Size[0] - 1) / (d1 - d0);
487
0
    i0 = (int)floor(tt);
488
0
    ib = max(i0 - 1, 0);
489
0
    ie = min(pfn->params.Size[0], i0 + 3);
490
0
    for (i = ib; i < ie; i++) {
491
0
        if (pfn->params.pole[i * pole_step] == double_stub) {
492
0
            uint sdata[max_Sd_n];
493
0
            int bps = pfn->params.BitsPerSample;
494
0
495
0
            p = &pfn->params.pole[i * pole_step];
496
0
            fn_get_samples[pfn->params.BitsPerSample](pfn, (ulong)i * bps * pfn->params.n, sdata);
497
0
            for (k = 0; k < pfn->params.n; k++, p++)
498
0
                *p = fn_Sd_encode(pfn, k, (double)sdata[k]);
499
0
        }
500
0
    }
501
0
    p = &pfn->params.pole[i0 * pole_step];
502
0
    t0 = tt - i0;
503
0
    if (t0 == 0) {
504
0
        for (k = 0; k < pfn->params.n; k++, p++)
505
0
            out[k] = *p;
506
0
    } else {
507
0
        if (p[1 * pole_step_minor] == double_stub) {
508
0
            for (k = 0; k < pfn->params.n; k++)
509
0
                fn_make_poles(&pfn->params.pole[ib * pole_step + k], pole_step,
510
0
                        ie - ib - 1, i0 - ib);
511
0
        }
512
0
        t1 = 1 - t0;
513
0
        for (k = 0; k < pfn->params.n; k++, p++) {
514
0
            double y = p[0 * pole_step_minor] * t1 * t1 * t1 +
515
0
                       p[1 * pole_step_minor] * t1 * t1 * t0 * 3 +
516
0
                       p[2 * pole_step_minor] * t1 * t0 * t0 * 3 +
517
0
                       p[3 * pole_step_minor] * t0 * t0 * t0;
518
0
            if (y < pfn->params.Range[0])
519
0
                y = pfn->params.Range[0];
520
0
            if (y > pfn->params.Range[1])
521
0
                y = pfn->params.Range[1];
522
0
            out[k] = y;
523
0
        }
524
0
    }
525
0
    return 0;
526
0
}
527
528
static inline void
529
decode_argument(const gs_function_Sd_t *pfn, const float *in, double T[max_Sd_m], int I[max_Sd_m])
530
0
{
531
0
    int i;
532
533
0
    for (i = 0; i < pfn->params.m; i++) {
534
0
        float xi = in[i];
535
0
        float d0 = pfn->params.Domain[2 * i + 0];
536
0
        float d1 = pfn->params.Domain[2 * i + 1];
537
0
        double t;
538
539
0
        if (xi < d0)
540
0
            xi = d0;
541
0
        if (xi > d1)
542
0
            xi = d1;
543
0
        t = (xi - d0) * (pfn->params.Size[i] - 1) / (d1 - d0);
544
0
        I[i] = (int)floor(t);
545
0
        T[i] = t - I[i];
546
0
    }
547
0
}
548
549
static inline void
550
index_span(const gs_function_Sd_t *pfn, int *I, double *T, int ii, int *Ii, int *ib, int *ie)
551
0
{
552
0
    *Ii = I[ii];
553
0
    if (T[ii] != 0) {
554
0
        *ib = max(*Ii - 1, 0);
555
0
        *ie = min(pfn->params.Size[ii], *Ii + 3);
556
0
    } else {
557
0
        *ib = *Ii;
558
0
        *ie = *Ii + 1;
559
0
    }
560
0
}
561
562
static inline int
563
load_vector_to(const gs_function_Sd_t *pfn, int s_offset, double *V)
564
0
{
565
0
    uint sdata[max_Sd_n];
566
0
    int k, code;
567
568
0
    code = fn_get_samples[pfn->params.BitsPerSample](pfn, s_offset, sdata);
569
0
    if (code < 0)
570
0
        return code;
571
0
    for (k = 0; k < pfn->params.n; k++)
572
0
        V[k] = fn_Sd_encode(pfn, k, (double)sdata[k]);
573
0
    return 0;
574
0
}
575
576
static inline int
577
load_vector(const gs_function_Sd_t *pfn, int a_offset, int s_offset)
578
0
{
579
0
    if (*(pfn->params.pole + a_offset) == double_stub) {
580
0
        uint sdata[max_Sd_n];
581
0
        int k, code;
582
583
0
        code = fn_get_samples[pfn->params.BitsPerSample](pfn, s_offset, sdata);
584
0
        if (code < 0)
585
0
            return code;
586
0
        for (k = 0; k < pfn->params.n; k++)
587
0
            *(pfn->params.pole + a_offset + k) = fn_Sd_encode(pfn, k, (double)sdata[k]);
588
0
    }
589
0
    return 0;
590
0
}
591
592
static inline void
593
interpolate_vector(const gs_function_Sd_t *pfn, int offset, int pole_step, int power, int bias)
594
0
{
595
0
    int k;
596
597
0
    for (k = 0; k < pfn->params.n; k++)
598
0
        fn_make_poles(pfn->params.pole + offset + k, pole_step, power, bias);
599
0
}
600
601
static inline void
602
interpolate_tensors(const gs_function_Sd_t *pfn, int *I, double *T,
603
        int offset, int pole_step, int power, int bias, int ii)
604
0
{
605
0
    if (ii < 0)
606
0
        interpolate_vector(pfn, offset, pole_step, power, bias);
607
0
    else {
608
0
        int s = pfn->params.array_step[ii];
609
0
        int Ii = I[ii];
610
611
0
        if (T[ii] == 0) {
612
0
            interpolate_tensors(pfn, I, T, offset + Ii * s, pole_step, power, bias, ii - 1);
613
0
        } else {
614
0
            int l;
615
616
0
            for (l = 0; l < 4; l++)
617
0
                interpolate_tensors(pfn, I, T, offset + Ii * s + l * s / 3, pole_step, power, bias, ii - 1);
618
0
        }
619
0
    }
620
0
}
621
622
static inline bool
623
is_tensor_done(const gs_function_Sd_t *pfn, int *I, double *T, int a_offset, int ii)
624
0
{
625
    /* Check an inner pole of the cell. */
626
0
    int i, o = 0;
627
628
0
    for (i = ii; i >= 0; i--) {
629
0
        o += I[i] * pfn->params.array_step[i];
630
0
        if (T[i] != 0)
631
0
            o += pfn->params.array_step[i] / 3;
632
0
    }
633
0
    if (*(pfn->params.pole + a_offset + o) != double_stub)
634
0
        return true;
635
0
    return false;
636
0
}
637
638
/* Creates a tensor of Bezier coefficients by node interpolation. */
639
static inline int
640
make_interpolation_tensor(const gs_function_Sd_t *pfn, int *I, double *T,
641
                            int a_offset, int s_offset, int ii)
642
0
{
643
    /* Well, this function isn't obvious. Trying to explain what it does.
644
645
       Suppose we have a 4x4x4...x4 hypercube of nodes, and we want to build
646
       a multicubic interpolation function for the inner 2x2x2...x2 hypercube.
647
       We represent the multicubic function with a tensor of Besier poles,
648
       and the size of the tensor is 4x4x....x4. Note that the corners
649
       of the tensor are equal to the corners of the 2x2x...x2 hypercube.
650
651
       We organize the 'pole' array so that a tensor of a cell
652
       occupies the cell, and tensors for neighbour cells have a common hyperplane.
653
654
       For a 1-dimentional case let the nodes are n0, n1, n2, n3.
655
       It defines 3 cells n0...n1, n1...n2, n2...n3.
656
       For the 2nd cell n1...n2 let the tensor coefficients are q10, q11, q12, q13.
657
       We choose a cubic approximation, in which tangents at nodes n1, n2
658
       are parallel to (n2 - n0) and (n3 - n1) correspondingly.
659
       (Well, this doesn't give a the minimal curvity, but likely it is
660
       what Adobe implementations do, see the bug 687352,
661
       and we agree that it's some reasonable).
662
663
       Then we have :
664
665
       q11 = n0
666
       q12 = (n0/2 + 3*n1 - n2/2)/3;
667
       q11 = (n1/2 + 3*n2 - n3/2)/3;
668
       q13 = n2
669
670
       When the source node array have an insufficient nomber of nodes
671
       along a dimension to determine tangents a cell
672
       (this happens near the array boundaries),
673
       we simply duplicate ending nodes. This solution is done
674
       for the compatibility to the old code, and definitely
675
       there exists a better one. Likely Adobe does the same.
676
677
       For a 2-dimensional case we apply the 1-dimentional case through
678
       the first dimension, and then construct a surface by varying the
679
       second coordinate as a parameter. It gives a bicubic surface,
680
       and the result doesn't depend on the order of coordinates
681
       (I proved the latter with Matematica 3.0).
682
       Then we know that an interpolation by one coordinate and
683
       a differentiation by another coordinate are interchangeble operators.
684
       Due to that poles of the interpolated function are same as
685
       interpolated poles of the function (well, we didn't spend time
686
       for a strong proof, but this fact was confirmed with testing the
687
       implementation with POLE_CACHE_DEBUG).
688
689
       Then we apply the 2-dimentional considerations recursively
690
       to all dimensions. This is exactly what the function does.
691
692
     */
693
0
    int code;
694
695
0
    if (ii < 0) {
696
0
        if (POLE_CACHE_IGNORE || *(pfn->params.pole + a_offset) == double_stub) {
697
0
            code = load_vector(pfn, a_offset, s_offset);
698
0
            if (code < 0)
699
0
                return code;
700
0
        }
701
0
    } else {
702
0
        int Ii, ib, ie, i;
703
0
        int sa = pfn->params.array_step[ii];
704
0
        int ss = pfn->params.stream_step[ii];
705
706
0
        index_span(pfn, I, T, ii, &Ii, &ib, &ie);
707
0
        if (POLE_CACHE_IGNORE || !is_tensor_done(pfn, I, T, a_offset, ii)) {
708
0
            for (i = ib; i < ie; i++) {
709
0
                code = make_interpolation_tensor(pfn, I, T,
710
0
                                a_offset + i * sa, s_offset + i * ss, ii - 1);
711
0
                if (code < 0)
712
0
                    return code;
713
0
            }
714
0
            if (T[ii] != 0)
715
0
                interpolate_tensors(pfn, I, T, a_offset + ib * sa, sa, ie - ib - 1,
716
0
                                Ii - ib, ii - 1);
717
0
        }
718
0
    }
719
0
    return 0;
720
0
}
721
722
/* Creates a subarray of samples. */
723
static inline int
724
make_interpolation_nodes(const gs_function_Sd_t *pfn, double *T0, double *T1,
725
                            int *I, double *T,
726
                            int a_offset, int s_offset, int ii)
727
0
{
728
0
    int code;
729
730
0
    if (ii < 0) {
731
0
        if (POLE_CACHE_IGNORE || *(pfn->params.pole + a_offset) == double_stub) {
732
0
            code = load_vector(pfn, a_offset, s_offset);
733
0
            if (code < 0)
734
0
                return code;
735
0
        }
736
0
        if (pfn->params.Order == 3) {
737
0
            code = make_interpolation_tensor(pfn, I, T, 0, 0, pfn->params.m - 1);
738
0
            if (code < 0)
739
0
                return code;
740
0
        }
741
0
    } else {
742
0
        int i;
743
0
        int i0 = (int)floor(T0[ii]);
744
0
        int i1 = (int)ceil(T1[ii]);
745
0
        int sa = pfn->params.array_step[ii];
746
0
        int ss = pfn->params.stream_step[ii];
747
748
0
        if (i0 < 0 || i0 >= pfn->params.Size[ii])
749
0
            return_error(gs_error_unregistered); /* Must not happen. */
750
0
        if (i1 < 0 || i1 >= pfn->params.Size[ii])
751
0
            return_error(gs_error_unregistered); /* Must not happen. */
752
0
        I[ii] = i0;
753
0
        T[ii] = (i1 > i0 ? 1 : 0);
754
0
        for (i = i0; i <= i1; i++) {
755
0
            code = make_interpolation_nodes(pfn, T0, T1, I, T,
756
0
                            a_offset + i * sa, s_offset + i * ss, ii - 1);
757
0
            if (code < 0)
758
0
                return code;
759
0
        }
760
0
    }
761
0
    return 0;
762
0
}
763
764
static inline int
765
evaluate_from_tenzor(const gs_function_Sd_t *pfn, int *I, double *T, int offset, int ii, double *y)
766
0
{
767
0
    int s = pfn->params.array_step[ii], k, l, code;
768
769
0
    if (ii < 0) {
770
0
        for (k = 0; k < pfn->params.n; k++)
771
0
            y[k] = *(pfn->params.pole + offset + k);
772
0
    } else if (T[ii] == 0) {
773
0
        return evaluate_from_tenzor(pfn, I, T, offset + s * I[ii], ii - 1, y);
774
0
    } else {
775
0
        double t0 = T[ii], t1 = 1 - t0;
776
0
        double p[4][max_Sd_n];
777
778
0
        for (l = 0; l < 4; l++) {
779
0
            code = evaluate_from_tenzor(pfn, I, T, offset + s * I[ii] + l * (s / 3), ii - 1, p[l]);
780
0
            if (code < 0)
781
0
                return code;
782
0
        }
783
0
        for (k = 0; k < pfn->params.n; k++)
784
0
            y[k] = p[0][k] * t1 * t1 * t1 +
785
0
                   p[1][k] * t1 * t1 * t0 * 3 +
786
0
                   p[2][k] * t1 * t0 * t0 * 3 +
787
0
           p[3][k] * t0 * t0 * t0;
788
0
    }
789
0
    return 0;
790
0
}
791
792
/* Evaluate a Sampled function. */
793
/* A cubic interpolation with pole cache. */
794
/* Allows a fast check for extreme suspection with is_tensor_monotonic. */
795
static int
796
fn_Sd_evaluate_multicubic_cached(const gs_function_Sd_t *pfn, const float *in, float *out)
797
0
{
798
0
    double T[max_Sd_m], y[max_Sd_n];
799
0
    int I[max_Sd_m], k, code;
800
801
0
    decode_argument(pfn, in, T, I);
802
0
    code = make_interpolation_tensor(pfn, I, T, 0, 0, pfn->params.m - 1);
803
0
    if (code < 0)
804
0
        return code;
805
0
    evaluate_from_tenzor(pfn, I, T, 0, pfn->params.m - 1, y);
806
0
    for (k = 0; k < pfn->params.n; k++) {
807
0
        double yk = y[k];
808
809
0
        if (yk < pfn->params.Range[k * 2 + 0])
810
0
            yk = pfn->params.Range[k * 2 + 0];
811
0
        if (yk > pfn->params.Range[k * 2 + 1])
812
0
            yk = pfn->params.Range[k * 2 + 1];
813
0
        out[k] = yk;
814
0
    }
815
0
    return 0;
816
0
}
817
818
/* Evaluate a Sampled function. */
819
static int
820
fn_Sd_evaluate(const gs_function_t * pfn_common, const float *in, float *out)
821
0
{
822
0
    const gs_function_Sd_t *pfn = (const gs_function_Sd_t *)pfn_common;
823
0
    int code;
824
825
0
    if (pfn->params.Order == 3) {
826
0
        if (POLE_CACHE_GENERIC_1D || pfn->params.m > 1)
827
0
            code = fn_Sd_evaluate_multicubic_cached(pfn, in, out);
828
0
        else
829
0
            code = fn_Sd_evaluate_cubic_cached_1d(pfn, in, out);
830
# if POLE_CACHE_DEBUG
831
        {   float y[max_Sd_n];
832
            int k, code1;
833
834
            code1 = fn_Sd_evaluate_general(pfn_common, in, y);
835
            if (code != code1)
836
                return_error(gs_error_unregistered); /* Must not happen. */
837
            for (k = 0; k < pfn->params.n; k++) {
838
                if (any_abs(y[k] - out[k]) > 1e-6 * (pfn->params.Range[k * 2 + 1] - pfn->params.Range[k * 2 + 0]))
839
                    return_error(gs_error_unregistered); /* Must not happen. */
840
            }
841
        }
842
# endif
843
0
    } else
844
0
        code = fn_Sd_evaluate_general(pfn_common, in, out);
845
0
    return code;
846
0
}
847
848
/* Map a function subdomain to the sample index subdomain. */
849
static inline int
850
get_scaled_range(const gs_function_Sd_t *const pfn,
851
                   const float *lower, const float *upper,
852
                   int i, float *pw0, float *pw1)
853
0
{
854
0
    float d0 = pfn->params.Domain[i * 2 + 0], d1 = pfn->params.Domain[i * 2 + 1];
855
0
    float v0 = lower[i], v1 = upper[i];
856
0
    float e0, e1, w0, w1, w;
857
0
    const float small_noise = (float)1e-6;
858
859
0
    if (v0 < d0 || v0 > d1)
860
0
        return_error(gs_error_rangecheck);
861
0
    if (pfn->params.Encode)
862
0
        e0 = pfn->params.Encode[i * 2 + 0], e1 = pfn->params.Encode[i * 2 + 1];
863
0
    else
864
0
        e0 = 0, e1 = (float)pfn->params.Size[i] - 1;
865
0
    w0 = (v0 - d0) * (e1 - e0) / (d1 - d0) + e0;
866
0
    if (w0 < 0)
867
0
        w0 = 0;
868
0
    else if (w0 >= pfn->params.Size[i] - 1)
869
0
        w0 = (float)pfn->params.Size[i] - 1;
870
0
    w1 = (v1 - d0) * (e1 - e0) / (d1 - d0) + e0;
871
0
    if (w1 < 0)
872
0
        w1 = 0;
873
0
    else if (w1 >= pfn->params.Size[i] - 1)
874
0
        w1 = (float)pfn->params.Size[i] - 1;
875
0
    if (w0 > w1) {
876
0
        w = w0; w0 = w1; w1 = w;
877
0
    }
878
0
    if (floor(w0 + 1) - w0 < small_noise * any_abs(e1 - e0))
879
0
        w0 = (floor(w0) + 1);
880
0
    if (w1 - floor(w1) < small_noise * any_abs(e1 - e0))
881
0
        w1 = floor(w1);
882
0
    if (w0 > w1)
883
0
        w0 = w1;
884
0
    *pw0 = w0;
885
0
    *pw1 = w1;
886
0
    return 0;
887
0
}
888
889
/* Copy a tensor to a differently indexed pole array. */
890
static int
891
copy_poles(const gs_function_Sd_t *pfn, int *I, double *T0, double *T1, int a_offset,
892
                int ii, double *pole, int p_offset, int pole_step)
893
0
{
894
0
    int i, ei, sa, code;
895
0
    int order = pfn->params.Order;
896
897
0
    if (pole_step <= 0)
898
0
        return_error(gs_error_limitcheck); /* Too small buffer. */
899
0
    ei = (T0[ii] == T1[ii] ? 1 : order + 1);
900
0
    sa = pfn->params.array_step[ii];
901
0
    if (ii == 0) {
902
0
        for (i = 0; i < ei; i++)
903
0
            *(pole + p_offset + i * pole_step) =
904
0
                    *(pfn->params.pole + a_offset + I[ii] * sa + i * (sa / order));
905
0
    } else {
906
0
        for (i = 0; i < ei; i++) {
907
0
            code = copy_poles(pfn, I, T0, T1, a_offset + I[ii] * sa + i * (sa / order), ii - 1,
908
0
                            pole, p_offset + i * pole_step, pole_step / 4);
909
0
            if (code < 0)
910
0
                return code;
911
0
        }
912
0
    }
913
0
    return 0;
914
0
}
915
916
static inline void
917
subcurve(double *pole, int pole_step, double t0, double t1)
918
0
{
919
    /* Generated with subcurve.nb using Mathematica 3.0. */
920
0
    double q0 = pole[pole_step * 0];
921
0
    double q1 = pole[pole_step * 1];
922
0
    double q2 = pole[pole_step * 2];
923
0
    double q3 = pole[pole_step * 3];
924
0
    double t01 = t0 - 1, t11 = t1 - 1;
925
0
    double small = 1e-13;
926
927
0
#define Power2(a) (a) * (a)
928
0
#define Power3(a) (a) * (a) * (a)
929
0
    pole[pole_step * 0] = t0*(t0*(q3*t0 - 3*q2*t01) + 3*q1*Power2(t01)) - q0*Power3(t01);
930
0
    pole[pole_step * 1] = q1*t01*(-2*t0 - t1 + 3*t0*t1) + t0*(q2*t0 + 2*q2*t1 -
931
0
                            3*q2*t0*t1 + q3*t0*t1) - q0*t11*Power2(t01);
932
0
    pole[pole_step * 2] = t1*(2*q2*t0 + q2*t1 - 3*q2*t0*t1 + q3*t0*t1) +
933
0
                            q1*(-t0 - 2*t1 + 3*t0*t1)*t11 - q0*t01*Power2(t11);
934
0
    pole[pole_step * 3] = t1*(t1*(3*q2 - 3*q2*t1 + q3*t1) +
935
0
                            3*q1*Power2(t11)) - q0*Power3(t11);
936
0
#undef Power2
937
0
#undef Power3
938
0
    if (any_abs(pole[pole_step * 1] - pole[pole_step * 0]) < small)
939
0
        pole[pole_step * 1] = pole[pole_step * 0];
940
0
    if (any_abs(pole[pole_step * 2] - pole[pole_step * 3]) < small)
941
0
        pole[pole_step * 2] = pole[pole_step * 3];
942
0
}
943
944
static inline void
945
subline(double *pole, int pole_step, double t0, double t1)
946
0
{
947
0
    double q0 = pole[pole_step * 0];
948
0
    double q1 = pole[pole_step * 1];
949
950
0
    pole[pole_step * 0] = (1 - t0) * q0 + t0 * q1;
951
0
    pole[pole_step * 1] = (1 - t1) * q0 + t1 * q1;
952
0
}
953
954
static void
955
clamp_poles(double *T0, double *T1, int ii, int i, double * pole,
956
                int p_offset, int pole_step, int pole_step_i, int order)
957
0
{
958
0
    if (ii < 0) {
959
0
        if (order == 3)
960
0
            subcurve(pole + p_offset, pole_step_i, T0[i], T1[i]);
961
0
        else
962
0
            subline(pole + p_offset, pole_step_i, T0[i], T1[i]);
963
0
    } else if (i == ii) {
964
0
        clamp_poles(T0, T1, ii - 1, i, pole, p_offset, pole_step / 4, pole_step, order);
965
0
    } else {
966
0
        int j, ei = (T0[ii] == T1[ii] ? 1 : order + 1);
967
968
0
        for (j = 0; j < ei; j++)
969
0
            clamp_poles(T0, T1, ii - 1, i, pole, p_offset + j * pole_step,
970
0
                            pole_step / 4, pole_step_i, order);
971
0
    }
972
0
}
973
974
static inline int /* 3 - don't know, 2 - decreesing, 0 - constant, 1 - increasing. */
975
curve_monotonity(double *pole, int pole_step)
976
0
{
977
0
    double p0 = pole[pole_step * 0];
978
0
    double p1 = pole[pole_step * 1];
979
0
    double p2 = pole[pole_step * 2];
980
0
    double p3 = pole[pole_step * 3];
981
982
0
    if (p0 == p1 && any_abs(p1 - p2) < 1e-13 && p2 == p3)
983
0
        return 0;
984
0
    if (p0 <= p1 && p1 <= p2 && p2 <= p3)
985
0
        return 1;
986
0
    if (p0 >= p1 && p1 >= p2 && p2 >= p3)
987
0
        return 2;
988
    /* Maybe not monotonic.
989
       Don't want to solve quadratic equations, so return "don't know".
990
       This case should be rare.
991
     */
992
0
    return 3;
993
0
}
994
995
static inline int /* 2 - decreesing, 0 - constant, 1 - increasing. */
996
line_monotonity(double *pole, int pole_step)
997
0
{
998
0
    double p0 = pole[pole_step * 0];
999
0
    double p1 = pole[pole_step * 1];
1000
1001
0
    if (p1 - p0 > 1e-13)
1002
0
        return 1;
1003
0
    if (p0 - p1 > 1e-13)
1004
0
        return 2;
1005
0
    return 0;
1006
0
}
1007
1008
static int /* 3 bits per guide : 3 - non-monotonic or don't know,
1009
                    2 - decreesing, 0 - constant, 1 - increasing.
1010
                    The number of guides is order+1. */
1011
tensor_dimension_monotonity(const double *T0, const double *T1, int ii, int i0, double *pole,
1012
                int p_offset, int pole_step, int pole_step_i, int order)
1013
0
{
1014
0
    if (ii < 0) {
1015
0
        if (order == 3)
1016
0
            return curve_monotonity(pole + p_offset, pole_step_i);
1017
0
        else
1018
0
            return line_monotonity(pole + p_offset, pole_step_i);
1019
0
    } else if (i0 == ii) {
1020
        /* Delay the dimension till the end, and adjust pole_step. */
1021
0
        return tensor_dimension_monotonity(T0, T1, ii - 1, i0, pole, p_offset,
1022
0
                            pole_step / 4, pole_step, order);
1023
0
    } else {
1024
0
        int j, ei = (T0[ii] == T1[ii] ? 1 : order + 1), m = 0, mm;
1025
1026
0
        for (j = 0; j < ei; j++) {
1027
0
            mm = tensor_dimension_monotonity(T0, T1, ii - 1, i0, pole, p_offset + j * pole_step,
1028
0
                            pole_step/ 4, pole_step_i, order);
1029
0
            m |= mm << (j * 3);
1030
0
            if (mm == 3) {
1031
                /* If one guide is not monotonic, the dimension is not monotonic.
1032
                   Can return early. */
1033
0
                break;
1034
0
            }
1035
0
        }
1036
0
        return m;
1037
0
    }
1038
0
}
1039
1040
static inline int
1041
is_tensor_monotonic_by_dimension(const gs_function_Sd_t *pfn, int *I, double *T0, double *T1, int i0, int k,
1042
                    uint *mask /* 3 bits per guide : 3 - non-monotonic or don't know,
1043
                    2 - decreesing, 0 - constant, 1 - increasing.
1044
                    The number of guides is order+1. */)
1045
0
{
1046
0
    double pole[4*4*4]; /* For a while restricting with 3-in cubic functions.
1047
                 More arguments need a bigger buffer, but the rest of code is same. */
1048
0
    int i, code, ii = pfn->params.m - 1;
1049
0
    double TT0[3], TT1[3];
1050
1051
0
    *mask = 0;
1052
0
    if (ii >= 3) {
1053
         /* Unimplemented. We don't know practical cases,
1054
            because currently it is only called while decomposing a shading.  */
1055
0
        return_error(gs_error_limitcheck);
1056
0
    }
1057
0
    code = copy_poles(pfn, I, T0, T1, k, ii, pole, 0, count_of(pole) / 4);
1058
0
    if (code < 0)
1059
0
        return code;
1060
0
    for (i = ii; i >= 0; i--) {
1061
0
        TT0[i] = 0;
1062
0
        if (T0[i] != T1[i]) {
1063
0
            if (T0[i] != 0 || T1[i] != 1)
1064
0
                clamp_poles(T0, T1, ii, i, pole, 0, count_of(pole) / 4, -1, pfn->params.Order);
1065
0
            TT1[i] = 1;
1066
0
        } else
1067
0
            TT1[i] = 0;
1068
0
    }
1069
0
    *mask = tensor_dimension_monotonity(TT0, TT1, ii, i0, pole, 0,
1070
0
                        count_of(pole) / 4, 1, pfn->params.Order);
1071
0
    return 0;
1072
0
}
1073
1074
static int /* error code */
1075
is_lattice_monotonic_by_dimension(const gs_function_Sd_t *pfn, const double *T0, const double *T1,
1076
        int *I, double *S0, double *S1, int ii, int i0, int k,
1077
        uint *mask /* 3 bits per guide : 1 - non-monotonic or don't know, 0 - monotonic;
1078
                      The number of guides is order+1. */)
1079
0
{
1080
0
    if (ii == -1) {
1081
        /* fixme : could cache the cell monotonity against redundant evaluation. */
1082
0
        return is_tensor_monotonic_by_dimension(pfn, I, S0, S1, i0, k, mask);
1083
0
    } else {
1084
0
        int i1 = (ii > i0 ? ii : ii == 0 ? i0 : ii - 1); /* Delay the dimension i0 till the end of recursion. */
1085
0
        int j, code;
1086
0
        int bi = (int)floor(T0[i1]);
1087
0
        int ei = (int)floor(T1[i1]);
1088
0
        uint m, mm, m1 = 0x49249249 & ((1 << ((pfn->params.Order + 1) * 3)) - 1);
1089
1090
0
        if (floor(T1[i1]) == T1[i1])
1091
0
            ei --;
1092
0
        m = 0;
1093
0
        for (j = bi; j <= ei; j++) {
1094
            /* fixme : A better performance may be obtained with comparing central nodes with side ones. */
1095
0
            I[i1] = j;
1096
0
            S0[i1] = max(T0[i1] - j, 0);
1097
0
            S1[i1] = min(T1[i1] - j, 1);
1098
0
            code = is_lattice_monotonic_by_dimension(pfn, T0, T1, I, S0, S1, ii - 1, i0, k, &mm);
1099
0
            if (code < 0)
1100
0
                return code;
1101
0
            m |= mm;
1102
0
            if (m == m1) /* Don't return early - shadings need to know about all dimensions. */
1103
0
                break;
1104
0
        }
1105
0
        if (ii == 0) {
1106
            /* Detect non-monotonic guides. */
1107
0
            m = m & (m >> 1);
1108
0
        }
1109
0
        *mask = m;
1110
0
        return 0;
1111
0
    }
1112
0
}
1113
1114
static inline int /* error code */
1115
is_lattice_monotonic(const gs_function_Sd_t *pfn, const double *T0, const double *T1,
1116
         int *I, double *S0, double *S1,
1117
         int k, uint *mask /* 1 bit per dimension : 1 - non-monotonic or don't know,
1118
                      0 - monotonic. */)
1119
0
{
1120
0
    uint m, mm = 0;
1121
0
    int i, code;
1122
1123
0
    for (i = 0; i < pfn->params.m; i++) {
1124
0
        if (T0[i] != T1[i]) {
1125
0
            code = is_lattice_monotonic_by_dimension(pfn, T0, T1, I, S0, S1, pfn->params.m - 1, i, k, &m);
1126
0
            if (code < 0)
1127
0
                return code;
1128
0
            if (m)
1129
0
                mm |= 1 << i;
1130
0
        }
1131
0
    }
1132
0
    *mask = mm;
1133
0
    return 0;
1134
0
}
1135
1136
static int /* 3 bits per result : 3 - non-monotonic or don't know,
1137
               2 - decreesing, 0 - constant, 1 - increasing,
1138
               <0 - error. */
1139
fn_Sd_1arg_linear_monotonic_rec(const gs_function_Sd_t *const pfn, int i0, int i1,
1140
                                const double *V0, const double *V1)
1141
0
{
1142
0
    if (i1 - i0 <= 1) {
1143
0
        int code = 0, i;
1144
1145
0
        for (i = 0; i < pfn->params.n; i++) {
1146
0
            if (V0[i] < V1[i])
1147
0
                code |= 1 << (i * 3);
1148
0
            else if (V0[i] > V1[i])
1149
0
                code |= 2 << (i * 3);
1150
0
        }
1151
0
        return code;
1152
0
    } else {
1153
0
        double VV[MAX_FAST_COMPS];
1154
0
        int ii = (i0 + i1) / 2, code, cod1;
1155
1156
0
        code = load_vector_to(pfn, ii * pfn->params.n * pfn->params.BitsPerSample, VV);
1157
0
        if (code < 0)
1158
0
            return code;
1159
0
        if (code & (code >> 1))
1160
0
            return code; /* Not monotonic by some component of the result. */
1161
0
        code = fn_Sd_1arg_linear_monotonic_rec(pfn, i0, ii, V0, VV);
1162
0
        if (code < 0)
1163
0
            return code;
1164
0
        cod1 = fn_Sd_1arg_linear_monotonic_rec(pfn, ii, i1, VV, V1);
1165
0
        if (cod1 < 0)
1166
0
            return cod1;
1167
0
        return code | cod1;
1168
0
    }
1169
0
}
1170
1171
static int
1172
fn_Sd_1arg_linear_monotonic(const gs_function_Sd_t *const pfn, double T0, double T1,
1173
                            uint *mask /* 1 - non-monotonic or don't know, 0 - monotonic. */)
1174
0
{
1175
0
    int i0 = (int)floor(T0);
1176
0
    int i1 = (int)ceil(T1), code;
1177
0
    double V0[MAX_FAST_COMPS], V1[MAX_FAST_COMPS];
1178
1179
0
    if (i1 - i0 > 1) {
1180
0
        code = load_vector_to(pfn, i0 * pfn->params.n * pfn->params.BitsPerSample, V0);
1181
0
        if (code < 0)
1182
0
            return code;
1183
0
        code = load_vector_to(pfn, i1 * pfn->params.n * pfn->params.BitsPerSample, V1);
1184
0
        if (code < 0)
1185
0
            return code;
1186
0
        code = fn_Sd_1arg_linear_monotonic_rec(pfn, i0, i1, V0, V1);
1187
0
        if (code < 0)
1188
0
            return code;
1189
0
        if (code & (code >> 1)) {
1190
0
            *mask = 1;
1191
0
            return 0;
1192
0
        }
1193
0
    }
1194
0
    *mask = 0;
1195
0
    return 1;
1196
0
}
1197
1198
0
#define DEBUG_Sd_1arg 0
1199
1200
/* Test whether a Sampled function is monotonic. */
1201
static int /* 1 = monotonic, 0 = not or don't know, <0 = error. */
1202
fn_Sd_is_monotonic_aux(const gs_function_Sd_t *const pfn,
1203
                   const float *lower, const float *upper,
1204
                   uint *mask /* 1 bit per dimension : 1 - non-monotonic or don't know,
1205
                      0 - monotonic. */)
1206
0
{
1207
0
    int i, code, ii = pfn->params.m - 1;
1208
0
    int I[4];
1209
0
    double T0[count_of(I)], T1[count_of(I)];
1210
0
    double S0[count_of(I)], S1[count_of(I)];
1211
0
    uint m, mm, m1;
1212
#   if DEBUG_Sd_1arg
1213
    int code1, mask1;
1214
#   endif
1215
1216
0
    if (ii >= count_of(T0)) {
1217
         /* Unimplemented. We don't know practical cases,
1218
            because currently it is only called while decomposing a shading.  */
1219
0
        return_error(gs_error_limitcheck);
1220
0
    }
1221
0
    for (i = 0; i <= ii; i++) {
1222
0
        float w0, w1;
1223
1224
0
        code = get_scaled_range(pfn, lower, upper, i, &w0, &w1);
1225
0
        if (code < 0)
1226
0
            return code;
1227
0
        T0[i] = w0;
1228
0
        T1[i] = w1;
1229
0
    }
1230
0
    if (pfn->params.m == 1 && pfn->params.Order == 1 && pfn->params.n <= MAX_FAST_COMPS) {
1231
0
        code = fn_Sd_1arg_linear_monotonic(pfn, T0[0], T1[0], mask);
1232
0
# if !DEBUG_Sd_1arg
1233
0
            return code;
1234
# else
1235
            mask1 = *mask;
1236
            code1 = code;
1237
# endif
1238
0
    }
1239
0
    m1 = (1 << pfn->params.m )- 1;
1240
0
    code = make_interpolation_nodes(pfn, T0, T1, I, S0, 0, 0, ii);
1241
0
    if (code < 0)
1242
0
        return code;
1243
0
    mm = 0;
1244
0
    for (i = 0; i < pfn->params.n; i++) {
1245
0
        code = is_lattice_monotonic(pfn, T0, T1, I, S0, S1, i, &m);
1246
0
        if (code < 0)
1247
0
            return code;
1248
0
        mm |= m;
1249
0
        if (mm == m1) /* Don't return early - shadings need to know about all dimensions. */
1250
0
            break;
1251
0
    }
1252
#   if DEBUG_Sd_1arg
1253
        if (mask1 != mm)
1254
            return_error(gs_error_unregistered);
1255
        if (code1 != !mm)
1256
            return_error(gs_error_unregistered);
1257
#   endif
1258
0
    *mask = mm;
1259
0
    return !mm;
1260
0
}
1261
1262
/* Test whether a Sampled function is monotonic. */
1263
/* 1 = monotonic, 0 = don't know, <0 = error. */
1264
static int
1265
fn_Sd_is_monotonic(const gs_function_t * pfn_common,
1266
                   const float *lower, const float *upper, uint *mask)
1267
0
{
1268
0
    const gs_function_Sd_t *const pfn =
1269
0
        (const gs_function_Sd_t *)pfn_common;
1270
1271
0
    return fn_Sd_is_monotonic_aux(pfn, lower, upper, mask);
1272
0
}
1273
1274
/* Return Sampled function information. */
1275
static void
1276
fn_Sd_get_info(const gs_function_t *pfn_common, gs_function_info_t *pfi)
1277
0
{
1278
0
    const gs_function_Sd_t *const pfn =
1279
0
        (const gs_function_Sd_t *)pfn_common;
1280
0
    long size;
1281
0
    int i;
1282
1283
0
    gs_function_get_info_default(pfn_common, pfi);
1284
0
    pfi->DataSource = &pfn->params.DataSource;
1285
0
    for (i = 0, size = 1; i < pfn->params.m; ++i)
1286
0
        size *= pfn->params.Size[i];
1287
0
    pfi->data_size =
1288
0
        (size * pfn->params.n * pfn->params.BitsPerSample + 7) >> 3;
1289
0
}
1290
1291
/* Write Sampled function parameters on a parameter list. */
1292
static int
1293
fn_Sd_get_params(const gs_function_t *pfn_common, gs_param_list *plist)
1294
0
{
1295
0
    const gs_function_Sd_t *const pfn =
1296
0
        (const gs_function_Sd_t *)pfn_common;
1297
0
    int ecode = fn_common_get_params(pfn_common, plist);
1298
0
    int code;
1299
1300
0
    if (pfn->params.Order != 1) {
1301
0
        if ((code = param_write_int(plist, "Order", &pfn->params.Order)) < 0)
1302
0
            ecode = code;
1303
0
    }
1304
0
    if ((code = param_write_int(plist, "BitsPerSample",
1305
0
                                &pfn->params.BitsPerSample)) < 0)
1306
0
        ecode = code;
1307
0
    if (pfn->params.Encode) {
1308
0
        if ((code = param_write_float_values(plist, "Encode",
1309
0
                                             pfn->params.Encode,
1310
0
                                             2 * pfn->params.m, false)) < 0)
1311
0
            ecode = code;
1312
0
    }
1313
0
    if (pfn->params.Decode) {
1314
0
        if ((code = param_write_float_values(plist, "Decode",
1315
0
                                             pfn->params.Decode,
1316
0
                                             2 * pfn->params.n, false)) < 0)
1317
0
            ecode = code;
1318
0
    }
1319
0
    if (pfn->params.Size) {
1320
0
        if ((code = param_write_int_values(plist, "Size", pfn->params.Size,
1321
0
                                           pfn->params.m, false)) < 0)
1322
0
            ecode = code;
1323
0
    }
1324
0
    return ecode;
1325
0
}
1326
1327
/* Make a scaled copy of a Sampled function. */
1328
static int
1329
fn_Sd_make_scaled(const gs_function_Sd_t *pfn, gs_function_Sd_t **ppsfn,
1330
                  const gs_range_t *pranges, gs_memory_t *mem)
1331
0
{
1332
0
    gs_function_Sd_t *psfn =
1333
0
        gs_alloc_struct(mem, gs_function_Sd_t, &st_function_Sd,
1334
0
                        "fn_Sd_make_scaled");
1335
0
    int code;
1336
1337
0
    if (psfn == 0)
1338
0
        return_error(gs_error_VMerror);
1339
0
    psfn->params = pfn->params;
1340
0
    psfn->params.Encode = 0;    /* in case of failure */
1341
0
    psfn->params.Decode = 0;
1342
0
    psfn->params.Size =
1343
0
        fn_copy_values(pfn->params.Size, pfn->params.m, sizeof(int), mem);
1344
0
    if ((code = (psfn->params.Size == 0 ?
1345
0
                 gs_note_error(gs_error_VMerror) : 0)) < 0 ||
1346
0
        (code = fn_common_scale((gs_function_t *)psfn,
1347
0
                                (const gs_function_t *)pfn,
1348
0
                                pranges, mem)) < 0 ||
1349
0
        (code = fn_scale_pairs(&psfn->params.Encode, pfn->params.Encode,
1350
0
                               pfn->params.m, NULL, mem)) < 0 ||
1351
0
        (code = fn_scale_pairs(&psfn->params.Decode, pfn->params.Decode,
1352
0
                               pfn->params.n, pranges, mem)) < 0) {
1353
0
        gs_function_free((gs_function_t *)psfn, true, mem);
1354
0
    } else
1355
0
        *ppsfn = psfn;
1356
0
    return code;
1357
0
}
1358
1359
/* Free the parameters of a Sampled function. */
1360
void
1361
gs_function_Sd_free_params(gs_function_Sd_params_t * params, gs_memory_t * mem)
1362
0
{
1363
0
    gs_free_const_object(mem, params->Size, "Size");
1364
0
    params->Size = NULL;
1365
0
    gs_free_const_object(mem, params->Decode, "Decode");
1366
0
    params->Decode = NULL;
1367
0
    gs_free_const_object(mem, params->Encode, "Encode");
1368
0
    params->Encode = NULL;
1369
0
    fn_common_free_params((gs_function_params_t *) params, mem);
1370
0
    if (params->DataSource.type == data_source_type_stream && params->DataSource.data.strm != NULL) {
1371
0
        s_close_filters(&params->DataSource.data.strm, params->DataSource.data.strm->strm);
1372
0
        params->DataSource.data.strm = NULL;
1373
0
    }
1374
0
    gs_free_object(mem, params->pole, "gs_function_Sd_free_params");
1375
0
    params->pole = NULL;
1376
0
    gs_free_object(mem, params->array_step, "gs_function_Sd_free_params");
1377
0
    params->array_step = NULL;
1378
0
    gs_free_object(mem, params->stream_step, "gs_function_Sd_free_params");
1379
0
    params->stream_step = NULL;
1380
0
}
1381
1382
/* aA helper for gs_function_Sd_serialize. */
1383
static int serialize_array(const float *a, int half_size, stream *s)
1384
0
{
1385
0
    uint n;
1386
0
    const float dummy[2] = {0, 0};
1387
0
    int i, code;
1388
1389
0
    if (a != NULL)
1390
0
        return sputs(s, (const byte *)a, sizeof(a[0]) * half_size * 2, &n);
1391
0
    for (i = 0; i < half_size; i++) {
1392
0
        code = sputs(s, (const byte *)dummy, sizeof(dummy), &n);
1393
0
        if (code < 0)
1394
0
            return code;
1395
0
    }
1396
0
    return 0;
1397
0
}
1398
1399
/* Serialize. */
1400
static int
1401
gs_function_Sd_serialize(const gs_function_t * pfn, stream *s)
1402
0
{
1403
0
    uint n;
1404
0
    const gs_function_Sd_params_t * p = (const gs_function_Sd_params_t *)&pfn->params;
1405
0
    gs_function_info_t info;
1406
0
    int code = fn_common_serialize(pfn, s);
1407
0
    ulong pos;
1408
0
    uint count;
1409
0
    byte buf[100];
1410
0
    const byte *ptr;
1411
1412
0
    if (code < 0)
1413
0
        return code;
1414
0
    code = sputs(s, (const byte *)&p->Order, sizeof(p->Order), &n);
1415
0
    if (code < 0)
1416
0
        return code;
1417
0
    code = sputs(s, (const byte *)&p->BitsPerSample, sizeof(p->BitsPerSample), &n);
1418
0
    if (code < 0)
1419
0
        return code;
1420
0
    code = serialize_array(p->Encode, p->m, s);
1421
0
    if (code < 0)
1422
0
        return code;
1423
0
    code = serialize_array(p->Decode, p->n, s);
1424
0
    if (code < 0)
1425
0
        return code;
1426
0
    gs_function_get_info(pfn, &info);
1427
0
    code = sputs(s, (const byte *)&info.data_size, sizeof(info.data_size), &n);
1428
0
    if (code < 0)
1429
0
        return code;
1430
0
    for (pos = 0; pos < info.data_size; pos += count) {
1431
0
        count = min(sizeof(buf), info.data_size - pos);
1432
0
        data_source_access_only(info.DataSource, pos, count, buf, &ptr);
1433
0
        code = sputs(s, ptr, count, &n);
1434
0
        if (code < 0)
1435
0
            return code;
1436
0
    }
1437
0
    return 0;
1438
0
}
1439
1440
/* Allocate and initialize a Sampled function. */
1441
int
1442
gs_function_Sd_init(gs_function_t ** ppfn,
1443
                  const gs_function_Sd_params_t * params, gs_memory_t * mem)
1444
0
{
1445
0
    static const gs_function_head_t function_Sd_head = {
1446
0
        function_type_Sampled,
1447
0
        {
1448
0
            (fn_evaluate_proc_t) fn_Sd_evaluate,
1449
0
            (fn_is_monotonic_proc_t) fn_Sd_is_monotonic,
1450
0
            (fn_get_info_proc_t) fn_Sd_get_info,
1451
0
            (fn_get_params_proc_t) fn_Sd_get_params,
1452
0
            (fn_make_scaled_proc_t) fn_Sd_make_scaled,
1453
0
            (fn_free_params_proc_t) gs_function_Sd_free_params,
1454
0
            fn_common_free,
1455
0
            (fn_serialize_proc_t) gs_function_Sd_serialize,
1456
0
        }
1457
0
    };
1458
0
    int code;
1459
0
    int i;
1460
1461
0
    *ppfn = 0;      /* in case of error */
1462
0
    code = fn_check_mnDR((const gs_function_params_t *)params,
1463
0
                         params->m, params->n);
1464
0
    if (code < 0)
1465
0
        return code;
1466
0
    if (params->m > max_Sd_m)
1467
0
        return_error(gs_error_limitcheck);
1468
0
    switch (params->Order) {
1469
0
        case 0:   /* use default */
1470
0
        case 1:
1471
0
        case 3:
1472
0
            break;
1473
0
        default:
1474
0
            return_error(gs_error_rangecheck);
1475
0
    }
1476
0
    switch (params->BitsPerSample) {
1477
0
        case 1:
1478
0
        case 2:
1479
0
        case 4:
1480
0
        case 8:
1481
0
        case 12:
1482
0
        case 16:
1483
0
        case 24:
1484
0
        case 32:
1485
0
            break;
1486
0
        default:
1487
0
            return_error(gs_error_rangecheck);
1488
0
    }
1489
0
    for (i = 0; i < params->m; ++i)
1490
0
        if (params->Size[i] <= 0)
1491
0
            return_error(gs_error_rangecheck);
1492
0
    {
1493
0
        gs_function_Sd_t *pfn =
1494
0
            gs_alloc_struct(mem, gs_function_Sd_t, &st_function_Sd,
1495
0
                            "gs_function_Sd_init");
1496
0
        int bps, sa, ss, i, order, was;
1497
1498
0
        if (pfn == 0)
1499
0
            return_error(gs_error_VMerror);
1500
0
        pfn->params = *params;
1501
0
        if (params->Order == 0)
1502
0
            pfn->params.Order = 1; /* default */
1503
0
        pfn->params.pole = NULL;
1504
0
        pfn->params.array_step = NULL;
1505
0
        pfn->params.stream_step = NULL;
1506
0
        pfn->head = function_Sd_head;
1507
0
        pfn->params.array_size = 0;
1508
0
        if (pfn->params.m == 1 && pfn->params.Order == 1 && pfn->params.n <= MAX_FAST_COMPS && !DEBUG_Sd_1arg) {
1509
            /* Won't use pole cache. Call fn_Sd_1arg_linear_monotonic instead. */
1510
0
        } else {
1511
0
            pfn->params.array_step = (int *)gs_alloc_byte_array(mem,
1512
0
                                    max_Sd_m, sizeof(int), "gs_function_Sd_init");
1513
0
            pfn->params.stream_step = (int *)gs_alloc_byte_array(mem,
1514
0
                                    max_Sd_m, sizeof(int), "gs_function_Sd_init");
1515
0
            if (pfn->params.array_step == NULL || pfn->params.stream_step == NULL)
1516
0
                return_error(gs_error_VMerror);
1517
0
            bps = pfn->params.BitsPerSample;
1518
0
            sa = pfn->params.n;
1519
0
            ss = pfn->params.n * bps;
1520
0
            order = pfn->params.Order;
1521
0
            for (i = 0; i < pfn->params.m; i++) {
1522
0
                pfn->params.array_step[i] = sa * order;
1523
0
                was = sa;
1524
0
                sa = (pfn->params.Size[i] * order - (order - 1)) * sa;
1525
                /* If the calculation of sa went backwards then we overflowed! */
1526
0
                if (was > sa)
1527
0
                    return_error(gs_error_VMerror);
1528
0
                pfn->params.stream_step[i] = ss;
1529
0
                ss = pfn->params.Size[i] * ss;
1530
0
            }
1531
0
            pfn->params.pole = (double *)gs_alloc_byte_array(mem,
1532
0
                                    sa, sizeof(double), "gs_function_Sd_init");
1533
0
            if (pfn->params.pole == NULL)
1534
0
                return_error(gs_error_VMerror);
1535
0
            for (i = 0; i < sa; i++)
1536
0
                pfn->params.pole[i] = double_stub;
1537
0
            pfn->params.array_size = sa;
1538
0
        }
1539
0
        *ppfn = (gs_function_t *) pfn;
1540
0
    }
1541
0
    return 0;
1542
0
}