Coverage Report

Created: 2025-06-10 06:49

/src/ghostpdl/base/gxshade.c
Line
Count
Source (jump to first uncovered line)
1
/* Copyright (C) 2001-2023 Artifex Software, Inc.
2
   All Rights Reserved.
3
4
   This software is provided AS-IS with no warranty, either express or
5
   implied.
6
7
   This software is distributed under license and may not be copied,
8
   modified or distributed except as expressly authorized under the terms
9
   of the license contained in the file LICENSE in this distribution.
10
11
   Refer to licensing information at http://www.artifex.com or contact
12
   Artifex Software, Inc.,  39 Mesa Street, Suite 108A, San Francisco,
13
   CA 94129, USA, for further information.
14
*/
15
16
17
/* Shading rendering support */
18
#include "math_.h"
19
#include "gx.h"
20
#include "gserrors.h"
21
#include "gsrect.h"
22
#include "gxcspace.h"
23
#include "gscindex.h"
24
#include "gscie.h"    /* requires gscspace.h */
25
#include "gxdevcli.h"
26
#include "gxgstate.h"
27
#include "gxdht.h"    /* for computing # of different colors */
28
#include "gxpaint.h"
29
#include "gxshade.h"
30
#include "gxshade4.h"
31
#include "gsicc.h"
32
#include "gsicc_cache.h"
33
#include "gxcdevn.h"
34
#include "gximage.h"
35
36
/* Define a maximum smoothness value. */
37
/* smoothness > 0.2 produces severely blocky output. */
38
#define MAX_SMOOTHNESS 0.2
39
40
/* ================ Packed coordinate streams ================ */
41
42
/* Forward references */
43
static int cs_next_packed_value(shade_coord_stream_t *, int, uint *);
44
static int cs_next_array_value(shade_coord_stream_t *, int, uint *);
45
static int cs_next_packed_decoded(shade_coord_stream_t *, int,
46
                                   const float[2], float *);
47
static int cs_next_array_decoded(shade_coord_stream_t *, int,
48
                                  const float[2], float *);
49
static void cs_packed_align(shade_coord_stream_t *cs, int radix);
50
static void cs_array_align(shade_coord_stream_t *cs, int radix);
51
static bool cs_eod(const shade_coord_stream_t * cs);
52
53
/* Initialize a packed value stream. */
54
void
55
shade_next_init(shade_coord_stream_t * cs,
56
                const gs_shading_mesh_params_t * params,
57
                const gs_gstate * pgs)
58
0
{
59
0
    cs->params = params;
60
0
    cs->pctm = &pgs->ctm;
61
0
    if (data_source_is_stream(params->DataSource)) {
62
        /*
63
         * Rewind the data stream iff it is reusable -- either a reusable
64
         * file or a reusable string.
65
         */
66
0
        stream *s = cs->s = params->DataSource.data.strm;
67
68
0
        if ((s->file != 0 && s->file_limit != max_long) ||
69
0
            (s->file == 0 && s->strm == 0)
70
0
            )
71
0
            sseek(s, 0);
72
0
    } else {
73
0
        s_init(&cs->ds, NULL);
74
0
        sread_string(&cs->ds, params->DataSource.data.str.data,
75
0
                     params->DataSource.data.str.size);
76
0
        cs->s = &cs->ds;
77
0
    }
78
0
    if (data_source_is_array(params->DataSource)) {
79
0
        cs->get_value = cs_next_array_value;
80
0
        cs->get_decoded = cs_next_array_decoded;
81
0
        cs->align = cs_array_align;
82
0
    } else {
83
0
        cs->get_value = cs_next_packed_value;
84
0
        cs->get_decoded = cs_next_packed_decoded;
85
0
        cs->align = cs_packed_align;
86
0
    }
87
0
    cs->is_eod = cs_eod;
88
0
    cs->left = 0;
89
0
    cs->ds_EOF = false;
90
0
    cs->first_patch = 1;
91
0
}
92
93
/* Check for the End-Of-Data state form a stream. */
94
static bool
95
cs_eod(const shade_coord_stream_t * cs)
96
0
{
97
0
    return cs->ds_EOF;
98
0
}
99
100
/* Get the next (integer) value from a packed value stream. */
101
/* 1 <= num_bits <= sizeof(uint) * 8. */
102
static int
103
cs_next_packed_value(shade_coord_stream_t * cs, int num_bits, uint * pvalue)
104
0
{
105
0
    uint bits = cs->bits;
106
0
    int left = cs->left;
107
108
0
    if (left >= num_bits) {
109
        /* We can satisfy this request with the current buffered bits. */
110
0
        cs->left = left -= num_bits;
111
0
        *pvalue = (bits >> left) & ((1 << num_bits) - 1);
112
0
    } else {
113
        /* We need more bits. */
114
0
        int needed = num_bits - left;
115
0
        uint value = bits & ((1 << left) - 1);  /* all the remaining bits */
116
117
0
        for (; needed >= 8; needed -= 8) {
118
0
            int b = sgetc(cs->s);
119
120
0
            if (b < 0) {
121
0
                cs->ds_EOF = true;
122
0
                return_error(gs_error_rangecheck);
123
0
            }
124
0
            value = (value << 8) + b;
125
0
        }
126
0
        if (needed == 0) {
127
0
            cs->left = 0;
128
0
            *pvalue = value;
129
0
        } else {
130
0
            int b = sgetc(cs->s);
131
132
0
            if (b < 0) {
133
0
                cs->ds_EOF = true;
134
0
                return_error(gs_error_rangecheck);
135
0
            }
136
0
            cs->bits = b;
137
0
            cs->left = left = 8 - needed;
138
0
            *pvalue = (value << needed) + (b >> left);
139
0
        }
140
0
    }
141
0
    return 0;
142
0
}
143
144
/*
145
 * Get the next (integer) value from an unpacked array.  Note that
146
 * num_bits may be 0 if we are reading a coordinate or color value.
147
 */
148
static int
149
cs_next_array_value(shade_coord_stream_t * cs, int num_bits, uint * pvalue)
150
0
{
151
0
    float value;
152
0
    uint read;
153
154
0
    if (sgets(cs->s, (byte *)&value, sizeof(float), &read) < 0 ||
155
0
        read != sizeof(float)) {
156
0
        cs->ds_EOF = true;
157
0
        return_error(gs_error_rangecheck);
158
0
    }
159
0
    if (value < 0 || (num_bits != 0 && num_bits < sizeof(uint) * 8 &&
160
0
         value >= (1 << num_bits)) ||
161
0
        value != (uint)value
162
0
        )
163
0
        return_error(gs_error_rangecheck);
164
0
    *pvalue = (uint) value;
165
0
    return 0;
166
0
}
167
168
/* Get the next decoded floating point value. */
169
static int
170
cs_next_packed_decoded(shade_coord_stream_t * cs, int num_bits,
171
                       const float decode[2], float *pvalue)
172
0
{
173
0
    uint value;
174
0
    int code = cs->get_value(cs, num_bits, &value);
175
0
    double max_value = (double)(uint)
176
0
        (num_bits == sizeof(uint) * 8 ? ~0 : ((1 << num_bits) - 1));
177
0
    double dvalue = (double)value;
178
179
0
    if (code < 0)
180
0
        return code;
181
0
    *pvalue =
182
0
        (decode == 0 ? dvalue / max_value :
183
0
         decode[0] + dvalue * (decode[1] - decode[0]) / max_value);
184
0
    return 0;
185
0
}
186
187
/* Get the next floating point value from an array, without decoding. */
188
static int
189
cs_next_array_decoded(shade_coord_stream_t * cs, int num_bits,
190
                      const float decode[2], float *pvalue)
191
0
{
192
0
    float value;
193
0
    uint read;
194
195
0
    if (sgets(cs->s, (byte *)&value, sizeof(float), &read) < 0 ||
196
0
        read != sizeof(float)
197
0
    ) {
198
0
        cs->ds_EOF = true;
199
0
        return_error(gs_error_rangecheck);
200
0
    }
201
0
    *pvalue = value;
202
0
    return 0;
203
0
}
204
205
static void
206
cs_packed_align(shade_coord_stream_t *cs, int radix)
207
0
{
208
0
    cs->left = cs->left / radix * radix;
209
0
}
210
211
static void
212
cs_array_align(shade_coord_stream_t *cs, int radix)
213
0
{
214
0
}
215
216
/* Get the next flag value. */
217
/* Note that this always starts a new data byte. */
218
int
219
shade_next_flag(shade_coord_stream_t * cs, int BitsPerFlag)
220
0
{
221
0
    uint flag;
222
0
    int code;
223
224
0
    cs->left = 0;   /* start a new byte if packed */
225
0
    code = cs->get_value(cs, BitsPerFlag, &flag);
226
0
    return (code < 0 ? code : flag);
227
0
}
228
229
/* Get one or more coordinate pairs. */
230
int
231
shade_next_coords(shade_coord_stream_t * cs, gs_fixed_point * ppt,
232
                  int num_points)
233
0
{
234
0
    int num_bits = cs->params->BitsPerCoordinate;
235
0
    const float *decode = cs->params->Decode;
236
0
    int code = 0;
237
0
    int i;
238
239
0
    for (i = 0; i < num_points; ++i) {
240
0
        float x, y;
241
242
0
        if ((code = cs->get_decoded(cs, num_bits, decode, &x)) < 0 ||
243
0
            (code = cs->get_decoded(cs, num_bits, decode + 2, &y)) < 0 ||
244
0
            (code = gs_point_transform2fixed(cs->pctm, x, y, &ppt[i])) < 0
245
0
            )
246
0
            break;
247
0
    }
248
0
    return code;
249
0
}
250
251
/* Get a color.  Currently all this does is look up Indexed colors. */
252
int
253
shade_next_color(shade_coord_stream_t * cs, float *pc)
254
0
{
255
0
    const float *decode = cs->params->Decode + 4; /* skip coord decode */
256
0
    const gs_color_space *pcs = cs->params->ColorSpace;
257
0
    gs_color_space_index index = gs_color_space_get_index(pcs);
258
0
    int num_bits = cs->params->BitsPerComponent;
259
260
0
    if (index == gs_color_space_index_Indexed) {
261
0
        int ncomp = gs_color_space_num_components(gs_cspace_base_space(pcs));
262
0
        int ci;
263
0
        float cf;
264
0
        int code = cs->get_decoded(cs, num_bits, decode, &cf);
265
0
        gs_client_color cc;
266
0
        int i;
267
268
0
        if (code < 0)
269
0
            return code;
270
0
        if (cf < 0)
271
0
            return_error(gs_error_rangecheck);
272
0
        ci = (int)cf;
273
0
        if (ci >= gs_cspace_indexed_num_entries(pcs))
274
0
            return_error(gs_error_rangecheck);
275
0
        code = gs_cspace_indexed_lookup(pcs, ci, &cc);
276
0
        if (code < 0)
277
0
            return code;
278
0
        for (i = 0; i < ncomp; ++i)
279
0
            pc[i] = cc.paint.values[i];
280
0
    } else {
281
0
        int i, code;
282
0
        int ncomp = (cs->params->Function != 0 ? 1 :
283
0
                     gs_color_space_num_components(pcs));
284
285
0
        for (i = 0; i < ncomp; ++i) {
286
0
            if ((code = cs->get_decoded(cs, num_bits, decode + i * 2, &pc[i])) < 0)
287
0
                return code;
288
0
            if (cs->params->Function) {
289
0
                gs_function_params_t *params = &cs->params->Function->params;
290
291
0
                if (pc[i] < params->Domain[i + i])
292
0
                    pc[i] = params->Domain[i + i];
293
0
                else if (pc[i] > params->Domain[i + i + 1])
294
0
                    pc[i] = params->Domain[i + i + 1];
295
0
            }
296
0
        }
297
0
    }
298
0
    return 0;
299
0
}
300
301
/* Get the next vertex for a mesh element. */
302
int
303
shade_next_vertex(shade_coord_stream_t * cs, shading_vertex_t * vertex, patch_color_t *c)
304
0
{   /* Assuming p->c == c, provides a non-const access. */
305
0
    int code = shade_next_coords(cs, &vertex->p, 1);
306
307
0
    if (code >= 0)
308
0
        code = shade_next_color(cs, c->cc.paint.values);
309
0
    if (code >= 0)
310
0
        cs->align(cs, 8); /* CET 09-47J.PS SpecialTestI04Test01. */
311
0
    return code;
312
0
}
313
314
/* ================ Shading rendering ================ */
315
316
/* Initialize the common parts of the recursion state. */
317
int
318
shade_init_fill_state(shading_fill_state_t * pfs, const gs_shading_t * psh,
319
                      gx_device * dev, gs_gstate * pgs)
320
2
{
321
2
    const gs_color_space *pcs = psh->params.ColorSpace;
322
2
    float max_error = min(pgs->smoothness, MAX_SMOOTHNESS);
323
2
    bool is_lab;
324
2
    bool cs_lin_test;
325
2
    int code;
326
327
    /*
328
     * There's no point in trying to achieve smoothness beyond what
329
     * the device can implement, i.e., the number of representable
330
     * colors times the number of halftone levels.
331
     */
332
2
    long num_colors =
333
2
        max(dev->color_info.max_gray, dev->color_info.max_color) + 1;
334
2
    const gs_range *ranges = 0;
335
2
    int ci;
336
2
    gsicc_rendering_param_t rendering_params;
337
338
2
    pfs->cs_always_linear = false;
339
2
    pfs->dev = dev;
340
2
    pfs->pgs = pgs;
341
2
top:
342
2
    pfs->direct_space = pcs;
343
2
    pfs->num_components = gs_color_space_num_components(pcs);
344
2
    switch ( gs_color_space_get_index(pcs) )
345
2
        {
346
0
        case gs_color_space_index_Indexed:
347
0
            pcs = gs_cspace_base_space(pcs);
348
0
            goto top;
349
0
        case gs_color_space_index_CIEDEFG:
350
0
            ranges = pcs->params.defg->RangeDEFG.ranges;
351
0
            break;
352
0
        case gs_color_space_index_CIEDEF:
353
0
            ranges = pcs->params.def->RangeDEF.ranges;
354
0
            break;
355
0
        case gs_color_space_index_CIEABC:
356
0
            ranges = pcs->params.abc->RangeABC.ranges;
357
0
            break;
358
0
        case gs_color_space_index_CIEA:
359
0
            ranges = &pcs->params.a->RangeA;
360
0
            break;
361
2
        case gs_color_space_index_ICC:
362
2
            ranges = pcs->cmm_icc_profile_data->Range.ranges;
363
2
            break;
364
0
        default:
365
0
            break;
366
2
        }
367
2
    if (num_colors <= 32) {
368
        /****** WRONG FOR MULTI-PLANE HALFTONES ******/
369
2
        num_colors *= pgs->dev_ht[HT_OBJTYPE_DEFAULT]->components[0].corder.num_levels;
370
2
    }
371
2
    if (psh->head.type == 2 || psh->head.type == 3) {
372
2
        max_error *= 0.25;
373
2
        num_colors *= 2;
374
2
    }
375
2
    if (max_error < 1.0 / num_colors)
376
2
        max_error = 1.0 / num_colors;
377
8
    for (ci = 0; ci < pfs->num_components; ++ci)
378
6
        pfs->cc_max_error[ci] =
379
6
            (ranges == 0 ? max_error :
380
6
             max_error * (ranges[ci].rmax - ranges[ci].rmin));
381
2
    if (pgs->has_transparency && pgs->trans_device != NULL) {
382
0
        pfs->trans_device = pgs->trans_device;
383
2
    } else {
384
2
        pfs->trans_device = dev;
385
2
    }
386
    /* If the CS is PS based and we have not yet converted to the ICC form
387
       then go ahead and do that now */
388
2
    if (gs_color_space_is_PSCIE(pcs) && pcs->icc_equivalent == NULL) {
389
0
        code = gs_colorspace_set_icc_equivalent((gs_color_space *)pcs, &(is_lab), pgs->memory);
390
0
        if (code < 0)
391
0
            return code;
392
0
    }
393
2
    rendering_params.black_point_comp = pgs->blackptcomp;
394
2
    rendering_params.graphics_type_tag = GS_VECTOR_TAG;
395
2
    rendering_params.override_icc = false;
396
2
    rendering_params.preserve_black = gsBKPRESNOTSPECIFIED;
397
2
    rendering_params.rendering_intent = pgs->renderingintent;
398
2
    rendering_params.cmm = gsCMM_DEFAULT;
399
    /* Grab the icc link transform that we need now */
400
2
    if (pcs->cmm_icc_profile_data != NULL) {
401
2
        pfs->icclink = gsicc_get_link(pgs, pgs->trans_device, pcs, NULL,
402
2
                                      &rendering_params, pgs->memory);
403
2
        if (pfs->icclink == NULL)
404
0
            return_error(gs_error_VMerror);
405
2
    } else {
406
0
        if (pcs->icc_equivalent != NULL ) {
407
            /* We have a PS equivalent ICC profile.  We may need to go
408
               through special range adjustments in this case */
409
0
            pfs->icclink = gsicc_get_link(pgs, pgs->trans_device,
410
0
                                          pcs->icc_equivalent, NULL,
411
0
                                          &rendering_params, pgs->memory);
412
0
            if (pfs->icclink == NULL)
413
0
                return_error(gs_error_VMerror);
414
0
        } else {
415
0
            pfs->icclink = NULL;
416
0
        }
417
0
    }
418
    /* Two possible cases of interest here for performance.  One is that the
419
    * icclink is NULL, which could occur if the source space were DeviceN or
420
    * a separation color space, while at the same time, the output device
421
    * supports these colorants (e.g. a separation device).   The other case is
422
    * that the icclink is the identity.  This could happen for example if the
423
    * source space were CMYK and we are going out to a CMYK device. For both
424
    * of these cases we can avoid going through the standard
425
    * color mappings to determine linearity. This is true, provided that the
426
    * transfer function is linear.  It is likely that we can improve
427
    * things even in cases where the transfer function is nonlinear, but for
428
    * now, we will punt on those and let them go through the longer processing
429
    * steps */
430
2
    if (pfs->icclink == NULL)
431
0
            cs_lin_test = !(using_alt_color_space((gs_gstate*)pgs));
432
2
    else
433
2
        cs_lin_test = pfs->icclink->is_identity;
434
435
2
    if (cs_lin_test && !gx_has_transfer(pgs, dev->color_info.num_components)) {
436
0
        pfs->cs_always_linear = true;
437
0
    }
438
439
#ifdef IGNORE_SPEC_MATCH_ADOBE_SHADINGS
440
    /* Per the spec. If the source space is DeviceN or Separation and the
441
       colorants are not supported (i.e. if we are using the alternate tint
442
       transform) the interpolation should occur in the source space to
443
       accommodate non-linear tint transform functions.
444
       e.g. We had a case where the transform function
445
       was an increasing staircase. Including that function in the
446
       gradient smoothness calculation gave us severe quantization. AR on
447
       the other hand is doing the interpolation in device color space
448
       and has a smooth result for that case. So AR is not following the spec. The
449
       bit below solves the issues for Type 4 and Type 5 shadings as
450
       this will avoid interpolations in source space. Type 6 and Type 7 will still
451
       have interpolations in the source space even if pfs->cs_always_linear == true.
452
       So the approach below does not solve those issues. To do that
453
       without changing the shading code, we could make a linear
454
       approximation to the alternate tint transform, which would
455
       ensure smoothness like what AR provides.
456
    */
457
    if ((gs_color_space_get_index(pcs) == gs_color_space_index_DeviceN ||
458
        gs_color_space_get_index(pcs) == gs_color_space_index_Separation) &&
459
        using_alt_color_space((gs_gstate*)pgs) && (psh->head.type == 4 ||
460
        psh->head.type == 5)) {
461
        pfs->cs_always_linear = true;
462
    }
463
#endif
464
465
2
    return 0;
466
2
}
467
468
/* Fill one piece of a shading. */
469
int
470
shade_fill_path(const shading_fill_state_t * pfs, gx_path * ppath,
471
                gx_device_color * pdevc, const gs_fixed_point *fill_adjust)
472
0
{
473
0
    gx_fill_params params;
474
475
0
    params.rule = -1;   /* irrelevant */
476
0
    params.adjust = *fill_adjust;
477
0
    params.flatness = 0;  /* irrelevant */
478
0
    return (*dev_proc(pfs->dev, fill_path)) (pfs->dev, pfs->pgs, ppath,
479
0
                                             &params, pdevc, NULL);
480
0
}