Coverage Report

Created: 2025-06-10 06:49

/src/ghostpdl/base/gxstroke.c
Line
Count
Source (jump to first uncovered line)
1
/* Copyright (C) 2001-2025 Artifex Software, Inc.
2
   All Rights Reserved.
3
4
   This software is provided AS-IS with no warranty, either express or
5
   implied.
6
7
   This software is distributed under license and may not be copied,
8
   modified or distributed except as expressly authorized under the terms
9
   of the license contained in the file LICENSE in this distribution.
10
11
   Refer to licensing information at http://www.artifex.com or contact
12
   Artifex Software, Inc.,  39 Mesa Street, Suite 108A, San Francisco,
13
   CA 94129, USA, for further information.
14
*/
15
16
17
/* Path stroking procedures for Ghostscript library */
18
#include "math_.h"
19
#include <stdlib.h> /* abs() */
20
#include "gx.h"
21
#include "gpcheck.h"
22
#include "gserrors.h"
23
#include "gsdcolor.h"
24
#include "gsptype1.h"
25
#include "gsptype2.h"
26
#include "gxfixed.h"
27
#include "gxfarith.h"
28
#include "gxmatrix.h"
29
#include "gscoord.h"
30
#include "gsdevice.h"
31
#include "gxdevice.h"
32
#include "gxhttile.h"
33
#include "gxgstate.h"
34
#include "gzline.h"
35
#include "gzpath.h"
36
#include "gzcpath.h"
37
#include "gxpaint.h"
38
#include "gsstate.h"            /* for gs_currentcpsimode */
39
#include "gzacpath.h"
40
41
/* RJW: There appears to be a difference in the xps and postscript models
42
 * (at least in as far as Microsofts implementation of xps and Acrobats of
43
 * postscript). Acrobat (and ghostscript) are happy to join a line segment
44
 * around a corner, even when the next segment is a dash gap. Microsofts
45
 * implementation of XPS does not.
46
 *
47
 * A test file that shows this up is tests_private/comparefiles/298-05.ps
48
 *
49
 * Enabling the following define would emulate xps behaviour here.
50
 */
51
#undef AVOID_JOINING_TO_DASH_GAPS
52
53
/*
54
 * We don't really know whether it's a good idea to take fill adjustment
55
 * into account for stroking.  Disregarding it means that strokes
56
 * come out thinner than fills; observing it produces heavy-looking
57
 * strokes at low resolutions.  But in any case, we must disregard it
58
 * when stroking zero-width lines.
59
 */
60
#define USE_FILL_ADJUSTMENT
61
62
#ifdef USE_FILL_ADJUSTMENT
63
#  define STROKE_ADJUSTMENT(thin, pgs, xy)\
64
117k
     (thin ? fixed_0 : (pgs)->fill_adjust.xy)
65
#else
66
#  define STROKE_ADJUSTMENT(thin, pgs, xy) fixed_0
67
#endif
68
69
/*
70
 * For some reason, we commented out the optimization for portrait,
71
 * landscape, and uniform (non-scaled) transformations.  We have no record
72
 * of why we did this, and we don't know what bugs re-enabling it may
73
 * introduce.
74
 */
75
#define OPTIMIZE_ORIENTATION
76
77
/*
78
 * Compute the amount by which to expand a stroked bounding box to account
79
 * for line width, caps and joins.  Return 0 if the result is exact, 1 if
80
 * it may be conservative, or gs_error_limitcheck if the result is too
81
 * large to fit in a gs_fixed_point.
82
 *
83
 * Because of square caps and miter and triangular joins, the maximum
84
 * expansion on each side (in user space) is
85
 *      K * line_width/2
86
 * where K is determined as follows:
87
 *      For round or butt caps, E = 1
88
 *      For square caps, E = sqrt(2)
89
 *        If the path is only a single line segment, K = E;
90
 *          if triangular joins, K = 2;
91
 *          if miter joins, K = max(miter_limit, E);
92
 *      otherwise, K = E.
93
 *
94
 * If the following conditions apply, K = E yields an exact result:
95
 *      - The CTM is of the form [X 0 0 Y] or [0 X Y 0].
96
 *      - Square or round caps are used, or all subpaths are closed.
97
 *      - All segments (including the implicit segment created by
98
 *        closepath) are vertical or horizontal lines.
99
 *
100
 * Note that these conditions are sufficient, but not necessary, to get an
101
 * exact result.  We choose this set of conditions because it is easy to
102
 * check and covers many common cases.  Clients that care always have the
103
 * option of using strokepath to get an exact result.
104
 */
105
static float join_expansion_factor(const gs_gstate *, gs_line_join);
106
int
107
gx_stroke_path_expansion(const gs_gstate * pgs, const gx_path * ppath,
108
                         gs_fixed_point * ppt)
109
35.7k
{
110
35.7k
    const subpath *psub;
111
35.7k
    const segment *pseg;
112
35.7k
    double cx = fabs(pgs->ctm.xx) + fabs(pgs->ctm.yx);
113
35.7k
    double cy = fabs(pgs->ctm.xy) + fabs(pgs->ctm.yy);
114
35.7k
    double expand = pgs->line_params.half_width;
115
35.7k
    int result = 1;
116
117
35.7k
    if (ppath == NULL) {
118
0
        ppt->x = ppt->y = 0;
119
0
        return 0;   /* no expansion */
120
0
    }
121
35.7k
    psub = ppath->first_subpath;
122
    /* Adjust the expansion (E) for square caps, if needed */
123
35.7k
    if (pgs->line_params.start_cap == gs_cap_square ||
124
35.7k
        pgs->line_params.end_cap == gs_cap_square)
125
8.52k
            expand *= 1.414213562;
126
127
    /* Check for whether an exact result can be computed easily. */
128
35.7k
    if (is_fzero2(pgs->ctm.xy, pgs->ctm.yx) ||
129
35.7k
        is_fzero2(pgs->ctm.xx, pgs->ctm.yy)
130
35.7k
        ) {
131
35.7k
        bool must_be_closed =
132
35.7k
            !(pgs->line_params.start_cap == gs_cap_square ||
133
35.7k
              pgs->line_params.start_cap == gs_cap_round  ||
134
35.7k
              pgs->line_params.end_cap   == gs_cap_square ||
135
35.7k
              pgs->line_params.end_cap   == gs_cap_round  ||
136
35.7k
              pgs->line_params.dash_cap  == gs_cap_square ||
137
35.7k
              pgs->line_params.dash_cap  == gs_cap_round);
138
35.7k
        gs_fixed_point prev;
139
140
35.7k
        prev.x = prev.y = 0; /* Quiet gcc warning. */
141
98.8k
        for (pseg = (const segment *)psub; pseg;
142
63.1k
             prev = pseg->pt, pseg = pseg->next
143
35.7k
             )
144
81.1k
            switch (pseg->type) {
145
28.0k
            case s_start:
146
28.0k
                if (((const subpath *)pseg)->curve_count ||
147
28.0k
                    (must_be_closed && !((const subpath *)pseg)->is_closed)
148
28.0k
                    )
149
3.30k
                    goto not_exact;
150
24.7k
                break;
151
45.5k
            case s_line:
152
45.5k
            case s_dash:
153
53.0k
            case s_line_close:
154
53.0k
                if (!(pseg->pt.x == prev.x || pseg->pt.y == prev.y))
155
14.6k
                    goto not_exact;
156
38.3k
                break;
157
38.3k
            case s_gap:
158
0
            default:            /* other/unknown segment type */
159
0
                goto not_exact;
160
81.1k
            }
161
17.7k
        result = 0;             /* exact result */
162
17.7k
    }
163
35.7k
not_exact:
164
35.7k
    if (result) {
165
17.9k
        if (!gx_path_has_curves(ppath) && gx_path_subpath_count(ppath) <= 1 &&
166
17.9k
            (psub == 0 || (pseg = psub->next) == 0 ||
167
15.3k
             (pseg = pseg->next) == 0 || pseg->type == s_line_close))
168
17.9k
            DO_NOTHING;
169
14.0k
        else {
170
14.0k
            float factor = join_expansion_factor(pgs, pgs->line_params.join);
171
172
14.0k
            if (pgs->line_params.curve_join >= 0)
173
0
                factor = max(factor, join_expansion_factor(pgs,
174
14.0k
                                (gs_line_join)pgs->line_params.curve_join));
175
14.0k
            expand *= factor;
176
14.0k
        }
177
17.9k
    }
178
179
    /* Short-cut gs_bbox_transform. */
180
35.7k
    {
181
35.7k
        float exx = expand * cx;
182
35.7k
        float exy = expand * cy;
183
35.7k
        int code = set_float2fixed_vars(ppt->x, exx);
184
185
35.7k
        if (code < 0)
186
496
            return code;
187
35.2k
        code = set_float2fixed_vars(ppt->y, exy);
188
35.2k
        if (code < 0)
189
0
            return code;
190
35.2k
    }
191
192
35.2k
    return result;
193
35.2k
}
194
static float
195
join_expansion_factor(const gs_gstate *pgs, gs_line_join join)
196
14.0k
{
197
14.0k
    switch (join) {
198
13.9k
    case gs_join_miter: return pgs->line_params.miter_limit;
199
0
    case gs_join_triangle: return 2.0;
200
62
    default: return 1.0;
201
14.0k
    }
202
14.0k
}
203
204
/*
205
 * Structure for a partial line (passed to the drawing routine).
206
 * Two of these are required to do joins right.
207
 * Each endpoint includes the two ends of the cap as well,
208
 * and the deltas for square, round, and triangular cap computation.
209
 *
210
 * The two base values for computing the caps of a partial line are the
211
 * width and the end cap delta.  The width value is one-half the line
212
 * width (suitably transformed) at 90 degrees counter-clockwise
213
 * (in device space, but with "90 degrees" interpreted in *user*
214
 * coordinates) at the end (as opposed to the origin) of the line.
215
 * The cdelta value is one-half the transformed line width in the same
216
 * direction as the line.  From these, we compute two other values at each
217
 * end of the line: co and ce, which are the ends of the cap.
218
 * Note that the cdelta values at o are the negatives of the values at e,
219
 * as are the offsets from p to co and ce.
220
 *
221
 * Initially, only o.p, e.p, e.cdelta, width, and thin are set.
222
 * compute_caps fills in the rest.
223
 */
224
typedef gs_fixed_point *p_ptr;
225
typedef struct endpoint_s {
226
    gs_fixed_point p;           /* the end of the line */
227
    gs_fixed_point co, ce;      /* ends of the cap, p +/- width */
228
    gs_fixed_point cdelta;      /* +/- cap length */
229
} endpoint;
230
typedef endpoint *ep_ptr;
231
typedef const endpoint *const_ep_ptr;
232
typedef struct partial_line_s {
233
    endpoint o;                 /* starting coordinate */
234
    endpoint e;                 /* ending coordinate */
235
    gs_fixed_point width;       /* one-half line width, see above */
236
    gs_fixed_point vector;      /* The line segment direction */
237
    bool thin;                  /* true if minimum-width line */
238
} partial_line;
239
typedef partial_line *pl_ptr;
240
241
/* As we stroke a path, we run through the line segments that make it up.
242
 * We gather each line segment together with any degenerate line segments
243
 * that follow it (call this set "prev"), and then 'join them' to the next
244
 * line segment (and any degenerate line segments that follow it) (if there
245
 * is one) (call this "current").
246
 *
247
 * In order to get the joins right we need to keep flags about both
248
 * prev and current, and whether they originally came from arcs.
249
 */
250
typedef enum note_flags {
251
252
    /* If set, all the line segments that make up current come from arcs. */
253
    nf_all_from_arc       = 1,
254
255
    /* If set, at least one of the line segments that make up current, come
256
     * from arcs. */
257
    nf_some_from_arc      = 2,
258
259
    /* If set then this segment should have a dash cap on the start rather
260
     * than a start cap. */
261
    nf_dash_head          = 4,
262
263
    /* If set then this segment should have a dash cap on the end rather
264
     * than an end cap. */
265
    nf_dash_tail          = 8,
266
267
    /* If set, all the line segments that make up prev come from arcs. */
268
    nf_prev_all_from_arc  = 16,
269
270
    /* If set, at least one of the line segment that make up prev, come from
271
     * arcs. */
272
    nf_prev_some_from_arc = 32,
273
274
    /* If set then prev should have a dash cap on the start rather
275
     * than a start cap. */
276
    nf_prev_dash_head     = 64,
277
278
    /* If set then prev should have a dash cap on the end rather
279
     * than an end cap. */
280
    nf_prev_dash_tail     = 128
281
282
} note_flags;
283
284
/* Macro to combine the prev and current arc_flags. After applying this
285
 * macro, the bits in the result have the following meanings:
286
 *  nf_all_from_arc    set if all the components of current and prev
287
 *                     come from an Arc.
288
 *  nf_some_from_arc   set if any of the components of current and
289
 *                     prev come from an Arc.
290
 *  nf_dash_head       set if prev should have a dash cap rather than
291
 *                     a start cap.
292
 *  nf_dash_tail       set if prev should have a dash cap rather than
293
 *                     an end cap.
294
 */
295
#define COMBINE_FLAGS(F) \
296
133k
    (((F>>4) | ((F) & nf_some_from_arc)) & \
297
133k
     (((F) & nf_all_from_arc) ? ~0 : ~nf_all_from_arc))
298
299
/* Assign a point.  Some compilers would do this with very slow code */
300
/* if we simply implemented it as an assignment. */
301
#define ASSIGN_POINT(pp, p)\
302
247k
  ((pp)->x = (p).x, (pp)->y = (p).y)
303
304
/* Other forward declarations */
305
static bool width_is_thin(pl_ptr);
306
static void adjust_stroke(gx_device *, pl_ptr, const gs_gstate *, bool, bool, note_flags);
307
static int line_join_points(const gx_line_params * pgs_lp,
308
                             pl_ptr plp, pl_ptr nplp,
309
                             gs_fixed_point * join_points,
310
                             const gs_matrix * pmat, gs_line_join join,
311
                             bool reflected);
312
static int line_join_points_fast_cw(const gx_line_params * pgs_lp,
313
                                    pl_ptr plp, pl_ptr nplp,
314
                                    gs_fixed_point * rjoin_points,
315
                                    const gs_matrix * pmat,
316
                                    gs_line_join join);
317
static int line_join_points_fast_ccw(const gx_line_params * pgs_lp,
318
                                     pl_ptr plp, pl_ptr nplp,
319
                                     gs_fixed_point * join_points,
320
                                     const gs_matrix * pmat,
321
                                     gs_line_join join);
322
static void compute_caps(pl_ptr);
323
static int add_points(gx_path *, const gs_fixed_point *,
324
                       int, bool);
325
static int add_pie_join(gx_path *, pl_ptr, pl_ptr, bool, bool);
326
static int add_pie_join_fast_cw(gx_path *, pl_ptr, pl_ptr, bool);
327
static int add_pie_join_fast_ccw(gx_path *, pl_ptr, pl_ptr, bool);
328
static int add_round_cap(gx_path *, const_ep_ptr);
329
static int add_pie_cap(gx_path *, const_ep_ptr);
330
static int cap_points(gs_line_cap, const_ep_ptr,
331
                       gs_fixed_point * /*[3] */ );
332
static int join_under_pie(gx_path *, pl_ptr, pl_ptr, bool);
333
334
int
335
gx_default_stroke_path_shading_or_pattern(gx_device        * pdev,
336
                                    const gs_gstate        * pgs_orig,
337
                                          gx_path          * ppath,
338
                                    const gx_stroke_params * params,
339
                                    const gx_drawing_color * pdevc,
340
                                    const gx_clip_path     * pcpath)
341
8
{
342
8
    gs_gstate *pgs = (gs_gstate *)pgs_orig; /* Nasty cast away const! */
343
8
    gs_logical_operation_t save_lop = gs_current_logical_op_inline(pgs);
344
8
    gx_device_cpath_accum adev;
345
8
    gx_device_color devc;
346
8
    gx_clip_path stroke_as_clip_path;
347
8
    int code;
348
8
    gs_fixed_rect dev_clip_rect = { {min_fixed, min_fixed}, {max_fixed, max_fixed}};
349
350
    /* We want to make a image of the stroke as a clip path, so
351
     * create an empty structure on the stack. */
352
8
    code = gx_cpath_init_local_shared_nested(&stroke_as_clip_path, NULL, pdev->memory, 1);
353
8
    if (code < 0)
354
0
        return code;
355
    /* Now we make an accumulator device that will fill that out. */
356
8
    gx_cpath_accum_begin(&adev, stroke_as_clip_path.path.memory, false);
357
8
    (*dev_proc(pdev, get_clipping_box))(pdev, &dev_clip_rect);
358
8
    gx_cpath_accum_set_cbox(&adev, &dev_clip_rect);
359
8
    set_nonclient_dev_color(&devc, 0); /* arbitrary, but not transparent */
360
8
    gs_set_logical_op_inline(pgs, lop_default);
361
    /* Stroke the path to the accumulator. */
362
8
    code = gx_stroke_path_only(ppath, NULL, (gx_device *)&adev, pgs, params,
363
8
                               &devc, pcpath);
364
    /* Now extract the accumulated path into stroke_as_clip_path. */
365
8
    if (code < 0 || (code = gx_cpath_accum_end(&adev, &stroke_as_clip_path)) < 0)
366
0
        gx_cpath_accum_discard(&adev);
367
8
    gs_set_logical_op_inline(pgs, save_lop);
368
8
    if (code >= 0)
369
8
    {
370
        /* Now, fill a rectangle with the original color through that
371
         * clip path. */
372
8
        gs_fixed_rect clip_box, shading_box;
373
8
        gs_int_rect cb;
374
8
        gx_device_clip cdev;
375
376
8
        gx_cpath_outer_box(&stroke_as_clip_path, &clip_box);
377
        /* This is horrid. If the pdevc is a shading color, then the
378
         * fill_rectangle routine requires us to have intersected it
379
         * with the shading rectangle first. If we don't do this,
380
         * ps3fts/470-01.ps goes wrong. */
381
8
        if (gx_dc_is_pattern2_color(pdevc) &&
382
8
            gx_dc_pattern2_get_bbox(pdevc, &shading_box) > 0)
383
0
        {
384
0
            rect_intersect(clip_box, shading_box);
385
0
        }
386
8
        cb.p.x = fixed2int_pixround(clip_box.p.x);
387
8
        cb.p.y = fixed2int_pixround(clip_box.p.y);
388
8
        cb.q.x = fixed2int_pixround(clip_box.q.x);
389
8
        cb.q.y = fixed2int_pixround(clip_box.q.y);
390
8
        gx_make_clip_device_on_stack(&cdev, &stroke_as_clip_path, pdev);
391
8
        code = pdevc->type->fill_rectangle(pdevc,
392
8
                        cb.p.x, cb.p.y, cb.q.x - cb.p.x, cb.q.y - cb.p.y,
393
8
                        (gx_device *)&cdev, pgs->log_op, NULL);
394
8
        gx_destroy_clip_device_on_stack(&cdev);
395
8
    }
396
8
    gx_cpath_free(&stroke_as_clip_path, "gx_default_stroke_path_shading_or_pattern");
397
398
8
    return code;
399
8
}
400
401
/* Define the default implementation of the device stroke_path procedure. */
402
int
403
gx_default_stroke_path(gx_device * dev, const gs_gstate * pgs,
404
                       gx_path * ppath, const gx_stroke_params * params,
405
                       const gx_drawing_color * pdevc,
406
                       const gx_clip_path * pcpath)
407
28.9k
{
408
28.9k
    if (gx_dc_is_pattern2_color(pdevc) ||
409
28.9k
        pdevc->type == &gx_dc_type_data_ht_colored ||
410
28.9k
        (gx_dc_is_pattern1_color(pdevc) &&
411
28.9k
         gx_pattern_tile_is_clist(pdevc->colors.pattern.p_tile)))
412
8
        return gx_default_stroke_path_shading_or_pattern(dev, pgs, ppath, params,
413
8
                                                         pdevc, pcpath);
414
28.9k
    else
415
28.9k
        return gx_stroke_path_only(ppath, (gx_path *) 0, dev, pgs, params,
416
28.9k
                                   pdevc, pcpath);
417
28.9k
}
418
419
/* Fill a partial stroked path.  Free variables: */
420
/* to_path, stroke_path_body, fill_params, always_thin, pgs, dev, pdevc, */
421
/* code, ppath, exit(label). */
422
#define FILL_STROKE_PATH(dev, thin, pcpath, final)\
423
95.8k
  if(to_path==&stroke_path_body && !gx_path_is_void(&stroke_path_body) &&\
424
95.8k
     (final || lop_is_idempotent(pgs->log_op))) {\
425
58.7k
    fill_params.adjust.x = STROKE_ADJUSTMENT(thin, pgs, x);\
426
58.7k
    fill_params.adjust.y = STROKE_ADJUSTMENT(thin, pgs, y);\
427
58.7k
    if (to_path_reverse != NULL) {\
428
0
        code = gx_join_path_and_reverse(to_path, to_path_reverse);\
429
0
        if(code < 0) goto exit;\
430
0
    }\
431
58.7k
    code = gx_fill_path_only(to_path, dev, pgs, &fill_params, pdevc, pcpath);\
432
58.7k
    gx_path_free(&stroke_path_body, "fill_stroke_path");\
433
58.7k
    if ( code < 0 ) goto exit;\
434
58.7k
    gx_path_init_local(&stroke_path_body, ppath->memory);\
435
58.7k
  }
436
437
/*
438
 * Define the internal procedures that stroke a partial_line
439
 * (the first pl_ptr argument).  If both partial_lines are non-null,
440
 * the procedure creates an appropriate join; otherwise, the procedure
441
 * creates an end cap.  If the first int is 0, the procedure also starts
442
 * with an appropriate cap.
443
 */
444
#define stroke_line_proc(proc)\
445
  int proc(gx_path *, gx_path *, bool ensure_closed, int, pl_ptr, pl_ptr,\
446
           const gx_device_color *, gx_device *, const gs_gstate *,\
447
           const gx_stroke_params *, const gs_fixed_rect *, int,\
448
           gs_line_join, bool, note_flags)
449
typedef stroke_line_proc((*stroke_line_proc_t));
450
451
static stroke_line_proc(stroke_add);
452
static stroke_line_proc(stroke_add_compat);
453
static stroke_line_proc(stroke_add_fast);
454
static stroke_line_proc(stroke_fill);
455
static int stroke_add_initial_cap_compat(gx_path * ppath, pl_ptr plp, bool adlust_longitude,
456
           const gx_device_color * pdevc, gx_device * dev,
457
           const gs_gstate * pgs);
458
459
/* Define the orientations we handle specially. */
460
typedef enum {
461
    orient_other = 0,
462
    orient_portrait,            /* [xx 0 0 yy tx ty] */
463
    orient_landscape            /* [0 xy yx 0 tx ty] */
464
} orientation;
465
466
/*
467
 * Internal function used to merge the 2 sides of a stroked path.
468
 * path contains the 'forward' side, rpath contains the 'reversed' side.
469
 * Reverse rpath, then append it to path.
470
 *
471
 * If path is closed, then rpath should be too. If path is open, then the
472
 * starting and ending points of both paths should be the same, so as to
473
 * guarantee a closed path.
474
 */
475
static int
476
gx_join_path_and_reverse(gx_path * path, gx_path * rpath)
477
0
{
478
0
    int code;
479
480
0
    if (gx_path_is_void(rpath))
481
0
        return 0;
482
0
     code = gx_path_append_reversed(rpath, path);
483
0
    if (code < 0)
484
0
        return code;
485
486
0
    gx_path_free(rpath, "gx_join_path_and_reverse");
487
0
    gx_path_init_local(rpath, path->memory);
488
489
0
    return gx_path_close_subpath(path);
490
0
}
491
492
/*
493
 * Stroke a path.  If to_path != 0, append the stroke outline to it;
494
 * if to_path == 0, draw the strokes on pdev.
495
 *
496
 * Note that gx_stroke_path_only with to_path != NULL may clip the path to
497
 * the clipping path, as for to_path == NULL.  This is almost never
498
 * what is wanted.
499
 */
500
static int
501
gx_stroke_path_only_aux(gx_path          *ppath, /* lgtm[cpp/use-of-goto] */
502
                        gx_path          *to_path,
503
                        gx_device        *pdev,
504
                  const gs_gstate        *pgs,
505
                  const gx_stroke_params *params,
506
                  const gx_device_color  *pdevc,
507
                  const gx_clip_path     *pcpath)
508
28.9k
{
509
28.9k
    bool CPSI_mode = gs_currentcpsimode(pgs->memory);
510
28.9k
    bool traditional = CPSI_mode | params->traditional;
511
28.9k
    stroke_line_proc_t line_proc =
512
28.9k
               ((to_path == 0 && !gx_dc_is_pattern1_color_clist_based(pdevc))
513
28.9k
                      ? (lop_is_idempotent(pgs->log_op) ? stroke_fill : stroke_add) :
514
28.9k
                        (traditional ? stroke_add_compat : stroke_add_fast));
515
28.9k
    gs_fixed_rect ibox, cbox;
516
28.9k
    gx_device_clip cdev;
517
28.9k
    gx_device *dev = pdev;
518
28.9k
    int code = 0;
519
28.9k
    gx_fill_params fill_params;
520
28.9k
    const gx_line_params *pgs_lp = gs_currentlineparams_inline(pgs);
521
28.9k
    int dash_count = pgs_lp->dash.pattern_size;
522
28.9k
    gx_path fpath, dpath;
523
28.9k
    gx_path stroke_path_body;
524
28.9k
    gx_path stroke_path_reverse;
525
28.9k
    gx_path *to_path_reverse = NULL;
526
28.9k
    const gx_path *spath;
527
28.9k
    float xx = pgs->ctm.xx, xy = pgs->ctm.xy;
528
28.9k
    float yx = pgs->ctm.yx, yy = pgs->ctm.yy;
529
    /*
530
     * We are dealing with a reflected coordinate system
531
     * if transform(1,0) is counter-clockwise from transform(0,1).
532
     * See the note in stroke_add for the algorithm.
533
     */
534
28.9k
    int uniform;
535
28.9k
    bool reflected;
536
28.9k
    orientation orient =
537
28.9k
        (
538
28.9k
#ifdef OPTIMIZE_ORIENTATION
539
28.9k
         is_fzero2(xy, yx) ?
540
28.9k
         (uniform = (xx == yy ? 1 : xx == -yy ? -1 : 0),
541
28.9k
          reflected = (uniform ? uniform < 0 : (xx < 0) != (yy < 0)),
542
28.9k
          orient_portrait) :
543
28.9k
         is_fzero2(xx, yy) ?
544
0
         (uniform = (xy == yx ? -1 : xy == -yx ? 1 : 0),
545
0
          reflected = (uniform ? uniform < 0 : (xy < 0) == (yx < 0)),
546
0
          orient_landscape) :
547
    /* We should optimize uniform rotated coordinate systems */
548
    /* here as well, but we don't. */
549
1
#endif
550
1
         (uniform = 0,
551
1
          reflected = xy * yx > xx * yy,
552
1
          orient_other));
553
28.9k
    const segment_notes not_first = sn_not_first;
554
28.9k
    gs_line_join curve_join =
555
28.9k
        (pgs_lp->curve_join >= 0 ? (gs_line_join)pgs_lp->curve_join :
556
28.9k
         pgs_lp->join == gs_join_none || pgs_lp->join == gs_join_round ?
557
28.3k
            gs_join_bevel : pgs_lp->join);
558
28.9k
    float line_width = pgs_lp->half_width;      /* (*half* the line width) */
559
28.9k
    bool always_thin;
560
28.9k
    double line_width_and_scale;
561
28.9k
    double device_line_width_scale = 0; /* Quiet compiler. */
562
28.9k
    double device_dot_length = pgs_lp->dot_length * fixed_1;
563
28.9k
    const subpath *psub;
564
28.9k
    gs_matrix initial_matrix;
565
28.9k
    bool initial_matrix_reflected, flattened_path = false;
566
28.9k
    note_flags flags;
567
568
28.9k
    (*dev_proc(pdev, get_initial_matrix)) (pdev, &initial_matrix);
569
28.9k
    initial_matrix_reflected = initial_matrix.xy * initial_matrix.yx >
570
28.9k
                               initial_matrix.xx * initial_matrix.yy;
571
572
#ifdef DEBUG
573
    if (gs_debug_c('o')) {
574
        int i;
575
576
        dmlprintf4(ppath->memory, "[o]half_width=%f, start_cap=%d, end_cap=%d, dash_cap=%d,\n",
577
                   pgs_lp->half_width, (int)pgs_lp->start_cap,
578
                   (int)pgs_lp->end_cap, (int)pgs_lp->dash_cap);
579
        dmlprintf3(ppath->memory, "   join=%d, miter_limit=%f, miter_check=%f,\n",
580
                   (int)pgs_lp->join, pgs_lp->miter_limit,
581
                   pgs_lp->miter_check);
582
        dmlprintf1(ppath->memory, "   dash pattern=%d", dash_count);
583
        for (i = 0; i < dash_count; i++)
584
            dmprintf1(ppath->memory, ",%f", pgs_lp->dash.pattern[i]);
585
        dmputs(ppath->memory, ",\n");
586
        dmlprintf4(ppath->memory, "\toffset=%f, init(ink_on=%d, index=%d, dist_left=%f)\n",
587
                   pgs_lp->dash.offset, pgs_lp->dash.init_ink_on,
588
                   pgs_lp->dash.init_index, pgs_lp->dash.init_dist_left);
589
    }
590
#endif
591
592
28.9k
    gx_path_bbox(ppath, &ibox);
593
    /* Expand the path bounding box by the scaled line width. */
594
28.9k
    {
595
28.9k
        gs_fixed_point expansion;
596
597
28.9k
        if (gx_stroke_path_expansion(pgs, ppath, &expansion) < 0) {
598
            /* The expansion is so large it caused a limitcheck. */
599
480
            ibox.p.x = ibox.p.y = min_fixed;
600
480
            ibox.q.x = ibox.q.y = max_fixed;
601
28.5k
        } else {
602
28.5k
            expansion.x += pgs->fill_adjust.x;
603
28.5k
            expansion.y += pgs->fill_adjust.y;
604
            /*
605
             * It's theoretically possible for the following computations to
606
             * overflow, so we need to check for this.
607
             */
608
28.5k
            ibox.p.x = (ibox.p.x < min_fixed + expansion.x ? min_fixed :
609
28.5k
                        ibox.p.x - expansion.x);
610
28.5k
            ibox.p.y = (ibox.p.y < min_fixed + expansion.y ? min_fixed :
611
28.5k
                        ibox.p.y - expansion.y);
612
28.5k
            ibox.q.x = (ibox.q.x > max_fixed - expansion.x ? max_fixed :
613
28.5k
                        ibox.q.x + expansion.x);
614
28.5k
            ibox.q.y = (ibox.q.y > max_fixed - expansion.y ? max_fixed :
615
28.5k
                        ibox.q.y + expansion.y);
616
28.5k
        }
617
28.9k
    }
618
    /* Check the expanded bounding box against the clipping regions. */
619
28.9k
    if (pcpath)
620
12.6k
        gx_cpath_inner_box(pcpath, &cbox);
621
16.3k
    else if (pdevc)
622
16.2k
        (*dev_proc(pdev, get_clipping_box)) (pdev, &cbox);
623
49
    else {
624
        /* This is strokepath, not stroke.  Don't clip. */
625
49
        cbox = ibox;
626
49
    }
627
28.9k
    if (!rect_within(ibox, cbox)) {
628
        /* Intersect the path box and the clip bounding box. */
629
        /* If the intersection is empty, this call is a no-op. */
630
28.6k
        gs_fixed_rect bbox;
631
632
28.6k
        if (pcpath) {
633
12.3k
            gx_cpath_outer_box(pcpath, &bbox);
634
12.3k
            if_debug4m('f', ppath->memory, "   outer_box=(%g,%g),(%g,%g)\n",
635
12.3k
                       fixed2float(bbox.p.x), fixed2float(bbox.p.y),
636
12.3k
                       fixed2float(bbox.q.x), fixed2float(bbox.q.y));
637
12.3k
            rect_intersect(ibox, bbox);
638
12.3k
        } else
639
28.6k
            rect_intersect(ibox, cbox);
640
28.6k
        if (ibox.p.x >= ibox.q.x || ibox.p.y >= ibox.q.y) {
641
            /* Intersection of boxes is empty! */
642
4.21k
            return 0;
643
4.21k
        }
644
        /*
645
         * The path is neither entirely inside the inner clip box
646
         * nor entirely outside the outer clip box.
647
         * If we had to flatten the path, this is where we would
648
         * recompute its bbox and make the tests again,
649
         * but we don't bother right now.
650
         */
651
        /*
652
         * If there is a clipping path, set up a clipping device.
653
         * for stroke_fill because, because the latter uses low level methods
654
         * which don't accept a clipping path.
655
         * Note that in some cases stroke_fill appends the path to stroke_path_body
656
         * instead a real painting, and it is painted with FILL_STROKE_PATH.
657
         *
658
         * Contrary to that, FILL_STROKE_PATH paints a path with
659
         * the fill_path method, which handles a clipping path,
660
         * so we don't pass the clipper device to FILL_STROKE_PATH
661
         * to prevent an appearence of superposing clippers.
662
         */
663
24.3k
        if (pcpath && line_proc == stroke_fill) {
664
8.22k
            gx_make_clip_device_on_stack(&cdev, pcpath, pdev);
665
8.22k
            cdev.max_fill_band = pdev->max_fill_band;
666
8.22k
            dev = (gx_device *)&cdev;
667
8.22k
        }
668
24.3k
    }
669
24.7k
    fill_params.rule = gx_rule_winding_number;
670
24.7k
    fill_params.flatness = pgs->flatness;
671
24.7k
    if (line_width < 0)
672
0
        line_width = -line_width;
673
24.7k
    line_width_and_scale = line_width * (double)int2fixed(1);
674
24.7k
    if (is_fzero(line_width))
675
43
        always_thin = true;
676
24.7k
    else {
677
24.7k
        float xa, ya;
678
679
24.7k
        switch (orient) {
680
24.7k
            case orient_portrait:
681
24.7k
                xa = xx, ya = yy;
682
24.7k
                goto sat;
683
0
            case orient_landscape:
684
0
                xa = xy, ya = yx;
685
24.7k
              sat:
686
24.7k
                if (xa < 0)
687
0
                    xa = -xa;
688
24.7k
                if (ya < 0)
689
24.7k
                    ya = -ya;
690
24.7k
                always_thin = (max(xa, ya) * line_width < 0.5);
691
24.7k
                if (!always_thin && uniform) {  /* Precompute a value we'll need later. */
692
18.4k
                    device_line_width_scale = line_width_and_scale * xa;
693
18.4k
                }
694
24.7k
                break;
695
0
            default:
696
0
                {
697
                    /* The check is more complicated, but it's worth it. */
698
                    /* Compute radii of the transformed round brush. */
699
                    /* Let x = [a, sqrt(1-a^2)]'
700
                       radius^2 is an extremum of :
701
                       rr(a)=(CTM*x)^2 = (a*xx + sqrt(1 - a^2)*xy)^2 + (a*yx + sqrt(1 - a^2)*yy)^2
702
                       With solving D(rr(a),a)==0, got :
703
                       max_rr = (xx^2 + xy^2 + yx^2 + yy^2 + sqrt(((xy + yx)^2 + (xx - yy)^2)*((xy - yx)^2 + (xx + yy)^2)))/2.
704
                       r = sqrt(max_rr);
705
                       Well we could use eigenvalues of the quadratic form,
706
                       but it gives same result with a bigger calculus.
707
                     */
708
0
                    double max_rr = ((double)(xx*xx + xy*xy + yx*yx + yy*yy) +
709
0
                                     sqrt((double)((xy + yx)*(xy + yx) + (xx - yy)*(xx - yy)) *
710
0
                                                  ((xy - yx)*(xy - yx) + (xx + yy)*(xx + yy))
711
0
                                          )
712
0
                                     )/2;
713
714
0
                    always_thin = max_rr * line_width * line_width < 0.25;
715
0
                }
716
24.7k
        }
717
24.7k
    }
718
24.7k
    if_debug7m('o', ppath->memory, "[o]ctm=(%g,%g,%g,%g,%g,%g) thin=%d\n",
719
24.7k
              xx, xy, yx, yy, pgs->ctm.tx, pgs->ctm.ty, always_thin);
720
24.7k
    if (device_dot_length != 0) {
721
        /*
722
         * Compute the dot length in device space.  We can't do this
723
         * quite right for non-uniform coordinate systems; too bad.
724
         */
725
0
        gs_matrix mat;
726
0
        const gs_matrix *pmat;
727
728
0
        if (pgs_lp->dot_length_absolute) {
729
0
            gs_deviceinitialmatrix(pdev, &mat);
730
0
            pmat = &mat;
731
0
        } else
732
0
            pmat = (const gs_matrix *)&pgs->ctm;
733
0
        device_dot_length *= fabs(pmat->xy) + fabs(pmat->yy);
734
0
    }
735
    /* Start by flattening the path.  We should do this on-the-fly.... */
736
24.7k
    if (!gx_path_has_curves(ppath) && !gx_path_has_long_segments(ppath)) {
737
        /* don't need to flatten */
738
24.6k
        if (!ppath->first_subpath) {
739
3.43k
            if (dev == (gx_device *)&cdev)
740
2.87k
                gx_destroy_clip_device_on_stack(&cdev);
741
3.43k
            return 0;
742
3.43k
        }
743
21.2k
        spath = ppath;
744
21.2k
    } else {
745
105
        gx_path_init_local(&fpath, ppath->memory);
746
105
        if ((code = gx_path_add_flattened_for_stroke(ppath, &fpath,
747
105
            params->flatness, pgs)) < 0) {
748
0
            if (dev == (gx_device *)&cdev)
749
0
                gx_destroy_clip_device_on_stack(&cdev);
750
0
            return code;
751
0
        }
752
105
        spath = &fpath;
753
105
        flattened_path = true;
754
105
    }
755
21.3k
    if (dash_count) {
756
8
        float max_dash_len = 0;
757
8
        float expand_squared;
758
8
        int i;
759
8
        float adjust = (float)pgs->fill_adjust.x;
760
8
        if (adjust > (float)pgs->fill_adjust.y)
761
0
            adjust = (float)pgs->fill_adjust.y;
762
24
        for (i = 0; i < dash_count; i++) {
763
16
            if (max_dash_len < pgs_lp->dash.pattern[i])
764
16
                max_dash_len = pgs_lp->dash.pattern[i];
765
16
        }
766
8
        expand_squared = pgs->ctm.xx * pgs->ctm.yy - pgs->ctm.xy * pgs->ctm.yx;
767
8
        if (expand_squared < 0)
768
8
            expand_squared = -expand_squared;
769
8
        expand_squared *= max_dash_len * max_dash_len;
770
        /* Wide lines in curves can show dashes up, so fudge to allow for
771
         * this. */
772
8
        if (pgs->line_params.half_width > 1)
773
0
            adjust /= pgs->line_params.half_width;
774
8
        if (expand_squared*65536.0f >= (float)(adjust*adjust)) {
775
8
            gx_path_init_local(&dpath, ppath->memory);
776
8
            code = gx_path_add_dash_expansion(spath, &dpath, pgs);
777
8
            if (code < 0)
778
0
                goto exf;
779
8
            spath = &dpath;
780
8
        } else {
781
0
            dash_count = 0;
782
0
        }
783
8
    }
784
21.3k
    if (to_path == 0) {
785
        /* We might try to defer this if it's expensive.... */
786
21.3k
        to_path = &stroke_path_body;
787
21.3k
        gx_path_init_local(&stroke_path_body, ppath->memory);
788
21.3k
    }
789
21.3k
    if (line_proc == stroke_add_fast) {
790
0
        to_path_reverse = &stroke_path_reverse;
791
0
        gx_path_init_local(&stroke_path_reverse, ppath->memory);
792
0
    }
793
45.6k
    for (psub = spath->first_subpath; psub != 0;) {
794
24.2k
        int index = 0;
795
24.2k
        const segment *pseg = (const segment *)psub;
796
24.2k
        fixed x = pseg->pt.x;
797
24.2k
        fixed y = pseg->pt.y;
798
24.2k
        bool is_closed = ((const subpath *)pseg)->is_closed;
799
24.2k
        partial_line pl, pl_prev, pl_first;
800
24.2k
        bool zero_length = true;
801
24.2k
        int pseg_notes = pseg->notes;
802
803
24.2k
        flags = nf_all_from_arc;
804
805
        /* Run through each segment in the current path, drawing each segment
806
         * delayed by 1 - that is, when we're looking at segment n, we draw
807
         * (or not) segment n-1. This delay allows us to always know whether
808
         * to join or cap the line. */
809
100k
        while ((pseg = pseg->next) != 0 &&
810
100k
               pseg->type != s_start
811
76.7k
            ) {
812
            /* Compute the width parameters in device space. */
813
            /* We work with unscaled values, for speed. */
814
76.7k
            fixed sx, udx, sy, udy;
815
76.7k
            bool is_dash_segment;
816
817
76.7k
            pseg_notes = pseg->notes;
818
819
76.7k
         d2:is_dash_segment = false;
820
76.7k
         d1:if (pseg->type == s_dash) {
821
0
                dash_segment *pd = (dash_segment *)pseg;
822
823
0
                sx = pd->pt.x;
824
0
                sy = pd->pt.y;
825
0
                udx = pd->tangent.x;
826
0
                udy = pd->tangent.y;
827
0
                is_dash_segment = true;
828
76.7k
            } else if (pseg->type == s_gap) {
829
0
                sx = pseg->pt.x;
830
0
                sy = pseg->pt.y;
831
0
                udx = sx - x;
832
0
                udy = sy - y;
833
0
                is_dash_segment = true;
834
76.7k
            } else {
835
76.7k
                sx = pseg->pt.x;
836
76.7k
                sy = pseg->pt.y;
837
76.7k
                udx = sx - x;
838
76.7k
                udy = sy - y;
839
76.7k
            }
840
76.7k
            zero_length &= ((udx | udy) == 0);
841
76.7k
            pl.o.p.x = x, pl.o.p.y = y;
842
76.7k
          d:flags = (((pseg_notes & sn_not_first) ?
843
72.9k
                      ((flags & nf_all_from_arc) | nf_some_from_arc) : 0) |
844
76.7k
                     ((pseg_notes & sn_dash_head) ? nf_dash_head : 0)    |
845
76.7k
                     ((pseg_notes & sn_dash_tail) ? nf_dash_tail : 0)    |
846
76.7k
                     (flags & ~nf_all_from_arc));
847
76.7k
            pl.e.p.x = sx, pl.e.p.y = sy;
848
76.7k
            if (!(udx | udy) || pseg->type == s_dash || pseg->type == s_gap) { /* degenerate or short */
849
                /*
850
                 * If this is the first segment of the subpath,
851
                 * check the entire subpath for degeneracy.
852
                 * Otherwise, ignore the degenerate segment.
853
                 */
854
2.26k
                if (index != 0 && pseg->type != s_dash && pseg->type != s_gap)
855
2.17k
                {
856
2.17k
                    if (pseg->next == NULL || pseg->next->type == s_start)
857
2.12k
                        continue;
858
50
                    pseg = pseg->next;
859
                    /* We're skipping a degenerate path segment; if it was
860
                     * labelled as being the first from a curve, then make
861
                     * sure the one we're skipping to is also labelled as
862
                     * being the first from a curve, otherwise we can get
863
                     * improper joins being used. See Bug 696466. */
864
50
                    pseg_notes = (((pseg_notes & sn_not_first) == 0) ?
865
50
                                  (pseg->notes & ~sn_not_first) :
866
50
                                  pseg->notes);
867
50
                    goto d2;
868
2.17k
                }
869
                /* Check for a degenerate subpath. */
870
104
                while ((pseg = pseg->next) != 0 &&
871
104
                       pseg->type != s_start
872
85
                    ) {
873
19
                    if (is_dash_segment)
874
0
                        break;
875
19
                    if (pseg->type == s_dash || pseg->type == s_gap)
876
0
                        goto d1;
877
19
                    sx = pseg->pt.x, udx = sx - x;
878
19
                    sy = pseg->pt.y, udy = sy - y;
879
19
                    if (udx | udy) {
880
0
                        zero_length = false;
881
0
                        goto d;
882
0
                    }
883
19
                }
884
85
                if (pgs_lp->dot_length == 0 &&
885
85
                    pgs_lp->start_cap != gs_cap_round &&
886
85
                    pgs_lp->end_cap != gs_cap_round &&
887
85
                    !is_dash_segment) {
888
                    /* From PLRM, stroke operator :
889
                       If a subpath is degenerate (consists of a single-point closed path
890
                       or of two or more points at the same coordinates),
891
                       stroke paints it only if round line caps have been specified */
892
85
                    break;
893
85
                }
894
                /*
895
                 * If the subpath is a dash, take the orientation from the dash segment.
896
                 * Otherwise orient the dot according to the previous segment if
897
                 * any, or else the next segment if any, or else
898
                 * according to the specified dot orientation.
899
                 */
900
0
                {
901
                    /* When passing here, either pseg == NULL or it points to the
902
                       start of the next subpaph. So we can't use pseg
903
                       for determining the segment direction.
904
                       In same time, psub->last may help, so use it. */
905
0
                    const segment *end = psub->last;
906
907
0
                    if (is_dash_segment) {
908
                        /* Nothing. */
909
0
                    } else if (end != 0 && (end->pt.x != x || end->pt.y != y))
910
0
                        sx = end->pt.x, sy = end->pt.y, udx = sx - x, udy = sy - y;
911
0
                }
912
                /*
913
                 * Compute the properly oriented dot length, and then
914
                 * draw the dot like a very short line.
915
                 */
916
0
                if ((udx | udy) == 0) {
917
0
                    if (is_fzero(pgs_lp->dot_orientation.xy)) {
918
                        /* Portrait orientation, dot length = X */
919
0
                        udx = fixed_1;
920
0
                    } else {
921
                        /* Landscape orientation, dot length = Y */
922
0
                        udy = fixed_1;
923
0
                    }
924
0
                }
925
0
                if (sx == x && sy == y && (pseg == NULL || pseg->type == s_start)) {
926
0
                    double scale = device_dot_length /
927
0
                                hypot((double)udx, (double)udy);
928
0
                    fixed udx1, udy1;
929
                    /*
930
                     * If we're using butt caps, make sure the "line" is
931
                     * long enough to show up.
932
                     * Don't apply this with always_thin, becase
933
                     * draw thin line always rounds the length up.
934
                     */
935
0
                    if (!always_thin && (pgs_lp->start_cap == gs_cap_butt ||
936
0
                                         pgs_lp->end_cap   == gs_cap_butt ||
937
0
                                         pgs_lp->dash_cap  == gs_cap_butt)) {
938
0
                        fixed dmax = max(any_abs(udx), any_abs(udy));
939
940
0
                        if (dmax * scale < fixed_1)
941
0
                            scale = (float)fixed_1 / dmax;
942
0
                    }
943
0
                    udx1 = (fixed) (udx * scale);
944
0
                    udy1 = (fixed) (udy * scale);
945
0
                    sx = x + udx1;
946
0
                    sy = y + udy1;
947
0
                }
948
                /*
949
                 * Back up 1 segment to keep the bookkeeping straight.
950
                 */
951
0
                pseg = (pseg != 0 ? pseg->prev : psub->last);
952
0
                if (!is_dash_segment)
953
0
                    goto d;
954
0
                pl.e.p.x = sx;
955
0
                pl.e.p.y = sy;
956
0
            }
957
74.5k
            pl.vector.x = udx;
958
74.5k
            pl.vector.y = udy;
959
74.5k
            if (always_thin) {
960
15.2k
                pl.e.cdelta.x = pl.e.cdelta.y = 0;
961
15.2k
                pl.width.x = pl.width.y = 0;
962
15.2k
                pl.thin = true;
963
59.2k
            } else {
964
59.2k
                if (uniform != 0) {
965
                    /* We can save a lot of work in this case. */
966
                    /* We know orient != orient_other. */
967
58.8k
                    double dpx = udx, dpy = udy;
968
58.8k
                    double wl = device_line_width_scale /
969
58.8k
                    hypot(dpx, dpy);
970
971
58.8k
                    pl.e.cdelta.x = (fixed) (dpx * wl);
972
58.8k
                    pl.e.cdelta.y = (fixed) (dpy * wl);
973
                    /* The width is the cap delta rotated by */
974
                    /* 90 degrees. */
975
58.8k
                    if (initial_matrix_reflected)
976
58.8k
                        pl.width.x = pl.e.cdelta.y, pl.width.y = -pl.e.cdelta.x;
977
0
                    else
978
0
                        pl.width.x = -pl.e.cdelta.y, pl.width.y = pl.e.cdelta.x;
979
58.8k
                    pl.thin = false;    /* if not always_thin, */
980
                    /* then never thin. */
981
982
58.8k
                } else {
983
384
                    gs_point dpt;       /* unscaled */
984
384
                    float wl;
985
986
384
                    code = gs_gstate_idtransform(pgs,
987
384
                                                 (float)udx, (float)udy,
988
384
                                                 &dpt);
989
384
                    if (code < 0) {
990
0
                        dpt.x = 0; dpt.y = 0;
991
                        /* Swallow the error */
992
0
                        code = 0;
993
384
                    } else {
994
384
                        wl = line_width_and_scale /
995
384
                            hypot(dpt.x, dpt.y);
996
                        /* Construct the width vector in */
997
                        /* user space, still unscaled. */
998
384
                        dpt.x *= wl;
999
384
                        dpt.y *= wl;
1000
384
                    }
1001
1002
                    /*
1003
                     * We now compute both perpendicular
1004
                     * and (optionally) parallel half-widths,
1005
                     * as deltas in device space.  We use
1006
                     * a fixed-point, unscaled version of
1007
                     * gs_dtransform.  The second computation
1008
                     * folds in a 90-degree rotation (in user
1009
                     * space, before transforming) in the
1010
                     * direction that corresponds to counter-
1011
                     * clockwise in device space.
1012
                     */
1013
384
                    pl.e.cdelta.x = (fixed) (dpt.x * xx);
1014
384
                    pl.e.cdelta.y = (fixed) (dpt.y * yy);
1015
384
                    if (orient != orient_portrait)
1016
0
                        pl.e.cdelta.x += (fixed) (dpt.y * yx),
1017
0
                            pl.e.cdelta.y += (fixed) (dpt.x * xy);
1018
384
                    if (!reflected ^ initial_matrix_reflected)
1019
384
                        dpt.x = -dpt.x, dpt.y = -dpt.y;
1020
384
                    pl.width.x = (fixed) (dpt.y * xx),
1021
384
                        pl.width.y = -(fixed) (dpt.x * yy);
1022
384
                    if (orient != orient_portrait)
1023
0
                        pl.width.x -= (fixed) (dpt.x * yx),
1024
0
                            pl.width.y += (fixed) (dpt.y * xy);
1025
384
                    pl.thin = width_is_thin(&pl);
1026
384
                }
1027
59.2k
                if (!pl.thin) {
1028
59.2k
                    if (index)
1029
41.3k
                        dev->sgr.stroke_stored = false;
1030
59.2k
                    adjust_stroke(dev, &pl, pgs, false,
1031
59.2k
                            (pseg->prev == 0 || pseg->prev->type == s_start) &&
1032
59.2k
                            (pseg->next == 0 || pseg->next->type == s_start) &&
1033
59.2k
                            (zero_length || !is_closed),
1034
59.2k
                            COMBINE_FLAGS(flags));
1035
59.2k
                    compute_caps(&pl);
1036
59.2k
                }
1037
59.2k
            }
1038
74.5k
            if (index++) {
1039
50.3k
                gs_line_join join =
1040
50.3k
                    (pseg_notes & not_first ? curve_join : pgs_lp->join);
1041
50.3k
                int first;
1042
50.3k
                pl_ptr lptr;
1043
50.3k
                bool ensure_closed;
1044
1045
50.3k
                if (join == gs_join_none) {
1046
                    /* Fake the end of a subpath so we get */
1047
                    /* caps instead of joins. */
1048
0
                    first = 0;
1049
0
                    lptr = 0;
1050
0
                    index = 1;
1051
50.3k
                } else {
1052
50.3k
                    first = (is_closed ? 1 : index - 2);
1053
50.3k
                    lptr = &pl;
1054
50.3k
                }
1055
#ifdef AVOID_JOINING_TO_DASH_GAPS
1056
                if (is_dash_segment) /* Never join to a dash segment */
1057
                    lptr = NULL;
1058
#endif
1059
50.3k
                if (pseg->type == s_gap)
1060
0
                {
1061
0
                    lptr = NULL;
1062
                    /* We are always drawing one line segment behind, so make
1063
                     * sure we don't draw the next one. */
1064
0
                    index = 0;
1065
0
                }
1066
1067
50.3k
                ensure_closed = ((to_path == &stroke_path_body &&
1068
50.3k
                                  lop_is_idempotent(pgs->log_op)) ||
1069
50.3k
                                 (lptr == NULL ? true : lptr->thin));
1070
                /* Draw the PREVIOUS line segment, joining it to lptr (or
1071
                 * capping if lptr == NULL. */
1072
50.3k
                code = (*line_proc) (to_path, to_path_reverse, ensure_closed,
1073
50.3k
                                     first, &pl_prev, lptr,
1074
50.3k
                                     pdevc, dev, pgs, params, &cbox,
1075
50.3k
                                     uniform, join, initial_matrix_reflected,
1076
50.3k
                                     COMBINE_FLAGS(flags));
1077
50.3k
                if (code < 0)
1078
0
                    goto exit;
1079
50.3k
                FILL_STROKE_PATH(pdev, always_thin, pcpath, false);
1080
50.3k
            } else if (pseg->type == s_gap) {
1081
                /* If this segment is a gap, then we don't want to draw it
1082
                 * next time! */
1083
0
                index = 0;
1084
0
            } else
1085
24.1k
                pl_first = pl;
1086
74.5k
            pl_prev = pl;
1087
74.5k
            x = sx, y = sy;
1088
74.5k
            flags = (flags<<4) | nf_all_from_arc;
1089
74.5k
        }
1090
24.2k
        if (index) {
1091
            /* If closed, join back to start, else cap. */
1092
24.1k
            segment_notes notes = (pseg == 0 ?
1093
21.2k
                                   (const segment *)spath->first_subpath :
1094
24.1k
                                   pseg)->notes;
1095
24.1k
            gs_line_join join = (notes & not_first ? curve_join :
1096
24.1k
                                 pgs_lp->join);
1097
24.1k
            gs_line_cap cap;
1098
            /* For some reason, the Borland compiler requires the cast */
1099
            /* in the following statement. */
1100
24.1k
            pl_ptr lptr =
1101
24.1k
                (!is_closed || join == gs_join_none || zero_length ?
1102
17.9k
                 (pl_ptr) 0 : (pl_ptr) & pl_first);
1103
1104
#ifdef AVOID_JOINING_TO_DASH_GAPS
1105
            if (lptr && psub->type == s_dash)
1106
                lptr = NULL;
1107
#endif
1108
            /* If the subpath starts with a gap, then cap, don't join! */
1109
24.1k
            if (lptr && psub->type == s_start && psub->next && psub->next->type == s_gap)
1110
0
                lptr = NULL;
1111
1112
24.1k
            flags = (((notes & sn_not_first) ?
1113
24.1k
                      ((flags & nf_all_from_arc) | nf_some_from_arc) : 0) |
1114
24.1k
                     ((notes & sn_dash_head) ? nf_dash_head : 0) |
1115
24.1k
                     ((notes & sn_dash_tail) ? nf_dash_tail : 0) |
1116
24.1k
                     (flags & ~nf_all_from_arc));
1117
24.1k
            code = (*line_proc) (to_path, to_path_reverse, true,
1118
24.1k
                                 index - 1, &pl_prev, lptr, pdevc,
1119
24.1k
                                 dev, pgs, params, &cbox, uniform, join,
1120
24.1k
                                 initial_matrix_reflected,
1121
24.1k
                                 COMBINE_FLAGS(flags));
1122
24.1k
            if (code < 0)
1123
0
                goto exit;
1124
24.1k
            FILL_STROKE_PATH(pdev, always_thin, pcpath, false);
1125
24.1k
            cap = ((flags & nf_prev_dash_head) ?
1126
24.1k
                   pgs_lp->start_cap : pgs_lp->dash_cap);
1127
24.1k
            if (traditional && lptr == 0 && cap != gs_cap_butt) {
1128
                /* Create the initial cap at last. */
1129
0
                code = stroke_add_initial_cap_compat(to_path, &pl_first, index == 1, pdevc, dev, pgs);
1130
0
                if (code < 0)
1131
0
                    goto exit;
1132
0
                FILL_STROKE_PATH(pdev, always_thin, pcpath, false);
1133
0
            }
1134
24.1k
        }
1135
24.2k
        psub = (const subpath *)pseg;
1136
24.2k
    }
1137
21.3k
    if (to_path_reverse != NULL)
1138
0
        code = gx_join_path_and_reverse(to_path, to_path_reverse);
1139
21.3k
    FILL_STROKE_PATH(pdev, always_thin, pcpath, true);
1140
21.3k
  exit:
1141
21.3k
    if (dev == (gx_device *)&cdev)
1142
5.35k
        cdev.target->sgr = cdev.sgr;
1143
21.3k
    if (to_path == &stroke_path_body)
1144
21.3k
        gx_path_free(&stroke_path_body, "gx_stroke_path_only error");   /* (only needed if error) */
1145
21.3k
    if (to_path_reverse == &stroke_path_reverse)
1146
0
        gx_path_free(&stroke_path_reverse, "gx_stroke_path_only error");
1147
21.3k
  exf:
1148
21.3k
    if (dash_count)
1149
8
        gx_path_free(&dpath, "gx_stroke_path exit(dash path)");
1150
    /* If we flattened the path then we set spath to &fpath. If we flattned the path then now we need to free fpath */
1151
21.3k
    if(flattened_path)
1152
105
        gx_path_free(&fpath, "gx_stroke_path exit(flattened path)");
1153
21.3k
    if (dev == (gx_device *)&cdev)
1154
5.35k
        gx_destroy_clip_device_on_stack(&cdev);
1155
21.3k
    return code;
1156
21.3k
}
1157
1158
int
1159
gx_stroke_path_only(gx_path * ppath, gx_path * to_path, gx_device * pdev,
1160
               const gs_gstate * pgs, const gx_stroke_params * params,
1161
                 const gx_device_color * pdevc, const gx_clip_path * pcpath)
1162
28.9k
{
1163
28.9k
    return gx_stroke_path_only_aux(ppath, to_path, pdev, pgs, params, pdevc, pcpath);
1164
28.9k
}
1165
1166
/* ------ Internal routines ------ */
1167
1168
/*
1169
 * Test whether a line is thin, i.e., whether the half-width, measured
1170
 * perpendicular to the line in device space, is less than 0.5 pixel.
1171
 * Unfortunately, the width values we computed are perpendicular to the
1172
 * line in *user* space, so we may have to do some extra work.
1173
 */
1174
static bool
1175
width_is_thin(pl_ptr plp)
1176
384
{
1177
384
    fixed dx, dy, wx = plp->width.x, wy = plp->width.y;
1178
1179
    /* If the line is horizontal or vertical, things are easy. */
1180
384
    if ((dy = plp->vector.y) == 0)
1181
382
        return any_abs(wy) < fixed_half;
1182
2
    if ((dx = plp->vector.x) == 0)
1183
2
        return any_abs(wx) < fixed_half;
1184
1185
    /* For the longest time, we used to have a test here that
1186
     * attempted to trivially accept diagonal lines as being
1187
     * thin based on the components of the perpendicular
1188
     * width vector in device space as both being less than 0.5.
1189
     * Bug 702196 showed some examples where this was clearly
1190
     * wrong.
1191
     *
1192
     * The cause for this bug was that the 0.5 figure was wrong.
1193
     * For the point to be less than 1/2 a pixel perpendicular
1194
     * distant from the line, we'd need x^2 + y^2 < .5^2.
1195
     * For a 45 degree line, that'd be 2(x^2) < 1/4 = x^2 < 1/8
1196
     * or x < sqr(1/8). 45 degree line is the "worst case", so
1197
     * if both horizontal and vertical widths are less than
1198
     * sqr(1/8), the line is thin. sqr(1/8) = 0.35355339059.
1199
     * So, we should be using sqr(1/8) rather than 0.5.
1200
     *
1201
     * Fixing this did indeed produce many many progressions,
1202
     * but left just the odd file still showing problems.
1203
     *
1204
     * Further investigations show that those cases were due to
1205
     * the use of "non-uniform" scaling matrices, for example
1206
     * (83 0 0 51 0 0). With such matrices, it's possible for
1207
     * nearly horizontal lines to be thin, but nearly vertical
1208
     * ones to be thick (or vice versa). Having the style of
1209
     * line "pop" between thick and thin in a single stroke
1210
     * looks very noticeable.
1211
     *
1212
     * We could change the trivial optimisation below to only
1213
     * apply in the 'uniform' case, but that would never actually
1214
     * trigger (as tested on the cluster), because all such
1215
     * cases are caught by the "always_thin" condition in the
1216
     * caller.
1217
     *
1218
     * Just removing the trivial test and leaving the 'complicated'
1219
     * test below us would leave us vulnerable to "popping",
1220
     * so we disable both. In practice this makes no difference
1221
     * to the number of tests showing diffs in the cluster.
1222
     */
1223
#if 0 /* DISABLED TEST, see above */
1224
    {
1225
        /* thin_threshold = fixed sqr(1/8) - see above. */
1226
        const fixed thin_threshold = float2fixed(0.35355339059f);
1227
        if (any_abs(wx) < thin_threshold && any_abs(wy) < thin_threshold)
1228
            return true;
1229
    }
1230
1231
    /*
1232
     * We have to do this the hard way, by actually computing the
1233
     * perpendicular distance.  The distance from the point (U,V)
1234
     * from a line from (0,0) to (C,D) is
1235
     *      abs(C*V - D*U) / sqrt(C^2 + D^2)
1236
     * In this case, (U,V) is plp->width, and (C,D) is (dx,dy).
1237
     */
1238
    {
1239
        double C = dx, D = dy;
1240
        double num = C * wy - D * wx;
1241
        double denom = hypot(C, D);
1242
1243
        /* both num and denom are scaled by fixed_scale^2, */
1244
        /* so we don't need to do any de-scaling for the test. */
1245
        return fabs(num) < denom * 0.5;
1246
    }
1247
#else
1248
0
    return false;
1249
2
#endif
1250
2
}
1251
1252
/* Adjust the endpoints and width of a stroke segment along a specified axis */
1253
static void
1254
adjust_stroke_transversal(pl_ptr plp, const gs_gstate * pgs, bool thin, bool horiz)
1255
0
{
1256
0
    fixed *pw;
1257
0
    fixed *pov;
1258
0
    fixed *pev;
1259
0
    fixed w, w2;
1260
0
    fixed adj2;
1261
1262
0
    if (horiz) {
1263
        /* More horizontal stroke */
1264
0
        pw = &plp->width.y, pov = &plp->o.p.y, pev = &plp->e.p.y;
1265
0
        adj2 = STROKE_ADJUSTMENT(thin, pgs, y) << 1;
1266
0
    } else {
1267
        /* More vertical stroke */
1268
0
        pw = &plp->width.x, pov = &plp->o.p.x, pev = &plp->e.p.x;
1269
0
        adj2 = STROKE_ADJUSTMENT(thin, pgs, x) << 1;
1270
0
    }
1271
    /* Round the larger component of the width up or down, */
1272
    /* whichever way produces a result closer to the correct width. */
1273
    /* Note that just rounding the larger component */
1274
    /* may not produce the correct result. */
1275
0
    w = *pw;
1276
0
    if (w > 0)
1277
0
        w2 = fixed_rounded(w << 1);     /* full line width */
1278
0
    else
1279
0
        w2 = -fixed_rounded(-w << 1);   /* full line width */
1280
0
    if (w2 == 0 && *pw != 0) {
1281
        /* Make sure thin lines don't disappear. */
1282
0
        w2 = (*pw < 0 ? -fixed_1 + adj2 : fixed_1 - adj2);
1283
0
        *pw = arith_rshift_1(w2);
1284
0
    }
1285
    /* Only adjust the endpoints if the line is horizontal or vertical. */
1286
0
    if (*pov == *pev) {
1287
        /* We're going to round the endpoint coordinates, so */
1288
        /* take the fill adjustment into account now. */
1289
0
        if (w >= 0)
1290
0
            w2 += adj2;
1291
0
        else
1292
0
            w2 = adj2 - w2;
1293
0
        if (w2 & fixed_1)       /* odd width, move to half-pixel */
1294
0
            *pov = *pev = fixed_floor(*pov) + fixed_half;
1295
0
        else                    /* even width, move to pixel */
1296
0
            *pov = *pev = fixed_rounded(*pov);
1297
1298
0
    }
1299
0
}
1300
1301
static void
1302
adjust_stroke_longitude(pl_ptr plp, const gs_gstate * pgs,
1303
                        bool thin, bool horiz,
1304
                        gs_line_cap start_cap, gs_line_cap end_cap)
1305
0
{
1306
1307
0
    fixed *pow = (horiz ? &plp->o.p.y : &plp->o.p.x);
1308
0
    fixed *pew = (horiz ? &plp->e.p.y : &plp->e.p.x);
1309
1310
    /* Only adjust the endpoints if the line is horizontal or vertical.
1311
       Debugged with pdfwrite->ppmraw 72dpi file2.pdf */
1312
0
    if (*pow == *pew) {
1313
0
        fixed *pov = (horiz ? &plp->o.p.x : &plp->o.p.y);
1314
0
        fixed *pev = (horiz ? &plp->e.p.x : &plp->e.p.y);
1315
0
        fixed length = any_abs(*pov - *pev);
1316
0
        fixed length_r, length_r_2;
1317
0
        fixed mv = (*pov + *pev) / 2, mv_r;
1318
0
        fixed adj2 = (horiz ? STROKE_ADJUSTMENT(thin, pgs, x)
1319
0
                            : STROKE_ADJUSTMENT(thin, pgs, y)) << 1;
1320
1321
        /* fixme :
1322
           The best value for adjust_longitude is whether
1323
           the dash is isolated and doesn't cover entire segment.
1324
           The current data structure can't pass this info.
1325
           Therefore we restrict adjust_stroke_longitude with 1 pixel length.
1326
        */
1327
0
        if (length > fixed_1) /* comparefiles/file2.pdf */
1328
0
            return;
1329
0
        if (start_cap == gs_cap_butt || end_cap == gs_cap_butt) {
1330
0
            length_r = fixed_rounded(length);
1331
0
            if (length_r < fixed_1)
1332
0
                length_r = fixed_1;
1333
0
            length_r_2 = length_r / 2;
1334
0
        } else {
1335
            /* Account width for proper placing cap centers. */
1336
0
            fixed width = any_abs(horiz ? plp->width.y : plp->width.x);
1337
1338
0
            length_r = fixed_rounded(length + width * 2 + adj2);
1339
0
            length_r_2 = fixed_rounded(length) / 2;
1340
0
        }
1341
0
        if (length_r & fixed_1)
1342
0
            mv_r = fixed_floor(mv) + fixed_half;
1343
0
        else
1344
0
            mv_r = fixed_floor(mv);
1345
0
        if (*pov < *pev) {
1346
0
            *pov = mv_r - length_r_2;
1347
0
            *pev = mv_r + length_r_2;
1348
0
        } else {
1349
0
            *pov = mv_r + length_r_2;
1350
0
            *pev = mv_r - length_r_2;
1351
0
        }
1352
0
    }
1353
0
}
1354
1355
/* Adjust the endpoints and width of a stroke segment */
1356
/* to achieve more uniform rendering. */
1357
/* Only o.p, e.p, e.cdelta, and width have been set. */
1358
static void
1359
adjust_stroke(gx_device *dev, pl_ptr plp, const gs_gstate * pgs,
1360
              bool thin, bool adjust_longitude, note_flags flags)
1361
59.2k
{
1362
59.2k
    bool horiz, adjust = true;
1363
59.2k
    gs_line_cap start_cap = (flags & nf_dash_head ?
1364
0
                             pgs->line_params.dash_cap :
1365
59.2k
                             pgs->line_params.start_cap);
1366
59.2k
    gs_line_cap end_cap   = (flags & nf_dash_tail ?
1367
0
                             pgs->line_params.dash_cap :
1368
59.2k
                             pgs->line_params.end_cap);
1369
1370
    /* If stroke_adjustment is disabled, or this isn't a horizontal or
1371
     * vertical line, then bale. */
1372
59.2k
    if (!pgs->stroke_adjust || (plp->width.x != 0 && plp->width.y != 0)) {
1373
59.2k
        dev->sgr.stroke_stored = false;
1374
59.2k
        return;                 /* don't adjust */
1375
59.2k
    }
1376
    /* Recognizing gradients, which some obsolete software
1377
       represent as a set of parallel strokes.
1378
       Such strokes must not be adjusted - bug 687974. */
1379
0
    if (dev->sgr.stroke_stored &&
1380
0
        (start_cap == gs_cap_butt || end_cap == gs_cap_butt) &&
1381
0
        dev->sgr.orig[3].x == plp->vector.x && dev->sgr.orig[3].y == plp->vector.y) {
1382
        /* Parallel. */
1383
0
        if ((int64_t)(plp->o.p.x - dev->sgr.orig[0].x) * plp->vector.x ==
1384
0
            (int64_t)(plp->o.p.y - dev->sgr.orig[0].y) * plp->vector.y &&
1385
0
            (int64_t)(plp->e.p.x - dev->sgr.orig[1].x) * plp->vector.x ==
1386
0
            (int64_t)(plp->e.p.y - dev->sgr.orig[1].y) * plp->vector.y) {
1387
            /* Transversal shift. */
1388
0
            if (any_abs(plp->o.p.x - dev->sgr.orig[0].x) <= any_abs(plp->width.x + dev->sgr.orig[2].x) &&
1389
0
                any_abs(plp->o.p.y - dev->sgr.orig[0].y) <= any_abs(plp->width.y + dev->sgr.orig[2].y) &&
1390
0
                any_abs(plp->e.p.x - dev->sgr.orig[1].x) <= any_abs(plp->width.x + dev->sgr.orig[2].x) &&
1391
0
                any_abs(plp->e.p.y - dev->sgr.orig[1].y) <= any_abs(plp->width.y + dev->sgr.orig[2].y)) {
1392
                /* The strokes were contacting or overlapping. */
1393
0
                if (any_abs(plp->o.p.x - dev->sgr.orig[0].x) >= any_abs(plp->width.x + dev->sgr.orig[2].x) / 2 &&
1394
0
                    any_abs(plp->o.p.y - dev->sgr.orig[0].y) >= any_abs(plp->width.y + dev->sgr.orig[2].y) / 2 &&
1395
0
                    any_abs(plp->e.p.x - dev->sgr.orig[1].x) >= any_abs(plp->width.x + dev->sgr.orig[2].x) / 2 &&
1396
0
                    any_abs(plp->e.p.y - dev->sgr.orig[1].y) >= any_abs(plp->width.y + dev->sgr.orig[2].y) / 2) {
1397
                    /* The strokes were not much overlapping. */
1398
0
                    if (!(any_abs(plp->o.p.x - dev->sgr.adjusted[0].x) <= any_abs(plp->width.x + dev->sgr.adjusted[2].x) &&
1399
0
                          any_abs(plp->o.p.y - dev->sgr.adjusted[0].y) <= any_abs(plp->width.y + dev->sgr.adjusted[2].y) &&
1400
0
                          any_abs(plp->e.p.x - dev->sgr.adjusted[1].x) <= any_abs(plp->width.x + dev->sgr.adjusted[2].x) &&
1401
0
                          any_abs(plp->e.p.y - dev->sgr.adjusted[1].y) <= any_abs(plp->width.y + dev->sgr.adjusted[2].y))) {
1402
                        /* they became not contacting.
1403
                           We should not have adjusted the last stroke. Since if we did,
1404
                           lets change the current one to restore the contact,
1405
                           so that we don't leave gaps when rasterising. See bug 687974.
1406
                         */
1407
0
                        fixed delta_w_x = (dev->sgr.adjusted[2].x - dev->sgr.orig[2].x);
1408
0
                        fixed delta_w_y = (dev->sgr.adjusted[2].y - dev->sgr.orig[2].y);
1409
0
                        fixed shift_o_x = (dev->sgr.adjusted[0].x - dev->sgr.orig[0].x);
1410
0
                        fixed shift_o_y = (dev->sgr.adjusted[0].y - dev->sgr.orig[0].y);
1411
0
                        fixed shift_e_x = (dev->sgr.adjusted[1].x - dev->sgr.orig[1].x); /* Must be same, but we prefer clarity. */
1412
0
                        fixed shift_e_y = (dev->sgr.adjusted[1].y - dev->sgr.orig[1].y);
1413
1414
0
                        if (plp->o.p.x < dev->sgr.orig[0].x ||
1415
0
                            (plp->o.p.x == dev->sgr.orig[0].x && plp->o.p.y < dev->sgr.orig[0].y)) {
1416
                            /* Left contact, adjust to keep the contact. */
1417
0
                            if_debug4m('O', dev->memory, "[O]don't adjust {{%f,%f},{%f,%f}}\n",
1418
0
                                       fixed2float(plp->o.p.x), fixed2float(plp->o.p.y),
1419
0
                                       fixed2float(plp->e.p.x), fixed2float(plp->e.p.y));
1420
0
                            plp->width.x += (shift_o_x - delta_w_x) / 2;
1421
0
                            plp->width.y += (shift_o_y - delta_w_y) / 2;
1422
0
                            plp->o.p.x += (shift_o_x - delta_w_x) / 2;
1423
0
                            plp->o.p.y += (shift_o_y - delta_w_y) / 2;
1424
0
                            plp->e.p.x += (shift_e_x - delta_w_x) / 2;
1425
0
                            plp->e.p.y += (shift_e_y - delta_w_y) / 2;
1426
0
                            adjust = false;
1427
0
                        } else {
1428
                            /* Right contact, adjust to keep the contact. */
1429
0
                            if_debug4m('O', dev->memory, "[O]don't adjust {{%f,%f},{%f,%f}}\n",
1430
0
                                       fixed2float(plp->o.p.x), fixed2float(plp->o.p.y),
1431
0
                                       fixed2float(plp->e.p.x), fixed2float(plp->e.p.y));
1432
0
                            plp->width.x -= (shift_o_x + delta_w_x) / 2;
1433
0
                            plp->width.y -= (shift_o_y + delta_w_y) / 2;
1434
0
                            plp->o.p.x += (shift_o_x + delta_w_x) / 2;
1435
0
                            plp->o.p.y += (shift_o_y + delta_w_y) / 2;
1436
0
                            plp->e.p.x += (shift_e_x + delta_w_x) / 2;
1437
0
                            plp->e.p.y += (shift_e_y + delta_w_y) / 2;
1438
0
                            adjust = false;
1439
0
                        }
1440
0
                    }
1441
0
                }
1442
0
            }
1443
0
        }
1444
0
    }
1445
0
    if ((start_cap == gs_cap_butt) || (end_cap == gs_cap_butt)) {
1446
0
        dev->sgr.stroke_stored = true;
1447
0
        dev->sgr.orig[0] = plp->o.p;
1448
0
        dev->sgr.orig[1] = plp->e.p;
1449
0
        dev->sgr.orig[2] = plp->width;
1450
0
        dev->sgr.orig[3] = plp->vector;
1451
0
    } else
1452
0
        dev->sgr.stroke_stored = false;
1453
0
    if (adjust) {
1454
0
        horiz = (any_abs(plp->width.x) <= any_abs(plp->width.y));
1455
0
        adjust_stroke_transversal(plp, pgs, thin, horiz);
1456
0
        if (adjust_longitude)
1457
0
            adjust_stroke_longitude(plp, pgs, thin, horiz, start_cap, end_cap);
1458
0
    }
1459
0
    if ((start_cap == gs_cap_butt) || (end_cap == gs_cap_butt)) {
1460
0
        dev->sgr.adjusted[0] = plp->o.p;
1461
0
        dev->sgr.adjusted[1] = plp->e.p;
1462
0
        dev->sgr.adjusted[2] = plp->width;
1463
0
        dev->sgr.adjusted[3] = plp->vector;
1464
0
    }
1465
0
}
1466
1467
/* Compute the intersection of two lines.  This is a messy algorithm */
1468
/* that somehow ought to be useful in more places than just here.... */
1469
/* If the lines are (nearly) parallel, return -1 without setting *pi; */
1470
/* otherwise, return 0 if the intersection is beyond *pp1 and *pp2 in */
1471
/* the direction determined by *pd1 and *pd2, and 1 otherwise. */
1472
static int
1473
line_intersect(
1474
                  p_ptr pp1,    /* point on 1st line */
1475
                  p_ptr pd1,    /* slope of 1st line (dx,dy) */
1476
                  p_ptr pp2,    /* point on 2nd line */
1477
                  p_ptr pd2,    /* slope of 2nd line */
1478
                  p_ptr pi)
1479
40.2k
{                               /* return intersection here */
1480
    /* We don't have to do any scaling, the factors all work out right. */
1481
40.2k
    double u1 = pd1->x, v1 = pd1->y;
1482
40.2k
    double u2 = pd2->x, v2 = pd2->y;
1483
40.2k
    double denom = u1 * v2 - u2 * v1;
1484
40.2k
    double xdiff = pp2->x - pp1->x;
1485
40.2k
    double ydiff = pp2->y - pp1->y;
1486
40.2k
    double f1;
1487
40.2k
    double max_result = any_abs(denom) * (double)max_fixed;
1488
1489
#ifdef DEBUG
1490
    if (gs_debug_c('O')) {
1491
        dlprintf4("[o]Intersect %f,%f(%f/%f)",
1492
                  fixed2float(pp1->x), fixed2float(pp1->y),
1493
                  fixed2float(pd1->x), fixed2float(pd1->y));
1494
        dlprintf4(" & %f,%f(%f/%f),\n",
1495
                  fixed2float(pp2->x), fixed2float(pp2->y),
1496
                  fixed2float(pd2->x), fixed2float(pd2->y));
1497
        dlprintf3("\txdiff=%f ydiff=%f denom=%f ->\n",
1498
                  xdiff, ydiff, denom);
1499
    }
1500
#endif
1501
    /* Check for degenerate result. */
1502
40.2k
    if (any_abs(xdiff) >= max_result || any_abs(ydiff) >= max_result) {
1503
        /* The lines are nearly parallel, */
1504
        /* or one of them has zero length.  Punt. */
1505
729
        if_debug0('O', "\tdegenerate!\n");
1506
729
        return -1;
1507
729
    }
1508
39.5k
    f1 = (v2 * xdiff - u2 * ydiff) / denom;
1509
39.5k
    pi->x = pp1->x + (fixed) (f1 * u1);
1510
39.5k
    pi->y = pp1->y + (fixed) (f1 * v1);
1511
39.5k
    if_debug2('O', "\t%f,%f\n",
1512
39.5k
              fixed2float(pi->x), fixed2float(pi->y));
1513
39.5k
    return (f1 >= 0 && (v1 * xdiff >= u1 * ydiff ? denom >= 0 : denom < 0) ? 0 : 1);
1514
40.2k
}
1515
1516
/* Set up the width and delta parameters for a thin line. */
1517
/* We only approximate the width and height. */
1518
static void
1519
set_thin_widths(register pl_ptr plp)
1520
0
{
1521
0
    fixed dx = plp->e.p.x - plp->o.p.x, dy = plp->e.p.y - plp->o.p.y;
1522
1523
0
#define TRSIGN(v, c) ((v) >= 0 ? (c) : -(c))
1524
0
    if (any_abs(dx) > any_abs(dy)) {
1525
0
        plp->width.x = plp->e.cdelta.y = 0;
1526
0
        plp->width.y = plp->e.cdelta.x = TRSIGN(dx, fixed_half);
1527
0
    } else {
1528
0
        plp->width.y = plp->e.cdelta.x = 0;
1529
0
        plp->width.x = -(plp->e.cdelta.y = TRSIGN(dy, fixed_half));
1530
0
    }
1531
0
#undef TRSIGN
1532
0
}
1533
1534
/* Draw a line on the device. */
1535
/* Treat no join the same as a bevel join. */
1536
/* rpath should always be NULL, hence ensure_closed can be ignored */
1537
static int
1538
stroke_fill(gx_path * ppath, gx_path * rpath, bool ensure_closed, int first,
1539
            register pl_ptr plp, pl_ptr nplp, const gx_device_color * pdevc,
1540
            gx_device * dev, const gs_gstate * pgs,
1541
            const gx_stroke_params * params, const gs_fixed_rect * pbbox,
1542
            int uniform, gs_line_join join, bool reflected,
1543
            note_flags flags)
1544
74.0k
{
1545
74.0k
    const fixed lix = plp->o.p.x;
1546
74.0k
    const fixed liy = plp->o.p.y;
1547
74.0k
    const fixed litox = plp->e.p.x;
1548
74.0k
    const fixed litoy = plp->e.p.y;
1549
1550
    /* assert(lop_is_idempotent(pgs->log_op)); */
1551
74.0k
    if (plp->thin) {
1552
        /* Minimum-width line, don't have to be careful with caps/joins. */
1553
15.2k
        return (*dev_proc(dev, draw_thin_line))(dev, lix, liy, litox, litoy,
1554
15.2k
                                                pdevc, pgs->log_op,
1555
15.2k
                                                pgs->fill_adjust.x,
1556
15.2k
                                                pgs->fill_adjust.y);
1557
15.2k
    }
1558
    /* Check for being able to fill directly. */
1559
58.7k
    {
1560
58.7k
        const gx_line_params *pgs_lp = gs_currentlineparams_inline(pgs);
1561
58.7k
        gs_line_cap start_cap = (flags & nf_dash_head ?
1562
58.7k
                                 pgs_lp->dash_cap : pgs_lp->start_cap);
1563
58.7k
        gs_line_cap end_cap   = (flags & nf_dash_tail ?
1564
58.7k
                                 pgs_lp->dash_cap : pgs_lp->end_cap);
1565
1566
58.7k
        if (first != 0)
1567
55.3k
            start_cap = gs_cap_butt;
1568
58.7k
        if (nplp != 0)
1569
55.3k
            end_cap = gs_cap_butt;
1570
58.7k
        if (!plp->thin && (nplp == 0 || !nplp->thin)
1571
58.7k
            && (start_cap == gs_cap_butt || start_cap == gs_cap_square)
1572
58.7k
            && (end_cap   == gs_cap_butt || end_cap   == gs_cap_square)
1573
58.7k
            && (join == gs_join_bevel || join == gs_join_miter ||
1574
58.7k
                join == gs_join_none)
1575
58.7k
            && (pgs->fill_adjust.x | pgs->fill_adjust.y) == 0
1576
58.7k
            ) {
1577
0
            gs_fixed_point points[6];
1578
0
            int npoints, code;
1579
0
            fixed ax, ay, bx, by;
1580
1581
0
            npoints = cap_points(start_cap, &plp->o, points);
1582
0
            if (nplp == 0)
1583
0
                code = cap_points(end_cap, &plp->e, points + npoints);
1584
0
            else
1585
0
                code = line_join_points(pgs_lp, plp, nplp, points + npoints,
1586
0
                                        (uniform ? (gs_matrix *) 0 :
1587
0
                                         &ctm_only(pgs)), join, reflected);
1588
0
            if (code < 0)
1589
0
                goto general;
1590
            /* Make sure the parallelogram fill won't overflow. */
1591
0
#define SUB_OVERFLOWS(r, u, v)\
1592
0
  (((r = u - v) ^ u) < 0 && (u ^ v) < 0)
1593
0
            if (SUB_OVERFLOWS(ax, points[0].x, points[1].x) ||
1594
0
                SUB_OVERFLOWS(ay, points[0].y, points[1].y) ||
1595
0
                SUB_OVERFLOWS(bx, points[2].x, points[1].x) ||
1596
0
                SUB_OVERFLOWS(by, points[2].y, points[1].y)
1597
0
                )
1598
0
                goto general;
1599
0
#undef SUB_OVERFLOWS
1600
0
            if (nplp != 0) {
1601
0
                if (join == gs_join_miter) {
1602
                    /* Make sure we have a bevel and not a miter. */
1603
0
                    if (!(points[2].x == plp->e.co.x &&
1604
0
                          points[2].y == plp->e.co.y &&
1605
0
                          points[5].x == plp->e.ce.x &&
1606
0
                          points[5].y == plp->e.ce.y)
1607
0
                        )
1608
0
                        goto fill;
1609
0
                } {
1610
0
                    const gs_fixed_point *bevel = points + 2;
1611
1612
                    /* Identify which 3 points define the bevel triangle. */
1613
0
                    if (points[3].x == nplp->o.p.x &&
1614
0
                        points[3].y == nplp->o.p.y
1615
0
                        )
1616
0
                        ++bevel;
1617
                    /* Fill the bevel. */
1618
0
                    code = (*dev_proc(dev, fill_triangle)) (dev,
1619
0
                                                         bevel->x, bevel->y,
1620
0
                               bevel[1].x - bevel->x, bevel[1].y - bevel->y,
1621
0
                               bevel[2].x - bevel->x, bevel[2].y - bevel->y,
1622
0
                                                        pdevc, pgs->log_op);
1623
0
                    if (code < 0)
1624
0
                        return code;
1625
0
                }
1626
0
            }
1627
            /* Fill the body of the stroke. */
1628
0
            return (*dev_proc(dev, fill_parallelogram)) (dev,
1629
0
                                                   points[1].x, points[1].y,
1630
0
                                                         ax, ay, bx, by,
1631
0
                                                         pdevc, pgs->log_op);
1632
0
          fill:
1633
0
            code = add_points(ppath, points, npoints + code, true);
1634
0
            if (code < 0)
1635
0
                return code;
1636
0
            return gx_path_close_subpath(ppath);
1637
0
        }
1638
58.7k
    }
1639
    /* General case: construct a path for the fill algorithm. */
1640
58.7k
 general:
1641
58.7k
    return stroke_add(ppath, rpath, ensure_closed, first, plp, nplp, pdevc,
1642
58.7k
                      dev, pgs, params, pbbox, uniform, join, reflected,
1643
58.7k
                      flags);
1644
58.7k
}
1645
1646
/* Add a segment to the path.  This handles all the complex cases. */
1647
static int
1648
stroke_add(gx_path * ppath, gx_path * rpath, bool ensure_closed, int first,
1649
           pl_ptr plp, pl_ptr nplp, const gx_device_color * pdevc,
1650
           gx_device * dev, const gs_gstate * pgs,
1651
           const gx_stroke_params * params,
1652
           const gs_fixed_rect * ignore_pbbox, int uniform,
1653
           gs_line_join join, bool reflected, note_flags flags)
1654
58.7k
{
1655
58.7k
    const gx_line_params *pgs_lp = gs_currentlineparams_inline(pgs);
1656
58.7k
    gs_fixed_point points[8];
1657
58.7k
    int npoints;
1658
58.7k
    int code;
1659
58.7k
    bool moveto_first = true;
1660
58.7k
    gs_line_cap start_cap = (flags & nf_dash_head ?
1661
58.7k
                             pgs_lp->dash_cap : pgs_lp->start_cap);
1662
58.7k
    gs_line_cap end_cap   = (flags & nf_dash_tail ?
1663
58.7k
                             pgs_lp->dash_cap : pgs_lp->end_cap);
1664
1665
58.7k
    if (plp->thin) {
1666
        /* We didn't set up the endpoint parameters before, */
1667
        /* because the line was thin.  Do it now. */
1668
0
        set_thin_widths(plp);
1669
0
        adjust_stroke(dev, plp, pgs, true, first == 0 && nplp == 0, flags);
1670
0
        compute_caps(plp);
1671
0
    }
1672
    /* Create an initial cap if desired. */
1673
58.7k
    if (first == 0 && start_cap == gs_cap_round) {
1674
1
        if ((code = gx_path_add_point(ppath, plp->o.co.x, plp->o.co.y)) < 0 ||
1675
1
            (code = add_pie_cap(ppath, &plp->o)) < 0)
1676
0
            return code;
1677
1
        npoints = 0;
1678
1
        moveto_first = false;
1679
58.7k
    } else {
1680
58.7k
        if ((npoints = cap_points((first == 0 ? start_cap : gs_cap_butt),
1681
58.7k
                                  &plp->o, points)) < 0)
1682
0
            return npoints;
1683
58.7k
    }
1684
58.7k
    if (nplp == 0) {
1685
        /* Add a final cap. */
1686
3.35k
        if (end_cap == gs_cap_round) {
1687
1
            ASSIGN_POINT(&points[npoints], plp->e.co);
1688
1
            ++npoints;
1689
1
            if ((code = add_points(ppath, points, npoints, moveto_first)) < 0)
1690
0
                return code;
1691
1
            code = add_pie_cap(ppath, &plp->e);
1692
1
            goto done;
1693
1
        }
1694
3.35k
        code = cap_points(end_cap, &plp->e, points + npoints);
1695
55.3k
    } else if (nplp->thin) /* no join */
1696
0
        code = cap_points(gs_cap_butt, &plp->e, points + npoints);
1697
55.3k
    else if (join == gs_join_round) {
1698
0
        ASSIGN_POINT(&points[npoints], plp->e.co);
1699
0
        ++npoints;
1700
0
        if ((code = add_points(ppath, points, npoints, moveto_first)) < 0)
1701
0
            return code;
1702
0
        code = add_pie_join(ppath, plp, nplp, reflected, true);
1703
0
        goto done;
1704
55.3k
    } else if (flags & nf_all_from_arc) {
1705
        /* If all the segments in 'prev' and 'current' are from a curve
1706
         * then the join should actually be a round one, because it would
1707
         * have been round if we had flattened it enough. */
1708
3.66k
        ASSIGN_POINT(&points[npoints], plp->e.co);
1709
3.66k
        ++npoints;
1710
3.66k
        if ((code = add_points(ppath, points, npoints, moveto_first)) < 0)
1711
0
            return code;
1712
3.66k
        code = add_pie_join(ppath, plp, nplp, reflected, false);
1713
3.66k
        goto done;
1714
3.66k
    } else                      /* non-round join */
1715
51.7k
       code = line_join_points(pgs_lp, plp, nplp, points + npoints,
1716
51.7k
                                (uniform ? (gs_matrix *) 0 : &ctm_only(pgs)),
1717
51.7k
                                join, reflected);
1718
55.0k
    if (code < 0)
1719
0
        return code;
1720
55.0k
    code = add_points(ppath, points, npoints + code, moveto_first);
1721
58.7k
  done:
1722
58.7k
    if (code < 0)
1723
0
        return code;
1724
58.7k
    if ((flags & nf_some_from_arc) && (!plp->thin) &&
1725
58.7k
        (nplp != NULL) && (!nplp->thin))
1726
3.83k
        code = join_under_pie(ppath, plp, nplp, reflected);
1727
58.7k
    return gx_path_close_subpath(ppath);
1728
58.7k
}
1729
1730
/* When painting the 'underjoin' (the 'inside' of a join), we
1731
 * need to take special care if the curve is particularly wide as
1732
 * the leading edge of the underside of the first stroked segment
1733
 * may be beyond the leading edge of the underside of the second
1734
 * stroked segment. Similarly, the trailing edge of the second
1735
 * stroked segment may be behing the trailing edge of the first
1736
 * stroked segment. We detect those cases here.
1737
 *
1738
 * We detect the first case by projecting plp.width onto nplp.vector.
1739
 * If the projected vector is longer then nplp.vector, we have a
1740
 * problem.
1741
 *
1742
 * len_vector_squared = nplp.vector.x * nplp.vector.x + nplp.vector.y * nplp.nvector.y
1743
 * len_vector = sqr(len_vector_squared)
1744
 * len_projection_unnormalised = plp.width.x * nplp.vector.x + plp.width.y * nplp.vector.y
1745
 * len_projection = len_projection_unnormalised / len_vector
1746
 *
1747
 * len_projection > len_vector === len_projection_unnormalised > len_vector * len_vector
1748
 * === len_projection_unnormalised > len_vector_squared
1749
 */
1750
1751
#ifdef SLOWER_BUT_MORE_ACCURATE_STROKING
1752
static bool
1753
wide_underjoin(pl_ptr plp, pl_ptr nplp)
1754
{
1755
    double h_squared = (double)nplp->vector.x * nplp->vector.x + (double)nplp->vector.y * nplp->vector.y;
1756
    double dot = (double)plp->width.x * nplp->vector.x + (double)plp->width.y * nplp->vector.y;
1757
1758
    if (dot < 0)
1759
        dot = -dot;
1760
    if (dot > h_squared)
1761
        return 1;
1762
1763
    h_squared = (double)plp->vector.x * plp->vector.x + (double)plp->vector.y * plp->vector.y;
1764
    dot = (double)nplp->width.x * plp->vector.x + (double)nplp->width.y * plp->vector.y;
1765
    if (dot < 0)
1766
        dot = -dot;
1767
    if (dot > h_squared)
1768
        return 1;
1769
1770
    return 0;
1771
}
1772
#endif
1773
1774
static int
1775
check_miter(const gx_line_params * pgs_lp, pl_ptr plp, pl_ptr nplp,
1776
            const gs_matrix * pmat, p_ptr outp, p_ptr np, p_ptr mpt,
1777
            bool ccw0)
1778
52.1k
{
1779
    /*
1780
     * Check whether a miter join is appropriate.
1781
     * Let a, b be the angles of the two lines.
1782
     * We check tan(a-b) against the miter_check
1783
     * by using the following formula:
1784
     *      If tan(a)=u1/v1 and tan(b)=u2/v2, then
1785
     *      tan(a-b) = (u1*v2 - u2*v1) / (u1*u2 + v1*v2).
1786
     *
1787
     * We can do all the computations unscaled,
1788
     * because we're only concerned with ratios.
1789
     * However, if we have a non-uniform coordinate
1790
     * system (indicated by pmat != 0), we must do the
1791
     * computations in user space.
1792
     */
1793
52.1k
    float check;
1794
52.1k
    double u1, v1, u2, v2;
1795
52.1k
    double num, denom;
1796
52.1k
    int code;
1797
1798
    /*
1799
     * Don't bother with the miter check if the two
1800
     * points to be joined are very close together,
1801
     * namely, in the same square half-pixel.
1802
     */
1803
52.1k
    if (fixed2long(outp->x << 1) == fixed2long(np->x << 1) &&
1804
52.1k
        fixed2long(outp->y << 1) == fixed2long(np->y << 1))
1805
4.76k
        return 1;
1806
1807
47.3k
    check = pgs_lp->miter_check;
1808
47.3k
    u1 = plp->vector.y, v1 = plp->vector.x;
1809
47.3k
    u2 = -nplp->vector.y, v2 = -nplp->vector.x;
1810
1811
47.3k
    if (pmat) {
1812
4
        gs_point pt;
1813
1814
4
        code = gs_distance_transform_inverse(v1, u1, pmat, &pt);
1815
4
        if (code < 0)
1816
0
        return code;
1817
4
        v1 = pt.x, u1 = pt.y;
1818
4
        code = gs_distance_transform_inverse(v2, u2, pmat, &pt);
1819
4
        if (code < 0)
1820
0
            return code;
1821
4
        v2 = pt.x, u2 = pt.y;
1822
        /*
1823
         * We need to recompute ccw according to the
1824
         * relative positions of the lines in user space.
1825
         * We repeat the computation described above,
1826
         * using the cdelta values instead of the widths.
1827
         * Because the definition of ccw above is inverted
1828
         * from the intuitive one (for historical reasons),
1829
         * we actually have to do the test backwards.
1830
         */
1831
4
        ccw0 = v1 * u2 < v2 * u1;
1832
#ifdef DEBUG
1833
        {
1834
            double a1 = atan2(u1, v1), a2 = atan2(u2, v2), dif = a1 - a2;
1835
1836
            if (dif < 0)
1837
                dif += 2 * M_PI;
1838
            else if (dif >= 2 * M_PI)
1839
                dif -= 2 * M_PI;
1840
            if (dif != 0 && (dif < M_PI) != ccw0)
1841
                lprintf8("ccw wrong: tan(a1=%g)=%g/%g, tan(a2=%g)=%g,%g, dif=%g, ccw0=%d\n",
1842
                         a1, u1, v1, a2, u2, v2, dif, ccw0);
1843
        }
1844
#endif
1845
4
    }
1846
47.3k
    num = u1 * v2 - u2 * v1;
1847
47.3k
    denom = u1 * u2 + v1 * v2;
1848
    /*
1849
     * We will want either tan(a-b) or tan(b-a)
1850
     * depending on the orientations of the lines.
1851
     * Fortunately we know the relative orientations already.
1852
     */
1853
47.3k
    if (!ccw0)          /* have plp - nplp, want vice versa */
1854
24.4k
        num = -num;
1855
#ifdef DEBUG
1856
    if (gs_debug_c('O')) {
1857
        dlprintf4("[o]Miter check: u1/v1=%f/%f, u2/v2=%f/%f,\n",
1858
                  u1, v1, u2, v2);
1859
        dlprintf3("        num=%f, denom=%f, check=%f\n",
1860
                  num, denom, check);
1861
    }
1862
#endif
1863
    /*
1864
     * If we define T = num / denom, then we want to use
1865
     * a miter join iff arctan(T) >= arctan(check).
1866
     * We know that both of these angles are in the 1st
1867
     * or 2nd quadrant, and since arctan is monotonic
1868
     * within each quadrant, we can do the comparisons
1869
     * on T and check directly, taking signs into account
1870
     * as follows:
1871
     *              sign(T) sign(check)     atan(T) >= atan(check)
1872
     *              ------- -----------     ----------------------
1873
     *              +       +               T >= check
1874
     *              -       +               true
1875
     *              +       -               false
1876
     *              -       -               T >= check
1877
     */
1878
47.3k
    if (num == 0 && denom == 0)
1879
0
        return_error(gs_error_unregistered); /* Must not happen. */
1880
47.3k
    if (denom < 0)
1881
3.69k
        num = -num, denom = -denom;
1882
    /* Now denom >= 0, so sign(num) = sign(T). */
1883
47.3k
    if (check > 0 ?
1884
47.3k
        (num < 0 || num >= denom * check) :
1885
47.3k
        (num < 0 && num >= denom * check)
1886
47.3k
        ) {
1887
        /* OK to use a miter join. */
1888
32.9k
        gs_fixed_point dirn1, dirn2;
1889
1890
32.9k
        dirn1.x = plp->e.cdelta.x;
1891
32.9k
        dirn1.y = plp->e.cdelta.y;
1892
        /* If this direction is small enough that we might have
1893
         * underflowed and the vector record is suitable for us
1894
         * to use to calculate a better one, then do so. */
1895
32.9k
        if ((abs(dirn1.x) + abs(dirn1.y) < 16) &&
1896
32.9k
            ((plp->vector.x != 0) || (plp->vector.y != 0)))
1897
0
        {
1898
0
            float scale = 65536.0;
1899
0
            if (abs(plp->vector.x) > abs(plp->vector.y))
1900
0
                scale /= abs(plp->vector.x);
1901
0
            else
1902
0
                scale /= abs(plp->vector.y);
1903
0
            dirn1.x = (fixed)(plp->vector.x*scale);
1904
0
            dirn1.y = (fixed)(plp->vector.y*scale);
1905
0
        }
1906
32.9k
        dirn2.x = nplp->o.cdelta.x;
1907
32.9k
        dirn2.y = nplp->o.cdelta.y;
1908
        /* If this direction is small enough that we might have
1909
         * underflowed and the vector record is suitable for us
1910
         * to use to calculate a better one, then do so. */
1911
32.9k
        if ((abs(dirn2.x) + abs(dirn2.y) < 16) &&
1912
32.9k
            ((nplp->vector.x != 0) || (nplp->vector.y != 0)))
1913
0
        {
1914
0
            float scale = 65536.0;
1915
0
            if (abs(nplp->vector.x) > abs(nplp->vector.y))
1916
0
                scale /= abs(nplp->vector.x);
1917
0
            else
1918
0
                scale /= abs(nplp->vector.y);
1919
0
            dirn2.x = (fixed)(-nplp->vector.x*scale);
1920
0
            dirn2.y = (fixed)(-nplp->vector.y*scale);
1921
0
        }
1922
32.9k
        if_debug0('O', "        ... passes.\n");
1923
        /* Compute the intersection of the extended edge lines. */
1924
32.9k
        if (line_intersect(outp, &dirn1, np, &dirn2, mpt) == 0)
1925
32.2k
            return 0;
1926
32.9k
    }
1927
15.1k
    return 1;
1928
47.3k
}
1929
1930
/* Add a segment to the path.
1931
 * This works by crafting 2 paths, one for each edge, that will later be
1932
 * merged together. */
1933
static int
1934
stroke_add_fast(gx_path * ppath, gx_path * rpath, bool ensure_closed, int first,
1935
                pl_ptr plp, pl_ptr nplp, const gx_device_color * pdevc,
1936
                gx_device * dev, const gs_gstate * pgs,
1937
                const gx_stroke_params * params,
1938
                const gs_fixed_rect * ignore_pbbox, int uniform,
1939
                gs_line_join join, bool reflected, note_flags flags)
1940
0
{
1941
0
    const gx_line_params *pgs_lp = gs_currentlineparams_inline(pgs);
1942
0
    gs_fixed_point points[8];
1943
0
    gs_fixed_point rpoints[8];
1944
0
    int npoints  = 0;
1945
0
    int nrpoints = 0;
1946
0
    int code;
1947
0
    bool moveto_first  = false;
1948
0
    bool rmoveto_first = false;
1949
0
    gs_line_cap start_cap, end_cap;
1950
0
    const gs_matrix *pmat = (uniform ? (const gs_matrix *)NULL : &ctm_only(pgs));
1951
0
    enum {
1952
0
        joinsense_cap = 0,
1953
0
        joinsense_cw = 1,
1954
0
        joinsense_ccw = 2,
1955
0
        joinsense_over = 4,
1956
0
        joinsense_under = 8,
1957
0
    } joinsense = joinsense_cap;
1958
1959
0
    if (plp->thin) {
1960
        /* We didn't set up the endpoint parameters before, */
1961
        /* because the line was thin.  Do it now. */
1962
0
        set_thin_widths(plp);
1963
0
        adjust_stroke(dev, plp, pgs, true, first == 0 && nplp == 0, flags);
1964
0
        compute_caps(plp);
1965
0
    }
1966
0
    start_cap = (flags & nf_dash_head ?
1967
0
                 pgs_lp->dash_cap : pgs_lp->start_cap);
1968
0
    end_cap   = (flags & nf_dash_tail ?
1969
0
                 pgs_lp->dash_cap : pgs_lp->end_cap);
1970
    /* If we're starting a new rpath here, we need to fake a new cap.
1971
     * Don't interfere if we would have been doing a cap anyway. */
1972
0
    if (gx_path_is_void(rpath) && (first != 0)) {
1973
0
        first = 0;
1974
0
        start_cap = gs_cap_butt;
1975
0
        end_cap   = gs_cap_butt;
1976
0
        moveto_first  = true;
1977
0
        rmoveto_first = true;
1978
0
    }
1979
0
    if (first == 0) {
1980
        /* Create an initial cap. */
1981
0
        if (start_cap == gs_cap_round) {
1982
0
            if ((code = gx_path_add_point(ppath, plp->o.co.x, plp->o.co.y)) < 0 ||
1983
0
                (code = add_pie_cap(ppath, &plp->o)) < 0)
1984
0
                return code;
1985
0
            moveto_first = false;
1986
0
        } else {
1987
0
            if ((npoints = cap_points(start_cap, &plp->o, points)) < 0)
1988
0
                return npoints;
1989
0
            moveto_first = true;
1990
0
        }
1991
0
        rmoveto_first = true;
1992
0
        ASSIGN_POINT(&rpoints[0], plp->o.co);
1993
0
        nrpoints = 1;
1994
0
    }
1995
    /* Add points to move us along the edges of this stroke */
1996
0
    ASSIGN_POINT(&points [npoints ], plp->e.co);
1997
0
    ASSIGN_POINT(&rpoints[nrpoints], plp->e.ce);
1998
0
    npoints++;
1999
0
    nrpoints++;
2000
2001
0
    if (nplp != NULL && !nplp->thin) {
2002
        /* We need to do a join. What sense is it it? */
2003
0
        double l, r;
2004
2005
0
        l = (double)(plp->width.x) /* x1 */ * (nplp->width.y) /* y2 */;
2006
0
        r = (double)(nplp->width.x) /* x2 */ * (plp->width.y) /* y1 */;
2007
2008
0
        if ((l == r) && (join == gs_join_round))
2009
0
             joinsense = joinsense_cap;
2010
0
        else if ((l > r) ^ reflected)
2011
0
             joinsense = joinsense_ccw | joinsense_over | joinsense_under;
2012
0
        else
2013
0
             joinsense = joinsense_cw | joinsense_over | joinsense_under;
2014
2015
0
        if (joinsense != joinsense_cap && join == gs_join_miter) {
2016
            /* We need to do a miter line join. Miters are 'special'
2017
             * in that we'd like to do them by adjusting the existing
2018
             * points, rather than adding new ones. */
2019
0
            gs_fixed_point mpt;
2020
0
            if (joinsense & joinsense_ccw) {
2021
                /* Underjoin (in reverse path):
2022
                 * A = plp->o.co, B = plp->e.ce, C = nplp->o.co, D = nplp->e.ce */
2023
0
                double xa =  plp->o.co.x, ya =  plp->o.co.y;
2024
0
                double xb =  plp->e.ce.x, yb =  plp->e.ce.y;
2025
0
                double xc = nplp->o.co.x, yc = nplp->o.co.y;
2026
0
                double xd = nplp->e.ce.x, yd = nplp->e.ce.y;
2027
0
                double xab = xa-xb, xac = xa-xc, xcd = xc-xd;
2028
0
                double yab = ya-yb, yac = ya-yc, ycd = yc-yd;
2029
0
                double t_num = xac * ycd - yac * xcd;
2030
0
                double t_den = xab * ycd - yab * xcd;
2031
0
                code = check_miter(pgs_lp, plp, nplp, pmat, &plp->e.co,
2032
0
                                   &nplp->o.ce, &mpt, true);
2033
0
                if (code < 0)
2034
0
                    return code;
2035
0
                if (code == 0) {
2036
0
                    points[npoints-1].x = mpt.x;
2037
0
                    points[npoints-1].y = mpt.y;
2038
0
                    if (ensure_closed) {
2039
0
                        points[npoints].x = nplp->o.ce.x;
2040
0
                        points[npoints].y = nplp->o.ce.y;
2041
0
                        npoints++;
2042
0
                    }
2043
0
                    joinsense &= ~joinsense_over;
2044
0
                } else
2045
0
                    join = gs_join_bevel;
2046
0
                if (t_den != 0 &&
2047
0
                    ((t_num >= 0 && t_num <= t_den) ||
2048
0
                     (t_num <= 0 && t_num >= t_den))) {
2049
0
                    double x = xa - xab * t_num / t_den;
2050
0
                    double y = ya - yab * t_num / t_den;
2051
0
                    rpoints[nrpoints-1].x = (fixed)x;
2052
0
                    rpoints[nrpoints-1].y = (fixed)y;
2053
0
                    joinsense &= ~joinsense_under;
2054
0
                }
2055
0
            } else {
2056
                /* Underjoin (in fwd path):
2057
                 * A = plp->o.ce, B = plp->e.co, C = nplp->o.ce, D = nplp->e.co */
2058
0
                double xa =  plp->o.ce.x, ya =  plp->o.ce.y;
2059
0
                double xb =  plp->e.co.x, yb =  plp->e.co.y;
2060
0
                double xc = nplp->o.ce.x, yc = nplp->o.ce.y;
2061
0
                double xd = nplp->e.co.x, yd = nplp->e.co.y;
2062
0
                double xab = xa-xb, xac = xa-xc, xcd = xc-xd;
2063
0
                double yab = ya-yb, yac = ya-yc, ycd = yc-yd;
2064
0
                double t_num = xac * ycd - yac * xcd;
2065
0
                double t_den = xab * ycd - yab * xcd;
2066
0
                code = check_miter(pgs_lp, plp, nplp, pmat, &plp->e.ce,
2067
0
                                   &nplp->o.co, &mpt, false);
2068
0
                if (code < 0)
2069
0
                    return code;
2070
0
                if (code == 0) {
2071
0
                    rpoints[nrpoints-1].x = mpt.x;
2072
0
                    rpoints[nrpoints-1].y = mpt.y;
2073
0
                    if (ensure_closed) {
2074
0
                        rpoints[nrpoints].x = nplp->o.co.x;
2075
0
                        rpoints[nrpoints].y = nplp->o.co.y;
2076
0
                        nrpoints++;
2077
0
                    }
2078
0
                    joinsense &= ~joinsense_over;
2079
0
                } else
2080
0
                    join = gs_join_bevel;
2081
0
                if (t_den != 0 &&
2082
0
                    ((t_num >= 0 && t_num <= t_den) ||
2083
0
                     (t_num <= 0 && t_num >= t_den)))   {
2084
0
                    double x = xa - xab * t_num / t_den;
2085
0
                    double y = ya - yab * t_num / t_den;
2086
0
                    points[npoints-1].x = (fixed)x;
2087
0
                    points[npoints-1].y = (fixed)y;
2088
0
                    joinsense &= ~joinsense_under;
2089
0
                }
2090
0
            }
2091
0
        }
2092
0
    }
2093
2094
0
    if ((code = add_points(ppath, points, npoints, moveto_first)) < 0)
2095
0
        return code;
2096
0
    if ((code = add_points(rpath, rpoints, nrpoints, rmoveto_first)) < 0)
2097
0
        return code;
2098
0
    npoints  = 0;
2099
0
    nrpoints = 0;
2100
2101
0
    if (nplp == 0) { /* Add a final cap. */
2102
0
        if (end_cap == gs_cap_round) {
2103
0
            code = add_pie_cap(ppath, &plp->e);
2104
0
        } else {
2105
0
            code = cap_points(end_cap, &plp->e, points);
2106
0
            npoints = code;
2107
0
        }
2108
0
    } else if (nplp->thin) { /* no join */
2109
0
        code = cap_points(gs_cap_butt, &plp->e, points);
2110
0
        npoints = code;
2111
0
    } else if (joinsense == joinsense_cap) {
2112
        /* Do a cap */
2113
0
        code = add_pie_cap(ppath, &plp->e);
2114
0
        if (code >= 0) {
2115
            /* If the next line is in the opposite direction as the current one
2116
             * we want to leave the point on the same side as it was
2117
             * originally. This is required for paths that come to a stop
2118
             * and then reverse themselves, but may produce more complexity
2119
             * than we'd really like at the ends of smooth beziers. */
2120
0
            if ((double)(plp->width.x) * nplp->width.x + (double)plp->width.y * nplp->width.y >= 0)
2121
0
                code = gx_path_add_line(ppath, plp->e.co.x, plp->e.co.y);
2122
0
        }
2123
0
    } else if (joinsense & joinsense_ccw) {
2124
        /* CCW rotation. Join in the forward path. "Underjoin" in the
2125
         * reverse path. */
2126
0
        if (joinsense & joinsense_over) {
2127
            /* RJW: Ideally we should include the "|| flags" clause in
2128
             * the following condition. This forces all joins between
2129
             * line segments generated from arcs to be round. This would
2130
             * solve some flatness issues, but makes some pathological
2131
             * cases incredibly slow. */
2132
0
            if (join == gs_join_round /* || (flags & nf_all_from_arc) */) {
2133
0
                code = add_pie_join_fast_ccw(ppath, plp, nplp, reflected);
2134
0
            } else { /* non-round join */
2135
0
                code = line_join_points_fast_ccw(pgs_lp, plp, nplp,
2136
0
                                                 points, pmat, join);
2137
0
                npoints = code;
2138
0
            }
2139
0
            if (code < 0)
2140
0
                return code;
2141
0
        }
2142
0
        if (joinsense & joinsense_under) {
2143
            /* The underjoin */
2144
0
#ifndef SLOWER_BUT_MORE_ACCURATE_STROKING
2145
0
            if ((flags & (nf_some_from_arc | nf_prev_some_from_arc)) == 0) {
2146
                /* RJW: This is an approximation. We ought to draw a line
2147
                 * back to nplp->o.p, and then independently fill any exposed
2148
                 * region under the curve with a round join. Sadly, that's
2149
                 * a) really hard to do, and b) makes certain pathological
2150
                 * filling cases MUCH slower due to the greater number of
2151
                 * "cross-segment" line segments this produces. Instead,
2152
                 * we just skip the line to the middle, and join across the
2153
                 * bottom instead. This is akin to what other graphics libs
2154
                 * do (such as fitz, libart, etc). It's not perfect but in
2155
                 * most cases it's close, and results in faster to fill
2156
                 * paths.
2157
                 */
2158
                /* RJW: This goes wrong for some paths, as the 'underjoin' wind
2159
                 * will be the wrong way. See bug 694971 */
2160
0
                code = gx_path_add_line(rpath, nplp->o.p.x, nplp->o.p.y);
2161
0
                if (code < 0)
2162
0
                    return code;
2163
0
            }
2164
#else
2165
            if (wide_underjoin(plp, nplp))
2166
            {
2167
                code = gx_path_add_line(rpath, nplp->o.p.x, nplp->o.p.y);
2168
                if (code < 0)
2169
                    return code;
2170
                if ((flags & (nf_some_from_arc | nf_prev_some_from_arc)) != 0) {
2171
                    code = gx_path_add_line(rpath, nplp->o.co.x, nplp->o.co.y);
2172
                    if (code < 0)
2173
                        return code;
2174
                    code = gx_path_add_line(rpath, plp->e.ce.x, plp->e.ce.y);
2175
                    if (code < 0)
2176
                        return code;
2177
                    code = gx_path_add_line(rpath, nplp->o.p.x, nplp->o.p.y);
2178
                    if (code < 0)
2179
                        return code;
2180
                }
2181
            }
2182
#endif
2183
0
            code = gx_path_add_line(rpath, nplp->o.co.x, nplp->o.co.y);
2184
0
        }
2185
0
    } else if (joinsense & joinsense) {
2186
        /* CW rotation. Join in the reverse path. "Underjoin" in the
2187
         * forward path. */
2188
0
        if (joinsense & joinsense_over) {
2189
            /* RJW: Ideally we should include the "|| flags" clause in
2190
             * the following condition. This forces all joins between
2191
             * line segments generated from arcs to be round. This would
2192
             * solve some flatness issues, but makes some pathological
2193
             * cases incredibly slow. */
2194
0
            if (join == gs_join_round /* || (flags & nf_all_from_arc) */) {
2195
0
                code = add_pie_join_fast_cw(rpath, plp, nplp, reflected);
2196
0
            } else { /* non-round join */
2197
0
                code = line_join_points_fast_cw(pgs_lp, plp, nplp,
2198
0
                                                rpoints, pmat, join);
2199
0
                nrpoints = code;
2200
0
            }
2201
0
            if (code < 0)
2202
0
                return code;
2203
0
        }
2204
0
        if (joinsense & joinsense_under) {
2205
            /* The underjoin */
2206
0
#ifndef SLOWER_BUT_MORE_ACCURATE_STROKING
2207
0
            if ((flags & (nf_some_from_arc | nf_prev_some_from_arc)) == 0 &&
2208
0
                join != gs_join_miter) {
2209
                /* RJW: This is an approximation. We ought to draw a line
2210
                 * back to nplp->o.p, and then independently fill any exposed
2211
                 * region under the curve with a round join. Sadly, that's
2212
                 * a) really hard to do, and b) makes certain pathological
2213
                 * filling cases MUCH slower due to the greater number of
2214
                 * "cross-segment" line segments this produces. Instead,
2215
                 * we just skip the line to the middle, and join across the
2216
                 * bottom instead. This is akin to what other graphics libs
2217
                 * do (such as fitz, libart, etc). It's not perfect but in
2218
                 * most cases it's close, and results in faster to fill
2219
                 * paths.
2220
                 */
2221
                /* RJW: This goes wrong for some paths, as the 'underjoin' wind
2222
                 * will be the wrong way. See bug 694971 */
2223
0
                code = gx_path_add_line(ppath, nplp->o.p.x, nplp->o.p.y);
2224
0
                if (code < 0)
2225
0
                    return code;
2226
0
            }
2227
#else
2228
            if (wide_underjoin(plp, nplp))
2229
            {
2230
                code = gx_path_add_line(ppath, nplp->o.p.x, nplp->o.p.y);
2231
                if (code < 0)
2232
                    return code;
2233
                if ((flags & (nf_some_from_arc | nf_prev_some_from_arc)) != 0) {
2234
                    code = gx_path_add_line(ppath, nplp->o.ce.x, nplp->o.ce.y);
2235
                    if (code < 0)
2236
                        return code;
2237
                    code = gx_path_add_line(ppath, plp->e.co.x, plp->e.co.y);
2238
                    if (code < 0)
2239
                        return code;
2240
                    code = gx_path_add_line(ppath, nplp->o.p.x, nplp->o.p.y);
2241
                    if (code < 0)
2242
                        return code;
2243
                }
2244
            }
2245
#endif
2246
0
            code = gx_path_add_line(ppath, nplp->o.ce.x, nplp->o.ce.y);
2247
0
        }
2248
0
    }
2249
0
    if (code < 0)
2250
0
        return code;
2251
0
    if (npoints > 0) {
2252
0
        code = add_points(ppath, points, npoints, false);
2253
0
        if (code < 0)
2254
0
            return code;
2255
0
    }
2256
0
    if (nrpoints > 0) {
2257
0
        code = add_points(rpath, rpoints, nrpoints, false);
2258
0
        if (code < 0)
2259
0
            return code;
2260
0
    }
2261
0
    if (ensure_closed)
2262
0
        return gx_join_path_and_reverse(ppath, rpath);
2263
0
    return 0;
2264
0
}
2265
2266
/* Add a CPSI-compatible segment to the path.  This handles all the complex
2267
 * cases.
2268
 *
2269
 * This method doesn't support start/end/dash caps, but it's only used from
2270
 * postscript, so it doesn't need to.
2271
 */
2272
static int
2273
stroke_add_compat(gx_path * ppath, gx_path *rpath, bool ensure_closed,
2274
                  int first, pl_ptr plp, pl_ptr nplp,
2275
                  const gx_device_color * pdevc, gx_device * dev,
2276
                  const gs_gstate * pgs,
2277
                  const gx_stroke_params * params,
2278
                  const gs_fixed_rect * ignore_pbbox, int uniform,
2279
                  gs_line_join join, bool reflected, note_flags flags)
2280
472
{
2281
    /* Actually it adds 2 contours : one for the segment itself,
2282
       and another one for line join or for the ending cap.
2283
       Note CPSI creates negative contours. */
2284
472
    const gx_line_params *pgs_lp = gs_currentlineparams_inline(pgs);
2285
472
    gs_fixed_point points[6];
2286
472
    int npoints;
2287
472
    bool const moveto_first = true; /* Keeping this code closer to "stroke_add". */
2288
472
    int code;
2289
2290
472
    if (plp->thin) {
2291
        /* We didn't set up the endpoint parameters before, */
2292
        /* because the line was thin.  Do it now. */
2293
0
        set_thin_widths(plp);
2294
0
        adjust_stroke(dev, plp, pgs, true, first == 0 && nplp == 0, flags);
2295
0
        compute_caps(plp);
2296
0
    }
2297
    /* The segment itself : */
2298
472
    ASSIGN_POINT(&points[0], plp->o.ce);
2299
472
    ASSIGN_POINT(&points[1], plp->e.co);
2300
472
    ASSIGN_POINT(&points[2], plp->e.ce);
2301
472
    ASSIGN_POINT(&points[3], plp->o.co);
2302
472
    code = add_points(ppath, points, 4, moveto_first);
2303
472
    if (code < 0)
2304
0
        return code;
2305
472
    code = gx_path_close_subpath(ppath);
2306
472
    if (code < 0)
2307
0
        return code;
2308
472
    npoints = 0;
2309
472
    if (nplp == 0) {
2310
        /* Add a final cap. */
2311
0
        if (pgs_lp->start_cap == gs_cap_butt)
2312
0
            return 0;
2313
0
        if (pgs_lp->start_cap == gs_cap_round) {
2314
0
            ASSIGN_POINT(&points[npoints], plp->e.co);
2315
0
            ++npoints;
2316
0
            if ((code = add_points(ppath, points, npoints, moveto_first)) < 0)
2317
0
                return code;
2318
0
            return add_round_cap(ppath, &plp->e);
2319
0
        }
2320
0
        ASSIGN_POINT(&points[0], plp->e.ce);
2321
0
        ++npoints;
2322
0
        ASSIGN_POINT(&points[npoints], plp->e.co);
2323
0
        ++npoints;
2324
0
        code = cap_points(pgs_lp->start_cap, &plp->e, points + npoints);
2325
0
        if (code < 0)
2326
0
            return code;
2327
0
        npoints += code;
2328
472
    } else if (join == gs_join_round) {
2329
0
        ASSIGN_POINT(&points[npoints], plp->e.co);
2330
0
        ++npoints;
2331
0
        if ((code = add_points(ppath, points, npoints, moveto_first)) < 0)
2332
0
            return code;
2333
0
        return add_round_cap(ppath, &plp->e);
2334
472
    } else if (nplp->thin) {    /* no join */
2335
0
        npoints = 0;
2336
472
    } else {                    /* non-round join */
2337
472
        bool ccw =
2338
472
            (double)(plp->width.x) /* x1 */ * (nplp->width.y) /* y2 */ >
2339
472
            (double)(nplp->width.x) /* x2 */ * (plp->width.y) /* y1 */;
2340
2341
472
        if (ccw ^ reflected) {
2342
472
            ASSIGN_POINT(&points[0], plp->e.co);
2343
472
            ++npoints;
2344
472
            code = line_join_points(pgs_lp, plp, nplp, points + npoints,
2345
472
                                    (uniform ? (gs_matrix *) 0 : &ctm_only(pgs)),
2346
472
                                    join, reflected);
2347
472
            if (code < 0)
2348
0
                return code;
2349
472
            code--; /* Drop the last point of the non-compatible mode. */
2350
472
            npoints += code;
2351
472
        } else {
2352
0
            code = line_join_points(pgs_lp, plp, nplp, points,
2353
0
                                    (uniform ? (gs_matrix *) 0 : &ctm_only(pgs)),
2354
0
                                    join, reflected);
2355
0
            if (code < 0)
2356
0
                return code;
2357
0
            ASSIGN_POINT(&points[0], plp->e.ce); /* Replace the starting point of the non-compatible mode. */
2358
0
            npoints = code;
2359
0
        }
2360
472
    }
2361
472
    code = add_points(ppath, points, npoints, moveto_first);
2362
472
    if (code < 0)
2363
0
        return code;
2364
472
    code = gx_path_close_subpath(ppath);
2365
472
    return code;
2366
472
}
2367
2368
/* Add a CPSI-compatible segment to the path.  This handles all the complex
2369
 * cases.
2370
 *
2371
 * This method doesn't support start/end/dash caps, but it's only used from
2372
 * postscript, so it doesn't need to.
2373
 */
2374
static int
2375
stroke_add_initial_cap_compat(gx_path * ppath, pl_ptr plp, bool adlust_longitude,
2376
           const gx_device_color * pdevc, gx_device * dev,
2377
           const gs_gstate * pgs)
2378
0
{
2379
0
    const gx_line_params *pgs_lp = gs_currentlineparams_inline(pgs);
2380
0
    gs_fixed_point points[5];
2381
0
    int npoints = 0;
2382
0
    int code;
2383
2384
0
    if (pgs_lp->start_cap == gs_cap_butt)
2385
0
        return 0;
2386
0
    if (plp->thin) {
2387
        /* We didn't set up the endpoint parameters before, */
2388
        /* because the line was thin.  Do it now. */
2389
0
        set_thin_widths(plp);
2390
0
        adjust_stroke(dev, plp, pgs, true, adlust_longitude, 0);
2391
0
        compute_caps(plp);
2392
0
    }
2393
    /* Create an initial cap if desired. */
2394
0
    if (pgs_lp->start_cap == gs_cap_round) {
2395
0
        if ((code = gx_path_add_point(ppath, plp->o.co.x, plp->o.co.y)) < 0 ||
2396
0
            (code = add_round_cap(ppath, &plp->o)) < 0
2397
0
            )
2398
0
            return code;
2399
0
        return 0;
2400
0
    } else {
2401
0
        ASSIGN_POINT(&points[0], plp->o.co);
2402
0
        ++npoints;
2403
0
        if ((code = cap_points(pgs_lp->start_cap, &plp->o, points + npoints)) < 0)
2404
0
            return npoints;
2405
0
        npoints += code;
2406
0
        ASSIGN_POINT(&points[npoints], plp->o.ce);
2407
0
        ++npoints;
2408
0
        code = add_points(ppath, points, npoints, true);
2409
0
        if (code < 0)
2410
0
            return code;
2411
0
        return gx_path_close_subpath(ppath);
2412
0
    }
2413
0
}
2414
2415
/* Add lines with a possible initial moveto. */
2416
static int
2417
add_points(gx_path * ppath, const gs_fixed_point * points, int npoints,
2418
           bool moveto_first)
2419
59.6k
{
2420
59.6k
    int code;
2421
2422
59.6k
    if (moveto_first) {
2423
59.6k
        code = gx_path_add_point(ppath, points[0].x, points[0].y);
2424
59.6k
        if (code < 0)
2425
0
            return code;
2426
59.6k
        return gx_path_add_lines(ppath, points + 1, npoints - 1);
2427
59.6k
    } else {
2428
1
        return gx_path_add_lines(ppath, points, npoints);
2429
1
    }
2430
59.6k
}
2431
2432
/* ---------------- Join computation ---------------- */
2433
2434
/* Compute the points for a bevel, miter, or triangle join. */
2435
/* Treat no join the same as a bevel join. */
2436
/* If pmat != 0, we must inverse-transform the distances for */
2437
/* the miter check. */
2438
static int
2439
line_join_points(const gx_line_params * pgs_lp, pl_ptr plp, pl_ptr nplp,
2440
                 gs_fixed_point * join_points, const gs_matrix * pmat,
2441
                 gs_line_join join, bool reflected)
2442
52.2k
{
2443
52.2k
#define jp1 join_points[0]
2444
52.2k
#define np1 join_points[1]
2445
52.2k
#define np2 join_points[2]
2446
52.2k
#define jp2 join_points[3]
2447
52.2k
#define jpx join_points[4]
2448
    /*
2449
     * Set np to whichever of nplp->o.co or .ce is outside
2450
     * the current line.  We observe that the point (x2,y2)
2451
     * is counter-clockwise from (x1,y1), relative to the origin,
2452
     * iff
2453
     *  (arctan(y2/x2) - arctan(y1/x1)) mod 2*pi < pi,
2454
     * taking the signs of xi and yi into account to determine
2455
     * the quadrants of the results.  It turns out that
2456
     * even though arctan is monotonic only in the 4th/1st
2457
     * quadrants and the 2nd/3rd quadrants, case analysis on
2458
     * the signs of xi and yi demonstrates that this test
2459
     * is equivalent to the much less expensive test
2460
     *  x1 * y2 > x2 * y1
2461
     * in all cases.
2462
     *
2463
     * In the present instance, x1,y1 are plp->width,
2464
     * x2,y2 are nplp->width, and the origin is
2465
     * their common point (plp->e.p, nplp->o.p).
2466
     * ccw will be true iff nplp.o.co (nplp.o.p + width) is
2467
     * counter-clockwise from plp.e.ce (plp.e.p + width),
2468
     * in which case we want tan(a-b) rather than tan(b-a).
2469
     *
2470
     * We make the test using double arithmetic only because
2471
     * the !@#&^*% C language doesn't give us access to
2472
     * the double-width-result multiplication operation
2473
     * that almost all CPUs provide!
2474
     */
2475
52.2k
    bool ccw =
2476
52.2k
        (double)(plp->width.x) /* x1 */ * (nplp->width.y) /* y2 */ >
2477
52.2k
        (double)(nplp->width.x) /* x2 */ * (plp->width.y) /* y1 */;
2478
52.2k
    bool ccw0 = ccw;
2479
52.2k
    p_ptr outp, np;
2480
52.2k
    int   code;
2481
52.2k
    gs_fixed_point mpt;
2482
2483
52.2k
    ccw ^= reflected;
2484
2485
    /* Initialize for a bevel join. */
2486
52.2k
    ASSIGN_POINT(&jp1, plp->e.co);
2487
52.2k
    ASSIGN_POINT(&jp2, plp->e.ce);
2488
2489
    /*
2490
     * Because of stroke adjustment, it is possible that
2491
     * plp->e.p != nplp->o.p.  For that reason, we must use
2492
     * nplp->o.p as np1 or np2.
2493
     */
2494
52.2k
    if (!ccw) {
2495
26.4k
        outp = &jp2;
2496
26.4k
        ASSIGN_POINT(&np2, nplp->o.co);
2497
26.4k
        ASSIGN_POINT(&np1, nplp->o.p);
2498
26.4k
        np = &np2;
2499
26.4k
    } else {
2500
25.7k
        outp = &jp1;
2501
25.7k
        ASSIGN_POINT(&np1, nplp->o.ce);
2502
25.7k
        ASSIGN_POINT(&np2, nplp->o.p);
2503
25.7k
        np = &np1;
2504
25.7k
    }
2505
52.2k
    if_debug1('O', "[O]use %s\n", (ccw ? "co (ccw)" : "ce (cw)"));
2506
2507
    /* Handle triangular joins now. */
2508
52.2k
    if (join == gs_join_triangle) {
2509
0
        fixed tpx = outp->x - nplp->o.p.x + np->x;
2510
0
        fixed tpy = outp->y - nplp->o.p.y + np->y;
2511
2512
0
        ASSIGN_POINT(&jpx, jp2);
2513
0
        if (!ccw) {
2514
            /* Insert tp between np2 and jp2. */
2515
0
            jp2.x = tpx, jp2.y = tpy;
2516
0
        } else {
2517
            /* Insert tp between jp1 and np1. */
2518
0
            ASSIGN_POINT(&jp2, np2);
2519
0
            ASSIGN_POINT(&np2, np1);
2520
0
            np1.x = tpx, np1.y = tpy;
2521
0
        }
2522
0
        return 5;
2523
0
    }
2524
52.2k
    if (join == gs_join_miter &&
2525
52.2k
        (code = check_miter(pgs_lp, plp, nplp, pmat, outp, np, &mpt, ccw0)) <= 0) {
2526
32.2k
        if (code < 0)
2527
0
            return code;
2528
32.2k
        ASSIGN_POINT(outp, mpt);
2529
32.2k
    }
2530
52.2k
    return 4;
2531
52.2k
}
2532
2533
static int
2534
line_join_points_fast_cw(const gx_line_params * pgs_lp,
2535
                         pl_ptr plp, pl_ptr nplp,
2536
                         gs_fixed_point * rjoin_points,
2537
                         const gs_matrix * pmat,
2538
                         gs_line_join join)
2539
0
{
2540
    /* rjoin_points will be added to a path that is currently at plp->e.ce.
2541
     */
2542
2543
    /* Join will be between plp->e.ce and nplp->o.co */
2544
0
    if (join == gs_join_triangle)
2545
0
    {
2546
0
        gs_fixed_point tp;
2547
2548
0
        tp.x = plp->e.ce.x - nplp->o.p.x + nplp->o.co.x;
2549
0
        tp.y = plp->e.ce.y - nplp->o.p.y + nplp->o.co.y;
2550
0
        ASSIGN_POINT(&rjoin_points[0], tp);
2551
0
        ASSIGN_POINT(&rjoin_points[1], nplp->o.co);
2552
0
        return 2;
2553
0
    }
2554
2555
    /* Set up for a Bevel join */
2556
0
    ASSIGN_POINT(&rjoin_points[0], nplp->o.co);
2557
2558
0
    return 1;
2559
0
}
2560
2561
static int
2562
line_join_points_fast_ccw(const gx_line_params * pgs_lp,
2563
                          pl_ptr plp, pl_ptr nplp,
2564
                          gs_fixed_point * join_points,
2565
                          const gs_matrix * pmat,
2566
                          gs_line_join join)
2567
0
{
2568
    /* join_points will be added to a path that is currently at plp->e.co.
2569
     */
2570
    /* Join will be between plp->e.co and nplp->o.ce */
2571
0
    if (join == gs_join_triangle)
2572
0
    {
2573
0
        gs_fixed_point tp;
2574
2575
0
        tp.x = plp->e.co.x - nplp->o.p.x + nplp->o.ce.x;
2576
0
        tp.y = plp->e.co.y - nplp->o.p.y + nplp->o.ce.y;
2577
0
        ASSIGN_POINT(&join_points[0], tp);
2578
0
        ASSIGN_POINT(&join_points[1], nplp->o.ce);
2579
0
        return 2;
2580
0
    }
2581
2582
    /* Set up for a Bevel join */
2583
0
    ASSIGN_POINT(&join_points[0], nplp->o.ce);
2584
2585
0
    return 1;
2586
0
}
2587
/* ---------------- Cap computations ---------------- */
2588
2589
/* Compute the endpoints of the two caps of a segment. */
2590
/* Only o.p, e.p, width, and cdelta have been set. */
2591
static void
2592
compute_caps(pl_ptr plp)
2593
59.2k
{
2594
59.2k
    fixed wx2 = plp->width.x;
2595
59.2k
    fixed wy2 = plp->width.y;
2596
2597
59.2k
    plp->o.co.x = plp->o.p.x + wx2, plp->o.co.y = plp->o.p.y + wy2;
2598
59.2k
    plp->o.cdelta.x = -plp->e.cdelta.x,
2599
59.2k
        plp->o.cdelta.y = -plp->e.cdelta.y;
2600
59.2k
    plp->o.ce.x = plp->o.p.x - wx2, plp->o.ce.y = plp->o.p.y - wy2;
2601
59.2k
    plp->e.co.x = plp->e.p.x - wx2, plp->e.co.y = plp->e.p.y - wy2;
2602
59.2k
    plp->e.ce.x = plp->e.p.x + wx2, plp->e.ce.y = plp->e.p.y + wy2;
2603
#ifdef DEBUG
2604
    if (gs_debug_c('O')) {
2605
        dlprintf4("[o]Stroke o=(%f,%f) e=(%f,%f)\n",
2606
                  fixed2float(plp->o.p.x), fixed2float(plp->o.p.y),
2607
                  fixed2float(plp->e.p.x), fixed2float(plp->e.p.y));
2608
        dlprintf4("\twxy=(%f,%f) lxy=(%f,%f)\n",
2609
                  fixed2float(wx2), fixed2float(wy2),
2610
                  fixed2float(plp->e.cdelta.x),
2611
                  fixed2float(plp->e.cdelta.y));
2612
    }
2613
#endif
2614
59.2k
}
2615
2616
#define px endp->p.x
2617
#define py endp->p.y
2618
#define xo endp->co.x
2619
#define yo endp->co.y
2620
#define xe endp->ce.x
2621
#define ye endp->ce.y
2622
#define cdx endp->cdelta.x
2623
#define cdy endp->cdelta.y
2624
2625
/* Add a round cap to a path. */
2626
/* Assume the current point is the cap origin (endp->co). */
2627
static int
2628
add_round_cap(gx_path * ppath, const_ep_ptr endp)
2629
0
{
2630
0
    int code;
2631
2632
    /*
2633
     * Per the Red Book, we draw a full circle, even though a semicircle
2634
     * is sufficient for the join.
2635
     */
2636
0
    if ((code = gx_path_add_partial_arc(ppath, px + cdx, py + cdy,
2637
0
                                        xo + cdx, yo + cdy,
2638
0
                                        quarter_arc_fraction)) < 0 ||
2639
0
        (code = gx_path_add_partial_arc(ppath, xe, ye, xe + cdx, ye + cdy,
2640
0
                                        quarter_arc_fraction)) < 0 ||
2641
0
        (code = gx_path_add_partial_arc(ppath, px - cdx, py - cdy,
2642
0
                                        xe - cdx, ye - cdy,
2643
0
                                        quarter_arc_fraction)) < 0 ||
2644
0
        (code = gx_path_add_partial_arc(ppath, xo, yo, xo - cdx, yo - cdy,
2645
0
                                        quarter_arc_fraction)) < 0 ||
2646
        /* The final point must be (xe,ye). */
2647
0
        (code = gx_path_add_line(ppath, xe, ye)) < 0
2648
0
        )
2649
0
        return code;
2650
0
    return 0;
2651
0
}
2652
2653
/* Add a semicircular cap to a path. */
2654
/* Assume the current point is the cap origin (endp->co). */
2655
static int
2656
add_pie_cap(gx_path * ppath, const_ep_ptr endp)
2657
2
{
2658
2
    int code;
2659
2660
2
    if ((code = gx_path_add_partial_arc(ppath, px + cdx, py + cdy,
2661
2
                                        xo + cdx, yo + cdy,
2662
2
                                        quarter_arc_fraction)) < 0 ||
2663
2
        (code = gx_path_add_partial_arc(ppath, xe, ye, xe + cdx, ye + cdy,
2664
2
                                        quarter_arc_fraction)) < 0 ||
2665
2
        (code = gx_path_add_line(ppath, xe, ye)) < 0)
2666
0
        return code;
2667
2
    return 0;
2668
2
}
2669
2670
static int
2671
do_pie_join(gx_path * ppath, gs_fixed_point *centre,
2672
            gs_fixed_point *current_orig, gs_fixed_point *current_tangent,
2673
            gs_fixed_point *final, gs_fixed_point *final_tangent, bool ccw,
2674
            gs_fixed_point *width)
2675
3.58k
{
2676
3.58k
    int code;
2677
3.58k
    double rad_squared, dist_squared, F;
2678
3.58k
    gs_fixed_point current, tangent, tangmeet;
2679
2680
3.58k
    tangent.x = current_tangent->x;
2681
3.58k
    tangent.y = current_tangent->y;
2682
3.58k
    current.x = current_orig->x;
2683
3.58k
    current.y = current_orig->y;
2684
2685
    /* Is the join more than 90 degrees? */
2686
3.58k
    if ((double)tangent.x * (double)final_tangent->x +
2687
3.58k
        (double)tangent.y * (double)final_tangent->y > 0) {
2688
        /* Yes, so do a quarter turn. */
2689
0
        code = gx_path_add_partial_arc(ppath,
2690
0
                                       centre->x + tangent.x,
2691
0
                                       centre->y + tangent.y,
2692
                                       /* Point where tangents meet */
2693
0
                                       current.x + tangent.x,
2694
0
                                       current.y + tangent.y,
2695
0
                                       quarter_arc_fraction);
2696
0
        if (code < 0)
2697
0
            return code;
2698
0
        current.x = centre->x + tangent.x;
2699
0
        current.y = centre->y + tangent.y;
2700
0
        if (ccw) {
2701
0
            int tmp = tangent.x;
2702
0
            tangent.x = -tangent.y;
2703
0
            tangent.y = tmp;
2704
0
        } else {
2705
0
            int tmp = tangent.x;
2706
0
            tangent.x = tangent.y;
2707
0
            tangent.y = -tmp;
2708
0
        }
2709
0
    }
2710
2711
    /* Now we are guaranteed that the remaining arc is 90 degrees or
2712
     * less. Find where the tangents meet for this final section. */
2713
3.58k
    if (line_intersect(&current, &tangent,
2714
3.58k
                       final, final_tangent, &tangmeet) != 0) {
2715
1.07k
        return gx_path_add_line(ppath, final->x, final->y);
2716
1.07k
    }
2717
2.50k
    current.x -= tangmeet.x;
2718
2.50k
    current.y -= tangmeet.y;
2719
2.50k
    dist_squared = ((double)current.x) * current.x +
2720
2.50k
                   ((double)current.y) * current.y;
2721
2.50k
    rad_squared  = ((double)width->x) * width->x +
2722
2.50k
                   ((double)width->y) * width->y;
2723
2.50k
    dist_squared /= rad_squared;
2724
2.50k
    F = (4.0/3.0)*(1/(1+sqrt(1+dist_squared)));
2725
2.50k
    return gx_path_add_partial_arc(ppath, final->x, final->y,
2726
3.58k
                                   tangmeet.x, tangmeet.y, F);
2727
3.58k
}
2728
2729
/* Add a pie shaped join to a path. */
2730
/* Assume the current point is the cap origin (endp->co). */
2731
static int
2732
add_pie_join(gx_path * ppath, pl_ptr plp, pl_ptr nplp, bool reflected,
2733
             bool cap)
2734
3.66k
{
2735
3.66k
    int code;
2736
3.66k
    gs_fixed_point *current, *final, *tangent, *final_tangent;
2737
3.66k
    double l, r;
2738
3.66k
    bool ccw;
2739
2740
3.66k
    l = (double)(plp->width.x) /* x1 */ * (nplp->width.y) /* y2 */;
2741
3.66k
    r = (double)(nplp->width.x) /* x2 */ * (plp->width.y) /* y1 */;
2742
2743
3.66k
    if (l == r) {
2744
        /* Colinear. Suppress drawing a cap unless the path reverses direction. */
2745
90
        if (cap &&
2746
90
            ((double)(plp->width.x) * (nplp->width.x) + (double)(nplp->width.y) * (plp->width.y)) < 0)
2747
0
            return add_pie_cap(ppath, &plp->e);
2748
90
        else
2749
90
            return gx_path_add_line(ppath, plp->e.ce.x, plp->e.ce.y);
2750
90
    }
2751
2752
3.57k
    ccw = (l > r);
2753
2754
3.57k
    ccw ^= reflected;
2755
2756
    /* At this point, the current point is plp->e.co */
2757
3.57k
    if (ccw) {
2758
1.06k
        current       = & plp->e.co;
2759
1.06k
        final         = &nplp->o.ce;
2760
1.06k
        tangent       = & plp->e.cdelta;
2761
1.06k
        final_tangent = &nplp->o.cdelta;
2762
        /* Check for no join required */
2763
1.06k
        if (current->x == final->x && current->y == final->y) {
2764
0
            return gx_path_add_line(ppath, plp->e.ce.x, plp->e.ce.y);
2765
0
        }
2766
2.51k
    } else {
2767
2.51k
        current       = &nplp->o.co;
2768
2.51k
        final         = & plp->e.ce;
2769
2.51k
        tangent       = &nplp->o.cdelta;
2770
2.51k
        final_tangent = & plp->e.cdelta;
2771
2.51k
        code = gx_path_add_line(ppath, plp->e.p.x, plp->e.p.y);
2772
2.51k
        if (code < 0)
2773
0
            return code;
2774
2.51k
        code = gx_path_add_line(ppath, current->x, current->y);
2775
2.51k
        if (code < 0)
2776
0
            return code;
2777
2.51k
        if (current->x == final->x && current->y == final->y)
2778
0
            return 0;
2779
2.51k
    }
2780
2781
3.57k
    if ((code = do_pie_join(ppath, &plp->e.p, current, tangent,
2782
3.57k
                            final, final_tangent, !reflected, &plp->width)) < 0)
2783
0
        return code;
2784
3.57k
    if (ccw &&
2785
3.57k
        ((code = gx_path_add_line(ppath, plp->e.p.x, plp->e.p.y)) < 0 ||
2786
1.06k
         (code = gx_path_add_line(ppath, plp->e.ce.x, plp->e.ce.y)) < 0))
2787
0
        return code;
2788
2789
3.57k
    return 0;
2790
3.57k
}
2791
2792
/* Add a pie shaped join to a path. */
2793
static int
2794
add_pie_join_fast_cw(gx_path * rpath, pl_ptr plp, pl_ptr nplp, bool reflected)
2795
0
{
2796
    /* At this point, the current point is plp->e.ce */
2797
0
    if (plp->e.ce.x == nplp->o.co.x && plp->e.ce.y == nplp->o.co.y)
2798
0
        return 0;
2799
2800
0
    return do_pie_join(rpath, &plp->e.p, &plp->e.ce, &plp->e.cdelta,
2801
0
                       &nplp->o.co, &nplp->o.cdelta, reflected, &plp->width);
2802
0
}
2803
2804
static int
2805
add_pie_join_fast_ccw(gx_path * ppath, pl_ptr plp, pl_ptr nplp, bool reflected)
2806
0
{
2807
    /* At this point, the current point is plp->e.co */
2808
    /* Check for no join required */
2809
0
    if (plp->e.co.x == nplp->o.ce.x && plp->e.co.y == nplp->o.ce.y)
2810
0
        return 0;
2811
2812
0
    return do_pie_join(ppath, &plp->e.p, &plp->e.co, &plp->e.cdelta,
2813
0
                       &nplp->o.ce, &nplp->o.cdelta, !reflected, &plp->width);
2814
0
}
2815
2816
static int
2817
join_under_pie(gx_path * ppath, pl_ptr plp, pl_ptr nplp, bool reflected)
2818
3.83k
{
2819
3.83k
    int code;
2820
3.83k
    gs_fixed_point dirn1, dirn2, tangmeet;
2821
3.83k
    double l, r;
2822
3.83k
    bool ccw;
2823
2824
3.83k
    l = (double)(plp->width.x) /* x1 */ * (nplp->width.y) /* y2 */;
2825
3.83k
    r = (double)(nplp->width.x) /* x2 */ * (plp->width.y) /* y1 */;
2826
2827
3.83k
    if (l == r)
2828
106
        return 0;
2829
2830
3.72k
    ccw = (l > r);
2831
2832
3.72k
    ccw ^= reflected;
2833
2834
3.72k
    if (ccw) {
2835
1.18k
        dirn1.x = - plp->width.x;
2836
1.18k
        dirn1.y = - plp->width.y;
2837
1.18k
        dirn2.x = -nplp->width.x;
2838
1.18k
        dirn2.y = -nplp->width.y;
2839
1.18k
        if (line_intersect(& plp->o.co, &dirn1,
2840
1.18k
                           &nplp->e.ce, &dirn2, &tangmeet) != 0)
2841
1.18k
            return 0;
2842
2
        if ((code = gx_path_close_subpath(ppath)) < 0 ||
2843
2
            (code = gx_path_add_point(ppath, tangmeet.x, tangmeet.y)) < 0  ||
2844
2
            (code = gx_path_add_line(ppath,plp->o.co.x,plp->o.co.y)) < 0 ||
2845
2
            (code = do_pie_join(ppath, &plp->e.p, &plp->o.co, &plp->o.cdelta,
2846
2
                                &nplp->e.ce, &nplp->e.cdelta, !reflected,
2847
2
                                &plp->width)))
2848
0
            return code;
2849
2.54k
    } else {
2850
2.54k
        if (line_intersect(& plp->o.ce, & plp->width,
2851
2.54k
                           &nplp->e.co, &nplp->width, &tangmeet) != 0)
2852
2.54k
            return 0;
2853
0
        if ((code = gx_path_close_subpath(ppath)) < 0 ||
2854
0
            (code = gx_path_add_point(ppath, tangmeet.x, tangmeet.y)) < 0  ||
2855
0
            (code = gx_path_add_line(ppath,nplp->e.co.x,nplp->e.co.y)) < 0 ||
2856
0
            (code = do_pie_join(ppath, &plp->e.p,&nplp->e.co,&nplp->e.cdelta,
2857
0
                                &plp->o.ce, &plp->o.cdelta, !reflected,
2858
0
                                &plp->width)))
2859
0
            return code;
2860
0
    }
2861
2
    return 0;
2862
3.72k
}
2863
2864
/* Compute the points for a non-round cap. */
2865
/* Return the number of points. */
2866
static int
2867
cap_points(gs_line_cap type, const_ep_ptr endp, gs_fixed_point *pts /*[3]*/)
2868
62.0k
{
2869
62.0k
#define PUT_POINT(i, px, py)\
2870
124k
  pts[i].x = (px), pts[i].y = (py)
2871
62.0k
    switch (type) {
2872
60.6k
        case gs_cap_butt:
2873
60.6k
            PUT_POINT(0, xo, yo);
2874
60.6k
            PUT_POINT(1, xe, ye);
2875
60.6k
            return 2;
2876
1.47k
        case gs_cap_square:
2877
1.47k
            PUT_POINT(0, xo + cdx, yo + cdy);
2878
1.47k
            PUT_POINT(1, xe + cdx, ye + cdy);
2879
1.47k
            return 2;
2880
0
        case gs_cap_triangle:   /* (not supported by PostScript) */
2881
0
            PUT_POINT(0, xo, yo);
2882
0
            PUT_POINT(1, px + cdx, py + cdy);
2883
0
            PUT_POINT(2, xe, ye);
2884
0
            return 3;
2885
0
        default:                /* can't happen */
2886
0
            return_error(gs_error_unregistered);
2887
62.0k
    }
2888
62.0k
#undef PUT_POINT
2889
62.0k
}