/src/ghostpdl/obj/jdmaster.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * jdmaster.c |
3 | | * |
4 | | * Copyright (C) 1991-1997, Thomas G. Lane. |
5 | | * Modified 2002-2020 by Guido Vollbeding. |
6 | | * This file is part of the Independent JPEG Group's software. |
7 | | * For conditions of distribution and use, see the accompanying README file. |
8 | | * |
9 | | * This file contains master control logic for the JPEG decompressor. |
10 | | * These routines are concerned with selecting the modules to be executed |
11 | | * and with determining the number of passes and the work to be done in each |
12 | | * pass. |
13 | | */ |
14 | | |
15 | | #define JPEG_INTERNALS |
16 | | #include "jinclude.h" |
17 | | #include "jpeglib.h" |
18 | | |
19 | | |
20 | | /* Private state */ |
21 | | |
22 | | typedef struct { |
23 | | struct jpeg_decomp_master pub; /* public fields */ |
24 | | |
25 | | int pass_number; /* # of passes completed */ |
26 | | |
27 | | boolean using_merged_upsample; /* TRUE if using merged upsample/cconvert */ |
28 | | |
29 | | /* Saved references to initialized quantizer modules, |
30 | | * in case we need to switch modes. |
31 | | */ |
32 | | struct jpeg_color_quantizer * quantizer_1pass; |
33 | | struct jpeg_color_quantizer * quantizer_2pass; |
34 | | } my_decomp_master; |
35 | | |
36 | | typedef my_decomp_master * my_master_ptr; |
37 | | |
38 | | |
39 | | /* |
40 | | * Determine whether merged upsample/color conversion should be used. |
41 | | * CRUCIAL: this must match the actual capabilities of jdmerge.c! |
42 | | */ |
43 | | |
44 | | LOCAL(boolean) |
45 | | use_merged_upsample (j_decompress_ptr cinfo) |
46 | 2 | { |
47 | | #ifdef UPSAMPLE_MERGING_SUPPORTED |
48 | | /* Merging is the equivalent of plain box-filter upsampling. */ |
49 | | /* The following condition is only needed if fancy shall select |
50 | | * a different upsampling method. In our current implementation |
51 | | * fancy only affects the DCT scaling, thus we can use fancy |
52 | | * upsampling and merged upsample simultaneously, in particular |
53 | | * with scaled DCT sizes larger than the default DCTSIZE. |
54 | | */ |
55 | | #if 0 |
56 | | if (cinfo->do_fancy_upsampling) |
57 | | return FALSE; |
58 | | #endif |
59 | | if (cinfo->CCIR601_sampling) |
60 | | return FALSE; |
61 | | /* jdmerge.c only supports YCC=>RGB color conversion */ |
62 | | if ((cinfo->jpeg_color_space != JCS_YCbCr && |
63 | | cinfo->jpeg_color_space != JCS_BG_YCC) || |
64 | | cinfo->num_components != 3 || |
65 | | cinfo->out_color_space != JCS_RGB || |
66 | | cinfo->out_color_components != RGB_PIXELSIZE || |
67 | | cinfo->color_transform) |
68 | | return FALSE; |
69 | | /* and it only handles 2h1v or 2h2v sampling ratios */ |
70 | | if (cinfo->comp_info[0].h_samp_factor != 2 || |
71 | | cinfo->comp_info[1].h_samp_factor != 1 || |
72 | | cinfo->comp_info[2].h_samp_factor != 1 || |
73 | | cinfo->comp_info[0].v_samp_factor > 2 || |
74 | | cinfo->comp_info[1].v_samp_factor != 1 || |
75 | | cinfo->comp_info[2].v_samp_factor != 1) |
76 | | return FALSE; |
77 | | /* furthermore, it doesn't work if we've scaled the IDCTs differently */ |
78 | | if (cinfo->comp_info[0].DCT_h_scaled_size != cinfo->min_DCT_h_scaled_size || |
79 | | cinfo->comp_info[1].DCT_h_scaled_size != cinfo->min_DCT_h_scaled_size || |
80 | | cinfo->comp_info[2].DCT_h_scaled_size != cinfo->min_DCT_h_scaled_size || |
81 | | cinfo->comp_info[0].DCT_v_scaled_size != cinfo->min_DCT_v_scaled_size || |
82 | | cinfo->comp_info[1].DCT_v_scaled_size != cinfo->min_DCT_v_scaled_size || |
83 | | cinfo->comp_info[2].DCT_v_scaled_size != cinfo->min_DCT_v_scaled_size) |
84 | | return FALSE; |
85 | | /* ??? also need to test for upsample-time rescaling, when & if supported */ |
86 | | return TRUE; /* by golly, it'll work... */ |
87 | | #else |
88 | 2 | return FALSE; |
89 | 2 | #endif |
90 | 2 | } |
91 | | |
92 | | |
93 | | /* |
94 | | * Compute output image dimensions and related values. |
95 | | * NOTE: this is exported for possible use by application. |
96 | | * Hence it mustn't do anything that can't be done twice. |
97 | | * Also note that it may be called before the master module is initialized! |
98 | | */ |
99 | | |
100 | | GLOBAL(void) |
101 | | jpeg_calc_output_dimensions (j_decompress_ptr cinfo) |
102 | | /* Do computations that are needed before master selection phase. |
103 | | * This function is used for full decompression. |
104 | | */ |
105 | 1 | { |
106 | 1 | int ci, i; |
107 | 1 | jpeg_component_info *compptr; |
108 | | |
109 | | /* Prevent application from calling me at wrong times */ |
110 | 1 | if (cinfo->global_state != DSTATE_READY) |
111 | 0 | ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); |
112 | | |
113 | | /* Compute core output image dimensions and DCT scaling choices. */ |
114 | 1 | jpeg_core_output_dimensions(cinfo); |
115 | | |
116 | | #ifdef IDCT_SCALING_SUPPORTED |
117 | | |
118 | | /* In selecting the actual DCT scaling for each component, we try to |
119 | | * scale up the chroma components via IDCT scaling rather than upsampling. |
120 | | * This saves time if the upsampler gets to use 1:1 scaling. |
121 | | * Note this code adapts subsampling ratios which are powers of 2. |
122 | | */ |
123 | | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
124 | | ci++, compptr++) { |
125 | | int ssize = 1; |
126 | | if (! cinfo->raw_data_out) |
127 | | while (cinfo->min_DCT_h_scaled_size * ssize <= |
128 | | (cinfo->do_fancy_upsampling ? DCTSIZE : DCTSIZE / 2) && |
129 | | (cinfo->max_h_samp_factor % (compptr->h_samp_factor * ssize * 2)) == |
130 | | 0) { |
131 | | ssize = ssize * 2; |
132 | | } |
133 | | compptr->DCT_h_scaled_size = cinfo->min_DCT_h_scaled_size * ssize; |
134 | | ssize = 1; |
135 | | if (! cinfo->raw_data_out) |
136 | | while (cinfo->min_DCT_v_scaled_size * ssize <= |
137 | | (cinfo->do_fancy_upsampling ? DCTSIZE : DCTSIZE / 2) && |
138 | | (cinfo->max_v_samp_factor % (compptr->v_samp_factor * ssize * 2)) == |
139 | | 0) { |
140 | | ssize = ssize * 2; |
141 | | } |
142 | | compptr->DCT_v_scaled_size = cinfo->min_DCT_v_scaled_size * ssize; |
143 | | |
144 | | /* We don't support IDCT ratios larger than 2. */ |
145 | | if (compptr->DCT_h_scaled_size > compptr->DCT_v_scaled_size * 2) |
146 | | compptr->DCT_h_scaled_size = compptr->DCT_v_scaled_size * 2; |
147 | | else if (compptr->DCT_v_scaled_size > compptr->DCT_h_scaled_size * 2) |
148 | | compptr->DCT_v_scaled_size = compptr->DCT_h_scaled_size * 2; |
149 | | |
150 | | /* Recompute downsampled dimensions of components; |
151 | | * application needs to know these if using raw downsampled data. |
152 | | */ |
153 | | /* Size in samples, after IDCT scaling */ |
154 | | compptr->downsampled_width = (JDIMENSION) |
155 | | jdiv_round_up((long) cinfo->image_width * |
156 | | (long) (compptr->h_samp_factor * compptr->DCT_h_scaled_size), |
157 | | (long) (cinfo->max_h_samp_factor * cinfo->block_size)); |
158 | | compptr->downsampled_height = (JDIMENSION) |
159 | | jdiv_round_up((long) cinfo->image_height * |
160 | | (long) (compptr->v_samp_factor * compptr->DCT_v_scaled_size), |
161 | | (long) (cinfo->max_v_samp_factor * cinfo->block_size)); |
162 | | } |
163 | | |
164 | | #endif /* IDCT_SCALING_SUPPORTED */ |
165 | | |
166 | | /* Report number of components in selected colorspace. */ |
167 | | /* This should correspond to the actual code in the color conversion module. */ |
168 | 1 | switch (cinfo->out_color_space) { |
169 | 0 | case JCS_GRAYSCALE: |
170 | 0 | cinfo->out_color_components = 1; |
171 | 0 | break; |
172 | 1 | case JCS_RGB: |
173 | 1 | case JCS_BG_RGB: |
174 | 1 | cinfo->out_color_components = RGB_PIXELSIZE; |
175 | 1 | break; |
176 | 0 | default: /* YCCK <=> CMYK conversion or same colorspace as in file */ |
177 | 0 | i = 0; |
178 | 0 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
179 | 0 | ci++, compptr++) |
180 | 0 | if (compptr->component_needed) |
181 | 0 | i++; /* count output color components */ |
182 | 0 | cinfo->out_color_components = i; |
183 | 1 | } |
184 | 1 | cinfo->output_components = (cinfo->quantize_colors ? 1 : |
185 | 1 | cinfo->out_color_components); |
186 | | |
187 | | /* See if upsampler will want to emit more than one row at a time */ |
188 | 1 | if (use_merged_upsample(cinfo)) |
189 | 0 | cinfo->rec_outbuf_height = cinfo->max_v_samp_factor; |
190 | 1 | else |
191 | 1 | cinfo->rec_outbuf_height = 1; |
192 | 1 | } |
193 | | |
194 | | |
195 | | /* |
196 | | * Several decompression processes need to range-limit values to the range |
197 | | * 0..MAXJSAMPLE; the input value may fall somewhat outside this range |
198 | | * due to noise introduced by quantization, roundoff error, etc. These |
199 | | * processes are inner loops and need to be as fast as possible. On most |
200 | | * machines, particularly CPUs with pipelines or instruction prefetch, |
201 | | * a (subscript-check-less) C table lookup |
202 | | * x = sample_range_limit[x]; |
203 | | * is faster than explicit tests |
204 | | * if (x < 0) x = 0; |
205 | | * else if (x > MAXJSAMPLE) x = MAXJSAMPLE; |
206 | | * These processes all use a common table prepared by the routine below. |
207 | | * |
208 | | * For most steps we can mathematically guarantee that the initial value |
209 | | * of x is within 2*(MAXJSAMPLE+1) of the legal range, so a table running |
210 | | * from -2*(MAXJSAMPLE+1) to 3*MAXJSAMPLE+2 is sufficient. But for the |
211 | | * initial limiting step (just after the IDCT), a wildly out-of-range value |
212 | | * is possible if the input data is corrupt. To avoid any chance of indexing |
213 | | * off the end of memory and getting a bad-pointer trap, we perform the |
214 | | * post-IDCT limiting thus: |
215 | | * x = (sample_range_limit - SUBSET)[(x + CENTER) & MASK]; |
216 | | * where MASK is 2 bits wider than legal sample data, ie 10 bits for 8-bit |
217 | | * samples. Under normal circumstances this is more than enough range and |
218 | | * a correct output will be generated; with bogus input data the mask will |
219 | | * cause wraparound, and we will safely generate a bogus-but-in-range output. |
220 | | * For the post-IDCT step, we want to convert the data from signed to unsigned |
221 | | * representation by adding CENTERJSAMPLE at the same time that we limit it. |
222 | | * This is accomplished with SUBSET = CENTER - CENTERJSAMPLE. |
223 | | * |
224 | | * Note that the table is allocated in near data space on PCs; it's small |
225 | | * enough and used often enough to justify this. |
226 | | */ |
227 | | |
228 | | LOCAL(void) |
229 | | prepare_range_limit_table (j_decompress_ptr cinfo) |
230 | | /* Allocate and fill in the sample_range_limit table */ |
231 | 1 | { |
232 | 1 | JSAMPLE * table; |
233 | 1 | int i; |
234 | | |
235 | 1 | table = (JSAMPLE *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, |
236 | 1 | JPOOL_IMAGE, (RANGE_CENTER * 2 + MAXJSAMPLE + 1) * SIZEOF(JSAMPLE)); |
237 | | /* First segment of range limit table: limit[x] = 0 for x < 0 */ |
238 | 1 | MEMZERO(table, RANGE_CENTER * SIZEOF(JSAMPLE)); |
239 | 1 | table += RANGE_CENTER; /* allow negative subscripts of table */ |
240 | 1 | cinfo->sample_range_limit = table; |
241 | | /* Main part of range limit table: limit[x] = x */ |
242 | 257 | for (i = 0; i <= MAXJSAMPLE; i++) |
243 | 256 | table[i] = (JSAMPLE) i; |
244 | | /* End of range limit table: limit[x] = MAXJSAMPLE for x > MAXJSAMPLE */ |
245 | 513 | for (; i <= MAXJSAMPLE + RANGE_CENTER; i++) |
246 | 512 | table[i] = MAXJSAMPLE; |
247 | 1 | } |
248 | | |
249 | | |
250 | | /* |
251 | | * Master selection of decompression modules. |
252 | | * This is done once at jpeg_start_decompress time. We determine |
253 | | * which modules will be used and give them appropriate initialization calls. |
254 | | * We also initialize the decompressor input side to begin consuming data. |
255 | | * |
256 | | * Since jpeg_read_header has finished, we know what is in the SOF |
257 | | * and (first) SOS markers. We also have all the application parameter |
258 | | * settings. |
259 | | */ |
260 | | |
261 | | LOCAL(void) |
262 | | master_selection (j_decompress_ptr cinfo) |
263 | 1 | { |
264 | 1 | my_master_ptr master = (my_master_ptr) cinfo->master; |
265 | 1 | boolean use_c_buffer; |
266 | 1 | long samplesperrow; |
267 | 1 | JDIMENSION jd_samplesperrow; |
268 | | |
269 | | /* For now, precision must match compiled-in value... */ |
270 | 1 | if (cinfo->data_precision != BITS_IN_JSAMPLE) |
271 | 0 | ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision); |
272 | | |
273 | | /* Initialize dimensions and other stuff */ |
274 | 1 | jpeg_calc_output_dimensions(cinfo); |
275 | 1 | prepare_range_limit_table(cinfo); |
276 | | |
277 | | /* Sanity check on image dimensions */ |
278 | 1 | if (cinfo->output_height <= 0 || cinfo->output_width <= 0 || |
279 | 1 | cinfo->out_color_components <= 0) |
280 | 0 | ERREXIT(cinfo, JERR_EMPTY_IMAGE); |
281 | | |
282 | | /* Width of an output scanline must be representable as JDIMENSION. */ |
283 | 1 | samplesperrow = (long) cinfo->output_width * (long) cinfo->out_color_components; |
284 | 1 | jd_samplesperrow = (JDIMENSION) samplesperrow; |
285 | 1 | if ((long) jd_samplesperrow != samplesperrow) |
286 | 0 | ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); |
287 | | |
288 | | /* Initialize my private state */ |
289 | 1 | master->pass_number = 0; |
290 | 1 | master->using_merged_upsample = use_merged_upsample(cinfo); |
291 | | |
292 | | /* Color quantizer selection */ |
293 | 1 | master->quantizer_1pass = NULL; |
294 | 1 | master->quantizer_2pass = NULL; |
295 | | /* No mode changes if not using buffered-image mode. */ |
296 | 1 | if (! cinfo->quantize_colors || ! cinfo->buffered_image) { |
297 | 1 | cinfo->enable_1pass_quant = FALSE; |
298 | 1 | cinfo->enable_external_quant = FALSE; |
299 | 1 | cinfo->enable_2pass_quant = FALSE; |
300 | 1 | } |
301 | 1 | if (cinfo->quantize_colors) { |
302 | 0 | if (cinfo->raw_data_out) |
303 | 0 | ERREXIT(cinfo, JERR_NOTIMPL); |
304 | | /* 2-pass quantizer only works in 3-component color space. */ |
305 | 0 | if (cinfo->out_color_components != 3) { |
306 | 0 | cinfo->enable_1pass_quant = TRUE; |
307 | 0 | cinfo->enable_external_quant = FALSE; |
308 | 0 | cinfo->enable_2pass_quant = FALSE; |
309 | 0 | cinfo->colormap = NULL; |
310 | 0 | } else if (cinfo->colormap != NULL) { |
311 | 0 | cinfo->enable_external_quant = TRUE; |
312 | 0 | } else if (cinfo->two_pass_quantize) { |
313 | 0 | cinfo->enable_2pass_quant = TRUE; |
314 | 0 | } else { |
315 | 0 | cinfo->enable_1pass_quant = TRUE; |
316 | 0 | } |
317 | |
|
318 | 0 | if (cinfo->enable_1pass_quant) { |
319 | | #ifdef QUANT_1PASS_SUPPORTED |
320 | | jinit_1pass_quantizer(cinfo); |
321 | | master->quantizer_1pass = cinfo->cquantize; |
322 | | #else |
323 | 0 | ERREXIT(cinfo, JERR_NOT_COMPILED); |
324 | 0 | #endif |
325 | 0 | } |
326 | | |
327 | | /* We use the 2-pass code to map to external colormaps. */ |
328 | 0 | if (cinfo->enable_2pass_quant || cinfo->enable_external_quant) { |
329 | | #ifdef QUANT_2PASS_SUPPORTED |
330 | | jinit_2pass_quantizer(cinfo); |
331 | | master->quantizer_2pass = cinfo->cquantize; |
332 | | #else |
333 | 0 | ERREXIT(cinfo, JERR_NOT_COMPILED); |
334 | 0 | #endif |
335 | 0 | } |
336 | | /* If both quantizers are initialized, the 2-pass one is left active; |
337 | | * this is necessary for starting with quantization to an external map. |
338 | | */ |
339 | 0 | } |
340 | | |
341 | | /* Post-processing: in particular, color conversion first */ |
342 | 1 | if (! cinfo->raw_data_out) { |
343 | 1 | if (master->using_merged_upsample) { |
344 | | #ifdef UPSAMPLE_MERGING_SUPPORTED |
345 | | jinit_merged_upsampler(cinfo); /* does color conversion too */ |
346 | | #else |
347 | 0 | ERREXIT(cinfo, JERR_NOT_COMPILED); |
348 | 0 | #endif |
349 | 1 | } else { |
350 | 1 | jinit_color_deconverter(cinfo); |
351 | 1 | jinit_upsampler(cinfo); |
352 | 1 | } |
353 | 1 | jinit_d_post_controller(cinfo, cinfo->enable_2pass_quant); |
354 | 1 | } |
355 | | /* Inverse DCT */ |
356 | 1 | jinit_inverse_dct(cinfo); |
357 | | /* Entropy decoding: either Huffman or arithmetic coding. */ |
358 | 1 | if (cinfo->arith_code) |
359 | 0 | jinit_arith_decoder(cinfo); |
360 | 1 | else { |
361 | 1 | jinit_huff_decoder(cinfo); |
362 | 1 | } |
363 | | |
364 | | /* Initialize principal buffer controllers. */ |
365 | 1 | use_c_buffer = cinfo->inputctl->has_multiple_scans || cinfo->buffered_image; |
366 | 1 | jinit_d_coef_controller(cinfo, use_c_buffer); |
367 | | |
368 | 1 | if (! cinfo->raw_data_out) |
369 | 1 | jinit_d_main_controller(cinfo, FALSE /* never need full buffer here */); |
370 | | |
371 | | /* We can now tell the memory manager to allocate virtual arrays. */ |
372 | 1 | (*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo); |
373 | | |
374 | | /* Initialize input side of decompressor to consume first scan. */ |
375 | 1 | (*cinfo->inputctl->start_input_pass) (cinfo); |
376 | | |
377 | 1 | #ifdef D_MULTISCAN_FILES_SUPPORTED |
378 | | /* If jpeg_start_decompress will read the whole file, initialize |
379 | | * progress monitoring appropriately. The input step is counted |
380 | | * as one pass. |
381 | | */ |
382 | 1 | if (cinfo->progress != NULL && ! cinfo->buffered_image && |
383 | 1 | cinfo->inputctl->has_multiple_scans) { |
384 | 0 | int nscans; |
385 | | /* Estimate number of scans to set pass_limit. */ |
386 | 0 | if (cinfo->progressive_mode) { |
387 | | /* Arbitrarily estimate 2 interleaved DC scans + 3 AC scans/component. */ |
388 | 0 | nscans = 2 + 3 * cinfo->num_components; |
389 | 0 | } else { |
390 | | /* For a nonprogressive multiscan file, estimate 1 scan per component. */ |
391 | 0 | nscans = cinfo->num_components; |
392 | 0 | } |
393 | 0 | cinfo->progress->pass_counter = 0L; |
394 | 0 | cinfo->progress->pass_limit = (long) cinfo->total_iMCU_rows * nscans; |
395 | 0 | cinfo->progress->completed_passes = 0; |
396 | 0 | cinfo->progress->total_passes = (cinfo->enable_2pass_quant ? 3 : 2); |
397 | | /* Count the input pass as done */ |
398 | 0 | master->pass_number++; |
399 | 0 | } |
400 | 1 | #endif /* D_MULTISCAN_FILES_SUPPORTED */ |
401 | 1 | } |
402 | | |
403 | | |
404 | | /* |
405 | | * Per-pass setup. |
406 | | * This is called at the beginning of each output pass. We determine which |
407 | | * modules will be active during this pass and give them appropriate |
408 | | * start_pass calls. We also set is_dummy_pass to indicate whether this |
409 | | * is a "real" output pass or a dummy pass for color quantization. |
410 | | * (In the latter case, jdapistd.c will crank the pass to completion.) |
411 | | */ |
412 | | |
413 | | METHODDEF(void) |
414 | | prepare_for_output_pass (j_decompress_ptr cinfo) |
415 | 1 | { |
416 | 1 | my_master_ptr master = (my_master_ptr) cinfo->master; |
417 | | |
418 | 1 | if (master->pub.is_dummy_pass) { |
419 | | #ifdef QUANT_2PASS_SUPPORTED |
420 | | /* Final pass of 2-pass quantization */ |
421 | | master->pub.is_dummy_pass = FALSE; |
422 | | (*cinfo->cquantize->start_pass) (cinfo, FALSE); |
423 | | (*cinfo->post->start_pass) (cinfo, JBUF_CRANK_DEST); |
424 | | (*cinfo->main->start_pass) (cinfo, JBUF_CRANK_DEST); |
425 | | #else |
426 | 0 | ERREXIT(cinfo, JERR_NOT_COMPILED); |
427 | 0 | #endif /* QUANT_2PASS_SUPPORTED */ |
428 | 1 | } else { |
429 | 1 | if (cinfo->quantize_colors && cinfo->colormap == NULL) { |
430 | | /* Select new quantization method */ |
431 | 0 | if (cinfo->two_pass_quantize && cinfo->enable_2pass_quant) { |
432 | 0 | cinfo->cquantize = master->quantizer_2pass; |
433 | 0 | master->pub.is_dummy_pass = TRUE; |
434 | 0 | } else if (cinfo->enable_1pass_quant) { |
435 | 0 | cinfo->cquantize = master->quantizer_1pass; |
436 | 0 | } else { |
437 | 0 | ERREXIT(cinfo, JERR_MODE_CHANGE); |
438 | 0 | } |
439 | 0 | } |
440 | 1 | (*cinfo->idct->start_pass) (cinfo); |
441 | 1 | (*cinfo->coef->start_output_pass) (cinfo); |
442 | 1 | if (! cinfo->raw_data_out) { |
443 | 1 | if (! master->using_merged_upsample) |
444 | 1 | (*cinfo->cconvert->start_pass) (cinfo); |
445 | 1 | (*cinfo->upsample->start_pass) (cinfo); |
446 | 1 | if (cinfo->quantize_colors) |
447 | 0 | (*cinfo->cquantize->start_pass) (cinfo, master->pub.is_dummy_pass); |
448 | 1 | (*cinfo->post->start_pass) (cinfo, |
449 | 1 | (master->pub.is_dummy_pass ? JBUF_SAVE_AND_PASS : JBUF_PASS_THRU)); |
450 | 1 | (*cinfo->main->start_pass) (cinfo, JBUF_PASS_THRU); |
451 | 1 | } |
452 | 1 | } |
453 | | |
454 | | /* Set up progress monitor's pass info if present */ |
455 | 1 | if (cinfo->progress != NULL) { |
456 | 0 | cinfo->progress->completed_passes = master->pass_number; |
457 | 0 | cinfo->progress->total_passes = master->pass_number + |
458 | 0 | (master->pub.is_dummy_pass ? 2 : 1); |
459 | | /* In buffered-image mode, we assume one more output pass if EOI not |
460 | | * yet reached, but no more passes if EOI has been reached. |
461 | | */ |
462 | 0 | if (cinfo->buffered_image && ! cinfo->inputctl->eoi_reached) { |
463 | 0 | cinfo->progress->total_passes += (cinfo->enable_2pass_quant ? 2 : 1); |
464 | 0 | } |
465 | 0 | } |
466 | 1 | } |
467 | | |
468 | | |
469 | | /* |
470 | | * Finish up at end of an output pass. |
471 | | */ |
472 | | |
473 | | METHODDEF(void) |
474 | | finish_output_pass (j_decompress_ptr cinfo) |
475 | 1 | { |
476 | 1 | my_master_ptr master = (my_master_ptr) cinfo->master; |
477 | | |
478 | 1 | if (cinfo->quantize_colors) |
479 | 0 | (*cinfo->cquantize->finish_pass) (cinfo); |
480 | 1 | master->pass_number++; |
481 | 1 | } |
482 | | |
483 | | |
484 | | #ifdef D_MULTISCAN_FILES_SUPPORTED |
485 | | |
486 | | /* |
487 | | * Switch to a new external colormap between output passes. |
488 | | */ |
489 | | |
490 | | GLOBAL(void) |
491 | | jpeg_new_colormap (j_decompress_ptr cinfo) |
492 | 0 | { |
493 | 0 | my_master_ptr master = (my_master_ptr) cinfo->master; |
494 | | |
495 | | /* Prevent application from calling me at wrong times */ |
496 | 0 | if (cinfo->global_state != DSTATE_BUFIMAGE) |
497 | 0 | ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); |
498 | |
|
499 | 0 | if (cinfo->quantize_colors && cinfo->enable_external_quant && |
500 | 0 | cinfo->colormap != NULL) { |
501 | | /* Select 2-pass quantizer for external colormap use */ |
502 | 0 | cinfo->cquantize = master->quantizer_2pass; |
503 | | /* Notify quantizer of colormap change */ |
504 | 0 | (*cinfo->cquantize->new_color_map) (cinfo); |
505 | 0 | master->pub.is_dummy_pass = FALSE; /* just in case */ |
506 | 0 | } else |
507 | 0 | ERREXIT(cinfo, JERR_MODE_CHANGE); |
508 | 0 | } |
509 | | |
510 | | #endif /* D_MULTISCAN_FILES_SUPPORTED */ |
511 | | |
512 | | |
513 | | /* |
514 | | * Initialize master decompression control and select active modules. |
515 | | * This is performed at the start of jpeg_start_decompress. |
516 | | */ |
517 | | |
518 | | GLOBAL(void) |
519 | | jinit_master_decompress (j_decompress_ptr cinfo) |
520 | 1 | { |
521 | 1 | my_master_ptr master; |
522 | | |
523 | 1 | master = (my_master_ptr) (*cinfo->mem->alloc_small) |
524 | 1 | ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_decomp_master)); |
525 | 1 | cinfo->master = &master->pub; |
526 | 1 | master->pub.prepare_for_output_pass = prepare_for_output_pass; |
527 | 1 | master->pub.finish_output_pass = finish_output_pass; |
528 | | |
529 | 1 | master->pub.is_dummy_pass = FALSE; |
530 | | |
531 | 1 | master_selection(cinfo); |
532 | 1 | } |