Coverage Report

Created: 2022-10-31 07:00

/src/ghostpdl/base/gsfunc0.c
Line
Count
Source (jump to first uncovered line)
1
/* Copyright (C) 2001-2021 Artifex Software, Inc.
2
   All Rights Reserved.
3
4
   This software is provided AS-IS with no warranty, either express or
5
   implied.
6
7
   This software is distributed under license and may not be copied,
8
   modified or distributed except as expressly authorized under the terms
9
   of the license contained in the file LICENSE in this distribution.
10
11
   Refer to licensing information at http://www.artifex.com or contact
12
   Artifex Software, Inc.,  1305 Grant Avenue - Suite 200, Novato,
13
   CA 94945, U.S.A., +1(415)492-9861, for further information.
14
*/
15
16
17
/* Implementation of FunctionType 0 (Sampled) Functions */
18
#include "math_.h"
19
#include "gx.h"
20
#include "gserrors.h"
21
#include "gsfunc0.h"
22
#include "gsparam.h"
23
#include "gxfarith.h"
24
#include "gxfunc.h"
25
#include "stream.h"
26
#include "gsccolor.h"           /* Only for GS_CLIENT_COLOR_MAX_COMPONENTS */
27
28
#define POLE_CACHE_DEBUG 0      /* A temporary development technology need.
29
                                   Remove after the beta testing. */
30
126
#define POLE_CACHE_GENERIC_1D 1 /* A temporary development technology need.
31
                                   Didn't decide yet - see fn_Sd_evaluate_cubic_cached_1d. */
32
206
#define POLE_CACHE_IGNORE 0     /* A temporary development technology need.
33
                                   Remove after the beta testing. */
34
35
71.5k
#define MAX_FAST_COMPS 8
36
37
typedef struct gs_function_Sd_s {
38
    gs_function_head_t head;
39
    gs_function_Sd_params_t params;
40
} gs_function_Sd_t;
41
42
/* GC descriptor */
43
private_st_function_Sd();
44
static
45
50
ENUM_PTRS_WITH(function_Sd_enum_ptrs, gs_function_Sd_t *pfn)
46
20
{
47
20
    index -= 6;
48
20
    if (index < st_data_source_max_ptrs)
49
5
        return ENUM_USING(st_data_source, &pfn->params.DataSource,
50
20
                          sizeof(pfn->params.DataSource), index);
51
15
    return ENUM_USING_PREFIX(st_function, st_data_source_max_ptrs);
52
20
}
53
20
ENUM_PTR3(0, gs_function_Sd_t, params.Encode, params.Decode, params.Size);
54
50
ENUM_PTR3(3, gs_function_Sd_t, params.pole, params.array_step, params.stream_step);
55
50
ENUM_PTRS_END
56
static
57
5
RELOC_PTRS_WITH(function_Sd_reloc_ptrs, gs_function_Sd_t *pfn)
58
5
{
59
5
    RELOC_PREFIX(st_function);
60
5
    RELOC_USING(st_data_source, &pfn->params.DataSource,
61
5
                sizeof(pfn->params.DataSource));
62
5
    RELOC_PTR3(gs_function_Sd_t, params.Encode, params.Decode, params.Size);
63
5
    RELOC_PTR3(gs_function_Sd_t, params.pole, params.array_step, params.stream_step);
64
5
}
65
5
RELOC_PTRS_END
66
67
/* Define the maximum plausible number of inputs and outputs */
68
/* for a Sampled function. */
69
#ifndef GS_CLIENT_SAMPLED_FN_MAX_COMPONENTS   /* Allow override with XCFLAGS */
70
30.5k
#  define max_Sd_m GS_CLIENT_COLOR_MAX_COMPONENTS
71
#  define max_Sd_n GS_CLIENT_COLOR_MAX_COMPONENTS
72
#else
73
#  define max_Sd_m GS_CLIENT_SAMPLED_FN_MAX_COMPONENTS
74
#  define max_Sd_n GS_CLIENT_SAMPLED_FN_MAX_COMPONENTS
75
#endif
76
77
/* Get one set of sample values. */
78
#define SETUP_SAMPLES(bps, nbytes)\
79
5.32M
        int n = pfn->params.n;\
80
5.32M
        byte buf[max_Sd_n * ((bps + 7) >> 3)];\
81
5.32M
        const byte *p;\
82
5.32M
        int i;\
83
5.32M
\
84
5.32M
        data_source_access(&pfn->params.DataSource, offset >> 3,\
85
5.32M
                           nbytes, buf, &p)
86
87
static int
88
fn_gets_1(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
89
0
{
90
0
    SETUP_SAMPLES(1, ((offset & 7) + n + 7) >> 3);
91
0
    for (i = 0; i < n; ++i) {
92
0
        samples[i] = (*p >> (~offset & 7)) & 1;
93
0
        if (!(++offset & 7))
94
0
            p++;
95
0
    }
96
0
    return 0;
97
0
}
98
static int
99
fn_gets_2(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
100
0
{
101
0
    SETUP_SAMPLES(2, (((offset & 7) >> 1) + n + 3) >> 2);
102
0
    for (i = 0; i < n; ++i) {
103
0
        samples[i] = (*p >> (6 - (offset & 7))) & 3;
104
0
        if (!((offset += 2) & 7))
105
0
            p++;
106
0
    }
107
0
    return 0;
108
0
}
109
static int
110
fn_gets_4(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
111
0
{
112
0
    SETUP_SAMPLES(4, (((offset & 7) >> 2) + n + 1) >> 1);
113
0
    for (i = 0; i < n; ++i) {
114
0
        samples[i] = ((offset ^= 4) & 4 ? *p >> 4 : *p++ & 0xf);
115
0
    }
116
0
    return 0;
117
0
}
118
static int
119
fn_gets_8(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
120
5.31M
{
121
5.31M
    SETUP_SAMPLES(8, n);
122
15.9M
    for (i = 0; i < n; ++i) {
123
10.5M
        samples[i] = *p++;
124
10.5M
    }
125
5.31M
    return 0;
126
5.31M
}
127
static int
128
fn_gets_12(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
129
0
{
130
0
    SETUP_SAMPLES(12, (((offset & 7) >> 2) + 3 * n + 1) >> 1);
131
0
    for (i = 0; i < n; ++i) {
132
0
        if (offset & 4)
133
0
            samples[i] = ((*p & 0xf) << 8) + p[1], p += 2;
134
0
        else
135
0
            samples[i] = (*p << 4) + (p[1] >> 4), p++;
136
0
        offset ^= 4;
137
0
    }
138
0
    return 0;
139
0
}
140
static int
141
fn_gets_16(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
142
10.3k
{
143
10.3k
    SETUP_SAMPLES(16, n * 2);
144
20.8k
    for (i = 0; i < n; ++i) {
145
10.4k
        samples[i] = (*p << 8) + p[1];
146
10.4k
        p += 2;
147
10.4k
    }
148
10.3k
    return 0;
149
10.3k
}
150
static int
151
fn_gets_24(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
152
0
{
153
0
    SETUP_SAMPLES(24, n * 3);
154
0
    for (i = 0; i < n; ++i) {
155
0
        samples[i] = (*p << 16) + (p[1] << 8) + p[2];
156
0
        p += 3;
157
0
    }
158
0
    return 0;
159
0
}
160
static int
161
fn_gets_32(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
162
0
{
163
0
    SETUP_SAMPLES(32, n * 4);
164
0
    for (i = 0; i < n; ++i) {
165
0
        samples[i] = (*p << 24) + (p[1] << 16) + (p[2] << 8) + p[3];
166
0
        p += 4;
167
0
    }
168
0
    return 0;
169
0
}
170
171
static int (*const fn_get_samples[]) (const gs_function_Sd_t * pfn,
172
                                       ulong offset, uint * samples) =
173
{
174
    0, fn_gets_1, fn_gets_2, 0, fn_gets_4, 0, 0, 0,
175
        fn_gets_8, 0, 0, 0, fn_gets_12, 0, 0, 0,
176
        fn_gets_16, 0, 0, 0, 0, 0, 0, 0,
177
        fn_gets_24, 0, 0, 0, 0, 0, 0, 0,
178
        fn_gets_32
179
};
180
181
/*
182
 * Compute a value by cubic interpolation.
183
 * f[] = f(0), f(1), f(2), f(3); 1 < x < 2.
184
 * The formula is derived from those presented in
185
 * http://www.cs.uwa.edu.au/undergraduate/units/233.413/Handouts/Lecture04.html
186
 * (thanks to Raph Levien for the reference).
187
 */
188
static double
189
interpolate_cubic(double x, double f0, double f1, double f2, double f3)
190
0
{
191
    /*
192
     * The parameter 'a' affects the contribution of the high-frequency
193
     * components.  The abovementioned source suggests a = -0.5.
194
     */
195
0
#define a (-0.5)
196
0
#define SQR(v) ((v) * (v))
197
0
#define CUBE(v) ((v) * (v) * (v))
198
0
    const double xm1 = x - 1, m2x = 2 - x, m3x = 3 - x;
199
0
    const double c =
200
0
        (a * CUBE(x) - 5 * a * SQR(x) + 8 * a * x - 4 * a) * f0 +
201
0
        ((a+2) * CUBE(xm1) - (a+3) * SQR(xm1) + 1) * f1 +
202
0
        ((a+2) * CUBE(m2x) - (a+3) * SQR(m2x) + 1) * f2 +
203
0
        (a * CUBE(m3x) - 5 * a * SQR(m3x) + 8 * a * m3x - 4 * a) * f3;
204
205
0
    if_debug6('~', "[~](%g, %g, %g, %g)order3(%g) => %g\n",
206
0
              f0, f1, f2, f3, x, c);
207
0
    return c;
208
0
#undef a
209
0
#undef SQR
210
0
#undef CUBE
211
0
}
212
213
/*
214
 * Compute a value by quadratic interpolation.
215
 * f[] = f(0), f(1), f(2); 0 < x < 1.
216
 *
217
 * We used to use a quadratic formula for this, derived from
218
 * f(0) = f0, f(1) = f1, f'(1) = (f2 - f0) / 2, but now we
219
 * match what we believe is Acrobat Reader's behavior.
220
 */
221
static inline double
222
interpolate_quadratic(double x, double f0, double f1, double f2)
223
0
{
224
0
    return interpolate_cubic(x + 1, f0, f0, f1, f2);
225
0
}
226
227
/* Calculate a result by multicubic interpolation. */
228
static void
229
fn_interpolate_cubic(const gs_function_Sd_t *pfn, const float *fparts,
230
                     const int *iparts, const ulong *factors,
231
                     float *samples, ulong offset, int m)
232
0
{
233
0
    int j;
234
235
0
top:
236
0
    if (m == 0) {
237
0
        uint sdata[max_Sd_n];
238
239
0
        (*fn_get_samples[pfn->params.BitsPerSample])(pfn, offset, sdata);
240
0
        for (j = pfn->params.n - 1; j >= 0; --j)
241
0
            samples[j] = (float)sdata[j];
242
0
    } else {
243
0
        float fpart = *fparts++;
244
0
        int ipart = *iparts++;
245
0
        ulong delta = *factors++;
246
0
        int size = pfn->params.Size[pfn->params.m - m];
247
0
        float samples1[max_Sd_n], samplesm1[max_Sd_n], samples2[max_Sd_n];
248
249
0
        --m;
250
0
        if (is_fzero(fpart))
251
0
            goto top;
252
0
        fn_interpolate_cubic(pfn, fparts, iparts, factors, samples,
253
0
                             offset, m);
254
0
        fn_interpolate_cubic(pfn, fparts, iparts, factors, samples1,
255
0
                             offset + delta, m);
256
        /* Ensure we don't try to access out of bounds. */
257
        /*
258
         * If size == 1, the only possible value for ipart and fpart is
259
         * 0, so we've already handled this case.
260
         */
261
0
        if (size == 2) { /* ipart = 0 */
262
            /* Use linear interpolation. */
263
0
            for (j = pfn->params.n - 1; j >= 0; --j)
264
0
                samples[j] += (samples1[j] - samples[j]) * fpart;
265
0
            return;
266
0
        }
267
0
        if (ipart == 0) {
268
            /* Use quadratic interpolation. */
269
0
            fn_interpolate_cubic(pfn, fparts, iparts, factors,
270
0
                                 samples2, offset + delta * 2, m);
271
0
            for (j = pfn->params.n - 1; j >= 0; --j)
272
0
                samples[j] =
273
0
                    interpolate_quadratic(fpart, samples[j],
274
0
                                          samples1[j], samples2[j]);
275
0
            return;
276
0
        }
277
        /* At this point we know ipart > 0, size >= 3. */
278
0
        fn_interpolate_cubic(pfn, fparts, iparts, factors, samplesm1,
279
0
                             offset - delta, m);
280
0
        if (ipart == size - 2) {
281
            /* Use quadratic interpolation. */
282
0
            for (j = pfn->params.n - 1; j >= 0; --j)
283
0
                samples[j] =
284
0
                    interpolate_quadratic(1 - fpart, samples1[j],
285
0
                                          samples[j], samplesm1[j]);
286
0
            return;
287
0
        }
288
        /* Now we know 0 < ipart < size - 2, size > 3. */
289
0
        fn_interpolate_cubic(pfn, fparts, iparts, factors,
290
0
                             samples2, offset + delta * 2, m);
291
0
        for (j = pfn->params.n - 1; j >= 0; --j)
292
0
            samples[j] =
293
0
                interpolate_cubic(fpart + 1, samplesm1[j], samples[j],
294
0
                                  samples1[j], samples2[j]);
295
0
    }
296
0
}
297
298
/* Calculate a result by multilinear interpolation. */
299
static void
300
fn_interpolate_linear(const gs_function_Sd_t *pfn, const float *fparts,
301
                 const ulong *factors, float *samples, ulong offset, int m)
302
1.08M
{
303
1.08M
    int j;
304
305
1.16M
top:
306
1.16M
    if (m == 0) {
307
749k
        uint sdata[max_Sd_n];
308
309
749k
        (*fn_get_samples[pfn->params.BitsPerSample])(pfn, offset, sdata);
310
2.12M
        for (j = pfn->params.n - 1; j >= 0; --j)
311
1.37M
            samples[j] = (float)sdata[j];
312
749k
    } else {
313
414k
        float fpart = *fparts++;
314
414k
        float samples1[max_Sd_n];
315
316
414k
        if (is_fzero(fpart)) {
317
78.9k
            ++factors;
318
78.9k
            --m;
319
78.9k
            goto top;
320
78.9k
        }
321
335k
        fn_interpolate_linear(pfn, fparts, factors + 1, samples,
322
335k
                              offset, m - 1);
323
335k
        fn_interpolate_linear(pfn, fparts, factors + 1, samples1,
324
335k
                              offset + *factors, m - 1);
325
927k
        for (j = pfn->params.n - 1; j >= 0; --j)
326
591k
            samples[j] += (samples1[j] - samples[j]) * fpart;
327
335k
    }
328
1.16M
}
329
330
static inline double
331
fn_Sd_encode(const gs_function_Sd_t *pfn, int i, double sample)
332
10.0M
{
333
10.0M
    float d0, d1, r0, r1;
334
10.0M
    double value;
335
10.0M
    int bps = pfn->params.BitsPerSample;
336
    /* x86 machines have problems with shifts if bps >= 32 */
337
10.0M
    uint max_samp = (bps < (sizeof(uint) * 8)) ? ((1 << bps) - 1) : max_uint;
338
339
10.0M
    if (pfn->params.Range)
340
10.0M
        r0 = pfn->params.Range[2 * i], r1 = pfn->params.Range[2 * i + 1];
341
0
    else
342
0
        r0 = 0, r1 = (float)max_samp;
343
10.0M
    if (pfn->params.Decode)
344
7.51M
        d0 = pfn->params.Decode[2 * i], d1 = pfn->params.Decode[2 * i + 1];
345
2.48M
    else
346
2.48M
        d0 = r0, d1 = r1;
347
348
10.0M
    value = sample * (d1 - d0) / max_samp + d0;
349
10.0M
    if (value < r0)
350
0
        value = r0;
351
10.0M
    else if (value > r1)
352
0
        value = r1;
353
10.0M
    return value;
354
10.0M
}
355
356
/* Evaluate a Sampled function. */
357
/* A generic algorithm with a recursion by dimentions. */
358
static int
359
fn_Sd_evaluate_general(const gs_function_t * pfn_common, const float *in, float *out)
360
414k
{
361
414k
    const gs_function_Sd_t *pfn = (const gs_function_Sd_t *)pfn_common;
362
414k
    int bps = pfn->params.BitsPerSample;
363
414k
    ulong offset = 0;
364
414k
    int i;
365
414k
    float encoded[max_Sd_m];
366
414k
    int iparts[max_Sd_m]; /* only needed for cubic interpolation */
367
414k
    ulong factors[max_Sd_m];
368
414k
    float samples[max_Sd_n];
369
370
    /* Encode the input values. */
371
372
828k
    for (i = 0; i < pfn->params.m; ++i) {
373
414k
        float d0 = pfn->params.Domain[2 * i],
374
414k
            d1 = pfn->params.Domain[2 * i + 1];
375
414k
        float arg = in[i], enc;
376
377
414k
        if (arg < d0)
378
9
            arg = d0;
379
414k
        else if (arg > d1)
380
0
            arg = d1;
381
414k
        if (pfn->params.Encode) {
382
181k
            float e0 = pfn->params.Encode[2 * i];
383
181k
            float e1 = pfn->params.Encode[2 * i + 1];
384
385
181k
            enc = (arg - d0) * (e1 - e0) / (d1 - d0) + e0;
386
181k
            if (enc < 0)
387
0
                encoded[i] = 0;
388
181k
            else if (enc >= pfn->params.Size[i] - 1)
389
25.8k
                encoded[i] = (float)pfn->params.Size[i] - 1;
390
155k
            else
391
155k
                encoded[i] = enc;
392
233k
        } else {
393
            /* arg is guaranteed to be in bounds, ergo so is enc */
394
                /* TODO: possible issue here.  if (pfn->params.Size[i] == 1 */
395
233k
            encoded[i] = (arg - d0) * (pfn->params.Size[i] - 1) / (d1 - d0);
396
233k
        }
397
414k
    }
398
399
    /* Look up and interpolate the output values. */
400
401
414k
    {
402
414k
        ulong factor = (ulong)bps * pfn->params.n;
403
404
828k
        for (i = 0; i < pfn->params.m; factor *= pfn->params.Size[i++]) {
405
414k
            int ipart = (int)encoded[i];
406
407
414k
            offset += (factors[i] = factor) * ipart;
408
414k
            iparts[i] = ipart;  /* only needed for cubic interpolation */
409
414k
            encoded[i] -= ipart;
410
414k
        }
411
414k
    }
412
414k
    if (pfn->params.Order == 3)
413
0
        fn_interpolate_cubic(pfn, encoded, iparts, factors, samples,
414
0
                             offset, pfn->params.m);
415
414k
    else
416
414k
        fn_interpolate_linear(pfn, encoded, factors, samples, offset,
417
414k
                              pfn->params.m);
418
419
    /* Encode the output values. */
420
421
1.20M
    for (i = 0; i < pfn->params.n; ++i)
422
786k
        out[i] = (float)fn_Sd_encode(pfn, i, samples[i]);
423
424
414k
    return 0;
425
414k
}
426
427
static const double double_stub = 1e90;
428
429
static inline void
430
fn_make_cubic_poles(double *p, double f0, double f1, double f2, double f3,
431
            const int pole_step_minor)
432
8
{   /* The following is poles of the polinomial,
433
       which represents interpolate_cubic in [1,2]. */
434
8
    const double a = -0.5;
435
436
8
    p[pole_step_minor * 1] = (a*f0 + 3*f1 - a*f2)/3.0;
437
8
    p[pole_step_minor * 2] = (-a*f1 + 3*f2 + a*f3)/3.0;
438
8
}
439
440
static void
441
fn_make_poles(double *p, const int pole_step, int power, int bias)
442
8
{
443
8
    const int pole_step_minor = pole_step / 3;
444
8
    switch(power) {
445
0
        case 1: /* A linear 3d power curve. */
446
            /* bias must be 0. */
447
0
            p[pole_step_minor * 1] = (2 * p[pole_step * 0] + 1 * p[pole_step * 1]) / 3;
448
0
            p[pole_step_minor * 2] = (1 * p[pole_step * 0] + 2 * p[pole_step * 1]) / 3;
449
0
            break;
450
0
        case 2:
451
            /* bias may be be 0 or 1. */
452
            /* Duplicate the beginning or the ending pole (the old code compatible). */
453
0
            fn_make_cubic_poles(p + pole_step * bias,
454
0
                    p[pole_step * 0], p[pole_step * bias],
455
0
                    p[pole_step * (1 + bias)], p[pole_step * 2],
456
0
                    pole_step_minor);
457
0
            break;
458
8
        case 3:
459
            /* bias must be 1. */
460
8
            fn_make_cubic_poles(p + pole_step * bias,
461
8
                    p[pole_step * 0], p[pole_step * 1], p[pole_step * 2], p[pole_step * 3],
462
8
                    pole_step_minor);
463
8
            break;
464
0
        default: /* Must not happen. */
465
0
           DO_NOTHING;
466
8
    }
467
8
}
468
469
/* Evaluate a Sampled function.
470
   A cubic interpolation with a pole cache.
471
   Allows a fast check for extreme suspection. */
472
/* This implementation is a particular case of 1 dimension.
473
   maybe we'll use as an optimisation of the generic case,
474
   so keep it for a while. */
475
static int
476
fn_Sd_evaluate_cubic_cached_1d(const gs_function_Sd_t *pfn, const float *in, float *out)
477
0
{
478
0
    float d0 = pfn->params.Domain[2 * 0];
479
0
    float d1 = pfn->params.Domain[2 * 0 + 1];
480
0
    const int pole_step_minor = pfn->params.n;
481
0
    const int pole_step = 3 * pole_step_minor;
482
0
    int i0; /* A cell index. */
483
0
    int ib, ie, i, k;
484
0
    double *p, t0, t1, tt;
485
0
486
0
    tt = (in[0] - d0) * (pfn->params.Size[0] - 1) / (d1 - d0);
487
0
    i0 = (int)floor(tt);
488
0
    ib = max(i0 - 1, 0);
489
0
    ie = min(pfn->params.Size[0], i0 + 3);
490
0
    for (i = ib; i < ie; i++) {
491
0
        if (pfn->params.pole[i * pole_step] == double_stub) {
492
0
            uint sdata[max_Sd_n];
493
0
            int bps = pfn->params.BitsPerSample;
494
0
495
0
            p = &pfn->params.pole[i * pole_step];
496
0
            fn_get_samples[pfn->params.BitsPerSample](pfn, (ulong)i * bps * pfn->params.n, sdata);
497
0
            for (k = 0; k < pfn->params.n; k++, p++)
498
0
                *p = fn_Sd_encode(pfn, k, (double)sdata[k]);
499
0
        }
500
0
    }
501
0
    p = &pfn->params.pole[i0 * pole_step];
502
0
    t0 = tt - i0;
503
0
    if (t0 == 0) {
504
0
        for (k = 0; k < pfn->params.n; k++, p++)
505
0
            out[k] = *p;
506
0
    } else {
507
0
        if (p[1 * pole_step_minor] == double_stub) {
508
0
            for (k = 0; k < pfn->params.n; k++)
509
0
                fn_make_poles(&pfn->params.pole[ib * pole_step + k], pole_step,
510
0
                        ie - ib - 1, i0 - ib);
511
0
        }
512
0
        t1 = 1 - t0;
513
0
        for (k = 0; k < pfn->params.n; k++, p++) {
514
0
            double y = p[0 * pole_step_minor] * t1 * t1 * t1 +
515
0
                       p[1 * pole_step_minor] * t1 * t1 * t0 * 3 +
516
0
                       p[2 * pole_step_minor] * t1 * t0 * t0 * 3 +
517
0
                       p[3 * pole_step_minor] * t0 * t0 * t0;
518
0
            if (y < pfn->params.Range[0])
519
0
                y = pfn->params.Range[0];
520
0
            if (y > pfn->params.Range[1])
521
0
                y = pfn->params.Range[1];
522
0
            out[k] = y;
523
0
        }
524
0
    }
525
0
    return 0;
526
0
}
527
528
static inline void
529
decode_argument(const gs_function_Sd_t *pfn, const float *in, double T[max_Sd_m], int I[max_Sd_m])
530
63
{
531
63
    int i;
532
533
126
    for (i = 0; i < pfn->params.m; i++) {
534
63
        float xi = in[i];
535
63
        float d0 = pfn->params.Domain[2 * i + 0];
536
63
        float d1 = pfn->params.Domain[2 * i + 1];
537
63
        double t;
538
539
63
        if (xi < d0)
540
0
            xi = d0;
541
63
        if (xi > d1)
542
0
            xi = d1;
543
63
        t = (xi - d0) * (pfn->params.Size[i] - 1) / (d1 - d0);
544
63
        I[i] = (int)floor(t);
545
63
        T[i] = t - I[i];
546
63
    }
547
63
}
548
549
static inline void
550
index_span(const gs_function_Sd_t *pfn, int *I, double *T, int ii, int *Ii, int *ib, int *ie)
551
63
{
552
63
    *Ii = I[ii];
553
63
    if (T[ii] != 0) {
554
2
        *ib = max(*Ii - 1, 0);
555
2
        *ie = min(pfn->params.Size[ii], *Ii + 3);
556
61
    } else {
557
61
        *ib = *Ii;
558
61
        *ie = *Ii + 1;
559
61
    }
560
63
}
561
562
static inline int
563
load_vector_to(const gs_function_Sd_t *pfn, int s_offset, double *V)
564
4.57M
{
565
4.57M
    uint sdata[max_Sd_n];
566
4.57M
    int k, code;
567
568
4.57M
    code = fn_get_samples[pfn->params.BitsPerSample](pfn, s_offset, sdata);
569
4.57M
    if (code < 0)
570
0
        return code;
571
13.7M
    for (k = 0; k < pfn->params.n; k++)
572
9.22M
        V[k] = fn_Sd_encode(pfn, k, (double)sdata[k]);
573
4.57M
    return 0;
574
4.57M
}
575
576
static inline int
577
load_vector(const gs_function_Sd_t *pfn, int a_offset, int s_offset)
578
40
{
579
40
    if (*(pfn->params.pole + a_offset) == double_stub) {
580
40
        uint sdata[max_Sd_n];
581
40
        int k, code;
582
583
40
        code = fn_get_samples[pfn->params.BitsPerSample](pfn, s_offset, sdata);
584
40
        if (code < 0)
585
0
            return code;
586
200
        for (k = 0; k < pfn->params.n; k++)
587
160
            *(pfn->params.pole + a_offset + k) = fn_Sd_encode(pfn, k, (double)sdata[k]);
588
40
    }
589
40
    return 0;
590
40
}
591
592
static inline void
593
interpolate_vector(const gs_function_Sd_t *pfn, int offset, int pole_step, int power, int bias)
594
2
{
595
2
    int k;
596
597
10
    for (k = 0; k < pfn->params.n; k++)
598
8
        fn_make_poles(pfn->params.pole + offset + k, pole_step, power, bias);
599
2
}
600
601
static inline void
602
interpolate_tensors(const gs_function_Sd_t *pfn, int *I, double *T,
603
        int offset, int pole_step, int power, int bias, int ii)
604
2
{
605
2
    if (ii < 0)
606
2
        interpolate_vector(pfn, offset, pole_step, power, bias);
607
0
    else {
608
0
        int s = pfn->params.array_step[ii];
609
0
        int Ii = I[ii];
610
611
0
        if (T[ii] == 0) {
612
0
            interpolate_tensors(pfn, I, T, offset + Ii * s, pole_step, power, bias, ii - 1);
613
0
        } else {
614
0
            int l;
615
616
0
            for (l = 0; l < 4; l++)
617
0
                interpolate_tensors(pfn, I, T, offset + Ii * s + l * s / 3, pole_step, power, bias, ii - 1);
618
0
        }
619
0
    }
620
2
}
621
622
static inline bool
623
is_tensor_done(const gs_function_Sd_t *pfn, int *I, double *T, int a_offset, int ii)
624
63
{
625
    /* Check an inner pole of the cell. */
626
63
    int i, o = 0;
627
628
126
    for (i = ii; i >= 0; i--) {
629
63
        o += I[i] * pfn->params.array_step[i];
630
63
        if (T[i] != 0)
631
2
            o += pfn->params.array_step[i] / 3;
632
63
    }
633
63
    if (*(pfn->params.pole + a_offset + o) != double_stub)
634
29
        return true;
635
34
    return false;
636
63
}
637
638
/* Creates a tensor of Bezier coefficients by node interpolation. */
639
static inline int
640
make_interpolation_tensor(const gs_function_Sd_t *pfn, int *I, double *T,
641
                            int a_offset, int s_offset, int ii)
642
103
{
643
    /* Well, this function isn't obvious. Trying to explain what it does.
644
645
       Suppose we have a 4x4x4...x4 hypercube of nodes, and we want to build
646
       a multicubic interpolation function for the inner 2x2x2...x2 hypercube.
647
       We represent the multicubic function with a tensor of Besier poles,
648
       and the size of the tensor is 4x4x....x4. Note that the corners
649
       of the tensor are equal to the corners of the 2x2x...x2 hypercube.
650
651
       We organize the 'pole' array so that a tensor of a cell
652
       occupies the cell, and tensors for neighbour cells have a common hyperplane.
653
654
       For a 1-dimentional case let the nodes are n0, n1, n2, n3.
655
       It defines 3 cells n0...n1, n1...n2, n2...n3.
656
       For the 2nd cell n1...n2 let the tensor coefficients are q10, q11, q12, q13.
657
       We choose a cubic approximation, in which tangents at nodes n1, n2
658
       are parallel to (n2 - n0) and (n3 - n1) correspondingly.
659
       (Well, this doesn't give a the minimal curvity, but likely it is
660
       what Adobe implementations do, see the bug 687352,
661
       and we agree that it's some reasonable).
662
663
       Then we have :
664
665
       q11 = n0
666
       q12 = (n0/2 + 3*n1 - n2/2)/3;
667
       q11 = (n1/2 + 3*n2 - n3/2)/3;
668
       q13 = n2
669
670
       When the source node array have an insufficient nomber of nodes
671
       along a dimension to determine tangents a cell
672
       (this happens near the array boundaries),
673
       we simply duplicate ending nodes. This solution is done
674
       for the compatibility to the old code, and definitely
675
       there exists a better one. Likely Adobe does the same.
676
677
       For a 2-dimensional case we apply the 1-dimentional case through
678
       the first dimension, and then construct a surface by varying the
679
       second coordinate as a parameter. It gives a bicubic surface,
680
       and the result doesn't depend on the order of coordinates
681
       (I proved the latter with Matematica 3.0).
682
       Then we know that an interpolation by one coordinate and
683
       a differentiation by another coordinate are interchangeble operators.
684
       Due to that poles of the interpolated function are same as
685
       interpolated poles of the function (well, we didn't spend time
686
       for a strong proof, but this fact was confirmed with testing the
687
       implementation with POLE_CACHE_DEBUG).
688
689
       Then we apply the 2-dimentional considerations recursively
690
       to all dimensions. This is exactly what the function does.
691
692
     */
693
103
    int code;
694
695
103
    if (ii < 0) {
696
40
        if (POLE_CACHE_IGNORE || *(pfn->params.pole + a_offset) == double_stub) {
697
40
            code = load_vector(pfn, a_offset, s_offset);
698
40
            if (code < 0)
699
0
                return code;
700
40
        }
701
63
    } else {
702
63
        int Ii, ib, ie, i;
703
63
        int sa = pfn->params.array_step[ii];
704
63
        int ss = pfn->params.stream_step[ii];
705
706
63
        index_span(pfn, I, T, ii, &Ii, &ib, &ie);
707
63
        if (POLE_CACHE_IGNORE || !is_tensor_done(pfn, I, T, a_offset, ii)) {
708
74
            for (i = ib; i < ie; i++) {
709
40
                code = make_interpolation_tensor(pfn, I, T,
710
40
                                a_offset + i * sa, s_offset + i * ss, ii - 1);
711
40
                if (code < 0)
712
0
                    return code;
713
40
            }
714
34
            if (T[ii] != 0)
715
2
                interpolate_tensors(pfn, I, T, a_offset + ib * sa, sa, ie - ib - 1,
716
2
                                Ii - ib, ii - 1);
717
34
        }
718
63
    }
719
103
    return 0;
720
103
}
721
722
/* Creates a subarray of samples. */
723
static inline int
724
make_interpolation_nodes(const gs_function_Sd_t *pfn, double *T0, double *T1,
725
                            int *I, double *T,
726
                            int a_offset, int s_offset, int ii)
727
0
{
728
0
    int code;
729
730
0
    if (ii < 0) {
731
0
        if (POLE_CACHE_IGNORE || *(pfn->params.pole + a_offset) == double_stub) {
732
0
            code = load_vector(pfn, a_offset, s_offset);
733
0
            if (code < 0)
734
0
                return code;
735
0
        }
736
0
        if (pfn->params.Order == 3) {
737
0
            code = make_interpolation_tensor(pfn, I, T, 0, 0, pfn->params.m - 1);
738
0
            if (code < 0)
739
0
                return code;
740
0
        }
741
0
    } else {
742
0
        int i;
743
0
        int i0 = (int)floor(T0[ii]);
744
0
        int i1 = (int)ceil(T1[ii]);
745
0
        int sa = pfn->params.array_step[ii];
746
0
        int ss = pfn->params.stream_step[ii];
747
748
0
        if (i0 < 0 || i0 >= pfn->params.Size[ii])
749
0
            return_error(gs_error_unregistered); /* Must not happen. */
750
0
        if (i1 < 0 || i1 >= pfn->params.Size[ii])
751
0
            return_error(gs_error_unregistered); /* Must not happen. */
752
0
        I[ii] = i0;
753
0
        T[ii] = (i1 > i0 ? 1 : 0);
754
0
        for (i = i0; i <= i1; i++) {
755
0
            code = make_interpolation_nodes(pfn, T0, T1, I, T,
756
0
                            a_offset + i * sa, s_offset + i * ss, ii - 1);
757
0
            if (code < 0)
758
0
                return code;
759
0
        }
760
0
    }
761
0
    return 0;
762
0
}
763
764
static inline int
765
evaluate_from_tenzor(const gs_function_Sd_t *pfn, int *I, double *T, int offset, int ii, double *y)
766
132
{
767
132
    int s = pfn->params.array_step[ii], k, l, code;
768
769
132
    if (ii < 0) {
770
345
        for (k = 0; k < pfn->params.n; k++)
771
276
            y[k] = *(pfn->params.pole + offset + k);
772
69
    } else if (T[ii] == 0) {
773
61
        return evaluate_from_tenzor(pfn, I, T, offset + s * I[ii], ii - 1, y);
774
61
    } else {
775
2
        double t0 = T[ii], t1 = 1 - t0;
776
2
        double p[4][max_Sd_n];
777
778
10
        for (l = 0; l < 4; l++) {
779
8
            code = evaluate_from_tenzor(pfn, I, T, offset + s * I[ii] + l * (s / 3), ii - 1, p[l]);
780
8
            if (code < 0)
781
0
                return code;
782
8
        }
783
10
        for (k = 0; k < pfn->params.n; k++)
784
8
            y[k] = p[0][k] * t1 * t1 * t1 +
785
8
                   p[1][k] * t1 * t1 * t0 * 3 +
786
8
                   p[2][k] * t1 * t0 * t0 * 3 +
787
8
           p[3][k] * t0 * t0 * t0;
788
2
    }
789
71
    return 0;
790
132
}
791
792
/* Evaluate a Sampled function. */
793
/* A cubic interpolation with pole cache. */
794
/* Allows a fast check for extreme suspection with is_tensor_monotonic. */
795
static int
796
fn_Sd_evaluate_multicubic_cached(const gs_function_Sd_t *pfn, const float *in, float *out)
797
63
{
798
63
    double T[max_Sd_m], y[max_Sd_n];
799
63
    int I[max_Sd_m], k, code;
800
801
63
    decode_argument(pfn, in, T, I);
802
63
    code = make_interpolation_tensor(pfn, I, T, 0, 0, pfn->params.m - 1);
803
63
    if (code < 0)
804
0
        return code;
805
63
    evaluate_from_tenzor(pfn, I, T, 0, pfn->params.m - 1, y);
806
315
    for (k = 0; k < pfn->params.n; k++) {
807
252
        double yk = y[k];
808
809
252
        if (yk < pfn->params.Range[k * 2 + 0])
810
0
            yk = pfn->params.Range[k * 2 + 0];
811
252
        if (yk > pfn->params.Range[k * 2 + 1])
812
0
            yk = pfn->params.Range[k * 2 + 1];
813
252
        out[k] = yk;
814
252
    }
815
63
    return 0;
816
63
}
817
818
/* Evaluate a Sampled function. */
819
static int
820
fn_Sd_evaluate(const gs_function_t * pfn_common, const float *in, float *out)
821
414k
{
822
414k
    const gs_function_Sd_t *pfn = (const gs_function_Sd_t *)pfn_common;
823
414k
    int code;
824
825
414k
    if (pfn->params.Order == 3) {
826
63
        if (POLE_CACHE_GENERIC_1D || pfn->params.m > 1)
827
63
            code = fn_Sd_evaluate_multicubic_cached(pfn, in, out);
828
0
        else
829
0
            code = fn_Sd_evaluate_cubic_cached_1d(pfn, in, out);
830
# if POLE_CACHE_DEBUG
831
        {   float y[max_Sd_n];
832
            int k, code1;
833
834
            code1 = fn_Sd_evaluate_general(pfn_common, in, y);
835
            if (code != code1)
836
                return_error(gs_error_unregistered); /* Must not happen. */
837
            for (k = 0; k < pfn->params.n; k++) {
838
                if (any_abs(y[k] - out[k]) > 1e-6 * (pfn->params.Range[k * 2 + 1] - pfn->params.Range[k * 2 + 0]))
839
                    return_error(gs_error_unregistered); /* Must not happen. */
840
            }
841
        }
842
# endif
843
63
    } else
844
414k
        code = fn_Sd_evaluate_general(pfn_common, in, out);
845
414k
    return code;
846
414k
}
847
848
/* Map a function subdomain to the sample index subdomain. */
849
static inline int
850
get_scaled_range(const gs_function_Sd_t *const pfn,
851
                   const float *lower, const float *upper,
852
                   int i, float *pw0, float *pw1)
853
12.3k
{
854
12.3k
    float d0 = pfn->params.Domain[i * 2 + 0], d1 = pfn->params.Domain[i * 2 + 1];
855
12.3k
    float v0 = lower[i], v1 = upper[i];
856
12.3k
    float e0, e1, w0, w1, w;
857
12.3k
    const float small_noise = (float)1e-6;
858
859
12.3k
    if (v0 < d0 || v0 > d1)
860
3
        return_error(gs_error_rangecheck);
861
12.3k
    if (pfn->params.Encode)
862
9.49k
        e0 = pfn->params.Encode[i * 2 + 0], e1 = pfn->params.Encode[i * 2 + 1];
863
2.86k
    else
864
2.86k
        e0 = 0, e1 = (float)pfn->params.Size[i] - 1;
865
12.3k
    w0 = (v0 - d0) * (e1 - e0) / (d1 - d0) + e0;
866
12.3k
    if (w0 < 0)
867
0
        w0 = 0;
868
12.3k
    else if (w0 >= pfn->params.Size[i] - 1)
869
4.07k
        w0 = (float)pfn->params.Size[i] - 1;
870
12.3k
    w1 = (v1 - d0) * (e1 - e0) / (d1 - d0) + e0;
871
12.3k
    if (w1 < 0)
872
0
        w1 = 0;
873
12.3k
    else if (w1 >= pfn->params.Size[i] - 1)
874
6.19k
        w1 = (float)pfn->params.Size[i] - 1;
875
12.3k
    if (w0 > w1) {
876
440
        w = w0; w0 = w1; w1 = w;
877
440
    }
878
12.3k
    if (floor(w0 + 1) - w0 < small_noise * any_abs(e1 - e0))
879
0
        w0 = (floor(w0) + 1);
880
12.3k
    if (w1 - floor(w1) < small_noise * any_abs(e1 - e0))
881
10.3k
        w1 = floor(w1);
882
12.3k
    if (w0 > w1)
883
0
        w0 = w1;
884
12.3k
    *pw0 = w0;
885
12.3k
    *pw1 = w1;
886
12.3k
    return 0;
887
12.3k
}
888
889
/* Copy a tensor to a differently indexed pole array. */
890
static int
891
copy_poles(const gs_function_Sd_t *pfn, int *I, double *T0, double *T1, int a_offset,
892
                int ii, double *pole, int p_offset, int pole_step)
893
0
{
894
0
    int i, ei, sa, code;
895
0
    int order = pfn->params.Order;
896
897
0
    if (pole_step <= 0)
898
0
        return_error(gs_error_limitcheck); /* Too small buffer. */
899
0
    ei = (T0[ii] == T1[ii] ? 1 : order + 1);
900
0
    sa = pfn->params.array_step[ii];
901
0
    if (ii == 0) {
902
0
        for (i = 0; i < ei; i++)
903
0
            *(pole + p_offset + i * pole_step) =
904
0
                    *(pfn->params.pole + a_offset + I[ii] * sa + i * (sa / order));
905
0
    } else {
906
0
        for (i = 0; i < ei; i++) {
907
0
            code = copy_poles(pfn, I, T0, T1, a_offset + I[ii] * sa + i * (sa / order), ii - 1,
908
0
                            pole, p_offset + i * pole_step, pole_step / 4);
909
0
            if (code < 0)
910
0
                return code;
911
0
        }
912
0
    }
913
0
    return 0;
914
0
}
915
916
static inline void
917
subcurve(double *pole, int pole_step, double t0, double t1)
918
0
{
919
    /* Generated with subcurve.nb using Mathematica 3.0. */
920
0
    double q0 = pole[pole_step * 0];
921
0
    double q1 = pole[pole_step * 1];
922
0
    double q2 = pole[pole_step * 2];
923
0
    double q3 = pole[pole_step * 3];
924
0
    double t01 = t0 - 1, t11 = t1 - 1;
925
0
    double small = 1e-13;
926
927
0
#define Power2(a) (a) * (a)
928
0
#define Power3(a) (a) * (a) * (a)
929
0
    pole[pole_step * 0] = t0*(t0*(q3*t0 - 3*q2*t01) + 3*q1*Power2(t01)) - q0*Power3(t01);
930
0
    pole[pole_step * 1] = q1*t01*(-2*t0 - t1 + 3*t0*t1) + t0*(q2*t0 + 2*q2*t1 -
931
0
                            3*q2*t0*t1 + q3*t0*t1) - q0*t11*Power2(t01);
932
0
    pole[pole_step * 2] = t1*(2*q2*t0 + q2*t1 - 3*q2*t0*t1 + q3*t0*t1) +
933
0
                            q1*(-t0 - 2*t1 + 3*t0*t1)*t11 - q0*t01*Power2(t11);
934
0
    pole[pole_step * 3] = t1*(t1*(3*q2 - 3*q2*t1 + q3*t1) +
935
0
                            3*q1*Power2(t11)) - q0*Power3(t11);
936
0
#undef Power2
937
0
#undef Power3
938
0
    if (any_abs(pole[pole_step * 1] - pole[pole_step * 0]) < small)
939
0
        pole[pole_step * 1] = pole[pole_step * 0];
940
0
    if (any_abs(pole[pole_step * 2] - pole[pole_step * 3]) < small)
941
0
        pole[pole_step * 2] = pole[pole_step * 3];
942
0
}
943
944
static inline void
945
subline(double *pole, int pole_step, double t0, double t1)
946
0
{
947
0
    double q0 = pole[pole_step * 0];
948
0
    double q1 = pole[pole_step * 1];
949
950
0
    pole[pole_step * 0] = (1 - t0) * q0 + t0 * q1;
951
0
    pole[pole_step * 1] = (1 - t1) * q0 + t1 * q1;
952
0
}
953
954
static void
955
clamp_poles(double *T0, double *T1, int ii, int i, double * pole,
956
                int p_offset, int pole_step, int pole_step_i, int order)
957
0
{
958
0
    if (ii < 0) {
959
0
        if (order == 3)
960
0
            subcurve(pole + p_offset, pole_step_i, T0[i], T1[i]);
961
0
        else
962
0
            subline(pole + p_offset, pole_step_i, T0[i], T1[i]);
963
0
    } else if (i == ii) {
964
0
        clamp_poles(T0, T1, ii - 1, i, pole, p_offset, pole_step / 4, pole_step, order);
965
0
    } else {
966
0
        int j, ei = (T0[ii] == T1[ii] ? 1 : order + 1);
967
968
0
        for (j = 0; j < ei; j++)
969
0
            clamp_poles(T0, T1, ii - 1, i, pole, p_offset + j * pole_step,
970
0
                            pole_step / 4, pole_step_i, order);
971
0
    }
972
0
}
973
974
static inline int /* 3 - don't know, 2 - decreesing, 0 - constant, 1 - increasing. */
975
curve_monotonity(double *pole, int pole_step)
976
0
{
977
0
    double p0 = pole[pole_step * 0];
978
0
    double p1 = pole[pole_step * 1];
979
0
    double p2 = pole[pole_step * 2];
980
0
    double p3 = pole[pole_step * 3];
981
982
0
    if (p0 == p1 && any_abs(p1 - p2) < 1e-13 && p2 == p3)
983
0
        return 0;
984
0
    if (p0 <= p1 && p1 <= p2 && p2 <= p3)
985
0
        return 1;
986
0
    if (p0 >= p1 && p1 >= p2 && p2 >= p3)
987
0
        return 2;
988
    /* Maybe not monotonic.
989
       Don't want to solve quadratic equations, so return "don't know".
990
       This case should be rare.
991
     */
992
0
    return 3;
993
0
}
994
995
static inline int /* 2 - decreesing, 0 - constant, 1 - increasing. */
996
line_monotonity(double *pole, int pole_step)
997
0
{
998
0
    double p0 = pole[pole_step * 0];
999
0
    double p1 = pole[pole_step * 1];
1000
1001
0
    if (p1 - p0 > 1e-13)
1002
0
        return 1;
1003
0
    if (p0 - p1 > 1e-13)
1004
0
        return 2;
1005
0
    return 0;
1006
0
}
1007
1008
static int /* 3 bits per guide : 3 - non-monotonic or don't know,
1009
                    2 - decreesing, 0 - constant, 1 - increasing.
1010
                    The number of guides is order+1. */
1011
tensor_dimension_monotonity(const double *T0, const double *T1, int ii, int i0, double *pole,
1012
                int p_offset, int pole_step, int pole_step_i, int order)
1013
0
{
1014
0
    if (ii < 0) {
1015
0
        if (order == 3)
1016
0
            return curve_monotonity(pole + p_offset, pole_step_i);
1017
0
        else
1018
0
            return line_monotonity(pole + p_offset, pole_step_i);
1019
0
    } else if (i0 == ii) {
1020
        /* Delay the dimension till the end, and adjust pole_step. */
1021
0
        return tensor_dimension_monotonity(T0, T1, ii - 1, i0, pole, p_offset,
1022
0
                            pole_step / 4, pole_step, order);
1023
0
    } else {
1024
0
        int j, ei = (T0[ii] == T1[ii] ? 1 : order + 1), m = 0, mm;
1025
1026
0
        for (j = 0; j < ei; j++) {
1027
0
            mm = tensor_dimension_monotonity(T0, T1, ii - 1, i0, pole, p_offset + j * pole_step,
1028
0
                            pole_step/ 4, pole_step_i, order);
1029
0
            m |= mm << (j * 3);
1030
0
            if (mm == 3) {
1031
                /* If one guide is not monotonic, the dimension is not monotonic.
1032
                   Can return early. */
1033
0
                break;
1034
0
            }
1035
0
        }
1036
0
        return m;
1037
0
    }
1038
0
}
1039
1040
static inline int
1041
is_tensor_monotonic_by_dimension(const gs_function_Sd_t *pfn, int *I, double *T0, double *T1, int i0, int k,
1042
                    uint *mask /* 3 bits per guide : 3 - non-monotonic or don't know,
1043
                    2 - decreesing, 0 - constant, 1 - increasing.
1044
                    The number of guides is order+1. */)
1045
0
{
1046
0
    double pole[4*4*4]; /* For a while restricting with 3-in cubic functions.
1047
                 More arguments need a bigger buffer, but the rest of code is same. */
1048
0
    int i, code, ii = pfn->params.m - 1;
1049
0
    double TT0[3], TT1[3];
1050
1051
0
    *mask = 0;
1052
0
    if (ii >= 3) {
1053
         /* Unimplemented. We don't know practical cases,
1054
            because currently it is only called while decomposing a shading.  */
1055
0
        return_error(gs_error_limitcheck);
1056
0
    }
1057
0
    code = copy_poles(pfn, I, T0, T1, k, ii, pole, 0, count_of(pole) / 4);
1058
0
    if (code < 0)
1059
0
        return code;
1060
0
    for (i = ii; i >= 0; i--) {
1061
0
        TT0[i] = 0;
1062
0
        if (T0[i] != T1[i]) {
1063
0
            if (T0[i] != 0 || T1[i] != 1)
1064
0
                clamp_poles(T0, T1, ii, i, pole, 0, count_of(pole) / 4, -1, pfn->params.Order);
1065
0
            TT1[i] = 1;
1066
0
        } else
1067
0
            TT1[i] = 0;
1068
0
    }
1069
0
    *mask = tensor_dimension_monotonity(TT0, TT1, ii, i0, pole, 0,
1070
0
                        count_of(pole) / 4, 1, pfn->params.Order);
1071
0
    return 0;
1072
0
}
1073
1074
static int /* error code */
1075
is_lattice_monotonic_by_dimension(const gs_function_Sd_t *pfn, const double *T0, const double *T1,
1076
        int *I, double *S0, double *S1, int ii, int i0, int k,
1077
        uint *mask /* 3 bits per guide : 1 - non-monotonic or don't know, 0 - monotonic;
1078
                      The number of guides is order+1. */)
1079
0
{
1080
0
    if (ii == -1) {
1081
        /* fixme : could cache the cell monotonity against redundant evaluation. */
1082
0
        return is_tensor_monotonic_by_dimension(pfn, I, S0, S1, i0, k, mask);
1083
0
    } else {
1084
0
        int i1 = (ii > i0 ? ii : ii == 0 ? i0 : ii - 1); /* Delay the dimension i0 till the end of recursion. */
1085
0
        int j, code;
1086
0
        int bi = (int)floor(T0[i1]);
1087
0
        int ei = (int)floor(T1[i1]);
1088
0
        uint m, mm, m1 = 0x49249249 & ((1 << ((pfn->params.Order + 1) * 3)) - 1);
1089
1090
0
        if (floor(T1[i1]) == T1[i1])
1091
0
            ei --;
1092
0
        m = 0;
1093
0
        for (j = bi; j <= ei; j++) {
1094
            /* fixme : A better performance may be obtained with comparing central nodes with side ones. */
1095
0
            I[i1] = j;
1096
0
            S0[i1] = max(T0[i1] - j, 0);
1097
0
            S1[i1] = min(T1[i1] - j, 1);
1098
0
            code = is_lattice_monotonic_by_dimension(pfn, T0, T1, I, S0, S1, ii - 1, i0, k, &mm);
1099
0
            if (code < 0)
1100
0
                return code;
1101
0
            m |= mm;
1102
0
            if (m == m1) /* Don't return early - shadings need to know about all dimensions. */
1103
0
                break;
1104
0
        }
1105
0
        if (ii == 0) {
1106
            /* Detect non-monotonic guides. */
1107
0
            m = m & (m >> 1);
1108
0
        }
1109
0
        *mask = m;
1110
0
        return 0;
1111
0
    }
1112
0
}
1113
1114
static inline int /* error code */
1115
is_lattice_monotonic(const gs_function_Sd_t *pfn, const double *T0, const double *T1,
1116
         int *I, double *S0, double *S1,
1117
         int k, uint *mask /* 1 bit per dimension : 1 - non-monotonic or don't know,
1118
                      0 - monotonic. */)
1119
0
{
1120
0
    uint m, mm = 0;
1121
0
    int i, code;
1122
1123
0
    for (i = 0; i < pfn->params.m; i++) {
1124
0
        if (T0[i] != T1[i]) {
1125
0
            code = is_lattice_monotonic_by_dimension(pfn, T0, T1, I, S0, S1, pfn->params.m - 1, i, k, &m);
1126
0
            if (code < 0)
1127
0
                return code;
1128
0
            if (m)
1129
0
                mm |= 1 << i;
1130
0
        }
1131
0
    }
1132
0
    *mask = mm;
1133
0
    return 0;
1134
0
}
1135
1136
static int /* 3 bits per result : 3 - non-monotonic or don't know,
1137
               2 - decreesing, 0 - constant, 1 - increasing,
1138
               <0 - error. */
1139
fn_Sd_1arg_linear_monotonic_rec(const gs_function_Sd_t *const pfn, int i0, int i1,
1140
                                const double *V0, const double *V1)
1141
9.13M
{
1142
9.13M
    if (i1 - i0 <= 1) {
1143
4.56M
        int code = 0, i;
1144
1145
13.7M
        for (i = 0; i < pfn->params.n; i++) {
1146
9.21M
            if (V0[i] < V1[i])
1147
162k
                code |= 1 << (i * 3);
1148
9.05M
            else if (V0[i] > V1[i])
1149
441k
                code |= 2 << (i * 3);
1150
9.21M
        }
1151
4.56M
        return code;
1152
4.56M
    } else {
1153
4.56M
        double VV[MAX_FAST_COMPS];
1154
4.56M
        int ii = (i0 + i1) / 2, code, cod1;
1155
1156
4.56M
        code = load_vector_to(pfn, ii * pfn->params.n * pfn->params.BitsPerSample, VV);
1157
4.56M
        if (code < 0)
1158
0
            return code;
1159
4.56M
        if (code & (code >> 1))
1160
0
            return code; /* Not monotonic by some component of the result. */
1161
4.56M
        code = fn_Sd_1arg_linear_monotonic_rec(pfn, i0, ii, V0, VV);
1162
4.56M
        if (code < 0)
1163
0
            return code;
1164
4.56M
        cod1 = fn_Sd_1arg_linear_monotonic_rec(pfn, ii, i1, VV, V1);
1165
4.56M
        if (cod1 < 0)
1166
0
            return cod1;
1167
4.56M
        return code | cod1;
1168
4.56M
    }
1169
9.13M
}
1170
1171
static int
1172
fn_Sd_1arg_linear_monotonic(const gs_function_Sd_t *const pfn, double T0, double T1,
1173
                            uint *mask /* 1 - non-monotonic or don't know, 0 - monotonic. */)
1174
12.3k
{
1175
12.3k
    int i0 = (int)floor(T0);
1176
12.3k
    int i1 = (int)ceil(T1), code;
1177
12.3k
    double V0[MAX_FAST_COMPS], V1[MAX_FAST_COMPS];
1178
1179
12.3k
    if (i1 - i0 > 1) {
1180
4.07k
        code = load_vector_to(pfn, i0 * pfn->params.n * pfn->params.BitsPerSample, V0);
1181
4.07k
        if (code < 0)
1182
0
            return code;
1183
4.07k
        code = load_vector_to(pfn, i1 * pfn->params.n * pfn->params.BitsPerSample, V1);
1184
4.07k
        if (code < 0)
1185
0
            return code;
1186
4.07k
        code = fn_Sd_1arg_linear_monotonic_rec(pfn, i0, i1, V0, V1);
1187
4.07k
        if (code < 0)
1188
0
            return code;
1189
4.07k
        if (code & (code >> 1)) {
1190
842
            *mask = 1;
1191
842
            return 0;
1192
842
        }
1193
4.07k
    }
1194
11.5k
    *mask = 0;
1195
11.5k
    return 1;
1196
12.3k
}
1197
1198
0
#define DEBUG_Sd_1arg 0
1199
1200
/* Test whether a Sampled function is monotonic. */
1201
static int /* 1 = monotonic, 0 = not or don't know, <0 = error. */
1202
fn_Sd_is_monotonic_aux(const gs_function_Sd_t *const pfn,
1203
                   const float *lower, const float *upper,
1204
                   uint *mask /* 1 bit per dimension : 1 - non-monotonic or don't know,
1205
                      0 - monotonic. */)
1206
12.3k
{
1207
12.3k
    int i, code, ii = pfn->params.m - 1;
1208
12.3k
    int I[4];
1209
12.3k
    double T0[count_of(I)], T1[count_of(I)];
1210
12.3k
    double S0[count_of(I)], S1[count_of(I)];
1211
12.3k
    uint m, mm, m1;
1212
#   if DEBUG_Sd_1arg
1213
    int code1, mask1;
1214
#   endif
1215
1216
12.3k
    if (ii >= count_of(T0)) {
1217
         /* Unimplemented. We don't know practical cases,
1218
            because currently it is only called while decomposing a shading.  */
1219
0
        return_error(gs_error_limitcheck);
1220
0
    }
1221
24.7k
    for (i = 0; i <= ii; i++) {
1222
12.3k
        float w0, w1;
1223
1224
12.3k
        code = get_scaled_range(pfn, lower, upper, i, &w0, &w1);
1225
12.3k
        if (code < 0)
1226
3
            return code;
1227
12.3k
        T0[i] = w0;
1228
12.3k
        T1[i] = w1;
1229
12.3k
    }
1230
12.3k
    if (pfn->params.m == 1 && pfn->params.Order == 1 && pfn->params.n <= MAX_FAST_COMPS) {
1231
12.3k
        code = fn_Sd_1arg_linear_monotonic(pfn, T0[0], T1[0], mask);
1232
12.3k
# if !DEBUG_Sd_1arg
1233
12.3k
            return code;
1234
# else
1235
            mask1 = *mask;
1236
            code1 = code;
1237
# endif
1238
12.3k
    }
1239
0
    m1 = (1 << pfn->params.m )- 1;
1240
0
    code = make_interpolation_nodes(pfn, T0, T1, I, S0, 0, 0, ii);
1241
0
    if (code < 0)
1242
0
        return code;
1243
0
    mm = 0;
1244
0
    for (i = 0; i < pfn->params.n; i++) {
1245
0
        code = is_lattice_monotonic(pfn, T0, T1, I, S0, S1, i, &m);
1246
0
        if (code < 0)
1247
0
            return code;
1248
0
        mm |= m;
1249
0
        if (mm == m1) /* Don't return early - shadings need to know about all dimensions. */
1250
0
            break;
1251
0
    }
1252
#   if DEBUG_Sd_1arg
1253
        if (mask1 != mm)
1254
            return_error(gs_error_unregistered);
1255
        if (code1 != !mm)
1256
            return_error(gs_error_unregistered);
1257
#   endif
1258
0
    *mask = mm;
1259
0
    return !mm;
1260
0
}
1261
1262
/* Test whether a Sampled function is monotonic. */
1263
/* 1 = monotonic, 0 = don't know, <0 = error. */
1264
static int
1265
fn_Sd_is_monotonic(const gs_function_t * pfn_common,
1266
                   const float *lower, const float *upper, uint *mask)
1267
12.3k
{
1268
12.3k
    const gs_function_Sd_t *const pfn =
1269
12.3k
        (const gs_function_Sd_t *)pfn_common;
1270
1271
12.3k
    return fn_Sd_is_monotonic_aux(pfn, lower, upper, mask);
1272
12.3k
}
1273
1274
/* Return Sampled function information. */
1275
static void
1276
fn_Sd_get_info(const gs_function_t *pfn_common, gs_function_info_t *pfi)
1277
30.4k
{
1278
30.4k
    const gs_function_Sd_t *const pfn =
1279
30.4k
        (const gs_function_Sd_t *)pfn_common;
1280
30.4k
    long size;
1281
30.4k
    int i;
1282
1283
30.4k
    gs_function_get_info_default(pfn_common, pfi);
1284
30.4k
    pfi->DataSource = &pfn->params.DataSource;
1285
62.6k
    for (i = 0, size = 1; i < pfn->params.m; ++i)
1286
32.2k
        size *= pfn->params.Size[i];
1287
30.4k
    pfi->data_size =
1288
30.4k
        (size * pfn->params.n * pfn->params.BitsPerSample + 7) >> 3;
1289
30.4k
}
1290
1291
/* Write Sampled function parameters on a parameter list. */
1292
static int
1293
fn_Sd_get_params(const gs_function_t *pfn_common, gs_param_list *plist)
1294
19.9k
{
1295
19.9k
    const gs_function_Sd_t *const pfn =
1296
19.9k
        (const gs_function_Sd_t *)pfn_common;
1297
19.9k
    int ecode = fn_common_get_params(pfn_common, plist);
1298
19.9k
    int code;
1299
1300
19.9k
    if (pfn->params.Order != 1) {
1301
2
        if ((code = param_write_int(plist, "Order", &pfn->params.Order)) < 0)
1302
0
            ecode = code;
1303
2
    }
1304
19.9k
    if ((code = param_write_int(plist, "BitsPerSample",
1305
19.9k
                                &pfn->params.BitsPerSample)) < 0)
1306
0
        ecode = code;
1307
19.9k
    if (pfn->params.Encode) {
1308
195
        if ((code = param_write_float_values(plist, "Encode",
1309
195
                                             pfn->params.Encode,
1310
195
                                             2 * pfn->params.m, false)) < 0)
1311
0
            ecode = code;
1312
195
    }
1313
19.9k
    if (pfn->params.Decode) {
1314
8.26k
        if ((code = param_write_float_values(plist, "Decode",
1315
8.26k
                                             pfn->params.Decode,
1316
8.26k
                                             2 * pfn->params.n, false)) < 0)
1317
0
            ecode = code;
1318
8.26k
    }
1319
19.9k
    if (pfn->params.Size) {
1320
19.9k
        if ((code = param_write_int_values(plist, "Size", pfn->params.Size,
1321
19.9k
                                           pfn->params.m, false)) < 0)
1322
0
            ecode = code;
1323
19.9k
    }
1324
19.9k
    return ecode;
1325
19.9k
}
1326
1327
/* Make a scaled copy of a Sampled function. */
1328
static int
1329
fn_Sd_make_scaled(const gs_function_Sd_t *pfn, gs_function_Sd_t **ppsfn,
1330
                  const gs_range_t *pranges, gs_memory_t *mem)
1331
0
{
1332
0
    gs_function_Sd_t *psfn =
1333
0
        gs_alloc_struct(mem, gs_function_Sd_t, &st_function_Sd,
1334
0
                        "fn_Sd_make_scaled");
1335
0
    int code;
1336
1337
0
    if (psfn == 0)
1338
0
        return_error(gs_error_VMerror);
1339
0
    psfn->params = pfn->params;
1340
0
    psfn->params.Encode = 0;    /* in case of failure */
1341
0
    psfn->params.Decode = 0;
1342
0
    psfn->params.Size =
1343
0
        fn_copy_values(pfn->params.Size, pfn->params.m, sizeof(int), mem);
1344
0
    if ((code = (psfn->params.Size == 0 ?
1345
0
                 gs_note_error(gs_error_VMerror) : 0)) < 0 ||
1346
0
        (code = fn_common_scale((gs_function_t *)psfn,
1347
0
                                (const gs_function_t *)pfn,
1348
0
                                pranges, mem)) < 0 ||
1349
0
        (code = fn_scale_pairs(&psfn->params.Encode, pfn->params.Encode,
1350
0
                               pfn->params.m, NULL, mem)) < 0 ||
1351
0
        (code = fn_scale_pairs(&psfn->params.Decode, pfn->params.Decode,
1352
0
                               pfn->params.n, pranges, mem)) < 0) {
1353
0
        gs_function_free((gs_function_t *)psfn, true, mem);
1354
0
    } else
1355
0
        *ppsfn = psfn;
1356
0
    return code;
1357
0
}
1358
1359
/* Free the parameters of a Sampled function. */
1360
void
1361
gs_function_Sd_free_params(gs_function_Sd_params_t * params, gs_memory_t * mem)
1362
12.6k
{
1363
12.6k
    gs_free_const_object(mem, params->Size, "Size");
1364
12.6k
    params->Size = NULL;
1365
12.6k
    gs_free_const_object(mem, params->Decode, "Decode");
1366
12.6k
    params->Decode = NULL;
1367
12.6k
    gs_free_const_object(mem, params->Encode, "Encode");
1368
12.6k
    params->Encode = NULL;
1369
12.6k
    fn_common_free_params((gs_function_params_t *) params, mem);
1370
12.6k
    if (params->DataSource.type == data_source_type_stream && params->DataSource.data.strm != NULL) {
1371
12.5k
        s_close_filters(&params->DataSource.data.strm, params->DataSource.data.strm->strm);
1372
12.5k
        params->DataSource.data.strm = NULL;
1373
12.5k
    }
1374
12.6k
    gs_free_object(mem, params->pole, "gs_function_Sd_free_params");
1375
12.6k
    params->pole = NULL;
1376
12.6k
    gs_free_object(mem, params->array_step, "gs_function_Sd_free_params");
1377
12.6k
    params->array_step = NULL;
1378
12.6k
    gs_free_object(mem, params->stream_step, "gs_function_Sd_free_params");
1379
12.6k
    params->stream_step = NULL;
1380
12.6k
}
1381
1382
/* aA helper for gs_function_Sd_serialize. */
1383
static int serialize_array(const float *a, int half_size, stream *s)
1384
20.8k
{
1385
20.8k
    uint n;
1386
20.8k
    const float dummy[2] = {0, 0};
1387
20.8k
    int i, code;
1388
1389
20.8k
    if (a != NULL)
1390
9.12k
        return sputs(s, (const byte *)a, sizeof(a[0]) * half_size * 2, &n);
1391
41.1k
    for (i = 0; i < half_size; i++) {
1392
29.4k
        code = sputs(s, (const byte *)dummy, sizeof(dummy), &n);
1393
29.4k
        if (code < 0)
1394
0
            return code;
1395
29.4k
    }
1396
11.7k
    return 0;
1397
11.7k
}
1398
1399
/* Serialize. */
1400
static int
1401
gs_function_Sd_serialize(const gs_function_t * pfn, stream *s)
1402
10.4k
{
1403
10.4k
    uint n;
1404
10.4k
    const gs_function_Sd_params_t * p = (const gs_function_Sd_params_t *)&pfn->params;
1405
10.4k
    gs_function_info_t info;
1406
10.4k
    int code = fn_common_serialize(pfn, s);
1407
10.4k
    ulong pos;
1408
10.4k
    uint count;
1409
10.4k
    byte buf[100];
1410
10.4k
    const byte *ptr;
1411
1412
10.4k
    if (code < 0)
1413
0
        return code;
1414
10.4k
    code = sputs(s, (const byte *)&p->Order, sizeof(p->Order), &n);
1415
10.4k
    if (code < 0)
1416
0
        return code;
1417
10.4k
    code = sputs(s, (const byte *)&p->BitsPerSample, sizeof(p->BitsPerSample), &n);
1418
10.4k
    if (code < 0)
1419
0
        return code;
1420
10.4k
    code = serialize_array(p->Encode, p->m, s);
1421
10.4k
    if (code < 0)
1422
0
        return code;
1423
10.4k
    code = serialize_array(p->Decode, p->n, s);
1424
10.4k
    if (code < 0)
1425
0
        return code;
1426
10.4k
    gs_function_get_info(pfn, &info);
1427
10.4k
    code = sputs(s, (const byte *)&info.data_size, sizeof(info.data_size), &n);
1428
10.4k
    if (code < 0)
1429
0
        return code;
1430
112k
    for (pos = 0; pos < info.data_size; pos += count) {
1431
101k
        count = min(sizeof(buf), info.data_size - pos);
1432
101k
        data_source_access_only(info.DataSource, pos, count, buf, &ptr);
1433
101k
        code = sputs(s, ptr, count, &n);
1434
101k
        if (code < 0)
1435
0
            return code;
1436
101k
    }
1437
10.4k
    return 0;
1438
10.4k
}
1439
1440
/* Allocate and initialize a Sampled function. */
1441
int
1442
gs_function_Sd_init(gs_function_t ** ppfn,
1443
                  const gs_function_Sd_params_t * params, gs_memory_t * mem)
1444
30.5k
{
1445
30.5k
    static const gs_function_head_t function_Sd_head = {
1446
30.5k
        function_type_Sampled,
1447
30.5k
        {
1448
30.5k
            (fn_evaluate_proc_t) fn_Sd_evaluate,
1449
30.5k
            (fn_is_monotonic_proc_t) fn_Sd_is_monotonic,
1450
30.5k
            (fn_get_info_proc_t) fn_Sd_get_info,
1451
30.5k
            (fn_get_params_proc_t) fn_Sd_get_params,
1452
30.5k
            (fn_make_scaled_proc_t) fn_Sd_make_scaled,
1453
30.5k
            (fn_free_params_proc_t) gs_function_Sd_free_params,
1454
30.5k
            fn_common_free,
1455
30.5k
            (fn_serialize_proc_t) gs_function_Sd_serialize,
1456
30.5k
        }
1457
30.5k
    };
1458
30.5k
    int code;
1459
30.5k
    int i;
1460
1461
30.5k
    *ppfn = 0;      /* in case of error */
1462
30.5k
    code = fn_check_mnDR((const gs_function_params_t *)params,
1463
30.5k
                         params->m, params->n);
1464
30.5k
    if (code < 0)
1465
3
        return code;
1466
30.5k
    if (params->m > max_Sd_m)
1467
0
        return_error(gs_error_limitcheck);
1468
30.5k
    switch (params->Order) {
1469
1.79k
        case 0:   /* use default */
1470
30.4k
        case 1:
1471
30.5k
        case 3:
1472
30.5k
            break;
1473
0
        default:
1474
0
            return_error(gs_error_rangecheck);
1475
30.5k
    }
1476
30.5k
    switch (params->BitsPerSample) {
1477
0
        case 1:
1478
0
        case 2:
1479
0
        case 4:
1480
28.6k
        case 8:
1481
28.6k
        case 12:
1482
30.5k
        case 16:
1483
30.5k
        case 24:
1484
30.5k
        case 32:
1485
30.5k
            break;
1486
2
        default:
1487
2
            return_error(gs_error_rangecheck);
1488
30.5k
    }
1489
62.9k
    for (i = 0; i < params->m; ++i)
1490
32.4k
        if (params->Size[i] <= 0)
1491
0
            return_error(gs_error_rangecheck);
1492
30.5k
    {
1493
30.5k
        gs_function_Sd_t *pfn =
1494
30.5k
            gs_alloc_struct(mem, gs_function_Sd_t, &st_function_Sd,
1495
30.5k
                            "gs_function_Sd_init");
1496
30.5k
        int bps, sa, ss, i, order;
1497
1498
30.5k
        if (pfn == 0)
1499
0
            return_error(gs_error_VMerror);
1500
30.5k
        pfn->params = *params;
1501
30.5k
        if (params->Order == 0)
1502
1.79k
            pfn->params.Order = 1; /* default */
1503
30.5k
        pfn->params.pole = NULL;
1504
30.5k
        pfn->params.array_step = NULL;
1505
30.5k
        pfn->params.stream_step = NULL;
1506
30.5k
        pfn->head = function_Sd_head;
1507
30.5k
        pfn->params.array_size = 0;
1508
30.5k
        if (pfn->params.m == 1 && pfn->params.Order == 1 && pfn->params.n <= MAX_FAST_COMPS && !DEBUG_Sd_1arg) {
1509
            /* Won't use pole cache. Call fn_Sd_1arg_linear_monotonic instead. */
1510
28.6k
        } else {
1511
1.94k
            pfn->params.array_step = (int *)gs_alloc_byte_array(mem,
1512
1.94k
                                    max_Sd_m, sizeof(int), "gs_function_Sd_init");
1513
1.94k
            pfn->params.stream_step = (int *)gs_alloc_byte_array(mem,
1514
1.94k
                                    max_Sd_m, sizeof(int), "gs_function_Sd_init");
1515
1.94k
            if (pfn->params.array_step == NULL || pfn->params.stream_step == NULL)
1516
0
                return_error(gs_error_VMerror);
1517
1.94k
            bps = pfn->params.BitsPerSample;
1518
1.94k
            sa = pfn->params.n;
1519
1.94k
            ss = pfn->params.n * bps;
1520
1.94k
            order = pfn->params.Order;
1521
5.78k
            for (i = 0; i < pfn->params.m; i++) {
1522
3.83k
                pfn->params.array_step[i] = sa * order;
1523
3.83k
                sa = (pfn->params.Size[i] * order - (order - 1)) * sa;
1524
3.83k
                pfn->params.stream_step[i] = ss;
1525
3.83k
                ss = pfn->params.Size[i] * ss;
1526
3.83k
            }
1527
1.94k
            pfn->params.pole = (double *)gs_alloc_byte_array(mem,
1528
1.94k
                                    sa, sizeof(double), "gs_function_Sd_init");
1529
1.94k
            if (pfn->params.pole == NULL)
1530
0
                return_error(gs_error_VMerror);
1531
1.01M
            for (i = 0; i < sa; i++)
1532
1.01M
                pfn->params.pole[i] = double_stub;
1533
1.94k
            pfn->params.array_size = sa;
1534
1.94k
        }
1535
30.5k
        *ppfn = (gs_function_t *) pfn;
1536
30.5k
    }
1537
0
    return 0;
1538
30.5k
}