Coverage Report

Created: 2022-10-31 07:00

/src/ghostpdl/base/gsht.c
Line
Count
Source (jump to first uncovered line)
1
/* Copyright (C) 2001-2022 Artifex Software, Inc.
2
   All Rights Reserved.
3
4
   This software is provided AS-IS with no warranty, either express or
5
   implied.
6
7
   This software is distributed under license and may not be copied,
8
   modified or distributed except as expressly authorized under the terms
9
   of the license contained in the file LICENSE in this distribution.
10
11
   Refer to licensing information at http://www.artifex.com or contact
12
   Artifex Software, Inc.,  1305 Grant Avenue - Suite 200, Novato,
13
   CA 94945, U.S.A., +1(415)492-9861, for further information.
14
*/
15
16
17
/* setscreen operator for Ghostscript library */
18
#include "memory_.h"
19
#include "string_.h"
20
#include "assert_.h"
21
#include <stdlib.h>             /* for qsort */
22
#include "gx.h"
23
#include "gserrors.h"
24
#include "gsstruct.h"
25
#include "gsutil.h"             /* for gs_next_ids */
26
#include "gxarith.h"            /* for igcd */
27
#include "gzstate.h"
28
#include "gxdevice.h"           /* for gzht.h */
29
#include "gzht.h"
30
#include "gxfmap.h"             /* For effective transfer usage in threshold */
31
#include "gp.h"
32
33
#define DUMP_SCREENS 0
34
35
/* Forward declarations */
36
void gx_set_effective_transfer(gs_gstate *);
37
38
/* Structure types */
39
public_st_ht_order();
40
private_st_ht_order_component();
41
public_st_ht_order_comp_element();
42
public_st_halftone();
43
public_st_device_halftone();
44
45
/* GC procedures */
46
47
static
48
8.88M
ENUM_PTRS_WITH(ht_order_enum_ptrs, gx_ht_order *porder) return 0;
49
1.88M
case 0: ENUM_RETURN((porder->data_memory ? porder->levels : 0));
50
1.88M
case 1: ENUM_RETURN((porder->data_memory ? porder->bit_data : 0));
51
1.88M
case 2: ENUM_RETURN(porder->cache);
52
1.88M
case 3: ENUM_RETURN(porder->transfer);
53
8.88M
ENUM_PTRS_END
54
static
55
1.88M
RELOC_PTRS_WITH(ht_order_reloc_ptrs, gx_ht_order *porder)
56
1.88M
{
57
1.88M
    if (porder->data_memory) {
58
1.62M
        RELOC_VAR(porder->levels);
59
1.62M
        RELOC_VAR(porder->bit_data);
60
1.62M
    }
61
1.88M
    RELOC_VAR(porder->cache);
62
1.88M
    RELOC_VAR(porder->transfer);
63
1.88M
}
64
1.88M
RELOC_PTRS_END
65
66
static
67
259k
ENUM_PTRS_WITH(halftone_enum_ptrs, gs_halftone *hptr) return 0;
68
259k
case 0:
69
259k
switch (hptr->type)
70
259k
{
71
0
    case ht_type_spot:
72
0
        ENUM_RETURN((hptr->params.spot.transfer == 0 ?
73
0
                     hptr->params.spot.transfer_closure.data :
74
0
                     0));
75
0
    case ht_type_threshold:
76
0
        ENUM_RETURN_CONST_STRING_PTR(gs_halftone, params.threshold.thresholds);
77
0
    case ht_type_threshold2:
78
0
        return ENUM_CONST_BYTESTRING(&hptr->params.threshold2.thresholds);
79
0
    case ht_type_client_order:
80
0
        ENUM_RETURN(hptr->params.client_order.client_data);
81
0
    case ht_type_multiple:
82
0
    case ht_type_multiple_colorscreen:
83
0
        ENUM_RETURN(hptr->params.multiple.components);
84
0
    case ht_type_none:
85
141k
    case ht_type_screen:
86
259k
    case ht_type_colorscreen:
87
259k
        return 0;
88
259k
}
89
/* fall through */
90
0
case 1:
91
0
switch (hptr->type) {
92
0
    case ht_type_threshold:
93
0
        ENUM_RETURN((hptr->params.threshold.transfer == 0 ?
94
0
                     hptr->params.threshold.transfer_closure.data :
95
0
                     0));
96
0
    case ht_type_threshold2:
97
0
        ENUM_RETURN(hptr->params.threshold2.transfer_closure.data);
98
0
    case ht_type_client_order:
99
0
        ENUM_RETURN(hptr->params.client_order.transfer_closure.data);
100
0
    default:
101
0
        return 0;
102
0
}
103
259k
ENUM_PTRS_END
104
105
259k
static RELOC_PTRS_WITH(halftone_reloc_ptrs, gs_halftone *hptr)
106
259k
{
107
259k
    switch (hptr->type) {
108
0
        case ht_type_spot:
109
0
            if (hptr->params.spot.transfer == 0)
110
0
                RELOC_PTR(gs_halftone, params.spot.transfer_closure.data);
111
0
            break;
112
0
        case ht_type_threshold:
113
0
            RELOC_CONST_STRING_PTR(gs_halftone, params.threshold.thresholds);
114
0
            if (hptr->params.threshold.transfer == 0)
115
0
                RELOC_PTR(gs_halftone, params.threshold.transfer_closure.data);
116
0
            break;
117
0
        case ht_type_threshold2:
118
0
            RELOC_CONST_BYTESTRING_VAR(hptr->params.threshold2.thresholds);
119
0
            RELOC_OBJ_VAR(hptr->params.threshold2.transfer_closure.data);
120
0
            break;
121
0
        case ht_type_client_order:
122
0
            RELOC_PTR(gs_halftone, params.client_order.client_data);
123
0
            RELOC_PTR(gs_halftone, params.client_order.transfer_closure.data);
124
0
            break;
125
0
        case ht_type_multiple:
126
0
        case ht_type_multiple_colorscreen:
127
0
            RELOC_PTR(gs_halftone, params.multiple.components);
128
0
            break;
129
0
        case ht_type_none:
130
141k
        case ht_type_screen:
131
259k
        case ht_type_colorscreen:
132
259k
            break;
133
259k
    }
134
259k
}
135
259k
RELOC_PTRS_END
136
137
/* setscreen */
138
int
139
gs_setscreen(gs_gstate * pgs, gs_screen_halftone * phsp)
140
0
{
141
0
    gs_screen_enum senum;
142
0
    int code = gx_ht_process_screen(&senum, pgs, phsp,
143
0
                                    gs_currentaccuratescreens(pgs->memory));
144
145
0
    if (code < 0)
146
0
        return code;
147
0
    return gs_screen_install(&senum);
148
0
}
149
150
/* currentscreen */
151
int
152
gs_currentscreen(const gs_gstate * pgs, gs_screen_halftone * phsp)
153
0
{
154
0
    switch (pgs->halftone->type) {
155
0
        case ht_type_screen:
156
0
            *phsp = pgs->halftone->params.screen;
157
0
            return 0;
158
0
        case ht_type_colorscreen:
159
0
            *phsp = pgs->halftone->params.colorscreen.screens.colored.gray;
160
0
            return 0;
161
0
        default:
162
0
            return_error(gs_error_undefined);
163
0
    }
164
0
}
165
166
/* .currentscreenlevels */
167
int
168
gs_currentscreenlevels(const gs_gstate * pgs)
169
0
{
170
0
    int gi = 0;
171
172
0
    if (pgs->device != NULL)
173
0
        gi = pgs->device->color_info.gray_index;
174
0
    if (gi != GX_CINFO_COMP_NO_INDEX)
175
0
        return pgs->dev_ht[HT_OBJTYPE_DEFAULT]->components[gi].corder.num_levels;
176
0
    else
177
0
        return pgs->dev_ht[HT_OBJTYPE_DEFAULT]->components[0].corder.num_levels;
178
0
}
179
180
/* .setscreenphase */
181
int
182
gx_gstate_setscreenphase(gs_gstate * pgs, int x, int y,
183
                         gs_color_select_t select)
184
6.40M
{
185
6.40M
    if (select == gs_color_select_all) {
186
2.13M
        int i;
187
188
6.39M
        for (i = 0; i < gs_color_select_count; ++i)
189
4.26M
            gx_gstate_setscreenphase(pgs, x, y, (gs_color_select_t) i);
190
2.13M
        return 0;
191
4.27M
    } else if ((int)select < 0 || (int)select >= gs_color_select_count)
192
0
        return_error(gs_error_rangecheck);
193
4.27M
    pgs->screen_phase[select].x = x;
194
4.27M
    pgs->screen_phase[select].y = y;
195
4.27M
    return 0;
196
6.40M
}
197
int
198
gs_setscreenphase(gs_gstate * pgs, int x, int y, gs_color_select_t select)
199
0
{
200
0
    int code = gx_gstate_setscreenphase(pgs, x, y,
201
0
                                        select);
202
203
    /*
204
     * If we're only setting the source phase, we don't need to do
205
     * unset_dev_color, because the source phase doesn't affect painting
206
     * with the current color.
207
     */
208
0
    if (code >= 0 && (select == gs_color_select_texture ||
209
0
                      select == gs_color_select_all)
210
0
        )
211
0
        gx_unset_dev_color(pgs);
212
0
    return code;
213
0
}
214
215
int
216
gs_currentscreenphase_pgs(const gs_gstate * pgs, gs_int_point * pphase,
217
                      gs_color_select_t select)
218
4.83M
{
219
4.83M
    if ((int)select < 0 || (int)select >= gs_color_select_count)
220
0
        return_error(gs_error_rangecheck);
221
4.83M
    *pphase = pgs->screen_phase[select];
222
4.83M
    return 0;
223
4.83M
}
224
225
/* .currentscreenphase */
226
int
227
gs_currentscreenphase(const gs_gstate * pgs, gs_int_point * pphase,
228
                      gs_color_select_t select)
229
4.83M
{
230
4.83M
    return gs_currentscreenphase_pgs((const gs_gstate *)pgs, pphase, select);
231
4.83M
}
232
233
/* currenthalftone */
234
int
235
gs_currenthalftone(gs_gstate * pgs, gs_halftone * pht)
236
89.2k
{
237
89.2k
    *pht = *pgs->halftone;
238
89.2k
    return 0;
239
89.2k
}
240
241
/* ------ Internal routines ------ */
242
243
/* Process one screen plane. */
244
int
245
gx_ht_process_screen_memory(gs_screen_enum * penum, gs_gstate * pgs,
246
                gs_screen_halftone * phsp, bool accurate, gs_memory_t * mem)
247
744k
{
248
744k
    gs_point pt;
249
744k
    int code = gs_screen_init_memory(penum, pgs, phsp, accurate, mem);
250
251
744k
    if (code < 0)
252
0
        return code;
253
13.3M
    while ((code = gs_screen_currentpoint(penum, &pt)) == 0)
254
12.6M
        if ((code = gs_screen_next(penum, (*phsp->spot_function) (pt.x, pt.y))) < 0)
255
0
            return code;
256
744k
    return 0;
257
744k
}
258
259
/*
260
 * Internal procedure to allocate and initialize either an internally
261
 * generated or a client-defined halftone order.  For spot halftones,
262
 * the client is responsible for calling gx_compute_cell_values.
263
 */
264
int
265
gx_ht_alloc_ht_order(gx_ht_order * porder, uint width, uint height,
266
                     uint num_levels, uint num_bits, uint strip_shift,
267
                     const gx_ht_order_procs_t *procs, gs_memory_t * mem)
268
3.54M
{
269
3.54M
    porder->threshold = NULL;
270
3.54M
    porder->width = width;
271
3.54M
    porder->height = height;
272
3.54M
    porder->raster = bitmap_raster(width);
273
3.54M
    porder->shift = strip_shift;
274
3.54M
    porder->orig_height = porder->height;
275
3.54M
    porder->orig_shift = porder->shift;
276
3.54M
    porder->full_height = ht_order_full_height(porder);
277
3.54M
    porder->num_levels = num_levels;
278
3.54M
    porder->num_bits = num_bits;
279
3.54M
    porder->procs = procs;
280
3.54M
    porder->data_memory = mem;
281
282
3.54M
    if (num_levels > 0) {
283
3.54M
        porder->levels =
284
3.54M
            (uint *)gs_alloc_byte_array(mem, porder->num_levels, sizeof(uint),
285
3.54M
                                        "alloc_ht_order_data(levels)");
286
3.54M
        if (porder->levels == 0)
287
0
            return_error(gs_error_VMerror);
288
3.54M
        memset(porder->levels, 0, sizeof(uint) * porder->num_levels);
289
3.54M
    } else
290
0
        porder->levels = 0;
291
292
3.54M
    if (num_bits > 0) {
293
3.54M
        porder->bit_data =
294
3.54M
            gs_alloc_byte_array(mem, porder->num_bits,
295
3.54M
                                porder->procs->bit_data_elt_size,
296
3.54M
                                "alloc_ht_order_data(bit_data)");
297
3.54M
        if (porder->bit_data == 0) {
298
0
            gs_free_object(mem, porder->levels, "alloc_ht_order_data(levels)");
299
0
            porder->levels = 0;
300
0
            return_error(gs_error_VMerror);
301
0
        }
302
3.54M
    } else
303
0
        porder->bit_data = 0;
304
305
3.54M
    porder->cache = 0;
306
3.54M
    porder->transfer = 0;
307
3.54M
    return 0;
308
3.54M
}
309
310
/*
311
 * Procedure to copy a halftone order.
312
 */
313
static int
314
gx_ht_copy_ht_order(gx_ht_order * pdest, gx_ht_order * psrc, gs_memory_t * mem)
315
1.92M
{
316
1.92M
    int code;
317
318
1.92M
    *pdest = *psrc;
319
320
1.92M
    code = gx_ht_alloc_ht_order(pdest, psrc->width, psrc->height,
321
1.92M
                     psrc->num_levels, psrc->num_bits, psrc->shift,
322
1.92M
                     psrc->procs, mem);
323
1.92M
    if (code < 0)
324
0
        return code;
325
1.92M
    if (pdest->levels != NULL)
326
1.92M
        memcpy(pdest->levels, psrc->levels, psrc->num_levels * sizeof(uint));
327
1.92M
    if (pdest->bit_data != NULL)
328
1.92M
        memcpy(pdest->bit_data, psrc->bit_data,
329
1.92M
               (size_t)psrc->num_bits * psrc->procs->bit_data_elt_size);
330
1.92M
    pdest->transfer = psrc->transfer;
331
1.92M
    rc_increment(pdest->transfer);
332
1.92M
    return 0;
333
1.92M
}
334
335
/*
336
 * Set the destination component to match the source component, and
337
 * "assume ownership" of all of the refrernced data structures.
338
 */
339
static void
340
gx_ht_move_ht_order(gx_ht_order * pdest, gx_ht_order * psrc)
341
944
{
342
944
    uint    width = psrc->width, height = psrc->height, shift = psrc->shift;
343
344
944
    pdest->params = psrc->params;
345
944
    pdest->width = width;
346
944
    pdest->height = height;
347
944
    pdest->raster = bitmap_raster(width);
348
944
    pdest->shift = shift;
349
944
    pdest->orig_height = height;
350
944
    pdest->orig_shift = shift;
351
944
    pdest->full_height = ht_order_full_height(pdest);
352
944
    pdest->num_levels = psrc->num_levels;
353
944
    pdest->num_bits = psrc->num_bits;
354
944
    pdest->procs = psrc->procs;
355
944
    pdest->data_memory = psrc->data_memory;
356
944
    pdest->levels = psrc->levels;
357
944
    pdest->bit_data = psrc->bit_data;
358
944
    pdest->cache = psrc->cache;    /* should be 0 */
359
944
    pdest->transfer = psrc->transfer;
360
944
}
361
362
/* Allocate and initialize the contents of a halftone order. */
363
/* The client must have set the defining values in porder->params. */
364
int
365
gx_ht_alloc_order(gx_ht_order * porder, uint width, uint height,
366
                  uint strip_shift, uint num_levels, gs_memory_t * mem)
367
976k
{
368
976k
    gx_ht_order order;
369
976k
    int code;
370
371
976k
    order = *porder;
372
976k
    gx_compute_cell_values(&order.params);
373
976k
    code = gx_ht_alloc_ht_order(&order, width, height, num_levels,
374
976k
                                width * height, strip_shift,
375
976k
                                &ht_order_procs_default, mem);
376
976k
    if (code < 0)
377
0
        return code;
378
976k
    *porder = order;
379
976k
    return 0;
380
976k
}
381
382
/*
383
 * Allocate and initialize a threshold order, which may use the short
384
 * representation.
385
 */
386
int
387
gx_ht_alloc_threshold_order(gx_ht_order * porder, uint width, uint height,
388
                            uint num_levels, gs_memory_t * mem)
389
0
{
390
0
    gx_ht_order order;
391
392
0
    unsigned long num_bits = bitmap_raster(width) * (unsigned long)8 * height;
393
0
    const gx_ht_order_procs_t *procs;
394
0
    int code;
395
396
0
    if (num_bits <= 2000)
397
0
        procs = &ht_order_procs_default;
398
0
    else if (num_bits <= max_ushort + 1)  /* We can index 0 to 65535 so a size of 65536 (max_ushort + 1) is OK */
399
0
        procs = &ht_order_procs_short;
400
0
    else if (num_bits <= max_uint)
401
0
        procs = &ht_order_procs_uint;
402
0
    else
403
0
        return_error(gs_error_VMerror);  /* At this point in history, this is way too large of a screen */
404
405
0
    order = *porder;
406
0
    gx_compute_cell_values(&order.params);
407
0
    code = gx_ht_alloc_ht_order(&order, width, height, num_levels,
408
0
                                width * height, 0, procs, mem);
409
0
    if (code < 0)
410
0
        return code;
411
0
    *porder = order;
412
0
    return 0;
413
0
}
414
415
/* Allocate and initialize the contents of a client-defined halftone order. */
416
int
417
gx_ht_alloc_client_order(gx_ht_order * porder, uint width, uint height,
418
                         uint num_levels, uint num_bits, gs_memory_t * mem)
419
0
{
420
0
    gx_ht_order order;
421
0
    int code;
422
423
0
    order = *porder;
424
0
    order.params.M = width, order.params.N = 0;
425
0
    order.params.R = 1;
426
0
    order.params.M1 = height, order.params.N1 = 0;
427
0
    order.params.R1 = 1;
428
0
    gx_compute_cell_values(&order.params);
429
0
    code = gx_ht_alloc_ht_order(&order, width, height, num_levels,
430
0
                                num_bits, 0, &ht_order_procs_default, mem);
431
0
    if (code < 0)
432
0
        return code;
433
0
    *porder = order;
434
0
    return 0;
435
0
}
436
437
/* Compare keys ("masks", actually sample values) for qsort. */
438
static int
439
compare_samples(const void *p1, const void *p2)
440
87.8M
{
441
87.8M
    ht_sample_t m1 = ((const gx_ht_bit *)p1)->mask;
442
87.8M
    ht_sample_t m2 = ((const gx_ht_bit *)p2)->mask;
443
444
    /* force qsort() to be determinstic even if two masks are the same */
445
87.8M
    if (m1==m2) {
446
8.82M
      m1=((const gx_ht_bit *)p1)->offset;
447
8.82M
      m2=((const gx_ht_bit *)p2)->offset;
448
8.82M
    }
449
450
87.8M
    return (m1 < m2 ? -1 : m1 > m2 ? 1 : 0);
451
87.8M
}
452
/* Sort the halftone order by sample value. */
453
void
454
gx_sort_ht_order(gx_ht_bit * recs, uint N)
455
1.75M
{
456
1.75M
    int i;
457
458
    /* Tag each sample with its index, for sorting. */
459
32.0M
    for (i = 0; i < N; i++)
460
30.3M
        recs[i].offset = i;
461
1.75M
    qsort((void *)recs, N, sizeof(*recs), compare_samples);
462
#ifdef DEBUG
463
    if (gs_debug_c('H')) {
464
        uint i;
465
466
        dlputs("[H]Sorted samples:\n");
467
        for (i = 0; i < N; i++)
468
            dlprintf3("%5u: %5u: %u\n",
469
                      i, recs[i].offset, recs[i].mask);
470
    }
471
#endif
472
1.75M
}
473
474
/*
475
 * Construct the halftone order from a sampled spot function.  Only width x
476
 * strip samples have been filled in; we must replicate the resulting sorted
477
 * order vertically, shifting it by shift each time.  See gxdht.h regarding
478
 * the invariants that must be restored.
479
 */
480
void
481
gx_ht_construct_spot_order(gx_ht_order * porder)
482
1.75M
{
483
1.75M
    uint width = porder->width;
484
1.75M
    uint num_levels = porder->num_levels;       /* = width x strip */
485
1.75M
    uint strip = num_levels / width;
486
1.75M
    gx_ht_bit *bits = (gx_ht_bit *)porder->bit_data;
487
1.75M
    uint *levels = porder->levels;
488
1.75M
    uint shift = porder->orig_shift;
489
1.75M
    uint full_height = porder->full_height;
490
1.75M
    uint num_bits = porder->num_bits;
491
1.75M
    uint copies = num_bits / (width * strip);
492
1.75M
    gx_ht_bit *bp = bits + num_bits - 1;
493
1.75M
    uint i;
494
495
1.75M
    gx_sort_ht_order(bits, num_levels);
496
1.75M
    if_debug5('h',
497
1.75M
              "[h]spot order: num_levels=%u w=%u h=%u strip=%u shift=%u\n",
498
1.75M
              num_levels, width, porder->orig_height, strip, shift);
499
    /* Fill in the levels array, replicating the bits vertically */
500
    /* if needed. */
501
32.0M
    for (i = num_levels; i > 0;) {
502
30.3M
        uint offset = bits[--i].offset;
503
30.3M
        uint x = offset % width;
504
30.3M
        uint hy = offset - x;
505
30.3M
        uint k;
506
507
30.3M
        levels[i] = i * copies;
508
274M
        for (k = 0; k < copies;
509
244M
             k++, bp--, hy += num_levels, x = (x + width - shift) % width
510
30.3M
            )
511
244M
            bp->offset = hy + x;
512
30.3M
    }
513
    /* If we have a complete halftone, restore the invariant. */
514
1.75M
    if (num_bits == width * full_height) {
515
1.75M
        porder->height = full_height;
516
1.75M
        porder->shift = 0;
517
1.75M
    }
518
1.75M
    gx_ht_construct_bits(porder);
519
1.75M
}
520
521
/* Construct a single offset/mask. */
522
void
523
gx_ht_construct_bit(gx_ht_bit * bit, int width, int bit_num)
524
244M
{
525
244M
    uint padding = bitmap_raster(width) * 8 - width;
526
244M
    int pix = bit_num;
527
244M
    ht_mask_t mask;
528
244M
    byte *pb;
529
530
244M
    pix += pix / width * padding;
531
244M
    bit->offset = (pix >> 3) & -size_of(mask);
532
244M
    mask = (ht_mask_t) 1 << (~pix & (ht_mask_bits - 1));
533
    /* Replicate the mask bits. */
534
244M
    pix = ht_mask_bits - width;
535
376M
    while ((pix -= width) >= 0)
536
132M
        mask |= mask >> width;
537
    /* Store the mask, reversing bytes if necessary. */
538
244M
    bit->mask = 0;
539
244M
    for (pb = (byte *) & bit->mask + (sizeof(mask) - 1);
540
1.09G
         mask != 0;
541
848M
         mask >>= 8, pb--
542
244M
        )
543
848M
        *pb = (byte) mask;
544
244M
}
545
546
/* Construct offset/masks from the whitening order. */
547
/* porder->bits[i].offset contains the index of the bit position */
548
/* that is i'th in the whitening order. */
549
void
550
gx_ht_construct_bits(gx_ht_order * porder)
551
1.75M
{
552
1.75M
    uint i;
553
1.75M
    gx_ht_bit *phb;
554
555
1.75M
    for (i = 0, phb = (gx_ht_bit *)porder->bit_data;
556
245M
         i < porder->num_bits;
557
244M
         i++, phb++)
558
244M
        gx_ht_construct_bit(phb, porder->width, phb->offset);
559
#ifdef DEBUG
560
    if (gs_debug_c('H')) {
561
        dmlprintf1(porder->data_memory, "[H]Halftone order bits "PRI_INTPTR":\n", (intptr_t)porder->bit_data);
562
        for (i = 0, phb = (gx_ht_bit *)porder->bit_data;
563
             i < porder->num_bits;
564
             i++, phb++)
565
            dmlprintf3(porder->data_memory, "%4d: %u:0x%lx\n", i, phb->offset,
566
                      (ulong) phb->mask);
567
    }
568
#endif
569
1.75M
}
570
571
/* Release a gx_device_halftone by freeing its components. */
572
/* (Don't free the gx_device_halftone itself.) */
573
void
574
gx_ht_order_release(gx_ht_order * porder, gs_memory_t * mem, bool free_cache)
575
4.18M
{
576
    /* "free cache" is a proxy for "differs from default" */
577
4.18M
    if (free_cache) {
578
2.48M
        if (porder->cache != NULL)
579
1.92M
            gx_ht_free_cache(mem, porder->cache);
580
2.48M
    }
581
4.18M
    porder->cache = 0;
582
4.18M
    rc_decrement(porder->transfer, "gx_ht_order_release(transfer)");
583
4.18M
    porder->transfer = 0;
584
4.18M
    if (porder->data_memory != NULL) {
585
3.54M
        gs_free_object(porder->data_memory, porder->bit_data,
586
3.54M
                       "gx_ht_order_release(bit_data)");
587
3.54M
        gs_free_object(porder->data_memory, porder->levels,
588
3.54M
                       "gx_ht_order_release(levels)");
589
3.54M
        if (porder->threshold != NULL) {
590
2.46k
            gs_free_object(porder->data_memory->non_gc_memory, porder->threshold,
591
2.46k
                       "gx_ht_order_release(threshold)");
592
2.46k
        }
593
3.54M
    }
594
4.18M
    porder->threshold = 0;
595
4.18M
    porder->levels = 0;
596
4.18M
    porder->bit_data = 0;
597
4.18M
}
598
599
void
600
gx_device_halftone_release(gx_device_halftone * pdht, gs_memory_t * mem)
601
1.04M
{
602
1.04M
    if (pdht->components) {
603
823k
        int i;
604
605
        /* One of the components might be the same as the default */
606
        /* order, so check that we don't free it twice. */
607
3.49M
        for (i = 0; i < pdht->num_comp; ++i)
608
2.67M
            if (pdht->components[i].corder.bit_data !=
609
2.67M
                pdht->order.bit_data
610
2.67M
                ) {             /* Currently, all orders except the default one */
611
                /* own their caches. */
612
2.48M
                gx_ht_order_release(&pdht->components[i].corder, mem, true);
613
2.48M
            }
614
823k
        gs_free_object(mem, pdht->components,
615
823k
                       "gx_dev_ht_release(components)");
616
823k
        pdht->components = 0;
617
823k
        pdht->num_comp = 0;
618
823k
    }
619
1.04M
    gx_ht_order_release(&pdht->order, mem, false);
620
1.04M
}
621
622
/*
623
 * This routine will take a color name (defined by a ptr and size) and
624
 * check if this is a valid colorant name for the current device.  If
625
 * so then the device's colorant number is returned.
626
 *
627
 * Two other checks are also made.  If the name is "Default" then a value
628
 * of GX_DEVICE_COLOR_MAX_COMPONENTS is returned.  This is done to
629
 * simplify the handling of default halftones.  Note:  The device also
630
 * uses GX_DEVICE_COLOR_MAX_COMPONENTS to indicate colorants which are
631
 * known but not being used due to the SeparationOrder parameter.  In this
632
 * case we return -1 since the colorant is not currently being used by the
633
 * device.
634
 *
635
 * If the halftone type is colorscreen or multiple colorscreen, then we
636
 * also check for Red/Cyan, Green/Magenta, Blue/Yellow, and Gray/Black
637
 * component name pairs.  This is done since the setcolorscreen and
638
 * sethalftone types 2 and 4 imply the dual name sets.
639
 *
640
 * A negative value is returned if the color name is not found.
641
 */
642
int
643
gs_color_name_component_number(gx_device * dev, const char * pname,
644
                                int name_size, int halftonetype)
645
786k
{
646
786k
    int num_colorant;
647
648
786k
#define check_colorant_name(dev, name) \
649
786k
    ((*dev_proc(dev, get_color_comp_index)) (dev, name, strlen(name), NO_COMP_NAME_TYPE_HT))
650
651
786k
#define check_colorant_name_length(dev, name, length) \
652
786k
    ((*dev_proc(dev, get_color_comp_index)) (dev, name, length, NO_COMP_NAME_TYPE_HT))
653
654
786k
#define check_name(str, pname, length) \
655
1.86M
    ((strlen(str) == length) && (strncmp(pname, str, length) == 0))
656
657
    /*
658
     * Check if this is a device colorant.
659
     */
660
786k
    num_colorant = check_colorant_name_length(dev, pname, name_size);
661
786k
    if (num_colorant >= 0) {
662
        /*
663
         * The device will return GX_DEVICE_COLOR_MAX_COMPONENTS if the
664
         * colorant is logically present in the device but not being used
665
         * because a SeparationOrder parameter is specified.  Since we are
666
         * using this value to indicate 'Default', we use -1 to indicate
667
         * that the colorant is not really being used.
668
         */
669
213k
        if (num_colorant == GX_DEVICE_COLOR_MAX_COMPONENTS)
670
0
            num_colorant = -1;
671
213k
        return num_colorant;
672
213k
    }
673
674
    /*
675
     * Check if this is the default component
676
     */
677
573k
    if (check_name("Default", pname, name_size))
678
42.3k
        return GX_DEVICE_COLOR_MAX_COMPONENTS;
679
680
    /* Halftones set by setcolorscreen, and (we think) */
681
    /* Type 2 and Type 4 halftones, are supposed to work */
682
    /* for both RGB and CMYK, so we need a special check here. */
683
530k
    if (halftonetype == ht_type_colorscreen ||
684
530k
        halftonetype == ht_type_multiple_colorscreen) {
685
530k
        if (check_name("Red", pname, name_size))
686
138k
            num_colorant = check_colorant_name(dev, "Cyan");
687
392k
        else if (check_name("Green", pname, name_size))
688
138k
            num_colorant = check_colorant_name(dev, "Magenta");
689
253k
        else if (check_name("Blue", pname, name_size))
690
138k
            num_colorant = check_colorant_name(dev, "Yellow");
691
115k
        else if (check_name("Gray", pname, name_size))
692
115k
            num_colorant = check_colorant_name(dev, "Black");
693
        /*
694
         * The device will return GX_DEVICE_COLOR_MAX_COMPONENTS if the
695
         * colorant is logically present in the device but not being used
696
         * because a SeparationOrder parameter is specified.  Since we are
697
         * using this value to indicate 'Default', we use -1 to indicate
698
         * that the colorant is not really being used.
699
         */
700
530k
        if (num_colorant == GX_DEVICE_COLOR_MAX_COMPONENTS)
701
0
            num_colorant = -1;
702
703
530k
#undef check_colorant_name
704
530k
#undef check_colorant_name_length
705
530k
#undef check_name
706
707
530k
    }
708
530k
    return num_colorant;
709
573k
}
710
711
/*
712
 * See gs_color_name_component_number for main description.
713
 *
714
 * This version converts a name index value into a string and size and
715
 * then call gs_color_name_component_number.
716
 */
717
int
718
gs_cname_to_colorant_number(gs_gstate * pgs, byte * pname, uint name_size,
719
                int halftonetype)
720
42.3k
{
721
42.3k
    gx_device * dev = pgs->device;
722
723
42.3k
    return gs_color_name_component_number(dev, (char *)pname, name_size,
724
42.3k
                    halftonetype);
725
42.3k
}
726
727
/*
728
 * Install a device halftone into the gs_gstate.
729
 *
730
 * To allow halftones to be shared between graphic states, the
731
 * gs_gstate contains a pointer to a device halftone structure. Thus, when
732
 * we say a halftone is "in" the gs_gstate, we are only claiming
733
 * that the halftone pointer in the gs_gstate points to that halftone.
734
 *
735
 * Though the operand halftone uses the same structure as the halftone
736
 * "in" the gs_gstate, not all of its fields are filled in, and the
737
 * organization of components differs. Specifically, the following fields
738
 * are not filled in:
739
 *
740
 *  rc          The operand device halftone has only a transient existence,
741
 *              its reference count information is not initialized. In many
742
 *              cases, the operand device halftone structure is allocated
743
 *              on the stack by clients.
744
 *
745
 *  id          A halftone is not considered to have an identity until it
746
 *              is installed in the gs_gstate. This is a design error
747
 *              which reflects the PostScript origins of this code. In
748
 *              PostScript, it is impossible to check if two halftone
749
 *              specifications (sets of operands to setscreen/setcolorscreen
750
 *              or halftone dictionaries) are the same. Hence, the only way
751
 *              a halftone could be identified was by the graphic state in
752
 *              which it was included. In PCL it is possible to directly
753
 *              identify a halftone specification, but currently there is
754
 *              no way to use this knowledge in the graphic library.
755
 *
756
 *              (An altogether more reasonable approach would be to apply
757
 *              id's to halftone orders.)
758
 *
759
 *  type        This is filled in by the type operand. It is used by
760
 *              PostScript's currentscreen/currentcolorscreen operators to
761
 *              determine if a sampling procedure or a halftone dictionary
762
 *              should be pushed onto the stack. More importantly, it is
763
 *              also used to determine if specific halftone components can
764
 *              be used for either the additive or subtractive version of
765
 *              that component in the process color model. For example, a
766
 *              RedThreshold in a HalftoneType 4 dictionary can be applied
767
 *              to either the component "Red" or the component "Cyan", but
768
 *              the value of the key "Red" in a HalftoneType 5 dictionary
769
 *              can only be used for a "Red" component (not a "Cyan"
770
 *              component).
771
 *
772
 *  num_comp    For the operand halftone, this is the number of halftone
773
 *              components included in the specification. For the device
774
 *              halftone in the gs_gstate, this is always the same as
775
 *              the number of color model components (see num_dev_comp).
776
 *
777
 *  num_dev_comp The number of components in the device process color model
778
 *              when the operand halftone was created.  With some compositor
779
 *              devices (for example PDF 1.4) we can have differences in the
780
 *              process color model of the compositor versus the output device.
781
 *              These compositor devices do not halftone.
782
 *
783
 *  components  For the operand halftone, this field is non-null only if
784
 *              multiple halftones are provided. In that case, the size
785
 *              of the array pointed is the same as the number of
786
 *              components provided. One of these components will usually
787
 *              be the same as that identified by the "order" field.
788
 *
789
 *              For the device halftone in the gs_gstate, this field is
790
 *              always non-null, and the size of the array pointed to will
791
 *              be the same as the number of components in the process
792
 *              color model.
793
 *
794
 *  lcm_width,  These fields provide the least common multiple of the
795
 *  lcm_height  halftone dimensions of the individual component orders.
796
 *              They represent the dimensions of the smallest tile that
797
 *              repeats for all color components (this is of interest
798
 *              because Ghostscript uses a "chunky" raster format for all
799
 *              drawing procedures). These fields cannot be set in the
800
 *              operand device halftone as we do not yet know which of
801
 *              the halftone components will actually be used.
802
 *
803
 * Conversely, the "order" field is significant only in the operand device
804
 * halftone. There it represents the default halftone component, which will
805
 * be used for all device color components for which a named halftone is
806
 * not available. It is ignored (filled with 0's) in the device halftone
807
 * in the gs_gstate.
808
 *
809
 * The ordering of entries and the set of fields initialized in the
810
 * components array also vary between the operand device halftone and
811
 * the device halftone in the gs_gstate.
812
 *
813
 * If the components array is present in the operand device halftone, the
814
 * cname field in each entry of the array will contain a name index
815
 * identifying the colorant name, and the comp_number field will provide the
816
 * index of the corresponding component in the process color model. The
817
 * order of entries in the components array is essentially arbitrary,
818
 * but in some common cases will reflect the order in which the halftone
819
 * specification is provided. By convention, if no explicit default order
820
 * is provided (i.e.: via a HalftoneType 5 dictionary), the first
821
 * entry of the array will be the same as the "order" (default) field.
822
 *
823
 * For the device halftone in the gs_gstate, the components array is
824
 * always present, but the cname and comp_number fields of individual
825
 * entries are ignored. The order of the entries in the array always
826
 * matches the order of components in the device color model.
827
 *
828
 * The distinction between the operand device halftone and the one in
829
 * the graphic state extends even to the individual fields of the
830
 * gx_ht_order structure incorporated in the order field of the halftone
831
 * and the corder field of the elements of the components array. The
832
 * fields of this structure that are handled differently in the operand
833
 * and gs_gstate device halftones are:
834
 *
835
 *  params          Provides a set of parameters that are required for
836
 *                  converting a halftone specification to a single
837
 *                  component order. This field is used only in the
838
 *                  operand device halftone; it is not set in the device
839
 *                  halftone in the gs_gstate.
840
 *
841
 *  orig_height,   The height and shift values of the halftone cell,
842
 *  orig_shift     prior to any replication. These fields are currently
843
 *                 unused, and will always be the same as the height
844
 *                 and width fields in the device halftone in the
845
 *                 gs_gstate.
846
 *
847
 *  full_height    The height of the smallest replicated tile whose shift
848
 *                 value is 0. This is calculated as part of the
849
 *                 installation process; it may be set in the operand
850
 *                 device halftone, but its value is ignored.
851
 *
852
 *
853
 *  data_memory    Points to the memory structure used to allocate the
854
 *                 levels and bit_data arrays. The handling of this field
855
 *                 is a bit complicated. For orders that are "taken over"
856
 *                 by the installation process, this field will have the
857
 *                 same value in the operand device halftone and the
858
 *                 device halftone in the gs_gstate. For halftones
859
 *                 that are copied by the installation process, this
860
 *                 field will have the same value as the memory field in
861
 *                 the gs_gstate (the two are usually the same).
862
 *
863
 *  cache          Pointer to a cache of tiles representing various
864
 *                 levels of the halftone. This may or may not be
865
 *                 provided in the operand device halftone (in principle
866
 *                 this should always be a null pointer in the operand
867
 *                 device halftone, but this is not the manner in which
868
 *                 the cache was handled historically).
869
 *
870
 *  screen_params  This structure contains transformation information
871
 *                 that is required when reading the sample data for a
872
 *                 screen. It is no longer required once the halftone
873
 *                 order has been constructed.
874
 *
875
 * In addition to what is noted above, this procedure is made somewhat
876
 * more complex than expected due to memory management considerations. To
877
 * clarify this, it is necessary to consider the properties of the pieces
878
 * that constitute a device halftone.
879
 *
880
 *  The gx_device_halftone structure itself is shareable and uses
881
 *  reference counts.
882
 *
883
 *  The gx_ht_order_component array (components array entry) is in
884
 *  principle shareable, though it does not provide any reference
885
 *  counting mechanism. Hence any sharing needs to be done with
886
 *  caution.
887
 *
888
 *  Individual component orders are not shareable, as they are part of
889
 *  the gx_ht_order_commponent structure (a major design error).
890
 *
891
 *  The levels, bit_data, and cache structures referenced by the
892
 *  gx_ht_order structure are in principle shareable, but they also do
893
 *  not provide any reference counting mechanism. Traditionally, one set
894
 *  of two component orders could share these structures, using the
895
 *  halftone's "order" field and various scattered bits of special case
896
 *  code. This practice has been ended because it did not extend to
897
 *  sharing amongst more than two components.
898
 *
899
 *  The gx_transfer_map structure referenced by the gx_ht_order structure
900
 *  is shareable, and uses reference counts. Traditionally this structure
901
 *  was not shared, but this is no longer the case.
902
 *
903
 * As noted, the rc field of the operand halftone is not initialized, so
904
 * this procedure cannot simply take ownership of the operand device
905
 * halftone structure (i.e.: an ostensibly shareable structure is not
906
 * shareable). Hence, this procedure will always create a new copy of the
907
 * gx_device_halftone structure, either by allocating a new structure or
908
 * re-using the structure already referenced by the gs_gstate. This
909
 * feature must be retained, as in several cases the calling code will
910
 * allocate the operand device halftone structure on the stack.
911
 *
912
 * Traditionally, this procedure took ownership of all of the structures
913
 * referenced by the operand device halftone structure. This implied
914
 * that all structures referenced by the gx_device_halftone structure
915
 * needed to be allocated on the heap, and should not be released once
916
 * the call to gx_gstate_dev_ht_install completes.
917
 *
918
 * There were two problems with this approach:
919
 *
920
 *  1. In the event of an error, the calling code most likely would have
921
 *     to release referenced components, as the gs_gstate had not yet
922
 *     take ownership of them. In many cases, the code did not do this.
923
 *
924
 *  2. When the structures referenced by a single order needed to be
925
 *     shared amongst more than one component, there was no easy way to
926
 *     discover this sharing when the gs_gstate's device halftone
927
 *     subsequently needed to be released. Hence, objects would be
928
 *     released multiple times.
929
 *
930
 * Subsequently, the code in this routine was changed to copy most of
931
 * the referenced structures (everything except the transfer functions).
932
 * Unfortunately, the calling code was not changed, which caused memory
933
 * leaks.
934
 *
935
 * The approach now taken uses a mixture of the two approaches.
936
 * Ownership to structures referenced by the operand device halftone is
937
 * assumed by the device halftone in the gs_gstate where this is
938
 * possible. In these cases, the corresponding references are removed in
939
 * the operand device halftone (hence, this operand is no longer
940
 * qualified as const). When a structure is required but ownership cannot
941
 * be assumed, a copy is made and the reference in the operand device
942
 * halftone is left undisturbed. The calling code has also been modified
943
 * to release any remaining referenced structures when this routine
944
 * returns, whether or not an error is indicated.
945
 */
946
int
947
gx_gstate_dev_ht_install(
948
    gs_gstate *       pgs,
949
    gx_device_halftone *    pdht,
950
    gs_halftone_type        type,
951
    const gx_device *       dev,
952
    gs_HT_objtype_t objtype )
953
637k
{
954
637k
    gx_device_halftone      dht;
955
637k
    int                     num_comps = pdht->num_dev_comp;
956
637k
    int                     i, code = 0;
957
637k
    bool                    used_default = false;
958
637k
    int                     lcm_width = 1, lcm_height = 1;
959
637k
    bool                    mem_diff = pdht->rc.memory != pgs->memory;
960
637k
    uint w, h;
961
637k
    int dw, dh;
962
963
637k
    assert(objtype < HT_OBJTYPE_COUNT);
964
965
    /* construct the new device halftone structure */
966
637k
    memset(&dht.order, 0, sizeof(dht.order));
967
    /* the rc field is filled in later */
968
637k
    dht.id = gs_next_ids(pgs->memory, 1);
969
637k
    dht.type = type;
970
637k
    dht.components =  gs_alloc_struct_array(
971
637k
                          pgs->memory,
972
637k
                          num_comps,
973
637k
                          gx_ht_order_component,
974
637k
                          &st_ht_order_component_element,
975
637k
                          "gx_gstate_dev_ht_install(components)" );
976
637k
    if (dht.components == NULL)
977
0
        return_error(gs_error_VMerror);
978
637k
    dht.num_comp = dht.num_dev_comp = num_comps;
979
    /* lcm_width, lcm_height are filled in later */
980
981
    /* initialize the components array */
982
637k
    memset(dht.components, 0, num_comps * sizeof(dht.components[0]));
983
2.56M
    for (i = 0; i < num_comps; i++)
984
1.92M
        dht.components[i].comp_number = -1;
985
986
    /*
987
     * Duplicate any of the non-default components, but do not create copies
988
     * of the levels or bit_data arrays. If all goes according to plan, the
989
     * gs_gstate's device halftone will assume ownership of these arrays
990
     * by clearing the corresponding pointers in the operand halftone's
991
     * orders.
992
     */
993
637k
    if (pdht->components != NULL) {
994
415k
        int     input_ncomps = pdht->num_comp;
995
996
1.80M
        for (i = 0; i < input_ncomps && code >= 0; i++) {
997
1.38M
            gx_ht_order_component * p_s_comp = &pdht->components[i];
998
1.38M
            gx_ht_order *           p_s_order = &p_s_comp->corder;
999
1.38M
            int                     comp_num = p_s_comp->comp_number;
1000
1001
1.38M
            if (comp_num >= 0 && comp_num < GX_DEVICE_COLOR_MAX_COMPONENTS &&
1002
1.38M
                comp_num < dht.num_comp) {
1003
1.10M
                gx_ht_order *   p_d_order = &dht.components[comp_num].corder;
1004
1005
                /* indicate that this order has been filled in */
1006
1.10M
                dht.components[comp_num].comp_number = comp_num;
1007
1008
                /*
1009
                 * The component can be used only if it is from the
1010
                 * proper memory
1011
                 */
1012
1.10M
                if (mem_diff)
1013
1.10M
                    code = gx_ht_copy_ht_order( p_d_order,
1014
1.10M
                                                p_s_order,
1015
1.10M
                                                pgs->memory );
1016
0
                else {
1017
                    /* check if this is also the default component */
1018
0
                    used_default = used_default ||
1019
0
                                   p_s_order->bit_data == pdht->order.bit_data;
1020
1021
0
                    gx_ht_move_ht_order(p_d_order, p_s_order);
1022
0
                }
1023
1.10M
            }
1024
1.38M
        }
1025
415k
    }
1026
1027
    /*
1028
     * Copy the default order to any remaining components.
1029
     */
1030
1031
2.56M
    for (i = 0; i < num_comps && code >= 0; i++) {
1032
1.92M
        gx_ht_order *porder = &dht.components[i].corder;
1033
1034
1.92M
        if (dht.components[i].comp_number != i) {
1035
825k
            if (used_default || mem_diff)
1036
824k
                code = gx_ht_copy_ht_order(porder, &pdht->order, pgs->memory);
1037
944
            else {
1038
944
                gx_ht_move_ht_order(porder, &pdht->order);
1039
944
                used_default = true;
1040
944
            }
1041
825k
            dht.components[i].comp_number = i;
1042
825k
        }
1043
1044
1.92M
        w = porder->width;
1045
1.92M
        h = porder->full_height;
1046
1.92M
        dw = igcd(lcm_width, w);
1047
1.92M
        dh = igcd(lcm_height, h);
1048
1049
1.92M
        lcm_width /= dw;
1050
1.92M
        lcm_height /= dh;
1051
1.92M
        lcm_width = (w > max_int / lcm_width ? max_int : lcm_width * w);
1052
1.92M
        lcm_height = (h > max_int / lcm_height ? max_int : lcm_height * h);
1053
1054
1.92M
        if (porder->cache == 0) {
1055
1.92M
            uint            tile_bytes, num_tiles, slots_wanted, rep_raster, rep_count;
1056
1.92M
            gx_ht_cache *   pcache;
1057
1058
1.92M
            tile_bytes = porder->raster
1059
1.92M
                          * (porder->num_bits / porder->width);
1060
1.92M
            num_tiles = 1 + gx_ht_cache_default_bits_size() / tile_bytes;
1061
            /*
1062
             * Limit num_tiles to a reasonable number allowing for width repition.
1063
             * The most we need is one cache slot per bit.
1064
             * This prevents allocations of large cache bits that will never
1065
             * be used. See rep_count limit in gxht.c
1066
             */
1067
1.92M
            slots_wanted = 1 + ( porder->width * porder->height );
1068
1.92M
            rep_raster = ((num_tiles*tile_bytes) / porder->height /
1069
1.92M
                            slots_wanted) & ~(align_bitmap_mod - 1);
1070
1.92M
            rep_count = rep_raster * 8 / porder->width;
1071
1.92M
            if (rep_count > sizeof(ulong) * 8 && (num_tiles >
1072
1.92M
                    1 + ((num_tiles * 8 * sizeof(ulong)) / rep_count) ))
1073
1.92M
                num_tiles = 1 + ((num_tiles * 8 * sizeof(ulong)) / rep_count);
1074
1.92M
            pcache = gx_ht_alloc_cache( pgs->memory, num_tiles,
1075
1.92M
                                        tile_bytes * num_tiles );
1076
1.92M
            if (pcache == NULL)
1077
0
                code = gs_error_VMerror;
1078
1.92M
            else {
1079
1.92M
                porder->cache = pcache;
1080
1.92M
                gx_ht_init_cache(pgs->memory, pcache, porder);
1081
1.92M
            }
1082
1.92M
        }
1083
1.92M
    }
1084
637k
    dht.lcm_width = lcm_width;
1085
637k
    dht.lcm_height = lcm_height;
1086
1087
    /*
1088
     * If everything is OK so far, allocate a unique copy of the device
1089
     * halftone reference by the gs_gstate.
1090
     *
1091
     * This code requires a special check for the case in which the
1092
     * deivce halftone referenced by the gs_gstate is already unique.
1093
     * In this case, we must explicitly release just the components array
1094
     * (and any structures it refers to) of the existing halftone. This
1095
     * cannot be done automatically, as the rc_unshare_struct macro only
1096
     * ensures that a unique instance of the top-level structure is
1097
     * created, not that any substructure references are updated.
1098
     *
1099
     * Though this is scheduled to be changed, for the time being the
1100
     * command list renderer may invoke this code with pdht == psi->dev_ht
1101
     * (in which case we know pgs->dev_ht.rc.ref_count == 1). Special
1102
     * handling is required in that case, to avoid releasing structures
1103
     * we still need.
1104
     */
1105
637k
    if (code >= 0) {
1106
637k
        gx_device_halftone **ppgsdht;
1107
637k
        rc_header tmp_rc;
1108
1109
        /* The pgsdht corresponds to the one we will be installing according to 'objtype' */
1110
637k
        ppgsdht = &(pgs->dev_ht[objtype]);
1111
637k
        if (*ppgsdht != NULL && (*ppgsdht)->rc.ref_count == 1) {
1112
214k
             if (pdht != *ppgsdht)
1113
214k
                gx_device_halftone_release(*ppgsdht, (*ppgsdht)->rc.memory);
1114
422k
        } else {
1115
422k
            rc_unshare_struct( *ppgsdht,
1116
422k
                               gx_device_halftone,
1117
422k
                               &st_device_halftone,
1118
422k
                               pgs->memory,
1119
422k
                               BEGIN code = gs_error_VMerror; goto err; END,
1120
422k
                               "gx_gstate_dev_ht_install" );
1121
422k
        }
1122
1123
        /*
1124
         * Everything worked. "Assume ownership" of the appropriate
1125
         * portions of the source device halftone by clearing the
1126
         * associated references.  Since we might have
1127
         * pdht == pgs->dev_ht[], this must done before updating pgs->dev_ht[].
1128
         *
1129
         * If the default order has been used for a device component, and
1130
         * any of the source component orders share their levels or bit_data
1131
         * arrays with the default order, clear the pointers in those orders
1132
         * now. This is necessary because the default order's pointers will
1133
         * be cleared immediately below, so subsequently it will not be
1134
         * possible to tell if that this information is being shared.
1135
         */
1136
637k
        if (pdht->components != NULL && !mem_diff) {
1137
0
            int     input_ncomps = pdht->num_comp;
1138
1139
0
            for (i = 0; i < input_ncomps; i++) {
1140
0
                gx_ht_order_component * p_s_comp = &pdht->components[i];
1141
0
                gx_ht_order *           p_s_order = &p_s_comp->corder;
1142
0
                int                     comp_num = p_s_comp->comp_number;
1143
1144
0
                if ( comp_num >= 0                            &&
1145
0
                     comp_num < GX_DEVICE_COLOR_MAX_COMPONENTS  ) {
1146
0
                    memset(p_s_order, 0, sizeof(*p_s_order));
1147
0
                } else if ( comp_num == GX_DEVICE_COLOR_MAX_COMPONENTS &&
1148
0
                            used_default                                 )
1149
0
                    memset(p_s_order, 0, sizeof(*p_s_order));
1150
0
            }
1151
0
        }
1152
637k
        if (used_default && !mem_diff) {
1153
944
            memset(&pdht->order, 0, sizeof(pdht->order));
1154
944
        }
1155
1156
637k
        tmp_rc = (*ppgsdht)->rc;
1157
637k
        **ppgsdht = dht;
1158
637k
        (*ppgsdht)->rc = tmp_rc;
1159
1160
        /* update the effective transfer function array */
1161
637k
        gx_gstate_set_effective_xfer(pgs);
1162
1163
637k
        return 0;
1164
637k
    }
1165
1166
    /* something went amiss; release all copied components */
1167
0
  err:
1168
0
    for (i = 0; i < num_comps; i++) {
1169
0
        gx_ht_order_component * pcomp = &dht.components[i];
1170
0
        gx_ht_order *           porder = &pcomp->corder;
1171
1172
0
        if (pcomp->comp_number == -1) {
1173
0
            gx_ht_order_release(porder, pgs->memory, true);
1174
0
        }
1175
0
        else if (porder->cache != NULL) {
1176
0
            gx_ht_free_cache(pgs->memory, porder->cache);
1177
0
            porder->cache = NULL;
1178
0
        }
1179
0
    }
1180
0
    gs_free_object(pgs->memory, dht.components, "gx_gstate_dev_ht_install");
1181
1182
0
    return code;
1183
637k
}
1184
1185
/*
1186
 * Copy the dev_ht[HT_OBJTYPE_DEFAULT] to the dev_ht[] for the specified object type.
1187
 */
1188
int
1189
gx_gstate_dev_ht_copy_to_objtype(gs_gstate *pgs, gs_HT_objtype_t objtype)
1190
0
{
1191
0
    gx_device_halftone *pdht = pgs->dev_ht[HT_OBJTYPE_DEFAULT]; /* the current dev_ht */
1192
1193
0
    if (objtype >= HT_OBJTYPE_COUNT) {
1194
0
        return_error(gs_error_undefined);
1195
0
    }
1196
0
    rc_increment(pdht);
1197
0
    pgs->dev_ht[objtype] = pdht;
1198
0
    return 0;
1199
0
}
1200
1201
/*
1202
 * Install a new halftone in the graphics state.  Note that we copy the top
1203
 * level of the gs_halftone and the gx_device_halftone, and take ownership
1204
 * of any substructures.
1205
 */
1206
int
1207
gx_ht_install(gs_gstate * pgs, const gs_halftone * pht,
1208
              gx_device_halftone * pdht)
1209
364k
{
1210
364k
    gs_memory_t *mem = pht->rc.memory;
1211
364k
    gs_halftone *old_ht = pgs->halftone;
1212
364k
    gs_halftone *new_ht;
1213
364k
    int code;
1214
1215
364k
    pdht->num_dev_comp = pgs->device->color_info.num_components;
1216
364k
    if (old_ht != NULL && old_ht->rc.memory == mem &&
1217
364k
        old_ht->rc.ref_count == 1
1218
364k
        )
1219
199k
        new_ht = old_ht;
1220
165k
    else
1221
364k
        rc_alloc_struct_1(new_ht, gs_halftone, &st_halftone,
1222
364k
                          mem, return_error(gs_error_VMerror),
1223
364k
                          "gx_ht_install(new halftone)");
1224
364k
    code = gx_gstate_dev_ht_install(pgs,
1225
364k
                             pdht, pht->type, gs_currentdevice_inline(pgs),
1226
364k
                             pht->objtype);
1227
364k
    if (code < 0) {
1228
0
        if (new_ht != old_ht)
1229
0
            gs_free_object(mem, new_ht, "gx_ht_install(new halftone)");
1230
0
        return code;
1231
0
    }
1232
1233
    /*
1234
     * Discard any unused components and the components array of the
1235
     * operand device halftone
1236
     */
1237
364k
    gx_device_halftone_release(pdht, pdht->rc.memory);
1238
1239
364k
    if (new_ht != old_ht)
1240
364k
        rc_decrement(old_ht, "gx_ht_install(old halftone)");
1241
364k
    {
1242
364k
        rc_header rc;
1243
1244
364k
        rc = new_ht->rc;
1245
364k
        *new_ht = *pht;
1246
364k
        new_ht->rc = rc;
1247
364k
    }
1248
364k
    pgs->halftone = new_ht;
1249
364k
    gx_unset_both_dev_colors(pgs);
1250
364k
    return 0;
1251
364k
}
1252
1253
/*
1254
 * This macro will determine the colorant number of a given color name.
1255
 * A value of -1 indicates that the name is not valid.
1256
 */
1257
#define check_colorant_name(name, dev) \
1258
   ((*dev_proc(dev, get_color_comp_index)) (dev, name, strlen(name), NO_NAME_TYPE))
1259
1260
/* Reestablish the effective transfer functions, taking into account */
1261
/* any overrides from halftone dictionaries. */
1262
void
1263
gx_gstate_set_effective_xfer(gs_gstate * pgs)
1264
2.14M
{
1265
2.14M
    gx_device_halftone *pdht = pgs->dev_ht[HT_OBJTYPE_DEFAULT];
1266
2.14M
    gx_transfer_map *pmap;
1267
2.14M
    gx_ht_order *porder;
1268
2.14M
    int i, component_num, non_id_count;
1269
1270
2.14M
    non_id_count = (pgs->set_transfer.gray->proc == &gs_identity_transfer) ? 0 : GX_DEVICE_COLOR_MAX_COMPONENTS;
1271
139M
    for (i = 0; i < GX_DEVICE_COLOR_MAX_COMPONENTS; i++)
1272
137M
        pgs->effective_transfer[i] = pgs->set_transfer.gray;    /* default */
1273
1274
    /* Check if we have a transfer functions from setcolortransfer */
1275
2.14M
    if (pgs->set_transfer.red) {
1276
70
        component_num = pgs->set_transfer.red_component_num;
1277
70
        if (component_num >= 0) {
1278
70
            if (pgs->effective_transfer[component_num]->proc != &gs_identity_transfer)
1279
70
               non_id_count--;
1280
70
            pgs->effective_transfer[component_num] = pgs->set_transfer.red;
1281
70
            if (pgs->effective_transfer[component_num]->proc != &gs_identity_transfer)
1282
70
               non_id_count++;
1283
70
        }
1284
70
    }
1285
2.14M
    if (pgs->set_transfer.green) {
1286
50
        component_num = pgs->set_transfer.green_component_num;
1287
50
        if (component_num >= 0) {
1288
50
            if (pgs->effective_transfer[component_num]->proc != &gs_identity_transfer)
1289
50
               non_id_count--;
1290
50
            pgs->effective_transfer[component_num] = pgs->set_transfer.green;
1291
50
            if (pgs->effective_transfer[component_num]->proc != &gs_identity_transfer)
1292
50
               non_id_count++;
1293
50
        }
1294
50
    }
1295
2.14M
    if (pgs->set_transfer.blue) {
1296
30
        component_num = pgs->set_transfer.blue_component_num;
1297
30
        if (component_num >= 0) {
1298
30
            if (pgs->effective_transfer[component_num]->proc != &gs_identity_transfer)
1299
30
               non_id_count--;
1300
30
            pgs->effective_transfer[component_num] = pgs->set_transfer.blue;
1301
30
            if (pgs->effective_transfer[component_num]->proc != &gs_identity_transfer)
1302
30
               non_id_count++;
1303
30
        }
1304
30
    }
1305
1306
    /* HT may not be initialized yet.  Only do if the target is a halftone device.
1307
       Per the spec, the HT is a self-contained description of a halftoning process.
1308
       We don't use any xfer function from the HT if we are not halftoning */
1309
2.14M
    if (pdht && !device_is_contone(pgs->device)) {
1310
1311
        /* Since the transfer function is pickled into the threshold array (if any)*/
1312
        /*  we need to free it so it can be reconstructed with the current transfer */
1313
895k
        porder = &(pdht->order);
1314
895k
        if (porder->threshold != NULL) {
1315
0
            gs_free_object(porder->data_memory->non_gc_memory, porder->threshold,
1316
0
                           "set_effective_transfer(threshold)");
1317
0
            porder->threshold = 0;
1318
0
        }
1319
3.36M
        for (i = 0; i < pdht->num_comp; i++) {
1320
2.46M
            pmap = pdht->components[i].corder.transfer;
1321
2.46M
            if (pmap != NULL) {
1322
0
                if (pgs->effective_transfer[i]->proc != &gs_identity_transfer)
1323
0
                    non_id_count--;
1324
0
                pgs->effective_transfer[i] = pmap;
1325
0
                if (pgs->effective_transfer[i]->proc != &gs_identity_transfer)
1326
0
                   non_id_count++;
1327
0
            }
1328
2.46M
            porder = &(pdht->components[i].corder);
1329
2.46M
            if (porder->threshold != NULL) {
1330
0
                gs_free_object(porder->data_memory->non_gc_memory, porder->threshold,
1331
0
                               "set_effective_transfer(threshold)");
1332
0
                porder->threshold = 0;
1333
0
            }
1334
2.46M
        }
1335
895k
    }
1336
1337
2.14M
    pgs->effective_transfer_non_identity_count = non_id_count;
1338
2.14M
}
1339
1340
void
1341
gx_set_effective_transfer(gs_gstate * pgs)
1342
324k
{
1343
324k
    gx_gstate_set_effective_xfer(pgs);
1344
324k
}
1345
1346
/* Check if the transfer function for a component is monotonic. */
1347
/* Used to determine if we can do fast halftoning   */
1348
bool
1349
gx_transfer_is_monotonic(const gs_gstate *pgs, int plane_index)
1350
2.40k
{
1351
2.40k
    if (pgs->effective_transfer[plane_index]->proc != gs_identity_transfer) {
1352
2.40k
        bool threshold_inverted;
1353
2.40k
        int t_level;
1354
2.40k
        frac mapped, prev;
1355
1356
2.40k
        prev = gx_map_color_frac(pgs, frac_0, effective_transfer[plane_index]);
1357
2.40k
        threshold_inverted = prev >
1358
2.40k
                             gx_map_color_frac(pgs, frac_1, effective_transfer[plane_index]);
1359
612k
        for (t_level = 1; t_level < 255; t_level++) {
1360
609k
            mapped = gx_map_color_frac(pgs, byte2frac(t_level), effective_transfer[plane_index]);
1361
609k
            if ((threshold_inverted && mapped > prev) ||
1362
609k
                (!threshold_inverted && mapped < prev))
1363
0
                return false;
1364
609k
            prev = mapped;
1365
609k
        }
1366
2.40k
    }
1367
2.40k
    return true;
1368
2.40k
}
1369
1370
/* This creates a threshold array from the tiles.  Threshold is allocated in
1371
   non-gc memory and is not known to the GC. The algorithm cycles through the
1372
   threshold values, computing the shade the same way as gx_render_device_DeviceN
1373
   so that the threshold matches the non-threshold halftoning.
1374
*/
1375
int
1376
gx_ht_construct_threshold( gx_ht_order *d_order, gx_device *dev,
1377
                           const gs_gstate * pgs, int plane_index)
1378
2.60k
{
1379
2.60k
    int i, j;
1380
2.60k
    unsigned char *thresh;
1381
2.60k
    gs_memory_t *memory = d_order ? d_order->data_memory->non_gc_memory : NULL;
1382
2.60k
    uint max_value;
1383
2.60k
    unsigned long hsize, nshades;
1384
2.60k
    int t_level;
1385
2.60k
    int row, col;
1386
2.60k
    int code;
1387
2.60k
    int num_repeat, shift, num_levels = d_order ? d_order->num_levels : 0;
1388
2.60k
    int row_kk, col_kk, kk;
1389
2.60k
    frac t_level_frac_color;
1390
2.60k
    int shade, base_shade = 0;
1391
2.60k
    bool have_transfer = false, threshold_inverted = false;
1392
1393
2.60k
    if (d_order == NULL) return -1;
1394
    /* We can have simple or complete orders.  Simple ones tile the threshold
1395
       with shifts.   To handle those we simply loop over the number of
1396
       repeats making sure to shift columns when we set our threshold values */
1397
2.60k
    num_repeat = d_order->full_height / d_order->height;
1398
2.60k
    shift = d_order->shift;
1399
1400
2.60k
    if (d_order->threshold != NULL) return 0;
1401
2.46k
    thresh = (byte *)gs_malloc(memory, (size_t)d_order->width * d_order->full_height, 1,
1402
2.46k
                              "gx_ht_construct_threshold");
1403
2.46k
    if (thresh == NULL) {
1404
0
        return -1 ;         /* error if allocation failed   */
1405
0
    }
1406
    /* Check if we need to apply a transfer function to the values */
1407
2.46k
    if (pgs->effective_transfer[plane_index]->proc != gs_identity_transfer) {
1408
2.46k
        have_transfer = true;
1409
2.46k
        threshold_inverted = gx_map_color_frac(pgs, frac_0, effective_transfer[plane_index]) >
1410
2.46k
                                gx_map_color_frac(pgs, frac_1, effective_transfer[plane_index]);
1411
2.46k
    }
1412
    /* Adjustments to ensure that we properly map our 256 levels into
1413
      the number of shades that we have in our halftone screen.  For example
1414
      if we have a 16x16 screen, we have 257 shadings that we can represent
1415
      if we have a  2x2  screen, we have 5 shadings that we can represent.
1416
      Calculations are performed to match what happens in the tile filling
1417
      code */
1418
2.46k
    max_value = (dev->color_info.gray_index == plane_index) ?
1419
2.26k
         dev->color_info.dither_grays - 1 :
1420
2.46k
         dev->color_info.dither_colors - 1;
1421
2.46k
    hsize = num_levels;
1422
2.46k
    nshades = hsize * max_value + 1;
1423
1424
    /* search upwards to find the correct value for the last threshold value */
1425
    /* Use this to initialize the threshold array (transition to all white) */
1426
2.46k
    t_level = 0;
1427
588k
    do {
1428
588k
        t_level++;
1429
588k
        t_level_frac_color = byte2frac(threshold_inverted ? 255 - t_level : t_level);
1430
588k
        if (have_transfer)
1431
588k
            t_level_frac_color = gx_map_color_frac(pgs, t_level_frac_color, effective_transfer[plane_index]);
1432
588k
        shade = t_level_frac_color * nshades / (frac_1_long + 1);
1433
588k
    } while (shade < num_levels && t_level < 255);
1434
    /* Initialize the thresholds to the lowest level that will be all white */
1435
123k
    for( i = 0; i < d_order->width * d_order->full_height; i++ ) {
1436
121k
        thresh[i] = t_level;
1437
121k
    }
1438
630k
    for (t_level = 1; t_level < 256; t_level++) {
1439
628k
        t_level_frac_color = byte2frac(threshold_inverted ? 255 - t_level : t_level);
1440
628k
        if (have_transfer)
1441
628k
            t_level_frac_color = gx_map_color_frac(pgs, t_level_frac_color, effective_transfer[plane_index]);
1442
628k
        shade = t_level_frac_color * nshades / (frac_1_long + 1);
1443
628k
        if (shade < num_levels && shade > base_shade) {
1444
41.6k
            if (d_order->levels[shade] > d_order->levels[base_shade]) {
1445
                /* Loop over the number of dots that we have to set in going
1446
                   to this new shade from the old shade */
1447
155k
                for (j = d_order->levels[base_shade]; j < d_order->levels[shade]; j++) {
1448
114k
                    gs_int_point ppt;
1449
114k
                    code = d_order->procs->bit_index(d_order, j, &ppt);
1450
114k
                    if (code < 0)
1451
0
                        return code;
1452
114k
                    row = ppt.y;
1453
114k
                    col = ppt.x;
1454
114k
                    if( col < (int)d_order->width ) {
1455
228k
                        for (kk = 0; kk < num_repeat; kk++) {
1456
114k
                            row_kk = row + kk * d_order->height;
1457
114k
                            col_kk = col + kk * shift;
1458
114k
                            col_kk = col_kk % d_order->width;
1459
114k
                            *(thresh + col_kk + (row_kk * d_order->width)) = t_level;
1460
114k
                        }
1461
114k
                    }
1462
114k
                }
1463
41.6k
            }
1464
41.6k
            base_shade = shade;
1465
41.6k
        }
1466
628k
    }
1467
2.46k
    d_order->threshold = thresh;
1468
2.46k
    d_order->threshold_inverted = threshold_inverted;
1469
2.46k
    if (dev->color_info.polarity == GX_CINFO_POLARITY_SUBTRACTIVE) {
1470
3.21k
        for(i = 0; i < (int)d_order->height; i++ ) {
1471
45.1k
            for( j=(int)d_order->width-1; j>=0; j-- )
1472
42.2k
                *(thresh+j+(i*d_order->width)) = 255 - *(thresh+j+(i*d_order->width));
1473
2.94k
        }
1474
268
    }
1475
#ifdef DEBUG
1476
    if ( gs_debug_c('h') ) {
1477
         dmprintf3(memory, "threshold array component %d [ %d x %d ]:\n",
1478
                  plane_index, (int)(d_order->full_height), (int)(d_order->width));
1479
         for( i=0; i<(int)d_order->full_height; i++ ) {
1480
            dmprintf1(memory, "row %3d= ", i);
1481
            for( j=0; j<(int)(d_order->width); j++ ) {
1482
                dmprintf1(memory, "%02x ", *(thresh+j+(i*d_order->width)) );
1483
                if ((j&31) == 31)
1484
                    dmprintf(memory, "\n         ");
1485
            }
1486
            if ((j&31) != 0)
1487
                dmprintf(memory, "\n");
1488
        }
1489
   }
1490
#endif
1491
/* Large screens are easier to see as images */
1492
#if DUMP_SCREENS
1493
    {
1494
        char file_name[50];
1495
        gp_file *fid;
1496
1497
        snprintf(file_name, 50, "Screen_From_Tiles_%dx%d.raw", d_order->width, d_order->full_height);
1498
        fid = gp_fopen(memory, file_name, "wb");
1499
        if (fid) {
1500
            gp_fwrite(thresh, sizeof(unsigned char), d_order->width * d_order->full_height, fid);
1501
            gp_fclose(fid);
1502
        }
1503
    }
1504
#endif
1505
1506
2.46k
    return 0;
1507
2.46k
}