Coverage Report

Created: 2022-10-31 07:00

/src/ghostpdl/base/gximage3.c
Line
Count
Source (jump to first uncovered line)
1
/* Copyright (C) 2001-2022 Artifex Software, Inc.
2
   All Rights Reserved.
3
4
   This software is provided AS-IS with no warranty, either express or
5
   implied.
6
7
   This software is distributed under license and may not be copied,
8
   modified or distributed except as expressly authorized under the terms
9
   of the license contained in the file LICENSE in this distribution.
10
11
   Refer to licensing information at http://www.artifex.com or contact
12
   Artifex Software, Inc.,  1305 Grant Avenue - Suite 200, Novato,
13
   CA 94945, U.S.A., +1(415)492-9861, for further information.
14
*/
15
16
17
/* ImageType 3 image implementation */
18
#include "math_.h"    /* for ceil, floor */
19
#include "memory_.h"
20
#include "gx.h"
21
#include "gserrors.h"
22
#include "gsbitops.h"
23
#include "gscspace.h"
24
#include "gsstruct.h"
25
#include "gxdevice.h"
26
#include "gxdevmem.h"
27
#include "gxclipm.h"
28
#include "gximage3.h"
29
#include "gxgstate.h"
30
#include "gxdevsop.h"
31
#include <limits.h> /* For INT_MAX etc */
32
33
/* Forward references */
34
static dev_proc_begin_typed_image(gx_begin_image3);
35
static image_enum_proc_plane_data(gx_image3_plane_data);
36
static image_enum_proc_end_image(gx_image3_end_image);
37
static image_enum_proc_flush(gx_image3_flush);
38
static image_enum_proc_planes_wanted(gx_image3_planes_wanted);
39
40
/* GC descriptor */
41
private_st_gs_image3();
42
43
/* Define the image type for ImageType 3 images. */
44
const gx_image_type_t gs_image_type_3 = {
45
    &st_gs_image3, gx_begin_image3,
46
    gx_image_no_sput, gx_image_no_sget, gx_image_default_release, 3
47
};
48
static const gx_image_enum_procs_t image3_enum_procs = {
49
    gx_image3_plane_data, gx_image3_end_image,
50
    gx_image3_flush, gx_image3_planes_wanted
51
};
52
53
/* Initialize an ImageType 3 image. */
54
void
55
gs_image3_t_init(gs_image3_t * pim, gs_color_space * color_space,
56
                 gs_image3_interleave_type_t interleave_type)
57
101
{
58
101
    gs_pixel_image_t_init((gs_pixel_image_t *) pim, color_space);
59
101
    pim->type = &gs_image_type_3;
60
101
    pim->InterleaveType = interleave_type;
61
101
    gs_data_image_t_init(&pim->MaskDict, -1);
62
101
}
63
64
/*
65
 * We implement ImageType 3 images by interposing a mask clipper in
66
 * front of an ordinary ImageType 1 image.  Note that we build up the
67
 * mask row-by-row as we are processing the image.
68
 *
69
 * We export a generalized form of the begin_image procedure for use by
70
 * the PDF and PostScript writers.
71
 */
72
typedef struct gx_image3_enum_s {
73
    gx_image_enum_common;
74
    gx_device *mdev;    /* gx_device_memory in default impl. */
75
    gx_device *pcdev;   /* gx_device_mask_clip in default impl. */
76
    gx_image_enum_common_t *mask_info;
77
    gx_image_enum_common_t *pixel_info;
78
    gs_image3_interleave_type_t InterleaveType;
79
    int num_components;   /* (not counting mask) */
80
    int bpc;      /* BitsPerComponent */
81
    int mask_width, mask_height, mask_full_height;
82
    int pixel_width, pixel_height, pixel_full_height;
83
    byte *mask_data;    /* (if chunky) */
84
    byte *pixel_data;   /* (if chunky) */
85
    /* The following are the only members that change dynamically. */
86
    int mask_y;
87
    int pixel_y;
88
    int mask_skip;    /* # of mask rows to skip, see below */
89
} gx_image3_enum_t;
90
91
extern_st(st_gx_image_enum_common);
92
gs_private_st_suffix_add6(st_image3_enum, gx_image3_enum_t, "gx_image3_enum_t",
93
  image3_enum_enum_ptrs, image3_enum_reloc_ptrs, st_gx_image_enum_common,
94
  mdev, pcdev, pixel_info, mask_info, pixel_data, mask_data);
95
96
/* Define the default implementation of ImageType 3 processing. */
97
static IMAGE3_MAKE_MID_PROC(make_mid_default); /* check prototype */
98
static int
99
make_mid_default(gx_device **pmidev, gx_device *dev, int width, int height,
100
                 gs_memory_t *mem)
101
74
{
102
74
    gx_device_memory *midev =
103
74
        gs_alloc_struct(mem, gx_device_memory, &st_device_memory,
104
74
                        "make_mid_default");
105
74
    int code;
106
107
74
    if (midev == 0)
108
0
        return_error(gs_error_VMerror);
109
74
    gs_make_mem_mono_device(midev, mem, NULL);
110
74
    midev->bitmap_memory = mem;
111
74
    midev->width = width;
112
74
    midev->height = height;
113
74
    midev->raster = gx_device_raster((gx_device *)midev, 1);
114
74
    check_device_separable((gx_device *)midev);
115
74
    gx_device_fill_in_procs((gx_device *)midev);
116
74
    code = dev_proc(midev, open_device)((gx_device *)midev);
117
74
    if (code < 0) {
118
0
        gs_free_object(mem, midev, "make_mid_default");
119
0
        return code;
120
0
    }
121
74
    midev->is_open = true;
122
74
    dev_proc(midev, fill_rectangle)
123
74
        ((gx_device *)midev, 0, 0, width, height, (gx_color_index)0);
124
74
    *pmidev = (gx_device *)midev;
125
74
    return 0;
126
74
}
127
static IMAGE3_MAKE_MCDE_PROC(make_mcde_default);  /* check prototype */
128
static int
129
make_mcde_default(gx_device *dev, const gs_gstate *pgs,
130
                  const gs_matrix *pmat, const gs_image_common_t *pic,
131
                  const gs_int_rect *prect, const gx_drawing_color *pdcolor,
132
                  const gx_clip_path *pcpath, gs_memory_t *mem,
133
                  gx_image_enum_common_t **pinfo,
134
                  gx_device **pmcdev, gx_device *midev,
135
                  gx_image_enum_common_t *pminfo,
136
                  const gs_int_point *origin)
137
74
{
138
74
    gx_device_memory *const mdev = (gx_device_memory *)midev;
139
74
    gx_device_mask_clip *mcdev =
140
74
        gs_alloc_struct(mem, gx_device_mask_clip, &st_device_mask_clip,
141
74
                        "make_mcde_default");
142
74
    gx_strip_bitmap bits; /* only gx_bitmap */
143
74
    int code;
144
145
74
    if (mcdev == 0)
146
0
        return_error(gs_error_VMerror);
147
74
    bits.data = mdev->base;
148
74
    bits.raster = mdev->raster;
149
74
    bits.size.x = bits.rep_width = mdev->width;
150
74
    bits.size.y = bits.rep_height = mdev->height;
151
74
    bits.id = gx_no_bitmap_id;
152
74
    bits.num_planes = 1;
153
74
    bits.rep_shift = bits.shift = 0;
154
74
    code = gx_mask_clip_initialize(mcdev, &gs_mask_clip_device,
155
74
                                   (const gx_bitmap *)&bits, dev,
156
74
                                   origin->x, origin->y, mem);
157
74
    if (code < 0) {
158
0
        gs_free_object(mem, mcdev, "make_mcde_default");
159
0
        return code;
160
0
    }
161
74
    mcdev->tiles = bits;
162
74
    code = dev_proc(mcdev, begin_typed_image)
163
74
        ((gx_device *)mcdev, pgs, pmat, pic, prect, pdcolor, pcpath, mem,
164
74
         pinfo);
165
74
    if (code < 0) {
166
0
        gs_free_object(mem, mcdev, "make_mcde_default");
167
0
        return code;
168
0
    }
169
74
    *pmcdev = (gx_device *)mcdev;
170
74
    return 0;
171
74
}
172
static int
173
gx_begin_image3(gx_device * dev,
174
                const gs_gstate * pgs, const gs_matrix * pmat,
175
                const gs_image_common_t * pic, const gs_int_rect * prect,
176
                const gx_drawing_color * pdcolor, const gx_clip_path * pcpath,
177
                gs_memory_t * mem, gx_image_enum_common_t ** pinfo)
178
76
{
179
76
    return gx_begin_image3_generic(dev, pgs, pmat, pic, prect, pdcolor,
180
76
                                   pcpath, mem, make_mid_default,
181
76
                                   make_mcde_default, pinfo);
182
76
}
183
184
/*
185
 * Begin a generic ImageType 3 image, with client handling the creation of
186
 * the mask image and mask clip devices.
187
 */
188
static bool check_image3_extent(double mask_coeff, double data_coeff);
189
int
190
gx_begin_image3_generic(gx_device * dev,
191
                        const gs_gstate *pgs, const gs_matrix *pmat,
192
                        const gs_image_common_t *pic, const gs_int_rect *prect,
193
                        const gx_drawing_color *pdcolor,
194
                        const gx_clip_path *pcpath, gs_memory_t *mem,
195
                        image3_make_mid_proc_t make_mid,
196
                        image3_make_mcde_proc_t make_mcde,
197
                        gx_image_enum_common_t **pinfo)
198
88
{
199
88
    const gs_image3_t *pim = (const gs_image3_t *)pic;
200
88
    gs_image3_t local_pim;
201
88
    gx_image3_enum_t *penum;
202
88
    gs_int_rect mask_rect, data_rect;
203
88
    gx_device *mdev = 0;
204
88
    gx_device *pcdev = 0;
205
88
    gs_image_t i_pixel, i_mask;
206
88
    gs_matrix mi_pixel, mi_mask, mat;
207
88
    gs_rect mrect;
208
88
    gs_int_point origin;
209
88
    int code;
210
211
    /* Validate the parameters. */
212
88
    if (pim->Width <= 0 || pim->MaskDict.Width <= 0 ||
213
88
        pim->Height <= 0 || pim->MaskDict.Height <= 0)
214
2
        return_error(gs_error_rangecheck);
215
86
    switch (pim->InterleaveType) {
216
0
        default:
217
0
            return_error(gs_error_rangecheck);
218
0
        case interleave_chunky:
219
0
            if (pim->MaskDict.Width != pim->Width ||
220
0
                pim->MaskDict.Height != pim->Height ||
221
0
                pim->MaskDict.BitsPerComponent != pim->BitsPerComponent ||
222
0
                pim->format != gs_image_format_chunky
223
0
                )
224
0
                return_error(gs_error_rangecheck);
225
0
            break;
226
0
        case interleave_scan_lines:
227
0
            if (pim->MaskDict.Height % pim->Height != 0 &&
228
0
                pim->Height % pim->MaskDict.Height != 0
229
0
                )
230
0
                return_error(gs_error_rangecheck);
231
            /* falls through */
232
86
        case interleave_separate_source:
233
86
            if (pim->MaskDict.BitsPerComponent != 1)
234
0
                return_error(gs_error_rangecheck);
235
86
    }
236
86
    if ((code = gs_matrix_invert(&pim->ImageMatrix, &mi_pixel)) < 0)
237
0
        return code;
238
    /* For Explicit Masking, we follow Acrobats example, and completely
239
     * ignore the supplied mask. Instead we generate a new one based on the
240
     * image mask, adjusted for any difference in width/height. */
241
86
    if (pim->InterleaveType == interleave_separate_source ||
242
86
        pim->InterleaveType == interleave_scan_lines) {
243
86
        memcpy(&local_pim, pim, sizeof(local_pim));
244
86
        pim = &local_pim;
245
86
        gs_matrix_scale(&mi_pixel,
246
86
                        ((double)pim->Width)  / pim->MaskDict.Width,
247
86
                        ((double)pim->Height) / pim->MaskDict.Height,
248
86
                        &mi_mask);
249
86
        if ((code = gs_matrix_invert(&mi_mask, &local_pim.MaskDict.ImageMatrix)) < 0)
250
0
            return code;
251
86
    } else {
252
0
        if ((code = gs_matrix_invert(&pim->MaskDict.ImageMatrix, &mi_mask)) < 0)
253
0
            return code;
254
255
0
        if (!check_image3_extent(pim->ImageMatrix.xx,
256
0
                                 pim->MaskDict.ImageMatrix.xx) ||
257
0
            !check_image3_extent(pim->ImageMatrix.xy,
258
0
                                 pim->MaskDict.ImageMatrix.xy) ||
259
0
            !check_image3_extent(pim->ImageMatrix.yx,
260
0
                                 pim->MaskDict.ImageMatrix.yx) ||
261
0
            !check_image3_extent(pim->ImageMatrix.yy,
262
0
                                 pim->MaskDict.ImageMatrix.yy)
263
0
            )
264
0
            return_error(gs_error_rangecheck);
265
0
    }
266
86
    if (fabs(mi_pixel.tx - mi_mask.tx) >= 0.5 ||
267
86
        fabs(mi_pixel.ty - mi_mask.ty) >= 0.5
268
86
        )
269
0
        return_error(gs_error_rangecheck);
270
#ifdef DEBUG
271
    {
272
        /* Although the PLRM says that the Mask and Image *must* be the same size,  */
273
        /* Adobe CPSI (and other RIPS) ignore this and process anyway. Note that we */
274
        /* are not compatible if the Mask Height than the Data (pixel) Height. CPSI */
275
        /* de-interleaves the mask from the data image and stops at the Mask Height */
276
        /* Problem detected with Genoa 468-03 (part of file 468-01.ps)              */
277
        /*****           fixme: When Data Image Height > Mask Height            *****/
278
        gs_point ep, em;
279
280
        if ((code = gs_point_transform(pim->Width, pim->Height, &mi_pixel,
281
                                       &ep)) < 0 ||
282
            (code = gs_point_transform(pim->MaskDict.Width,
283
                                       pim->MaskDict.Height, &mi_mask,
284
                                       &em)) < 0
285
            )
286
            return code;
287
        if (fabs(ep.x - em.x) >= 0.5 || fabs(ep.y - em.y) >= 0.5)
288
            code = gs_error_rangecheck; /* leave the check in for debug breakpoint */
289
    }
290
#endif /* DEBUG */
291
86
    penum = gs_alloc_struct(mem, gx_image3_enum_t, &st_image3_enum,
292
86
                            "gx_begin_image3");
293
86
    if (penum == 0)
294
0
        return_error(gs_error_VMerror);
295
86
    penum->num_components =
296
86
        gs_color_space_num_components(pim->ColorSpace);
297
86
    gx_image_enum_common_init((gx_image_enum_common_t *) penum,
298
86
                              (const gs_data_image_t *)pim,
299
86
                              &image3_enum_procs, dev,
300
86
                              1 + penum->num_components,
301
86
                              pim->format);
302
    /* Initialize pointers now in case we bail out. */
303
86
    penum->mask_data = 0;
304
86
    penum->pixel_data = 0;
305
86
    if (prect) {
306
0
        long lmw = pim->MaskDict.Width, lmh = pim->MaskDict.Height;
307
308
0
        data_rect = *prect;
309
0
        mask_rect.p.x = (int)(data_rect.p.x * lmw / pim->Width);
310
0
        mask_rect.p.y = (int)(data_rect.p.y * lmh / pim->Height);
311
0
        mask_rect.q.x = (int)((data_rect.q.x + pim->Width - 1) * lmw /
312
0
                              pim->Width);
313
0
        mask_rect.q.y = (int)((data_rect.q.y + pim->Height - 1) * lmh /
314
0
                              pim->Height);
315
86
    } else {
316
86
        mask_rect.p.x = mask_rect.p.y = 0;
317
86
        mask_rect.q.x = pim->MaskDict.Width;
318
86
        mask_rect.q.y = pim->MaskDict.Height;
319
86
        data_rect.p.x = data_rect.p.y = 0;
320
86
        data_rect.q.x = pim->Width;
321
86
        data_rect.q.y = pim->Height;
322
86
    }
323
86
    penum->mask_width = mask_rect.q.x - mask_rect.p.x;
324
86
    penum->mask_height = mask_rect.q.y - mask_rect.p.y;
325
86
    penum->mask_full_height = pim->MaskDict.Height;
326
86
    penum->mask_y = 0;
327
86
    penum->mask_skip = 0;
328
86
    penum->pixel_width = data_rect.q.x - data_rect.p.x;
329
86
    penum->pixel_height = data_rect.q.y - data_rect.p.y;
330
86
    penum->pixel_full_height = pim->Height;
331
86
    penum->pixel_y = 0;
332
86
    penum->mask_info = 0;
333
86
    penum->pixel_info = 0;
334
86
    if (pim->InterleaveType == interleave_chunky) {
335
        /* Allocate row buffers for the mask and pixel data. */
336
0
        penum->pixel_data =
337
0
            gs_alloc_bytes(mem,
338
0
                           (penum->pixel_width * pim->BitsPerComponent *
339
0
                            penum->num_components + 7) >> 3,
340
0
                           "gx_begin_image3(pixel_data)");
341
0
        penum->mask_data =
342
0
            gs_alloc_bytes(mem, (penum->mask_width + 7) >> 3,
343
0
                           "gx_begin_image3(mask_data)");
344
0
        if (penum->pixel_data == 0 || penum->mask_data == 0) {
345
0
            code = gs_note_error(gs_error_VMerror);
346
0
            goto out1;
347
0
        }
348
        /* Because the mask data is 1 BPC, if the width is not a multiple of 8
349
         * then we will not fill the last byte of mask_data completely. This
350
         * provokes valgrind when running to pdfwrite, because pdfwrite has to
351
         * write the full byte of mask data to the file. It also means (potentially)
352
         * that we could run the same input twice and get (slightly) different
353
         * PDF files produced. So we set the last byte to zero to ensure the bits
354
         * are fully initialised. See Bug #693814
355
         */
356
0
        penum->mask_data[((penum->mask_width + 7) >> 3) - 1] = 0x00;
357
0
    }
358
86
    penum->InterleaveType = pim->InterleaveType;
359
86
    penum->bpc = pim->BitsPerComponent;
360
86
    penum->memory = mem;
361
86
    mrect.p.x = mrect.p.y = 0;
362
86
    mrect.q.x = pim->MaskDict.Width;
363
86
    mrect.q.y = pim->MaskDict.Height;
364
86
    if (pmat == 0)
365
80
        pmat = &ctm_only(pgs);
366
86
    if ((code = gs_matrix_multiply(&mi_mask, pmat, &mat)) < 0 ||
367
86
        (code = gs_bbox_transform(&mrect, &mat, &mrect)) < 0
368
86
        )
369
0
        return code;
370
371
    /* Bug 700438: If the rectangle is out of range, bail */
372
86
    if (mrect.p.x >= (double)INT_MAX || mrect.q.x <= (double)INT_MIN ||
373
86
        mrect.p.y >= (double)INT_MAX || mrect.q.y <= (double)INT_MIN ||
374
86
        mrect.p.x <= (double)INT_MIN || mrect.q.x >= (double)INT_MAX ||
375
86
        mrect.p.y <= (double)INT_MIN || mrect.q.y >= (double)INT_MAX
376
86
  ) {
377
0
            code = gs_note_error(gs_error_rangecheck);
378
0
        goto out1;
379
0
    }
380
381
    /* This code was changed for bug 686843/687411, but in a way that
382
     * a) looked wrong, and b) doesn't appear to make a difference. Revert
383
     * it to the sane version until we have evidence why not. */
384
86
    origin.x = (int)floor(mrect.p.x);
385
86
    origin.y = (int)floor(mrect.p.y);
386
86
    code = make_mid(&mdev, dev, (int)ceil(mrect.q.x) - origin.x,
387
86
                    (int)ceil(mrect.q.y) - origin.y, mem);
388
86
    if (code < 0)
389
0
        goto out1;
390
86
    penum->mdev = mdev;
391
86
    gs_image_t_init_mask(&i_mask, false);
392
86
    i_mask.adjust = false;
393
86
    {
394
86
        const gx_image_type_t *type1 = i_mask.type;
395
396
86
        *(gs_data_image_t *)&i_mask = pim->MaskDict;
397
86
        i_mask.type = type1;
398
86
        i_mask.BitsPerComponent = 1;
399
86
        i_mask.image_parent_type = gs_image_type3;
400
86
    }
401
86
    {
402
86
        gx_drawing_color dcolor;
403
86
        gs_matrix m_mat;
404
405
86
        set_nonclient_dev_color(&dcolor, 1);
406
        /*
407
         * Adjust the translation for rendering the mask to include a
408
         * negative translation by origin.{x,y} in device space.
409
         */
410
86
        m_mat = *pmat;
411
86
        m_mat.tx -= origin.x;
412
86
        m_mat.ty -= origin.y;
413
86
        i_mask.override_in_smask = (dev_proc(dev, dev_spec_op)(dev, gxdso_in_smask, NULL, 0)) > 0;
414
        /*
415
         * Note that pgs = NULL here, since we don't want to have to
416
         * create another gs_gstate with default log_op, etc.
417
         */
418
86
        code = gx_device_begin_typed_image(mdev, NULL, &m_mat,
419
86
                                           (const gs_image_common_t *)&i_mask,
420
86
                                           &mask_rect, &dcolor, NULL, mem,
421
86
                                           &penum->mask_info);
422
86
        if (code < 0)
423
0
            goto out2;
424
86
    }
425
86
    gs_image_t_init(&i_pixel, pim->ColorSpace);
426
86
    {
427
86
        const gx_image_type_t *type1 = i_pixel.type;
428
429
86
        *(gs_pixel_image_t *)&i_pixel = *(const gs_pixel_image_t *)pim;
430
86
        i_pixel.type = type1;
431
86
        i_pixel.image_parent_type = gs_image_type3;
432
86
    }
433
86
    code = make_mcde(dev, pgs, pmat, (const gs_image_common_t *)&i_pixel,
434
86
                     prect, pdcolor, pcpath, mem, &penum->pixel_info,
435
86
                     &pcdev, mdev, penum->mask_info, &origin);
436
86
    if (code < 0)
437
0
        goto out3;
438
86
    penum->pcdev = pcdev;
439
    /*
440
     * Set num_planes, plane_widths, and plane_depths from the values in the
441
     * enumerators for the mask and the image data.
442
     */
443
86
    switch (pim->InterleaveType) {
444
0
    case interleave_chunky:
445
        /* Add the mask data to the depth of the image data. */
446
0
        penum->num_planes = 1;
447
0
        penum->plane_widths[0] = pim->Width;
448
0
        penum->plane_depths[0] =
449
0
            penum->pixel_info->plane_depths[0] *
450
0
            (penum->num_components + 1) / penum->num_components;
451
0
        break;
452
0
    case interleave_scan_lines:
453
        /*
454
         * There is only 1 plane, with dynamically changing width & depth.
455
         * Initialize it for the mask data, since that is what will be
456
         * read first.
457
         */
458
0
        penum->num_planes = 1;
459
0
        penum->plane_depths[0] = 1;
460
0
        penum->plane_widths[0] = pim->MaskDict.Width;
461
0
        break;
462
86
    case interleave_separate_source:
463
        /* Insert the mask data as a separate plane before the image data. */
464
86
        penum->num_planes = penum->pixel_info->num_planes + 1;
465
86
        penum->plane_widths[0] = pim->MaskDict.Width;
466
86
        penum->plane_depths[0] = 1;
467
86
        memcpy(&penum->plane_widths[1], &penum->pixel_info->plane_widths[0],
468
86
               (penum->num_planes - 1) * sizeof(penum->plane_widths[0]));
469
86
        memcpy(&penum->plane_depths[1], &penum->pixel_info->plane_depths[0],
470
86
               (penum->num_planes - 1) * sizeof(penum->plane_depths[0]));
471
86
        break;
472
86
    }
473
86
    gx_device_retain(mdev, true); /* will free explicitly */
474
86
    gx_device_retain(pcdev, true); /* ditto */
475
86
    *pinfo = (gx_image_enum_common_t *) penum;
476
86
    return 0;
477
0
  out3:
478
0
    gx_image_end(penum->mask_info, false);
479
0
  out2:
480
0
    gs_closedevice(mdev);
481
0
    gs_free_object(mem, mdev, "gx_begin_image3(mdev)");
482
0
  out1:
483
0
    gs_free_object(mem, penum->mask_data, "gx_begin_image3(mask_data)");
484
0
    gs_free_object(mem, penum->pixel_data, "gx_begin_image3(pixel_data)");
485
0
    gs_free_object(mem, penum, "gx_begin_image3");
486
0
    return code;
487
0
}
488
static bool
489
check_image3_extent(double mask_coeff, double data_coeff)
490
0
{
491
0
    if (mask_coeff == 0)
492
0
        return data_coeff == 0;
493
0
    if (data_coeff == 0 || (mask_coeff > 0) != (data_coeff > 0))
494
0
        return false;
495
0
    return true;
496
0
}
497
498
/*
499
 * Return > 0 if we want more mask now, < 0 if we want more data now,
500
 * 0 if we want both.
501
 */
502
static int
503
planes_next(const gx_image3_enum_t *penum)
504
22.4k
{
505
    /*
506
     * The invariant we need to maintain is that we always have at least as
507
     * much mask as pixel data, i.e., mask_y / mask_full_height >=
508
     * pixel_y / pixel_full_height, or, to avoid floating point,
509
     * mask_y * pixel_full_height >= pixel_y * mask_full_height.
510
     * We know this condition is true now;
511
     * return a value that indicates how to maintain it.
512
     */
513
22.4k
    int mask_h = penum->mask_full_height;
514
22.4k
    int pixel_h = penum->pixel_full_height;
515
22.4k
    long current = penum->pixel_y * (long)mask_h -
516
22.4k
        penum->mask_y * (long)pixel_h;
517
518
#ifdef DEBUG
519
    if (current > 0)
520
        lprintf4("planes_next invariant fails: %d/%d > %d/%d\n",
521
                 penum->pixel_y, penum->pixel_full_height,
522
                 penum->mask_y, penum->mask_full_height);
523
#endif
524
22.4k
    return ((current += mask_h) <= 0 ? -1 :
525
22.4k
            current - pixel_h <= 0 ? 0 : 1);
526
22.4k
}
527
528
/* Process the next piece of an ImageType 3 image. */
529
static int
530
gx_image3_plane_data(gx_image_enum_common_t * info,
531
                     const gx_image_plane_t * planes, int height,
532
                     int *rows_used)
533
22.3k
{
534
22.3k
    gx_image3_enum_t *penum = (gx_image3_enum_t *) info;
535
22.3k
    int pixel_height = penum->pixel_height;
536
22.3k
    int pixel_used = 0;
537
22.3k
    int mask_height = penum->mask_height;
538
22.3k
    int mask_used = 0;
539
22.3k
    int h1 = max(pixel_height - penum->pixel_y, mask_height - penum->mask_y);
540
22.3k
    int h = min(height, h1);
541
22.3k
    const gx_image_plane_t *pixel_planes;
542
22.3k
    gx_image_plane_t pixel_plane, mask_plane;
543
22.3k
    int code = 0;
544
545
    /* Initialized rows_used in case we get an error. */
546
22.3k
    *rows_used = 0;
547
22.3k
    switch (penum->InterleaveType) {
548
0
        case interleave_chunky:
549
0
            if (h <= 0)
550
0
                return 0;
551
0
            if (h > 1) {
552
                /* Do the operation one row at a time. */
553
0
                int h_orig = h;
554
555
0
                mask_plane = planes[0];
556
0
                do {
557
0
                    code = gx_image3_plane_data(info, &mask_plane, 1,
558
0
                                                rows_used);
559
0
                    h -= *rows_used;
560
0
                    if (code)
561
0
                        break;
562
0
                    mask_plane.data += mask_plane.raster;
563
0
                } while (h);
564
0
                *rows_used = h_orig - h;
565
0
                return code;
566
0
            } {
567
                /* Pull apart the source data and the mask data. */
568
0
                int bpc = penum->bpc;
569
0
                int num_components = penum->num_components;
570
0
                int width = penum->pixel_width;
571
572
                /* We do this in the simplest (not fastest) way for now. */
573
0
                uint bit_x = bpc * (num_components + 1) * planes[0].data_x;
574
575
0
                const byte *sptr = planes[0].data + (bit_x >> 3);
576
0
                int sbit = bit_x & 7;
577
578
0
                byte *mptr = penum->mask_data;
579
0
                int mbit = 0;
580
0
                byte mbbyte = 0;
581
0
                byte *pptr = penum->pixel_data;
582
0
                int pbit = 0;
583
0
                byte pbbyte = 0;
584
0
                int x;
585
586
0
                mask_plane.data = mptr;
587
0
                mask_plane.data_x = 0;
588
0
                mask_plane.raster = 0; /* raster doesn't matter, pacify Valgrind */
589
0
                pixel_plane.data = pptr;
590
0
                pixel_plane.data_x = 0;
591
0
                pixel_plane.raster = 0; /* raster doesn't matter, pacify Valgrind */
592
0
                pixel_planes = &pixel_plane;
593
0
                for (x = 0; x < width; ++x) {
594
0
                    uint value;
595
0
                    int i;
596
597
0
                    if (sample_load_next12(&value, &sptr, &sbit, bpc) < 0)
598
0
                        return_error(gs_error_rangecheck);
599
0
                    if (sample_store_next12(value != 0, &mptr, &mbit, 1, &mbbyte) < 0)
600
0
                        return_error(gs_error_rangecheck);
601
0
                    for (i = 0; i < num_components; ++i) {
602
0
                        if (sample_load_next12(&value, &sptr, &sbit, bpc) < 0)
603
0
                            return_error(gs_error_rangecheck);
604
0
                        if (sample_store_next12(value, &pptr, &pbit, bpc, &pbbyte) < 0)
605
0
                            return_error (gs_error_rangecheck);
606
0
                    }
607
0
                }
608
0
                sample_store_flush(mptr, mbit, mbbyte);
609
0
                sample_store_flush(pptr, pbit, pbbyte);
610
0
            }
611
0
            break;
612
0
        case interleave_scan_lines:
613
0
            if (planes_next(penum) >= 0) {
614
                /* This is mask data. */
615
0
                mask_plane = planes[0];
616
0
                pixel_planes = &pixel_plane;
617
0
                pixel_plane.data = 0;
618
0
            } else {
619
                /* This is pixel data. */
620
0
                mask_plane.data = 0;
621
0
                pixel_planes = planes;
622
0
            }
623
0
            break;
624
22.3k
        case interleave_separate_source:
625
            /*
626
             * In order to be able to recover from interruptions, we must
627
             * limit separate-source processing to 1 scan line at a time.
628
             */
629
22.3k
            if (h > 1)
630
0
                h = 1;
631
22.3k
            mask_plane = planes[0];
632
22.3k
            pixel_planes = planes + 1;
633
22.3k
            break;
634
0
        default:    /* not possible */
635
0
            return_error(gs_error_rangecheck);
636
22.3k
    }
637
    /*
638
     * Process the mask data first, so it will set up the mask
639
     * device for clipping the pixel data.
640
     */
641
22.3k
    if (mask_plane.data) {
642
        /*
643
         * If, on the last call, we processed some mask rows successfully
644
         * but processing the pixel rows was interrupted, we set rows_used
645
         * to indicate the number of pixel rows processed (since there is
646
         * no way to return two rows_used values).  If this happened, some
647
         * mask rows may get presented again.  We must skip over them
648
         * rather than processing them again.
649
         */
650
22.3k
        int skip = penum->mask_skip;
651
652
22.3k
        if (skip >= h) {
653
0
            penum->mask_skip = skip - (mask_used = h);
654
22.3k
        } else {
655
22.3k
            int mask_h = h - skip;
656
657
22.3k
            mask_plane.data += skip * mask_plane.raster;
658
22.3k
            penum->mask_skip = 0;
659
22.3k
            code = gx_image_plane_data_rows(penum->mask_info, &mask_plane,
660
22.3k
                                            mask_h, &mask_used);
661
22.3k
            mask_used += skip;
662
22.3k
        }
663
22.3k
        *rows_used = mask_used;
664
22.3k
        penum->mask_y += mask_used;
665
22.3k
        if (code < 0)
666
0
            return code;
667
22.3k
    }
668
22.3k
    if (pixel_planes[0].data) {
669
        /*
670
         * If necessary, flush any buffered mask data to the mask clipping
671
         * device.
672
         */
673
19.9k
        gx_image_flush(penum->mask_info);
674
19.9k
        code = gx_image_plane_data_rows(penum->pixel_info, pixel_planes, h,
675
19.9k
                                        &pixel_used);
676
        /*
677
         * There isn't any way to set rows_used if different amounts of
678
         * the mask and pixel data were used.  Fake it.
679
         */
680
19.9k
        *rows_used = pixel_used;
681
        /*
682
         * Don't return code yet: we must account for the fact that
683
         * some mask data may have been processed.
684
         */
685
19.9k
        penum->pixel_y += pixel_used;
686
19.9k
        if (code < 0) {
687
            /*
688
             * We must prevent the mask data from being processed again.
689
             * We rely on the fact that h > 1 is only possible if the
690
             * mask and pixel data have the same Y scaling.
691
             */
692
0
            if (mask_used > pixel_used) {
693
0
                int skip = mask_used - pixel_used;
694
695
0
                penum->mask_skip = skip;
696
0
                penum->mask_y -= skip;
697
0
                mask_used = pixel_used;
698
0
            }
699
0
        }
700
19.9k
    }
701
22.3k
    if_debug5m('b', penum->memory, "[b]image3 h=%d %smask_y=%d %spixel_y=%d\n",
702
22.3k
               h, (mask_plane.data ? "+" : ""), penum->mask_y,
703
22.3k
               (pixel_planes[0].data ? "+" : ""), penum->pixel_y);
704
22.3k
    if (penum->mask_y >= penum->mask_height &&
705
22.3k
        penum->pixel_y >= penum->pixel_height)
706
41
        return 1;
707
22.2k
    if (penum->InterleaveType == interleave_scan_lines) {
708
        /* Update the width and depth in the enumerator. */
709
0
        if (planes_next(penum) >= 0) {  /* want mask data next */
710
0
            penum->plane_widths[0] = penum->mask_width;
711
0
            penum->plane_depths[0] = 1;
712
0
        } else {   /* want pixel data next */
713
0
            penum->plane_widths[0] = penum->pixel_width;
714
0
            penum->plane_depths[0] = penum->pixel_info->plane_depths[0];
715
0
        }
716
0
    }
717
    /*
718
     * The mask may be complete (gx_image_plane_data_rows returned 1),
719
     * but there may still be pixel rows to go, so don't return 1 here.
720
     */
721
22.2k
    return (code < 0 ? code : 0);
722
22.3k
}
723
724
/* Flush buffered data. */
725
static int
726
gx_image3_flush(gx_image_enum_common_t * info)
727
0
{
728
0
    gx_image3_enum_t * const penum = (gx_image3_enum_t *) info;
729
0
    int code = gx_image_flush(penum->mask_info);
730
731
0
    if (code >= 0)
732
0
        code = gx_image_flush(penum->pixel_info);
733
0
    return code;
734
0
}
735
736
/* Determine which data planes are wanted. */
737
static bool
738
gx_image3_planes_wanted(const gx_image_enum_common_t * info, byte *wanted)
739
22.4k
{
740
22.4k
    const gx_image3_enum_t * const penum = (const gx_image3_enum_t *) info;
741
742
22.4k
    switch (penum->InterleaveType) {
743
0
    case interleave_chunky: /* only 1 plane */
744
0
        wanted[0] = 0xff;
745
0
        return true;
746
0
    case interleave_scan_lines: /* only 1 plane, but varying width/depth */
747
0
        wanted[0] = 0xff;
748
0
        return false;
749
22.4k
    case interleave_separate_source: {
750
        /*
751
         * We always want at least as much of the mask to be filled as the
752
         * pixel data.  next > 0 iff we've processed more data than mask.
753
         * Plane 0 is the mask, planes [1 .. num_planes - 1] are pixel data.
754
         */
755
22.4k
        int next = planes_next(penum);
756
757
22.4k
        wanted[0] = (next >= 0 ? 0xff : 0);
758
22.4k
        memset(wanted + 1, (next <= 0 ? 0xff : 0), info->num_planes - 1);
759
        /*
760
         * In principle, wanted will always be true for both mask and pixel
761
         * data if the full_heights are equal.  Unfortunately, even in this
762
         * case, processing may be interrupted after a mask row has been
763
         * passed to the underlying image processor but before the data row
764
         * has been passed, in which case pixel data will be 'wanted', but
765
         * not mask data, for the next call.  Therefore, we must return
766
         * false.
767
         */
768
22.4k
        return false
769
            /*(next == 0 &&
770
0
              penum->mask_full_height == penum->pixel_full_height)*/;
771
0
    }
772
0
    default:      /* can't happen */
773
0
        memset(wanted, 0, info->num_planes);
774
0
        return false;
775
22.4k
    }
776
22.4k
}
777
778
/* Clean up after processing an ImageType 3 image. */
779
static int
780
gx_image3_end_image(gx_image_enum_common_t * info, bool draw_last)
781
86
{
782
86
    gx_image3_enum_t *penum = (gx_image3_enum_t *) info;
783
86
    gs_memory_t *mem = penum->memory;
784
86
    gx_device *mdev = penum->mdev;
785
86
    int mcode = gx_image_end(penum->mask_info, draw_last);
786
86
    gx_device *pcdev = penum->pcdev;
787
86
    int pcode = gx_image_end(penum->pixel_info, draw_last);
788
86
    int code1 = gs_closedevice(pcdev);
789
86
    int code2 = gs_closedevice(mdev);
790
791
86
    gs_free_object(mem, penum->mask_data,
792
86
                   "gx_image3_end_image(mask_data)");
793
86
    gs_free_object(mem, penum->pixel_data,
794
86
                   "gx_image3_end_image(pixel_data)");
795
86
    gs_free_object(mem, pcdev, "gx_image3_end_image(pcdev)");
796
86
    gs_free_object(mem, mdev, "gx_image3_end_image(mdev)");
797
86
    gx_image_free_enum(&info);
798
86
    return (pcode < 0 ? pcode : mcode < 0 ? mcode : code1 < 0 ? code1 : code2);
799
86
}