Coverage Report

Created: 2022-10-31 07:00

/src/ghostpdl/base/gxshade.c
Line
Count
Source (jump to first uncovered line)
1
/* Copyright (C) 2001-2021 Artifex Software, Inc.
2
   All Rights Reserved.
3
4
   This software is provided AS-IS with no warranty, either express or
5
   implied.
6
7
   This software is distributed under license and may not be copied,
8
   modified or distributed except as expressly authorized under the terms
9
   of the license contained in the file LICENSE in this distribution.
10
11
   Refer to licensing information at http://www.artifex.com or contact
12
   Artifex Software, Inc.,  1305 Grant Avenue - Suite 200, Novato,
13
   CA 94945, U.S.A., +1(415)492-9861, for further information.
14
*/
15
16
17
/* Shading rendering support */
18
#include "math_.h"
19
#include "gx.h"
20
#include "gserrors.h"
21
#include "gsrect.h"
22
#include "gxcspace.h"
23
#include "gscindex.h"
24
#include "gscie.h"    /* requires gscspace.h */
25
#include "gxdevcli.h"
26
#include "gxgstate.h"
27
#include "gxdht.h"    /* for computing # of different colors */
28
#include "gxpaint.h"
29
#include "gxshade.h"
30
#include "gxshade4.h"
31
#include "gsicc.h"
32
#include "gsicc_cache.h"
33
#include "gxcdevn.h"
34
#include "gximage.h"
35
36
/* Define a maximum smoothness value. */
37
/* smoothness > 0.2 produces severely blocky output. */
38
#define MAX_SMOOTHNESS 0.2
39
40
/* ================ Packed coordinate streams ================ */
41
42
/* Forward references */
43
static int cs_next_packed_value(shade_coord_stream_t *, int, uint *);
44
static int cs_next_array_value(shade_coord_stream_t *, int, uint *);
45
static int cs_next_packed_decoded(shade_coord_stream_t *, int,
46
                                   const float[2], float *);
47
static int cs_next_array_decoded(shade_coord_stream_t *, int,
48
                                  const float[2], float *);
49
static void cs_packed_align(shade_coord_stream_t *cs, int radix);
50
static void cs_array_align(shade_coord_stream_t *cs, int radix);
51
static bool cs_eod(const shade_coord_stream_t * cs);
52
53
/* Initialize a packed value stream. */
54
void
55
shade_next_init(shade_coord_stream_t * cs,
56
                const gs_shading_mesh_params_t * params,
57
                const gs_gstate * pgs)
58
498
{
59
498
    cs->params = params;
60
498
    cs->pctm = &pgs->ctm;
61
498
    if (data_source_is_stream(params->DataSource)) {
62
        /*
63
         * Rewind the data stream iff it is reusable -- either a reusable
64
         * file or a reusable string.
65
         */
66
498
        stream *s = cs->s = params->DataSource.data.strm;
67
68
498
        if ((s->file != 0 && s->file_limit != max_long) ||
69
498
            (s->file == 0 && s->strm == 0)
70
498
            )
71
498
            sseek(s, 0);
72
498
    } else {
73
0
        s_init(&cs->ds, NULL);
74
0
        sread_string(&cs->ds, params->DataSource.data.str.data,
75
0
                     params->DataSource.data.str.size);
76
0
        cs->s = &cs->ds;
77
0
    }
78
498
    if (data_source_is_array(params->DataSource)) {
79
0
        cs->get_value = cs_next_array_value;
80
0
        cs->get_decoded = cs_next_array_decoded;
81
0
        cs->align = cs_array_align;
82
498
    } else {
83
498
        cs->get_value = cs_next_packed_value;
84
498
        cs->get_decoded = cs_next_packed_decoded;
85
498
        cs->align = cs_packed_align;
86
498
    }
87
498
    cs->is_eod = cs_eod;
88
498
    cs->left = 0;
89
498
    cs->ds_EOF = false;
90
498
    cs->first_patch = 1;
91
498
}
92
93
/* Check for the End-Of-Data state form a stream. */
94
static bool
95
cs_eod(const shade_coord_stream_t * cs)
96
260
{
97
260
    return cs->ds_EOF;
98
260
}
99
100
/* Get the next (integer) value from a packed value stream. */
101
/* 1 <= num_bits <= sizeof(uint) * 8. */
102
static int
103
cs_next_packed_value(shade_coord_stream_t * cs, int num_bits, uint * pvalue)
104
5.99M
{
105
5.99M
    uint bits = cs->bits;
106
5.99M
    int left = cs->left;
107
108
5.99M
    if (left >= num_bits) {
109
        /* We can satisfy this request with the current buffered bits. */
110
0
        cs->left = left -= num_bits;
111
0
        *pvalue = (bits >> left) & ((1 << num_bits) - 1);
112
5.99M
    } else {
113
        /* We need more bits. */
114
5.99M
        int needed = num_bits - left;
115
5.99M
        uint value = bits & ((1 << left) - 1);  /* all the remaining bits */
116
117
23.5M
        for (; needed >= 8; needed -= 8) {
118
17.5M
            int b = sgetc(cs->s);
119
120
17.5M
            if (b < 0) {
121
410
                cs->ds_EOF = true;
122
410
                return_error(gs_error_rangecheck);
123
410
            }
124
17.5M
            value = (value << 8) + b;
125
17.5M
        }
126
5.99M
        if (needed == 0) {
127
5.99M
            cs->left = 0;
128
5.99M
            *pvalue = value;
129
5.99M
        } else {
130
0
            int b = sgetc(cs->s);
131
132
0
            if (b < 0) {
133
0
                cs->ds_EOF = true;
134
0
                return_error(gs_error_rangecheck);
135
0
            }
136
0
            cs->bits = b;
137
0
            cs->left = left = 8 - needed;
138
0
            *pvalue = (value << needed) + (b >> left);
139
0
        }
140
5.99M
    }
141
5.99M
    return 0;
142
5.99M
}
143
144
/*
145
 * Get the next (integer) value from an unpacked array.  Note that
146
 * num_bits may be 0 if we are reading a coordinate or color value.
147
 */
148
static int
149
cs_next_array_value(shade_coord_stream_t * cs, int num_bits, uint * pvalue)
150
0
{
151
0
    float value;
152
0
    uint read;
153
154
0
    if (sgets(cs->s, (byte *)&value, sizeof(float), &read) < 0 ||
155
0
        read != sizeof(float)) {
156
0
        cs->ds_EOF = true;
157
0
        return_error(gs_error_rangecheck);
158
0
    }
159
0
    if (value < 0 || (num_bits != 0 && num_bits < sizeof(uint) * 8 &&
160
0
         value >= (1 << num_bits)) ||
161
0
        value != (uint)value
162
0
        )
163
0
        return_error(gs_error_rangecheck);
164
0
    *pvalue = (uint) value;
165
0
    return 0;
166
0
}
167
168
/* Get the next decoded floating point value. */
169
static int
170
cs_next_packed_decoded(shade_coord_stream_t * cs, int num_bits,
171
                       const float decode[2], float *pvalue)
172
5.87M
{
173
5.87M
    uint value;
174
5.87M
    int code = cs->get_value(cs, num_bits, &value);
175
5.87M
    double max_value = (double)(uint)
176
5.87M
        (num_bits == sizeof(uint) * 8 ? ~0 : ((1 << num_bits) - 1));
177
5.87M
    double dvalue = (double)value;
178
179
5.87M
    if (code < 0)
180
176
        return code;
181
5.87M
    *pvalue =
182
5.87M
        (decode == 0 ? dvalue / max_value :
183
5.87M
         decode[0] + dvalue * (decode[1] - decode[0]) / max_value);
184
5.87M
    return 0;
185
5.87M
}
186
187
/* Get the next floating point value from an array, without decoding. */
188
static int
189
cs_next_array_decoded(shade_coord_stream_t * cs, int num_bits,
190
                      const float decode[2], float *pvalue)
191
0
{
192
0
    float value;
193
0
    uint read;
194
195
0
    if (sgets(cs->s, (byte *)&value, sizeof(float), &read) < 0 ||
196
0
        read != sizeof(float)
197
0
    ) {
198
0
        cs->ds_EOF = true;
199
0
        return_error(gs_error_rangecheck);
200
0
    }
201
0
    *pvalue = value;
202
0
    return 0;
203
0
}
204
205
static void
206
cs_packed_align(shade_coord_stream_t *cs, int radix)
207
644k
{
208
644k
    cs->left = cs->left / radix * radix;
209
644k
}
210
211
static void
212
cs_array_align(shade_coord_stream_t *cs, int radix)
213
0
{
214
0
}
215
216
/* Get the next flag value. */
217
/* Note that this always starts a new data byte. */
218
int
219
shade_next_flag(shade_coord_stream_t * cs, int BitsPerFlag)
220
117k
{
221
117k
    uint flag;
222
117k
    int code;
223
224
117k
    cs->left = 0;   /* start a new byte if packed */
225
117k
    code = cs->get_value(cs, BitsPerFlag, &flag);
226
117k
    return (code < 0 ? code : flag);
227
117k
}
228
229
/* Get one or more coordinate pairs. */
230
int
231
shade_next_coords(shade_coord_stream_t * cs, gs_fixed_point * ppt,
232
                  int num_points)
233
1.34M
{
234
1.34M
    int num_bits = cs->params->BitsPerCoordinate;
235
1.34M
    const float *decode = cs->params->Decode;
236
1.34M
    int code = 0;
237
1.34M
    int i;
238
239
3.35M
    for (i = 0; i < num_points; ++i) {
240
2.01M
        float x, y;
241
242
2.01M
        if ((code = cs->get_decoded(cs, num_bits, decode, &x)) < 0 ||
243
2.01M
            (code = cs->get_decoded(cs, num_bits, decode + 2, &y)) < 0 ||
244
2.01M
            (code = gs_point_transform2fixed(cs->pctm, x, y, &ppt[i])) < 0
245
2.01M
            )
246
152
            break;
247
2.01M
    }
248
1.34M
    return code;
249
1.34M
}
250
251
/* Get a color.  Currently all this does is look up Indexed colors. */
252
int
253
shade_next_color(shade_coord_stream_t * cs, float *pc)
254
872k
{
255
872k
    const float *decode = cs->params->Decode + 4; /* skip coord decode */
256
872k
    const gs_color_space *pcs = cs->params->ColorSpace;
257
872k
    gs_color_space_index index = gs_color_space_get_index(pcs);
258
872k
    int num_bits = cs->params->BitsPerComponent;
259
260
872k
    if (index == gs_color_space_index_Indexed) {
261
0
        int ncomp = gs_color_space_num_components(gs_cspace_base_space(pcs));
262
0
        int ci;
263
0
        float cf;
264
0
        int code = cs->get_decoded(cs, num_bits, decode, &cf);
265
0
        gs_client_color cc;
266
0
        int i;
267
268
0
        if (code < 0)
269
0
            return code;
270
0
        if (cf < 0)
271
0
            return_error(gs_error_rangecheck);
272
0
        ci = (int)cf;
273
0
        if (ci >= gs_cspace_indexed_num_entries(pcs))
274
0
            return_error(gs_error_rangecheck);
275
0
        code = gs_cspace_indexed_lookup(pcs, ci, &cc);
276
0
        if (code < 0)
277
0
            return code;
278
0
        for (i = 0; i < ncomp; ++i)
279
0
            pc[i] = cc.paint.values[i];
280
872k
    } else {
281
872k
        int i, code;
282
872k
        int ncomp = (cs->params->Function != 0 ? 1 :
283
872k
                     gs_color_space_num_components(pcs));
284
285
2.73M
        for (i = 0; i < ncomp; ++i) {
286
1.85M
            if ((code = cs->get_decoded(cs, num_bits, decode + i * 2, &pc[i])) < 0)
287
28
                return code;
288
1.85M
            if (cs->params->Function) {
289
521k
                gs_function_params_t *params = &cs->params->Function->params;
290
291
521k
                if (pc[i] < params->Domain[i + i])
292
0
                    pc[i] = params->Domain[i + i];
293
521k
                else if (pc[i] > params->Domain[i + i + 1])
294
6
                    pc[i] = params->Domain[i + i + 1];
295
521k
            }
296
1.85M
        }
297
872k
    }
298
872k
    return 0;
299
872k
}
300
301
/* Get the next vertex for a mesh element. */
302
int
303
shade_next_vertex(shade_coord_stream_t * cs, shading_vertex_t * vertex, patch_color_t *c)
304
538k
{   /* Assuming p->c == c, provides a non-const access. */
305
538k
    int code = shade_next_coords(cs, &vertex->p, 1);
306
307
538k
    if (code >= 0)
308
538k
        code = shade_next_color(cs, c->cc.paint.values);
309
538k
    if (code >= 0)
310
538k
        cs->align(cs, 8); /* CET 09-47J.PS SpecialTestI04Test01. */
311
538k
    return code;
312
538k
}
313
314
/* ================ Shading rendering ================ */
315
316
/* Initialize the common parts of the recursion state. */
317
int
318
shade_init_fill_state(shading_fill_state_t * pfs, const gs_shading_t * psh,
319
                      gx_device * dev, gs_gstate * pgs)
320
12.1k
{
321
12.1k
    const gs_color_space *pcs = psh->params.ColorSpace;
322
12.1k
    float max_error = min(pgs->smoothness, MAX_SMOOTHNESS);
323
12.1k
    bool is_lab;
324
12.1k
    bool cs_lin_test;
325
12.1k
    int code;
326
327
    /*
328
     * There's no point in trying to achieve smoothness beyond what
329
     * the device can implement, i.e., the number of representable
330
     * colors times the number of halftone levels.
331
     */
332
12.1k
    long num_colors =
333
12.1k
        max(dev->color_info.max_gray, dev->color_info.max_color) + 1;
334
12.1k
    const gs_range *ranges = 0;
335
12.1k
    int ci;
336
12.1k
    gsicc_rendering_param_t rendering_params;
337
338
12.1k
    pfs->cs_always_linear = false;
339
12.1k
    pfs->dev = dev;
340
12.1k
    pfs->pgs = pgs;
341
12.1k
top:
342
12.1k
    pfs->direct_space = pcs;
343
12.1k
    pfs->num_components = gs_color_space_num_components(pcs);
344
12.1k
    switch ( gs_color_space_get_index(pcs) )
345
12.1k
        {
346
0
        case gs_color_space_index_Indexed:
347
0
            pcs = gs_cspace_base_space(pcs);
348
0
            goto top;
349
0
        case gs_color_space_index_CIEDEFG:
350
0
            ranges = pcs->params.defg->RangeDEFG.ranges;
351
0
            break;
352
0
        case gs_color_space_index_CIEDEF:
353
0
            ranges = pcs->params.def->RangeDEF.ranges;
354
0
            break;
355
0
        case gs_color_space_index_CIEABC:
356
0
            ranges = pcs->params.abc->RangeABC.ranges;
357
0
            break;
358
0
        case gs_color_space_index_CIEA:
359
0
            ranges = &pcs->params.a->RangeA;
360
0
            break;
361
9.24k
        case gs_color_space_index_ICC:
362
9.24k
            ranges = pcs->cmm_icc_profile_data->Range.ranges;
363
9.24k
            break;
364
2.92k
        default:
365
2.92k
            break;
366
12.1k
        }
367
12.1k
    if (num_colors <= 32) {
368
        /****** WRONG FOR MULTI-PLANE HALFTONES ******/
369
355
        num_colors *= pgs->dev_ht[HT_OBJTYPE_DEFAULT]->components[0].corder.num_levels;
370
355
    }
371
12.1k
    if (psh->head.type == 2 || psh->head.type == 3) {
372
11.7k
        max_error *= 0.25;
373
11.7k
        num_colors *= 2;
374
11.7k
    }
375
12.1k
    if (max_error < 1.0 / num_colors)
376
355
        max_error = 1.0 / num_colors;
377
44.3k
    for (ci = 0; ci < pfs->num_components; ++ci)
378
32.1k
        pfs->cc_max_error[ci] =
379
32.1k
            (ranges == 0 ? max_error :
380
32.1k
             max_error * (ranges[ci].rmax - ranges[ci].rmin));
381
12.1k
    if (pgs->has_transparency && pgs->trans_device != NULL) {
382
10.9k
        pfs->trans_device = pgs->trans_device;
383
10.9k
    } else {
384
1.17k
        pfs->trans_device = dev;
385
1.17k
    }
386
    /* If the CS is PS based and we have not yet converted to the ICC form
387
       then go ahead and do that now */
388
12.1k
    if (gs_color_space_is_PSCIE(pcs) && pcs->icc_equivalent == NULL) {
389
0
        code = gs_colorspace_set_icc_equivalent((gs_color_space *)pcs, &(is_lab), pgs->memory);
390
0
        if (code < 0)
391
0
            return code;
392
0
    }
393
12.1k
    rendering_params.black_point_comp = pgs->blackptcomp;
394
12.1k
    rendering_params.graphics_type_tag = GS_VECTOR_TAG;
395
12.1k
    rendering_params.override_icc = false;
396
12.1k
    rendering_params.preserve_black = gsBKPRESNOTSPECIFIED;
397
12.1k
    rendering_params.rendering_intent = pgs->renderingintent;
398
12.1k
    rendering_params.cmm = gsCMM_DEFAULT;
399
    /* Grab the icc link transform that we need now */
400
12.1k
    if (pcs->cmm_icc_profile_data != NULL) {
401
9.24k
        pfs->icclink = gsicc_get_link(pgs, pgs->trans_device, pcs, NULL,
402
9.24k
                                      &rendering_params, pgs->memory);
403
9.24k
        if (pfs->icclink == NULL)
404
7
            return_error(gs_error_VMerror);
405
9.24k
    } else {
406
2.92k
        if (pcs->icc_equivalent != NULL ) {
407
            /* We have a PS equivalent ICC profile.  We may need to go
408
               through special range adjustments in this case */
409
0
            pfs->icclink = gsicc_get_link(pgs, pgs->trans_device,
410
0
                                          pcs->icc_equivalent, NULL,
411
0
                                          &rendering_params, pgs->memory);
412
0
            if (pfs->icclink == NULL)
413
0
                return_error(gs_error_VMerror);
414
2.92k
        } else {
415
2.92k
            pfs->icclink = NULL;
416
2.92k
        }
417
2.92k
    }
418
    /* Two possible cases of interest here for performance.  One is that the
419
    * icclink is NULL, which could occur if the source space were DeviceN or
420
    * a separation color space, while at the same time, the output device
421
    * supports these colorants (e.g. a separation device).   The other case is
422
    * that the icclink is the identity.  This could happen for example if the
423
    * source space were CMYK and we are going out to a CMYK device. For both
424
    * of these cases we can avoid going through the standard
425
    * color mappings to determine linearity. This is true, provided that the
426
    * transfer function is linear.  It is likely that we can improve
427
    * things even in cases where the transfer function is nonlinear, but for
428
    * now, we will punt on those and let them go through the longer processing
429
    * steps */
430
12.1k
    if (pfs->icclink == NULL)
431
2.92k
            cs_lin_test = !(using_alt_color_space((gs_gstate*)pgs));
432
9.24k
    else
433
9.24k
        cs_lin_test = pfs->icclink->is_identity;
434
435
12.1k
    if (cs_lin_test && !gx_has_transfer(pgs, dev->color_info.num_components)) {
436
3.96k
        pfs->cs_always_linear = true;
437
3.96k
    }
438
439
#ifdef IGNORE_SPEC_MATCH_ADOBE_SHADINGS
440
    /* Per the spec. If the source space is DeviceN or Separation and the
441
       colorants are not supported (i.e. if we are using the alternate tint
442
       transform) the interpolation should occur in the source space to
443
       accommodate non-linear tint transform functions.
444
       e.g. We had a case where the transform function
445
       was an increasing staircase. Including that function in the
446
       gradient smoothness calculation gave us severe quantization. AR on
447
       the other hand is doing the interpolation in device color space
448
       and has a smooth result for that case. So AR is not following the spec. The
449
       bit below solves the issues for Type 4 and Type 5 shadings as
450
       this will avoid interpolations in source space. Type 6 and Type 7 will still
451
       have interpolations in the source space even if pfs->cs_always_linear == true.
452
       So the approach below does not solve those issues. To do that
453
       without changing the shading code, we could make a linear
454
       approximation to the alternate tint transform, which would
455
       ensure smoothness like what AR provides.
456
    */
457
    if ((gs_color_space_get_index(pcs) == gs_color_space_index_DeviceN ||
458
        gs_color_space_get_index(pcs) == gs_color_space_index_Separation) &&
459
        using_alt_color_space((gs_gstate*)pgs) && (psh->head.type == 4 ||
460
        psh->head.type == 5)) {
461
        pfs->cs_always_linear = true;
462
    }
463
#endif
464
465
12.1k
    return 0;
466
12.1k
}
467
468
/* Fill one piece of a shading. */
469
int
470
shade_fill_path(const shading_fill_state_t * pfs, gx_path * ppath,
471
                gx_device_color * pdevc, const gs_fixed_point *fill_adjust)
472
0
{
473
0
    gx_fill_params params;
474
475
0
    params.rule = -1;   /* irrelevant */
476
0
    params.adjust = *fill_adjust;
477
0
    params.flatness = 0;  /* irrelevant */
478
0
    return (*dev_proc(pfs->dev, fill_path)) (pfs->dev, pfs->pgs, ppath,
479
0
                                             &params, pdevc, NULL);
480
0
}