/src/ghostpdl/base/gxshade1.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* Copyright (C) 2001-2021 Artifex Software, Inc. |
2 | | All Rights Reserved. |
3 | | |
4 | | This software is provided AS-IS with no warranty, either express or |
5 | | implied. |
6 | | |
7 | | This software is distributed under license and may not be copied, |
8 | | modified or distributed except as expressly authorized under the terms |
9 | | of the license contained in the file LICENSE in this distribution. |
10 | | |
11 | | Refer to licensing information at http://www.artifex.com or contact |
12 | | Artifex Software, Inc., 1305 Grant Avenue - Suite 200, Novato, |
13 | | CA 94945, U.S.A., +1(415)492-9861, for further information. |
14 | | */ |
15 | | |
16 | | |
17 | | /* Rendering for non-mesh shadings */ |
18 | | #include "math_.h" |
19 | | #include "memory_.h" |
20 | | #include "gx.h" |
21 | | #include "gserrors.h" |
22 | | #include "gsmatrix.h" /* for gscoord.h */ |
23 | | #include "gscoord.h" |
24 | | #include "gspath.h" |
25 | | #include "gsptype2.h" |
26 | | #include "gxcspace.h" |
27 | | #include "gxdcolor.h" |
28 | | #include "gxfarith.h" |
29 | | #include "gxfixed.h" |
30 | | #include "gxgstate.h" |
31 | | #include "gxpath.h" |
32 | | #include "gxshade.h" |
33 | | #include "gxdevcli.h" |
34 | | #include "gxshade4.h" |
35 | | #include "gsicc_cache.h" |
36 | | |
37 | | /* ---------------- Function-based shading ---------------- */ |
38 | | |
39 | | typedef struct Fb_frame_s { /* A rudiment of old code. */ |
40 | | gs_rect region; |
41 | | gs_client_color cc[4]; /* colors at 4 corners */ |
42 | | int state; |
43 | | } Fb_frame_t; |
44 | | |
45 | | typedef struct Fb_fill_state_s { |
46 | | shading_fill_state_common; |
47 | | const gs_shading_Fb_t *psh; |
48 | | gs_matrix_fixed ptm; /* parameter space -> device space */ |
49 | | Fb_frame_t frame; |
50 | | } Fb_fill_state_t; |
51 | | /****** NEED GC DESCRIPTOR ******/ |
52 | | |
53 | | static inline void |
54 | | make_other_poles(patch_curve_t curve[4]) |
55 | 45.2k | { |
56 | 45.2k | int i, j; |
57 | | |
58 | 226k | for (i = 0; i < 4; i++) { |
59 | 181k | j = (i + 1) % 4; |
60 | 181k | curve[i].control[0].x = (curve[i].vertex.p.x * 2 + curve[j].vertex.p.x) / 3; |
61 | 181k | curve[i].control[0].y = (curve[i].vertex.p.y * 2 + curve[j].vertex.p.y) / 3; |
62 | 181k | curve[i].control[1].x = (curve[i].vertex.p.x + curve[j].vertex.p.x * 2) / 3; |
63 | 181k | curve[i].control[1].y = (curve[i].vertex.p.y + curve[j].vertex.p.y * 2) / 3; |
64 | 181k | curve[i].straight = true; |
65 | 181k | } |
66 | 45.2k | } |
67 | | |
68 | | /* Transform a point with a fixed-point result. */ |
69 | | static void |
70 | | gs_point_transform2fixed_clamped(const gs_matrix_fixed * pmat, |
71 | | double x, double y, gs_fixed_point * ppt) |
72 | 0 | { |
73 | 0 | gs_point fpt; |
74 | |
|
75 | 0 | gs_point_transform(x, y, (const gs_matrix *)pmat, &fpt); |
76 | 0 | ppt->x = clamp_coord(fpt.x); |
77 | 0 | ppt->y = clamp_coord(fpt.y); |
78 | 0 | } |
79 | | |
80 | | static int |
81 | | Fb_fill_region(Fb_fill_state_t * pfs, const gs_fixed_rect *rect) |
82 | 0 | { |
83 | 0 | patch_fill_state_t pfs1; |
84 | 0 | patch_curve_t curve[4]; |
85 | 0 | Fb_frame_t * fp = &pfs->frame; |
86 | 0 | int code; |
87 | |
|
88 | 0 | memcpy(&pfs1, (shading_fill_state_t *)pfs, sizeof(shading_fill_state_t)); |
89 | 0 | pfs1.Function = pfs->psh->params.Function; |
90 | 0 | code = init_patch_fill_state(&pfs1); |
91 | 0 | if (code < 0) |
92 | 0 | return code; |
93 | 0 | pfs1.maybe_self_intersecting = false; |
94 | 0 | pfs1.n_color_args = 2; |
95 | 0 | pfs1.rect = *rect; |
96 | 0 | gs_point_transform2fixed(&pfs->ptm, fp->region.p.x, fp->region.p.y, &curve[0].vertex.p); |
97 | 0 | gs_point_transform2fixed(&pfs->ptm, fp->region.q.x, fp->region.p.y, &curve[1].vertex.p); |
98 | 0 | gs_point_transform2fixed(&pfs->ptm, fp->region.q.x, fp->region.q.y, &curve[2].vertex.p); |
99 | 0 | gs_point_transform2fixed(&pfs->ptm, fp->region.p.x, fp->region.q.y, &curve[3].vertex.p); |
100 | 0 | make_other_poles(curve); |
101 | 0 | curve[0].vertex.cc[0] = fp->region.p.x; curve[0].vertex.cc[1] = fp->region.p.y; |
102 | 0 | curve[1].vertex.cc[0] = fp->region.q.x; curve[1].vertex.cc[1] = fp->region.p.y; |
103 | 0 | curve[2].vertex.cc[0] = fp->region.q.x; curve[2].vertex.cc[1] = fp->region.q.y; |
104 | 0 | curve[3].vertex.cc[0] = fp->region.p.x; curve[3].vertex.cc[1] = fp->region.q.y; |
105 | 0 | code = patch_fill(&pfs1, curve, NULL, NULL); |
106 | 0 | if (term_patch_fill_state(&pfs1)) |
107 | 0 | return_error(gs_error_unregistered); /* Must not happen. */ |
108 | 0 | return code; |
109 | 0 | } |
110 | | |
111 | | int |
112 | | gs_shading_Fb_fill_rectangle(const gs_shading_t * psh0, const gs_rect * rect, |
113 | | const gs_fixed_rect * rect_clip, |
114 | | gx_device * dev, gs_gstate * pgs) |
115 | 0 | { |
116 | 0 | const gs_shading_Fb_t * const psh = (const gs_shading_Fb_t *)psh0; |
117 | 0 | gs_matrix save_ctm; |
118 | 0 | int xi, yi, code; |
119 | 0 | float x[2], y[2]; |
120 | 0 | Fb_fill_state_t state; |
121 | |
|
122 | 0 | code = shade_init_fill_state((shading_fill_state_t *) & state, psh0, dev, pgs); |
123 | 0 | if (code < 0) |
124 | 0 | return code; |
125 | 0 | state.psh = psh; |
126 | | /****** HACK FOR FIXED-POINT MATRIX MULTIPLY ******/ |
127 | 0 | gs_currentmatrix((gs_gstate *) pgs, &save_ctm); |
128 | 0 | gs_concat((gs_gstate *) pgs, &psh->params.Matrix); |
129 | 0 | state.ptm = pgs->ctm; |
130 | 0 | gs_setmatrix((gs_gstate *) pgs, &save_ctm); |
131 | | /* Compute the parameter X and Y ranges. */ |
132 | 0 | { |
133 | 0 | gs_rect pbox; |
134 | |
|
135 | 0 | code = gs_bbox_transform_inverse(rect, &psh->params.Matrix, &pbox); |
136 | 0 | if (code < 0) |
137 | 0 | return code; |
138 | 0 | x[0] = max(pbox.p.x, psh->params.Domain[0]); |
139 | 0 | x[1] = min(pbox.q.x, psh->params.Domain[1]); |
140 | 0 | y[0] = max(pbox.p.y, psh->params.Domain[2]); |
141 | 0 | y[1] = min(pbox.q.y, psh->params.Domain[3]); |
142 | 0 | } |
143 | 0 | if (x[0] > x[1] || y[0] > y[1]) { |
144 | | /* The region is outside the shading area. */ |
145 | 0 | if (state.icclink != NULL) gsicc_release_link(state.icclink); |
146 | 0 | return 0; |
147 | 0 | } |
148 | 0 | for (xi = 0; xi < 2; ++xi) |
149 | 0 | for (yi = 0; yi < 2; ++yi) { |
150 | 0 | float v[2]; |
151 | |
|
152 | 0 | v[0] = x[xi], v[1] = y[yi]; |
153 | 0 | gs_function_evaluate(psh->params.Function, v, |
154 | 0 | state.frame.cc[yi * 2 + xi].paint.values); |
155 | 0 | } |
156 | 0 | state.frame.region.p.x = x[0]; |
157 | 0 | state.frame.region.p.y = y[0]; |
158 | 0 | state.frame.region.q.x = x[1]; |
159 | 0 | state.frame.region.q.y = y[1]; |
160 | 0 | code = Fb_fill_region(&state, rect_clip); |
161 | 0 | if (state.icclink != NULL) gsicc_release_link(state.icclink); |
162 | 0 | return code; |
163 | 0 | } |
164 | | |
165 | | /* ---------------- Axial shading ---------------- */ |
166 | | |
167 | | typedef struct A_fill_state_s { |
168 | | const gs_shading_A_t *psh; |
169 | | gs_point delta; |
170 | | double length; |
171 | | double t0, t1; |
172 | | double v0, v1, u0, u1; |
173 | | } A_fill_state_t; |
174 | | /****** NEED GC DESCRIPTOR ******/ |
175 | | |
176 | | /* Note t0 and t1 vary over [0..1], not the Domain. */ |
177 | | |
178 | | typedef struct |
179 | | { |
180 | | patch_curve_t curve[4]; |
181 | | gs_point corners[4]; |
182 | | } corners_and_curves; |
183 | | |
184 | | /* Ghostscript cannot possibly render any patch whose bounds aren't |
185 | | * representable in fixed's. In fact, this is a larger limit than |
186 | | * we need. We notionally have an area defined by coordinates |
187 | | * that can be represented in fixed point with at least 1 bit to |
188 | | * spare. |
189 | | * |
190 | | * Any patch that lies completely outside this region can be clipped |
191 | | * away. Any patch that isn't representable by fixed points can be |
192 | | * subdivided into 4. |
193 | | * |
194 | | * This avoids us subdividing patches huge numbers of times because |
195 | | * one side is just outside the region we will accept. |
196 | | */ |
197 | | |
198 | | |
199 | 647k | #define MIN_CLIP_LIMIT ((int)(fixed2int(min_fixed)/2)) |
200 | 610k | #define MAX_CLIP_LIMIT ((int)(fixed2int(max_fixed)/2)) |
201 | | |
202 | | static int not_clipped_away(const gs_point *p) |
203 | 90.6k | { |
204 | 90.6k | if (p[0].x < MIN_CLIP_LIMIT && |
205 | 90.6k | p[1].x < MIN_CLIP_LIMIT && |
206 | 90.6k | p[2].x < MIN_CLIP_LIMIT && |
207 | 90.6k | p[3].x < MIN_CLIP_LIMIT) |
208 | 16.3k | return 0; /* Clipped away! */ |
209 | 74.2k | if (p[0].x > MAX_CLIP_LIMIT && |
210 | 74.2k | p[1].x > MAX_CLIP_LIMIT && |
211 | 74.2k | p[2].x > MAX_CLIP_LIMIT && |
212 | 74.2k | p[3].x > MAX_CLIP_LIMIT) |
213 | 16.3k | return 0; /* Clipped away! */ |
214 | 57.8k | if (p[0].y < MIN_CLIP_LIMIT && |
215 | 57.8k | p[1].y < MIN_CLIP_LIMIT && |
216 | 57.8k | p[2].y < MIN_CLIP_LIMIT && |
217 | 57.8k | p[3].y < MIN_CLIP_LIMIT) |
218 | 0 | return 0; /* Clipped away! */ |
219 | 57.8k | if (p[0].y > MAX_CLIP_LIMIT && |
220 | 57.8k | p[1].y > MAX_CLIP_LIMIT && |
221 | 57.8k | p[2].y > MAX_CLIP_LIMIT && |
222 | 57.8k | p[3].y > MAX_CLIP_LIMIT) |
223 | 0 | return 0; /* Clipped away! */ |
224 | 57.8k | return 1; |
225 | 57.8k | } |
226 | | |
227 | 188k | #define f_fits_in_fixed(f) f_fits_in_bits(f, fixed_int_bits) |
228 | | |
229 | | static int |
230 | | A_fill_region_floats(patch_fill_state_t *pfs1, corners_and_curves *cc, int depth) |
231 | 58.6k | { |
232 | 58.6k | corners_and_curves sub[4]; |
233 | 58.6k | int code; |
234 | | |
235 | 58.6k | if (depth == 32) |
236 | 785 | return gs_error_limitcheck; |
237 | | |
238 | 57.8k | if (depth > 0 && |
239 | 57.8k | f_fits_in_fixed(cc->corners[0].x) && |
240 | 57.8k | f_fits_in_fixed(cc->corners[0].y) && |
241 | 57.8k | f_fits_in_fixed(cc->corners[1].x) && |
242 | 57.8k | f_fits_in_fixed(cc->corners[1].y) && |
243 | 57.8k | f_fits_in_fixed(cc->corners[2].x) && |
244 | 57.8k | f_fits_in_fixed(cc->corners[2].y) && |
245 | 57.8k | f_fits_in_fixed(cc->corners[3].x) && |
246 | 57.8k | f_fits_in_fixed(cc->corners[3].y)) |
247 | 16.3k | { |
248 | 16.3k | cc->curve[0].vertex.p.x = float2fixed(cc->corners[0].x); |
249 | 16.3k | cc->curve[0].vertex.p.y = float2fixed(cc->corners[0].y); |
250 | 16.3k | cc->curve[1].vertex.p.x = float2fixed(cc->corners[1].x); |
251 | 16.3k | cc->curve[1].vertex.p.y = float2fixed(cc->corners[1].y); |
252 | 16.3k | cc->curve[2].vertex.p.x = float2fixed(cc->corners[2].x); |
253 | 16.3k | cc->curve[2].vertex.p.y = float2fixed(cc->corners[2].y); |
254 | 16.3k | cc->curve[3].vertex.p.x = float2fixed(cc->corners[3].x); |
255 | 16.3k | cc->curve[3].vertex.p.y = float2fixed(cc->corners[3].y); |
256 | 16.3k | cc->curve[0].vertex.cc[1] = cc->curve[1].vertex.cc[1] = |
257 | 16.3k | cc->curve[2].vertex.cc[1] = |
258 | 16.3k | cc->curve[3].vertex.cc[1] = 0; |
259 | 16.3k | make_other_poles(cc->curve); |
260 | 16.3k | return patch_fill(pfs1, cc->curve, NULL, NULL); |
261 | 16.3k | } |
262 | | |
263 | | /* We have patches with corners: |
264 | | * 0 1 |
265 | | * 3 2 |
266 | | * We subdivide these into 4 smaller patches: |
267 | | * |
268 | | * 0 10 1 Where 0123 are corners |
269 | | * [0] [1] [0][1][2][3] are patches. |
270 | | * 3 23 2 |
271 | | * 0 10 1 |
272 | | * [3] [2] |
273 | | * 3 23 2 |
274 | | */ |
275 | | |
276 | 41.5k | sub[0].corners[0].x = cc->corners[0].x; |
277 | 41.5k | sub[0].corners[0].y = cc->corners[0].y; |
278 | 41.5k | sub[1].corners[1].x = cc->corners[1].x; |
279 | 41.5k | sub[1].corners[1].y = cc->corners[1].y; |
280 | 41.5k | sub[2].corners[2].x = cc->corners[2].x; |
281 | 41.5k | sub[2].corners[2].y = cc->corners[2].y; |
282 | 41.5k | sub[3].corners[3].x = cc->corners[3].x; |
283 | 41.5k | sub[3].corners[3].y = cc->corners[3].y; |
284 | 41.5k | sub[1].corners[0].x = sub[0].corners[1].x = (cc->corners[0].x + cc->corners[1].x)/2; |
285 | 41.5k | sub[1].corners[0].y = sub[0].corners[1].y = (cc->corners[0].y + cc->corners[1].y)/2; |
286 | 41.5k | sub[3].corners[2].x = sub[2].corners[3].x = (cc->corners[2].x + cc->corners[3].x)/2; |
287 | 41.5k | sub[3].corners[2].y = sub[2].corners[3].y = (cc->corners[2].y + cc->corners[3].y)/2; |
288 | 41.5k | sub[3].corners[0].x = sub[0].corners[3].x = (cc->corners[0].x + cc->corners[3].x)/2; |
289 | 41.5k | sub[3].corners[0].y = sub[0].corners[3].y = (cc->corners[0].y + cc->corners[3].y)/2; |
290 | 41.5k | sub[2].corners[1].x = sub[1].corners[2].x = (cc->corners[1].x + cc->corners[2].x)/2; |
291 | 41.5k | sub[2].corners[1].y = sub[1].corners[2].y = (cc->corners[1].y + cc->corners[2].y)/2; |
292 | 41.5k | sub[0].corners[2].x = sub[1].corners[3].x = |
293 | 41.5k | sub[2].corners[0].x = |
294 | 41.5k | sub[3].corners[1].x = (sub[0].corners[3].x + sub[1].corners[2].x)/2; |
295 | 41.5k | sub[0].corners[2].y = sub[1].corners[3].y = |
296 | 41.5k | sub[2].corners[0].y = |
297 | 41.5k | sub[3].corners[1].y = (sub[0].corners[3].y + sub[1].corners[2].y)/2; |
298 | 41.5k | sub[0].curve[0].vertex.cc[0] = sub[0].curve[3].vertex.cc[0] = |
299 | 41.5k | sub[3].curve[0].vertex.cc[0] = |
300 | 41.5k | sub[3].curve[3].vertex.cc[0] = cc->curve[0].vertex.cc[0]; |
301 | 41.5k | sub[1].curve[1].vertex.cc[0] = sub[1].curve[2].vertex.cc[0] = |
302 | 41.5k | sub[2].curve[1].vertex.cc[0] = |
303 | 41.5k | sub[2].curve[2].vertex.cc[0] = cc->curve[1].vertex.cc[0]; |
304 | 41.5k | sub[0].curve[1].vertex.cc[0] = sub[0].curve[2].vertex.cc[0] = |
305 | 41.5k | sub[1].curve[0].vertex.cc[0] = |
306 | 41.5k | sub[1].curve[3].vertex.cc[0] = |
307 | 41.5k | sub[2].curve[0].vertex.cc[0] = |
308 | 41.5k | sub[2].curve[3].vertex.cc[0] = |
309 | 41.5k | sub[3].curve[1].vertex.cc[0] = |
310 | 41.5k | sub[3].curve[2].vertex.cc[0] = (cc->curve[0].vertex.cc[0] + cc->curve[1].vertex.cc[0])/2; |
311 | | |
312 | 41.5k | depth++; |
313 | 41.5k | if (not_clipped_away(sub[0].corners)) { |
314 | 33.3k | code = A_fill_region_floats(pfs1, &sub[0], depth); |
315 | 33.3k | if (code < 0) |
316 | 25.1k | return code; |
317 | 33.3k | } |
318 | 16.3k | if (not_clipped_away(sub[1].corners)) { |
319 | 8.19k | code = A_fill_region_floats(pfs1, &sub[1], depth); |
320 | 8.19k | if (code < 0) |
321 | 0 | return code; |
322 | 8.19k | } |
323 | 16.3k | if (not_clipped_away(sub[2].corners)) { |
324 | 8.19k | code = A_fill_region_floats(pfs1, &sub[2], depth); |
325 | 8.19k | if (code < 0) |
326 | 0 | return code; |
327 | 8.19k | } |
328 | 16.3k | if (not_clipped_away(sub[3].corners)) { |
329 | 8.19k | code = A_fill_region_floats(pfs1, &sub[3], depth); |
330 | 8.19k | if (code < 0) |
331 | 0 | return code; |
332 | 8.19k | } |
333 | | |
334 | 16.3k | return 0; |
335 | 16.3k | } |
336 | | |
337 | | static int |
338 | | A_fill_region(A_fill_state_t * pfs, patch_fill_state_t *pfs1) |
339 | 29.6k | { |
340 | 29.6k | const gs_shading_A_t * const psh = pfs->psh; |
341 | 29.6k | double x0 = psh->params.Coords[0] + pfs->delta.x * pfs->v0; |
342 | 29.6k | double y0 = psh->params.Coords[1] + pfs->delta.y * pfs->v0; |
343 | 29.6k | double x1 = psh->params.Coords[0] + pfs->delta.x * pfs->v1; |
344 | 29.6k | double y1 = psh->params.Coords[1] + pfs->delta.y * pfs->v1; |
345 | 29.6k | double h0 = pfs->u0, h1 = pfs->u1; |
346 | 29.6k | corners_and_curves cc; |
347 | 29.6k | int code; |
348 | | |
349 | 29.6k | double dx0 = pfs->delta.x * h0; |
350 | 29.6k | double dy0 = pfs->delta.y * h0; |
351 | 29.6k | double dx1 = pfs->delta.x * h1; |
352 | 29.6k | double dy1 = pfs->delta.y * h1; |
353 | | |
354 | 29.6k | cc.curve[0].vertex.cc[0] = pfs->t0; /* The element cc[1] is set to a dummy value against */ |
355 | 29.6k | cc.curve[1].vertex.cc[0] = pfs->t1; /* interrupts while an idle priocessing in gxshade.6.c . */ |
356 | 29.6k | cc.curve[2].vertex.cc[0] = pfs->t1; |
357 | 29.6k | cc.curve[3].vertex.cc[0] = pfs->t0; |
358 | 29.6k | cc.curve[0].vertex.cc[1] = 0; /* The element cc[1] is set to a dummy value against */ |
359 | 29.6k | cc.curve[1].vertex.cc[1] = 0; /* interrupts while an idle priocessing in gxshade.6.c . */ |
360 | 29.6k | cc.curve[2].vertex.cc[1] = 0; |
361 | 29.6k | cc.curve[3].vertex.cc[1] = 0; |
362 | 29.6k | cc.corners[0].x = x0 + dy0; |
363 | 29.6k | cc.corners[0].y = y0 - dx0; |
364 | 29.6k | cc.corners[1].x = x1 + dy0; |
365 | 29.6k | cc.corners[1].y = y1 - dx0; |
366 | 29.6k | cc.corners[2].x = x1 + dy1; |
367 | 29.6k | cc.corners[2].y = y1 - dx1; |
368 | 29.6k | cc.corners[3].x = x0 + dy1; |
369 | 29.6k | cc.corners[3].y = y0 - dx1; |
370 | 29.6k | code = gs_point_transform2fixed(&pfs1->pgs->ctm, cc.corners[0].x, cc.corners[0].y, &cc.curve[0].vertex.p); |
371 | 29.6k | if (code < 0) |
372 | 787 | goto fail; |
373 | 28.9k | code = gs_point_transform2fixed(&pfs1->pgs->ctm, cc.corners[1].x, cc.corners[1].y, &cc.curve[1].vertex.p); |
374 | 28.9k | if (code < 0) |
375 | 0 | goto fail; |
376 | 28.9k | code = gs_point_transform2fixed(&pfs1->pgs->ctm, cc.corners[2].x, cc.corners[2].y, &cc.curve[2].vertex.p); |
377 | 28.9k | if (code < 0) |
378 | 0 | goto fail; |
379 | 28.9k | code = gs_point_transform2fixed(&pfs1->pgs->ctm, cc.corners[3].x, cc.corners[3].y, &cc.curve[3].vertex.p); |
380 | 28.9k | if (code < 0) |
381 | 0 | goto fail; |
382 | 28.9k | make_other_poles(cc.curve); |
383 | 28.9k | return patch_fill(pfs1, cc.curve, NULL, NULL); |
384 | 787 | fail: |
385 | 787 | if (code != gs_error_limitcheck) |
386 | 0 | return code; |
387 | 787 | code = gs_point_transform(cc.corners[0].x, cc.corners[0].y, (const gs_matrix *)&pfs1->pgs->ctm, &cc.corners[0]); |
388 | 787 | if (code < 0) |
389 | 0 | return code; |
390 | 787 | code = gs_point_transform(cc.corners[1].x, cc.corners[1].y, (const gs_matrix *)&pfs1->pgs->ctm, &cc.corners[1]); |
391 | 787 | if (code < 0) |
392 | 0 | return code; |
393 | 787 | code = gs_point_transform(cc.corners[2].x, cc.corners[2].y, (const gs_matrix *)&pfs1->pgs->ctm, &cc.corners[2]); |
394 | 787 | if (code < 0) |
395 | 0 | return code; |
396 | 787 | code = gs_point_transform(cc.corners[3].x, cc.corners[3].y, (const gs_matrix *)&pfs1->pgs->ctm, &cc.corners[3]); |
397 | 787 | if (code < 0) |
398 | 0 | return code; |
399 | 787 | return A_fill_region_floats(pfs1, &cc, 0); |
400 | 787 | } |
401 | | |
402 | | static inline int |
403 | | gs_shading_A_fill_rectangle_aux(const gs_shading_t * psh0, const gs_rect * rect, |
404 | | const gs_fixed_rect *clip_rect, |
405 | | gx_device * dev, gs_gstate * pgs) |
406 | 11.6k | { |
407 | 11.6k | const gs_shading_A_t *const psh = (const gs_shading_A_t *)psh0; |
408 | 11.6k | gs_function_t * const pfn = psh->params.Function; |
409 | 11.6k | gs_matrix cmat; |
410 | 11.6k | gs_rect t_rect; |
411 | 11.6k | A_fill_state_t state; |
412 | 11.6k | patch_fill_state_t pfs1; |
413 | 11.6k | float d0 = psh->params.Domain[0], d1 = psh->params.Domain[1]; |
414 | 11.6k | float dd = d1 - d0; |
415 | 11.6k | double t0, t1; |
416 | 11.6k | gs_point dist; |
417 | 11.6k | int code; |
418 | | |
419 | 11.6k | state.psh = psh; |
420 | 11.6k | code = shade_init_fill_state((shading_fill_state_t *)&pfs1, psh0, dev, pgs); |
421 | 11.6k | if (code < 0) |
422 | 7 | return code; |
423 | 11.6k | pfs1.Function = pfn; |
424 | 11.6k | pfs1.rect = *clip_rect; |
425 | 11.6k | code = init_patch_fill_state(&pfs1); |
426 | 11.6k | if (code < 0) |
427 | 0 | goto fail; |
428 | 11.6k | pfs1.maybe_self_intersecting = false; |
429 | 11.6k | pfs1.function_arg_shift = 1; |
430 | | /* |
431 | | * Compute the parameter range. We construct a matrix in which |
432 | | * (0,0) corresponds to t = 0 and (0,1) corresponds to t = 1, |
433 | | * and use it to inverse-map the rectangle to be filled. |
434 | | */ |
435 | 11.6k | cmat.tx = psh->params.Coords[0]; |
436 | 11.6k | cmat.ty = psh->params.Coords[1]; |
437 | 11.6k | state.delta.x = psh->params.Coords[2] - psh->params.Coords[0]; |
438 | 11.6k | state.delta.y = psh->params.Coords[3] - psh->params.Coords[1]; |
439 | 11.6k | cmat.yx = state.delta.x; |
440 | 11.6k | cmat.yy = state.delta.y; |
441 | 11.6k | cmat.xx = cmat.yy; |
442 | 11.6k | cmat.xy = -cmat.yx; |
443 | 11.6k | code = gs_bbox_transform_inverse(rect, &cmat, &t_rect); |
444 | 11.6k | if (code < 0) { |
445 | 0 | code = 0; /* Swallow this silently */ |
446 | 0 | goto fail; |
447 | 0 | } |
448 | 11.6k | t0 = min(max(t_rect.p.y, 0), 1); |
449 | 11.6k | t1 = max(min(t_rect.q.y, 1), 0); |
450 | 11.6k | state.v0 = t0; |
451 | 11.6k | state.v1 = t1; |
452 | 11.6k | state.u0 = t_rect.p.x; |
453 | 11.6k | state.u1 = t_rect.q.x; |
454 | 11.6k | state.t0 = t0 * dd + d0; |
455 | 11.6k | state.t1 = t1 * dd + d0; |
456 | 11.6k | code = gs_distance_transform(state.delta.x, state.delta.y, &ctm_only(pgs), |
457 | 11.6k | &dist); |
458 | 11.6k | if (code < 0) |
459 | 0 | goto fail; |
460 | 11.6k | state.length = hypot(dist.x, dist.y); /* device space line length */ |
461 | 11.6k | code = A_fill_region(&state, &pfs1); |
462 | 11.6k | if (psh->params.Extend[0] && t0 > t_rect.p.y) { |
463 | 9.09k | if (code < 0) |
464 | 1 | goto fail; |
465 | | /* Use the general algorithm, because we need the trapping. */ |
466 | 9.09k | state.v0 = t_rect.p.y; |
467 | 9.09k | state.v1 = t0; |
468 | 9.09k | state.t0 = state.t1 = t0 * dd + d0; |
469 | 9.09k | code = A_fill_region(&state, &pfs1); |
470 | 9.09k | } |
471 | 11.6k | if (psh->params.Extend[1] && t1 < t_rect.q.y) { |
472 | 8.93k | if (code < 0) |
473 | 0 | goto fail; |
474 | | /* Use the general algorithm, because we need the trapping. */ |
475 | 8.93k | state.v0 = t1; |
476 | 8.93k | state.v1 = t_rect.q.y; |
477 | 8.93k | state.t0 = state.t1 = t1 * dd + d0; |
478 | 8.93k | code = A_fill_region(&state, &pfs1); |
479 | 8.93k | } |
480 | 11.6k | fail: |
481 | 11.6k | gsicc_release_link(pfs1.icclink); |
482 | 11.6k | if (term_patch_fill_state(&pfs1)) |
483 | 0 | return_error(gs_error_unregistered); /* Must not happen. */ |
484 | 11.6k | return code; |
485 | 11.6k | } |
486 | | |
487 | | int |
488 | | gs_shading_A_fill_rectangle(const gs_shading_t * psh0, const gs_rect * rect, |
489 | | const gs_fixed_rect * rect_clip, |
490 | | gx_device * dev, gs_gstate * pgs) |
491 | 11.6k | { |
492 | 11.6k | return gs_shading_A_fill_rectangle_aux(psh0, rect, rect_clip, dev, pgs); |
493 | 11.6k | } |
494 | | |
495 | | /* ---------------- Radial shading ---------------- */ |
496 | | |
497 | | /* Some notes on what I have struggled to understand about the following |
498 | | * function. This function renders the 'tube' given by interpolating one |
499 | | * circle to another. |
500 | | * |
501 | | * The first circle is at (x0, y0) with radius r0, and has 'color' t0. |
502 | | * The other circle is at (x1, y1) with radius r1, and has 'color' t1. |
503 | | * |
504 | | * We perform this rendering by approximating each quadrant of the 'tube' |
505 | | * by a tensor patch. The tensor patch is formed by taking a curve along |
506 | | * 1/4 of the circumference of the first circle, a straight line to the |
507 | | * equivalent point on the circumference of the second circle, a curve |
508 | | * back along the circumference of the second circle, and then a straight |
509 | | * line back to where we started. |
510 | | * |
511 | | * There is additional logic in this function that forms the directions of |
512 | | * the curves differently for different quadrants. This is done to ensure |
513 | | * that we always paint 'around' the tube from the back towards the front, |
514 | | * so we don't get unexpected regions showing though. This is explained more |
515 | | * below. |
516 | | * |
517 | | * The original code here examined the position change between the two |
518 | | * circles dx and dy. Based upon this vector it would pick which quadrant/ |
519 | | * tensor patch to draw first. It would draw the quadrants/tensor patches |
520 | | * in anticlockwise order. Presumably this was intended to be done so that |
521 | | * the 'top' quadrant would be drawn last. |
522 | | * |
523 | | * Unfortunately this did not always work; see bug 692513. If the quadrants |
524 | | * were rendered in the order 0,1,2,3, the rendering of 1 was leaving traces |
525 | | * on top of 0, which was unexpected. |
526 | | * |
527 | | * I have therefore altered the code slightly; rather than picking a start |
528 | | * quadrant and moving anticlockwise, we now draw the 'undermost' quadrant, |
529 | | * then the two adjacent quadrants, then the topmost quadrant. |
530 | | * |
531 | | * For the purposes of explanation, we shall label the octants as below: |
532 | | * |
533 | | * \2|1/ and Quadrants as: | |
534 | | * 3\|/0 Q1 | Q0 |
535 | | * ---+--- ----+---- |
536 | | * 4/|\7 Q2 | Q3 |
537 | | * /5|6\ | |
538 | | * |
539 | | * We find (dx,dy), the difference between the centres of the circles. |
540 | | * We look to see which octant this falls in. Firstly, this tells us which |
541 | | * quadrant of the circle we need to draw first (Octant n, starts with |
542 | | * Quadrant floor(n/2)). Secondly, it tells us which direction to form the |
543 | | * tensor patch in; we always want to draw from the side 'closest' to |
544 | | * dx/dy to the side further away. This ensures that we don't overwrite |
545 | | * pixels in the incorrect order as the patch decomposes. |
546 | | */ |
547 | | static int |
548 | | R_tensor_annulus(patch_fill_state_t *pfs, |
549 | | double x0, double y0, double r0, double t0, |
550 | | double x1, double y1, double r1, double t1) |
551 | 79 | { |
552 | 79 | double dx = x1 - x0, dy = y1 - y0; |
553 | 79 | double d = hypot(dx, dy); |
554 | 79 | gs_point p0, p1, pc0, pc1; |
555 | 79 | int k, j, code, dirn; |
556 | 79 | bool inside = 0; |
557 | | |
558 | | /* pc0 and pc1 are the centres of the respective circles. */ |
559 | 79 | pc0.x = x0, pc0.y = y0; |
560 | 79 | pc1.x = x1, pc1.y = y1; |
561 | | /* Set p0 up so it's a unit vector giving the direction of 90 degrees |
562 | | * to the right of the major axis as we move from p0c to p1c. */ |
563 | 79 | if (r0 + d <= r1 || r1 + d <= r0) { |
564 | | /* One circle is inside another one. |
565 | | Use any subdivision, |
566 | | but don't depend on dx, dy, which may be too small. */ |
567 | 79 | p0.x = 0, p0.y = -1, dirn = 0; |
568 | | /* Align stripes along radii for faster triangulation : */ |
569 | 79 | inside = 1; |
570 | 79 | pfs->function_arg_shift = 1; |
571 | 79 | } else { |
572 | | /* Must generate canonic quadrangle arcs, |
573 | | because we approximate them with curves. */ |
574 | 0 | if(dx >= 0) { |
575 | 0 | if (dy >= 0) |
576 | 0 | p0.x = 1, p0.y = 0, dirn = (dx >= dy ? 1 : 0); |
577 | 0 | else |
578 | 0 | p0.x = 0, p0.y = -1, dirn = (dx >= -dy ? 0 : 1); |
579 | 0 | } else { |
580 | 0 | if (dy >= 0) |
581 | 0 | p0.x = 0, p0.y = 1, dirn = (-dx >= dy ? 1 : 0); |
582 | 0 | else |
583 | 0 | p0.x = -1, p0.y = 0, dirn = (-dx >= -dy ? 0 : 1); |
584 | 0 | } |
585 | 0 | pfs->function_arg_shift = 0; |
586 | 0 | } |
587 | | /* fixme: wish: cut invisible parts off. |
588 | | Note : when r0 != r1 the invisible part is not a half circle. */ |
589 | 395 | for (k = 0; k < 4; k++) { |
590 | 316 | gs_point p[12]; |
591 | 316 | patch_curve_t curve[4]; |
592 | | |
593 | | /* Set p1 to be 90 degrees anticlockwise from p0 */ |
594 | 316 | p1.x = -p0.y; p1.y = p0.x; |
595 | 316 | if (dirn == 0) { /* Clockwise */ |
596 | 237 | make_quadrant_arc(p + 0, &pc0, &p1, &p0, r0); |
597 | 237 | make_quadrant_arc(p + 6, &pc1, &p0, &p1, r1); |
598 | 237 | } else { /* Anticlockwise */ |
599 | 79 | make_quadrant_arc(p + 0, &pc0, &p0, &p1, r0); |
600 | 79 | make_quadrant_arc(p + 6, &pc1, &p1, &p0, r1); |
601 | 79 | } |
602 | 316 | p[4].x = (p[3].x * 2 + p[6].x) / 3; |
603 | 316 | p[4].y = (p[3].y * 2 + p[6].y) / 3; |
604 | 316 | p[5].x = (p[3].x + p[6].x * 2) / 3; |
605 | 316 | p[5].y = (p[3].y + p[6].y * 2) / 3; |
606 | 316 | p[10].x = (p[9].x * 2 + p[0].x) / 3; |
607 | 316 | p[10].y = (p[9].y * 2 + p[0].y) / 3; |
608 | 316 | p[11].x = (p[9].x + p[0].x * 2) / 3; |
609 | 316 | p[11].y = (p[9].y + p[0].y * 2) / 3; |
610 | 1.58k | for (j = 0; j < 4; j++) { |
611 | 1.26k | int jj = (j + inside) % 4; |
612 | | |
613 | 1.26k | if (gs_point_transform2fixed(&pfs->pgs->ctm, p[j*3 + 0].x, p[j*3 + 0].y, &curve[jj].vertex.p) < 0) |
614 | 0 | gs_point_transform2fixed_clamped(&pfs->pgs->ctm, p[j*3 + 0].x, p[j*3 + 0].y, &curve[jj].vertex.p); |
615 | | |
616 | 1.26k | if (gs_point_transform2fixed(&pfs->pgs->ctm, p[j*3 + 1].x, p[j*3 + 1].y, &curve[jj].control[0]) < 0) |
617 | 0 | gs_point_transform2fixed_clamped(&pfs->pgs->ctm, p[j*3 + 1].x, p[j*3 + 1].y, &curve[jj].control[0]); |
618 | | |
619 | 1.26k | if (gs_point_transform2fixed(&pfs->pgs->ctm, p[j*3 + 2].x, p[j*3 + 2].y, &curve[jj].control[1]) < 0) |
620 | 0 | gs_point_transform2fixed_clamped(&pfs->pgs->ctm, p[j*3 + 2].x, p[j*3 + 2].y, &curve[jj].control[1]); |
621 | 1.26k | curve[j].straight = (((j + inside) & 1) != 0); |
622 | 1.26k | } |
623 | 316 | curve[(0 + inside) % 4].vertex.cc[0] = t0; |
624 | 316 | curve[(1 + inside) % 4].vertex.cc[0] = t0; |
625 | 316 | curve[(2 + inside) % 4].vertex.cc[0] = t1; |
626 | 316 | curve[(3 + inside) % 4].vertex.cc[0] = t1; |
627 | 316 | curve[0].vertex.cc[1] = curve[1].vertex.cc[1] = 0; /* Initialize against FPE. */ |
628 | 316 | curve[2].vertex.cc[1] = curve[3].vertex.cc[1] = 0; /* Initialize against FPE. */ |
629 | 316 | code = patch_fill(pfs, curve, NULL, NULL); |
630 | 316 | if (code < 0) |
631 | 0 | return code; |
632 | | /* Move p0 to be ready for the next position */ |
633 | 316 | if (k == 0) { |
634 | | /* p0 moves clockwise */ |
635 | 79 | p1 = p0; |
636 | 79 | p0.x = p1.y; p0.y = -p1.x; |
637 | 79 | dirn = 0; |
638 | 237 | } else if (k == 1) { |
639 | | /* p0 flips sides */ |
640 | 79 | p0.x = -p0.x; p0.y = -p0.y; |
641 | 79 | dirn = 1; |
642 | 158 | } else if (k == 2) { |
643 | | /* p0 moves anti-clockwise */ |
644 | 79 | p1 = p0; |
645 | 79 | p0.x = -p1.y; p0.y = p1.x; |
646 | 79 | dirn = 0; |
647 | 79 | } |
648 | 316 | } |
649 | 79 | return 0; |
650 | 79 | } |
651 | | |
652 | | /* Find the control points for two points on the arc of a circle |
653 | | * the points must be within the same quadrant. |
654 | | */ |
655 | | static int find_arc_control_points(gs_point *from, gs_point *to, gs_point *from_control, gs_point *to_control, gs_point *centre) |
656 | 0 | { |
657 | 0 | double from_tan_alpha, to_tan_alpha, from_alpha, to_alpha; |
658 | 0 | double half_inscribed_angle, intersect_x, intersect_y, intersect_dist; |
659 | 0 | double radius = sqrt(((from->x - centre->x) * (from->x - centre->x)) + ((from->y - centre->y) * (from->y - centre->y))); |
660 | 0 | double tangent_intersect_dist; |
661 | 0 | double F; |
662 | 0 | int quadrant; |
663 | | |
664 | | /* Quadrant 0 is upper right, numbered anti-clockwise. |
665 | | * If the direction of the from->to is atni-clockwise, add 4 |
666 | | */ |
667 | 0 | if (from->x > to->x) { |
668 | 0 | if (from->y > to->y) { |
669 | 0 | if (to->y >= centre->y) |
670 | 0 | quadrant = 1 + 4; |
671 | 0 | else |
672 | 0 | quadrant = 3; |
673 | 0 | } else { |
674 | 0 | if (to->x >= centre->x) |
675 | 0 | quadrant = 0 + 4; |
676 | 0 | else |
677 | 0 | quadrant = 2; |
678 | 0 | } |
679 | 0 | } else { |
680 | 0 | if (from->y > to->y) { |
681 | 0 | if (from->x >= centre->x) |
682 | 0 | quadrant = 0; |
683 | 0 | else |
684 | 0 | quadrant = 2 + 4; |
685 | 0 | } else { |
686 | 0 | if (from->x >= centre->x) |
687 | 0 | quadrant = 3 + 4; |
688 | 0 | else |
689 | 0 | quadrant = 1; |
690 | 0 | } |
691 | 0 | } |
692 | |
|
693 | 0 | switch(quadrant) { |
694 | | /* quadrant 0, arc goes clockwise */ |
695 | 0 | case 0: |
696 | 0 | if (from->x == centre->x) { |
697 | 0 | from_alpha = M_PI / 2; |
698 | 0 | } else { |
699 | 0 | from_tan_alpha = (from->y - centre->y) / (from->x - centre->x); |
700 | 0 | from_alpha = atan(from_tan_alpha); |
701 | 0 | } |
702 | 0 | to_tan_alpha = (to->y - centre->y) / (to->x - centre->x); |
703 | 0 | to_alpha = atan(to_tan_alpha); |
704 | |
|
705 | 0 | half_inscribed_angle = (from_alpha - to_alpha) / 2; |
706 | 0 | intersect_dist = radius / cos(half_inscribed_angle); |
707 | 0 | tangent_intersect_dist = tan(half_inscribed_angle) * radius; |
708 | |
|
709 | 0 | intersect_x = centre->x + cos(to_alpha + half_inscribed_angle) * intersect_dist; |
710 | 0 | intersect_y = centre->y + sin(to_alpha + half_inscribed_angle) * intersect_dist; |
711 | 0 | break; |
712 | | /* quadrant 1, arc goes clockwise */ |
713 | 0 | case 1: |
714 | 0 | from_tan_alpha = (from->y - centre->y) / (centre->x - from->x); |
715 | 0 | from_alpha = atan(from_tan_alpha); |
716 | |
|
717 | 0 | if (to->x == centre->x) { |
718 | 0 | to_alpha = M_PI / 2; |
719 | 0 | } else { |
720 | 0 | to_tan_alpha = (to->y - centre->y) / (centre->x - to->x); |
721 | 0 | to_alpha = atan(to_tan_alpha); |
722 | 0 | } |
723 | |
|
724 | 0 | half_inscribed_angle = (to_alpha - from_alpha) / 2; |
725 | 0 | intersect_dist = radius / cos(half_inscribed_angle); |
726 | 0 | tangent_intersect_dist = tan(half_inscribed_angle) * radius; |
727 | |
|
728 | 0 | intersect_x = centre->x - cos(from_alpha + half_inscribed_angle) * intersect_dist; |
729 | 0 | intersect_y = centre->y + sin(from_alpha + half_inscribed_angle) * intersect_dist; |
730 | 0 | break; |
731 | | /* quadrant 2, arc goes clockwise */ |
732 | 0 | case 2: |
733 | 0 | if (from->x == centre->x) { |
734 | 0 | from_alpha = M_PI / 2; |
735 | 0 | } else { |
736 | 0 | from_tan_alpha = (centre->y - from->y) / (centre->x - from->x); |
737 | 0 | from_alpha = atan(from_tan_alpha); |
738 | 0 | } |
739 | |
|
740 | 0 | to_tan_alpha = (centre->y - to->y) / (centre->x - to->x); |
741 | 0 | to_alpha = atan(to_tan_alpha); |
742 | |
|
743 | 0 | half_inscribed_angle = (to_alpha - from_alpha) / 2; |
744 | 0 | intersect_dist = radius / cos(half_inscribed_angle); |
745 | 0 | tangent_intersect_dist = tan(half_inscribed_angle) * radius; |
746 | |
|
747 | 0 | intersect_x = centre->x - cos(from_alpha + half_inscribed_angle) * intersect_dist; |
748 | 0 | intersect_y = centre->y - sin(from_alpha + half_inscribed_angle) * intersect_dist; |
749 | 0 | break; |
750 | | /* quadrant 3, arc goes clockwise */ |
751 | 0 | case 3: |
752 | 0 | from_tan_alpha = (centre->y - from->y) / (from->x - centre->x); |
753 | 0 | from_alpha = atan(from_tan_alpha); |
754 | |
|
755 | 0 | if (to->x == centre->x) { |
756 | 0 | to_alpha = M_PI / 2; |
757 | 0 | } else { |
758 | 0 | to_tan_alpha = (centre->y - to->y) / (to->x - centre->x); |
759 | 0 | to_alpha = atan(to_tan_alpha); |
760 | 0 | } |
761 | |
|
762 | 0 | half_inscribed_angle = (to_alpha - from_alpha) / 2; |
763 | 0 | intersect_dist = radius / cos(half_inscribed_angle); |
764 | 0 | tangent_intersect_dist = tan(half_inscribed_angle) * radius; |
765 | |
|
766 | 0 | intersect_x = centre->x + cos(from_alpha + half_inscribed_angle) * intersect_dist; |
767 | 0 | intersect_y = centre->y - sin(from_alpha + half_inscribed_angle) * intersect_dist; |
768 | 0 | break; |
769 | | /* quadrant 0, arc goes anti-clockwise */ |
770 | 0 | case 4: |
771 | 0 | from_tan_alpha = (from->y - centre->y) / (from->x - centre->x); |
772 | 0 | from_alpha = atan(from_tan_alpha); |
773 | |
|
774 | 0 | if (to->y == centre->y) |
775 | 0 | to_alpha = M_PI / 2; |
776 | 0 | else { |
777 | 0 | to_tan_alpha = (to->y - centre->y) / (to->x - centre->x); |
778 | 0 | to_alpha = atan(to_tan_alpha); |
779 | 0 | } |
780 | |
|
781 | 0 | half_inscribed_angle = (to_alpha - from_alpha) / 2; |
782 | 0 | intersect_dist = radius / cos(half_inscribed_angle); |
783 | 0 | tangent_intersect_dist = tan(half_inscribed_angle) * radius; |
784 | |
|
785 | 0 | intersect_x = centre->x + cos(from_alpha + half_inscribed_angle) * intersect_dist; |
786 | 0 | intersect_y = centre->y + sin(from_alpha + half_inscribed_angle) * intersect_dist; |
787 | 0 | break; |
788 | | /* quadrant 1, arc goes anti-clockwise */ |
789 | 0 | case 5: |
790 | 0 | from_tan_alpha = (centre->x - from->x) / (from->y - centre->y); |
791 | 0 | from_alpha = atan(from_tan_alpha); |
792 | |
|
793 | 0 | if (to->y == centre->y) { |
794 | 0 | to_alpha = M_PI / 2; |
795 | 0 | } |
796 | 0 | else { |
797 | 0 | to_tan_alpha = (centre->x - to->x) / (to->y - centre->y); |
798 | 0 | to_alpha = atan(to_tan_alpha); |
799 | 0 | } |
800 | |
|
801 | 0 | half_inscribed_angle = (to_alpha - from_alpha) / 2; |
802 | 0 | intersect_dist = radius / cos(half_inscribed_angle); |
803 | 0 | tangent_intersect_dist = tan(half_inscribed_angle) * radius; |
804 | |
|
805 | 0 | intersect_x = centre->x - sin(from_alpha + half_inscribed_angle) * intersect_dist; |
806 | 0 | intersect_y = centre->y + cos(from_alpha + half_inscribed_angle) * intersect_dist; |
807 | 0 | break; |
808 | | /* quadrant 2, arc goes anti-clockwise */ |
809 | 0 | case 6: |
810 | 0 | from_tan_alpha = (from->y - centre->y) / (centre->x - from->x); |
811 | 0 | from_alpha = atan(from_tan_alpha); |
812 | |
|
813 | 0 | if (to->x == centre->x) { |
814 | 0 | to_alpha = M_PI / 2; |
815 | 0 | } else { |
816 | 0 | to_tan_alpha = (centre->y - to->y) / (centre->x - to->x); |
817 | 0 | to_alpha = atan(to_tan_alpha); |
818 | 0 | } |
819 | |
|
820 | 0 | half_inscribed_angle = (to_alpha - from_alpha) / 2; |
821 | 0 | intersect_dist = radius / cos(half_inscribed_angle); |
822 | 0 | tangent_intersect_dist = tan(half_inscribed_angle) * radius; |
823 | |
|
824 | 0 | intersect_x = centre->x - cos(from_alpha + half_inscribed_angle) * intersect_dist; |
825 | 0 | intersect_y = centre->y - sin(from_alpha + half_inscribed_angle) * intersect_dist; |
826 | 0 | break; |
827 | | /* quadrant 3, arc goes anti-clockwise */ |
828 | 0 | case 7: |
829 | 0 | if (from->x == centre->x) { |
830 | 0 | from_alpha = M_PI / 2; |
831 | 0 | } else { |
832 | 0 | from_tan_alpha = (centre->y - from->y) / (from->x - centre->x); |
833 | 0 | from_alpha = atan(from_tan_alpha); |
834 | 0 | } |
835 | 0 | to_tan_alpha = (centre->y - to->y) / (to->x - centre->x); |
836 | 0 | to_alpha = atan(to_tan_alpha); |
837 | |
|
838 | 0 | half_inscribed_angle = (from_alpha - to_alpha) / 2; |
839 | 0 | intersect_dist = radius / cos(half_inscribed_angle); |
840 | 0 | tangent_intersect_dist = tan(half_inscribed_angle) * radius; |
841 | |
|
842 | 0 | intersect_x = centre->x + cos(to_alpha + half_inscribed_angle) * intersect_dist; |
843 | 0 | intersect_y = centre->y - sin(to_alpha + half_inscribed_angle) * intersect_dist; |
844 | 0 | break; |
845 | 0 | } |
846 | | |
847 | 0 | F = (4.0 / 3.0) / (1 + sqrt(1 + ((tangent_intersect_dist / radius) * (tangent_intersect_dist / radius)))); |
848 | |
|
849 | 0 | from_control->x = from->x - ((from->x - intersect_x) * F); |
850 | 0 | from_control->y = from->y - ((from->y - intersect_y) * F); |
851 | 0 | to_control->x = to->x - ((to->x - intersect_x) * F); |
852 | 0 | to_control->y = to->y - ((to->y - intersect_y) * F); |
853 | |
|
854 | 0 | return 0; |
855 | 0 | } |
856 | | |
857 | | /* Create a 'patch_curve' element whch is a straight line between two points */ |
858 | | static int patch_lineto(gs_matrix_fixed *ctm, gs_point *from, gs_point *to, patch_curve_t *p, float t) |
859 | 0 | { |
860 | 0 | double x_1third, x_2third, y_1third, y_2third; |
861 | |
|
862 | 0 | x_1third = (to->x - from->x) / 3; |
863 | 0 | x_2third = x_1third * 2; |
864 | 0 | y_1third = (to->y - from->y) / 3; |
865 | 0 | y_2third = y_1third * 2; |
866 | |
|
867 | 0 | gs_point_transform2fixed(ctm, from->x, from->y, &p->vertex.p); |
868 | 0 | gs_point_transform2fixed(ctm, from->x + x_1third, from->y + y_1third, &p->control[0]); |
869 | 0 | gs_point_transform2fixed(ctm, from->x + x_2third, from->y + y_2third, &p->control[1]); |
870 | |
|
871 | 0 | p->vertex.cc[0] = t; |
872 | 0 | p->vertex.cc[1] = t; |
873 | 0 | p->straight = 1; |
874 | |
|
875 | 0 | return 0; |
876 | 0 | } |
877 | | |
878 | | static int patch_curveto(gs_matrix_fixed *ctm, gs_point *centre, gs_point *from, gs_point *to, patch_curve_t *p, float t) |
879 | 0 | { |
880 | 0 | gs_point from_control, to_control; |
881 | |
|
882 | 0 | find_arc_control_points(from, to, &from_control, &to_control, centre); |
883 | |
|
884 | 0 | gs_point_transform2fixed(ctm, from->x, from->y, &p->vertex.p); |
885 | 0 | gs_point_transform2fixed(ctm, from_control.x, from_control.y, &p->control[0]); |
886 | 0 | gs_point_transform2fixed(ctm, to_control.x, to_control.y, &p->control[1]); |
887 | 0 | p->vertex.cc[0] = t; |
888 | 0 | p->vertex.cc[1] = t; |
889 | 0 | p->straight = 0; |
890 | |
|
891 | 0 | return 0; |
892 | 0 | } |
893 | | |
894 | | static int draw_quarter_annulus(patch_fill_state_t *pfs, gs_point *centre, double radius, gs_point *corner, float t) |
895 | 0 | { |
896 | 0 | gs_point p0, p1, initial; |
897 | 0 | patch_curve_t p[4]; |
898 | 0 | int code; |
899 | |
|
900 | 0 | if (corner->x > centre->x) { |
901 | 0 | initial.x = centre->x + radius; |
902 | 0 | } |
903 | 0 | else { |
904 | 0 | initial.x = centre->x - radius; |
905 | 0 | } |
906 | 0 | initial.y = centre->y; |
907 | |
|
908 | 0 | p1.x = initial.x; |
909 | 0 | p1.y = corner->y; |
910 | 0 | patch_lineto(&pfs->pgs->ctm, &initial, &p1, &p[0], t); |
911 | 0 | p0.x = centre->x; |
912 | 0 | p0.y = p1.y; |
913 | 0 | patch_lineto(&pfs->pgs->ctm, &p1, &p0, &p[1], t); |
914 | 0 | p1.x = centre->x; |
915 | 0 | if (centre->y > corner->y) { |
916 | 0 | p1.y = centre->y - radius; |
917 | 0 | } else { |
918 | 0 | p1.y = centre->y + radius; |
919 | 0 | } |
920 | 0 | patch_lineto(&pfs->pgs->ctm, &p0, &p1, &p[2], t); |
921 | 0 | patch_curveto(&pfs->pgs->ctm, centre, &p1, &initial, &p[3], t); |
922 | 0 | code = patch_fill(pfs, (const patch_curve_t *)&p, NULL, NULL); |
923 | 0 | if (code < 0) |
924 | 0 | return code; |
925 | | |
926 | 0 | if (corner->x > centre->x) |
927 | 0 | initial.x = corner->x - (corner->x - (centre->x + radius)); |
928 | 0 | else |
929 | 0 | initial.x = centre->x - radius; |
930 | 0 | initial.y = corner->y; |
931 | 0 | patch_lineto(&pfs->pgs->ctm, corner, &initial, &p[0], t); |
932 | |
|
933 | 0 | p0.x = initial.x; |
934 | 0 | p0.y = centre->y; |
935 | 0 | patch_lineto(&pfs->pgs->ctm, &initial, &p0, &p[1], t); |
936 | |
|
937 | 0 | p1.y = p0.y; |
938 | 0 | p1.x = corner->x; |
939 | 0 | patch_lineto(&pfs->pgs->ctm, &p0, &p1, &p[2], t); |
940 | 0 | patch_lineto(&pfs->pgs->ctm, &p1, corner, &p[3], t); |
941 | |
|
942 | 0 | return (patch_fill(pfs, (const patch_curve_t *)&p, NULL, NULL)); |
943 | 0 | } |
944 | | |
945 | | static int R_tensor_annulus_extend_tangent(patch_fill_state_t *pfs, |
946 | | double x0, double y0, double r0, double t0, |
947 | | double x1, double y1, double r1, double t1, double r2) |
948 | 0 | { |
949 | 0 | patch_curve_t curve[4]; |
950 | 0 | gs_point p0, p1; |
951 | 0 | int code = 0, q = 0; |
952 | | |
953 | | /* special case axis aligned circles. Its quicker to handle these specially as it |
954 | | * avoid lots of trigonometry in the general case code, and avoids us |
955 | | * having to watch out for infinity as the result of tan() operations. |
956 | | */ |
957 | 0 | if (x0 == x1 || y0 == y1) { |
958 | 0 | if (x0 == x1 && y0 > y1) { |
959 | | /* tangent at top of circles */ |
960 | 0 | p0.x = x1, p0.y = y1; |
961 | 0 | p1.x = x1 + r2, p1.y = y1 - r2; |
962 | 0 | draw_quarter_annulus(pfs, &p0, r1, &p1, t0); |
963 | 0 | p1.x = x1 - r2, p1.y = y1 - r2; |
964 | 0 | draw_quarter_annulus(pfs, &p0, r1, &p1, t0); |
965 | 0 | p1.x = x1 + r2, p1.y = y1 + r1; |
966 | 0 | draw_quarter_annulus(pfs, &p0, r1, &p1, t0); |
967 | 0 | p1.x = x1 - r2, p1.y = y1 + r1; |
968 | 0 | draw_quarter_annulus(pfs, &p0, r1, &p1, t0); |
969 | 0 | } |
970 | 0 | if (x0 == x1 && y0 < y1) { |
971 | | /* tangent at bottom of circles */ |
972 | 0 | p0.x = x1, p0.y = y1; |
973 | 0 | p1.x = x1 + r2, p1.y = y1 + r2; |
974 | 0 | draw_quarter_annulus(pfs, &p0, r1, &p1, t0); |
975 | 0 | p1.x = x1 - r2, p1.y = y1 + r2; |
976 | 0 | draw_quarter_annulus(pfs, &p0, r1, &p1, t0); |
977 | 0 | p1.x = x1 + r2, p1.y = y1 - r1; |
978 | 0 | draw_quarter_annulus(pfs, &p0, r1, &p1, t0); |
979 | 0 | p1.x = x1 - r2, p1.y = y1 - r1; |
980 | 0 | draw_quarter_annulus(pfs, &p0, r1, &p1, t0); |
981 | 0 | } |
982 | 0 | if (y0 == y1 && x0 > x1) { |
983 | | /* tangent at right of circles */ |
984 | 0 | p0.x = x1, p0.y = y1; |
985 | 0 | p1.x = x1 - r2, p1.y = y1 - r2; |
986 | 0 | draw_quarter_annulus(pfs, &p0, r1, &p1, t0); |
987 | 0 | p1.x = x1 - r2, p1.y = y1 + r2; |
988 | 0 | draw_quarter_annulus(pfs, &p0, r1, &p1, t0); |
989 | 0 | p1.x = x1 + r1, p1.y = y1 + r2; |
990 | 0 | draw_quarter_annulus(pfs, &p0, r1, &p1, t0); |
991 | 0 | p1.x = x1 + r1, p1.y = y1 - r2; |
992 | 0 | draw_quarter_annulus(pfs, &p0, r1, &p1, t0); |
993 | 0 | } |
994 | 0 | if (y0 == y1 && x0 < x1) { |
995 | | /* tangent at left of circles */ |
996 | 0 | p0.x = x1, p0.y = y1; |
997 | 0 | p1.x = x1 + r2, p1.y = y1 - r2; |
998 | 0 | draw_quarter_annulus(pfs, &p0, r1, &p1, t0); |
999 | 0 | p1.x = x1 + r2, p1.y = y1 + r2; |
1000 | 0 | draw_quarter_annulus(pfs, &p0, r1, &p1, t0); |
1001 | 0 | p1.x = x1 - r1, p1.y = y1 + r2; |
1002 | 0 | draw_quarter_annulus(pfs, &p0, r1, &p1, t0); |
1003 | 0 | p1.x = x1 - r1, p1.y = y1 - r2; |
1004 | 0 | draw_quarter_annulus(pfs, &p0, r1, &p1, t0); |
1005 | 0 | } |
1006 | 0 | } |
1007 | 0 | else { |
1008 | 0 | double tx, ty, endx, endy, intersectx, intersecty, alpha, sinalpha, cosalpha, tanalpha; |
1009 | 0 | gs_point centre; |
1010 | | |
1011 | | /* First lets figure out which quadrant the smaller circle is in (we always |
1012 | | * get called to fill from the larger circle), x0, y0, r0 is the smaller circle. |
1013 | | */ |
1014 | 0 | if (x0 < x1) { |
1015 | 0 | if (y0 < y1) |
1016 | 0 | q = 2; |
1017 | 0 | else |
1018 | 0 | q = 1; |
1019 | 0 | } else { |
1020 | 0 | if (y0 < y1) |
1021 | 0 | q = 3; |
1022 | 0 | else |
1023 | 0 | q = 0; |
1024 | 0 | } |
1025 | 0 | switch(q) { |
1026 | 0 | case 0: |
1027 | | /* We have two four-sided elements, from the tangent point |
1028 | | * each side, to the point where the tangent crosses an |
1029 | | * axis of the larger circle. A line back to the edge |
1030 | | * of the larger circle, a line to the point where an axis |
1031 | | * crosses the smaller circle, then an arc back to the starting point. |
1032 | | */ |
1033 | | /* Figure out the tangent point */ |
1034 | | /* sin (angle) = y1 - y0 / r1 - r0 |
1035 | | * ty = ((y1 - y0) / (r1 - r0)) * r1 |
1036 | | */ |
1037 | 0 | ty = y1 + ((y0 - y1) / (r1 - r0)) * r1; |
1038 | 0 | tx = x1 + ((x0 - x1) / (r1 - r0)) * r1; |
1039 | | /* Now actually calculating the point where the tangent crosses the axis of the larger circle |
1040 | | * So we need to know the angle the tangent makes with the axis of the smaller circle |
1041 | | * as its the same angle where it crosses the axis of the larger circle. |
1042 | | * We know the centres and the tangent are co-linear, so sin(a) = y0 - y1 / r1 - r0 |
1043 | | * We know the tangent is r1 from the centre of the larger circle, so the hypotenuse |
1044 | | * is r0 / cos(a). That gives us 'x' and we already know y as its the centre of the larger |
1045 | | * circle |
1046 | | */ |
1047 | 0 | sinalpha = (y0 - y1) / (r1 - r0); |
1048 | 0 | alpha = asin(sinalpha); |
1049 | 0 | cosalpha = cos(alpha); |
1050 | 0 | intersectx = x1 + (r1 / cosalpha); |
1051 | 0 | intersecty = y1; |
1052 | |
|
1053 | 0 | p0.x = tx, p0.y = ty; |
1054 | 0 | p1.x = tx + (intersectx - tx) / 2, p1.y = ty - (ty - intersecty) / 2; |
1055 | 0 | patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0); |
1056 | 0 | p0.x = intersectx, p0.y = intersecty; |
1057 | 0 | patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0); |
1058 | 0 | p1.x = x1 + r1, p1.y = y1; |
1059 | 0 | patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0); |
1060 | 0 | p0.x = tx, p0.y = ty; |
1061 | 0 | centre.x = x1, centre.y = y1; |
1062 | 0 | patch_curveto(&pfs->pgs->ctm, ¢re, &p1, &p0, &curve[3], t0); |
1063 | 0 | code = patch_fill(pfs, curve, NULL, NULL); |
1064 | 0 | if (code < 0) |
1065 | 0 | return code; |
1066 | | |
1067 | 0 | if (intersectx < x1 + r2) { |
1068 | | /* didn't get all the way to the edge, quadrant 3 is composed of 2 quads :-( |
1069 | | * An 'annulus' where the right edge is less than the normal extent and a |
1070 | | * quad which is a rectangle with one corner chopped of at an angle. |
1071 | | */ |
1072 | 0 | p0.x = x1, p0.y = y1; |
1073 | 0 | p1.x = intersectx, p1.y = y1 - r2; |
1074 | 0 | draw_quarter_annulus(pfs, &p0, r1, &p1, t0); |
1075 | 0 | endx = x1 + r2; |
1076 | 0 | endy = y1 - (tan ((M_PI / 2) - alpha)) * (endx - intersectx); |
1077 | 0 | p0.x = intersectx, p0.y = y1; |
1078 | 0 | p1.x = x1 + r2, p1.y = endy; |
1079 | 0 | patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0); |
1080 | 0 | p0.x = x1 + r2, p0.y = y0 - r2; |
1081 | 0 | patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0); |
1082 | 0 | p1.x = intersectx, p1.y = p0.y; |
1083 | 0 | patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0); |
1084 | 0 | p0.x = intersectx, p0.y = y1; |
1085 | 0 | patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[3], t0); |
1086 | 0 | code = patch_fill(pfs, curve, NULL, NULL); |
1087 | 0 | if (code < 0) |
1088 | 0 | return code; |
1089 | |
|
1090 | 0 | } else { |
1091 | | /* Quadrant 3 is a normal quarter annulua */ |
1092 | 0 | p0.x = x1, p0.y = y1; |
1093 | 0 | p1.x = x1 + r2, p1.y = y1 - r2; |
1094 | 0 | draw_quarter_annulus(pfs, &p0, r1, &p1, t0); |
1095 | 0 | } |
1096 | | |
1097 | | /* Q2 is always a full annulus... */ |
1098 | 0 | p0.x = x1, p0.y = y1; |
1099 | 0 | p1.x = x1 - r2, p1.y = y1 - r2; |
1100 | 0 | draw_quarter_annulus(pfs, &p0, r1, &p1, t0); |
1101 | | |
1102 | | /* alpha is now the angle between the x axis and the tangent to the |
1103 | | * circles. |
1104 | | */ |
1105 | 0 | alpha = (M_PI / 2) - alpha; |
1106 | 0 | cosalpha = cos(alpha); |
1107 | 0 | endy = y1 + (r1 / cosalpha); |
1108 | 0 | endx = x1; |
1109 | |
|
1110 | 0 | p0.x = tx, p0.y = ty; |
1111 | 0 | p1.x = endx - ((endx - tx) / 2), p1.y = endy - ((endy - ty) / 2); |
1112 | 0 | patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0); |
1113 | 0 | p0.x = endx, p0.y = endy; |
1114 | 0 | patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0); |
1115 | 0 | p1.x = x1, p1.y = y1 + r1; |
1116 | 0 | patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0); |
1117 | 0 | p0.x = tx, p0.y = ty; |
1118 | 0 | centre.x = x1, centre.y = y1; |
1119 | 0 | patch_curveto(&pfs->pgs->ctm, ¢re, &p1, &p0, &curve[3], t0); |
1120 | 0 | code = patch_fill(pfs, curve, NULL, NULL); |
1121 | 0 | if (code < 0) |
1122 | 0 | return code; |
1123 | | |
1124 | | /* Q1 is simimlar to Q3, either a full quarter annulus |
1125 | | * or a partial one, depending on where the tangent crosses |
1126 | | * the y axis |
1127 | | */ |
1128 | 0 | tanalpha = tan(alpha); |
1129 | 0 | intersecty = y1 + tanalpha * (r2 + (intersectx - x1)); |
1130 | 0 | intersectx = x1 - r2; |
1131 | |
|
1132 | 0 | if (endy < y1 + r2) { |
1133 | | /* didn't get all the way to the edge, quadrant 1 is composed of 2 quads :-( |
1134 | | * An 'annulus' where the right edge is less than the normal extent and a |
1135 | | * quad which is a rectangle with one corner chopped of at an angle. |
1136 | | */ |
1137 | 0 | p0.x = x1, p0.y = y1; |
1138 | 0 | p1.x = x1 - r2, p1.y = endy; |
1139 | 0 | draw_quarter_annulus(pfs, &p0, r1, &p1, t0); |
1140 | 0 | p0.x = x1, p0.y = y1 + r1; |
1141 | 0 | p1.x = x1, p1.y = endy; |
1142 | 0 | patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0); |
1143 | 0 | p0.x = x1 - r2, p0.y = intersecty; |
1144 | 0 | patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0); |
1145 | 0 | p1.x = p0.x, p1.y = y1 + r1; |
1146 | 0 | patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0); |
1147 | 0 | p0.x = x1, p0.y = y1 + r1; |
1148 | 0 | patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[3], t0); |
1149 | 0 | code = patch_fill(pfs, curve, NULL, NULL); |
1150 | 0 | if (code < 0) |
1151 | 0 | return code; |
1152 | 0 | } else { |
1153 | | /* Quadrant 1 is a normal quarter annulua */ |
1154 | 0 | p0.x = x1, p0.y = y1; |
1155 | 0 | p1.x = x1 - r2, p1.y = y1 + r2; |
1156 | 0 | draw_quarter_annulus(pfs, &p0, r1, &p1, t0); |
1157 | 0 | } |
1158 | 0 | break; |
1159 | 0 | case 1: |
1160 | | /* We have two four-sided elements, from the tangent point |
1161 | | * each side, to the point where the tangent crosses an |
1162 | | * axis of the larger circle. A line back to the edge |
1163 | | * of the larger circle, a line to the point where an axis |
1164 | | * crosses the smaller circle, then an arc back to the starting point. |
1165 | | */ |
1166 | | /* Figure out the tangent point */ |
1167 | | /* sin (angle) = y1 - y0 / r1 - r0 |
1168 | | * ty = ((y1 - y0) / (r1 - r0)) * r1 |
1169 | | */ |
1170 | 0 | ty = y1 + ((y0 - y1) / (r1 - r0)) * r1; |
1171 | 0 | tx = x1 - ((x1 - x0) / (r1 - r0)) * r1; |
1172 | | /* Now actually calculating the point where the tangent crosses the axis of the larger circle |
1173 | | * So we need to know the angle the tangent makes with the axis of the smaller circle |
1174 | | * as its the same angle where it crosses the axis of the larger circle. |
1175 | | * We know the centres and the tangent are co-linear, so sin(a) = y0 - y1 / r1 - r0 |
1176 | | * We know the tangent is r1 from the centre of the larger circle, so the hypotenuse |
1177 | | * is r0 / cos(a). That gives us 'x' and we already know y as its the centre of the larger |
1178 | | * circle |
1179 | | */ |
1180 | 0 | sinalpha = (y0 - y1) / (r1 - r0); |
1181 | 0 | alpha = asin(sinalpha); |
1182 | 0 | cosalpha = cos(alpha); |
1183 | 0 | intersectx = x1 - (r1 / cosalpha); |
1184 | 0 | intersecty = y1; |
1185 | |
|
1186 | 0 | p0.x = tx, p0.y = ty; |
1187 | 0 | p1.x = tx - (tx - intersectx) / 2, p1.y = ty - (ty - intersecty) / 2; |
1188 | 0 | patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0); |
1189 | 0 | p0.x = intersectx, p0.y = intersecty; |
1190 | 0 | patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0); |
1191 | 0 | p1.x = x1 - r1, p1.y = y1; |
1192 | 0 | patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0); |
1193 | 0 | p0.x = tx, p0.y = ty; |
1194 | 0 | centre.x = x1, centre.y = y1; |
1195 | 0 | patch_curveto(&pfs->pgs->ctm, ¢re, &p1, &p0, &curve[3], t0); |
1196 | 0 | code = patch_fill(pfs, curve, NULL, NULL); |
1197 | 0 | if (code < 0) |
1198 | 0 | return code; |
1199 | | |
1200 | 0 | if (intersectx > x1 - r2) { |
1201 | | /* didn't get all the way to the edge, quadrant 2 is composed of 2 quads :-( |
1202 | | * An 'annulus' where the right edge is less than the normal extent and a |
1203 | | * quad which is a rectangle with one corner chopped of at an angle. |
1204 | | */ |
1205 | 0 | p0.x = x1, p0.y = y1; |
1206 | 0 | p1.x = intersectx, p1.y = y1 - r2; |
1207 | 0 | draw_quarter_annulus(pfs, &p0, r1, &p1, t0); |
1208 | 0 | endx = x1 - r2; |
1209 | 0 | endy = y1 - (tan ((M_PI / 2) - alpha)) * (intersectx - endx); |
1210 | 0 | p0.x = intersectx, p0.y = y1; |
1211 | 0 | p1.x = x1 - r2, p1.y = endy; |
1212 | 0 | patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0); |
1213 | 0 | p0.x = x1 - r2, p0.y = y0 - r2; |
1214 | 0 | patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0); |
1215 | 0 | p1.x = intersectx, p1.y = p0.y; |
1216 | 0 | patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0); |
1217 | 0 | p0.x = intersectx, p0.y = y1; |
1218 | 0 | patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[3], t0); |
1219 | 0 | code = patch_fill(pfs, curve, NULL, NULL); |
1220 | 0 | if (code < 0) |
1221 | 0 | return code; |
1222 | |
|
1223 | 0 | } else { |
1224 | | /* Quadrant 2 is a normal quarter annulua */ |
1225 | 0 | p0.x = x1, p0.y = y1; |
1226 | 0 | p1.x = x1 - r2, p1.y = y1 - r2; |
1227 | 0 | draw_quarter_annulus(pfs, &p0, r1, &p1, t0); |
1228 | 0 | } |
1229 | | |
1230 | | /* Q3 is always a full annulus... */ |
1231 | 0 | p0.x = x1, p0.y = y1; |
1232 | 0 | p1.x = x1 + r2, p1.y = y1 - r2; |
1233 | 0 | draw_quarter_annulus(pfs, &p0, r1, &p1, t0); |
1234 | | |
1235 | | /* alpha is now the angle between the x axis and the tangent to the |
1236 | | * circles. |
1237 | | */ |
1238 | 0 | alpha = (M_PI / 2) - alpha; |
1239 | 0 | cosalpha = cos(alpha); |
1240 | 0 | endy = y1 + (r1 / cosalpha); |
1241 | 0 | endx = x1; |
1242 | |
|
1243 | 0 | p0.x = tx, p0.y = ty; |
1244 | 0 | p1.x = endx + ((tx - endx) / 2), p1.y = endy - ((endy - ty) / 2); |
1245 | 0 | patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0); |
1246 | 0 | p0.x = endx, p0.y = endy; |
1247 | 0 | patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0); |
1248 | 0 | p1.x = x1, p1.y = y1 + r1; |
1249 | 0 | patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0); |
1250 | 0 | p0.x = tx, p0.y = ty; |
1251 | 0 | centre.x = x1, centre.y = y1; |
1252 | 0 | patch_curveto(&pfs->pgs->ctm, ¢re, &p1, &p0, &curve[3], t0); |
1253 | 0 | code = patch_fill(pfs, curve, NULL, NULL); |
1254 | 0 | if (code < 0) |
1255 | 0 | return code; |
1256 | | |
1257 | | /* Q0 is simimlar to Q2, either a full quarter annulus |
1258 | | * or a partial one, depending on where the tangent crosses |
1259 | | * the y axis |
1260 | | */ |
1261 | 0 | tanalpha = tan(alpha); |
1262 | 0 | intersecty = y1 + tanalpha * (r2 + (x1 - intersectx)); |
1263 | 0 | intersectx = x1 + r2; |
1264 | |
|
1265 | 0 | if (endy < y1 + r2) { |
1266 | | /* didn't get all the way to the edge, quadrant 0 is composed of 2 quads :-( |
1267 | | * An 'annulus' where the right edge is less than the normal extent and a |
1268 | | * quad which is a rectangle with one corner chopped of at an angle. |
1269 | | */ |
1270 | 0 | p0.x = x1, p0.y = y1; |
1271 | 0 | p1.x = x1 + r2, p1.y = endy; |
1272 | 0 | draw_quarter_annulus(pfs, &p0, r1, &p1, t0); |
1273 | 0 | p0.x = x1, p0.y = y1 + r1; |
1274 | 0 | p1.x = x1, p1.y = endy; |
1275 | 0 | patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0); |
1276 | 0 | p0.x = x1 + r2, p0.y = intersecty; |
1277 | 0 | patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0); |
1278 | 0 | p1.x = p0.x, p1.y = y1 + r1; |
1279 | 0 | patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0); |
1280 | 0 | p0.x = x1, p0.y = y1 + r1; |
1281 | 0 | patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[3], t0); |
1282 | 0 | code = patch_fill(pfs, curve, NULL, NULL); |
1283 | 0 | if (code < 0) |
1284 | 0 | return code; |
1285 | 0 | } else { |
1286 | | /* Quadrant 0 is a normal quarter annulua */ |
1287 | 0 | p0.x = x1, p0.y = y1; |
1288 | 0 | p1.x = x1 + r2, p1.y = y1 + r2; |
1289 | 0 | draw_quarter_annulus(pfs, &p0, r1, &p1, t0); |
1290 | 0 | } |
1291 | 0 | break; |
1292 | 0 | case 2: |
1293 | | /* We have two four-sided elements, from the tangent point |
1294 | | * each side, to the point where the tangent crosses an |
1295 | | * axis of the larger circle. A line back to the edge |
1296 | | * of the larger circle, a line to the point where an axis |
1297 | | * crosses the smaller circle, then an arc back to the starting point. |
1298 | | */ |
1299 | | /* Figure out the tangent point */ |
1300 | | /* sin (angle) = y1 - y0 / r1 - r0 |
1301 | | * ty = ((y1 - y0) / (r1 - r0)) * r1 |
1302 | | */ |
1303 | 0 | ty = y1 - ((y1 - y0) / (r1 - r0)) * r1; |
1304 | 0 | tx = x1 - ((x1 - x0) / (r1 - r0)) * r1; |
1305 | | /* Now actually calculating the point where the tangent crosses the axis of the larger circle |
1306 | | * So we need to know the angle the tangent makes with the axis of the smaller circle |
1307 | | * as its the same angle where it crosses the axis of the larger circle. |
1308 | | * We know the centres and the tangent are co-linear, so sin(a) = y0 - y1 / r1 - r0 |
1309 | | * We know the tangent is r1 from the centre of the larger circle, so the hypotenuse |
1310 | | * is r0 / cos(a). That gives us 'x' and we already know y as its the centre of the larger |
1311 | | * circle |
1312 | | */ |
1313 | 0 | sinalpha = (y1 - y0) / (r1 - r0); |
1314 | 0 | alpha = asin(sinalpha); |
1315 | 0 | cosalpha = cos(alpha); |
1316 | 0 | intersectx = x1 - (r1 / cosalpha); |
1317 | 0 | intersecty = y1; |
1318 | |
|
1319 | 0 | p0.x = tx, p0.y = ty; |
1320 | 0 | p1.x = tx + (intersectx - tx) / 2, p1.y = ty - (ty - intersecty) / 2; |
1321 | 0 | patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0); |
1322 | 0 | p0.x = intersectx, p0.y = intersecty; |
1323 | 0 | patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0); |
1324 | 0 | p1.x = x1 - r1, p1.y = y1; |
1325 | 0 | patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0); |
1326 | 0 | p0.x = tx, p0.y = ty; |
1327 | 0 | centre.x = x1, centre.y = y1; |
1328 | 0 | patch_curveto(&pfs->pgs->ctm, ¢re, &p1, &p0, &curve[3], t0); |
1329 | 0 | code = patch_fill(pfs, curve, NULL, NULL); |
1330 | 0 | if (code < 0) |
1331 | 0 | return code; |
1332 | 0 | if (intersectx > x1 - r2) { |
1333 | | /* didn't get all the way to the edge, quadrant 1 is composed of 2 quads :-( |
1334 | | * An 'annulus' where the right edge is less than the normal extent and a |
1335 | | * quad which is a rectangle with one corner chopped of at an angle. |
1336 | | */ |
1337 | 0 | p0.x = x1, p0.y = y1; |
1338 | 0 | p1.x = intersectx, p1.y = y1 + r2; |
1339 | 0 | draw_quarter_annulus(pfs, &p0, r1, &p1, t0); |
1340 | 0 | endy = y1+r2; |
1341 | 0 | endx = intersectx - ((endy - intersecty) / (tan ((M_PI / 2) - alpha))); |
1342 | 0 | p0.x = intersectx, p0.y = y1; |
1343 | 0 | p1.x = endx, p1.y = endy; |
1344 | 0 | patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0); |
1345 | 0 | p0.x = x1 - r1, p0.y = endy; |
1346 | 0 | patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0); |
1347 | 0 | p1.x = x1 - r1, p1.y = y1; |
1348 | 0 | patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0); |
1349 | 0 | p0.x = intersectx, p0.y = y1; |
1350 | 0 | patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[3], t0); |
1351 | 0 | code = patch_fill(pfs, curve, NULL, NULL); |
1352 | 0 | if (code < 0) |
1353 | 0 | return code; |
1354 | 0 | } else { |
1355 | | /* Quadrant 1 is a normal quarter annulua */ |
1356 | 0 | p0.x = x1, p0.y = y1; |
1357 | 0 | p1.x = x1 - r2, p1.y = y1 + r2; |
1358 | 0 | draw_quarter_annulus(pfs, &p0, r1, &p1, t0); |
1359 | 0 | } |
1360 | | |
1361 | | /* Q0 is always a full annulus... */ |
1362 | 0 | p0.x = x1, p0.y = y1; |
1363 | 0 | p1.x = x1 + r2, p1.y = y1 + r2; |
1364 | 0 | if (p1.y < 0) |
1365 | 0 | p1.y = 0; |
1366 | 0 | draw_quarter_annulus(pfs, &p0, r1, &p1, t0); |
1367 | | |
1368 | | /* alpha is now the angle between the x axis and the tangent to the |
1369 | | * circles. |
1370 | | */ |
1371 | 0 | alpha = (M_PI / 2) - alpha; |
1372 | 0 | cosalpha = cos(alpha); |
1373 | 0 | endy = y1 - (r1 / cosalpha); |
1374 | 0 | endx = x1; |
1375 | |
|
1376 | 0 | p0.x = tx, p0.y = ty; |
1377 | 0 | p1.x = endx + ((endx - tx) / 2), p1.y = endy - ((ty - endy) / 2); |
1378 | 0 | patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0); |
1379 | 0 | p0.x = endx, p0.y = endy; |
1380 | 0 | patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0); |
1381 | 0 | p1.x = x1, p1.y = y1 - r1; |
1382 | 0 | patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0); |
1383 | 0 | p0.x = tx, p0.y = ty; |
1384 | 0 | centre.x = x1, centre.y = y1; |
1385 | 0 | patch_curveto(&pfs->pgs->ctm, ¢re, &p1, &p0, &curve[3], t0); |
1386 | 0 | code = patch_fill(pfs, curve, NULL, NULL); |
1387 | 0 | if (code < 0) |
1388 | 0 | return code; |
1389 | | |
1390 | | /* Q3 is simimlar to Q1, either a full quarter annulus |
1391 | | * or a partial one, depending on where the tangent crosses |
1392 | | * the y axis |
1393 | | */ |
1394 | 0 | tanalpha = tan(alpha); |
1395 | 0 | intersecty = y1 - tanalpha * (r2 + (x1 - intersectx)); |
1396 | 0 | intersectx = x1 + r2; |
1397 | |
|
1398 | 0 | if (endy > y1 - r2) { |
1399 | | /* didn't get all the way to the edge, quadrant 3 is composed of 2 quads :-( |
1400 | | * An 'annulus' where the right edge is less than the normal extent and a |
1401 | | * quad which is a rectangle with one corner chopped of at an angle. |
1402 | | */ |
1403 | 0 | p0.x = x1, p0.y = y1; |
1404 | 0 | p1.x = x1 + r2, p1.y = endy; |
1405 | 0 | draw_quarter_annulus(pfs, &p0, r1, &p1, t0); |
1406 | 0 | p0.x = x1, p0.y = y1 - r1; |
1407 | 0 | p1.x = x1, p1.y = endy; |
1408 | 0 | patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0); |
1409 | 0 | p0.x = x1 + r2, p0.y = intersecty; |
1410 | 0 | patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0); |
1411 | 0 | p1.x = p0.x, p1.y = y1 - r1; |
1412 | 0 | patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0); |
1413 | 0 | p0.x = x1, p0.y = y1 - r1; |
1414 | 0 | patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[3], t0); |
1415 | 0 | code = patch_fill(pfs, curve, NULL, NULL); |
1416 | 0 | if (code < 0) |
1417 | 0 | return code; |
1418 | 0 | } else { |
1419 | | /* Quadrant 1 is a normal quarter annulua */ |
1420 | 0 | p0.x = x1, p0.y = y1; |
1421 | 0 | p1.x = x1 + r2, p1.y = y1 - r2; |
1422 | 0 | draw_quarter_annulus(pfs, &p0, r1, &p1, t0); |
1423 | 0 | } |
1424 | 0 | break; |
1425 | 0 | case 3: |
1426 | | /* We have two four-sided elements, from the tangent point |
1427 | | * each side, to the point where the tangent crosses an |
1428 | | * axis of the larger circle. A line back to the edge |
1429 | | * of the larger circle, a line to the point where an axis |
1430 | | * crosses the smaller circle, then an arc back to the starting point. |
1431 | | */ |
1432 | | /* Figure out the tangent point */ |
1433 | | /* sin (angle) = y1 - y0 / r1 - r0 |
1434 | | * ty = ((y1 - y0) / (r1 - r0)) * r1 |
1435 | | */ |
1436 | 0 | ty = y1 - ((y1 - y0) / (r1 - r0)) * r1; |
1437 | 0 | tx = x1 + ((x0 - x1) / (r1 - r0)) * r1; |
1438 | | /* Now actually calculating the point where the tangent crosses the axis of the larger circle |
1439 | | * So we need to know the angle the tangent makes with the axis of the smaller circle |
1440 | | * as its the same angle where it crosses the axis of the larger circle. |
1441 | | * We know the centres and the tangent are co-linear, so sin(a) = y0 - y1 / r1 - r0 |
1442 | | * We know the tangent is r1 from the centre of the larger circle, so the hypotenuse |
1443 | | * is r0 / cos(a). That gives us 'x' and we already know y as its the centre of the larger |
1444 | | * circle |
1445 | | */ |
1446 | 0 | sinalpha = (y1 - y0) / (r1 - r0); |
1447 | 0 | alpha = asin(sinalpha); |
1448 | 0 | cosalpha = cos(alpha); |
1449 | 0 | intersectx = x1 + (r1 / cosalpha); |
1450 | 0 | intersecty = y1; |
1451 | |
|
1452 | 0 | p0.x = tx, p0.y = ty; |
1453 | 0 | p1.x = tx + (intersectx - tx) / 2, p1.y = ty + (intersecty - ty) / 2; |
1454 | 0 | patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0); |
1455 | 0 | p0.x = intersectx, p0.y = intersecty; |
1456 | 0 | patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0); |
1457 | 0 | p1.x = x1 + r1, p1.y = y1; |
1458 | 0 | patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0); |
1459 | 0 | p0.x = tx, p0.y = ty; |
1460 | 0 | centre.x = x1, centre.y = y1; |
1461 | 0 | patch_curveto(&pfs->pgs->ctm, ¢re, &p1, &p0, &curve[3], t0); |
1462 | 0 | code = patch_fill(pfs, curve, NULL, NULL); |
1463 | 0 | if (code < 0) |
1464 | 0 | return code; |
1465 | 0 | if (intersectx < x1 + r2) { |
1466 | | /* didn't get all the way to the edge, quadrant 0 is composed of 2 quads :-( |
1467 | | * An 'annulus' where the right edge is less than the normal extent and a |
1468 | | * quad which is a rectangle with one corner chopped of at an angle. |
1469 | | */ |
1470 | 0 | p0.x = x1, p0.y = y1; |
1471 | 0 | p1.x = intersectx, p1.y = y1 + r2; |
1472 | 0 | draw_quarter_annulus(pfs, &p0, r1, &p1, t0); |
1473 | 0 | endy = y1 + r2; |
1474 | 0 | endx = intersectx + ((endy - intersecty) / (tan ((M_PI / 2) - alpha))); |
1475 | 0 | p0.x = intersectx, p0.y = y1; |
1476 | 0 | p1.x = endx, p1.y = endy; |
1477 | 0 | patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0); |
1478 | 0 | p0.x = x1 + r1, p0.y = endy; |
1479 | 0 | patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0); |
1480 | 0 | p1.x = x1 + r1, p1.y = y1; |
1481 | 0 | patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0); |
1482 | 0 | p0.x = intersectx, p0.y = y1; |
1483 | 0 | patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[3], t0); |
1484 | 0 | code = patch_fill(pfs, curve, NULL, NULL); |
1485 | 0 | if (code < 0) |
1486 | 0 | return code; |
1487 | |
|
1488 | 0 | } else { |
1489 | | /* Quadrant 0 is a normal quarter annulua */ |
1490 | 0 | p0.x = x1, p0.y = y1; |
1491 | 0 | p1.x = x1 + r2, p1.y = y1 + r2; |
1492 | 0 | draw_quarter_annulus(pfs, &p0, r1, &p1, t0); |
1493 | 0 | } |
1494 | | /* Q1 is always a full annulus... */ |
1495 | 0 | p0.x = x1, p0.y = y1; |
1496 | 0 | p1.x = x1 - r2, p1.y = y1 + r2; |
1497 | 0 | draw_quarter_annulus(pfs, &p0, r1, &p1, t0); |
1498 | | |
1499 | | /* alpha is now the angle between the x axis and the tangent to the |
1500 | | * circles. |
1501 | | */ |
1502 | 0 | alpha = (M_PI / 2) - alpha; |
1503 | 0 | cosalpha = cos(alpha); |
1504 | 0 | endy = y1 - (r1 / cosalpha); |
1505 | 0 | endx = x1; |
1506 | |
|
1507 | 0 | p0.x = tx, p0.y = ty; |
1508 | 0 | p1.x = endx + ((tx - endx) / 2), p1.y = endy + ((ty - endy) / 2); |
1509 | 0 | patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0); |
1510 | 0 | p0.x = endx, p0.y = endy; |
1511 | 0 | patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0); |
1512 | 0 | p1.x = x1, p1.y = y1 - r1; |
1513 | 0 | patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0); |
1514 | 0 | p0.x = tx, p0.y = ty; |
1515 | 0 | centre.x = x1, centre.y = y1; |
1516 | 0 | patch_curveto(&pfs->pgs->ctm, ¢re, &p1, &p0, &curve[3], t0); |
1517 | 0 | code = patch_fill(pfs, curve, NULL, NULL); |
1518 | 0 | if (code < 0) |
1519 | 0 | return code; |
1520 | | |
1521 | | /* Q3 is simimlar to Q1, either a full quarter annulus |
1522 | | * or a partial one, depending on where the tangent crosses |
1523 | | * the y axis |
1524 | | */ |
1525 | 0 | tanalpha = tan(alpha); |
1526 | 0 | intersecty = y1 - tanalpha * (r2 + (intersectx - x1)); |
1527 | 0 | intersectx = x1 - r2; |
1528 | |
|
1529 | 0 | if (endy > y1 - r2) { |
1530 | | /* didn't get all the way to the edge, quadrant 3 is composed of 2 quads :-( |
1531 | | * An 'annulus' where the right edge is less than the normal extent and a |
1532 | | * quad which is a rectangle with one corner chopped of at an angle. |
1533 | | */ |
1534 | 0 | p0.x = x1, p0.y = y1; |
1535 | 0 | p1.x = x1 - r2, p1.y = endy; |
1536 | 0 | draw_quarter_annulus(pfs, &p0, r1, &p1, t0); |
1537 | 0 | p0.x = x1, p0.y = y1 - r1; |
1538 | 0 | p1.x = x1, p1.y = endy; |
1539 | 0 | patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0); |
1540 | 0 | p0.x = x1 - r2, p0.y = intersecty; |
1541 | 0 | patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0); |
1542 | 0 | p1.x = p0.x, p1.y = y1 - r1; |
1543 | 0 | patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0); |
1544 | 0 | p0.x = x1, p0.y = y1 - r1; |
1545 | 0 | patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[3], t0); |
1546 | 0 | code = patch_fill(pfs, curve, NULL, NULL); |
1547 | 0 | if (code < 0) |
1548 | 0 | return code; |
1549 | 0 | } else { |
1550 | | /* Quadrant 1 is a normal quarter annulua */ |
1551 | 0 | p0.x = x1, p0.y = y1; |
1552 | 0 | p1.x = x1 - r2, p1.y = y1 - r2; |
1553 | 0 | draw_quarter_annulus(pfs, &p0, r1, &p1, t0); |
1554 | 0 | } |
1555 | 0 | break; |
1556 | 0 | } |
1557 | 0 | } |
1558 | 0 | return 0; |
1559 | 0 | } |
1560 | | |
1561 | | static int |
1562 | | R_outer_circle(patch_fill_state_t *pfs, const gs_rect *rect, |
1563 | | double x0, double y0, double r0, |
1564 | | double x1, double y1, double r1, |
1565 | | double *x2, double *y2, double *r2) |
1566 | 0 | { |
1567 | 0 | double dx = x1 - x0, dy = y1 - y0; |
1568 | 0 | double sp, sq, s; |
1569 | | |
1570 | | /* Compute a cone circle, which contacts the rect externally. */ |
1571 | | /* Don't bother with all 4 sides of the rect, |
1572 | | just do with the X or Y span only, |
1573 | | so it's not an exact contact, sorry. */ |
1574 | 0 | if (any_abs(dx) > any_abs(dy)) { |
1575 | | /* Solving : |
1576 | | x0 + (x1 - x0) * sq + r0 + (r1 - r0) * sq == bbox_px |
1577 | | (x1 - x0) * sp + (r1 - r0) * sp == bbox_px - x0 - r0 |
1578 | | sp = (bbox_px - x0 - r0) / (x1 - x0 + r1 - r0) |
1579 | | |
1580 | | x0 + (x1 - x0) * sq - r0 - (r1 - r0) * sq == bbox_qx |
1581 | | (x1 - x0) * sq - (r1 - r0) * sq == bbox_x - x0 + r0 |
1582 | | sq = (bbox_x - x0 + r0) / (x1 - x0 - r1 + r0) |
1583 | | */ |
1584 | 0 | if (x1 - x0 + r1 - r0 == 0) /* We checked for obtuse cone. */ |
1585 | 0 | return_error(gs_error_unregistered); /* Must not happen. */ |
1586 | 0 | if (x1 - x0 - r1 + r0 == 0) /* We checked for obtuse cone. */ |
1587 | 0 | return_error(gs_error_unregistered); /* Must not happen. */ |
1588 | 0 | sp = (rect->p.x - x0 - r0) / (x1 - x0 + r1 - r0); |
1589 | 0 | sq = (rect->q.x - x0 + r0) / (x1 - x0 - r1 + r0); |
1590 | 0 | } else { |
1591 | | /* Same by Y. */ |
1592 | 0 | if (y1 - y0 + r1 - r0 == 0) /* We checked for obtuse cone. */ |
1593 | 0 | return_error(gs_error_unregistered); /* Must not happen. */ |
1594 | 0 | if (y1 - y0 - r1 + r0 == 0) /* We checked for obtuse cone. */ |
1595 | 0 | return_error(gs_error_unregistered); /* Must not happen. */ |
1596 | 0 | sp = (rect->p.y - y0 - r0) / (y1 - y0 + r1 - r0); |
1597 | 0 | sq = (rect->q.y - y0 + r0) / (y1 - y0 - r1 + r0); |
1598 | 0 | } |
1599 | 0 | if (sp >= 1 && sq >= 1) |
1600 | 0 | s = max(sp, sq); |
1601 | 0 | else if(sp >= 1) |
1602 | 0 | s = sp; |
1603 | 0 | else if (sq >= 1) |
1604 | 0 | s = sq; |
1605 | 0 | else { |
1606 | | /* The circle 1 is outside the rect, use it. */ |
1607 | 0 | s = 1; |
1608 | 0 | } |
1609 | 0 | if (r0 + (r1 - r0) * s < 0) { |
1610 | | /* Passed the cone apex, use the apex. */ |
1611 | 0 | s = r0 / (r0 - r1); |
1612 | 0 | *r2 = 0; |
1613 | 0 | } else |
1614 | 0 | *r2 = r0 + (r1 - r0) * s; |
1615 | 0 | *x2 = x0 + (x1 - x0) * s; |
1616 | 0 | *y2 = y0 + (y1 - y0) * s; |
1617 | 0 | return 0; |
1618 | 0 | } |
1619 | | |
1620 | | static double |
1621 | | R_rect_radius(const gs_rect *rect, double x0, double y0) |
1622 | 36 | { |
1623 | 36 | double d, dd; |
1624 | | |
1625 | 36 | dd = hypot(rect->p.x - x0, rect->p.y - y0); |
1626 | 36 | d = hypot(rect->p.x - x0, rect->q.y - y0); |
1627 | 36 | dd = max(dd, d); |
1628 | 36 | d = hypot(rect->q.x - x0, rect->q.y - y0); |
1629 | 36 | dd = max(dd, d); |
1630 | 36 | d = hypot(rect->q.x - x0, rect->p.y - y0); |
1631 | 36 | dd = max(dd, d); |
1632 | 36 | return dd; |
1633 | 36 | } |
1634 | | |
1635 | | static int |
1636 | | R_fill_triangle_new(patch_fill_state_t *pfs, const gs_rect *rect, |
1637 | | double x0, double y0, double x1, double y1, double x2, double y2, double t) |
1638 | 0 | { |
1639 | 0 | shading_vertex_t p0, p1, p2; |
1640 | 0 | patch_color_t *c; |
1641 | 0 | int code; |
1642 | 0 | reserve_colors(pfs, &c, 1); /* Can't fail */ |
1643 | |
|
1644 | 0 | p0.c = c; |
1645 | 0 | p1.c = c; |
1646 | 0 | p2.c = c; |
1647 | 0 | code = gs_point_transform2fixed(&pfs->pgs->ctm, x0, y0, &p0.p); |
1648 | 0 | if (code >= 0) |
1649 | 0 | code = gs_point_transform2fixed(&pfs->pgs->ctm, x1, y1, &p1.p); |
1650 | 0 | if (code >= 0) |
1651 | 0 | code = gs_point_transform2fixed(&pfs->pgs->ctm, x2, y2, &p2.p); |
1652 | 0 | if (code >= 0) { |
1653 | 0 | c->t[0] = c->t[1] = t; |
1654 | 0 | patch_resolve_color(c, pfs); |
1655 | 0 | code = mesh_triangle(pfs, &p0, &p1, &p2); |
1656 | 0 | } |
1657 | 0 | release_colors(pfs, pfs->color_stack, 1); |
1658 | 0 | return code; |
1659 | 0 | } |
1660 | | |
1661 | | static int |
1662 | | R_obtuse_cone(patch_fill_state_t *pfs, const gs_rect *rect, |
1663 | | double x0, double y0, double r0, |
1664 | | double x1, double y1, double r1, double t0, double r_rect) |
1665 | 0 | { |
1666 | 0 | double dx = x1 - x0, dy = y1 - y0, dr = any_abs(r1 - r0); |
1667 | 0 | double d = hypot(dx, dy); |
1668 | | /* Assuming dr > d / 3 && d > dr + 1e-7 * (d + dr), see the caller. */ |
1669 | 0 | double r = r_rect * 1.4143; /* A few bigger than sqrt(2). */ |
1670 | 0 | double ax, ay, as; /* Cone apex. */ |
1671 | 0 | double g0; /* The distance from apex to the tangent point of the 0th circle. */ |
1672 | 0 | int code; |
1673 | |
|
1674 | 0 | as = r0 / (r0 - r1); |
1675 | 0 | ax = x0 + (x1 - x0) * as; |
1676 | 0 | ay = y0 + (y1 - y0) * as; |
1677 | 0 | g0 = sqrt(dx * dx + dy * dy - dr * dr) * as; |
1678 | 0 | if (g0 < 1e-7 * r0) { |
1679 | | /* Nearly degenerate, replace with half-plane. */ |
1680 | | /* Restrict the half plane with triangle, which covers the rect. */ |
1681 | 0 | gs_point p0, p1, p2; /* Right tangent limit, apex limit, left tangent linit, |
1682 | | (right, left == when looking from the apex). */ |
1683 | |
|
1684 | 0 | p0.x = ax - dy * r / d; |
1685 | 0 | p0.y = ay + dx * r / d; |
1686 | 0 | p1.x = ax - dx * r / d; |
1687 | 0 | p1.y = ay - dy * r / d; |
1688 | 0 | p2.x = ax + dy * r / d; |
1689 | 0 | p2.y = ay - dx * r / d; |
1690 | | /* Split into 2 triangles at the apex, |
1691 | | so that the apex is preciselly covered. |
1692 | | Especially important when it is not exactly degenerate. */ |
1693 | 0 | code = R_fill_triangle_new(pfs, rect, ax, ay, p0.x, p0.y, p1.x, p1.y, t0); |
1694 | 0 | if (code < 0) |
1695 | 0 | return code; |
1696 | 0 | return R_fill_triangle_new(pfs, rect, ax, ay, p1.x, p1.y, p2.x, p2.y, t0); |
1697 | 0 | } else { |
1698 | | /* Compute the "limit" circle so that its |
1699 | | tangent points are outside the rect. */ |
1700 | | /* Note: this branch is executed when the condition above is false : |
1701 | | g0 >= 1e-7 * r0 . |
1702 | | We believe that computing this branch with doubles |
1703 | | provides enough precision after converting coordinates into 'fixed', |
1704 | | and that the limit circle radius is not dramatically big. |
1705 | | */ |
1706 | 0 | double es, er; /* The limit circle parameter, radius. */ |
1707 | 0 | double ex, ey; /* The limit circle centrum. */ |
1708 | |
|
1709 | 0 | es = as - as * r / g0; /* Always negative. */ |
1710 | 0 | er = r * r0 / g0 ; |
1711 | 0 | ex = x0 + dx * es; |
1712 | 0 | ey = y0 + dy * es; |
1713 | | /* Fill the annulus: */ |
1714 | 0 | code = R_tensor_annulus(pfs, x0, y0, r0, t0, ex, ey, er, t0); |
1715 | 0 | if (code < 0) |
1716 | 0 | return code; |
1717 | | /* Fill entire ending circle to ensure entire rect is covered. */ |
1718 | 0 | return R_tensor_annulus(pfs, ex, ey, er, t0, ex, ey, 0, t0); |
1719 | 0 | } |
1720 | 0 | } |
1721 | | |
1722 | | static int |
1723 | | R_tensor_cone_apex(patch_fill_state_t *pfs, const gs_rect *rect, |
1724 | | double x0, double y0, double r0, |
1725 | | double x1, double y1, double r1, double t) |
1726 | 0 | { |
1727 | 0 | double as = r0 / (r0 - r1); |
1728 | 0 | double ax = x0 + (x1 - x0) * as; |
1729 | 0 | double ay = y0 + (y1 - y0) * as; |
1730 | |
|
1731 | 0 | return R_tensor_annulus(pfs, x1, y1, r1, t, ax, ay, 0, t); |
1732 | 0 | } |
1733 | | |
1734 | | /* |
1735 | | * A map of this code: |
1736 | | * |
1737 | | * R_extensions |
1738 | | * |-> (R_rect_radius) |
1739 | | * |-> (R_outer_circle) |
1740 | | * |-> R_obtuse_cone |
1741 | | * | |-> R_fill_triangle_new |
1742 | | * | | '-> mesh_triangle |
1743 | | * | | '-> mesh_triangle_rec <--. |
1744 | | * | | |--------------------' |
1745 | | * | | |-> small_mesh_triangle |
1746 | | * | | | '-> fill_triangle |
1747 | | * | | | '-> triangle_by_4 <--. |
1748 | | * | | | |----------------' |
1749 | | * | | | |-> constant_color_triangle |
1750 | | * | | | |-> make_wedge_median (etc) |
1751 | | * | | '-----------+--------------------. |
1752 | | * | '-------------------. | |
1753 | | * |-> R_tensor_cone_apex | | |
1754 | | * | '-------------------+ | |
1755 | | * '-> R_tensor_annulus <--' \|/ |
1756 | | * |-> (make_quadrant_arc) | |
1757 | | * '-> patch_fill | |
1758 | | * |-> fill_patch <--. | |
1759 | | * | |-------------' | |
1760 | | * | |------------------------------------+ |
1761 | | * | '-> fill_stripe | |
1762 | | * | |-----------------------. | |
1763 | | * | \|/ | | |
1764 | | * |-> fill_wedges | | |
1765 | | * '-> fill_wedges_aux <--. | | |
1766 | | * |------------------' \|/ | |
1767 | | * |----------------> mesh_padding ' |
1768 | | * | '----------------------------------. |
1769 | | * '-> wedge_by_triangles <--. . | |
1770 | | * |---------------------' | | |
1771 | | * '-> fill_triangle_wedge <----' | |
1772 | | * '-> fill_triangle_wedge_aux | |
1773 | | * '-> fill_wedge_trap | |
1774 | | * '-> wedge_trap_decompose | |
1775 | | * '-> linear_color_trapezoid | |
1776 | | * '-> decompose_linear_color <--| |
1777 | | * |-------------------------' |
1778 | | * '-> constant_color_trapezoid |
1779 | | */ |
1780 | | static int |
1781 | | R_extensions(patch_fill_state_t *pfs, const gs_shading_R_t *psh, const gs_rect *rect, |
1782 | | double t0, double t1, bool Extend0, bool Extend1) |
1783 | 76 | { |
1784 | 76 | float x0 = psh->params.Coords[0], y0 = psh->params.Coords[1]; |
1785 | 76 | double r0 = psh->params.Coords[2]; |
1786 | 76 | float x1 = psh->params.Coords[3], y1 = psh->params.Coords[4]; |
1787 | 76 | double r1 = psh->params.Coords[5]; |
1788 | 76 | double dx = x1 - x0, dy = y1 - y0, dr = any_abs(r1 - r0); |
1789 | 76 | double d = hypot(dx, dy), r; |
1790 | 76 | int code; |
1791 | | |
1792 | | /* In order for the circles to be nested, one end circle |
1793 | | * needs to be sufficiently large to cover the entirety |
1794 | | * of the other end circle. i.e. |
1795 | | * |
1796 | | * max(r0,r1) >= d + min(r0,r1) |
1797 | | * === min(r0,r1) + dr >= d + min(r0,r1) |
1798 | | * === dr >= d |
1799 | | * |
1800 | | * This, plus a fudge factor for FP operation is what we use below. |
1801 | | * |
1802 | | * An "Obtuse Cone" is defined to be one for which the "opening |
1803 | | * angle" is obtuse. |
1804 | | * |
1805 | | * Consider two circles; one at (r0,r0) of radius r0, and one at |
1806 | | * (r1,r1) of radius r1. These clearly lie on the acute/obtuse |
1807 | | * boundary. The distance between the centres of these two circles |
1808 | | * is d = sqr(2.(r0-r1)^2) by pythagoras. Thus d = sqr(2).dr. |
1809 | | * By observation if d gets longer, we become acute, shorter, obtuse. |
1810 | | * i.e. if sqr(2).dr > d we are obtuse, if d > sqr(2).dr we are acute. |
1811 | | * (Thanks to Paul Gardiner for this reasoning). |
1812 | | * |
1813 | | * The code below tests (dr > d/3) (i.e. 3.dr > d). This |
1814 | | * appears to be a factor of 2 and a bit out, so I am confused |
1815 | | * by it. |
1816 | | * |
1817 | | * Either Igor meant something different to the standard meaning |
1818 | | * of "Obtuse Cone", or he got his maths wrong. Or he was more |
1819 | | * cunning than I can understand. Leave it as it until we find |
1820 | | * an actual example that goes wrong. |
1821 | | */ |
1822 | | |
1823 | | /* Tests with Acrobat seem to indicate that it uses a fudge factor |
1824 | | * of around .0001. (i.e. [1.0001 0 0 0 0 1] is accepted as a |
1825 | | * non nested circle, but [1.00009 0 0 0 0 1] is a nested one. |
1826 | | * Approximate the same sort of value here to appease bug 690831. |
1827 | | */ |
1828 | 76 | if (any_abs (dr - d) < 0.001) { |
1829 | 0 | if ((r0 > r1 && Extend0) || (r1 > r0 && Extend1)) { |
1830 | 0 | r = R_rect_radius(rect, x0, y0); |
1831 | 0 | if (r0 < r1) |
1832 | 0 | code = R_tensor_annulus_extend_tangent(pfs, x0, y0, r0, t1, x1, y1, r1, t1, r); |
1833 | 0 | else |
1834 | 0 | code = R_tensor_annulus_extend_tangent(pfs, x1, y1, r1, t0, x0, y0, r0, t0, r); |
1835 | 0 | if (code < 0) |
1836 | 0 | return code; |
1837 | 0 | } else { |
1838 | 0 | if (r0 > r1) { |
1839 | 0 | if (Extend1 && r1 > 0) |
1840 | 0 | return R_tensor_annulus(pfs, x1, y1, r1, t1, x1, y1, 0, t1); |
1841 | 0 | } |
1842 | 0 | else { |
1843 | 0 | if (Extend0 && r0 > 0) |
1844 | 0 | return R_tensor_annulus(pfs, x0, y0, r0, t0, x0, y0, 0, t0); |
1845 | 0 | } |
1846 | 0 | } |
1847 | 0 | } else |
1848 | 76 | if (dr > d - 1e-4 * (d + dr)) { |
1849 | | /* Nested circles, or degenerate. */ |
1850 | 76 | if (r0 > r1) { |
1851 | 0 | if (Extend0) { |
1852 | 0 | r = R_rect_radius(rect, x0, y0); |
1853 | 0 | if (r > r0) { |
1854 | 0 | code = R_tensor_annulus(pfs, x0, y0, r, t0, x0, y0, r0, t0); |
1855 | 0 | if (code < 0) |
1856 | 0 | return code; |
1857 | 0 | } |
1858 | 0 | } |
1859 | 0 | if (Extend1 && r1 > 0) |
1860 | 0 | return R_tensor_annulus(pfs, x1, y1, r1, t1, x1, y1, 0, t1); |
1861 | 76 | } else { |
1862 | 76 | if (Extend1) { |
1863 | 36 | r = R_rect_radius(rect, x1, y1); |
1864 | 36 | if (r > r1) { |
1865 | 36 | code = R_tensor_annulus(pfs, x1, y1, r, t1, x1, y1, r1, t1); |
1866 | 36 | if (code < 0) |
1867 | 0 | return code; |
1868 | 36 | } |
1869 | 36 | } |
1870 | 76 | if (Extend0 && r0 > 0) |
1871 | 0 | return R_tensor_annulus(pfs, x0, y0, r0, t0, x0, y0, 0, t0); |
1872 | 76 | } |
1873 | 76 | } else if (dr > d / 3) { |
1874 | | /* Obtuse cone. */ |
1875 | 0 | if (r0 > r1) { |
1876 | 0 | if (Extend0) { |
1877 | 0 | r = R_rect_radius(rect, x0, y0); |
1878 | 0 | code = R_obtuse_cone(pfs, rect, x0, y0, r0, x1, y1, r1, t0, r); |
1879 | 0 | if (code < 0) |
1880 | 0 | return code; |
1881 | 0 | } |
1882 | 0 | if (Extend1 && r1 != 0) |
1883 | 0 | return R_tensor_cone_apex(pfs, rect, x0, y0, r0, x1, y1, r1, t1); |
1884 | 0 | return 0; |
1885 | 0 | } else { |
1886 | 0 | if (Extend1) { |
1887 | 0 | r = R_rect_radius(rect, x1, y1); |
1888 | 0 | code = R_obtuse_cone(pfs, rect, x1, y1, r1, x0, y0, r0, t1, r); |
1889 | 0 | if (code < 0) |
1890 | 0 | return code; |
1891 | 0 | } |
1892 | 0 | if (Extend0 && r0 != 0) |
1893 | 0 | return R_tensor_cone_apex(pfs, rect, x1, y1, r1, x0, y0, r0, t0); |
1894 | 0 | } |
1895 | 0 | } else { |
1896 | | /* Acute cone or cylinder. */ |
1897 | 0 | double x2, y2, r2, x3, y3, r3; |
1898 | |
|
1899 | 0 | if (Extend0) { |
1900 | 0 | code = R_outer_circle(pfs, rect, x1, y1, r1, x0, y0, r0, &x3, &y3, &r3); |
1901 | 0 | if (code < 0) |
1902 | 0 | return code; |
1903 | 0 | if (x3 != x1 || y3 != y1) { |
1904 | 0 | code = R_tensor_annulus(pfs, x0, y0, r0, t0, x3, y3, r3, t0); |
1905 | 0 | if (code < 0) |
1906 | 0 | return code; |
1907 | 0 | } |
1908 | 0 | } |
1909 | 0 | if (Extend1) { |
1910 | 0 | code = R_outer_circle(pfs, rect, x0, y0, r0, x1, y1, r1, &x2, &y2, &r2); |
1911 | 0 | if (code < 0) |
1912 | 0 | return code; |
1913 | 0 | if (x2 != x0 || y2 != y0) { |
1914 | 0 | code = R_tensor_annulus(pfs, x1, y1, r1, t1, x2, y2, r2, t1); |
1915 | 0 | if (code < 0) |
1916 | 0 | return code; |
1917 | 0 | } |
1918 | 0 | } |
1919 | 0 | } |
1920 | 76 | return 0; |
1921 | 76 | } |
1922 | | |
1923 | | static int |
1924 | | R_fill_rect_with_const_color(patch_fill_state_t *pfs, const gs_fixed_rect *clip_rect, float t) |
1925 | 0 | { |
1926 | | #if 0 /* Disabled because the clist writer device doesn't pass |
1927 | | the clipping path with fill_recatangle. */ |
1928 | | patch_color_t pc; |
1929 | | const gs_color_space *pcs = pfs->direct_space; |
1930 | | gx_device_color dc; |
1931 | | int code; |
1932 | | |
1933 | | code = gs_function_evaluate(pfs->Function, &t, pc.cc.paint.values); |
1934 | | if (code < 0) |
1935 | | return code; |
1936 | | pcs->type->restrict_color(&pc.cc, pcs); |
1937 | | code = patch_color_to_device_color(pfs, &pc, &dc); |
1938 | | if (code < 0) |
1939 | | return code; |
1940 | | return gx_fill_rectangle_device_rop(fixed2int_pixround(clip_rect->p.x), fixed2int_pixround(clip_rect->p.y), |
1941 | | fixed2int_pixround(clip_rect->q.x) - fixed2int_pixround(clip_rect->p.x), |
1942 | | fixed2int_pixround(clip_rect->q.y) - fixed2int_pixround(clip_rect->p.y), |
1943 | | &dc, pfs->dev, pfs->pgs->log_op); |
1944 | | #else |
1945 | | /* Can't apply fill_rectangle, because the clist writer device doesn't pass |
1946 | | the clipping path with fill_recatangle. Convert into trapezoids instead. |
1947 | | */ |
1948 | 0 | quadrangle_patch p; |
1949 | 0 | shading_vertex_t pp[2][2]; |
1950 | 0 | const gs_color_space *pcs = pfs->direct_space; |
1951 | 0 | patch_color_t pc; |
1952 | 0 | int code; |
1953 | |
|
1954 | 0 | code = gs_function_evaluate(pfs->Function, &t, pc.cc.paint.values); |
1955 | 0 | if (code < 0) |
1956 | 0 | return code; |
1957 | 0 | pcs->type->restrict_color(&pc.cc, pcs); |
1958 | 0 | pc.t[0] = pc.t[1] = t; |
1959 | 0 | pp[0][0].p = clip_rect->p; |
1960 | 0 | pp[0][1].p.x = clip_rect->q.x; |
1961 | 0 | pp[0][1].p.y = clip_rect->p.y; |
1962 | 0 | pp[1][0].p.x = clip_rect->p.x; |
1963 | 0 | pp[1][0].p.y = clip_rect->q.y; |
1964 | 0 | pp[1][1].p = clip_rect->q; |
1965 | 0 | pp[0][0].c = pp[0][1].c = pp[1][0].c = pp[1][1].c = &pc; |
1966 | 0 | p.p[0][0] = &pp[0][0]; |
1967 | 0 | p.p[0][1] = &pp[0][1]; |
1968 | 0 | p.p[1][0] = &pp[1][0]; |
1969 | 0 | p.p[1][1] = &pp[1][1]; |
1970 | 0 | return constant_color_quadrangle(pfs, &p, false); |
1971 | 0 | #endif |
1972 | 0 | } |
1973 | | |
1974 | | typedef struct radial_shading_attrs_s { |
1975 | | double x0, y0; |
1976 | | double x1, y1; |
1977 | | double span[2][2]; |
1978 | | double apex; |
1979 | | bool have_apex; |
1980 | | bool have_root[2]; /* ongoing contact, outgoing contact. */ |
1981 | | bool outer_contact[2]; |
1982 | | gs_point p[6]; /* 4 corners of the rectangle, p[4] = p[0], p[5] = p[1] */ |
1983 | | } radial_shading_attrs_t; |
1984 | | |
1985 | 672 | #define Pw2(a) ((a)*(a)) |
1986 | | |
1987 | | static void |
1988 | | radial_shading_external_contact(radial_shading_attrs_t *rsa, int point_index, double t, double r0, double r1, bool at_corner, int root_index) |
1989 | 144 | { |
1990 | 144 | double cx = rsa->x0 + (rsa->x1 - rsa->x0) * t; |
1991 | 144 | double cy = rsa->y0 + (rsa->y1 - rsa->y0) * t; |
1992 | 144 | double rx = rsa->p[point_index].x - cx; |
1993 | 144 | double ry = rsa->p[point_index].y - cy; |
1994 | 144 | double dx = rsa->p[point_index - 1].x - rsa->p[point_index].x; |
1995 | 144 | double dy = rsa->p[point_index - 1].y - rsa->p[point_index].y; |
1996 | | |
1997 | 144 | if (at_corner) { |
1998 | 112 | double Dx = rsa->p[point_index + 1].x - rsa->p[point_index].x; |
1999 | 112 | double Dy = rsa->p[point_index + 1].y - rsa->p[point_index].y; |
2000 | 112 | bool b1 = (dx * rx + dy * ry >= 0); |
2001 | 112 | bool b2 = (Dx * rx + Dy * ry >= 0); |
2002 | | |
2003 | 112 | if (b1 & b2) |
2004 | 48 | rsa->outer_contact[root_index] = true; |
2005 | 112 | } else { |
2006 | 32 | if (rx * dy - ry * dx < 0) |
2007 | 0 | rsa->outer_contact[root_index] = true; |
2008 | 32 | } |
2009 | 144 | } |
2010 | | |
2011 | | static void |
2012 | | store_roots(radial_shading_attrs_t *rsa, const bool have_root[2], const double t[2], double r0, double r1, int point_index, bool at_corner) |
2013 | 192 | { |
2014 | 192 | int i; |
2015 | | |
2016 | 576 | for (i = 0; i < 2; i++) { |
2017 | 384 | bool good_root; |
2018 | | |
2019 | 384 | if (!have_root[i]) |
2020 | 160 | continue; |
2021 | 224 | good_root = (!rsa->have_apex || (rsa->apex <= 0 || r0 == 0 ? t[i] >= rsa->apex : t[i] <= rsa->apex)); |
2022 | 224 | if (good_root) { |
2023 | 144 | radial_shading_external_contact(rsa, point_index, t[i], r0, r1, at_corner, i); |
2024 | 144 | if (!rsa->have_root[i]) { |
2025 | 7 | rsa->span[i][0] = rsa->span[i][1] = t[i]; |
2026 | 7 | rsa->have_root[i] = true; |
2027 | 137 | } else { |
2028 | 137 | if (rsa->span[i][0] > t[i]) |
2029 | 5 | rsa->span[i][0] = t[i]; |
2030 | 137 | if (rsa->span[i][1] < t[i]) |
2031 | 10 | rsa->span[i][1] = t[i]; |
2032 | 137 | } |
2033 | 144 | } |
2034 | 224 | } |
2035 | 192 | } |
2036 | | |
2037 | | static void |
2038 | | compute_radial_shading_span_extended_side(radial_shading_attrs_t *rsa, double r0, double r1, int point_index) |
2039 | 96 | { |
2040 | 96 | double cc, c; |
2041 | 96 | bool have_root[2] = {false, false}; |
2042 | 96 | double t[2]; |
2043 | 96 | bool by_x = (rsa->p[point_index].x != rsa->p[point_index + 1].x); |
2044 | 96 | int i; |
2045 | | |
2046 | | /* As t moves from 0 to 1, the circles move from r0 to r1, and from |
2047 | | * from position p0 to py. For simplicity, adjust so that p0 is at |
2048 | | * the origin. Consider the projection of the circle drawn at any given |
2049 | | * time onto the x axis. The range of points would be: |
2050 | | * p1x*t +/- (r0+(r1-r0)*t). We are interested in the first (and last) |
2051 | | * moments when the range includes a point c on the x axis. So solve for: |
2052 | | * p1x*t +/- (r0+(r1-r0)*t) = c. Let cc = p1x. |
2053 | | * So p1x*t0 + (r1-r0)*t0 = c - r0 => t0 = (c - r0)/(p1x + r1 - r0) |
2054 | | * p1x*t1 - (r1-r0)*t1 = c + r0 => t1 = (c + r0)/(p1x - r1 + r0) |
2055 | | */ |
2056 | 96 | if (by_x) { |
2057 | 40 | c = rsa->p[point_index].x - rsa->x0; |
2058 | 40 | cc = rsa->x1 - rsa->x0; |
2059 | 56 | } else { |
2060 | 56 | c = rsa->p[point_index].y - rsa->y0; |
2061 | 56 | cc = rsa->y1 - rsa->y0; |
2062 | 56 | } |
2063 | 96 | t[0] = (c - r0) / (cc + r1 - r0); |
2064 | 96 | t[1] = (c + r0) / (cc - r1 + r0); |
2065 | 96 | if (t[0] > t[1]) { |
2066 | 76 | c = t[0]; |
2067 | 76 | t[0] = t[1]; |
2068 | 76 | t[1] = c; |
2069 | 76 | } |
2070 | 288 | for (i = 0; i < 2; i++) { |
2071 | 192 | double d, d0, d1; |
2072 | | |
2073 | 192 | if (by_x) { |
2074 | 80 | d = rsa->y1 - rsa->y0 + r0 + (r1 - r0) * t[i]; |
2075 | 80 | d0 = rsa->p[point_index].y; |
2076 | 80 | d1 = rsa->p[point_index + 1].y; |
2077 | 112 | } else { |
2078 | 112 | d = rsa->x1 - rsa->x0 + r0 + (r1 - r0) * t[i]; |
2079 | 112 | d0 = rsa->p[point_index].x; |
2080 | 112 | d1 = rsa->p[point_index + 1].x; |
2081 | 112 | } |
2082 | 192 | if (d1 > d0 ? d0 <= d && d <= d1 : d1 <= d && d <= d0) |
2083 | 32 | have_root[i] = true; |
2084 | 192 | } |
2085 | 96 | store_roots(rsa, have_root, t, r0, r1, point_index, false); |
2086 | 96 | } |
2087 | | |
2088 | | static int |
2089 | | compute_radial_shading_span_extended_point(radial_shading_attrs_t *rsa, double r0, double r1, int point_index) |
2090 | 96 | { |
2091 | | /* As t moves from 0 to 1, the circles move from r0 to r1, and from |
2092 | | * from position p0 to py. At any given time t, therefore, we |
2093 | | * paint the points that are distance r0+(r1-r0)*t from point |
2094 | | * (p0x+(p1x-p0x)*t,p0y+(p1y-p0y)*t) = P(t). |
2095 | | * |
2096 | | * To simplify our algebra, adjust so that (p0x, p0y) is at the origin. |
2097 | | * To find the time(s) t at which the a point q is painted, we therefore |
2098 | | * solve for t in: |
2099 | | * |
2100 | | * |q-P(t)| = r0+(r1-r0)*t |
2101 | | * |
2102 | | * (qx-p1x*t)^2 + (qy-p1y*t)^2 - (r0+(r1-r0)*t)^2 = 0 |
2103 | | * = qx^2 - 2qx.p1x.t + p1x^2.t^2 + qy^2 - 2qy.p1y.t + p1y^2.t^2 - |
2104 | | * (r0^2 + 2r0(r1-r0)t + (r1-r0)^2.t^2) |
2105 | | * = qx^2 + qy^2 - r0^2 |
2106 | | * + -2(qx.p1x + qy.p1y + r0(r1-r0)).t |
2107 | | * + (p1x^2 + p1y^2 - (r1-r0)^2).t^2 |
2108 | | * |
2109 | | * So solve using the usual t = (-b +/- SQRT(b^2 - 4ac)) where |
2110 | | * a = p1x^2 + p1y^2 - (r1-r0)^2 |
2111 | | * b = -2(qx.p1x + qy.p1y + r0(r1-r0)) |
2112 | | * c = qx^2 + qy^2 - r0^2 |
2113 | | */ |
2114 | 96 | double p1x = rsa->x1 - rsa->x0; |
2115 | 96 | double p1y = rsa->y1 - rsa->y0; |
2116 | 96 | double qx = rsa->p[point_index].x - rsa->x0; |
2117 | 96 | double qy = rsa->p[point_index].y - rsa->y0; |
2118 | 96 | double a = (Pw2(p1x) + Pw2(p1y) - Pw2(r0 - r1)); |
2119 | 96 | bool have_root[2] = {false, false}; |
2120 | 96 | double t[2]; |
2121 | | |
2122 | 96 | if (fabs(a) < 1e-8) { |
2123 | | /* Linear equation. */ |
2124 | | /* This case is always the ongoing ellipse contact. */ |
2125 | 0 | double cx = rsa->x0 - (rsa->x1 - rsa->x0) * r0 / (r1 - r0); |
2126 | 0 | double cy = rsa->y0 - (rsa->y1 - rsa->y0) * r0 / (r1 - r0); |
2127 | |
|
2128 | 0 | t[0] = (Pw2(qx) + Pw2(qy))/(cx*qx + cy*qy) / 2; |
2129 | 0 | have_root[0] = true; |
2130 | 96 | } else { |
2131 | | /* Square equation. No solution if b^2 - 4ac = 0. Equivalently if |
2132 | | * (b^2)/4 -a.c = 0 === (b/2)^2 - a.c = 0 === (-b/2)^2 - a.c = 0 */ |
2133 | 96 | double minushalfb = r0*(r1-r0) + p1x*qx + p1y*qy; |
2134 | 96 | double c = Pw2(qx) + Pw2(qy) - Pw2(r0); |
2135 | 96 | double desc2 = Pw2(minushalfb) - a*c; /* desc2 = 1/4 (b^2-4ac) */ |
2136 | | |
2137 | 96 | if (desc2 < 0) { |
2138 | 0 | return -1; /* The point is outside the shading coverage. |
2139 | | Do not shorten, because we didn't observe it in practice. */ |
2140 | 96 | } else { |
2141 | 96 | double desc1 = sqrt(desc2); /* desc1 = 1/2 SQRT(b^2-4ac) */ |
2142 | | |
2143 | 96 | if (a > 0) { |
2144 | 0 | t[0] = (minushalfb - desc1) / a; |
2145 | 0 | t[1] = (minushalfb + desc1) / a; |
2146 | 96 | } else { |
2147 | 96 | t[0] = (minushalfb + desc1) / a; |
2148 | 96 | t[1] = (minushalfb - desc1) / a; |
2149 | 96 | } |
2150 | 96 | have_root[0] = have_root[1] = true; |
2151 | 96 | } |
2152 | 96 | } |
2153 | 96 | store_roots(rsa, have_root, t, r0, r1, point_index, true); |
2154 | 96 | if (have_root[0] && have_root[1]) |
2155 | 96 | return 15; |
2156 | 0 | if (have_root[0]) |
2157 | 0 | return 15 - 4; |
2158 | 0 | if (have_root[1]) |
2159 | 0 | return 15 - 2; |
2160 | 0 | return -1; |
2161 | 0 | } |
2162 | | |
2163 | | #undef Pw2 |
2164 | | |
2165 | | static int |
2166 | | compute_radial_shading_span_extended(radial_shading_attrs_t *rsa, double r0, double r1) |
2167 | 24 | { |
2168 | 24 | int span_type0, span_type1; |
2169 | | |
2170 | 24 | span_type0 = compute_radial_shading_span_extended_point(rsa, r0, r1, 1); |
2171 | 24 | if (span_type0 == -1) |
2172 | 0 | return -1; |
2173 | 24 | span_type1 = compute_radial_shading_span_extended_point(rsa, r0, r1, 2); |
2174 | 24 | if (span_type0 != span_type1) |
2175 | 0 | return -1; |
2176 | 24 | span_type1 = compute_radial_shading_span_extended_point(rsa, r0, r1, 3); |
2177 | 24 | if (span_type0 != span_type1) |
2178 | 0 | return -1; |
2179 | 24 | span_type1 = compute_radial_shading_span_extended_point(rsa, r0, r1, 4); |
2180 | 24 | if (span_type0 != span_type1) |
2181 | 0 | return -1; |
2182 | 24 | compute_radial_shading_span_extended_side(rsa, r0, r1, 1); |
2183 | 24 | compute_radial_shading_span_extended_side(rsa, r0, r1, 2); |
2184 | 24 | compute_radial_shading_span_extended_side(rsa, r0, r1, 3); |
2185 | 24 | compute_radial_shading_span_extended_side(rsa, r0, r1, 4); |
2186 | 24 | return span_type0; |
2187 | 24 | } |
2188 | | |
2189 | | static int |
2190 | | compute_radial_shading_span(radial_shading_attrs_t *rsa, float x0, float y0, double r0, float x1, float y1, double r1, const gs_rect * rect) |
2191 | 6 | { |
2192 | | /* If the shading area is much larger than the path bbox, |
2193 | | we want to shorten the shading for a faster rendering. |
2194 | | If any point of the path bbox falls outside the shading area, |
2195 | | our math is not applicable, and we render entire shading. |
2196 | | If the path bbox is inside the shading area, |
2197 | | we compute 1 or 2 'spans' - the shading parameter intervals, |
2198 | | which covers the bbox. For doing that we need to resolve |
2199 | | a square eqation by the shading parameter |
2200 | | for each corner of the bounding box, |
2201 | | and for each side of the shading bbox. |
2202 | | Note the equation to be solved in the user space. |
2203 | | Since each equation gives 2 roots (because the points are |
2204 | | strongly inside the shading area), we will get 2 parameter intervals - |
2205 | | the 'lower' one corresponds to the first (ongoing) contact of |
2206 | | the running circle, and the second one corresponds to the last (outgoing) contact |
2207 | | (like in a sun eclipse; well our sun is rectangular). |
2208 | | |
2209 | | Here are few exceptions. |
2210 | | |
2211 | | First, the equation degenerates when the distance sqrt((x1-x0)^2 + (y1-y0)^2) |
2212 | | appears equal to r0-r1. In this case the base circles do contact, |
2213 | | and the running circle does contact at the same point. |
2214 | | The equation degenerates to a linear one. |
2215 | | Since we don't want float precision noize to affect the result, |
2216 | | we compute this condition in 'fixed' coordinates. |
2217 | | |
2218 | | Second, Postscript approximates any circle with 3d order beziers. |
2219 | | This approximation may give a 2% error. |
2220 | | Therefore using the precise roots may cause a dropout. |
2221 | | To prevetn them, we slightly modify the base radii. |
2222 | | However the sign of modification smartly depends |
2223 | | on the relative sizes of the base circles, |
2224 | | and on the contact number. Currently we don't want to |
2225 | | define and debug the smart optimal logic for that, |
2226 | | so we simply try all 4 variants for each source equation, |
2227 | | and use the union of intervals. |
2228 | | |
2229 | | Third, we could compute which quarter of the circle |
2230 | | really covers the path bbox. Using it we could skip |
2231 | | rendering of uncovering quarters. Currently we do not |
2232 | | implement this optimization. The general tensor patch algorithm |
2233 | | will skip uncovering parts. |
2234 | | |
2235 | | Fourth, when one base circle is (almost) inside the other, |
2236 | | the parameter interval must include the shading apex. |
2237 | | To know that, we determine whether the contacting circle |
2238 | | is outside the rectangle (the "outer" contact), |
2239 | | or it is (partially) inside the rectangle. |
2240 | | |
2241 | | At last, a small shortening of a shading won't give a |
2242 | | sensible speedup, but it may replace a symmetric function domain |
2243 | | with an assymmetric one, so that the rendering |
2244 | | would be asymmetyric for a symmetric shading. |
2245 | | Therefore we do not perform a small sortening. |
2246 | | Instead we shorten only if the shading span |
2247 | | is much smaller that the shading domain. |
2248 | | */ |
2249 | 6 | const double extent = 1.02; |
2250 | 6 | int span_type0, span_type1, span_type; |
2251 | | |
2252 | 6 | memset(rsa, 0, sizeof(*rsa)); |
2253 | 6 | rsa->x0 = x0; |
2254 | 6 | rsa->y0 = y0; |
2255 | 6 | rsa->x1 = x1; |
2256 | 6 | rsa->y1 = y1; |
2257 | 6 | rsa->p[0] = rsa->p[4] = rect->p; |
2258 | 6 | rsa->p[1].x = rsa->p[5].x = rect->p.x; |
2259 | 6 | rsa->p[1].y = rsa->p[5].y = rect->q.y; |
2260 | 6 | rsa->p[2] = rect->q; |
2261 | 6 | rsa->p[3].x = rect->q.x; |
2262 | 6 | rsa->p[3].y = rect->p.y; |
2263 | 6 | rsa->have_apex = any_abs(r1 - r0) > 1e-7 * any_abs(r1 + r0); |
2264 | 6 | rsa->apex = (rsa->have_apex ? -r0 / (r1 - r0) : 0); |
2265 | 6 | span_type0 = compute_radial_shading_span_extended(rsa, r0 / extent, r1 * extent); |
2266 | 6 | if (span_type0 == -1) |
2267 | 0 | return -1; |
2268 | 6 | span_type1 = compute_radial_shading_span_extended(rsa, r0 / extent, r1 / extent); |
2269 | 6 | if (span_type0 != span_type1) |
2270 | 0 | return -1; |
2271 | 6 | span_type1 = compute_radial_shading_span_extended(rsa, r0 * extent, r1 * extent); |
2272 | 6 | if (span_type0 != span_type1) |
2273 | 0 | return -1; |
2274 | 6 | span_type1 = compute_radial_shading_span_extended(rsa, r0 * extent, r1 / extent); |
2275 | 6 | if (span_type1 == -1) |
2276 | 0 | return -1; |
2277 | 6 | if (r0 < r1) { |
2278 | 6 | if (rsa->have_root[0] && !rsa->outer_contact[0]) |
2279 | 0 | rsa->span[0][0] = rsa->apex; /* Likely never happens. Remove ? */ |
2280 | 6 | if (rsa->have_root[1] && !rsa->outer_contact[1]) |
2281 | 1 | rsa->span[1][0] = rsa->apex; |
2282 | 6 | } else if (r0 > r1) { |
2283 | 0 | if (rsa->have_root[0] && !rsa->outer_contact[0]) |
2284 | 0 | rsa->span[0][1] = rsa->apex; |
2285 | 0 | if (rsa->have_root[1] && !rsa->outer_contact[1]) |
2286 | 0 | rsa->span[1][1] = rsa->apex; /* Likely never happens. Remove ? */ |
2287 | 0 | } |
2288 | 6 | span_type = 0; |
2289 | 6 | if (rsa->have_root[0] && rsa->span[0][0] < 0) |
2290 | 0 | span_type |= 1; |
2291 | 6 | if (rsa->have_root[1] && rsa->span[1][0] < 0) |
2292 | 0 | span_type |= 1; |
2293 | 6 | if (rsa->have_root[0] && rsa->span[0][1] > 0 && rsa->span[0][0] < 1) |
2294 | 0 | span_type |= 2; |
2295 | 6 | if (rsa->have_root[1] && rsa->span[1][1] > 0 && rsa->span[1][0] < 1) |
2296 | 5 | span_type |= 4; |
2297 | 6 | if (rsa->have_root[0] && rsa->span[0][1] > 1) |
2298 | 0 | span_type |= 8; |
2299 | 6 | if (rsa->have_root[1] && rsa->span[1][1] > 1) |
2300 | 0 | span_type |= 8; |
2301 | 6 | return span_type; |
2302 | 6 | } |
2303 | | |
2304 | | static bool |
2305 | | shorten_radial_shading(float *x0, float *y0, double *r0, float *d0, float *x1, float *y1, double *r1, float *d1, double span_[2]) |
2306 | 5 | { |
2307 | 5 | double s0 = span_[0], s1 = span_[1], w; |
2308 | | |
2309 | 5 | if (s0 < 0) |
2310 | 0 | s0 = 0; |
2311 | 5 | if (s1 < 0) |
2312 | 0 | s1 = 0; |
2313 | 5 | if (s0 > 1) |
2314 | 0 | s0 = 1; |
2315 | 5 | if (s1 > 1) |
2316 | 0 | s1 = 1; |
2317 | 5 | w = s1 - s0; |
2318 | 5 | if (w == 0) |
2319 | 0 | return false; /* Don't pass a degenerate shading. */ |
2320 | 5 | if (w > 0.3) |
2321 | 5 | return false; /* The span is big, don't shorten it. */ |
2322 | 0 | { /* Do shorten. */ |
2323 | 0 | double R0 = *r0, X0 = *x0, Y0 = *y0, D0 = *d0; |
2324 | 0 | double R1 = *r1, X1 = *x1, Y1 = *y1, D1 = *d1; |
2325 | |
|
2326 | 0 | *r0 = R0 + (R1 - R0) * s0; |
2327 | 0 | *x0 = X0 + (X1 - X0) * s0; |
2328 | 0 | *y0 = Y0 + (Y1 - Y0) * s0; |
2329 | 0 | *d0 = D0 + (D1 - D0) * s0; |
2330 | 0 | *r1 = R0 + (R1 - R0) * s1; |
2331 | 0 | *x1 = X0 + (X1 - X0) * s1; |
2332 | 0 | *y1 = Y0 + (Y1 - Y0) * s1; |
2333 | 0 | *d1 = D0 + (D1 - D0) * s1; |
2334 | 0 | } |
2335 | 0 | return true; |
2336 | 5 | } |
2337 | | |
2338 | | static bool inline |
2339 | | is_radial_shading_large(double x0, double y0, double r0, double x1, double y1, double r1, const gs_rect * rect) |
2340 | 44 | { |
2341 | 44 | const double d = hypot(x1 - x0, y1 - y0); |
2342 | 44 | const double area0 = M_PI * r0 * r0 / 2; |
2343 | 44 | const double area1 = M_PI * r1 * r1 / 2; |
2344 | 44 | const double area2 = (r0 + r1) / 2 * d; |
2345 | 44 | const double arbitrary = 8; |
2346 | 44 | double areaX, areaY; |
2347 | | |
2348 | | /* The shading area is not equal to area0 + area1 + area2 |
2349 | | when one circle is (almost) inside the other. |
2350 | | We believe that the 'arbitrary' coefficient recovers that |
2351 | | when it is set greater than 2. */ |
2352 | | /* If one dimension is large enough, the shading parameter span is wide. */ |
2353 | 44 | areaX = (rect->q.x - rect->p.x) * (rect->q.x - rect->p.x); |
2354 | 44 | if (areaX * arbitrary < area0 + area1 + area2) |
2355 | 5 | return true; |
2356 | 39 | areaY = (rect->q.y - rect->p.y) * (rect->q.y - rect->p.y); |
2357 | 39 | if (areaY * arbitrary < area0 + area1 + area2) |
2358 | 1 | return true; |
2359 | 38 | return false; |
2360 | 39 | } |
2361 | | |
2362 | | static int |
2363 | | gs_shading_R_fill_rectangle_aux(const gs_shading_t * psh0, const gs_rect * rect, |
2364 | | const gs_fixed_rect *clip_rect, |
2365 | | gx_device * dev, gs_gstate * pgs) |
2366 | 44 | { |
2367 | 44 | const gs_shading_R_t *const psh = (const gs_shading_R_t *)psh0; |
2368 | 44 | float d0 = psh->params.Domain[0], d1 = psh->params.Domain[1]; |
2369 | 44 | float x0 = psh->params.Coords[0], y0 = psh->params.Coords[1]; |
2370 | 44 | double r0 = psh->params.Coords[2]; |
2371 | 44 | float x1 = psh->params.Coords[3], y1 = psh->params.Coords[4]; |
2372 | 44 | double r1 = psh->params.Coords[5]; |
2373 | 44 | radial_shading_attrs_t rsa; |
2374 | 44 | int span_type; /* <0 - don't shorten, 1 - extent0, 2 - first contact, 4 - last contact, 8 - extent1. */ |
2375 | 44 | int code; |
2376 | 44 | patch_fill_state_t pfs1; |
2377 | | |
2378 | 44 | if (r0 == 0 && r1 == 0) |
2379 | 0 | return 0; /* PLRM requires to paint nothing. */ |
2380 | 44 | code = shade_init_fill_state((shading_fill_state_t *)&pfs1, psh0, dev, pgs); |
2381 | 44 | if (code < 0) |
2382 | 0 | return code; |
2383 | 44 | pfs1.Function = psh->params.Function; |
2384 | 44 | code = init_patch_fill_state(&pfs1); |
2385 | 44 | if (code < 0) { |
2386 | 0 | if (pfs1.icclink != NULL) gsicc_release_link(pfs1.icclink); |
2387 | 0 | return code; |
2388 | 0 | } |
2389 | 44 | pfs1.function_arg_shift = 0; |
2390 | 44 | pfs1.rect = *clip_rect; |
2391 | 44 | pfs1.maybe_self_intersecting = false; |
2392 | 44 | if (is_radial_shading_large(x0, y0, r0, x1, y1, r1, rect)) |
2393 | 6 | span_type = compute_radial_shading_span(&rsa, x0, y0, r0, x1, y1, r1, rect); |
2394 | 38 | else |
2395 | 38 | span_type = -1; |
2396 | 44 | if (span_type < 0) { |
2397 | 38 | code = R_extensions(&pfs1, psh, rect, d0, d1, psh->params.Extend[0], false); |
2398 | 38 | if (code >= 0) |
2399 | 38 | code = R_tensor_annulus(&pfs1, x0, y0, r0, d0, x1, y1, r1, d1); |
2400 | 38 | if (code >= 0) |
2401 | 38 | code = R_extensions(&pfs1, psh, rect, d0, d1, false, psh->params.Extend[1]); |
2402 | 38 | } else if (span_type == 1) { |
2403 | 0 | code = R_fill_rect_with_const_color(&pfs1, clip_rect, d0); |
2404 | 6 | } else if (span_type == 8) { |
2405 | 0 | code = R_fill_rect_with_const_color(&pfs1, clip_rect, d1); |
2406 | 6 | } else { |
2407 | 6 | bool second_interval = true; |
2408 | | |
2409 | 6 | code = 0; |
2410 | 6 | if (span_type & 1) |
2411 | 0 | code = R_extensions(&pfs1, psh, rect, d0, d1, psh->params.Extend[0], false); |
2412 | 6 | if ((code >= 0) && (span_type & 2)) { |
2413 | 0 | float X0 = x0, Y0 = y0, D0 = d0, X1 = x1, Y1 = y1, D1 = d1; |
2414 | 0 | double R0 = r0, R1 = r1; |
2415 | |
|
2416 | 0 | if ((span_type & 4) && rsa.span[0][1] >= rsa.span[1][0]) { |
2417 | 0 | double united[2]; |
2418 | |
|
2419 | 0 | united[0] = rsa.span[0][0]; |
2420 | 0 | united[1] = rsa.span[1][1]; |
2421 | 0 | shorten_radial_shading(&X0, &Y0, &R0, &D0, &X1, &Y1, &R1, &D1, united); |
2422 | 0 | second_interval = false; |
2423 | 0 | } else { |
2424 | 0 | second_interval = shorten_radial_shading(&X0, &Y0, &R0, &D0, &X1, &Y1, &R1, &D1, rsa.span[0]); |
2425 | 0 | } |
2426 | 0 | code = R_tensor_annulus(&pfs1, X0, Y0, R0, D0, X1, Y1, R1, D1); |
2427 | 0 | } |
2428 | 6 | if (code >= 0 && second_interval) { |
2429 | 6 | if (span_type & 4) { |
2430 | 5 | float X0 = x0, Y0 = y0, D0 = d0, X1 = x1, Y1 = y1, D1 = d1; |
2431 | 5 | double R0 = r0, R1 = r1; |
2432 | | |
2433 | 5 | shorten_radial_shading(&X0, &Y0, &R0, &D0, &X1, &Y1, &R1, &D1, rsa.span[1]); |
2434 | 5 | code = R_tensor_annulus(&pfs1, X0, Y0, R0, D0, X1, Y1, R1, D1); |
2435 | 5 | } |
2436 | 6 | } |
2437 | 6 | if (code >= 0 && (span_type & 8)) |
2438 | 0 | code = R_extensions(&pfs1, psh, rect, d0, d1, false, psh->params.Extend[1]); |
2439 | 6 | } |
2440 | 44 | if (pfs1.icclink != NULL) gsicc_release_link(pfs1.icclink); |
2441 | 44 | if (term_patch_fill_state(&pfs1)) |
2442 | 0 | return_error(gs_error_unregistered); /* Must not happen. */ |
2443 | 44 | return code; |
2444 | 44 | } |
2445 | | |
2446 | | int |
2447 | | gs_shading_R_fill_rectangle(const gs_shading_t * psh0, const gs_rect * rect, |
2448 | | const gs_fixed_rect * rect_clip, |
2449 | | gx_device * dev, gs_gstate * pgs) |
2450 | 44 | { |
2451 | 44 | return gs_shading_R_fill_rectangle_aux(psh0, rect, rect_clip, dev, pgs); |
2452 | 44 | } |