/src/ghostpdl/devices/vector/gdevpsdi.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* Copyright (C) 2001-2021 Artifex Software, Inc. |
2 | | All Rights Reserved. |
3 | | |
4 | | This software is provided AS-IS with no warranty, either express or |
5 | | implied. |
6 | | |
7 | | This software is distributed under license and may not be copied, |
8 | | modified or distributed except as expressly authorized under the terms |
9 | | of the license contained in the file LICENSE in this distribution. |
10 | | |
11 | | Refer to licensing information at http://www.artifex.com or contact |
12 | | Artifex Software, Inc., 1305 Grant Avenue - Suite 200, Novato, |
13 | | CA 94945, U.S.A., +1(415)492-9861, for further information. |
14 | | */ |
15 | | |
16 | | |
17 | | /* Image compression for PostScript and PDF writers */ |
18 | | #include "stdio_.h" /* for jpeglib.h */ |
19 | | #include "jpeglib_.h" /* for sdct.h */ |
20 | | #include "math_.h" |
21 | | #include "string_.h" |
22 | | #include "gx.h" |
23 | | #include "gserrors.h" |
24 | | #include "gscspace.h" |
25 | | #include "gdevpsdf.h" |
26 | | #include "gdevpsds.h" |
27 | | #include "gxdevmem.h" |
28 | | #include "gxcspace.h" |
29 | | #include "gsparamx.h" |
30 | | #include "strimpl.h" |
31 | | #include "scfx.h" |
32 | | #include "slzwx.h" |
33 | | #include "spngpx.h" |
34 | | #include "szlibx.h" |
35 | | #include "gsicc_manage.h" |
36 | | #include "sisparam.h" |
37 | | |
38 | | /* Define parameter-setting procedures. */ |
39 | | extern stream_state_proc_put_params(s_CF_put_params, stream_CF_state); |
40 | | extern stream_template s_IScale_template; |
41 | | |
42 | | /* ---------------- Image compression ---------------- */ |
43 | | |
44 | | /* |
45 | | * Add a filter to expand or reduce the pixel width if needed. |
46 | | * At least one of bpc_in and bpc_out is 8; the other is 1, 2, 4, or 8, |
47 | | * except if bpc_out is 8, bpc_in may be 12 (or 16). |
48 | | */ |
49 | | static int |
50 | | pixel_resize(psdf_binary_writer * pbw, int width, int num_components, |
51 | | int bpc_in, int bpc_out) |
52 | 5.53k | { |
53 | 5.53k | gs_memory_t *mem = pbw->dev->v_memory; |
54 | 5.53k | const stream_template *templat; |
55 | 5.53k | stream_1248_state *st; |
56 | 5.53k | int code; |
57 | | |
58 | 5.53k | if (bpc_out == bpc_in) |
59 | 5.53k | return 0; |
60 | 0 | if (bpc_in != 8) { |
61 | 0 | static const stream_template *const exts[17] = { |
62 | 0 | 0, &s_1_8_template, &s_2_8_template, 0, &s_4_8_template, |
63 | 0 | 0, 0, 0, 0, 0, 0, 0, &s_12_8_template, 0, 0, 0, &s_16_8_template |
64 | 0 | }; |
65 | |
|
66 | 0 | templat = exts[bpc_in]; |
67 | 0 | } else { |
68 | 0 | static const stream_template *const rets[5] = { |
69 | 0 | 0, &s_8_1_template, &s_8_2_template, 0, &s_8_4_template |
70 | 0 | }; |
71 | |
|
72 | 0 | templat = rets[bpc_out]; |
73 | 0 | } |
74 | 0 | st = (stream_1248_state *) |
75 | 0 | s_alloc_state(mem, templat->stype, "pixel_resize state"); |
76 | 0 | if (st == 0) |
77 | 0 | return_error(gs_error_VMerror); |
78 | 0 | code = psdf_encode_binary(pbw, templat, (stream_state *) st); |
79 | 0 | if (code < 0) { |
80 | 0 | gs_free_object(mem, st, "pixel_resize state"); |
81 | 0 | return code; |
82 | 0 | } |
83 | 0 | s_1248_init(st, width, num_components); |
84 | 0 | return 0; |
85 | 0 | } |
86 | | |
87 | | static int |
88 | | convert_color(gx_device *pdev, const gs_color_space *pcs, const gs_gstate * pgs, |
89 | | gs_client_color *cc, float c[3]) |
90 | 1.73k | { |
91 | 1.73k | int code; |
92 | 1.73k | gx_device_color dc; |
93 | | |
94 | 1.73k | cs_restrict_color(cc, pcs); |
95 | 1.73k | code = pcs->type->remap_color(cc, pcs, &dc, pgs, pdev, gs_color_select_texture); |
96 | 1.73k | if (code < 0) |
97 | 0 | return code; |
98 | 1.73k | c[0] = (float)((int)(dc.colors.pure >> pdev->color_info.comp_shift[0]) & ((1 << pdev->color_info.comp_bits[0]) - 1)); |
99 | 1.73k | c[1] = (float)((int)(dc.colors.pure >> pdev->color_info.comp_shift[1]) & ((1 << pdev->color_info.comp_bits[1]) - 1)); |
100 | 1.73k | c[2] = (float)((int)(dc.colors.pure >> pdev->color_info.comp_shift[2]) & ((1 << pdev->color_info.comp_bits[2]) - 1)); |
101 | 1.73k | return 0; |
102 | 1.73k | } |
103 | | |
104 | | /* A heuristic choice of DCT compression parameters - see bug 687174. */ |
105 | | static int |
106 | | choose_DCT_params(gx_device *pdev, const gs_color_space *pcs, |
107 | | const gs_gstate * pgs, |
108 | | gs_c_param_list *list, gs_c_param_list **param, |
109 | | stream_state *st) |
110 | 877 | { |
111 | 877 | gx_device_memory mdev; |
112 | 877 | gs_client_color cc; |
113 | 877 | int code; |
114 | 877 | float c[4][3]; |
115 | 877 | const float MIN_FLOAT = - MAX_FLOAT; |
116 | 877 | const float domination = (float)0.25; |
117 | 877 | const int one = 1, zero = 0; |
118 | | |
119 | 877 | if (pcs->type->num_components(pcs) != 3) |
120 | 444 | return 0; |
121 | 433 | if (*param != NULL) { |
122 | | /* Make a copy of the parameter list since we will modify it. */ |
123 | 433 | code = param_list_copy((gs_param_list *)list, (gs_param_list *)*param); |
124 | 433 | if (code < 0) |
125 | 0 | return code; |
126 | 433 | } |
127 | 433 | *param = list; |
128 | | |
129 | | /* Create a local memory device for transforming colors to DeviceRGB. */ |
130 | 433 | gs_make_mem_device(&mdev, gdev_mem_device_for_bits(24), pdev->memory, 0, NULL); |
131 | 433 | gx_device_retain((gx_device *)&mdev, true); /* prevent freeing */ |
132 | 433 | set_linear_color_bits_mask_shift((gx_device *)&mdev); |
133 | 433 | mdev.color_info.separable_and_linear = GX_CINFO_SEP_LIN; |
134 | | /* Set mem device icc profile */ |
135 | 433 | code = gsicc_init_device_profile_struct((gx_device *) &mdev, NULL, 0); |
136 | 433 | if (code < 0) |
137 | 0 | return code; |
138 | | |
139 | 433 | if (pgs) { |
140 | | /* Check for an RGB-like color space. |
141 | | To recognize that we make a matrix as it were a linear operator, |
142 | | suppress an ununiformity by subtracting the image of {0,0,0}, |
143 | | and then check for giagonal domination. */ |
144 | 433 | cc.paint.values[0] = cc.paint.values[1] = cc.paint.values[2] = MIN_FLOAT; |
145 | 433 | code = convert_color((gx_device *)&mdev, pcs, pgs, &cc, c[3]); |
146 | 433 | if (code < 0) |
147 | 0 | return code; |
148 | 433 | cc.paint.values[0] = MAX_FLOAT; cc.paint.values[1] = MIN_FLOAT; cc.paint.values[2] = MIN_FLOAT; |
149 | 433 | code = convert_color((gx_device *)&mdev, pcs, pgs, &cc, c[0]); |
150 | 433 | if (code < 0) |
151 | 0 | return code; |
152 | 433 | cc.paint.values[0] = MIN_FLOAT; cc.paint.values[1] = MAX_FLOAT; cc.paint.values[2] = MIN_FLOAT; |
153 | 433 | code = convert_color((gx_device *)&mdev, pcs, pgs, &cc, c[1]); |
154 | 433 | if (code < 0) |
155 | 0 | return code; |
156 | 433 | cc.paint.values[0] = MIN_FLOAT; cc.paint.values[1] = MIN_FLOAT; cc.paint.values[2] = MAX_FLOAT; |
157 | 433 | code = convert_color((gx_device *)&mdev, pcs, pgs, &cc, c[2]); |
158 | 433 | if (code < 0) |
159 | 0 | return code; |
160 | 433 | c[0][0] -= c[3][0]; c[0][1] -= c[3][1]; c[0][2] -= c[3][2]; |
161 | 433 | c[1][0] -= c[3][0]; c[1][1] -= c[3][1]; c[1][2] -= c[3][2]; |
162 | 433 | c[2][0] -= c[3][0]; c[2][1] -= c[3][1]; c[2][2] -= c[3][2]; |
163 | 433 | c[0][0] = any_abs(c[0][0]); c[0][1] = any_abs(c[0][1]); c[0][2] = any_abs(c[0][2]); |
164 | 433 | c[1][0] = any_abs(c[1][0]); c[1][1] = any_abs(c[1][1]); c[1][2] = any_abs(c[1][2]); |
165 | 433 | c[2][0] = any_abs(c[2][0]); c[2][1] = any_abs(c[2][1]); c[2][2] = any_abs(c[2][2]); |
166 | 433 | if (c[0][0] * domination > c[0][1] && c[0][0] * domination > c[0][2] && |
167 | 433 | c[1][1] * domination > c[1][0] && c[1][1] * domination > c[1][2] && |
168 | 433 | c[2][2] * domination > c[2][0] && c[2][2] * domination > c[2][1]) { |
169 | | /* Yes, it looks like an RGB color space. |
170 | | Replace ColorTransform with 1. */ |
171 | 433 | code = param_write_int((gs_param_list *)list, "ColorTransform", &one); |
172 | 433 | if (code < 0) |
173 | 0 | goto error; |
174 | 433 | goto done; |
175 | 433 | } |
176 | | |
177 | | /* Check for a Lab-like color space. |
178 | | Colors {v,0,0} should map to grays. */ |
179 | 0 | cc.paint.values[0] = MAX_FLOAT; cc.paint.values[1] = cc.paint.values[2] = 0; |
180 | 0 | convert_color((gx_device *)&mdev, pcs, pgs, &cc, c[0]); |
181 | 0 | cc.paint.values[0] /= 2; |
182 | 0 | convert_color((gx_device *)&mdev, pcs, pgs, &cc, c[1]); |
183 | 0 | cc.paint.values[0] /= 2; |
184 | 0 | convert_color((gx_device *)&mdev, pcs, pgs, &cc, c[2]); |
185 | 0 | c[0][1] -= c[0][0]; c[0][2] -= c[0][0]; |
186 | 0 | c[1][1] -= c[1][0]; c[1][2] -= c[1][0]; |
187 | 0 | c[2][1] -= c[2][0]; c[2][2] -= c[2][0]; |
188 | 0 | c[0][1] = any_abs(c[0][1]); c[0][2] = any_abs(c[0][2]); |
189 | 0 | c[1][1] = any_abs(c[1][1]); c[1][2] = any_abs(c[1][2]); |
190 | 0 | c[2][1] = any_abs(c[2][1]); c[2][2] = any_abs(c[2][2]); |
191 | 0 | } |
192 | 0 | if (pgs && c[0][0] * domination > c[0][1] && c[0][0] * domination > c[0][2] && |
193 | 0 | c[1][0] * domination > c[1][1] && c[1][0] * domination > c[1][2] && |
194 | 0 | c[2][0] * domination > c[2][1] && c[2][0] * domination > c[2][2]) { |
195 | | /* Yes, it looks like an Lab color space. |
196 | | Replace ColorTransform with 0. */ |
197 | 0 | code = param_write_int((gs_param_list *)list, "ColorTransform", &zero); |
198 | 0 | if (code < 0) |
199 | 0 | goto error; |
200 | 0 | } else { |
201 | | /* Unknown color space type. |
202 | | Replace /HSamples [1 1 1 1] /VSamples [1 1 1 1] to avoid quality degradation. */ |
203 | 0 | gs_param_string a; |
204 | 0 | static const byte v[4] = {1, 1, 1, 1}; |
205 | |
|
206 | 0 | a.data = v; |
207 | 0 | a.size = 4; |
208 | 0 | a.persistent = true; |
209 | 0 | code = param_write_string((gs_param_list *)list, "HSamples", &a); |
210 | 0 | if (code < 0) |
211 | 0 | goto error; |
212 | 0 | code = param_write_string((gs_param_list *)list, "VSamples", &a); |
213 | 0 | if (code < 0) |
214 | 0 | goto error; |
215 | 0 | } |
216 | 433 | done: |
217 | 433 | gs_c_param_list_read(list); |
218 | 433 | gx_device_finalize(pdev->memory, &mdev); |
219 | 433 | return 0; |
220 | 0 | error: |
221 | 0 | gx_device_finalize(pdev->memory, &mdev); |
222 | 0 | return code; |
223 | 0 | } |
224 | | |
225 | | /* Add the appropriate image compression filter, if any. */ |
226 | | static int |
227 | | setup_image_compression(psdf_binary_writer *pbw, const psdf_image_params *pdip, |
228 | | const gs_pixel_image_t * pim, const gs_gstate * pgs, |
229 | | bool lossless) |
230 | 5.55k | { |
231 | 5.55k | gx_device_psdf *pdev = pbw->dev; |
232 | 5.55k | gs_memory_t *mem = pdev->v_memory; |
233 | 5.55k | const stream_template *templat = pdip->filter_template; |
234 | 5.55k | const stream_template *lossless_template = |
235 | 5.55k | (pdev->params.UseFlateCompression && |
236 | 5.55k | pdev->version >= psdf_version_ll3 ? |
237 | 4.19k | &s_zlibE_template : &s_LZWE_template); |
238 | 5.55k | const gs_color_space *pcs = pim->ColorSpace; /* null if mask */ |
239 | 5.55k | int Colors = (pcs ? gs_color_space_num_components(pcs) : 1); |
240 | 5.55k | bool Indexed = |
241 | 5.55k | (pcs != 0 && |
242 | 5.55k | gs_color_space_get_index(pcs) == gs_color_space_index_Indexed); |
243 | 5.55k | gs_c_param_list *dict = pdip->Dict; |
244 | 5.55k | stream_state *st; |
245 | 5.55k | int code; |
246 | | |
247 | 5.55k | if (!pdip->Encode) /* no compression */ |
248 | 0 | return 0; |
249 | 5.55k | if (pdip->AutoFilter) { |
250 | | /* |
251 | | * Disregard the requested filter. What we should do at this point |
252 | | * is analyze the image to decide whether to use JPEG encoding |
253 | | * (DCTEncode with ACSDict) or the lossless filter. However, since |
254 | | * we don't buffer the entire image, we'll make the choice on-fly, |
255 | | * forking the image data into 3 streams : (1) JPEG, (2) lossless, |
256 | | * (3) the compression chooser. In this case this function is |
257 | | * called 2 times with different values of the 'lossless' argument. |
258 | | */ |
259 | 2.64k | if (lossless) { |
260 | 1.77k | templat = lossless_template; |
261 | 1.77k | } else if (templat == NULL || templat == &s_zlibE_template || |
262 | 877 | templat == &s_LZWE_template) { |
263 | 0 | templat = &s_DCTE_template; |
264 | 0 | } |
265 | 2.64k | dict = pdip->ACSDict; |
266 | 2.90k | } else if (!lossless) |
267 | 22 | return_error(gs_error_rangecheck); /* Reject the alternative stream. */ |
268 | 5.53k | if (pdev->version < psdf_version_ll3 && templat == &s_zlibE_template) |
269 | 1.12k | templat = lossless_template; |
270 | 5.53k | if (dict != NULL) /* Some interpreters don't supply filter parameters. */ |
271 | 5.53k | gs_c_param_list_read(dict); /* ensure param list is in read mode */ |
272 | 5.53k | if (templat == 0 || pdev->JPEG_PassThrough || pdev->JPX_PassThrough) /* no compression */ |
273 | 807 | return 0; |
274 | 4.72k | if (pim->Width < 200 && pim->Height < 200) /* Prevent a fixed overflow. */ |
275 | 3.79k | if (pim->Width * pim->Height * Colors * pim->BitsPerComponent <= 160) |
276 | 102 | return 0; /* not worth compressing */ |
277 | | /* Only use DCTE for 8-bit, non-Indexed data. */ |
278 | 4.62k | if (templat == &s_DCTE_template) { |
279 | 945 | if (Indexed || |
280 | 945 | !(pdip->Downsample ? |
281 | 0 | pdip->Depth == 8 || |
282 | 0 | (pdip->Depth == -1 && pim->BitsPerComponent == 8) : |
283 | 877 | pim->BitsPerComponent == 8) |
284 | 945 | ) { |
285 | | /* Use LZW/Flate instead. */ |
286 | 68 | templat = lossless_template; |
287 | 68 | } |
288 | 945 | } |
289 | 4.62k | st = s_alloc_state(mem, templat->stype, "setup_image_compression"); |
290 | 4.62k | if (st == 0) |
291 | 0 | return_error(gs_error_VMerror); |
292 | | |
293 | 4.62k | st->templat = templat; |
294 | | |
295 | 4.62k | if (templat->set_defaults) |
296 | 4.62k | (*templat->set_defaults) (st); |
297 | 4.62k | if (templat == &s_CFE_template) { |
298 | 689 | stream_CFE_state *const ss = (stream_CFE_state *) st; |
299 | | |
300 | 689 | if (pdip->Dict != 0 && pdip->filter_template == templat) { |
301 | 689 | s_CF_put_params((gs_param_list *)pdip->Dict, |
302 | 689 | (stream_CF_state *)ss); /* ignore errors */ |
303 | 689 | } else { |
304 | 0 | ss->K = -1; |
305 | 0 | ss->BlackIs1 = true; |
306 | 0 | } |
307 | 689 | ss->Columns = pim->Width; |
308 | 689 | ss->Rows = (ss->EndOfBlock ? 0 : pim->Height); |
309 | 3.93k | } else if ((templat == &s_LZWE_template || |
310 | 3.93k | templat == &s_zlibE_template) && |
311 | 3.93k | pdev->version >= psdf_version_ll3) { |
312 | | /* If not Indexed, add a PNGPredictor filter. */ |
313 | 1.97k | if (!Indexed) { |
314 | 1.90k | code = psdf_encode_binary(pbw, templat, st); |
315 | 1.90k | if (code < 0) |
316 | 0 | goto fail; |
317 | 1.90k | templat = &s_PNGPE_template; |
318 | 1.90k | st = s_alloc_state(mem, templat->stype, "setup_image_compression"); |
319 | 1.90k | if (st == 0) { |
320 | 0 | code = gs_note_error(gs_error_VMerror); |
321 | 0 | goto fail; |
322 | 0 | } |
323 | 1.90k | st->templat = templat; |
324 | 1.90k | if (templat->set_defaults) |
325 | 1.90k | (*templat->set_defaults) (st); |
326 | 1.90k | { |
327 | 1.90k | stream_PNGP_state *const ss = (stream_PNGP_state *) st; |
328 | | |
329 | 1.90k | ss->Colors = Colors; |
330 | 1.90k | ss->Columns = pim->Width; |
331 | 1.90k | } |
332 | 1.90k | } |
333 | 1.97k | } else if (templat == &s_DCTE_template) { |
334 | 877 | gs_c_param_list list, *param = dict; |
335 | | |
336 | 877 | gs_c_param_list_write(&list, mem); |
337 | 877 | code = choose_DCT_params((gx_device *)pbw->dev, pcs, pgs, &list, ¶m, st); |
338 | 877 | if (code < 0) { |
339 | 0 | gs_c_param_list_release(&list); |
340 | 0 | return code; |
341 | 0 | } |
342 | 877 | code = psdf_DCT_filter((gs_param_list *)param, |
343 | 877 | st, pim->Width, pim->Height, Colors, pbw); |
344 | 877 | gs_c_param_list_release(&list); |
345 | 877 | if (code < 0) |
346 | 0 | goto fail; |
347 | | /* psdf_DCT_filter already did the psdf_encode_binary. */ |
348 | 877 | return 0; |
349 | 877 | } |
350 | 3.74k | code = psdf_encode_binary(pbw, templat, st); |
351 | 3.74k | if (code >= 0) |
352 | 3.74k | return 0; |
353 | 0 | fail: |
354 | 0 | gs_free_object(mem, st, "setup_image_compression"); |
355 | 0 | return code; |
356 | 3.74k | } |
357 | | |
358 | | /* Determine whether an image should be downsampled. */ |
359 | | static bool |
360 | | do_downsample(const psdf_image_params *pdip, const gs_pixel_image_t *pim, |
361 | | double resolution) |
362 | 5.55k | { |
363 | 5.55k | double factor = resolution / pdip->Resolution; |
364 | | |
365 | 5.55k | return (pdip->Downsample && factor >= pdip->DownsampleThreshold && |
366 | 5.55k | factor <= pim->Width && factor <= pim->Height); |
367 | 5.55k | } |
368 | | |
369 | | /* Add downsampling, antialiasing, and compression filters. */ |
370 | | /* Uses AntiAlias, Depth, DownsampleThreshold, DownsampleType, Resolution. */ |
371 | | /* Assumes do_downsampling() is true. */ |
372 | | static int |
373 | | setup_downsampling(psdf_binary_writer * pbw, const psdf_image_params * pdip, |
374 | | gs_pixel_image_t * pim, const gs_gstate * pgs, |
375 | | double resolution, bool lossless) |
376 | 0 | { |
377 | 0 | gx_device_psdf *pdev = pbw->dev; |
378 | 0 | const stream_template *templat = &s_Subsample_template; |
379 | 0 | float factor = resolution / pdip->Resolution; |
380 | 0 | int orig_bpc = pim->BitsPerComponent; |
381 | 0 | int orig_width = pim->Width; |
382 | 0 | int orig_height = pim->Height; |
383 | 0 | stream_state *st; |
384 | 0 | int code; |
385 | | |
386 | | /* We can't apply anything other than a simple downsample to monochrome |
387 | | * image without turning them into greyscale images. We set the default |
388 | | * to subsample above, so just ignore it if the current image is monochtome. |
389 | | */ |
390 | 0 | if (pim->BitsPerComponent > 1) { |
391 | 0 | switch (pdip->DownsampleType) { |
392 | 0 | case ds_Subsample: |
393 | 0 | templat = &s_Subsample_template; |
394 | 0 | break; |
395 | 0 | case ds_Average: |
396 | 0 | templat = &s_Average_template; |
397 | 0 | break; |
398 | 0 | case ds_Bicubic: |
399 | 0 | templat = &s_IScale_template; |
400 | | /* We now use the Mitchell filter instead of the 'bicubic' filter |
401 | | * because it gives better results. |
402 | | templat = &s_Bicubic_template; |
403 | | */ |
404 | 0 | break; |
405 | 0 | default: |
406 | 0 | dmprintf1(pdev->v_memory, "Unsupported downsample type %d\n", pdip->DownsampleType); |
407 | 0 | return gs_note_error(gs_error_rangecheck); |
408 | 0 | } |
409 | | |
410 | 0 | if (pdip->DownsampleType != ds_Bicubic) { |
411 | | /* If downsample type is not bicubic, ensure downsample factor is |
412 | | * an integer if we're close to one (< 0.1) or silently switch to |
413 | | * bicubic transform otherwise. See bug #693917. */ |
414 | 0 | float rfactor = floor(factor + 0.5); |
415 | 0 | if (fabs(rfactor-factor) < 0.1 || pim->ColorSpace->type->index == gs_color_space_index_Indexed) |
416 | 0 | factor = rfactor; /* round factor to nearest integer */ |
417 | 0 | else |
418 | 0 | templat = &s_Bicubic_template; /* switch to bicubic */ |
419 | 0 | } |
420 | 0 | } else { |
421 | 0 | if (pdip->DownsampleType != ds_Subsample) { |
422 | 0 | dmprintf(pdev->memory, "The only Downsample filter for monochrome images is Subsample, ignoring request.\n"); |
423 | 0 | } |
424 | 0 | } |
425 | | |
426 | 0 | st = s_alloc_state(pdev->v_memory, templat->stype, |
427 | 0 | "setup_downsampling"); |
428 | 0 | if (st == 0) |
429 | 0 | return_error(gs_error_VMerror); |
430 | 0 | if (templat->set_defaults) |
431 | 0 | templat->set_defaults(st); |
432 | |
|
433 | 0 | if (templat != &s_IScale_template) |
434 | 0 | { |
435 | 0 | stream_Downsample_state *const ss = (stream_Downsample_state *) st; |
436 | |
|
437 | 0 | ss->Colors = |
438 | 0 | (pim->ColorSpace == 0 ? 1 /*mask*/ : |
439 | 0 | gs_color_space_num_components(pim->ColorSpace)); |
440 | 0 | ss->WidthIn = pim->Width; |
441 | 0 | ss->HeightIn = pim->Height; |
442 | 0 | ss->XFactor = ss->YFactor = factor; |
443 | 0 | ss->AntiAlias = pdip->AntiAlias; |
444 | 0 | ss->padX = ss->padY = false; /* should be true */ |
445 | |
|
446 | 0 | if (pim->BitsPerComponent == 1) { |
447 | 0 | if (floor(ss->XFactor) != ss->XFactor) |
448 | 0 | factor = ss->YFactor = ss->XFactor = floor(ss->XFactor + 0.5); |
449 | 0 | } |
450 | 0 | if (templat->init) { |
451 | 0 | code = templat->init(st); |
452 | 0 | if (code < 0) { |
453 | 0 | dmprintf(st->memory, "Failed to initialise downsample filter, downsampling aborted\n"); |
454 | 0 | gs_free_object(pdev->v_memory, st, "setup_image_compression"); |
455 | 0 | return 0; |
456 | 0 | } |
457 | 0 | } |
458 | 0 | pim->BitsPerComponent = pdip->Depth; |
459 | 0 | pim->Width = s_Downsample_size_out(pim->Width, factor, false); |
460 | 0 | pim->Height = s_Downsample_size_out(pim->Height, factor, false); |
461 | 0 | gs_matrix_scale(&pim->ImageMatrix, (double)pim->Width / orig_width, |
462 | 0 | (double)pim->Height / orig_height, |
463 | 0 | &pim->ImageMatrix); |
464 | | /****** NO ANTI-ALIASING YET ******/ |
465 | 0 | if ((code = setup_image_compression(pbw, pdip, pim, pgs, lossless)) < 0 || |
466 | 0 | (code = pixel_resize(pbw, pim->Width, ss->Colors, |
467 | 0 | 8, pdip->Depth)) < 0 || |
468 | 0 | (code = psdf_encode_binary(pbw, templat, st)) < 0 || |
469 | 0 | (code = pixel_resize(pbw, orig_width, ss->Colors, |
470 | 0 | orig_bpc, 8)) < 0 |
471 | 0 | ) { |
472 | 0 | gs_free_object(pdev->v_memory, st, "setup_image_compression"); |
473 | 0 | return code; |
474 | 0 | } |
475 | 0 | } else { |
476 | | /* The setup for the Mitchell filter is quite different to the other filters |
477 | | * because it isn't one of ours. |
478 | | */ |
479 | 0 | int Colors = (pim->ColorSpace == 0 ? 1 /*mask*/ : |
480 | 0 | gs_color_space_num_components(pim->ColorSpace)); |
481 | |
|
482 | 0 | stream_image_scale_state *ss = (stream_image_scale_state *)st; |
483 | |
|
484 | 0 | ss->params.EntireWidthIn = ss->params.WidthIn = ss->params.PatchWidthIn = pim->Width; |
485 | 0 | ss->params.EntireHeightIn = ss->params.HeightIn = ss->params.PatchHeightIn = pim->Height; |
486 | 0 | ss->params.EntireWidthOut = ss->params.WidthOut = ss->params.PatchWidthOut = s_Downsample_size_out(pim->Width, factor, false); |
487 | 0 | ss->params.EntireHeightOut = ss->params.HeightOut = ss->params.PatchHeightOut = ss->params.PatchHeightOut2 = s_Downsample_size_out(pim->Height, factor, false); |
488 | | |
489 | | /* Bug #697944 The code below to apply the downsampling filter always |
490 | | * resizes the input data to the filter with 8BPC and then resizes the output back to whatever |
491 | | * the original BPC was. So we need to make sure that the stream state |
492 | | * for the downsampling filter uses 8 BPC, no more and no less. |
493 | | */ |
494 | 0 | ss->params.BitsPerComponentIn = ss->params.BitsPerComponentOut = 8; |
495 | |
|
496 | 0 | ss->params.spp_interp = ss->params.spp_decode = Colors; |
497 | 0 | ss->params.TopMarginIn = ss->params.TopMarginOut = ss->params.TopMarginOut2 = ss->params.LeftMarginIn = ss->params.LeftMarginOut = 0; |
498 | 0 | ss->params.src_y_offset = ss->params.pad_y = 0; |
499 | 0 | ss->params.early_cm = true; |
500 | 0 | ss->params.MaxValueIn = ss->params.MaxValueOut = (int)pow(2, pdip->Depth); |
501 | | |
502 | | /* No idea what's a sensible value here, but we need to have something or we get a crash |
503 | | * It looks like this is for scaling up, and we don't do that, so fix it to 1. Parameter |
504 | | * Added by Ray in commit a936cf for Bug #693684, allows limiting interpolation to less# |
505 | | * than device resolution. |
506 | | */ |
507 | 0 | ss->params.abs_interp_limit = 1; |
508 | | /* Apparently ColorPolairtyAdditive is only used by the 'SpecialDownScale filter', don't |
509 | | * know what that is and we don't use it, so just set it to 0 to avoid uninitialised |
510 | | * variables |
511 | | */ |
512 | 0 | ss->params.ColorPolarityAdditive = 0; |
513 | | /* Active = 1 to match gxiscale.c, around line 374 in gs_image_class_0_interpolate() */ |
514 | 0 | ss->params.Active = 1; |
515 | |
|
516 | 0 | if (templat->init) { |
517 | 0 | code = templat->init(st); |
518 | 0 | if (code < 0) { |
519 | 0 | dmprintf(st->memory, "Failed to initialise downsample filter, downsampling aborted\n"); |
520 | 0 | gs_free_object(pdev->v_memory, st, "setup_image_compression"); |
521 | 0 | return 0; |
522 | 0 | } |
523 | 0 | } |
524 | 0 | pim->Width = s_Downsample_size_out(pim->Width, factor, false); |
525 | 0 | pim->Height = s_Downsample_size_out(pim->Height, factor, false); |
526 | 0 | pim->BitsPerComponent = pdip->Depth; |
527 | 0 | gs_matrix_scale(&pim->ImageMatrix, (double)pim->Width / orig_width, |
528 | 0 | (double)pim->Height / orig_height, |
529 | 0 | &pim->ImageMatrix); |
530 | | /****** NO ANTI-ALIASING YET ******/ |
531 | 0 | if ((code = setup_image_compression(pbw, pdip, pim, pgs, lossless)) < 0 || |
532 | 0 | (code = pixel_resize(pbw, pim->Width, Colors, |
533 | 0 | 8, pdip->Depth)) < 0 || |
534 | 0 | (code = psdf_encode_binary(pbw, templat, st)) < 0 || |
535 | 0 | (code = pixel_resize(pbw, orig_width, Colors, |
536 | 0 | orig_bpc, 8)) < 0 |
537 | 0 | ) { |
538 | 0 | gs_free_object(pdev->v_memory, st, "setup_image_compression"); |
539 | 0 | return code; |
540 | 0 | } |
541 | 0 | } |
542 | 0 | return 0; |
543 | 0 | } |
544 | | |
545 | | /* Decive whether to convert an image to RGB. */ |
546 | | bool |
547 | | psdf_is_converting_image_to_RGB(const gx_device_psdf * pdev, |
548 | | const gs_gstate * pgs, const gs_pixel_image_t * pim) |
549 | 11 | { |
550 | 11 | return pdev->params.ConvertCMYKImagesToRGB && |
551 | 11 | pgs != 0 && pim->ColorSpace && |
552 | 11 | (gs_color_space_get_index(pim->ColorSpace) == gs_color_space_index_DeviceCMYK || |
553 | 0 | (gs_color_space_get_index(pim->ColorSpace) == gs_color_space_index_ICC |
554 | 0 | && gsicc_get_default_type(pim->ColorSpace->cmm_icc_profile_data) == |
555 | 0 | gs_color_space_index_DeviceCMYK)); |
556 | 11 | } |
557 | | |
558 | | /* Set up compression and downsampling filters for an image. */ |
559 | | /* Note that this may modify the image parameters. */ |
560 | | int |
561 | | psdf_setup_image_filters(gx_device_psdf * pdev, psdf_binary_writer * pbw, |
562 | | gs_pixel_image_t * pim, const gs_matrix * pctm, |
563 | | const gs_gstate * pgs, bool lossless, bool in_line) |
564 | 11 | { |
565 | | /* |
566 | | * The following algorithms are per Adobe Tech Note # 5151, |
567 | | * "Acrobat Distiller Parameters", revised 16 September 1996 |
568 | | * for Acrobat(TM) Distiller(TM) 3.0. |
569 | | * |
570 | | * The control structure is a little tricky, because filter |
571 | | * pipelines must be constructed back-to-front. |
572 | | */ |
573 | 11 | int code = 0; |
574 | 11 | psdf_image_params params; |
575 | 11 | int bpc = pim->BitsPerComponent; |
576 | 11 | int bpc_out = pim->BitsPerComponent = min(bpc, 8); |
577 | 11 | int ncomp; |
578 | 11 | double resolution; |
579 | | |
580 | | /* |
581 | | * The Adobe documentation doesn't say this, but mask images are |
582 | | * compressed on the same basis as 1-bit-deep monochrome images, |
583 | | * except that anti-aliasing (resolution/depth tradeoff) is not |
584 | | * allowed. |
585 | | */ |
586 | 11 | if (pim->ColorSpace == NULL) { /* mask image */ |
587 | 4 | params = pdev->params.MonoImage; |
588 | 4 | params.Depth = 1; |
589 | 4 | ncomp = 1; |
590 | 7 | } else { |
591 | 7 | ncomp = gs_color_space_num_components(pim->ColorSpace); |
592 | 7 | if (pim->ColorSpace->type->index == gs_color_space_index_Indexed) { |
593 | 0 | params = pdev->params.ColorImage; |
594 | | /* Ensure we don't use JPEG on a /Indexed colour space */ |
595 | 0 | params.AutoFilter = false; |
596 | 0 | params.Filter = "FlateEncode"; |
597 | 7 | } else { |
598 | 7 | if (ncomp == 1) { |
599 | 0 | if (bpc == 1) |
600 | 0 | params = pdev->params.MonoImage; |
601 | 0 | else |
602 | 0 | params = pdev->params.GrayImage; |
603 | 0 | if (params.Depth == -1) |
604 | 0 | params.Depth = bpc; |
605 | 7 | } else { |
606 | 7 | params = pdev->params.ColorImage; |
607 | | /* params.Depth is reset below */ |
608 | 7 | } |
609 | 7 | } |
610 | 7 | } |
611 | | |
612 | | /* |
613 | | * We can compute the image resolution by: |
614 | | * W / (W * ImageMatrix^-1 * CTM / HWResolution). |
615 | | * We can replace W by 1 to simplify the computation. |
616 | | */ |
617 | 11 | if (pctm == 0) |
618 | 11 | resolution = -1; |
619 | 0 | else { |
620 | 0 | gs_point pt; |
621 | | |
622 | | /* We could do both X and Y, but why bother? */ |
623 | 0 | code = gs_distance_transform_inverse(1.0, 0.0, &pim->ImageMatrix, &pt); |
624 | 0 | if (code < 0) |
625 | 0 | return code; |
626 | 0 | gs_distance_transform(pt.x, pt.y, pctm, &pt); |
627 | 0 | resolution = 1.0 / hypot(pt.x / pdev->HWResolution[0], |
628 | 0 | pt.y / pdev->HWResolution[1]); |
629 | 0 | } |
630 | 11 | if (ncomp == 1 && pim->ColorSpace && pim->ColorSpace->type->index != gs_color_space_index_Indexed) { |
631 | | /* Monochrome, gray, or mask */ |
632 | | /* Check for downsampling. */ |
633 | 0 | if (do_downsample(¶ms, pim, resolution)) { |
634 | | /* Use the downsampled depth, not the original data depth. */ |
635 | 0 | if (params.Depth == 1) { |
636 | 0 | params.Filter = pdev->params.MonoImage.Filter; |
637 | 0 | params.filter_template = pdev->params.MonoImage.filter_template; |
638 | 0 | params.Dict = pdev->params.MonoImage.Dict; |
639 | 0 | } else { |
640 | 0 | params.Filter = pdev->params.GrayImage.Filter; |
641 | 0 | params.filter_template = pdev->params.GrayImage.filter_template; |
642 | 0 | params.Dict = pdev->params.GrayImage.Dict; |
643 | 0 | } |
644 | 0 | code = setup_downsampling(pbw, ¶ms, pim, pgs, resolution, lossless); |
645 | 0 | } else { |
646 | 0 | code = setup_image_compression(pbw, ¶ms, pim, pgs, lossless); |
647 | 0 | } |
648 | 0 | if (code < 0) |
649 | 0 | return code; |
650 | 0 | code = pixel_resize(pbw, pim->Width, ncomp, bpc, bpc_out); |
651 | 11 | } else { |
652 | | /* Color */ |
653 | 11 | bool cmyk_to_rgb = psdf_is_converting_image_to_RGB(pdev, pgs, pim); |
654 | | |
655 | 11 | if (cmyk_to_rgb) { |
656 | 0 | gs_memory_t *mem = pdev->v_memory; |
657 | | |
658 | | /* {csrc} decref old colorspace? */ |
659 | 0 | rc_decrement_only_cs(pim->ColorSpace, "psdf_setup_image_filters"); |
660 | 0 | pim->ColorSpace = gs_cspace_new_DeviceRGB(mem); |
661 | 0 | if (pim->ColorSpace == NULL) |
662 | 0 | return_error(gs_error_VMerror); |
663 | 0 | } |
664 | 11 | if (params.Depth == -1) |
665 | 7 | params.Depth = (cmyk_to_rgb ? 8 : bpc_out); |
666 | 11 | if (do_downsample(¶ms, pim, resolution)) { |
667 | 0 | code = setup_downsampling(pbw, ¶ms, pim, pgs, resolution, lossless); |
668 | 11 | } else { |
669 | 11 | code = setup_image_compression(pbw, ¶ms, pim, pgs, lossless); |
670 | 11 | } |
671 | 11 | if (code < 0) |
672 | 0 | return code; |
673 | 11 | if (cmyk_to_rgb) { |
674 | 0 | gs_memory_t *mem = pdev->v_memory; |
675 | 0 | stream_C2R_state *ss = (stream_C2R_state *) |
676 | 0 | s_alloc_state(mem, s_C2R_template.stype, "C2R state"); |
677 | 0 | int code = pixel_resize(pbw, pim->Width, 3, 8, bpc_out); |
678 | |
|
679 | 0 | if (code < 0 || |
680 | 0 | (code = psdf_encode_binary(pbw, &s_C2R_template, |
681 | 0 | (stream_state *) ss)) < 0 || |
682 | 0 | (code = pixel_resize(pbw, pim->Width, 4, bpc, 8)) < 0 |
683 | 0 | ) |
684 | 0 | return code; |
685 | 0 | s_C2R_init(ss, pgs); |
686 | 11 | } else { |
687 | 11 | code = pixel_resize(pbw, pim->Width, ncomp, bpc, bpc_out); |
688 | 11 | if (code < 0) |
689 | 0 | return code; |
690 | 11 | } |
691 | 11 | } |
692 | 11 | return code; |
693 | 11 | } |
694 | | |
695 | | /* Set up compression filters for a lossless image, downsampling is permitted, */ |
696 | | /* no color space conversion, and only lossless filters. */ |
697 | | /* Note that this may modify the image parameters. */ |
698 | | int |
699 | | psdf_setup_lossless_filters(gx_device_psdf *pdev, psdf_binary_writer *pbw, |
700 | | gs_pixel_image_t *pim, bool in_line) |
701 | 7 | { |
702 | | /* |
703 | | * Set up a device with modified parameters for computing the image |
704 | | * compression filters. Don't allow downsampling or lossy compression. |
705 | | */ |
706 | 7 | gx_device_psdf ipdev; |
707 | | |
708 | 7 | ipdev = *pdev; |
709 | 7 | ipdev.params.ColorImage.AutoFilter = false; |
710 | 7 | ipdev.params.ColorImage.Filter = "FlateEncode"; |
711 | 7 | ipdev.params.ColorImage.filter_template = &s_zlibE_template; |
712 | 7 | ipdev.params.ConvertCMYKImagesToRGB = false; |
713 | 7 | ipdev.params.GrayImage.AutoFilter = false; |
714 | 7 | ipdev.params.GrayImage.Filter = "FlateEncode"; |
715 | 7 | ipdev.params.GrayImage.filter_template = &s_zlibE_template; |
716 | 7 | return psdf_setup_image_filters(&ipdev, pbw, pim, NULL, NULL, true, in_line); |
717 | 7 | } |
718 | | |
719 | | /* Set up image compression chooser. */ |
720 | | int |
721 | | psdf_setup_compression_chooser(psdf_binary_writer *pbw, gx_device_psdf *pdev, |
722 | | int width, int height, int depth, int bits_per_sample) |
723 | 877 | { |
724 | 877 | int code; |
725 | 877 | stream_state *ss = s_alloc_state(pdev->memory, s_compr_chooser_template.stype, |
726 | 877 | "psdf_setup_compression_chooser"); |
727 | | |
728 | 877 | if (ss == 0) |
729 | 0 | return_error(gs_error_VMerror); |
730 | 877 | ss->templat = &s_compr_chooser_template; |
731 | | |
732 | 877 | pbw->memory = pdev->memory; |
733 | 877 | pbw->strm = pdev->strm; /* just a stub - will not write to it. */ |
734 | 877 | pbw->dev = pdev; |
735 | 877 | pbw->target = pbw->strm; /* Since s_add_filter may insert NullEncode to comply buffering, |
736 | | will need to close a chain of filetrs. */ |
737 | 877 | code = psdf_encode_binary(pbw, &s_compr_chooser_template, ss); |
738 | 877 | if (code < 0) |
739 | 0 | return code; |
740 | 877 | code = s_compr_chooser_set_dimensions((stream_compr_chooser_state *)ss, |
741 | 877 | width, height, depth, bits_per_sample); |
742 | 877 | return code; |
743 | 877 | } |
744 | | |
745 | | /* Set up an "image to mask" filter. */ |
746 | | int |
747 | | psdf_setup_image_to_mask_filter(psdf_binary_writer *pbw, gx_device_psdf *pdev, |
748 | | int width, int height, int input_width, |
749 | | int depth, int bits_per_sample, uint *MaskColor) |
750 | 0 | { |
751 | 0 | int code; |
752 | 0 | stream_state *ss = s_alloc_state(pdev->memory, s__image_colors_template.stype, |
753 | 0 | "psdf_setup_image_colors_filter"); |
754 | |
|
755 | 0 | if (ss == 0) |
756 | 0 | return_error(gs_error_VMerror); |
757 | 0 | pbw->memory = pdev->memory; |
758 | 0 | pbw->dev = pdev; |
759 | 0 | code = psdf_encode_binary(pbw, &s__image_colors_template, ss); |
760 | 0 | if (code < 0) |
761 | 0 | return code; |
762 | 0 | s_image_colors_set_dimensions((stream_image_colors_state *)ss, |
763 | 0 | width, height, input_width, depth, bits_per_sample); |
764 | 0 | s_image_colors_set_mask_colors((stream_image_colors_state *)ss, MaskColor); |
765 | 0 | return 0; |
766 | 0 | } |
767 | | |
768 | | /* Set up an image colors filter. */ |
769 | | int |
770 | | psdf_setup_image_colors_filter(psdf_binary_writer *pbw, |
771 | | gx_device_psdf *pdev, |
772 | | const gs_pixel_image_t *input_pim, |
773 | | gs_pixel_image_t * pim, |
774 | | const gs_gstate *pgs) |
775 | 291 | { /* fixme: currently it's a stub convertion to mask. */ |
776 | 291 | int code; |
777 | 291 | stream_state *ss = s_alloc_state(pdev->memory, s__image_colors_template.stype, |
778 | 291 | "psdf_setup_image_colors_filter"); |
779 | 291 | unsigned char i; |
780 | | |
781 | 291 | if (ss == 0) |
782 | 0 | return_error(gs_error_VMerror); |
783 | 291 | pbw->memory = pdev->memory; |
784 | 291 | pbw->dev = pdev; |
785 | 291 | code = psdf_encode_binary(pbw, &s__image_colors_template, ss); |
786 | 291 | if (code < 0) |
787 | 0 | return code; |
788 | 291 | s_image_colors_set_dimensions((stream_image_colors_state *)ss, |
789 | 291 | pim->Width, pim->Height, input_pim->Width, |
790 | 291 | gs_color_space_num_components(pim->ColorSpace), |
791 | 291 | pim->BitsPerComponent); |
792 | 291 | s_image_colors_set_color_space((stream_image_colors_state *)ss, |
793 | 291 | (gx_device *)pdev, pim->ColorSpace, pgs, pim->Decode); |
794 | 291 | pim->BitsPerComponent = pdev->color_info.comp_bits[0]; /* Same precision for all components. */ |
795 | 1.16k | for (i = 0; i < pdev->color_info.num_components; i++) { |
796 | 873 | pim->Decode[i * 2 + 0] = 0; |
797 | 873 | pim->Decode[i * 2 + 1] = 1; |
798 | 873 | } |
799 | 291 | return 0; |
800 | 291 | } |
801 | | |
802 | | /* Set up compression and downsampling filters for an image. */ |
803 | | /* Note that this may modify the image parameters. */ |
804 | | int |
805 | | new_setup_image_filters(gx_device_psdf * pdev, psdf_binary_writer * pbw, |
806 | | gs_pixel_image_t * pim, const gs_matrix * pctm, |
807 | | const gs_gstate * pgs, bool lossless, bool in_line, |
808 | | bool colour_conversion) |
809 | 5.54k | { |
810 | | /* |
811 | | * The following algorithms are per Adobe Tech Note # 5151, |
812 | | * "Acrobat Distiller Parameters", revised 16 September 1996 |
813 | | * for Acrobat(TM) Distiller(TM) 3.0. |
814 | | * |
815 | | * The control structure is a little tricky, because filter |
816 | | * pipelines must be constructed back-to-front. |
817 | | */ |
818 | 5.54k | int code = 0; |
819 | 5.54k | psdf_image_params params; |
820 | 5.54k | int bpc = pim->BitsPerComponent; |
821 | 5.54k | int bpc_out = pim->BitsPerComponent = min(bpc, 8); |
822 | 5.54k | int ncomp; |
823 | 5.54k | double resolution, resolutiony; |
824 | | |
825 | | /* |
826 | | * The Adobe documentation doesn't say this, but mask images are |
827 | | * compressed on the same basis as 1-bit-deep monochrome images, |
828 | | * except that anti-aliasing (resolution/depth tradeoff) is not |
829 | | * allowed. |
830 | | */ |
831 | 5.54k | if (pim->ColorSpace == NULL) { /* mask image */ |
832 | 714 | params = pdev->params.MonoImage; |
833 | 714 | params.Depth = 1; |
834 | 714 | ncomp = 1; |
835 | 4.82k | } else { |
836 | 4.82k | ncomp = gs_color_space_num_components(pim->ColorSpace); |
837 | 4.82k | if (pim->ColorSpace->type->index == gs_color_space_index_Indexed) { |
838 | 417 | params = pdev->params.ColorImage; |
839 | | /* Ensure we don't use JPEG on a /Indexed colour space */ |
840 | 417 | params.AutoFilter = false; |
841 | 417 | params.Filter = "FlateEncode"; |
842 | 4.41k | } else { |
843 | 4.41k | if (ncomp == 1) { |
844 | 1.19k | if (bpc == 1) |
845 | 43 | params = pdev->params.MonoImage; |
846 | 1.15k | else |
847 | 1.15k | params = pdev->params.GrayImage; |
848 | 1.19k | if (params.Depth == -1) |
849 | 1.19k | params.Depth = bpc; |
850 | 3.21k | } else { |
851 | 3.21k | params = pdev->params.ColorImage; |
852 | | /* params.Depth is reset below */ |
853 | 3.21k | } |
854 | 4.41k | } |
855 | 4.82k | } |
856 | | |
857 | | /* |
858 | | * We can compute the image resolution by: |
859 | | * W / (W * ImageMatrix^-1 * CTM / HWResolution). |
860 | | * We can replace W by 1 to simplify the computation. |
861 | | */ |
862 | 5.54k | if (pctm == 0) |
863 | 0 | resolution = -1; |
864 | 5.54k | else { |
865 | 5.54k | gs_point pt; |
866 | | |
867 | | /* We could do both X and Y, but why bother? */ |
868 | 5.54k | code = gs_distance_transform_inverse(1.0, 0.0, &pim->ImageMatrix, &pt); |
869 | 5.54k | if (code < 0) |
870 | 0 | return code; |
871 | 5.54k | gs_distance_transform(pt.x, pt.y, pctm, &pt); |
872 | 5.54k | resolution = 1.0 / hypot(pt.x / pdev->HWResolution[0], |
873 | 5.54k | pt.y / pdev->HWResolution[1]); |
874 | | |
875 | | /* Actually we must do both X and Y, in case the image is ananmorphically scaled |
876 | | * and one axis is not high enough resolution to be downsampled. |
877 | | * Bug #696152 |
878 | | */ |
879 | 5.54k | code = gs_distance_transform_inverse(0.0, 1.0, &pim->ImageMatrix, &pt); |
880 | 5.54k | if (code < 0) |
881 | 0 | return code; |
882 | 5.54k | gs_distance_transform(pt.x, pt.y, pctm, &pt); |
883 | 5.54k | resolutiony = 1.0 / hypot(pt.x / pdev->HWResolution[0], |
884 | 5.54k | pt.y / pdev->HWResolution[1]); |
885 | 5.54k | if (resolutiony < resolution) |
886 | 1.98k | resolution = resolutiony; |
887 | 5.54k | } |
888 | | |
889 | 5.54k | if (bpc != bpc_out) { |
890 | 0 | pdev->JPEG_PassThrough = 0; |
891 | 0 | pdev->JPX_PassThrough = 0; |
892 | 0 | } |
893 | | |
894 | 5.54k | if (ncomp == 1 && pim->ColorSpace && pim->ColorSpace->type->index != gs_color_space_index_Indexed) { |
895 | | /* Monochrome, gray, or mask */ |
896 | | /* Check for downsampling. */ |
897 | 1.19k | if (do_downsample(¶ms, pim, resolution)) { |
898 | | /* Use the downsampled depth, not the original data depth. */ |
899 | 0 | if (params.Depth == 1) { |
900 | 0 | params.Filter = pdev->params.MonoImage.Filter; |
901 | 0 | params.filter_template = pdev->params.MonoImage.filter_template; |
902 | 0 | params.Dict = pdev->params.MonoImage.Dict; |
903 | 0 | } else { |
904 | 0 | if (params.Depth > 8) |
905 | 0 | params.Depth = bpc_out; |
906 | 0 | params.Filter = pdev->params.GrayImage.Filter; |
907 | 0 | params.filter_template = pdev->params.GrayImage.filter_template; |
908 | 0 | params.Dict = pdev->params.GrayImage.Dict; |
909 | 0 | } |
910 | 0 | pdev->JPEG_PassThrough = 0; |
911 | 0 | pdev->JPX_PassThrough = 0; |
912 | 0 | code = setup_downsampling(pbw, ¶ms, pim, pgs, resolution, lossless); |
913 | 1.19k | } else { |
914 | 1.19k | code = setup_image_compression(pbw, ¶ms, pim, pgs, lossless); |
915 | 1.19k | } |
916 | 1.19k | if (code < 0) |
917 | 12 | return code; |
918 | 1.18k | code = pixel_resize(pbw, pim->Width, ncomp, bpc, bpc_out); |
919 | 4.34k | } else { |
920 | | /* Color */ |
921 | 4.34k | if (params.Depth == -1) |
922 | 3.63k | params.Depth = (colour_conversion ? 8 : bpc_out); |
923 | 4.34k | if (do_downsample(¶ms, pim, resolution)) { |
924 | 0 | pdev->JPEG_PassThrough = 0; |
925 | 0 | pdev->JPX_PassThrough = 0; |
926 | 0 | code = setup_downsampling(pbw, ¶ms, pim, pgs, resolution, lossless); |
927 | 4.34k | } else { |
928 | 4.34k | code = setup_image_compression(pbw, ¶ms, pim, pgs, lossless); |
929 | 4.34k | } |
930 | 4.34k | if (code < 0) |
931 | 10 | return code; |
932 | 4.33k | code = pixel_resize(pbw, pim->Width, ncomp, bpc, bpc_out); |
933 | 4.33k | if (code < 0) |
934 | 0 | return code; |
935 | 4.33k | } |
936 | 5.51k | return code; |
937 | 5.54k | } |
938 | | |
939 | | int |
940 | | new_setup_lossless_filters(gx_device_psdf *pdev, psdf_binary_writer *pbw, |
941 | | gs_pixel_image_t *pim, bool in_line, |
942 | | bool colour_conversion, const gs_matrix *pctm, gs_gstate * pgs) |
943 | 2.78k | { |
944 | | /* |
945 | | * Set up a device with modified parameters for computing the image |
946 | | * compression filters. Don't allow lossy compression, but do allow downsampling. |
947 | | */ |
948 | 2.78k | gx_device_psdf ipdev; |
949 | | |
950 | 2.78k | ipdev = *pdev; |
951 | 2.78k | ipdev.params.ColorImage.AutoFilter = false; |
952 | 2.78k | ipdev.params.ColorImage.Filter = "FlateEncode"; |
953 | 2.78k | ipdev.params.ColorImage.filter_template = &s_zlibE_template; |
954 | 2.78k | ipdev.params.ConvertCMYKImagesToRGB = false; |
955 | 2.78k | ipdev.params.GrayImage.AutoFilter = false; |
956 | 2.78k | ipdev.params.GrayImage.Downsample = false; |
957 | 2.78k | ipdev.params.GrayImage.Filter = "FlateEncode"; |
958 | 2.78k | ipdev.params.GrayImage.filter_template = &s_zlibE_template; |
959 | 2.78k | return new_setup_image_filters(&ipdev, pbw, pim, pctm, pgs, true, in_line, colour_conversion); |
960 | 2.78k | } |
961 | | |
962 | | int new_resize_input(psdf_binary_writer *pbw, int width, int num_comps, int bpc_in, int bpc_out) |
963 | 0 | { |
964 | 0 | return pixel_resize(pbw, width, num_comps, bpc_in, bpc_out); |
965 | 0 | } |