Coverage Report

Created: 2025-06-10 07:27

/src/ghostpdl/base/gsfunc0.c
Line
Count
Source (jump to first uncovered line)
1
/* Copyright (C) 2001-2023 Artifex Software, Inc.
2
   All Rights Reserved.
3
4
   This software is provided AS-IS with no warranty, either express or
5
   implied.
6
7
   This software is distributed under license and may not be copied,
8
   modified or distributed except as expressly authorized under the terms
9
   of the license contained in the file LICENSE in this distribution.
10
11
   Refer to licensing information at http://www.artifex.com or contact
12
   Artifex Software, Inc.,  39 Mesa Street, Suite 108A, San Francisco,
13
   CA 94129, USA, for further information.
14
*/
15
16
17
/* Implementation of FunctionType 0 (Sampled) Functions */
18
#include "math_.h"
19
#include "gx.h"
20
#include "gserrors.h"
21
#include "gsfunc0.h"
22
#include "gsparam.h"
23
#include "gxfarith.h"
24
#include "gxfunc.h"
25
#include "stream.h"
26
#include "gsccolor.h"           /* Only for GS_CLIENT_COLOR_MAX_COMPONENTS */
27
28
#define POLE_CACHE_DEBUG 0      /* A temporary development technology need.
29
                                   Remove after the beta testing. */
30
418
#define POLE_CACHE_GENERIC_1D 1 /* A temporary development technology need.
31
                                   Didn't decide yet - see fn_Sd_evaluate_cubic_cached_1d. */
32
764
#define POLE_CACHE_IGNORE 0     /* A temporary development technology need.
33
                                   Remove after the beta testing. */
34
35
177k
#define MAX_FAST_COMPS 8
36
37
typedef struct gs_function_Sd_s {
38
    gs_function_head_t head;
39
    gs_function_Sd_params_t params;
40
} gs_function_Sd_t;
41
42
/* GC descriptor */
43
private_st_function_Sd();
44
static
45
170
ENUM_PTRS_WITH(function_Sd_enum_ptrs, gs_function_Sd_t *pfn)
46
68
{
47
68
    index -= 6;
48
68
    if (index < st_data_source_max_ptrs)
49
17
        return ENUM_USING(st_data_source, &pfn->params.DataSource,
50
68
                          sizeof(pfn->params.DataSource), index);
51
51
    return ENUM_USING_PREFIX(st_function, st_data_source_max_ptrs);
52
68
}
53
68
ENUM_PTR3(0, gs_function_Sd_t, params.Encode, params.Decode, params.Size);
54
170
ENUM_PTR3(3, gs_function_Sd_t, params.pole, params.array_step, params.stream_step);
55
170
ENUM_PTRS_END
56
static
57
17
RELOC_PTRS_WITH(function_Sd_reloc_ptrs, gs_function_Sd_t *pfn)
58
17
{
59
17
    RELOC_PREFIX(st_function);
60
17
    RELOC_USING(st_data_source, &pfn->params.DataSource,
61
17
                sizeof(pfn->params.DataSource));
62
17
    RELOC_PTR3(gs_function_Sd_t, params.Encode, params.Decode, params.Size);
63
17
    RELOC_PTR3(gs_function_Sd_t, params.pole, params.array_step, params.stream_step);
64
17
}
65
17
RELOC_PTRS_END
66
67
/* Define the maximum plausible number of inputs and outputs */
68
/* for a Sampled function. */
69
#ifndef GS_CLIENT_SAMPLED_FN_MAX_COMPONENTS   /* Allow override with XCFLAGS */
70
55.6k
#  define max_Sd_m GS_CLIENT_COLOR_MAX_COMPONENTS
71
#  define max_Sd_n GS_CLIENT_COLOR_MAX_COMPONENTS
72
#else
73
#  define max_Sd_m GS_CLIENT_SAMPLED_FN_MAX_COMPONENTS
74
#  define max_Sd_n GS_CLIENT_SAMPLED_FN_MAX_COMPONENTS
75
#endif
76
77
/* Get one set of sample values. */
78
#define SETUP_SAMPLES(bps, nbytes)\
79
47.8M
        int n = pfn->params.n;\
80
47.8M
        byte buf[max_Sd_n * ((bps + 7) >> 3)];\
81
47.8M
        const byte *p;\
82
47.8M
        int i;\
83
47.8M
\
84
47.8M
        data_source_access(&pfn->params.DataSource, offset >> 3,\
85
47.8M
                           nbytes, buf, &p)
86
87
static int
88
fn_gets_1(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
89
0
{
90
0
    SETUP_SAMPLES(1, ((offset & 7) + n + 7) >> 3);
91
0
    for (i = 0; i < n; ++i) {
92
0
        samples[i] = (*p >> (~offset & 7)) & 1;
93
0
        if (!(++offset & 7))
94
0
            p++;
95
0
    }
96
0
    return 0;
97
0
}
98
static int
99
fn_gets_2(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
100
0
{
101
0
    SETUP_SAMPLES(2, (((offset & 7) >> 1) + n + 3) >> 2);
102
0
    for (i = 0; i < n; ++i) {
103
0
        samples[i] = (*p >> (6 - (offset & 7))) & 3;
104
0
        if (!((offset += 2) & 7))
105
0
            p++;
106
0
    }
107
0
    return 0;
108
0
}
109
static int
110
fn_gets_4(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
111
0
{
112
0
    SETUP_SAMPLES(4, (((offset & 7) >> 2) + n + 1) >> 1);
113
0
    for (i = 0; i < n; ++i) {
114
0
        samples[i] = ((offset ^= 4) & 4 ? *p >> 4 : *p++ & 0xf);
115
0
    }
116
0
    return 0;
117
0
}
118
static int
119
fn_gets_8(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
120
47.8M
{
121
47.8M
    SETUP_SAMPLES(8, n);
122
114M
    for (i = 0; i < n; ++i) {
123
67.1M
        samples[i] = *p++;
124
67.1M
    }
125
47.8M
    return 0;
126
47.8M
}
127
static int
128
fn_gets_12(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
129
0
{
130
0
    SETUP_SAMPLES(12, (((offset & 7) >> 2) + 3 * n + 1) >> 1);
131
0
    for (i = 0; i < n; ++i) {
132
0
        if (offset & 4)
133
0
            samples[i] = ((*p & 0xf) << 8) + p[1], p += 2;
134
0
        else
135
0
            samples[i] = (*p << 4) + (p[1] >> 4), p++;
136
0
        offset ^= 4;
137
0
    }
138
0
    return 0;
139
0
}
140
static int
141
fn_gets_16(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
142
56.3k
{
143
56.3k
    SETUP_SAMPLES(16, n * 2);
144
113k
    for (i = 0; i < n; ++i) {
145
56.8k
        samples[i] = (*p << 8) + p[1];
146
56.8k
        p += 2;
147
56.8k
    }
148
56.3k
    return 0;
149
56.3k
}
150
static int
151
fn_gets_24(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
152
0
{
153
0
    SETUP_SAMPLES(24, n * 3);
154
0
    for (i = 0; i < n; ++i) {
155
0
        samples[i] = (*p << 16) + (p[1] << 8) + p[2];
156
0
        p += 3;
157
0
    }
158
0
    return 0;
159
0
}
160
static int
161
fn_gets_32(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
162
0
{
163
0
    SETUP_SAMPLES(32, n * 4);
164
0
    for (i = 0; i < n; ++i) {
165
0
        samples[i] = (*p << 24) + (p[1] << 16) + (p[2] << 8) + p[3];
166
0
        p += 4;
167
0
    }
168
0
    return 0;
169
0
}
170
171
static int (*const fn_get_samples[]) (const gs_function_Sd_t * pfn,
172
                                       ulong offset, uint * samples) =
173
{
174
    0, fn_gets_1, fn_gets_2, 0, fn_gets_4, 0, 0, 0,
175
        fn_gets_8, 0, 0, 0, fn_gets_12, 0, 0, 0,
176
        fn_gets_16, 0, 0, 0, 0, 0, 0, 0,
177
        fn_gets_24, 0, 0, 0, 0, 0, 0, 0,
178
        fn_gets_32
179
};
180
181
/*
182
 * Compute a value by cubic interpolation.
183
 * f[] = f(0), f(1), f(2), f(3); 1 < x < 2.
184
 * The formula is derived from those presented in
185
 * http://www.cs.uwa.edu.au/undergraduate/units/233.413/Handouts/Lecture04.html
186
 * (thanks to Raph Levien for the reference).
187
 */
188
static double
189
interpolate_cubic(double x, double f0, double f1, double f2, double f3)
190
0
{
191
    /*
192
     * The parameter 'a' affects the contribution of the high-frequency
193
     * components.  The abovementioned source suggests a = -0.5.
194
     */
195
0
#define a (-0.5)
196
0
#define SQR(v) ((v) * (v))
197
0
#define CUBE(v) ((v) * (v) * (v))
198
0
    const double xm1 = x - 1, m2x = 2 - x, m3x = 3 - x;
199
0
    const double c =
200
0
        (a * CUBE(x) - 5 * a * SQR(x) + 8 * a * x - 4 * a) * f0 +
201
0
        ((a+2) * CUBE(xm1) - (a+3) * SQR(xm1) + 1) * f1 +
202
0
        ((a+2) * CUBE(m2x) - (a+3) * SQR(m2x) + 1) * f2 +
203
0
        (a * CUBE(m3x) - 5 * a * SQR(m3x) + 8 * a * m3x - 4 * a) * f3;
204
205
0
    if_debug6('~', "[~](%g, %g, %g, %g)order3(%g) => %g\n",
206
0
              f0, f1, f2, f3, x, c);
207
0
    return c;
208
0
#undef a
209
0
#undef SQR
210
0
#undef CUBE
211
0
}
212
213
/*
214
 * Compute a value by quadratic interpolation.
215
 * f[] = f(0), f(1), f(2); 0 < x < 1.
216
 *
217
 * We used to use a quadratic formula for this, derived from
218
 * f(0) = f0, f(1) = f1, f'(1) = (f2 - f0) / 2, but now we
219
 * match what we believe is Acrobat Reader's behavior.
220
 */
221
static inline double
222
interpolate_quadratic(double x, double f0, double f1, double f2)
223
0
{
224
0
    return interpolate_cubic(x + 1, f0, f0, f1, f2);
225
0
}
226
227
/* Calculate a result by multicubic interpolation. */
228
static void
229
fn_interpolate_cubic(const gs_function_Sd_t *pfn, const float *fparts,
230
                     const int *iparts, const ulong *factors,
231
                     float *samples, ulong offset, int m)
232
0
{
233
0
    int j;
234
235
0
top:
236
0
    if (m == 0) {
237
0
        uint sdata[max_Sd_n];
238
239
0
        (*fn_get_samples[pfn->params.BitsPerSample])(pfn, offset, sdata);
240
0
        for (j = pfn->params.n - 1; j >= 0; --j)
241
0
            samples[j] = (float)sdata[j];
242
0
    } else {
243
0
        float fpart = *fparts++;
244
0
        int ipart = *iparts++;
245
0
        ulong delta = *factors++;
246
0
        int size = pfn->params.Size[pfn->params.m - m];
247
0
        float samples1[max_Sd_n], samplesm1[max_Sd_n], samples2[max_Sd_n];
248
249
0
        --m;
250
0
        if (is_fzero(fpart))
251
0
            goto top;
252
0
        fn_interpolate_cubic(pfn, fparts, iparts, factors, samples,
253
0
                             offset, m);
254
0
        fn_interpolate_cubic(pfn, fparts, iparts, factors, samples1,
255
0
                             offset + delta, m);
256
        /* Ensure we don't try to access out of bounds. */
257
        /*
258
         * If size == 1, the only possible value for ipart and fpart is
259
         * 0, so we've already handled this case.
260
         */
261
0
        if (size == 2) { /* ipart = 0 */
262
            /* Use linear interpolation. */
263
0
            for (j = pfn->params.n - 1; j >= 0; --j)
264
0
                samples[j] += (samples1[j] - samples[j]) * fpart;
265
0
            return;
266
0
        }
267
0
        if (ipart == 0) {
268
            /* Use quadratic interpolation. */
269
0
            fn_interpolate_cubic(pfn, fparts, iparts, factors,
270
0
                                 samples2, offset + delta * 2, m);
271
0
            for (j = pfn->params.n - 1; j >= 0; --j)
272
0
                samples[j] =
273
0
                    interpolate_quadratic(fpart, samples[j],
274
0
                                          samples1[j], samples2[j]);
275
0
            return;
276
0
        }
277
        /* At this point we know ipart > 0, size >= 3. */
278
0
        fn_interpolate_cubic(pfn, fparts, iparts, factors, samplesm1,
279
0
                             offset - delta, m);
280
0
        if (ipart == size - 2) {
281
            /* Use quadratic interpolation. */
282
0
            for (j = pfn->params.n - 1; j >= 0; --j)
283
0
                samples[j] =
284
0
                    interpolate_quadratic(1 - fpart, samples1[j],
285
0
                                          samples[j], samplesm1[j]);
286
0
            return;
287
0
        }
288
        /* Now we know 0 < ipart < size - 2, size > 3. */
289
0
        fn_interpolate_cubic(pfn, fparts, iparts, factors,
290
0
                             samples2, offset + delta * 2, m);
291
0
        for (j = pfn->params.n - 1; j >= 0; --j)
292
0
            samples[j] =
293
0
                interpolate_cubic(fpart + 1, samplesm1[j], samples[j],
294
0
                                  samples1[j], samples2[j]);
295
0
    }
296
0
}
297
298
/* Calculate a result by multilinear interpolation. */
299
static void
300
fn_interpolate_linear(const gs_function_Sd_t *pfn, const float *fparts,
301
                 const ulong *factors, float *samples, ulong offset, int m)
302
8.90M
{
303
8.90M
    int j;
304
305
9.22M
top:
306
9.22M
    if (m == 0) {
307
6.04M
        uint sdata[max_Sd_n];
308
309
6.04M
        (*fn_get_samples[pfn->params.BitsPerSample])(pfn, offset, sdata);
310
19.8M
        for (j = pfn->params.n - 1; j >= 0; --j)
311
13.8M
            samples[j] = (float)sdata[j];
312
6.04M
    } else {
313
3.18M
        float fpart = *fparts++;
314
3.18M
        float samples1[max_Sd_n];
315
316
3.18M
        if (is_fzero(fpart)) {
317
316k
            ++factors;
318
316k
            --m;
319
316k
            goto top;
320
316k
        }
321
2.86M
        fn_interpolate_linear(pfn, fparts, factors + 1, samples,
322
2.86M
                              offset, m - 1);
323
2.86M
        fn_interpolate_linear(pfn, fparts, factors + 1, samples1,
324
2.86M
                              offset + *factors, m - 1);
325
9.48M
        for (j = pfn->params.n - 1; j >= 0; --j)
326
6.61M
            samples[j] += (samples1[j] - samples[j]) * fpart;
327
2.86M
    }
328
9.22M
}
329
330
static inline double
331
fn_Sd_encode(const gs_function_Sd_t *pfn, int i, double sample)
332
60.5M
{
333
60.5M
    float d0, d1, r0, r1;
334
60.5M
    double value;
335
60.5M
    int bps = pfn->params.BitsPerSample;
336
    /* x86 machines have problems with shifts if bps >= 32 */
337
60.5M
    uint max_samp = (bps < (sizeof(uint) * 8)) ? ((1 << bps) - 1) : max_uint;
338
339
60.5M
    if (pfn->params.Range)
340
60.5M
        r0 = pfn->params.Range[2 * i], r1 = pfn->params.Range[2 * i + 1];
341
0
    else
342
0
        r0 = 0, r1 = (float)max_samp;
343
60.5M
    if (pfn->params.Decode)
344
23.3M
        d0 = pfn->params.Decode[2 * i], d1 = pfn->params.Decode[2 * i + 1];
345
37.2M
    else
346
37.2M
        d0 = r0, d1 = r1;
347
348
60.5M
    value = sample * (d1 - d0) / max_samp + d0;
349
60.5M
    if (value < r0)
350
0
        value = r0;
351
60.5M
    else if (value > r1)
352
0
        value = r1;
353
60.5M
    return value;
354
60.5M
}
355
356
/* Evaluate a Sampled function. */
357
/* A generic algorithm with a recursion by dimentions. */
358
static int
359
fn_Sd_evaluate_general(const gs_function_t * pfn_common, const float *in, float *out)
360
3.18M
{
361
3.18M
    const gs_function_Sd_t *pfn = (const gs_function_Sd_t *)pfn_common;
362
3.18M
    int bps = pfn->params.BitsPerSample;
363
3.18M
    ulong offset = 0;
364
3.18M
    int i;
365
3.18M
    float encoded[max_Sd_m];
366
3.18M
    int iparts[max_Sd_m]; /* only needed for cubic interpolation */
367
3.18M
    ulong factors[max_Sd_m];
368
3.18M
    float samples[max_Sd_n];
369
370
    /* Encode the input values. */
371
372
6.36M
    for (i = 0; i < pfn->params.m; ++i) {
373
3.18M
        float d0 = pfn->params.Domain[2 * i],
374
3.18M
            d1 = pfn->params.Domain[2 * i + 1];
375
3.18M
        float arg = in[i], enc;
376
377
3.18M
        if (arg < d0)
378
33
            arg = d0;
379
3.18M
        else if (arg > d1)
380
0
            arg = d1;
381
3.18M
        if (pfn->params.Encode) {
382
2.00M
            float e0 = pfn->params.Encode[2 * i];
383
2.00M
            float e1 = pfn->params.Encode[2 * i + 1];
384
385
2.00M
            enc = (arg - d0) * (e1 - e0) / (d1 - d0) + e0;
386
2.00M
            if (enc < 0)
387
0
                encoded[i] = 0;
388
2.00M
            else if (enc >= pfn->params.Size[i] - 1)
389
74.6k
                encoded[i] = (float)pfn->params.Size[i] - 1;
390
1.93M
            else
391
1.93M
                encoded[i] = enc;
392
2.00M
        } else {
393
            /* arg is guaranteed to be in bounds, ergo so is enc */
394
                /* TODO: possible issue here.  if (pfn->params.Size[i] == 1 */
395
1.17M
            encoded[i] = (arg - d0) * (pfn->params.Size[i] - 1) / (d1 - d0);
396
1.17M
        }
397
3.18M
    }
398
399
    /* Look up and interpolate the output values. */
400
401
3.18M
    {
402
3.18M
        ulong factor = (ulong)bps * pfn->params.n;
403
404
6.36M
        for (i = 0; i < pfn->params.m; factor *= pfn->params.Size[i++]) {
405
3.18M
            int ipart = (int)encoded[i];
406
407
3.18M
            offset += (factors[i] = factor) * ipart;
408
3.18M
            iparts[i] = ipart;  /* only needed for cubic interpolation */
409
3.18M
            encoded[i] -= ipart;
410
3.18M
        }
411
3.18M
    }
412
3.18M
    if (pfn->params.Order == 3)
413
0
        fn_interpolate_cubic(pfn, encoded, iparts, factors, samples,
414
0
                             offset, pfn->params.m);
415
3.18M
    else
416
3.18M
        fn_interpolate_linear(pfn, encoded, factors, samples, offset,
417
3.18M
                              pfn->params.m);
418
419
    /* Encode the output values. */
420
421
10.4M
    for (i = 0; i < pfn->params.n; ++i)
422
7.23M
        out[i] = (float)fn_Sd_encode(pfn, i, samples[i]);
423
424
3.18M
    return 0;
425
3.18M
}
426
427
static const double double_stub = 1e90;
428
429
static inline void
430
fn_make_cubic_poles(double *p, double f0, double f1, double f2, double f3,
431
            const int pole_step_minor)
432
12
{   /* The following is poles of the polinomial,
433
       which represents interpolate_cubic in [1,2]. */
434
12
    const double a = -0.5;
435
436
12
    p[pole_step_minor * 1] = (a*f0 + 3*f1 - a*f2)/3.0;
437
12
    p[pole_step_minor * 2] = (-a*f1 + 3*f2 + a*f3)/3.0;
438
12
}
439
440
static void
441
fn_make_poles(double *p, const int pole_step, int power, int bias)
442
12
{
443
12
    const int pole_step_minor = pole_step / 3;
444
12
    switch(power) {
445
0
        case 1: /* A linear 3d power curve. */
446
            /* bias must be 0. */
447
0
            p[pole_step_minor * 1] = (2 * p[pole_step * 0] + 1 * p[pole_step * 1]) / 3;
448
0
            p[pole_step_minor * 2] = (1 * p[pole_step * 0] + 2 * p[pole_step * 1]) / 3;
449
0
            break;
450
0
        case 2:
451
            /* bias may be be 0 or 1. */
452
            /* Duplicate the beginning or the ending pole (the old code compatible). */
453
0
            fn_make_cubic_poles(p + pole_step * bias,
454
0
                    p[pole_step * 0], p[pole_step * bias],
455
0
                    p[pole_step * (1 + bias)], p[pole_step * 2],
456
0
                    pole_step_minor);
457
0
            break;
458
12
        case 3:
459
            /* bias must be 1. */
460
12
            fn_make_cubic_poles(p + pole_step * bias,
461
12
                    p[pole_step * 0], p[pole_step * 1], p[pole_step * 2], p[pole_step * 3],
462
12
                    pole_step_minor);
463
12
            break;
464
0
        default: /* Must not happen. */
465
0
           DO_NOTHING;
466
12
    }
467
12
}
468
469
/* Evaluate a Sampled function.
470
   A cubic interpolation with a pole cache.
471
   Allows a fast check for extreme suspection. */
472
/* This implementation is a particular case of 1 dimension.
473
   maybe we'll use as an optimisation of the generic case,
474
   so keep it for a while. */
475
static int
476
fn_Sd_evaluate_cubic_cached_1d(const gs_function_Sd_t *pfn, const float *in, float *out)
477
0
{
478
0
    float d0 = pfn->params.Domain[2 * 0];
479
0
    float d1 = pfn->params.Domain[2 * 0 + 1];
480
0
    const int pole_step_minor = pfn->params.n;
481
0
    const int pole_step = 3 * pole_step_minor;
482
0
    int i0; /* A cell index. */
483
0
    int ib, ie, i, k;
484
0
    double *p, t0, t1, tt;
485
0
486
0
    tt = (in[0] - d0) * (pfn->params.Size[0] - 1) / (d1 - d0);
487
0
    i0 = (int)floor(tt);
488
0
    ib = max(i0 - 1, 0);
489
0
    ie = min(pfn->params.Size[0], i0 + 3);
490
0
    for (i = ib; i < ie; i++) {
491
0
        if (pfn->params.pole[i * pole_step] == double_stub) {
492
0
            uint sdata[max_Sd_n];
493
0
            int bps = pfn->params.BitsPerSample;
494
0
495
0
            p = &pfn->params.pole[i * pole_step];
496
0
            fn_get_samples[pfn->params.BitsPerSample](pfn, (ulong)i * bps * pfn->params.n, sdata);
497
0
            for (k = 0; k < pfn->params.n; k++, p++)
498
0
                *p = fn_Sd_encode(pfn, k, (double)sdata[k]);
499
0
        }
500
0
    }
501
0
    p = &pfn->params.pole[i0 * pole_step];
502
0
    t0 = tt - i0;
503
0
    if (t0 == 0) {
504
0
        for (k = 0; k < pfn->params.n; k++, p++)
505
0
            out[k] = *p;
506
0
    } else {
507
0
        if (p[1 * pole_step_minor] == double_stub) {
508
0
            for (k = 0; k < pfn->params.n; k++)
509
0
                fn_make_poles(&pfn->params.pole[ib * pole_step + k], pole_step,
510
0
                        ie - ib - 1, i0 - ib);
511
0
        }
512
0
        t1 = 1 - t0;
513
0
        for (k = 0; k < pfn->params.n; k++, p++) {
514
0
            double y = p[0 * pole_step_minor] * t1 * t1 * t1 +
515
0
                       p[1 * pole_step_minor] * t1 * t1 * t0 * 3 +
516
0
                       p[2 * pole_step_minor] * t1 * t0 * t0 * 3 +
517
0
                       p[3 * pole_step_minor] * t0 * t0 * t0;
518
0
            if (y < pfn->params.Range[0])
519
0
                y = pfn->params.Range[0];
520
0
            if (y > pfn->params.Range[1])
521
0
                y = pfn->params.Range[1];
522
0
            out[k] = y;
523
0
        }
524
0
    }
525
0
    return 0;
526
0
}
527
528
static inline void
529
decode_argument(const gs_function_Sd_t *pfn, const float *in, double T[max_Sd_m], int I[max_Sd_m])
530
209
{
531
209
    int i;
532
533
418
    for (i = 0; i < pfn->params.m; i++) {
534
209
        float xi = in[i];
535
209
        float d0 = pfn->params.Domain[2 * i + 0];
536
209
        float d1 = pfn->params.Domain[2 * i + 1];
537
209
        double t;
538
539
209
        if (xi < d0)
540
0
            xi = d0;
541
209
        if (xi > d1)
542
0
            xi = d1;
543
209
        t = (xi - d0) * (pfn->params.Size[i] - 1) / (d1 - d0);
544
209
        I[i] = (int)floor(t);
545
209
        T[i] = t - I[i];
546
209
    }
547
209
}
548
549
static inline void
550
index_span(const gs_function_Sd_t *pfn, int *I, double *T, int ii, int *Ii, int *ib, int *ie)
551
209
{
552
209
    *Ii = I[ii];
553
209
    if (T[ii] != 0) {
554
3
        *ib = max(*Ii - 1, 0);
555
3
        *ie = min(pfn->params.Size[ii], *Ii + 3);
556
206
    } else {
557
206
        *ib = *Ii;
558
206
        *ie = *Ii + 1;
559
206
    }
560
209
}
561
562
static inline int
563
load_vector_to(const gs_function_Sd_t *pfn, int s_offset, double *V)
564
41.8M
{
565
41.8M
    uint sdata[max_Sd_n];
566
41.8M
    int k, code;
567
568
41.8M
    code = fn_get_samples[pfn->params.BitsPerSample](pfn, s_offset, sdata);
569
41.8M
    if (code < 0)
570
0
        return code;
571
95.1M
    for (k = 0; k < pfn->params.n; k++)
572
53.3M
        V[k] = fn_Sd_encode(pfn, k, (double)sdata[k]);
573
41.8M
    return 0;
574
41.8M
}
575
576
static inline int
577
load_vector(const gs_function_Sd_t *pfn, int a_offset, int s_offset)
578
173
{
579
173
    if (*(pfn->params.pole + a_offset) == double_stub) {
580
173
        uint sdata[max_Sd_n];
581
173
        int k, code;
582
583
173
        code = fn_get_samples[pfn->params.BitsPerSample](pfn, s_offset, sdata);
584
173
        if (code < 0)
585
0
            return code;
586
865
        for (k = 0; k < pfn->params.n; k++)
587
692
            *(pfn->params.pole + a_offset + k) = fn_Sd_encode(pfn, k, (double)sdata[k]);
588
173
    }
589
173
    return 0;
590
173
}
591
592
static inline void
593
interpolate_vector(const gs_function_Sd_t *pfn, int offset, int pole_step, int power, int bias)
594
3
{
595
3
    int k;
596
597
15
    for (k = 0; k < pfn->params.n; k++)
598
12
        fn_make_poles(pfn->params.pole + offset + k, pole_step, power, bias);
599
3
}
600
601
static inline void
602
interpolate_tensors(const gs_function_Sd_t *pfn, int *I, double *T,
603
        int offset, int pole_step, int power, int bias, int ii)
604
3
{
605
3
    if (ii < 0)
606
3
        interpolate_vector(pfn, offset, pole_step, power, bias);
607
0
    else {
608
0
        int s = pfn->params.array_step[ii];
609
0
        int Ii = I[ii];
610
611
0
        if (T[ii] == 0) {
612
0
            interpolate_tensors(pfn, I, T, offset + Ii * s, pole_step, power, bias, ii - 1);
613
0
        } else {
614
0
            int l;
615
616
0
            for (l = 0; l < 4; l++)
617
0
                interpolate_tensors(pfn, I, T, offset + Ii * s + l * s / 3, pole_step, power, bias, ii - 1);
618
0
        }
619
0
    }
620
3
}
621
622
static inline bool
623
is_tensor_done(const gs_function_Sd_t *pfn, int *I, double *T, int a_offset, int ii)
624
209
{
625
    /* Check an inner pole of the cell. */
626
209
    int i, o = 0;
627
628
418
    for (i = ii; i >= 0; i--) {
629
209
        o += I[i] * pfn->params.array_step[i];
630
209
        if (T[i] != 0)
631
3
            o += pfn->params.array_step[i] / 3;
632
209
    }
633
209
    if (*(pfn->params.pole + a_offset + o) != double_stub)
634
45
        return true;
635
164
    return false;
636
209
}
637
638
/* Creates a tensor of Bezier coefficients by node interpolation. */
639
static inline int
640
make_interpolation_tensor(const gs_function_Sd_t *pfn, int *I, double *T,
641
                            int a_offset, int s_offset, int ii)
642
382
{
643
    /* Well, this function isn't obvious. Trying to explain what it does.
644
645
       Suppose we have a 4x4x4...x4 hypercube of nodes, and we want to build
646
       a multicubic interpolation function for the inner 2x2x2...x2 hypercube.
647
       We represent the multicubic function with a tensor of Besier poles,
648
       and the size of the tensor is 4x4x....x4. Note that the corners
649
       of the tensor are equal to the corners of the 2x2x...x2 hypercube.
650
651
       We organize the 'pole' array so that a tensor of a cell
652
       occupies the cell, and tensors for neighbour cells have a common hyperplane.
653
654
       For a 1-dimentional case let the nodes are n0, n1, n2, n3.
655
       It defines 3 cells n0...n1, n1...n2, n2...n3.
656
       For the 2nd cell n1...n2 let the tensor coefficients are q10, q11, q12, q13.
657
       We choose a cubic approximation, in which tangents at nodes n1, n2
658
       are parallel to (n2 - n0) and (n3 - n1) correspondingly.
659
       (Well, this doesn't give a the minimal curvity, but likely it is
660
       what Adobe implementations do, see the bug 687352,
661
       and we agree that it's some reasonable).
662
663
       Then we have :
664
665
       q11 = n0
666
       q12 = (n0/2 + 3*n1 - n2/2)/3;
667
       q11 = (n1/2 + 3*n2 - n3/2)/3;
668
       q13 = n2
669
670
       When the source node array have an insufficient nomber of nodes
671
       along a dimension to determine tangents a cell
672
       (this happens near the array boundaries),
673
       we simply duplicate ending nodes. This solution is done
674
       for the compatibility to the old code, and definitely
675
       there exists a better one. Likely Adobe does the same.
676
677
       For a 2-dimensional case we apply the 1-dimentional case through
678
       the first dimension, and then construct a surface by varying the
679
       second coordinate as a parameter. It gives a bicubic surface,
680
       and the result doesn't depend on the order of coordinates
681
       (I proved the latter with Matematica 3.0).
682
       Then we know that an interpolation by one coordinate and
683
       a differentiation by another coordinate are interchangeble operators.
684
       Due to that poles of the interpolated function are same as
685
       interpolated poles of the function (well, we didn't spend time
686
       for a strong proof, but this fact was confirmed with testing the
687
       implementation with POLE_CACHE_DEBUG).
688
689
       Then we apply the 2-dimentional considerations recursively
690
       to all dimensions. This is exactly what the function does.
691
692
     */
693
382
    int code;
694
695
382
    if (ii < 0) {
696
173
        if (POLE_CACHE_IGNORE || *(pfn->params.pole + a_offset) == double_stub) {
697
173
            code = load_vector(pfn, a_offset, s_offset);
698
173
            if (code < 0)
699
0
                return code;
700
173
        }
701
209
    } else {
702
209
        int Ii, ib, ie, i;
703
209
        int sa = pfn->params.array_step[ii];
704
209
        int ss = pfn->params.stream_step[ii];
705
706
209
        index_span(pfn, I, T, ii, &Ii, &ib, &ie);
707
209
        if (POLE_CACHE_IGNORE || !is_tensor_done(pfn, I, T, a_offset, ii)) {
708
337
            for (i = ib; i < ie; i++) {
709
173
                code = make_interpolation_tensor(pfn, I, T,
710
173
                                a_offset + i * sa, s_offset + i * ss, ii - 1);
711
173
                if (code < 0)
712
0
                    return code;
713
173
            }
714
164
            if (T[ii] != 0)
715
3
                interpolate_tensors(pfn, I, T, a_offset + ib * sa, sa, ie - ib - 1,
716
3
                                Ii - ib, ii - 1);
717
164
        }
718
209
    }
719
382
    return 0;
720
382
}
721
722
/* Creates a subarray of samples. */
723
static inline int
724
make_interpolation_nodes(const gs_function_Sd_t *pfn, double *T0, double *T1,
725
                            int *I, double *T,
726
                            int a_offset, int s_offset, int ii)
727
0
{
728
0
    int code;
729
730
0
    if (ii < 0) {
731
0
        if (POLE_CACHE_IGNORE || *(pfn->params.pole + a_offset) == double_stub) {
732
0
            code = load_vector(pfn, a_offset, s_offset);
733
0
            if (code < 0)
734
0
                return code;
735
0
        }
736
0
        if (pfn->params.Order == 3) {
737
0
            code = make_interpolation_tensor(pfn, I, T, 0, 0, pfn->params.m - 1);
738
0
            if (code < 0)
739
0
                return code;
740
0
        }
741
0
    } else {
742
0
        int i;
743
0
        int i0 = (int)floor(T0[ii]);
744
0
        int i1 = (int)ceil(T1[ii]);
745
0
        int sa = pfn->params.array_step[ii];
746
0
        int ss = pfn->params.stream_step[ii];
747
748
0
        if (i0 < 0 || i0 >= pfn->params.Size[ii])
749
0
            return_error(gs_error_unregistered); /* Must not happen. */
750
0
        if (i1 < 0 || i1 >= pfn->params.Size[ii])
751
0
            return_error(gs_error_unregistered); /* Must not happen. */
752
0
        I[ii] = i0;
753
0
        T[ii] = (i1 > i0 ? 1 : 0);
754
0
        for (i = i0; i <= i1; i++) {
755
0
            code = make_interpolation_nodes(pfn, T0, T1, I, T,
756
0
                            a_offset + i * sa, s_offset + i * ss, ii - 1);
757
0
            if (code < 0)
758
0
                return code;
759
0
        }
760
0
    }
761
0
    return 0;
762
0
}
763
764
static inline int
765
evaluate_from_tenzor(const gs_function_Sd_t *pfn, int *I, double *T, int offset, int ii, double *y)
766
427
{
767
427
    int s = pfn->params.array_step[ii], k, l, code;
768
769
427
    if (ii < 0) {
770
1.09k
        for (k = 0; k < pfn->params.n; k++)
771
872
            y[k] = *(pfn->params.pole + offset + k);
772
218
    } else if (T[ii] == 0) {
773
206
        return evaluate_from_tenzor(pfn, I, T, offset + s * I[ii], ii - 1, y);
774
206
    } else {
775
3
        double t0 = T[ii], t1 = 1 - t0;
776
3
        double p[4][max_Sd_n];
777
778
15
        for (l = 0; l < 4; l++) {
779
12
            code = evaluate_from_tenzor(pfn, I, T, offset + s * I[ii] + l * (s / 3), ii - 1, p[l]);
780
12
            if (code < 0)
781
0
                return code;
782
12
        }
783
15
        for (k = 0; k < pfn->params.n; k++)
784
12
            y[k] = p[0][k] * t1 * t1 * t1 +
785
12
                   p[1][k] * t1 * t1 * t0 * 3 +
786
12
                   p[2][k] * t1 * t0 * t0 * 3 +
787
12
           p[3][k] * t0 * t0 * t0;
788
3
    }
789
221
    return 0;
790
427
}
791
792
/* Evaluate a Sampled function. */
793
/* A cubic interpolation with pole cache. */
794
/* Allows a fast check for extreme suspection with is_tensor_monotonic. */
795
static int
796
fn_Sd_evaluate_multicubic_cached(const gs_function_Sd_t *pfn, const float *in, float *out)
797
209
{
798
209
    double T[max_Sd_m], y[max_Sd_n];
799
209
    int I[max_Sd_m], k, code;
800
801
209
    decode_argument(pfn, in, T, I);
802
209
    code = make_interpolation_tensor(pfn, I, T, 0, 0, pfn->params.m - 1);
803
209
    if (code < 0)
804
0
        return code;
805
209
    evaluate_from_tenzor(pfn, I, T, 0, pfn->params.m - 1, y);
806
1.04k
    for (k = 0; k < pfn->params.n; k++) {
807
836
        double yk = y[k];
808
809
836
        if (yk < pfn->params.Range[k * 2 + 0])
810
0
            yk = pfn->params.Range[k * 2 + 0];
811
836
        if (yk > pfn->params.Range[k * 2 + 1])
812
0
            yk = pfn->params.Range[k * 2 + 1];
813
836
        out[k] = yk;
814
836
    }
815
209
    return 0;
816
209
}
817
818
/* Evaluate a Sampled function. */
819
static int
820
fn_Sd_evaluate(const gs_function_t * pfn_common, const float *in, float *out)
821
3.18M
{
822
3.18M
    const gs_function_Sd_t *pfn = (const gs_function_Sd_t *)pfn_common;
823
3.18M
    int code;
824
825
3.18M
    if (pfn->params.Order == 3) {
826
209
        if (POLE_CACHE_GENERIC_1D || pfn->params.m > 1)
827
209
            code = fn_Sd_evaluate_multicubic_cached(pfn, in, out);
828
0
        else
829
0
            code = fn_Sd_evaluate_cubic_cached_1d(pfn, in, out);
830
# if POLE_CACHE_DEBUG
831
        {   float y[max_Sd_n];
832
            int k, code1;
833
834
            code1 = fn_Sd_evaluate_general(pfn_common, in, y);
835
            if (code != code1)
836
                return_error(gs_error_unregistered); /* Must not happen. */
837
            for (k = 0; k < pfn->params.n; k++) {
838
                if (any_abs(y[k] - out[k]) > 1e-6 * (pfn->params.Range[k * 2 + 1] - pfn->params.Range[k * 2 + 0]))
839
                    return_error(gs_error_unregistered); /* Must not happen. */
840
            }
841
        }
842
# endif
843
209
    } else
844
3.18M
        code = fn_Sd_evaluate_general(pfn_common, in, out);
845
3.18M
    return code;
846
3.18M
}
847
848
/* Map a function subdomain to the sample index subdomain. */
849
static inline int
850
get_scaled_range(const gs_function_Sd_t *const pfn,
851
                   const float *lower, const float *upper,
852
                   int i, float *pw0, float *pw1)
853
67.5k
{
854
67.5k
    float d0 = pfn->params.Domain[i * 2 + 0], d1 = pfn->params.Domain[i * 2 + 1];
855
67.5k
    float v0 = lower[i], v1 = upper[i];
856
67.5k
    float e0, e1, w0, w1, w;
857
67.5k
    const float small_noise = (float)1e-6;
858
859
67.5k
    if (v0 < d0 || v0 > d1)
860
11
        return_error(gs_error_rangecheck);
861
67.5k
    if (pfn->params.Encode)
862
31.7k
        e0 = pfn->params.Encode[i * 2 + 0], e1 = pfn->params.Encode[i * 2 + 1];
863
35.8k
    else
864
35.8k
        e0 = 0, e1 = (float)pfn->params.Size[i] - 1;
865
67.5k
    w0 = (v0 - d0) * (e1 - e0) / (d1 - d0) + e0;
866
67.5k
    if (w0 < 0)
867
0
        w0 = 0;
868
67.5k
    else if (w0 >= pfn->params.Size[i] - 1)
869
14.4k
        w0 = (float)pfn->params.Size[i] - 1;
870
67.5k
    w1 = (v1 - d0) * (e1 - e0) / (d1 - d0) + e0;
871
67.5k
    if (w1 < 0)
872
0
        w1 = 0;
873
67.5k
    else if (w1 >= pfn->params.Size[i] - 1)
874
26.9k
        w1 = (float)pfn->params.Size[i] - 1;
875
67.5k
    if (w0 > w1) {
876
2.88k
        w = w0; w0 = w1; w1 = w;
877
2.88k
    }
878
67.5k
    if (floor(w0 + 1) - w0 < small_noise * any_abs(e1 - e0))
879
116
        w0 = (floor(w0) + 1);
880
67.5k
    if (w1 - floor(w1) < small_noise * any_abs(e1 - e0))
881
42.9k
        w1 = floor(w1);
882
67.5k
    if (w0 > w1)
883
80
        w0 = w1;
884
67.5k
    *pw0 = w0;
885
67.5k
    *pw1 = w1;
886
67.5k
    return 0;
887
67.5k
}
888
889
/* Copy a tensor to a differently indexed pole array. */
890
static int
891
copy_poles(const gs_function_Sd_t *pfn, int *I, double *T0, double *T1, int a_offset,
892
                int ii, double *pole, int p_offset, int pole_step)
893
0
{
894
0
    int i, ei, sa, code;
895
0
    int order = pfn->params.Order;
896
897
0
    if (pole_step <= 0)
898
0
        return_error(gs_error_limitcheck); /* Too small buffer. */
899
0
    ei = (T0[ii] == T1[ii] ? 1 : order + 1);
900
0
    sa = pfn->params.array_step[ii];
901
0
    if (ii == 0) {
902
0
        for (i = 0; i < ei; i++)
903
0
            *(pole + p_offset + i * pole_step) =
904
0
                    *(pfn->params.pole + a_offset + I[ii] * sa + i * (sa / order));
905
0
    } else {
906
0
        for (i = 0; i < ei; i++) {
907
0
            code = copy_poles(pfn, I, T0, T1, a_offset + I[ii] * sa + i * (sa / order), ii - 1,
908
0
                            pole, p_offset + i * pole_step, pole_step / 4);
909
0
            if (code < 0)
910
0
                return code;
911
0
        }
912
0
    }
913
0
    return 0;
914
0
}
915
916
static inline void
917
subcurve(double *pole, int pole_step, double t0, double t1)
918
0
{
919
    /* Generated with subcurve.nb using Mathematica 3.0. */
920
0
    double q0 = pole[pole_step * 0];
921
0
    double q1 = pole[pole_step * 1];
922
0
    double q2 = pole[pole_step * 2];
923
0
    double q3 = pole[pole_step * 3];
924
0
    double t01 = t0 - 1, t11 = t1 - 1;
925
0
    double small = 1e-13;
926
927
0
#define Power2(a) (a) * (a)
928
0
#define Power3(a) (a) * (a) * (a)
929
0
    pole[pole_step * 0] = t0*(t0*(q3*t0 - 3*q2*t01) + 3*q1*Power2(t01)) - q0*Power3(t01);
930
0
    pole[pole_step * 1] = q1*t01*(-2*t0 - t1 + 3*t0*t1) + t0*(q2*t0 + 2*q2*t1 -
931
0
                            3*q2*t0*t1 + q3*t0*t1) - q0*t11*Power2(t01);
932
0
    pole[pole_step * 2] = t1*(2*q2*t0 + q2*t1 - 3*q2*t0*t1 + q3*t0*t1) +
933
0
                            q1*(-t0 - 2*t1 + 3*t0*t1)*t11 - q0*t01*Power2(t11);
934
0
    pole[pole_step * 3] = t1*(t1*(3*q2 - 3*q2*t1 + q3*t1) +
935
0
                            3*q1*Power2(t11)) - q0*Power3(t11);
936
0
#undef Power2
937
0
#undef Power3
938
0
    if (any_abs(pole[pole_step * 1] - pole[pole_step * 0]) < small)
939
0
        pole[pole_step * 1] = pole[pole_step * 0];
940
0
    if (any_abs(pole[pole_step * 2] - pole[pole_step * 3]) < small)
941
0
        pole[pole_step * 2] = pole[pole_step * 3];
942
0
}
943
944
static inline void
945
subline(double *pole, int pole_step, double t0, double t1)
946
0
{
947
0
    double q0 = pole[pole_step * 0];
948
0
    double q1 = pole[pole_step * 1];
949
950
0
    pole[pole_step * 0] = (1 - t0) * q0 + t0 * q1;
951
0
    pole[pole_step * 1] = (1 - t1) * q0 + t1 * q1;
952
0
}
953
954
static void
955
clamp_poles(double *T0, double *T1, int ii, int i, double * pole,
956
                int p_offset, int pole_step, int pole_step_i, int order)
957
0
{
958
0
    if (ii < 0) {
959
0
        if (order == 3)
960
0
            subcurve(pole + p_offset, pole_step_i, T0[i], T1[i]);
961
0
        else
962
0
            subline(pole + p_offset, pole_step_i, T0[i], T1[i]);
963
0
    } else if (i == ii) {
964
0
        clamp_poles(T0, T1, ii - 1, i, pole, p_offset, pole_step / 4, pole_step, order);
965
0
    } else {
966
0
        int j, ei = (T0[ii] == T1[ii] ? 1 : order + 1);
967
968
0
        for (j = 0; j < ei; j++)
969
0
            clamp_poles(T0, T1, ii - 1, i, pole, p_offset + j * pole_step,
970
0
                            pole_step / 4, pole_step_i, order);
971
0
    }
972
0
}
973
974
static inline int /* 3 - don't know, 2 - decreesing, 0 - constant, 1 - increasing. */
975
curve_monotonity(double *pole, int pole_step)
976
0
{
977
0
    double p0 = pole[pole_step * 0];
978
0
    double p1 = pole[pole_step * 1];
979
0
    double p2 = pole[pole_step * 2];
980
0
    double p3 = pole[pole_step * 3];
981
982
0
    if (p0 == p1 && any_abs(p1 - p2) < 1e-13 && p2 == p3)
983
0
        return 0;
984
0
    if (p0 <= p1 && p1 <= p2 && p2 <= p3)
985
0
        return 1;
986
0
    if (p0 >= p1 && p1 >= p2 && p2 >= p3)
987
0
        return 2;
988
    /* Maybe not monotonic.
989
       Don't want to solve quadratic equations, so return "don't know".
990
       This case should be rare.
991
     */
992
0
    return 3;
993
0
}
994
995
static inline int /* 2 - decreesing, 0 - constant, 1 - increasing. */
996
line_monotonity(double *pole, int pole_step)
997
0
{
998
0
    double p0 = pole[pole_step * 0];
999
0
    double p1 = pole[pole_step * 1];
1000
1001
0
    if (p1 - p0 > 1e-13)
1002
0
        return 1;
1003
0
    if (p0 - p1 > 1e-13)
1004
0
        return 2;
1005
0
    return 0;
1006
0
}
1007
1008
static int /* 3 bits per guide : 3 - non-monotonic or don't know,
1009
                    2 - decreesing, 0 - constant, 1 - increasing.
1010
                    The number of guides is order+1. */
1011
tensor_dimension_monotonity(const double *T0, const double *T1, int ii, int i0, double *pole,
1012
                int p_offset, int pole_step, int pole_step_i, int order)
1013
0
{
1014
0
    if (ii < 0) {
1015
0
        if (order == 3)
1016
0
            return curve_monotonity(pole + p_offset, pole_step_i);
1017
0
        else
1018
0
            return line_monotonity(pole + p_offset, pole_step_i);
1019
0
    } else if (i0 == ii) {
1020
        /* Delay the dimension till the end, and adjust pole_step. */
1021
0
        return tensor_dimension_monotonity(T0, T1, ii - 1, i0, pole, p_offset,
1022
0
                            pole_step / 4, pole_step, order);
1023
0
    } else {
1024
0
        int j, ei = (T0[ii] == T1[ii] ? 1 : order + 1), m = 0, mm;
1025
1026
0
        for (j = 0; j < ei; j++) {
1027
0
            mm = tensor_dimension_monotonity(T0, T1, ii - 1, i0, pole, p_offset + j * pole_step,
1028
0
                            pole_step/ 4, pole_step_i, order);
1029
0
            m |= mm << (j * 3);
1030
0
            if (mm == 3) {
1031
                /* If one guide is not monotonic, the dimension is not monotonic.
1032
                   Can return early. */
1033
0
                break;
1034
0
            }
1035
0
        }
1036
0
        return m;
1037
0
    }
1038
0
}
1039
1040
static inline int
1041
is_tensor_monotonic_by_dimension(const gs_function_Sd_t *pfn, int *I, double *T0, double *T1, int i0, int k,
1042
                    uint *mask /* 3 bits per guide : 3 - non-monotonic or don't know,
1043
                    2 - decreesing, 0 - constant, 1 - increasing.
1044
                    The number of guides is order+1. */)
1045
0
{
1046
0
    double pole[4*4*4]; /* For a while restricting with 3-in cubic functions.
1047
                 More arguments need a bigger buffer, but the rest of code is same. */
1048
0
    int i, code, ii = pfn->params.m - 1;
1049
0
    double TT0[3], TT1[3];
1050
1051
0
    *mask = 0;
1052
0
    if (ii >= 3) {
1053
         /* Unimplemented. We don't know practical cases,
1054
            because currently it is only called while decomposing a shading.  */
1055
0
        return_error(gs_error_limitcheck);
1056
0
    }
1057
0
    code = copy_poles(pfn, I, T0, T1, k, ii, pole, 0, count_of(pole) / 4);
1058
0
    if (code < 0)
1059
0
        return code;
1060
0
    for (i = ii; i >= 0; i--) {
1061
0
        TT0[i] = 0;
1062
0
        if (T0[i] != T1[i]) {
1063
0
            if (T0[i] != 0 || T1[i] != 1)
1064
0
                clamp_poles(T0, T1, ii, i, pole, 0, count_of(pole) / 4, -1, pfn->params.Order);
1065
0
            TT1[i] = 1;
1066
0
        } else
1067
0
            TT1[i] = 0;
1068
0
    }
1069
0
    *mask = tensor_dimension_monotonity(TT0, TT1, ii, i0, pole, 0,
1070
0
                        count_of(pole) / 4, 1, pfn->params.Order);
1071
0
    return 0;
1072
0
}
1073
1074
static int /* error code */
1075
is_lattice_monotonic_by_dimension(const gs_function_Sd_t *pfn, const double *T0, const double *T1,
1076
        int *I, double *S0, double *S1, int ii, int i0, int k,
1077
        uint *mask /* 3 bits per guide : 1 - non-monotonic or don't know, 0 - monotonic;
1078
                      The number of guides is order+1. */)
1079
0
{
1080
0
    if (ii == -1) {
1081
        /* fixme : could cache the cell monotonity against redundant evaluation. */
1082
0
        return is_tensor_monotonic_by_dimension(pfn, I, S0, S1, i0, k, mask);
1083
0
    } else {
1084
0
        int i1 = (ii > i0 ? ii : ii == 0 ? i0 : ii - 1); /* Delay the dimension i0 till the end of recursion. */
1085
0
        int j, code;
1086
0
        int bi = (int)floor(T0[i1]);
1087
0
        int ei = (int)floor(T1[i1]);
1088
0
        uint m, mm, m1 = 0x49249249 & ((1 << ((pfn->params.Order + 1) * 3)) - 1);
1089
1090
0
        if (floor(T1[i1]) == T1[i1])
1091
0
            ei --;
1092
0
        m = 0;
1093
0
        for (j = bi; j <= ei; j++) {
1094
            /* fixme : A better performance may be obtained with comparing central nodes with side ones. */
1095
0
            I[i1] = j;
1096
0
            S0[i1] = max(T0[i1] - j, 0);
1097
0
            S1[i1] = min(T1[i1] - j, 1);
1098
0
            code = is_lattice_monotonic_by_dimension(pfn, T0, T1, I, S0, S1, ii - 1, i0, k, &mm);
1099
0
            if (code < 0)
1100
0
                return code;
1101
0
            m |= mm;
1102
0
            if (m == m1) /* Don't return early - shadings need to know about all dimensions. */
1103
0
                break;
1104
0
        }
1105
0
        if (ii == 0) {
1106
            /* Detect non-monotonic guides. */
1107
0
            m = m & (m >> 1);
1108
0
        }
1109
0
        *mask = m;
1110
0
        return 0;
1111
0
    }
1112
0
}
1113
1114
static inline int /* error code */
1115
is_lattice_monotonic(const gs_function_Sd_t *pfn, const double *T0, const double *T1,
1116
         int *I, double *S0, double *S1,
1117
         int k, uint *mask /* 1 bit per dimension : 1 - non-monotonic or don't know,
1118
                      0 - monotonic. */)
1119
0
{
1120
0
    uint m, mm = 0;
1121
0
    int i, code;
1122
1123
0
    for (i = 0; i < pfn->params.m; i++) {
1124
0
        if (T0[i] != T1[i]) {
1125
0
            code = is_lattice_monotonic_by_dimension(pfn, T0, T1, I, S0, S1, pfn->params.m - 1, i, k, &m);
1126
0
            if (code < 0)
1127
0
                return code;
1128
0
            if (m)
1129
0
                mm |= 1 << i;
1130
0
        }
1131
0
    }
1132
0
    *mask = mm;
1133
0
    return 0;
1134
0
}
1135
1136
static int /* 3 bits per result : 3 - non-monotonic or don't know,
1137
               2 - decreesing, 0 - constant, 1 - increasing,
1138
               <0 - error. */
1139
fn_Sd_1arg_linear_monotonic_rec(const gs_function_Sd_t *const pfn, int i0, int i1,
1140
                                const double *V0, const double *V1)
1141
83.5M
{
1142
83.5M
    if (i1 - i0 <= 1) {
1143
41.7M
        int code = 0, i;
1144
1145
95.0M
        for (i = 0; i < pfn->params.n; i++) {
1146
53.2M
            if (V0[i] < V1[i])
1147
3.84M
                code |= 1 << (i * 3);
1148
49.4M
            else if (V0[i] > V1[i])
1149
2.84M
                code |= 2 << (i * 3);
1150
53.2M
        }
1151
41.7M
        return code;
1152
41.7M
    } else {
1153
41.7M
        double VV[MAX_FAST_COMPS];
1154
41.7M
        int ii = (i0 + i1) / 2, code, cod1;
1155
1156
41.7M
        code = load_vector_to(pfn, ii * pfn->params.n * pfn->params.BitsPerSample, VV);
1157
41.7M
        if (code < 0)
1158
0
            return code;
1159
41.7M
        if (code & (code >> 1))
1160
0
            return code; /* Not monotonic by some component of the result. */
1161
41.7M
        code = fn_Sd_1arg_linear_monotonic_rec(pfn, i0, ii, V0, VV);
1162
41.7M
        if (code < 0)
1163
0
            return code;
1164
41.7M
        cod1 = fn_Sd_1arg_linear_monotonic_rec(pfn, ii, i1, VV, V1);
1165
41.7M
        if (cod1 < 0)
1166
0
            return cod1;
1167
41.7M
        return code | cod1;
1168
41.7M
    }
1169
83.5M
}
1170
1171
static int
1172
fn_Sd_1arg_linear_monotonic(const gs_function_Sd_t *const pfn, double T0, double T1,
1173
                            uint *mask /* 1 - non-monotonic or don't know, 0 - monotonic. */)
1174
67.5k
{
1175
67.5k
    int i0 = (int)floor(T0);
1176
67.5k
    int i1 = (int)ceil(T1), code;
1177
67.5k
    double V0[MAX_FAST_COMPS], V1[MAX_FAST_COMPS];
1178
1179
67.5k
    if (i1 - i0 > 1) {
1180
37.0k
        code = load_vector_to(pfn, i0 * pfn->params.n * pfn->params.BitsPerSample, V0);
1181
37.0k
        if (code < 0)
1182
0
            return code;
1183
37.0k
        code = load_vector_to(pfn, i1 * pfn->params.n * pfn->params.BitsPerSample, V1);
1184
37.0k
        if (code < 0)
1185
0
            return code;
1186
37.0k
        code = fn_Sd_1arg_linear_monotonic_rec(pfn, i0, i1, V0, V1);
1187
37.0k
        if (code < 0)
1188
0
            return code;
1189
37.0k
        if (code & (code >> 1)) {
1190
16.6k
            *mask = 1;
1191
16.6k
            return 0;
1192
16.6k
        }
1193
37.0k
    }
1194
50.9k
    *mask = 0;
1195
50.9k
    return 1;
1196
67.5k
}
1197
1198
0
#define DEBUG_Sd_1arg 0
1199
1200
/* Test whether a Sampled function is monotonic. */
1201
static int /* 1 = monotonic, 0 = not or don't know, <0 = error. */
1202
fn_Sd_is_monotonic_aux(const gs_function_Sd_t *const pfn,
1203
                   const float *lower, const float *upper,
1204
                   uint *mask /* 1 bit per dimension : 1 - non-monotonic or don't know,
1205
                      0 - monotonic. */)
1206
67.5k
{
1207
67.5k
    int i, code, ii = pfn->params.m - 1;
1208
67.5k
    int I[4];
1209
67.5k
    double T0[count_of(I)], T1[count_of(I)];
1210
67.5k
    double S0[count_of(I)], S1[count_of(I)];
1211
67.5k
    uint m, mm, m1;
1212
#   if DEBUG_Sd_1arg
1213
    int code1, mask1;
1214
#   endif
1215
1216
67.5k
    if (ii >= count_of(T0)) {
1217
         /* Unimplemented. We don't know practical cases,
1218
            because currently it is only called while decomposing a shading.  */
1219
0
        return_error(gs_error_limitcheck);
1220
0
    }
1221
135k
    for (i = 0; i <= ii; i++) {
1222
67.5k
        float w0, w1;
1223
1224
67.5k
        code = get_scaled_range(pfn, lower, upper, i, &w0, &w1);
1225
67.5k
        if (code < 0)
1226
11
            return code;
1227
67.5k
        T0[i] = w0;
1228
67.5k
        T1[i] = w1;
1229
67.5k
    }
1230
67.5k
    if (pfn->params.m == 1 && pfn->params.Order == 1 && pfn->params.n <= MAX_FAST_COMPS) {
1231
67.5k
        code = fn_Sd_1arg_linear_monotonic(pfn, T0[0], T1[0], mask);
1232
67.5k
# if !DEBUG_Sd_1arg
1233
67.5k
            return code;
1234
# else
1235
            mask1 = *mask;
1236
            code1 = code;
1237
# endif
1238
67.5k
    }
1239
0
    m1 = (1 << pfn->params.m )- 1;
1240
0
    code = make_interpolation_nodes(pfn, T0, T1, I, S0, 0, 0, ii);
1241
0
    if (code < 0)
1242
0
        return code;
1243
0
    mm = 0;
1244
0
    for (i = 0; i < pfn->params.n; i++) {
1245
0
        code = is_lattice_monotonic(pfn, T0, T1, I, S0, S1, i, &m);
1246
0
        if (code < 0)
1247
0
            return code;
1248
0
        mm |= m;
1249
0
        if (mm == m1) /* Don't return early - shadings need to know about all dimensions. */
1250
0
            break;
1251
0
    }
1252
#   if DEBUG_Sd_1arg
1253
        if (mask1 != mm)
1254
            return_error(gs_error_unregistered);
1255
        if (code1 != !mm)
1256
            return_error(gs_error_unregistered);
1257
#   endif
1258
0
    *mask = mm;
1259
0
    return !mm;
1260
0
}
1261
1262
/* Test whether a Sampled function is monotonic. */
1263
/* 1 = monotonic, 0 = don't know, <0 = error. */
1264
static int
1265
fn_Sd_is_monotonic(const gs_function_t * pfn_common,
1266
                   const float *lower, const float *upper, uint *mask)
1267
67.5k
{
1268
67.5k
    const gs_function_Sd_t *const pfn =
1269
67.5k
        (const gs_function_Sd_t *)pfn_common;
1270
1271
67.5k
    return fn_Sd_is_monotonic_aux(pfn, lower, upper, mask);
1272
67.5k
}
1273
1274
/* Return Sampled function information. */
1275
static void
1276
fn_Sd_get_info(const gs_function_t *pfn_common, gs_function_info_t *pfi)
1277
50.0k
{
1278
50.0k
    const gs_function_Sd_t *const pfn =
1279
50.0k
        (const gs_function_Sd_t *)pfn_common;
1280
50.0k
    long size;
1281
50.0k
    int i;
1282
1283
50.0k
    gs_function_get_info_default(pfn_common, pfi);
1284
50.0k
    pfi->DataSource = &pfn->params.DataSource;
1285
100k
    for (i = 0, size = 1; i < pfn->params.m; ++i)
1286
50.9k
        size *= pfn->params.Size[i];
1287
50.0k
    pfi->data_size =
1288
50.0k
        (size * pfn->params.n * pfn->params.BitsPerSample + 7) >> 3;
1289
50.0k
}
1290
1291
/* Write Sampled function parameters on a parameter list. */
1292
static int
1293
fn_Sd_get_params(const gs_function_t *pfn_common, gs_param_list *plist)
1294
20.9k
{
1295
20.9k
    const gs_function_Sd_t *const pfn =
1296
20.9k
        (const gs_function_Sd_t *)pfn_common;
1297
20.9k
    int ecode = fn_common_get_params(pfn_common, plist);
1298
20.9k
    int code;
1299
1300
20.9k
    if (pfn->params.Order != 1) {
1301
41
        if ((code = param_write_int(plist, "Order", &pfn->params.Order)) < 0)
1302
0
            ecode = code;
1303
41
    }
1304
20.9k
    if ((code = param_write_int(plist, "BitsPerSample",
1305
20.9k
                                &pfn->params.BitsPerSample)) < 0)
1306
0
        ecode = code;
1307
20.9k
    if (pfn->params.Encode) {
1308
831
        if ((code = param_write_float_values(plist, "Encode",
1309
831
                                             pfn->params.Encode,
1310
831
                                             2 * pfn->params.m, false)) < 0)
1311
0
            ecode = code;
1312
831
    }
1313
20.9k
    if (pfn->params.Decode) {
1314
7.17k
        if ((code = param_write_float_values(plist, "Decode",
1315
7.17k
                                             pfn->params.Decode,
1316
7.17k
                                             2 * pfn->params.n, false)) < 0)
1317
0
            ecode = code;
1318
7.17k
    }
1319
20.9k
    if (pfn->params.Size) {
1320
20.9k
        if ((code = param_write_int_values(plist, "Size", pfn->params.Size,
1321
20.9k
                                           pfn->params.m, false)) < 0)
1322
0
            ecode = code;
1323
20.9k
    }
1324
20.9k
    return ecode;
1325
20.9k
}
1326
1327
/* Make a scaled copy of a Sampled function. */
1328
static int
1329
fn_Sd_make_scaled(const gs_function_Sd_t *pfn, gs_function_Sd_t **ppsfn,
1330
                  const gs_range_t *pranges, gs_memory_t *mem)
1331
0
{
1332
0
    gs_function_Sd_t *psfn =
1333
0
        gs_alloc_struct(mem, gs_function_Sd_t, &st_function_Sd,
1334
0
                        "fn_Sd_make_scaled");
1335
0
    int code;
1336
1337
0
    if (psfn == 0)
1338
0
        return_error(gs_error_VMerror);
1339
0
    psfn->params = pfn->params;
1340
0
    psfn->params.Encode = 0;    /* in case of failure */
1341
0
    psfn->params.Decode = 0;
1342
0
    psfn->params.Size =
1343
0
        fn_copy_values(pfn->params.Size, pfn->params.m, sizeof(int), mem);
1344
0
    if ((code = (psfn->params.Size == 0 ?
1345
0
                 gs_note_error(gs_error_VMerror) : 0)) < 0 ||
1346
0
        (code = fn_common_scale((gs_function_t *)psfn,
1347
0
                                (const gs_function_t *)pfn,
1348
0
                                pranges, mem)) < 0 ||
1349
0
        (code = fn_scale_pairs(&psfn->params.Encode, pfn->params.Encode,
1350
0
                               pfn->params.m, NULL, mem)) < 0 ||
1351
0
        (code = fn_scale_pairs(&psfn->params.Decode, pfn->params.Decode,
1352
0
                               pfn->params.n, pranges, mem)) < 0) {
1353
0
        gs_function_free((gs_function_t *)psfn, true, mem);
1354
0
    } else
1355
0
        *ppsfn = psfn;
1356
0
    return code;
1357
0
}
1358
1359
/* Free the parameters of a Sampled function. */
1360
void
1361
gs_function_Sd_free_params(gs_function_Sd_params_t * params, gs_memory_t * mem)
1362
43.6k
{
1363
43.6k
    gs_free_const_object(mem, params->Size, "Size");
1364
43.6k
    params->Size = NULL;
1365
43.6k
    gs_free_const_object(mem, params->Decode, "Decode");
1366
43.6k
    params->Decode = NULL;
1367
43.6k
    gs_free_const_object(mem, params->Encode, "Encode");
1368
43.6k
    params->Encode = NULL;
1369
43.6k
    fn_common_free_params((gs_function_params_t *) params, mem);
1370
43.6k
    if (params->DataSource.type == data_source_type_stream && params->DataSource.data.strm != NULL) {
1371
41.4k
        s_close_filters(&params->DataSource.data.strm, params->DataSource.data.strm->strm);
1372
41.4k
        params->DataSource.data.strm = NULL;
1373
41.4k
    }
1374
43.6k
    gs_free_object(mem, params->pole, "gs_function_Sd_free_params");
1375
43.6k
    params->pole = NULL;
1376
43.6k
    gs_free_object(mem, params->array_step, "gs_function_Sd_free_params");
1377
43.6k
    params->array_step = NULL;
1378
43.6k
    gs_free_object(mem, params->stream_step, "gs_function_Sd_free_params");
1379
43.6k
    params->stream_step = NULL;
1380
43.6k
}
1381
1382
/* aA helper for gs_function_Sd_serialize. */
1383
static int serialize_array(const float *a, int half_size, stream *s)
1384
58.2k
{
1385
58.2k
    uint n;
1386
58.2k
    const float dummy[2] = {0, 0};
1387
58.2k
    int i, code;
1388
1389
58.2k
    if (a != NULL)
1390
34.5k
        return sputs(s, (const byte *)a, sizeof(a[0]) * half_size * 2, &n);
1391
82.8k
    for (i = 0; i < half_size; i++) {
1392
59.1k
        code = sputs(s, (const byte *)dummy, sizeof(dummy), &n);
1393
59.1k
        if (code < 0)
1394
0
            return code;
1395
59.1k
    }
1396
23.6k
    return 0;
1397
23.6k
}
1398
1399
/* Serialize. */
1400
static int
1401
gs_function_Sd_serialize(const gs_function_t * pfn, stream *s)
1402
29.1k
{
1403
29.1k
    uint n;
1404
29.1k
    const gs_function_Sd_params_t * p = (const gs_function_Sd_params_t *)&pfn->params;
1405
29.1k
    gs_function_info_t info;
1406
29.1k
    int code = fn_common_serialize(pfn, s);
1407
29.1k
    ulong pos;
1408
29.1k
    uint count;
1409
29.1k
    byte buf[100];
1410
29.1k
    const byte *ptr;
1411
1412
29.1k
    if (code < 0)
1413
0
        return code;
1414
29.1k
    code = sputs(s, (const byte *)&p->Order, sizeof(p->Order), &n);
1415
29.1k
    if (code < 0)
1416
0
        return code;
1417
29.1k
    code = sputs(s, (const byte *)&p->BitsPerSample, sizeof(p->BitsPerSample), &n);
1418
29.1k
    if (code < 0)
1419
0
        return code;
1420
29.1k
    code = serialize_array(p->Encode, p->m, s);
1421
29.1k
    if (code < 0)
1422
0
        return code;
1423
29.1k
    code = serialize_array(p->Decode, p->n, s);
1424
29.1k
    if (code < 0)
1425
0
        return code;
1426
29.1k
    gs_function_get_info(pfn, &info);
1427
29.1k
    code = sputs(s, (const byte *)&info.data_size, sizeof(info.data_size), &n);
1428
29.1k
    if (code < 0)
1429
0
        return code;
1430
318k
    for (pos = 0; pos < info.data_size; pos += count) {
1431
289k
        count = min(sizeof(buf), info.data_size - pos);
1432
289k
        data_source_access_only(info.DataSource, pos, count, buf, &ptr);
1433
289k
        code = sputs(s, ptr, count, &n);
1434
289k
        if (code < 0)
1435
0
            return code;
1436
289k
    }
1437
29.1k
    return 0;
1438
29.1k
}
1439
1440
/* Allocate and initialize a Sampled function. */
1441
int
1442
gs_function_Sd_init(gs_function_t ** ppfn,
1443
                  const gs_function_Sd_params_t * params, gs_memory_t * mem)
1444
55.6k
{
1445
55.6k
    static const gs_function_head_t function_Sd_head = {
1446
55.6k
        function_type_Sampled,
1447
55.6k
        {
1448
55.6k
            (fn_evaluate_proc_t) fn_Sd_evaluate,
1449
55.6k
            (fn_is_monotonic_proc_t) fn_Sd_is_monotonic,
1450
55.6k
            (fn_get_info_proc_t) fn_Sd_get_info,
1451
55.6k
            (fn_get_params_proc_t) fn_Sd_get_params,
1452
55.6k
            (fn_make_scaled_proc_t) fn_Sd_make_scaled,
1453
55.6k
            (fn_free_params_proc_t) gs_function_Sd_free_params,
1454
55.6k
            fn_common_free,
1455
55.6k
            (fn_serialize_proc_t) gs_function_Sd_serialize,
1456
55.6k
        }
1457
55.6k
    };
1458
55.6k
    int code;
1459
55.6k
    int i;
1460
1461
55.6k
    *ppfn = 0;      /* in case of error */
1462
55.6k
    code = fn_check_mnDR((const gs_function_params_t *)params,
1463
55.6k
                         params->m, params->n);
1464
55.6k
    if (code < 0)
1465
18
        return code;
1466
55.6k
    if (params->m > max_Sd_m)
1467
0
        return_error(gs_error_limitcheck);
1468
55.6k
    switch (params->Order) {
1469
694
        case 0:   /* use default */
1470
55.2k
        case 1:
1471
55.6k
        case 3:
1472
55.6k
            break;
1473
0
        default:
1474
0
            return_error(gs_error_rangecheck);
1475
55.6k
    }
1476
55.6k
    switch (params->BitsPerSample) {
1477
0
        case 1:
1478
0
        case 2:
1479
0
        case 4:
1480
54.1k
        case 8:
1481
54.1k
        case 12:
1482
55.3k
        case 16:
1483
55.3k
        case 24:
1484
55.3k
        case 32:
1485
55.3k
            break;
1486
270
        default:
1487
270
            return_error(gs_error_rangecheck);
1488
55.6k
    }
1489
111k
    for (i = 0; i < params->m; ++i)
1490
56.5k
        if (params->Size[i] <= 0)
1491
0
            return_error(gs_error_rangecheck);
1492
55.3k
    {
1493
55.3k
        gs_function_Sd_t *pfn =
1494
55.3k
            gs_alloc_struct(mem, gs_function_Sd_t, &st_function_Sd,
1495
55.3k
                            "gs_function_Sd_init");
1496
55.3k
        int bps, sa, ss, i, order, was;
1497
1498
55.3k
        if (pfn == 0)
1499
0
            return_error(gs_error_VMerror);
1500
55.3k
        pfn->params = *params;
1501
55.3k
        if (params->Order == 0)
1502
694
            pfn->params.Order = 1; /* default */
1503
55.3k
        pfn->params.pole = NULL;
1504
55.3k
        pfn->params.array_step = NULL;
1505
55.3k
        pfn->params.stream_step = NULL;
1506
55.3k
        pfn->head = function_Sd_head;
1507
55.3k
        pfn->params.array_size = 0;
1508
55.3k
        if (pfn->params.m == 1 && pfn->params.Order == 1 && pfn->params.n <= MAX_FAST_COMPS && !DEBUG_Sd_1arg) {
1509
            /* Won't use pole cache. Call fn_Sd_1arg_linear_monotonic instead. */
1510
54.0k
        } else {
1511
1.33k
            pfn->params.array_step = (int *)gs_alloc_byte_array(mem,
1512
1.33k
                                    max_Sd_m, sizeof(int), "gs_function_Sd_init");
1513
1.33k
            pfn->params.stream_step = (int *)gs_alloc_byte_array(mem,
1514
1.33k
                                    max_Sd_m, sizeof(int), "gs_function_Sd_init");
1515
1.33k
            if (pfn->params.array_step == NULL || pfn->params.stream_step == NULL)
1516
0
                return_error(gs_error_VMerror);
1517
1.33k
            bps = pfn->params.BitsPerSample;
1518
1.33k
            sa = pfn->params.n;
1519
1.33k
            ss = pfn->params.n * bps;
1520
1.33k
            order = pfn->params.Order;
1521
3.83k
            for (i = 0; i < pfn->params.m; i++) {
1522
2.49k
                pfn->params.array_step[i] = sa * order;
1523
2.49k
                was = sa;
1524
2.49k
                sa = (pfn->params.Size[i] * order - (order - 1)) * sa;
1525
                /* If the calculation of sa went backwards then we overflowed! */
1526
2.49k
                if (was > sa)
1527
0
                    return_error(gs_error_VMerror);
1528
2.49k
                pfn->params.stream_step[i] = ss;
1529
2.49k
                ss = pfn->params.Size[i] * ss;
1530
2.49k
            }
1531
1.33k
            pfn->params.pole = (double *)gs_alloc_byte_array(mem,
1532
1.33k
                                    sa, sizeof(double), "gs_function_Sd_init");
1533
1.33k
            if (pfn->params.pole == NULL)
1534
0
                return_error(gs_error_VMerror);
1535
4.07M
            for (i = 0; i < sa; i++)
1536
4.06M
                pfn->params.pole[i] = double_stub;
1537
1.33k
            pfn->params.array_size = sa;
1538
1.33k
        }
1539
55.3k
        *ppfn = (gs_function_t *) pfn;
1540
55.3k
    }
1541
0
    return 0;
1542
55.3k
}