Coverage Report

Created: 2025-06-10 07:27

/src/ghostpdl/base/gxshade.c
Line
Count
Source (jump to first uncovered line)
1
/* Copyright (C) 2001-2023 Artifex Software, Inc.
2
   All Rights Reserved.
3
4
   This software is provided AS-IS with no warranty, either express or
5
   implied.
6
7
   This software is distributed under license and may not be copied,
8
   modified or distributed except as expressly authorized under the terms
9
   of the license contained in the file LICENSE in this distribution.
10
11
   Refer to licensing information at http://www.artifex.com or contact
12
   Artifex Software, Inc.,  39 Mesa Street, Suite 108A, San Francisco,
13
   CA 94129, USA, for further information.
14
*/
15
16
17
/* Shading rendering support */
18
#include "math_.h"
19
#include "gx.h"
20
#include "gserrors.h"
21
#include "gsrect.h"
22
#include "gxcspace.h"
23
#include "gscindex.h"
24
#include "gscie.h"    /* requires gscspace.h */
25
#include "gxdevcli.h"
26
#include "gxgstate.h"
27
#include "gxdht.h"    /* for computing # of different colors */
28
#include "gxpaint.h"
29
#include "gxshade.h"
30
#include "gxshade4.h"
31
#include "gsicc.h"
32
#include "gsicc_cache.h"
33
#include "gxcdevn.h"
34
#include "gximage.h"
35
36
/* Define a maximum smoothness value. */
37
/* smoothness > 0.2 produces severely blocky output. */
38
#define MAX_SMOOTHNESS 0.2
39
40
/* ================ Packed coordinate streams ================ */
41
42
/* Forward references */
43
static int cs_next_packed_value(shade_coord_stream_t *, int, uint *);
44
static int cs_next_array_value(shade_coord_stream_t *, int, uint *);
45
static int cs_next_packed_decoded(shade_coord_stream_t *, int,
46
                                   const float[2], float *);
47
static int cs_next_array_decoded(shade_coord_stream_t *, int,
48
                                  const float[2], float *);
49
static void cs_packed_align(shade_coord_stream_t *cs, int radix);
50
static void cs_array_align(shade_coord_stream_t *cs, int radix);
51
static bool cs_eod(const shade_coord_stream_t * cs);
52
53
/* Initialize a packed value stream. */
54
void
55
shade_next_init(shade_coord_stream_t * cs,
56
                const gs_shading_mesh_params_t * params,
57
                const gs_gstate * pgs)
58
2.55k
{
59
2.55k
    cs->params = params;
60
2.55k
    cs->pctm = &pgs->ctm;
61
2.55k
    if (data_source_is_stream(params->DataSource)) {
62
        /*
63
         * Rewind the data stream iff it is reusable -- either a reusable
64
         * file or a reusable string.
65
         */
66
2.55k
        stream *s = cs->s = params->DataSource.data.strm;
67
68
2.55k
        if ((s->file != 0 && s->file_limit != max_long) ||
69
2.55k
            (s->file == 0 && s->strm == 0)
70
2.55k
            )
71
2.55k
            sseek(s, 0);
72
2.55k
    } else {
73
0
        s_init(&cs->ds, NULL);
74
0
        sread_string(&cs->ds, params->DataSource.data.str.data,
75
0
                     params->DataSource.data.str.size);
76
0
        cs->s = &cs->ds;
77
0
    }
78
2.55k
    if (data_source_is_array(params->DataSource)) {
79
0
        cs->get_value = cs_next_array_value;
80
0
        cs->get_decoded = cs_next_array_decoded;
81
0
        cs->align = cs_array_align;
82
2.55k
    } else {
83
2.55k
        cs->get_value = cs_next_packed_value;
84
2.55k
        cs->get_decoded = cs_next_packed_decoded;
85
2.55k
        cs->align = cs_packed_align;
86
2.55k
    }
87
2.55k
    cs->is_eod = cs_eod;
88
2.55k
    cs->left = 0;
89
2.55k
    cs->ds_EOF = false;
90
2.55k
    cs->first_patch = 1;
91
2.55k
}
92
93
/* Check for the End-Of-Data state form a stream. */
94
static bool
95
cs_eod(const shade_coord_stream_t * cs)
96
1.37k
{
97
1.37k
    return cs->ds_EOF;
98
1.37k
}
99
100
/* Get the next (integer) value from a packed value stream. */
101
/* 1 <= num_bits <= sizeof(uint) * 8. */
102
static int
103
cs_next_packed_value(shade_coord_stream_t * cs, int num_bits, uint * pvalue)
104
33.3M
{
105
33.3M
    uint bits = cs->bits;
106
33.3M
    int left = cs->left;
107
108
33.3M
    if (left >= num_bits) {
109
        /* We can satisfy this request with the current buffered bits. */
110
0
        cs->left = left -= num_bits;
111
0
        *pvalue = (bits >> left) & ((1 << num_bits) - 1);
112
33.3M
    } else {
113
        /* We need more bits. */
114
33.3M
        int needed = num_bits - left;
115
33.3M
        uint value = bits & ((1 << left) - 1);  /* all the remaining bits */
116
117
132M
        for (; needed >= 8; needed -= 8) {
118
98.9M
            int b = sgetc(cs->s);
119
120
98.9M
            if (b < 0) {
121
2.22k
                cs->ds_EOF = true;
122
2.22k
                return_error(gs_error_rangecheck);
123
2.22k
            }
124
98.9M
            value = (value << 8) + b;
125
98.9M
        }
126
33.3M
        if (needed == 0) {
127
33.3M
            cs->left = 0;
128
33.3M
            *pvalue = value;
129
33.3M
        } else {
130
0
            int b = sgetc(cs->s);
131
132
0
            if (b < 0) {
133
0
                cs->ds_EOF = true;
134
0
                return_error(gs_error_rangecheck);
135
0
            }
136
0
            cs->bits = b;
137
0
            cs->left = left = 8 - needed;
138
0
            *pvalue = (value << needed) + (b >> left);
139
0
        }
140
33.3M
    }
141
33.3M
    return 0;
142
33.3M
}
143
144
/*
145
 * Get the next (integer) value from an unpacked array.  Note that
146
 * num_bits may be 0 if we are reading a coordinate or color value.
147
 */
148
static int
149
cs_next_array_value(shade_coord_stream_t * cs, int num_bits, uint * pvalue)
150
0
{
151
0
    float value;
152
0
    uint read;
153
154
0
    if (sgets(cs->s, (byte *)&value, sizeof(float), &read) < 0 ||
155
0
        read != sizeof(float)) {
156
0
        cs->ds_EOF = true;
157
0
        return_error(gs_error_rangecheck);
158
0
    }
159
0
    if (value < 0 || (num_bits != 0 && num_bits < sizeof(uint) * 8 &&
160
0
         value >= (1 << num_bits)) ||
161
0
        value != (uint)value
162
0
        )
163
0
        return_error(gs_error_rangecheck);
164
0
    *pvalue = (uint) value;
165
0
    return 0;
166
0
}
167
168
/* Get the next decoded floating point value. */
169
static int
170
cs_next_packed_decoded(shade_coord_stream_t * cs, int num_bits,
171
                       const float decode[2], float *pvalue)
172
32.6M
{
173
32.6M
    uint value;
174
32.6M
    int code = cs->get_value(cs, num_bits, &value);
175
32.6M
    double max_value = (double)(uint)
176
32.6M
        (num_bits == sizeof(uint) * 8 ? ~0 : ((1 << num_bits) - 1));
177
32.6M
    double dvalue = (double)value;
178
179
32.6M
    if (code < 0)
180
1.02k
        return code;
181
32.6M
    *pvalue =
182
32.6M
        (decode == 0 ? dvalue / max_value :
183
32.6M
         decode[0] + dvalue * (decode[1] - decode[0]) / max_value);
184
32.6M
    return 0;
185
32.6M
}
186
187
/* Get the next floating point value from an array, without decoding. */
188
static int
189
cs_next_array_decoded(shade_coord_stream_t * cs, int num_bits,
190
                      const float decode[2], float *pvalue)
191
0
{
192
0
    float value;
193
0
    uint read;
194
195
0
    if (sgets(cs->s, (byte *)&value, sizeof(float), &read) < 0 ||
196
0
        read != sizeof(float)
197
0
    ) {
198
0
        cs->ds_EOF = true;
199
0
        return_error(gs_error_rangecheck);
200
0
    }
201
0
    *pvalue = value;
202
0
    return 0;
203
0
}
204
205
static void
206
cs_packed_align(shade_coord_stream_t *cs, int radix)
207
2.78M
{
208
2.78M
    cs->left = cs->left / radix * radix;
209
2.78M
}
210
211
static void
212
cs_array_align(shade_coord_stream_t *cs, int radix)
213
0
{
214
0
}
215
216
/* Get the next flag value. */
217
/* Note that this always starts a new data byte. */
218
int
219
shade_next_flag(shade_coord_stream_t * cs, int BitsPerFlag)
220
693k
{
221
693k
    uint flag;
222
693k
    int code;
223
224
693k
    cs->left = 0;   /* start a new byte if packed */
225
693k
    code = cs->get_value(cs, BitsPerFlag, &flag);
226
693k
    return (code < 0 ? code : flag);
227
693k
}
228
229
/* Get one or more coordinate pairs. */
230
int
231
shade_next_coords(shade_coord_stream_t * cs, gs_fixed_point * ppt,
232
                  int num_points)
233
7.08M
{
234
7.08M
    int num_bits = cs->params->BitsPerCoordinate;
235
7.08M
    const float *decode = cs->params->Decode;
236
7.08M
    int code = 0;
237
7.08M
    int i;
238
239
18.3M
    for (i = 0; i < num_points; ++i) {
240
11.2M
        float x, y;
241
242
11.2M
        if ((code = cs->get_decoded(cs, num_bits, decode, &x)) < 0 ||
243
11.2M
            (code = cs->get_decoded(cs, num_bits, decode + 2, &y)) < 0 ||
244
11.2M
            (code = gs_point_transform2fixed(cs->pctm, x, y, &ppt[i])) < 0
245
11.2M
            )
246
840
            break;
247
11.2M
    }
248
7.08M
    return code;
249
7.08M
}
250
251
/* Get a color.  Currently all this does is look up Indexed colors. */
252
int
253
shade_next_color(shade_coord_stream_t * cs, float *pc)
254
4.16M
{
255
4.16M
    const float *decode = cs->params->Decode + 4; /* skip coord decode */
256
4.16M
    const gs_color_space *pcs = cs->params->ColorSpace;
257
4.16M
    gs_color_space_index index = gs_color_space_get_index(pcs);
258
4.16M
    int num_bits = cs->params->BitsPerComponent;
259
260
4.16M
    if (index == gs_color_space_index_Indexed) {
261
0
        int ncomp = gs_color_space_num_components(gs_cspace_base_space(pcs));
262
0
        int ci;
263
0
        float cf;
264
0
        int code = cs->get_decoded(cs, num_bits, decode, &cf);
265
0
        gs_client_color cc;
266
0
        int i;
267
268
0
        if (code < 0)
269
0
            return code;
270
0
        if (cf < 0)
271
0
            return_error(gs_error_rangecheck);
272
0
        ci = (int)cf;
273
0
        if (ci >= gs_cspace_indexed_num_entries(pcs))
274
0
            return_error(gs_error_rangecheck);
275
0
        code = gs_cspace_indexed_lookup(pcs, ci, &cc);
276
0
        if (code < 0)
277
0
            return code;
278
0
        for (i = 0; i < ncomp; ++i)
279
0
            pc[i] = cc.paint.values[i];
280
4.16M
    } else {
281
4.16M
        int i, code;
282
4.16M
        int ncomp = (cs->params->Function != 0 ? 1 :
283
4.16M
                     gs_color_space_num_components(pcs));
284
285
14.2M
        for (i = 0; i < ncomp; ++i) {
286
10.1M
            if ((code = cs->get_decoded(cs, num_bits, decode + i * 2, &pc[i])) < 0)
287
193
                return code;
288
10.1M
            if (cs->params->Function) {
289
2.07M
                gs_function_params_t *params = &cs->params->Function->params;
290
291
2.07M
                if (pc[i] < params->Domain[i + i])
292
0
                    pc[i] = params->Domain[i + i];
293
2.07M
                else if (pc[i] > params->Domain[i + i + 1])
294
24
                    pc[i] = params->Domain[i + i + 1];
295
2.07M
            }
296
10.1M
        }
297
4.16M
    }
298
4.16M
    return 0;
299
4.16M
}
300
301
/* Get the next vertex for a mesh element. */
302
int
303
shade_next_vertex(shade_coord_stream_t * cs, shading_vertex_t * vertex, patch_color_t *c)
304
2.12M
{   /* Assuming p->c == c, provides a non-const access. */
305
2.12M
    int code = shade_next_coords(cs, &vertex->p, 1);
306
307
2.12M
    if (code >= 0)
308
2.12M
        code = shade_next_color(cs, c->cc.paint.values);
309
2.12M
    if (code >= 0)
310
2.12M
        cs->align(cs, 8); /* CET 09-47J.PS SpecialTestI04Test01. */
311
2.12M
    return code;
312
2.12M
}
313
314
/* ================ Shading rendering ================ */
315
316
/* Initialize the common parts of the recursion state. */
317
int
318
shade_init_fill_state(shading_fill_state_t * pfs, const gs_shading_t * psh,
319
                      gx_device * dev, gs_gstate * pgs)
320
137k
{
321
137k
    const gs_color_space *pcs = psh->params.ColorSpace;
322
137k
    float max_error = min(pgs->smoothness, MAX_SMOOTHNESS);
323
137k
    bool is_lab;
324
137k
    bool cs_lin_test;
325
137k
    int code;
326
327
    /*
328
     * There's no point in trying to achieve smoothness beyond what
329
     * the device can implement, i.e., the number of representable
330
     * colors times the number of halftone levels.
331
     */
332
137k
    long num_colors =
333
137k
        max(dev->color_info.max_gray, dev->color_info.max_color) + 1;
334
137k
    const gs_range *ranges = 0;
335
137k
    int ci;
336
137k
    gsicc_rendering_param_t rendering_params;
337
338
137k
    pfs->cs_always_linear = false;
339
137k
    pfs->dev = dev;
340
137k
    pfs->pgs = pgs;
341
137k
top:
342
137k
    pfs->direct_space = pcs;
343
137k
    pfs->num_components = gs_color_space_num_components(pcs);
344
137k
    switch ( gs_color_space_get_index(pcs) )
345
137k
        {
346
0
        case gs_color_space_index_Indexed:
347
0
            pcs = gs_cspace_base_space(pcs);
348
0
            goto top;
349
0
        case gs_color_space_index_CIEDEFG:
350
0
            ranges = pcs->params.defg->RangeDEFG.ranges;
351
0
            break;
352
0
        case gs_color_space_index_CIEDEF:
353
0
            ranges = pcs->params.def->RangeDEF.ranges;
354
0
            break;
355
0
        case gs_color_space_index_CIEABC:
356
0
            ranges = pcs->params.abc->RangeABC.ranges;
357
0
            break;
358
0
        case gs_color_space_index_CIEA:
359
0
            ranges = &pcs->params.a->RangeA;
360
0
            break;
361
122k
        case gs_color_space_index_ICC:
362
122k
            ranges = pcs->cmm_icc_profile_data->Range.ranges;
363
122k
            break;
364
15.7k
        default:
365
15.7k
            break;
366
137k
        }
367
137k
    if (num_colors <= 32) {
368
        /****** WRONG FOR MULTI-PLANE HALFTONES ******/
369
3.27k
        num_colors *= pgs->dev_ht[HT_OBJTYPE_DEFAULT]->components[0].corder.num_levels;
370
3.27k
    }
371
137k
    if (psh->head.type == 2 || psh->head.type == 3) {
372
135k
        max_error *= 0.25;
373
135k
        num_colors *= 2;
374
135k
    }
375
137k
    if (max_error < 1.0 / num_colors)
376
3.27k
        max_error = 1.0 / num_colors;
377
530k
    for (ci = 0; ci < pfs->num_components; ++ci)
378
392k
        pfs->cc_max_error[ci] =
379
392k
            (ranges == 0 ? max_error :
380
392k
             max_error * (ranges[ci].rmax - ranges[ci].rmin));
381
137k
    if (pgs->has_transparency && pgs->trans_device != NULL) {
382
47.8k
        pfs->trans_device = pgs->trans_device;
383
89.9k
    } else {
384
89.9k
        pfs->trans_device = dev;
385
89.9k
    }
386
    /* If the CS is PS based and we have not yet converted to the ICC form
387
       then go ahead and do that now */
388
137k
    if (gs_color_space_is_PSCIE(pcs) && pcs->icc_equivalent == NULL) {
389
0
        code = gs_colorspace_set_icc_equivalent((gs_color_space *)pcs, &(is_lab), pgs->memory);
390
0
        if (code < 0)
391
0
            return code;
392
0
    }
393
137k
    rendering_params.black_point_comp = pgs->blackptcomp;
394
137k
    rendering_params.graphics_type_tag = GS_VECTOR_TAG;
395
137k
    rendering_params.override_icc = false;
396
137k
    rendering_params.preserve_black = gsBKPRESNOTSPECIFIED;
397
137k
    rendering_params.rendering_intent = pgs->renderingintent;
398
137k
    rendering_params.cmm = gsCMM_DEFAULT;
399
    /* Grab the icc link transform that we need now */
400
137k
    if (pcs->cmm_icc_profile_data != NULL) {
401
122k
        pfs->icclink = gsicc_get_link(pgs, pgs->trans_device, pcs, NULL,
402
122k
                                      &rendering_params, pgs->memory);
403
122k
        if (pfs->icclink == NULL)
404
35
            return_error(gs_error_VMerror);
405
122k
    } else {
406
15.7k
        if (pcs->icc_equivalent != NULL ) {
407
            /* We have a PS equivalent ICC profile.  We may need to go
408
               through special range adjustments in this case */
409
0
            pfs->icclink = gsicc_get_link(pgs, pgs->trans_device,
410
0
                                          pcs->icc_equivalent, NULL,
411
0
                                          &rendering_params, pgs->memory);
412
0
            if (pfs->icclink == NULL)
413
0
                return_error(gs_error_VMerror);
414
15.7k
        } else {
415
15.7k
            pfs->icclink = NULL;
416
15.7k
        }
417
15.7k
    }
418
    /* Two possible cases of interest here for performance.  One is that the
419
    * icclink is NULL, which could occur if the source space were DeviceN or
420
    * a separation color space, while at the same time, the output device
421
    * supports these colorants (e.g. a separation device).   The other case is
422
    * that the icclink is the identity.  This could happen for example if the
423
    * source space were CMYK and we are going out to a CMYK device. For both
424
    * of these cases we can avoid going through the standard
425
    * color mappings to determine linearity. This is true, provided that the
426
    * transfer function is linear.  It is likely that we can improve
427
    * things even in cases where the transfer function is nonlinear, but for
428
    * now, we will punt on those and let them go through the longer processing
429
    * steps */
430
137k
    if (pfs->icclink == NULL)
431
15.7k
            cs_lin_test = !(using_alt_color_space((gs_gstate*)pgs));
432
122k
    else
433
122k
        cs_lin_test = pfs->icclink->is_identity;
434
435
137k
    if (cs_lin_test && !gx_has_transfer(pgs, dev->color_info.num_components)) {
436
113k
        pfs->cs_always_linear = true;
437
113k
    }
438
439
#ifdef IGNORE_SPEC_MATCH_ADOBE_SHADINGS
440
    /* Per the spec. If the source space is DeviceN or Separation and the
441
       colorants are not supported (i.e. if we are using the alternate tint
442
       transform) the interpolation should occur in the source space to
443
       accommodate non-linear tint transform functions.
444
       e.g. We had a case where the transform function
445
       was an increasing staircase. Including that function in the
446
       gradient smoothness calculation gave us severe quantization. AR on
447
       the other hand is doing the interpolation in device color space
448
       and has a smooth result for that case. So AR is not following the spec. The
449
       bit below solves the issues for Type 4 and Type 5 shadings as
450
       this will avoid interpolations in source space. Type 6 and Type 7 will still
451
       have interpolations in the source space even if pfs->cs_always_linear == true.
452
       So the approach below does not solve those issues. To do that
453
       without changing the shading code, we could make a linear
454
       approximation to the alternate tint transform, which would
455
       ensure smoothness like what AR provides.
456
    */
457
    if ((gs_color_space_get_index(pcs) == gs_color_space_index_DeviceN ||
458
        gs_color_space_get_index(pcs) == gs_color_space_index_Separation) &&
459
        using_alt_color_space((gs_gstate*)pgs) && (psh->head.type == 4 ||
460
        psh->head.type == 5)) {
461
        pfs->cs_always_linear = true;
462
    }
463
#endif
464
465
137k
    return 0;
466
137k
}
467
468
/* Fill one piece of a shading. */
469
int
470
shade_fill_path(const shading_fill_state_t * pfs, gx_path * ppath,
471
                gx_device_color * pdevc, const gs_fixed_point *fill_adjust)
472
0
{
473
0
    gx_fill_params params;
474
475
0
    params.rule = -1;   /* irrelevant */
476
0
    params.adjust = *fill_adjust;
477
0
    params.flatness = 0;  /* irrelevant */
478
0
    return (*dev_proc(pfs->dev, fill_path)) (pfs->dev, pfs->pgs, ppath,
479
0
                                             &params, pdevc, NULL);
480
0
}