Coverage Report

Created: 2025-06-10 07:27

/src/ghostpdl/base/gxstroke.c
Line
Count
Source (jump to first uncovered line)
1
/* Copyright (C) 2001-2025 Artifex Software, Inc.
2
   All Rights Reserved.
3
4
   This software is provided AS-IS with no warranty, either express or
5
   implied.
6
7
   This software is distributed under license and may not be copied,
8
   modified or distributed except as expressly authorized under the terms
9
   of the license contained in the file LICENSE in this distribution.
10
11
   Refer to licensing information at http://www.artifex.com or contact
12
   Artifex Software, Inc.,  39 Mesa Street, Suite 108A, San Francisco,
13
   CA 94129, USA, for further information.
14
*/
15
16
17
/* Path stroking procedures for Ghostscript library */
18
#include "math_.h"
19
#include <stdlib.h> /* abs() */
20
#include "gx.h"
21
#include "gpcheck.h"
22
#include "gserrors.h"
23
#include "gsdcolor.h"
24
#include "gsptype1.h"
25
#include "gsptype2.h"
26
#include "gxfixed.h"
27
#include "gxfarith.h"
28
#include "gxmatrix.h"
29
#include "gscoord.h"
30
#include "gsdevice.h"
31
#include "gxdevice.h"
32
#include "gxhttile.h"
33
#include "gxgstate.h"
34
#include "gzline.h"
35
#include "gzpath.h"
36
#include "gzcpath.h"
37
#include "gxpaint.h"
38
#include "gsstate.h"            /* for gs_currentcpsimode */
39
#include "gzacpath.h"
40
41
/* RJW: There appears to be a difference in the xps and postscript models
42
 * (at least in as far as Microsofts implementation of xps and Acrobats of
43
 * postscript). Acrobat (and ghostscript) are happy to join a line segment
44
 * around a corner, even when the next segment is a dash gap. Microsofts
45
 * implementation of XPS does not.
46
 *
47
 * A test file that shows this up is tests_private/comparefiles/298-05.ps
48
 *
49
 * Enabling the following define would emulate xps behaviour here.
50
 */
51
#undef AVOID_JOINING_TO_DASH_GAPS
52
53
/*
54
 * We don't really know whether it's a good idea to take fill adjustment
55
 * into account for stroking.  Disregarding it means that strokes
56
 * come out thinner than fills; observing it produces heavy-looking
57
 * strokes at low resolutions.  But in any case, we must disregard it
58
 * when stroking zero-width lines.
59
 */
60
#define USE_FILL_ADJUSTMENT
61
62
#ifdef USE_FILL_ADJUSTMENT
63
#  define STROKE_ADJUSTMENT(thin, pgs, xy)\
64
206M
     (thin ? fixed_0 : (pgs)->fill_adjust.xy)
65
#else
66
#  define STROKE_ADJUSTMENT(thin, pgs, xy) fixed_0
67
#endif
68
69
/*
70
 * For some reason, we commented out the optimization for portrait,
71
 * landscape, and uniform (non-scaled) transformations.  We have no record
72
 * of why we did this, and we don't know what bugs re-enabling it may
73
 * introduce.
74
 */
75
#define OPTIMIZE_ORIENTATION
76
77
/*
78
 * Compute the amount by which to expand a stroked bounding box to account
79
 * for line width, caps and joins.  Return 0 if the result is exact, 1 if
80
 * it may be conservative, or gs_error_limitcheck if the result is too
81
 * large to fit in a gs_fixed_point.
82
 *
83
 * Because of square caps and miter and triangular joins, the maximum
84
 * expansion on each side (in user space) is
85
 *      K * line_width/2
86
 * where K is determined as follows:
87
 *      For round or butt caps, E = 1
88
 *      For square caps, E = sqrt(2)
89
 *        If the path is only a single line segment, K = E;
90
 *          if triangular joins, K = 2;
91
 *          if miter joins, K = max(miter_limit, E);
92
 *      otherwise, K = E.
93
 *
94
 * If the following conditions apply, K = E yields an exact result:
95
 *      - The CTM is of the form [X 0 0 Y] or [0 X Y 0].
96
 *      - Square or round caps are used, or all subpaths are closed.
97
 *      - All segments (including the implicit segment created by
98
 *        closepath) are vertical or horizontal lines.
99
 *
100
 * Note that these conditions are sufficient, but not necessary, to get an
101
 * exact result.  We choose this set of conditions because it is easy to
102
 * check and covers many common cases.  Clients that care always have the
103
 * option of using strokepath to get an exact result.
104
 */
105
static float join_expansion_factor(const gs_gstate *, gs_line_join);
106
int
107
gx_stroke_path_expansion(const gs_gstate * pgs, const gx_path * ppath,
108
                         gs_fixed_point * ppt)
109
8.52M
{
110
8.52M
    const subpath *psub;
111
8.52M
    const segment *pseg;
112
8.52M
    double cx = fabs(pgs->ctm.xx) + fabs(pgs->ctm.yx);
113
8.52M
    double cy = fabs(pgs->ctm.xy) + fabs(pgs->ctm.yy);
114
8.52M
    double expand = pgs->line_params.half_width;
115
8.52M
    int result = 1;
116
117
8.52M
    if (ppath == NULL) {
118
0
        ppt->x = ppt->y = 0;
119
0
        return 0;   /* no expansion */
120
0
    }
121
8.52M
    psub = ppath->first_subpath;
122
    /* Adjust the expansion (E) for square caps, if needed */
123
8.52M
    if (pgs->line_params.start_cap == gs_cap_square ||
124
8.52M
        pgs->line_params.end_cap == gs_cap_square)
125
521k
            expand *= 1.414213562;
126
127
    /* Check for whether an exact result can be computed easily. */
128
8.52M
    if (is_fzero2(pgs->ctm.xy, pgs->ctm.yx) ||
129
8.52M
        is_fzero2(pgs->ctm.xx, pgs->ctm.yy)
130
8.52M
        ) {
131
6.69M
        bool must_be_closed =
132
6.69M
            !(pgs->line_params.start_cap == gs_cap_square ||
133
6.69M
              pgs->line_params.start_cap == gs_cap_round  ||
134
6.69M
              pgs->line_params.end_cap   == gs_cap_square ||
135
6.69M
              pgs->line_params.end_cap   == gs_cap_round  ||
136
6.69M
              pgs->line_params.dash_cap  == gs_cap_square ||
137
6.69M
              pgs->line_params.dash_cap  == gs_cap_round);
138
6.69M
        gs_fixed_point prev;
139
140
6.69M
        prev.x = prev.y = 0; /* Quiet gcc warning. */
141
19.8M
        for (pseg = (const segment *)psub; pseg;
142
13.1M
             prev = pseg->pt, pseg = pseg->next
143
6.69M
             )
144
15.9M
            switch (pseg->type) {
145
6.02M
            case s_start:
146
6.02M
                if (((const subpath *)pseg)->curve_count ||
147
6.02M
                    (must_be_closed && !((const subpath *)pseg)->is_closed)
148
6.02M
                    )
149
975k
                    goto not_exact;
150
5.05M
                break;
151
8.35M
            case s_line:
152
8.35M
            case s_dash:
153
9.97M
            case s_line_close:
154
9.97M
                if (!(pseg->pt.x == prev.x || pseg->pt.y == prev.y))
155
1.83M
                    goto not_exact;
156
8.13M
                break;
157
8.13M
            case s_gap:
158
0
            default:            /* other/unknown segment type */
159
0
                goto not_exact;
160
15.9M
            }
161
3.88M
        result = 0;             /* exact result */
162
3.88M
    }
163
8.52M
not_exact:
164
8.52M
    if (result) {
165
4.63M
        if (!gx_path_has_curves(ppath) && gx_path_subpath_count(ppath) <= 1 &&
166
4.63M
            (psub == 0 || (pseg = psub->next) == 0 ||
167
4.12M
             (pseg = pseg->next) == 0 || pseg->type == s_line_close))
168
4.63M
            DO_NOTHING;
169
863k
        else {
170
863k
            float factor = join_expansion_factor(pgs, pgs->line_params.join);
171
172
863k
            if (pgs->line_params.curve_join >= 0)
173
49
                factor = max(factor, join_expansion_factor(pgs,
174
863k
                                (gs_line_join)pgs->line_params.curve_join));
175
863k
            expand *= factor;
176
863k
        }
177
4.63M
    }
178
179
    /* Short-cut gs_bbox_transform. */
180
8.52M
    {
181
8.52M
        float exx = expand * cx;
182
8.52M
        float exy = expand * cy;
183
8.52M
        int code = set_float2fixed_vars(ppt->x, exx);
184
185
8.52M
        if (code < 0)
186
1.35M
            return code;
187
7.16M
        code = set_float2fixed_vars(ppt->y, exy);
188
7.16M
        if (code < 0)
189
138k
            return code;
190
7.16M
    }
191
192
7.02M
    return result;
193
7.16M
}
194
static float
195
join_expansion_factor(const gs_gstate *pgs, gs_line_join join)
196
863k
{
197
863k
    switch (join) {
198
702k
    case gs_join_miter: return pgs->line_params.miter_limit;
199
312
    case gs_join_triangle: return 2.0;
200
161k
    default: return 1.0;
201
863k
    }
202
863k
}
203
204
/*
205
 * Structure for a partial line (passed to the drawing routine).
206
 * Two of these are required to do joins right.
207
 * Each endpoint includes the two ends of the cap as well,
208
 * and the deltas for square, round, and triangular cap computation.
209
 *
210
 * The two base values for computing the caps of a partial line are the
211
 * width and the end cap delta.  The width value is one-half the line
212
 * width (suitably transformed) at 90 degrees counter-clockwise
213
 * (in device space, but with "90 degrees" interpreted in *user*
214
 * coordinates) at the end (as opposed to the origin) of the line.
215
 * The cdelta value is one-half the transformed line width in the same
216
 * direction as the line.  From these, we compute two other values at each
217
 * end of the line: co and ce, which are the ends of the cap.
218
 * Note that the cdelta values at o are the negatives of the values at e,
219
 * as are the offsets from p to co and ce.
220
 *
221
 * Initially, only o.p, e.p, e.cdelta, width, and thin are set.
222
 * compute_caps fills in the rest.
223
 */
224
typedef gs_fixed_point *p_ptr;
225
typedef struct endpoint_s {
226
    gs_fixed_point p;           /* the end of the line */
227
    gs_fixed_point co, ce;      /* ends of the cap, p +/- width */
228
    gs_fixed_point cdelta;      /* +/- cap length */
229
} endpoint;
230
typedef endpoint *ep_ptr;
231
typedef const endpoint *const_ep_ptr;
232
typedef struct partial_line_s {
233
    endpoint o;                 /* starting coordinate */
234
    endpoint e;                 /* ending coordinate */
235
    gs_fixed_point width;       /* one-half line width, see above */
236
    gs_fixed_point vector;      /* The line segment direction */
237
    bool thin;                  /* true if minimum-width line */
238
} partial_line;
239
typedef partial_line *pl_ptr;
240
241
/* As we stroke a path, we run through the line segments that make it up.
242
 * We gather each line segment together with any degenerate line segments
243
 * that follow it (call this set "prev"), and then 'join them' to the next
244
 * line segment (and any degenerate line segments that follow it) (if there
245
 * is one) (call this "current").
246
 *
247
 * In order to get the joins right we need to keep flags about both
248
 * prev and current, and whether they originally came from arcs.
249
 */
250
typedef enum note_flags {
251
252
    /* If set, all the line segments that make up current come from arcs. */
253
    nf_all_from_arc       = 1,
254
255
    /* If set, at least one of the line segments that make up current, come
256
     * from arcs. */
257
    nf_some_from_arc      = 2,
258
259
    /* If set then this segment should have a dash cap on the start rather
260
     * than a start cap. */
261
    nf_dash_head          = 4,
262
263
    /* If set then this segment should have a dash cap on the end rather
264
     * than an end cap. */
265
    nf_dash_tail          = 8,
266
267
    /* If set, all the line segments that make up prev come from arcs. */
268
    nf_prev_all_from_arc  = 16,
269
270
    /* If set, at least one of the line segment that make up prev, come from
271
     * arcs. */
272
    nf_prev_some_from_arc = 32,
273
274
    /* If set then prev should have a dash cap on the start rather
275
     * than a start cap. */
276
    nf_prev_dash_head     = 64,
277
278
    /* If set then prev should have a dash cap on the end rather
279
     * than an end cap. */
280
    nf_prev_dash_tail     = 128
281
282
} note_flags;
283
284
/* Macro to combine the prev and current arc_flags. After applying this
285
 * macro, the bits in the result have the following meanings:
286
 *  nf_all_from_arc    set if all the components of current and prev
287
 *                     come from an Arc.
288
 *  nf_some_from_arc   set if any of the components of current and
289
 *                     prev come from an Arc.
290
 *  nf_dash_head       set if prev should have a dash cap rather than
291
 *                     a start cap.
292
 *  nf_dash_tail       set if prev should have a dash cap rather than
293
 *                     an end cap.
294
 */
295
#define COMBINE_FLAGS(F) \
296
231M
    (((F>>4) | ((F) & nf_some_from_arc)) & \
297
231M
     (((F) & nf_all_from_arc) ? ~0 : ~nf_all_from_arc))
298
299
/* Assign a point.  Some compilers would do this with very slow code */
300
/* if we simply implemented it as an assignment. */
301
#define ASSIGN_POINT(pp, p)\
302
133M
  ((pp)->x = (p).x, (pp)->y = (p).y)
303
304
/* Other forward declarations */
305
static bool width_is_thin(pl_ptr);
306
static void adjust_stroke(gx_device *, pl_ptr, const gs_gstate *, bool, bool, note_flags);
307
static int line_join_points(const gx_line_params * pgs_lp,
308
                             pl_ptr plp, pl_ptr nplp,
309
                             gs_fixed_point * join_points,
310
                             const gs_matrix * pmat, gs_line_join join,
311
                             bool reflected);
312
static int line_join_points_fast_cw(const gx_line_params * pgs_lp,
313
                                    pl_ptr plp, pl_ptr nplp,
314
                                    gs_fixed_point * rjoin_points,
315
                                    const gs_matrix * pmat,
316
                                    gs_line_join join);
317
static int line_join_points_fast_ccw(const gx_line_params * pgs_lp,
318
                                     pl_ptr plp, pl_ptr nplp,
319
                                     gs_fixed_point * join_points,
320
                                     const gs_matrix * pmat,
321
                                     gs_line_join join);
322
static void compute_caps(pl_ptr);
323
static int add_points(gx_path *, const gs_fixed_point *,
324
                       int, bool);
325
static int add_pie_join(gx_path *, pl_ptr, pl_ptr, bool, bool);
326
static int add_pie_join_fast_cw(gx_path *, pl_ptr, pl_ptr, bool);
327
static int add_pie_join_fast_ccw(gx_path *, pl_ptr, pl_ptr, bool);
328
static int add_round_cap(gx_path *, const_ep_ptr);
329
static int add_pie_cap(gx_path *, const_ep_ptr);
330
static int cap_points(gs_line_cap, const_ep_ptr,
331
                       gs_fixed_point * /*[3] */ );
332
static int join_under_pie(gx_path *, pl_ptr, pl_ptr, bool);
333
334
int
335
gx_default_stroke_path_shading_or_pattern(gx_device        * pdev,
336
                                    const gs_gstate        * pgs_orig,
337
                                          gx_path          * ppath,
338
                                    const gx_stroke_params * params,
339
                                    const gx_drawing_color * pdevc,
340
                                    const gx_clip_path     * pcpath)
341
146k
{
342
146k
    gs_gstate *pgs = (gs_gstate *)pgs_orig; /* Nasty cast away const! */
343
146k
    gs_logical_operation_t save_lop = gs_current_logical_op_inline(pgs);
344
146k
    gx_device_cpath_accum adev;
345
146k
    gx_device_color devc;
346
146k
    gx_clip_path stroke_as_clip_path;
347
146k
    int code;
348
146k
    gs_fixed_rect dev_clip_rect = { {min_fixed, min_fixed}, {max_fixed, max_fixed}};
349
350
    /* We want to make a image of the stroke as a clip path, so
351
     * create an empty structure on the stack. */
352
146k
    code = gx_cpath_init_local_shared_nested(&stroke_as_clip_path, NULL, pdev->memory, 1);
353
146k
    if (code < 0)
354
0
        return code;
355
    /* Now we make an accumulator device that will fill that out. */
356
146k
    gx_cpath_accum_begin(&adev, stroke_as_clip_path.path.memory, false);
357
146k
    (*dev_proc(pdev, get_clipping_box))(pdev, &dev_clip_rect);
358
146k
    gx_cpath_accum_set_cbox(&adev, &dev_clip_rect);
359
146k
    set_nonclient_dev_color(&devc, 0); /* arbitrary, but not transparent */
360
146k
    gs_set_logical_op_inline(pgs, lop_default);
361
    /* Stroke the path to the accumulator. */
362
146k
    code = gx_stroke_path_only(ppath, NULL, (gx_device *)&adev, pgs, params,
363
146k
                               &devc, pcpath);
364
    /* Now extract the accumulated path into stroke_as_clip_path. */
365
146k
    if (code < 0 || (code = gx_cpath_accum_end(&adev, &stroke_as_clip_path)) < 0)
366
0
        gx_cpath_accum_discard(&adev);
367
146k
    gs_set_logical_op_inline(pgs, save_lop);
368
146k
    if (code >= 0)
369
146k
    {
370
        /* Now, fill a rectangle with the original color through that
371
         * clip path. */
372
146k
        gs_fixed_rect clip_box, shading_box;
373
146k
        gs_int_rect cb;
374
146k
        gx_device_clip cdev;
375
376
146k
        gx_cpath_outer_box(&stroke_as_clip_path, &clip_box);
377
        /* This is horrid. If the pdevc is a shading color, then the
378
         * fill_rectangle routine requires us to have intersected it
379
         * with the shading rectangle first. If we don't do this,
380
         * ps3fts/470-01.ps goes wrong. */
381
146k
        if (gx_dc_is_pattern2_color(pdevc) &&
382
146k
            gx_dc_pattern2_get_bbox(pdevc, &shading_box) > 0)
383
0
        {
384
0
            rect_intersect(clip_box, shading_box);
385
0
        }
386
146k
        cb.p.x = fixed2int_pixround(clip_box.p.x);
387
146k
        cb.p.y = fixed2int_pixround(clip_box.p.y);
388
146k
        cb.q.x = fixed2int_pixround(clip_box.q.x);
389
146k
        cb.q.y = fixed2int_pixround(clip_box.q.y);
390
146k
        gx_make_clip_device_on_stack(&cdev, &stroke_as_clip_path, pdev);
391
146k
        code = pdevc->type->fill_rectangle(pdevc,
392
146k
                        cb.p.x, cb.p.y, cb.q.x - cb.p.x, cb.q.y - cb.p.y,
393
146k
                        (gx_device *)&cdev, pgs->log_op, NULL);
394
146k
        gx_destroy_clip_device_on_stack(&cdev);
395
146k
    }
396
146k
    gx_cpath_free(&stroke_as_clip_path, "gx_default_stroke_path_shading_or_pattern");
397
398
146k
    return code;
399
146k
}
400
401
/* Define the default implementation of the device stroke_path procedure. */
402
int
403
gx_default_stroke_path(gx_device * dev, const gs_gstate * pgs,
404
                       gx_path * ppath, const gx_stroke_params * params,
405
                       const gx_drawing_color * pdevc,
406
                       const gx_clip_path * pcpath)
407
6.27M
{
408
6.27M
    if (gx_dc_is_pattern2_color(pdevc) ||
409
6.27M
        pdevc->type == &gx_dc_type_data_ht_colored ||
410
6.27M
        (gx_dc_is_pattern1_color(pdevc) &&
411
6.13M
         gx_pattern_tile_is_clist(pdevc->colors.pattern.p_tile)))
412
146k
        return gx_default_stroke_path_shading_or_pattern(dev, pgs, ppath, params,
413
146k
                                                         pdevc, pcpath);
414
6.13M
    else
415
6.13M
        return gx_stroke_path_only(ppath, (gx_path *) 0, dev, pgs, params,
416
6.13M
                                   pdevc, pcpath);
417
6.27M
}
418
419
/* Fill a partial stroked path.  Free variables: */
420
/* to_path, stroke_path_body, fill_params, always_thin, pgs, dev, pdevc, */
421
/* code, ppath, exit(label). */
422
#define FILL_STROKE_PATH(dev, thin, pcpath, final)\
423
132M
  if(to_path==&stroke_path_body && !gx_path_is_void(&stroke_path_body) &&\
424
132M
     (final || lop_is_idempotent(pgs->log_op))) {\
425
102M
    fill_params.adjust.x = STROKE_ADJUSTMENT(thin, pgs, x);\
426
102M
    fill_params.adjust.y = STROKE_ADJUSTMENT(thin, pgs, y);\
427
102M
    if (to_path_reverse != NULL) {\
428
0
        code = gx_join_path_and_reverse(to_path, to_path_reverse);\
429
0
        if(code < 0) goto exit;\
430
0
    }\
431
102M
    code = gx_fill_path_only(to_path, dev, pgs, &fill_params, pdevc, pcpath);\
432
102M
    gx_path_free(&stroke_path_body, "fill_stroke_path");\
433
102M
    if ( code < 0 ) goto exit;\
434
102M
    gx_path_init_local(&stroke_path_body, ppath->memory);\
435
102M
  }
436
437
/*
438
 * Define the internal procedures that stroke a partial_line
439
 * (the first pl_ptr argument).  If both partial_lines are non-null,
440
 * the procedure creates an appropriate join; otherwise, the procedure
441
 * creates an end cap.  If the first int is 0, the procedure also starts
442
 * with an appropriate cap.
443
 */
444
#define stroke_line_proc(proc)\
445
  int proc(gx_path *, gx_path *, bool ensure_closed, int, pl_ptr, pl_ptr,\
446
           const gx_device_color *, gx_device *, const gs_gstate *,\
447
           const gx_stroke_params *, const gs_fixed_rect *, int,\
448
           gs_line_join, bool, note_flags)
449
typedef stroke_line_proc((*stroke_line_proc_t));
450
451
static stroke_line_proc(stroke_add);
452
static stroke_line_proc(stroke_add_compat);
453
static stroke_line_proc(stroke_add_fast);
454
static stroke_line_proc(stroke_fill);
455
static int stroke_add_initial_cap_compat(gx_path * ppath, pl_ptr plp, bool adlust_longitude,
456
           const gx_device_color * pdevc, gx_device * dev,
457
           const gs_gstate * pgs);
458
459
/* Define the orientations we handle specially. */
460
typedef enum {
461
    orient_other = 0,
462
    orient_portrait,            /* [xx 0 0 yy tx ty] */
463
    orient_landscape            /* [0 xy yx 0 tx ty] */
464
} orientation;
465
466
/*
467
 * Internal function used to merge the 2 sides of a stroked path.
468
 * path contains the 'forward' side, rpath contains the 'reversed' side.
469
 * Reverse rpath, then append it to path.
470
 *
471
 * If path is closed, then rpath should be too. If path is open, then the
472
 * starting and ending points of both paths should be the same, so as to
473
 * guarantee a closed path.
474
 */
475
static int
476
gx_join_path_and_reverse(gx_path * path, gx_path * rpath)
477
0
{
478
0
    int code;
479
480
0
    if (gx_path_is_void(rpath))
481
0
        return 0;
482
0
     code = gx_path_append_reversed(rpath, path);
483
0
    if (code < 0)
484
0
        return code;
485
486
0
    gx_path_free(rpath, "gx_join_path_and_reverse");
487
0
    gx_path_init_local(rpath, path->memory);
488
489
0
    return gx_path_close_subpath(path);
490
0
}
491
492
/*
493
 * Stroke a path.  If to_path != 0, append the stroke outline to it;
494
 * if to_path == 0, draw the strokes on pdev.
495
 *
496
 * Note that gx_stroke_path_only with to_path != NULL may clip the path to
497
 * the clipping path, as for to_path == NULL.  This is almost never
498
 * what is wanted.
499
 */
500
static int
501
gx_stroke_path_only_aux(gx_path          *ppath, /* lgtm[cpp/use-of-goto] */
502
                        gx_path          *to_path,
503
                        gx_device        *pdev,
504
                  const gs_gstate        *pgs,
505
                  const gx_stroke_params *params,
506
                  const gx_device_color  *pdevc,
507
                  const gx_clip_path     *pcpath)
508
6.28M
{
509
6.28M
    bool CPSI_mode = gs_currentcpsimode(pgs->memory);
510
6.28M
    bool traditional = CPSI_mode | params->traditional;
511
6.28M
    stroke_line_proc_t line_proc =
512
6.28M
               ((to_path == 0 && !gx_dc_is_pattern1_color_clist_based(pdevc))
513
6.28M
                      ? (lop_is_idempotent(pgs->log_op) ? stroke_fill : stroke_add) :
514
6.28M
                        (traditional ? stroke_add_compat : stroke_add_fast));
515
6.28M
    gs_fixed_rect ibox, cbox;
516
6.28M
    gx_device_clip cdev;
517
6.28M
    gx_device *dev = pdev;
518
6.28M
    int code = 0;
519
6.28M
    gx_fill_params fill_params;
520
6.28M
    const gx_line_params *pgs_lp = gs_currentlineparams_inline(pgs);
521
6.28M
    int dash_count = pgs_lp->dash.pattern_size;
522
6.28M
    gx_path fpath, dpath;
523
6.28M
    gx_path stroke_path_body;
524
6.28M
    gx_path stroke_path_reverse;
525
6.28M
    gx_path *to_path_reverse = NULL;
526
6.28M
    const gx_path *spath;
527
6.28M
    float xx = pgs->ctm.xx, xy = pgs->ctm.xy;
528
6.28M
    float yx = pgs->ctm.yx, yy = pgs->ctm.yy;
529
    /*
530
     * We are dealing with a reflected coordinate system
531
     * if transform(1,0) is counter-clockwise from transform(0,1).
532
     * See the note in stroke_add for the algorithm.
533
     */
534
6.28M
    int uniform;
535
6.28M
    bool reflected;
536
6.28M
    orientation orient =
537
6.28M
        (
538
6.28M
#ifdef OPTIMIZE_ORIENTATION
539
6.28M
         is_fzero2(xy, yx) ?
540
4.41M
         (uniform = (xx == yy ? 1 : xx == -yy ? -1 : 0),
541
4.41M
          reflected = (uniform ? uniform < 0 : (xx < 0) != (yy < 0)),
542
4.41M
          orient_portrait) :
543
6.28M
         is_fzero2(xx, yy) ?
544
90.6k
         (uniform = (xy == yx ? -1 : xy == -yx ? 1 : 0),
545
90.6k
          reflected = (uniform ? uniform < 0 : (xy < 0) == (yx < 0)),
546
90.6k
          orient_landscape) :
547
    /* We should optimize uniform rotated coordinate systems */
548
    /* here as well, but we don't. */
549
1.86M
#endif
550
1.86M
         (uniform = 0,
551
1.77M
          reflected = xy * yx > xx * yy,
552
1.77M
          orient_other));
553
6.28M
    const segment_notes not_first = sn_not_first;
554
6.28M
    gs_line_join curve_join =
555
6.28M
        (pgs_lp->curve_join >= 0 ? (gs_line_join)pgs_lp->curve_join :
556
6.28M
         pgs_lp->join == gs_join_none || pgs_lp->join == gs_join_round ?
557
4.37M
            gs_join_bevel : pgs_lp->join);
558
6.28M
    float line_width = pgs_lp->half_width;      /* (*half* the line width) */
559
6.28M
    bool always_thin;
560
6.28M
    double line_width_and_scale;
561
6.28M
    double device_line_width_scale = 0; /* Quiet compiler. */
562
6.28M
    double device_dot_length = pgs_lp->dot_length * fixed_1;
563
6.28M
    const subpath *psub;
564
6.28M
    gs_matrix initial_matrix;
565
6.28M
    bool initial_matrix_reflected, flattened_path = false;
566
6.28M
    note_flags flags;
567
568
6.28M
    (*dev_proc(pdev, get_initial_matrix)) (pdev, &initial_matrix);
569
6.28M
    initial_matrix_reflected = initial_matrix.xy * initial_matrix.yx >
570
6.28M
                               initial_matrix.xx * initial_matrix.yy;
571
572
#ifdef DEBUG
573
    if (gs_debug_c('o')) {
574
        int i;
575
576
        dmlprintf4(ppath->memory, "[o]half_width=%f, start_cap=%d, end_cap=%d, dash_cap=%d,\n",
577
                   pgs_lp->half_width, (int)pgs_lp->start_cap,
578
                   (int)pgs_lp->end_cap, (int)pgs_lp->dash_cap);
579
        dmlprintf3(ppath->memory, "   join=%d, miter_limit=%f, miter_check=%f,\n",
580
                   (int)pgs_lp->join, pgs_lp->miter_limit,
581
                   pgs_lp->miter_check);
582
        dmlprintf1(ppath->memory, "   dash pattern=%d", dash_count);
583
        for (i = 0; i < dash_count; i++)
584
            dmprintf1(ppath->memory, ",%f", pgs_lp->dash.pattern[i]);
585
        dmputs(ppath->memory, ",\n");
586
        dmlprintf4(ppath->memory, "\toffset=%f, init(ink_on=%d, index=%d, dist_left=%f)\n",
587
                   pgs_lp->dash.offset, pgs_lp->dash.init_ink_on,
588
                   pgs_lp->dash.init_index, pgs_lp->dash.init_dist_left);
589
    }
590
#endif
591
592
6.28M
    gx_path_bbox(ppath, &ibox);
593
    /* Expand the path bounding box by the scaled line width. */
594
6.28M
    {
595
6.28M
        gs_fixed_point expansion;
596
597
6.28M
        if (gx_stroke_path_expansion(pgs, ppath, &expansion) < 0) {
598
            /* The expansion is so large it caused a limitcheck. */
599
1.46M
            ibox.p.x = ibox.p.y = min_fixed;
600
1.46M
            ibox.q.x = ibox.q.y = max_fixed;
601
4.81M
        } else {
602
4.81M
            expansion.x += pgs->fill_adjust.x;
603
4.81M
            expansion.y += pgs->fill_adjust.y;
604
            /*
605
             * It's theoretically possible for the following computations to
606
             * overflow, so we need to check for this.
607
             */
608
4.81M
            ibox.p.x = (ibox.p.x < min_fixed + expansion.x ? min_fixed :
609
4.81M
                        ibox.p.x - expansion.x);
610
4.81M
            ibox.p.y = (ibox.p.y < min_fixed + expansion.y ? min_fixed :
611
4.81M
                        ibox.p.y - expansion.y);
612
4.81M
            ibox.q.x = (ibox.q.x > max_fixed - expansion.x ? max_fixed :
613
4.81M
                        ibox.q.x + expansion.x);
614
4.81M
            ibox.q.y = (ibox.q.y > max_fixed - expansion.y ? max_fixed :
615
4.81M
                        ibox.q.y + expansion.y);
616
4.81M
        }
617
6.28M
    }
618
    /* Check the expanded bounding box against the clipping regions. */
619
6.28M
    if (pcpath)
620
3.29M
        gx_cpath_inner_box(pcpath, &cbox);
621
2.98M
    else if (pdevc)
622
2.98M
        (*dev_proc(pdev, get_clipping_box)) (pdev, &cbox);
623
1.93k
    else {
624
        /* This is strokepath, not stroke.  Don't clip. */
625
1.93k
        cbox = ibox;
626
1.93k
    }
627
6.28M
    if (!rect_within(ibox, cbox)) {
628
        /* Intersect the path box and the clip bounding box. */
629
        /* If the intersection is empty, this call is a no-op. */
630
4.70M
        gs_fixed_rect bbox;
631
632
4.70M
        if (pcpath) {
633
2.70M
            gx_cpath_outer_box(pcpath, &bbox);
634
2.70M
            if_debug4m('f', ppath->memory, "   outer_box=(%g,%g),(%g,%g)\n",
635
2.70M
                       fixed2float(bbox.p.x), fixed2float(bbox.p.y),
636
2.70M
                       fixed2float(bbox.q.x), fixed2float(bbox.q.y));
637
2.70M
            rect_intersect(ibox, bbox);
638
2.70M
        } else
639
4.70M
            rect_intersect(ibox, cbox);
640
4.70M
        if (ibox.p.x >= ibox.q.x || ibox.p.y >= ibox.q.y) {
641
            /* Intersection of boxes is empty! */
642
2.25M
            return 0;
643
2.25M
        }
644
        /*
645
         * The path is neither entirely inside the inner clip box
646
         * nor entirely outside the outer clip box.
647
         * If we had to flatten the path, this is where we would
648
         * recompute its bbox and make the tests again,
649
         * but we don't bother right now.
650
         */
651
        /*
652
         * If there is a clipping path, set up a clipping device.
653
         * for stroke_fill because, because the latter uses low level methods
654
         * which don't accept a clipping path.
655
         * Note that in some cases stroke_fill appends the path to stroke_path_body
656
         * instead a real painting, and it is painted with FILL_STROKE_PATH.
657
         *
658
         * Contrary to that, FILL_STROKE_PATH paints a path with
659
         * the fill_path method, which handles a clipping path,
660
         * so we don't pass the clipper device to FILL_STROKE_PATH
661
         * to prevent an appearence of superposing clippers.
662
         */
663
2.45M
        if (pcpath && line_proc == stroke_fill) {
664
558k
            gx_make_clip_device_on_stack(&cdev, pcpath, pdev);
665
558k
            cdev.max_fill_band = pdev->max_fill_band;
666
558k
            dev = (gx_device *)&cdev;
667
558k
        }
668
2.45M
    }
669
4.03M
    fill_params.rule = gx_rule_winding_number;
670
4.03M
    fill_params.flatness = pgs->flatness;
671
4.03M
    if (line_width < 0)
672
0
        line_width = -line_width;
673
4.03M
    line_width_and_scale = line_width * (double)int2fixed(1);
674
4.03M
    if (is_fzero(line_width))
675
55.7k
        always_thin = true;
676
3.97M
    else {
677
3.97M
        float xa, ya;
678
679
3.97M
        switch (orient) {
680
3.62M
            case orient_portrait:
681
3.62M
                xa = xx, ya = yy;
682
3.62M
                goto sat;
683
44.8k
            case orient_landscape:
684
44.8k
                xa = xy, ya = yx;
685
3.67M
              sat:
686
3.67M
                if (xa < 0)
687
59.1k
                    xa = -xa;
688
3.67M
                if (ya < 0)
689
2.16M
                    ya = -ya;
690
3.67M
                always_thin = (max(xa, ya) * line_width < 0.5);
691
3.67M
                if (!always_thin && uniform) {  /* Precompute a value we'll need later. */
692
2.25M
                    device_line_width_scale = line_width_and_scale * xa;
693
2.25M
                }
694
3.67M
                break;
695
301k
            default:
696
301k
                {
697
                    /* The check is more complicated, but it's worth it. */
698
                    /* Compute radii of the transformed round brush. */
699
                    /* Let x = [a, sqrt(1-a^2)]'
700
                       radius^2 is an extremum of :
701
                       rr(a)=(CTM*x)^2 = (a*xx + sqrt(1 - a^2)*xy)^2 + (a*yx + sqrt(1 - a^2)*yy)^2
702
                       With solving D(rr(a),a)==0, got :
703
                       max_rr = (xx^2 + xy^2 + yx^2 + yy^2 + sqrt(((xy + yx)^2 + (xx - yy)^2)*((xy - yx)^2 + (xx + yy)^2)))/2.
704
                       r = sqrt(max_rr);
705
                       Well we could use eigenvalues of the quadratic form,
706
                       but it gives same result with a bigger calculus.
707
                     */
708
301k
                    double max_rr = ((double)(xx*xx + xy*xy + yx*yx + yy*yy) +
709
301k
                                     sqrt((double)((xy + yx)*(xy + yx) + (xx - yy)*(xx - yy)) *
710
301k
                                                  ((xy - yx)*(xy - yx) + (xx + yy)*(xx + yy))
711
301k
                                          )
712
301k
                                     )/2;
713
714
301k
                    always_thin = max_rr * line_width * line_width < 0.25;
715
301k
                }
716
3.97M
        }
717
3.97M
    }
718
4.03M
    if_debug7m('o', ppath->memory, "[o]ctm=(%g,%g,%g,%g,%g,%g) thin=%d\n",
719
4.03M
              xx, xy, yx, yy, pgs->ctm.tx, pgs->ctm.ty, always_thin);
720
4.03M
    if (device_dot_length != 0) {
721
        /*
722
         * Compute the dot length in device space.  We can't do this
723
         * quite right for non-uniform coordinate systems; too bad.
724
         */
725
0
        gs_matrix mat;
726
0
        const gs_matrix *pmat;
727
728
0
        if (pgs_lp->dot_length_absolute) {
729
0
            gs_deviceinitialmatrix(pdev, &mat);
730
0
            pmat = &mat;
731
0
        } else
732
0
            pmat = (const gs_matrix *)&pgs->ctm;
733
0
        device_dot_length *= fabs(pmat->xy) + fabs(pmat->yy);
734
0
    }
735
    /* Start by flattening the path.  We should do this on-the-fly.... */
736
4.03M
    if (!gx_path_has_curves(ppath) && !gx_path_has_long_segments(ppath)) {
737
        /* don't need to flatten */
738
3.79M
        if (!ppath->first_subpath) {
739
658k
            if (dev == (gx_device *)&cdev)
740
80.0k
                gx_destroy_clip_device_on_stack(&cdev);
741
658k
            return 0;
742
658k
        }
743
3.13M
        spath = ppath;
744
3.13M
    } else {
745
232k
        gx_path_init_local(&fpath, ppath->memory);
746
232k
        if ((code = gx_path_add_flattened_for_stroke(ppath, &fpath,
747
232k
            params->flatness, pgs)) < 0) {
748
0
            if (dev == (gx_device *)&cdev)
749
0
                gx_destroy_clip_device_on_stack(&cdev);
750
0
            return code;
751
0
        }
752
232k
        spath = &fpath;
753
232k
        flattened_path = true;
754
232k
    }
755
3.37M
    if (dash_count) {
756
33.2k
        float max_dash_len = 0;
757
33.2k
        float expand_squared;
758
33.2k
        int i;
759
33.2k
        float adjust = (float)pgs->fill_adjust.x;
760
33.2k
        if (adjust > (float)pgs->fill_adjust.y)
761
0
            adjust = (float)pgs->fill_adjust.y;
762
98.7k
        for (i = 0; i < dash_count; i++) {
763
65.5k
            if (max_dash_len < pgs_lp->dash.pattern[i])
764
38.7k
                max_dash_len = pgs_lp->dash.pattern[i];
765
65.5k
        }
766
33.2k
        expand_squared = pgs->ctm.xx * pgs->ctm.yy - pgs->ctm.xy * pgs->ctm.yx;
767
33.2k
        if (expand_squared < 0)
768
16.8k
            expand_squared = -expand_squared;
769
33.2k
        expand_squared *= max_dash_len * max_dash_len;
770
        /* Wide lines in curves can show dashes up, so fudge to allow for
771
         * this. */
772
33.2k
        if (pgs->line_params.half_width > 1)
773
1.62k
            adjust /= pgs->line_params.half_width;
774
33.2k
        if (expand_squared*65536.0f >= (float)(adjust*adjust)) {
775
32.5k
            gx_path_init_local(&dpath, ppath->memory);
776
32.5k
            code = gx_path_add_dash_expansion(spath, &dpath, pgs);
777
32.5k
            if (code < 0)
778
0
                goto exf;
779
32.5k
            spath = &dpath;
780
32.5k
        } else {
781
711
            dash_count = 0;
782
711
        }
783
33.2k
    }
784
3.37M
    if (to_path == 0) {
785
        /* We might try to defer this if it's expensive.... */
786
3.37M
        to_path = &stroke_path_body;
787
3.37M
        gx_path_init_local(&stroke_path_body, ppath->memory);
788
3.37M
    }
789
3.37M
    if (line_proc == stroke_add_fast) {
790
0
        to_path_reverse = &stroke_path_reverse;
791
0
        gx_path_init_local(&stroke_path_reverse, ppath->memory);
792
0
    }
793
10.9M
    for (psub = spath->first_subpath; psub != 0;) {
794
7.59M
        int index = 0;
795
7.59M
        const segment *pseg = (const segment *)psub;
796
7.59M
        fixed x = pseg->pt.x;
797
7.59M
        fixed y = pseg->pt.y;
798
7.59M
        bool is_closed = ((const subpath *)pseg)->is_closed;
799
7.59M
        partial_line pl, pl_prev, pl_first;
800
7.59M
        bool zero_length = true;
801
7.59M
        int pseg_notes = pseg->notes;
802
803
7.59M
        flags = nf_all_from_arc;
804
805
        /* Run through each segment in the current path, drawing each segment
806
         * delayed by 1 - that is, when we're looking at segment n, we draw
807
         * (or not) segment n-1. This delay allows us to always know whether
808
         * to join or cap the line. */
809
136M
        while ((pseg = pseg->next) != 0 &&
810
136M
               pseg->type != s_start
811
129M
            ) {
812
            /* Compute the width parameters in device space. */
813
            /* We work with unscaled values, for speed. */
814
129M
            fixed sx, udx, sy, udy;
815
129M
            bool is_dash_segment;
816
817
129M
            pseg_notes = pseg->notes;
818
819
130M
         d2:is_dash_segment = false;
820
130M
         d1:if (pseg->type == s_dash) {
821
752k
                dash_segment *pd = (dash_segment *)pseg;
822
823
752k
                sx = pd->pt.x;
824
752k
                sy = pd->pt.y;
825
752k
                udx = pd->tangent.x;
826
752k
                udy = pd->tangent.y;
827
752k
                is_dash_segment = true;
828
129M
            } else if (pseg->type == s_gap) {
829
0
                sx = pseg->pt.x;
830
0
                sy = pseg->pt.y;
831
0
                udx = sx - x;
832
0
                udy = sy - y;
833
0
                is_dash_segment = true;
834
129M
            } else {
835
129M
                sx = pseg->pt.x;
836
129M
                sy = pseg->pt.y;
837
129M
                udx = sx - x;
838
129M
                udy = sy - y;
839
129M
            }
840
130M
            zero_length &= ((udx | udy) == 0);
841
130M
            pl.o.p.x = x, pl.o.p.y = y;
842
130M
          d:flags = (((pseg_notes & sn_not_first) ?
843
112M
                      ((flags & nf_all_from_arc) | nf_some_from_arc) : 0) |
844
130M
                     ((pseg_notes & sn_dash_head) ? nf_dash_head : 0)    |
845
130M
                     ((pseg_notes & sn_dash_tail) ? nf_dash_tail : 0)    |
846
130M
                     (flags & ~nf_all_from_arc));
847
130M
            pl.e.p.x = sx, pl.e.p.y = sy;
848
130M
            if (!(udx | udy) || pseg->type == s_dash || pseg->type == s_gap) { /* degenerate or short */
849
                /*
850
                 * If this is the first segment of the subpath,
851
                 * check the entire subpath for degeneracy.
852
                 * Otherwise, ignore the degenerate segment.
853
                 */
854
2.34M
                if (index != 0 && pseg->type != s_dash && pseg->type != s_gap)
855
1.30M
                {
856
1.30M
                    if (pseg->next == NULL || pseg->next->type == s_start)
857
293k
                        continue;
858
1.01M
                    pseg = pseg->next;
859
                    /* We're skipping a degenerate path segment; if it was
860
                     * labelled as being the first from a curve, then make
861
                     * sure the one we're skipping to is also labelled as
862
                     * being the first from a curve, otherwise we can get
863
                     * improper joins being used. See Bug 696466. */
864
1.01M
                    pseg_notes = (((pseg_notes & sn_not_first) == 0) ?
865
947k
                                  (pseg->notes & ~sn_not_first) :
866
1.01M
                                  pseg->notes);
867
1.01M
                    goto d2;
868
1.30M
                }
869
                /* Check for a degenerate subpath. */
870
1.86M
                while ((pseg = pseg->next) != 0 &&
871
1.86M
                       pseg->type != s_start
872
1.03M
                    ) {
873
872k
                    if (is_dash_segment)
874
8.28k
                        break;
875
863k
                    if (pseg->type == s_dash || pseg->type == s_gap)
876
0
                        goto d1;
877
863k
                    sx = pseg->pt.x, udx = sx - x;
878
863k
                    sy = pseg->pt.y, udy = sy - y;
879
863k
                    if (udx | udy) {
880
36.2k
                        zero_length = false;
881
36.2k
                        goto d;
882
36.2k
                    }
883
863k
                }
884
999k
                if (pgs_lp->dot_length == 0 &&
885
999k
                    pgs_lp->start_cap != gs_cap_round &&
886
999k
                    pgs_lp->end_cap != gs_cap_round &&
887
999k
                    !is_dash_segment) {
888
                    /* From PLRM, stroke operator :
889
                       If a subpath is degenerate (consists of a single-point closed path
890
                       or of two or more points at the same coordinates),
891
                       stroke paints it only if round line caps have been specified */
892
40.3k
                    break;
893
40.3k
                }
894
                /*
895
                 * If the subpath is a dash, take the orientation from the dash segment.
896
                 * Otherwise orient the dot according to the previous segment if
897
                 * any, or else the next segment if any, or else
898
                 * according to the specified dot orientation.
899
                 */
900
959k
                {
901
                    /* When passing here, either pseg == NULL or it points to the
902
                       start of the next subpaph. So we can't use pseg
903
                       for determining the segment direction.
904
                       In same time, psub->last may help, so use it. */
905
959k
                    const segment *end = psub->last;
906
907
959k
                    if (is_dash_segment) {
908
                        /* Nothing. */
909
752k
                    } else if (end != 0 && (end->pt.x != x || end->pt.y != y))
910
0
                        sx = end->pt.x, sy = end->pt.y, udx = sx - x, udy = sy - y;
911
959k
                }
912
                /*
913
                 * Compute the properly oriented dot length, and then
914
                 * draw the dot like a very short line.
915
                 */
916
959k
                if ((udx | udy) == 0) {
917
206k
                    if (is_fzero(pgs_lp->dot_orientation.xy)) {
918
                        /* Portrait orientation, dot length = X */
919
206k
                        udx = fixed_1;
920
206k
                    } else {
921
                        /* Landscape orientation, dot length = Y */
922
0
                        udy = fixed_1;
923
0
                    }
924
206k
                }
925
959k
                if (sx == x && sy == y && (pseg == NULL || pseg->type == s_start)) {
926
930k
                    double scale = device_dot_length /
927
930k
                                hypot((double)udx, (double)udy);
928
930k
                    fixed udx1, udy1;
929
                    /*
930
                     * If we're using butt caps, make sure the "line" is
931
                     * long enough to show up.
932
                     * Don't apply this with always_thin, becase
933
                     * draw thin line always rounds the length up.
934
                     */
935
930k
                    if (!always_thin && (pgs_lp->start_cap == gs_cap_butt ||
936
907k
                                         pgs_lp->end_cap   == gs_cap_butt ||
937
907k
                                         pgs_lp->dash_cap  == gs_cap_butt)) {
938
1
                        fixed dmax = max(any_abs(udx), any_abs(udy));
939
940
1
                        if (dmax * scale < fixed_1)
941
1
                            scale = (float)fixed_1 / dmax;
942
1
                    }
943
930k
                    udx1 = (fixed) (udx * scale);
944
930k
                    udy1 = (fixed) (udy * scale);
945
930k
                    sx = x + udx1;
946
930k
                    sy = y + udy1;
947
930k
                }
948
                /*
949
                 * Back up 1 segment to keep the bookkeeping straight.
950
                 */
951
959k
                pseg = (pseg != 0 ? pseg->prev : psub->last);
952
959k
                if (!is_dash_segment)
953
206k
                    goto d;
954
752k
                pl.e.p.x = sx;
955
752k
                pl.e.p.y = sy;
956
752k
            }
957
128M
            pl.vector.x = udx;
958
128M
            pl.vector.y = udy;
959
128M
            if (always_thin) {
960
23.3M
                pl.e.cdelta.x = pl.e.cdelta.y = 0;
961
23.3M
                pl.width.x = pl.width.y = 0;
962
23.3M
                pl.thin = true;
963
105M
            } else {
964
105M
                if (uniform != 0) {
965
                    /* We can save a lot of work in this case. */
966
                    /* We know orient != orient_other. */
967
49.2M
                    double dpx = udx, dpy = udy;
968
49.2M
                    double wl = device_line_width_scale /
969
49.2M
                    hypot(dpx, dpy);
970
971
49.2M
                    pl.e.cdelta.x = (fixed) (dpx * wl);
972
49.2M
                    pl.e.cdelta.y = (fixed) (dpy * wl);
973
                    /* The width is the cap delta rotated by */
974
                    /* 90 degrees. */
975
49.2M
                    if (initial_matrix_reflected)
976
48.4M
                        pl.width.x = pl.e.cdelta.y, pl.width.y = -pl.e.cdelta.x;
977
892k
                    else
978
892k
                        pl.width.x = -pl.e.cdelta.y, pl.width.y = pl.e.cdelta.x;
979
49.2M
                    pl.thin = false;    /* if not always_thin, */
980
                    /* then never thin. */
981
982
56.1M
                } else {
983
56.1M
                    gs_point dpt;       /* unscaled */
984
56.1M
                    float wl;
985
986
56.1M
                    code = gs_gstate_idtransform(pgs,
987
56.1M
                                                 (float)udx, (float)udy,
988
56.1M
                                                 &dpt);
989
56.1M
                    if (code < 0) {
990
918k
                        dpt.x = 0; dpt.y = 0;
991
                        /* Swallow the error */
992
918k
                        code = 0;
993
55.1M
                    } else {
994
55.1M
                        wl = line_width_and_scale /
995
55.1M
                            hypot(dpt.x, dpt.y);
996
                        /* Construct the width vector in */
997
                        /* user space, still unscaled. */
998
55.1M
                        dpt.x *= wl;
999
55.1M
                        dpt.y *= wl;
1000
55.1M
                    }
1001
1002
                    /*
1003
                     * We now compute both perpendicular
1004
                     * and (optionally) parallel half-widths,
1005
                     * as deltas in device space.  We use
1006
                     * a fixed-point, unscaled version of
1007
                     * gs_dtransform.  The second computation
1008
                     * folds in a 90-degree rotation (in user
1009
                     * space, before transforming) in the
1010
                     * direction that corresponds to counter-
1011
                     * clockwise in device space.
1012
                     */
1013
56.1M
                    pl.e.cdelta.x = (fixed) (dpt.x * xx);
1014
56.1M
                    pl.e.cdelta.y = (fixed) (dpt.y * yy);
1015
56.1M
                    if (orient != orient_portrait)
1016
52.5M
                        pl.e.cdelta.x += (fixed) (dpt.y * yx),
1017
52.5M
                            pl.e.cdelta.y += (fixed) (dpt.x * xy);
1018
56.1M
                    if (!reflected ^ initial_matrix_reflected)
1019
54.4M
                        dpt.x = -dpt.x, dpt.y = -dpt.y;
1020
56.1M
                    pl.width.x = (fixed) (dpt.y * xx),
1021
56.1M
                        pl.width.y = -(fixed) (dpt.x * yy);
1022
56.1M
                    if (orient != orient_portrait)
1023
52.5M
                        pl.width.x -= (fixed) (dpt.x * yx),
1024
52.5M
                            pl.width.y += (fixed) (dpt.y * xy);
1025
56.1M
                    pl.thin = width_is_thin(&pl);
1026
56.1M
                }
1027
105M
                if (!pl.thin) {
1028
102M
                    if (index)
1029
97.1M
                        dev->sgr.stroke_stored = false;
1030
102M
                    adjust_stroke(dev, &pl, pgs, false,
1031
102M
                            (pseg->prev == 0 || pseg->prev->type == s_start) &&
1032
102M
                            (pseg->next == 0 || pseg->next->type == s_start) &&
1033
102M
                            (zero_length || !is_closed),
1034
102M
                            COMBINE_FLAGS(flags));
1035
102M
                    compute_caps(&pl);
1036
102M
                }
1037
105M
            }
1038
128M
            if (index++) {
1039
121M
                gs_line_join join =
1040
121M
                    (pseg_notes & not_first ? curve_join : pgs_lp->join);
1041
121M
                int first;
1042
121M
                pl_ptr lptr;
1043
121M
                bool ensure_closed;
1044
1045
121M
                if (join == gs_join_none) {
1046
                    /* Fake the end of a subpath so we get */
1047
                    /* caps instead of joins. */
1048
12
                    first = 0;
1049
12
                    lptr = 0;
1050
12
                    index = 1;
1051
121M
                } else {
1052
121M
                    first = (is_closed ? 1 : index - 2);
1053
121M
                    lptr = &pl;
1054
121M
                }
1055
#ifdef AVOID_JOINING_TO_DASH_GAPS
1056
                if (is_dash_segment) /* Never join to a dash segment */
1057
                    lptr = NULL;
1058
#endif
1059
121M
                if (pseg->type == s_gap)
1060
0
                {
1061
0
                    lptr = NULL;
1062
                    /* We are always drawing one line segment behind, so make
1063
                     * sure we don't draw the next one. */
1064
0
                    index = 0;
1065
0
                }
1066
1067
121M
                ensure_closed = ((to_path == &stroke_path_body &&
1068
121M
                                  lop_is_idempotent(pgs->log_op)) ||
1069
121M
                                 (lptr == NULL ? true : lptr->thin));
1070
                /* Draw the PREVIOUS line segment, joining it to lptr (or
1071
                 * capping if lptr == NULL. */
1072
121M
                code = (*line_proc) (to_path, to_path_reverse, ensure_closed,
1073
121M
                                     first, &pl_prev, lptr,
1074
121M
                                     pdevc, dev, pgs, params, &cbox,
1075
121M
                                     uniform, join, initial_matrix_reflected,
1076
121M
                                     COMBINE_FLAGS(flags));
1077
121M
                if (code < 0)
1078
0
                    goto exit;
1079
121M
                FILL_STROKE_PATH(pdev, always_thin, pcpath, false);
1080
121M
            } else if (pseg->type == s_gap) {
1081
                /* If this segment is a gap, then we don't want to draw it
1082
                 * next time! */
1083
0
                index = 0;
1084
0
            } else
1085
7.55M
                pl_first = pl;
1086
128M
            pl_prev = pl;
1087
128M
            x = sx, y = sy;
1088
128M
            flags = (flags<<4) | nf_all_from_arc;
1089
128M
        }
1090
7.59M
        if (index) {
1091
            /* If closed, join back to start, else cap. */
1092
7.55M
            segment_notes notes = (pseg == 0 ?
1093
3.36M
                                   (const segment *)spath->first_subpath :
1094
7.55M
                                   pseg)->notes;
1095
7.55M
            gs_line_join join = (notes & not_first ? curve_join :
1096
7.55M
                                 pgs_lp->join);
1097
7.55M
            gs_line_cap cap;
1098
            /* For some reason, the Borland compiler requires the cast */
1099
            /* in the following statement. */
1100
7.55M
            pl_ptr lptr =
1101
7.55M
                (!is_closed || join == gs_join_none || zero_length ?
1102
6.09M
                 (pl_ptr) 0 : (pl_ptr) & pl_first);
1103
1104
#ifdef AVOID_JOINING_TO_DASH_GAPS
1105
            if (lptr && psub->type == s_dash)
1106
                lptr = NULL;
1107
#endif
1108
            /* If the subpath starts with a gap, then cap, don't join! */
1109
7.55M
            if (lptr && psub->type == s_start && psub->next && psub->next->type == s_gap)
1110
0
                lptr = NULL;
1111
1112
7.55M
            flags = (((notes & sn_not_first) ?
1113
7.55M
                      ((flags & nf_all_from_arc) | nf_some_from_arc) : 0) |
1114
7.55M
                     ((notes & sn_dash_head) ? nf_dash_head : 0) |
1115
7.55M
                     ((notes & sn_dash_tail) ? nf_dash_tail : 0) |
1116
7.55M
                     (flags & ~nf_all_from_arc));
1117
7.55M
            code = (*line_proc) (to_path, to_path_reverse, true,
1118
7.55M
                                 index - 1, &pl_prev, lptr, pdevc,
1119
7.55M
                                 dev, pgs, params, &cbox, uniform, join,
1120
7.55M
                                 initial_matrix_reflected,
1121
7.55M
                                 COMBINE_FLAGS(flags));
1122
7.55M
            if (code < 0)
1123
1
                goto exit;
1124
7.55M
            FILL_STROKE_PATH(pdev, always_thin, pcpath, false);
1125
7.55M
            cap = ((flags & nf_prev_dash_head) ?
1126
4.55M
                   pgs_lp->start_cap : pgs_lp->dash_cap);
1127
7.55M
            if (traditional && lptr == 0 && cap != gs_cap_butt) {
1128
                /* Create the initial cap at last. */
1129
3.96k
                code = stroke_add_initial_cap_compat(to_path, &pl_first, index == 1, pdevc, dev, pgs);
1130
3.96k
                if (code < 0)
1131
0
                    goto exit;
1132
3.96k
                FILL_STROKE_PATH(pdev, always_thin, pcpath, false);
1133
3.96k
            }
1134
7.55M
        }
1135
7.59M
        psub = (const subpath *)pseg;
1136
7.59M
    }
1137
3.37M
    if (to_path_reverse != NULL)
1138
0
        code = gx_join_path_and_reverse(to_path, to_path_reverse);
1139
3.37M
    FILL_STROKE_PATH(pdev, always_thin, pcpath, true);
1140
3.37M
  exit:
1141
3.37M
    if (dev == (gx_device *)&cdev)
1142
477k
        cdev.target->sgr = cdev.sgr;
1143
3.37M
    if (to_path == &stroke_path_body)
1144
3.37M
        gx_path_free(&stroke_path_body, "gx_stroke_path_only error");   /* (only needed if error) */
1145
3.37M
    if (to_path_reverse == &stroke_path_reverse)
1146
0
        gx_path_free(&stroke_path_reverse, "gx_stroke_path_only error");
1147
3.37M
  exf:
1148
3.37M
    if (dash_count)
1149
32.5k
        gx_path_free(&dpath, "gx_stroke_path exit(dash path)");
1150
    /* If we flattened the path then we set spath to &fpath. If we flattned the path then now we need to free fpath */
1151
3.37M
    if(flattened_path)
1152
232k
        gx_path_free(&fpath, "gx_stroke_path exit(flattened path)");
1153
3.37M
    if (dev == (gx_device *)&cdev)
1154
477k
        gx_destroy_clip_device_on_stack(&cdev);
1155
3.37M
    return code;
1156
3.37M
}
1157
1158
int
1159
gx_stroke_path_only(gx_path * ppath, gx_path * to_path, gx_device * pdev,
1160
               const gs_gstate * pgs, const gx_stroke_params * params,
1161
                 const gx_device_color * pdevc, const gx_clip_path * pcpath)
1162
6.28M
{
1163
6.28M
    return gx_stroke_path_only_aux(ppath, to_path, pdev, pgs, params, pdevc, pcpath);
1164
6.28M
}
1165
1166
/* ------ Internal routines ------ */
1167
1168
/*
1169
 * Test whether a line is thin, i.e., whether the half-width, measured
1170
 * perpendicular to the line in device space, is less than 0.5 pixel.
1171
 * Unfortunately, the width values we computed are perpendicular to the
1172
 * line in *user* space, so we may have to do some extra work.
1173
 */
1174
static bool
1175
width_is_thin(pl_ptr plp)
1176
56.1M
{
1177
56.1M
    fixed dx, dy, wx = plp->width.x, wy = plp->width.y;
1178
1179
    /* If the line is horizontal or vertical, things are easy. */
1180
56.1M
    if ((dy = plp->vector.y) == 0)
1181
5.09M
        return any_abs(wy) < fixed_half;
1182
51.0M
    if ((dx = plp->vector.x) == 0)
1183
1.12M
        return any_abs(wx) < fixed_half;
1184
1185
    /* For the longest time, we used to have a test here that
1186
     * attempted to trivially accept diagonal lines as being
1187
     * thin based on the components of the perpendicular
1188
     * width vector in device space as both being less than 0.5.
1189
     * Bug 702196 showed some examples where this was clearly
1190
     * wrong.
1191
     *
1192
     * The cause for this bug was that the 0.5 figure was wrong.
1193
     * For the point to be less than 1/2 a pixel perpendicular
1194
     * distant from the line, we'd need x^2 + y^2 < .5^2.
1195
     * For a 45 degree line, that'd be 2(x^2) < 1/4 = x^2 < 1/8
1196
     * or x < sqr(1/8). 45 degree line is the "worst case", so
1197
     * if both horizontal and vertical widths are less than
1198
     * sqr(1/8), the line is thin. sqr(1/8) = 0.35355339059.
1199
     * So, we should be using sqr(1/8) rather than 0.5.
1200
     *
1201
     * Fixing this did indeed produce many many progressions,
1202
     * but left just the odd file still showing problems.
1203
     *
1204
     * Further investigations show that those cases were due to
1205
     * the use of "non-uniform" scaling matrices, for example
1206
     * (83 0 0 51 0 0). With such matrices, it's possible for
1207
     * nearly horizontal lines to be thin, but nearly vertical
1208
     * ones to be thick (or vice versa). Having the style of
1209
     * line "pop" between thick and thin in a single stroke
1210
     * looks very noticeable.
1211
     *
1212
     * We could change the trivial optimisation below to only
1213
     * apply in the 'uniform' case, but that would never actually
1214
     * trigger (as tested on the cluster), because all such
1215
     * cases are caught by the "always_thin" condition in the
1216
     * caller.
1217
     *
1218
     * Just removing the trivial test and leaving the 'complicated'
1219
     * test below us would leave us vulnerable to "popping",
1220
     * so we disable both. In practice this makes no difference
1221
     * to the number of tests showing diffs in the cluster.
1222
     */
1223
#if 0 /* DISABLED TEST, see above */
1224
    {
1225
        /* thin_threshold = fixed sqr(1/8) - see above. */
1226
        const fixed thin_threshold = float2fixed(0.35355339059f);
1227
        if (any_abs(wx) < thin_threshold && any_abs(wy) < thin_threshold)
1228
            return true;
1229
    }
1230
1231
    /*
1232
     * We have to do this the hard way, by actually computing the
1233
     * perpendicular distance.  The distance from the point (U,V)
1234
     * from a line from (0,0) to (C,D) is
1235
     *      abs(C*V - D*U) / sqrt(C^2 + D^2)
1236
     * In this case, (U,V) is plp->width, and (C,D) is (dx,dy).
1237
     */
1238
    {
1239
        double C = dx, D = dy;
1240
        double num = C * wy - D * wx;
1241
        double denom = hypot(C, D);
1242
1243
        /* both num and denom are scaled by fixed_scale^2, */
1244
        /* so we don't need to do any de-scaling for the test. */
1245
        return fabs(num) < denom * 0.5;
1246
    }
1247
#else
1248
49.8M
    return false;
1249
51.0M
#endif
1250
51.0M
}
1251
1252
/* Adjust the endpoints and width of a stroke segment along a specified axis */
1253
static void
1254
adjust_stroke_transversal(pl_ptr plp, const gs_gstate * pgs, bool thin, bool horiz)
1255
1.31M
{
1256
1.31M
    fixed *pw;
1257
1.31M
    fixed *pov;
1258
1.31M
    fixed *pev;
1259
1.31M
    fixed w, w2;
1260
1.31M
    fixed adj2;
1261
1262
1.31M
    if (horiz) {
1263
        /* More horizontal stroke */
1264
977k
        pw = &plp->width.y, pov = &plp->o.p.y, pev = &plp->e.p.y;
1265
977k
        adj2 = STROKE_ADJUSTMENT(thin, pgs, y) << 1;
1266
977k
    } else {
1267
        /* More vertical stroke */
1268
340k
        pw = &plp->width.x, pov = &plp->o.p.x, pev = &plp->e.p.x;
1269
340k
        adj2 = STROKE_ADJUSTMENT(thin, pgs, x) << 1;
1270
340k
    }
1271
    /* Round the larger component of the width up or down, */
1272
    /* whichever way produces a result closer to the correct width. */
1273
    /* Note that just rounding the larger component */
1274
    /* may not produce the correct result. */
1275
1.31M
    w = *pw;
1276
1.31M
    if (w > 0)
1277
318k
        w2 = fixed_rounded(w << 1);     /* full line width */
1278
999k
    else
1279
999k
        w2 = -fixed_rounded(-w << 1);   /* full line width */
1280
1.31M
    if (w2 == 0 && *pw != 0) {
1281
        /* Make sure thin lines don't disappear. */
1282
0
        w2 = (*pw < 0 ? -fixed_1 + adj2 : fixed_1 - adj2);
1283
0
        *pw = arith_rshift_1(w2);
1284
0
    }
1285
    /* Only adjust the endpoints if the line is horizontal or vertical. */
1286
1.31M
    if (*pov == *pev) {
1287
        /* We're going to round the endpoint coordinates, so */
1288
        /* take the fill adjustment into account now. */
1289
965k
        if (w >= 0)
1290
111k
            w2 += adj2;
1291
854k
        else
1292
854k
            w2 = adj2 - w2;
1293
965k
        if (w2 & fixed_1)       /* odd width, move to half-pixel */
1294
88.2k
            *pov = *pev = fixed_floor(*pov) + fixed_half;
1295
877k
        else                    /* even width, move to pixel */
1296
877k
            *pov = *pev = fixed_rounded(*pov);
1297
1298
965k
    }
1299
1.31M
}
1300
1301
static void
1302
adjust_stroke_longitude(pl_ptr plp, const gs_gstate * pgs,
1303
                        bool thin, bool horiz,
1304
                        gs_line_cap start_cap, gs_line_cap end_cap)
1305
804k
{
1306
1307
804k
    fixed *pow = (horiz ? &plp->o.p.y : &plp->o.p.x);
1308
804k
    fixed *pew = (horiz ? &plp->e.p.y : &plp->e.p.x);
1309
1310
    /* Only adjust the endpoints if the line is horizontal or vertical.
1311
       Debugged with pdfwrite->ppmraw 72dpi file2.pdf */
1312
804k
    if (*pow == *pew) {
1313
768k
        fixed *pov = (horiz ? &plp->o.p.x : &plp->o.p.y);
1314
768k
        fixed *pev = (horiz ? &plp->e.p.x : &plp->e.p.y);
1315
768k
        fixed length = any_abs(*pov - *pev);
1316
768k
        fixed length_r, length_r_2;
1317
768k
        fixed mv = (*pov + *pev) / 2, mv_r;
1318
768k
        fixed adj2 = (horiz ? STROKE_ADJUSTMENT(thin, pgs, x)
1319
768k
                            : STROKE_ADJUSTMENT(thin, pgs, y)) << 1;
1320
1321
        /* fixme :
1322
           The best value for adjust_longitude is whether
1323
           the dash is isolated and doesn't cover entire segment.
1324
           The current data structure can't pass this info.
1325
           Therefore we restrict adjust_stroke_longitude with 1 pixel length.
1326
        */
1327
768k
        if (length > fixed_1) /* comparefiles/file2.pdf */
1328
146k
            return;
1329
621k
        if (start_cap == gs_cap_butt || end_cap == gs_cap_butt) {
1330
24
            length_r = fixed_rounded(length);
1331
24
            if (length_r < fixed_1)
1332
24
                length_r = fixed_1;
1333
24
            length_r_2 = length_r / 2;
1334
621k
        } else {
1335
            /* Account width for proper placing cap centers. */
1336
621k
            fixed width = any_abs(horiz ? plp->width.y : plp->width.x);
1337
1338
621k
            length_r = fixed_rounded(length + width * 2 + adj2);
1339
621k
            length_r_2 = fixed_rounded(length) / 2;
1340
621k
        }
1341
621k
        if (length_r & fixed_1)
1342
30
            mv_r = fixed_floor(mv) + fixed_half;
1343
621k
        else
1344
621k
            mv_r = fixed_floor(mv);
1345
621k
        if (*pov < *pev) {
1346
24
            *pov = mv_r - length_r_2;
1347
24
            *pev = mv_r + length_r_2;
1348
621k
        } else {
1349
621k
            *pov = mv_r + length_r_2;
1350
621k
            *pev = mv_r - length_r_2;
1351
621k
        }
1352
621k
    }
1353
804k
}
1354
1355
/* Adjust the endpoints and width of a stroke segment */
1356
/* to achieve more uniform rendering. */
1357
/* Only o.p, e.p, e.cdelta, and width have been set. */
1358
static void
1359
adjust_stroke(gx_device *dev, pl_ptr plp, const gs_gstate * pgs,
1360
              bool thin, bool adjust_longitude, note_flags flags)
1361
102M
{
1362
102M
    bool horiz, adjust = true;
1363
102M
    gs_line_cap start_cap = (flags & nf_dash_head ?
1364
143k
                             pgs->line_params.dash_cap :
1365
102M
                             pgs->line_params.start_cap);
1366
102M
    gs_line_cap end_cap   = (flags & nf_dash_tail ?
1367
146k
                             pgs->line_params.dash_cap :
1368
102M
                             pgs->line_params.end_cap);
1369
1370
    /* If stroke_adjustment is disabled, or this isn't a horizontal or
1371
     * vertical line, then bale. */
1372
102M
    if (!pgs->stroke_adjust || (plp->width.x != 0 && plp->width.y != 0)) {
1373
101M
        dev->sgr.stroke_stored = false;
1374
101M
        return;                 /* don't adjust */
1375
101M
    }
1376
    /* Recognizing gradients, which some obsolete software
1377
       represent as a set of parallel strokes.
1378
       Such strokes must not be adjusted - bug 687974. */
1379
1.31M
    if (dev->sgr.stroke_stored &&
1380
1.31M
        (start_cap == gs_cap_butt || end_cap == gs_cap_butt) &&
1381
1.31M
        dev->sgr.orig[3].x == plp->vector.x && dev->sgr.orig[3].y == plp->vector.y) {
1382
        /* Parallel. */
1383
8.00k
        if ((int64_t)(plp->o.p.x - dev->sgr.orig[0].x) * plp->vector.x ==
1384
8.00k
            (int64_t)(plp->o.p.y - dev->sgr.orig[0].y) * plp->vector.y &&
1385
8.00k
            (int64_t)(plp->e.p.x - dev->sgr.orig[1].x) * plp->vector.x ==
1386
627
            (int64_t)(plp->e.p.y - dev->sgr.orig[1].y) * plp->vector.y) {
1387
            /* Transversal shift. */
1388
627
            if (any_abs(plp->o.p.x - dev->sgr.orig[0].x) <= any_abs(plp->width.x + dev->sgr.orig[2].x) &&
1389
627
                any_abs(plp->o.p.y - dev->sgr.orig[0].y) <= any_abs(plp->width.y + dev->sgr.orig[2].y) &&
1390
627
                any_abs(plp->e.p.x - dev->sgr.orig[1].x) <= any_abs(plp->width.x + dev->sgr.orig[2].x) &&
1391
627
                any_abs(plp->e.p.y - dev->sgr.orig[1].y) <= any_abs(plp->width.y + dev->sgr.orig[2].y)) {
1392
                /* The strokes were contacting or overlapping. */
1393
614
                if (any_abs(plp->o.p.x - dev->sgr.orig[0].x) >= any_abs(plp->width.x + dev->sgr.orig[2].x) / 2 &&
1394
614
                    any_abs(plp->o.p.y - dev->sgr.orig[0].y) >= any_abs(plp->width.y + dev->sgr.orig[2].y) / 2 &&
1395
614
                    any_abs(plp->e.p.x - dev->sgr.orig[1].x) >= any_abs(plp->width.x + dev->sgr.orig[2].x) / 2 &&
1396
614
                    any_abs(plp->e.p.y - dev->sgr.orig[1].y) >= any_abs(plp->width.y + dev->sgr.orig[2].y) / 2) {
1397
                    /* The strokes were not much overlapping. */
1398
0
                    if (!(any_abs(plp->o.p.x - dev->sgr.adjusted[0].x) <= any_abs(plp->width.x + dev->sgr.adjusted[2].x) &&
1399
0
                          any_abs(plp->o.p.y - dev->sgr.adjusted[0].y) <= any_abs(plp->width.y + dev->sgr.adjusted[2].y) &&
1400
0
                          any_abs(plp->e.p.x - dev->sgr.adjusted[1].x) <= any_abs(plp->width.x + dev->sgr.adjusted[2].x) &&
1401
0
                          any_abs(plp->e.p.y - dev->sgr.adjusted[1].y) <= any_abs(plp->width.y + dev->sgr.adjusted[2].y))) {
1402
                        /* they became not contacting.
1403
                           We should not have adjusted the last stroke. Since if we did,
1404
                           lets change the current one to restore the contact,
1405
                           so that we don't leave gaps when rasterising. See bug 687974.
1406
                         */
1407
0
                        fixed delta_w_x = (dev->sgr.adjusted[2].x - dev->sgr.orig[2].x);
1408
0
                        fixed delta_w_y = (dev->sgr.adjusted[2].y - dev->sgr.orig[2].y);
1409
0
                        fixed shift_o_x = (dev->sgr.adjusted[0].x - dev->sgr.orig[0].x);
1410
0
                        fixed shift_o_y = (dev->sgr.adjusted[0].y - dev->sgr.orig[0].y);
1411
0
                        fixed shift_e_x = (dev->sgr.adjusted[1].x - dev->sgr.orig[1].x); /* Must be same, but we prefer clarity. */
1412
0
                        fixed shift_e_y = (dev->sgr.adjusted[1].y - dev->sgr.orig[1].y);
1413
1414
0
                        if (plp->o.p.x < dev->sgr.orig[0].x ||
1415
0
                            (plp->o.p.x == dev->sgr.orig[0].x && plp->o.p.y < dev->sgr.orig[0].y)) {
1416
                            /* Left contact, adjust to keep the contact. */
1417
0
                            if_debug4m('O', dev->memory, "[O]don't adjust {{%f,%f},{%f,%f}}\n",
1418
0
                                       fixed2float(plp->o.p.x), fixed2float(plp->o.p.y),
1419
0
                                       fixed2float(plp->e.p.x), fixed2float(plp->e.p.y));
1420
0
                            plp->width.x += (shift_o_x - delta_w_x) / 2;
1421
0
                            plp->width.y += (shift_o_y - delta_w_y) / 2;
1422
0
                            plp->o.p.x += (shift_o_x - delta_w_x) / 2;
1423
0
                            plp->o.p.y += (shift_o_y - delta_w_y) / 2;
1424
0
                            plp->e.p.x += (shift_e_x - delta_w_x) / 2;
1425
0
                            plp->e.p.y += (shift_e_y - delta_w_y) / 2;
1426
0
                            adjust = false;
1427
0
                        } else {
1428
                            /* Right contact, adjust to keep the contact. */
1429
0
                            if_debug4m('O', dev->memory, "[O]don't adjust {{%f,%f},{%f,%f}}\n",
1430
0
                                       fixed2float(plp->o.p.x), fixed2float(plp->o.p.y),
1431
0
                                       fixed2float(plp->e.p.x), fixed2float(plp->e.p.y));
1432
0
                            plp->width.x -= (shift_o_x + delta_w_x) / 2;
1433
0
                            plp->width.y -= (shift_o_y + delta_w_y) / 2;
1434
0
                            plp->o.p.x += (shift_o_x + delta_w_x) / 2;
1435
0
                            plp->o.p.y += (shift_o_y + delta_w_y) / 2;
1436
0
                            plp->e.p.x += (shift_e_x + delta_w_x) / 2;
1437
0
                            plp->e.p.y += (shift_e_y + delta_w_y) / 2;
1438
0
                            adjust = false;
1439
0
                        }
1440
0
                    }
1441
0
                }
1442
614
            }
1443
627
        }
1444
8.00k
    }
1445
1.31M
    if ((start_cap == gs_cap_butt) || (end_cap == gs_cap_butt)) {
1446
278k
        dev->sgr.stroke_stored = true;
1447
278k
        dev->sgr.orig[0] = plp->o.p;
1448
278k
        dev->sgr.orig[1] = plp->e.p;
1449
278k
        dev->sgr.orig[2] = plp->width;
1450
278k
        dev->sgr.orig[3] = plp->vector;
1451
278k
    } else
1452
1.03M
        dev->sgr.stroke_stored = false;
1453
1.31M
    if (adjust) {
1454
1.31M
        horiz = (any_abs(plp->width.x) <= any_abs(plp->width.y));
1455
1.31M
        adjust_stroke_transversal(plp, pgs, thin, horiz);
1456
1.31M
        if (adjust_longitude)
1457
804k
            adjust_stroke_longitude(plp, pgs, thin, horiz, start_cap, end_cap);
1458
1.31M
    }
1459
1.31M
    if ((start_cap == gs_cap_butt) || (end_cap == gs_cap_butt)) {
1460
278k
        dev->sgr.adjusted[0] = plp->o.p;
1461
278k
        dev->sgr.adjusted[1] = plp->e.p;
1462
278k
        dev->sgr.adjusted[2] = plp->width;
1463
278k
        dev->sgr.adjusted[3] = plp->vector;
1464
278k
    }
1465
1.31M
}
1466
1467
/* Compute the intersection of two lines.  This is a messy algorithm */
1468
/* that somehow ought to be useful in more places than just here.... */
1469
/* If the lines are (nearly) parallel, return -1 without setting *pi; */
1470
/* otherwise, return 0 if the intersection is beyond *pp1 and *pp2 in */
1471
/* the direction determined by *pd1 and *pd2, and 1 otherwise. */
1472
static int
1473
line_intersect(
1474
                  p_ptr pp1,    /* point on 1st line */
1475
                  p_ptr pd1,    /* slope of 1st line (dx,dy) */
1476
                  p_ptr pp2,    /* point on 2nd line */
1477
                  p_ptr pd2,    /* slope of 2nd line */
1478
                  p_ptr pi)
1479
52.2M
{                               /* return intersection here */
1480
    /* We don't have to do any scaling, the factors all work out right. */
1481
52.2M
    double u1 = pd1->x, v1 = pd1->y;
1482
52.2M
    double u2 = pd2->x, v2 = pd2->y;
1483
52.2M
    double denom = u1 * v2 - u2 * v1;
1484
52.2M
    double xdiff = pp2->x - pp1->x;
1485
52.2M
    double ydiff = pp2->y - pp1->y;
1486
52.2M
    double f1;
1487
52.2M
    double max_result = any_abs(denom) * (double)max_fixed;
1488
1489
#ifdef DEBUG
1490
    if (gs_debug_c('O')) {
1491
        dlprintf4("[o]Intersect %f,%f(%f/%f)",
1492
                  fixed2float(pp1->x), fixed2float(pp1->y),
1493
                  fixed2float(pd1->x), fixed2float(pd1->y));
1494
        dlprintf4(" & %f,%f(%f/%f),\n",
1495
                  fixed2float(pp2->x), fixed2float(pp2->y),
1496
                  fixed2float(pd2->x), fixed2float(pd2->y));
1497
        dlprintf3("\txdiff=%f ydiff=%f denom=%f ->\n",
1498
                  xdiff, ydiff, denom);
1499
    }
1500
#endif
1501
    /* Check for degenerate result. */
1502
52.2M
    if (any_abs(xdiff) >= max_result || any_abs(ydiff) >= max_result) {
1503
        /* The lines are nearly parallel, */
1504
        /* or one of them has zero length.  Punt. */
1505
303k
        if_debug0('O', "\tdegenerate!\n");
1506
303k
        return -1;
1507
303k
    }
1508
51.9M
    f1 = (v2 * xdiff - u2 * ydiff) / denom;
1509
51.9M
    pi->x = pp1->x + (fixed) (f1 * u1);
1510
51.9M
    pi->y = pp1->y + (fixed) (f1 * v1);
1511
51.9M
    if_debug2('O', "\t%f,%f\n",
1512
51.9M
              fixed2float(pi->x), fixed2float(pi->y));
1513
51.9M
    return (f1 >= 0 && (v1 * xdiff >= u1 * ydiff ? denom >= 0 : denom < 0) ? 0 : 1);
1514
52.2M
}
1515
1516
/* Set up the width and delta parameters for a thin line. */
1517
/* We only approximate the width and height. */
1518
static void
1519
set_thin_widths(register pl_ptr plp)
1520
92.5k
{
1521
92.5k
    fixed dx = plp->e.p.x - plp->o.p.x, dy = plp->e.p.y - plp->o.p.y;
1522
1523
92.5k
#define TRSIGN(v, c) ((v) >= 0 ? (c) : -(c))
1524
92.5k
    if (any_abs(dx) > any_abs(dy)) {
1525
47.1k
        plp->width.x = plp->e.cdelta.y = 0;
1526
47.1k
        plp->width.y = plp->e.cdelta.x = TRSIGN(dx, fixed_half);
1527
47.1k
    } else {
1528
45.3k
        plp->width.y = plp->e.cdelta.x = 0;
1529
45.3k
        plp->width.x = -(plp->e.cdelta.y = TRSIGN(dy, fixed_half));
1530
45.3k
    }
1531
92.5k
#undef TRSIGN
1532
92.5k
}
1533
1534
/* Draw a line on the device. */
1535
/* Treat no join the same as a bevel join. */
1536
/* rpath should always be NULL, hence ensure_closed can be ignored */
1537
static int
1538
stroke_fill(gx_path * ppath, gx_path * rpath, bool ensure_closed, int first,
1539
            register pl_ptr plp, pl_ptr nplp, const gx_device_color * pdevc,
1540
            gx_device * dev, const gs_gstate * pgs,
1541
            const gx_stroke_params * params, const gs_fixed_rect * pbbox,
1542
            int uniform, gs_line_join join, bool reflected,
1543
            note_flags flags)
1544
128M
{
1545
128M
    const fixed lix = plp->o.p.x;
1546
128M
    const fixed liy = plp->o.p.y;
1547
128M
    const fixed litox = plp->e.p.x;
1548
128M
    const fixed litoy = plp->e.p.y;
1549
1550
    /* assert(lop_is_idempotent(pgs->log_op)); */
1551
128M
    if (plp->thin) {
1552
        /* Minimum-width line, don't have to be careful with caps/joins. */
1553
25.9M
        return (*dev_proc(dev, draw_thin_line))(dev, lix, liy, litox, litoy,
1554
25.9M
                                                pdevc, pgs->log_op,
1555
25.9M
                                                pgs->fill_adjust.x,
1556
25.9M
                                                pgs->fill_adjust.y);
1557
25.9M
    }
1558
    /* Check for being able to fill directly. */
1559
102M
    {
1560
102M
        const gx_line_params *pgs_lp = gs_currentlineparams_inline(pgs);
1561
102M
        gs_line_cap start_cap = (flags & nf_dash_head ?
1562
99.2M
                                 pgs_lp->dash_cap : pgs_lp->start_cap);
1563
102M
        gs_line_cap end_cap   = (flags & nf_dash_tail ?
1564
99.2M
                                 pgs_lp->dash_cap : pgs_lp->end_cap);
1565
1566
102M
        if (first != 0)
1567
97.8M
            start_cap = gs_cap_butt;
1568
102M
        if (nplp != 0)
1569
97.8M
            end_cap = gs_cap_butt;
1570
102M
        if (!plp->thin && (nplp == 0 || !nplp->thin)
1571
102M
            && (start_cap == gs_cap_butt || start_cap == gs_cap_square)
1572
102M
            && (end_cap   == gs_cap_butt || end_cap   == gs_cap_square)
1573
102M
            && (join == gs_join_bevel || join == gs_join_miter ||
1574
100M
                join == gs_join_none)
1575
102M
            && (pgs->fill_adjust.x | pgs->fill_adjust.y) == 0
1576
102M
            ) {
1577
0
            gs_fixed_point points[6];
1578
0
            int npoints, code;
1579
0
            fixed ax, ay, bx, by;
1580
1581
0
            npoints = cap_points(start_cap, &plp->o, points);
1582
0
            if (nplp == 0)
1583
0
                code = cap_points(end_cap, &plp->e, points + npoints);
1584
0
            else
1585
0
                code = line_join_points(pgs_lp, plp, nplp, points + npoints,
1586
0
                                        (uniform ? (gs_matrix *) 0 :
1587
0
                                         &ctm_only(pgs)), join, reflected);
1588
0
            if (code < 0)
1589
0
                goto general;
1590
            /* Make sure the parallelogram fill won't overflow. */
1591
0
#define SUB_OVERFLOWS(r, u, v)\
1592
0
  (((r = u - v) ^ u) < 0 && (u ^ v) < 0)
1593
0
            if (SUB_OVERFLOWS(ax, points[0].x, points[1].x) ||
1594
0
                SUB_OVERFLOWS(ay, points[0].y, points[1].y) ||
1595
0
                SUB_OVERFLOWS(bx, points[2].x, points[1].x) ||
1596
0
                SUB_OVERFLOWS(by, points[2].y, points[1].y)
1597
0
                )
1598
0
                goto general;
1599
0
#undef SUB_OVERFLOWS
1600
0
            if (nplp != 0) {
1601
0
                if (join == gs_join_miter) {
1602
                    /* Make sure we have a bevel and not a miter. */
1603
0
                    if (!(points[2].x == plp->e.co.x &&
1604
0
                          points[2].y == plp->e.co.y &&
1605
0
                          points[5].x == plp->e.ce.x &&
1606
0
                          points[5].y == plp->e.ce.y)
1607
0
                        )
1608
0
                        goto fill;
1609
0
                } {
1610
0
                    const gs_fixed_point *bevel = points + 2;
1611
1612
                    /* Identify which 3 points define the bevel triangle. */
1613
0
                    if (points[3].x == nplp->o.p.x &&
1614
0
                        points[3].y == nplp->o.p.y
1615
0
                        )
1616
0
                        ++bevel;
1617
                    /* Fill the bevel. */
1618
0
                    code = (*dev_proc(dev, fill_triangle)) (dev,
1619
0
                                                         bevel->x, bevel->y,
1620
0
                               bevel[1].x - bevel->x, bevel[1].y - bevel->y,
1621
0
                               bevel[2].x - bevel->x, bevel[2].y - bevel->y,
1622
0
                                                        pdevc, pgs->log_op);
1623
0
                    if (code < 0)
1624
0
                        return code;
1625
0
                }
1626
0
            }
1627
            /* Fill the body of the stroke. */
1628
0
            return (*dev_proc(dev, fill_parallelogram)) (dev,
1629
0
                                                   points[1].x, points[1].y,
1630
0
                                                         ax, ay, bx, by,
1631
0
                                                         pdevc, pgs->log_op);
1632
0
          fill:
1633
0
            code = add_points(ppath, points, npoints + code, true);
1634
0
            if (code < 0)
1635
0
                return code;
1636
0
            return gx_path_close_subpath(ppath);
1637
0
        }
1638
102M
    }
1639
    /* General case: construct a path for the fill algorithm. */
1640
102M
 general:
1641
102M
    return stroke_add(ppath, rpath, ensure_closed, first, plp, nplp, pdevc,
1642
102M
                      dev, pgs, params, pbbox, uniform, join, reflected,
1643
102M
                      flags);
1644
102M
}
1645
1646
/* Add a segment to the path.  This handles all the complex cases. */
1647
static int
1648
stroke_add(gx_path * ppath, gx_path * rpath, bool ensure_closed, int first,
1649
           pl_ptr plp, pl_ptr nplp, const gx_device_color * pdevc,
1650
           gx_device * dev, const gs_gstate * pgs,
1651
           const gx_stroke_params * params,
1652
           const gs_fixed_rect * ignore_pbbox, int uniform,
1653
           gs_line_join join, bool reflected, note_flags flags)
1654
102M
{
1655
102M
    const gx_line_params *pgs_lp = gs_currentlineparams_inline(pgs);
1656
102M
    gs_fixed_point points[8];
1657
102M
    int npoints;
1658
102M
    int code;
1659
102M
    bool moveto_first = true;
1660
102M
    gs_line_cap start_cap = (flags & nf_dash_head ?
1661
99.6M
                             pgs_lp->dash_cap : pgs_lp->start_cap);
1662
102M
    gs_line_cap end_cap   = (flags & nf_dash_tail ?
1663
99.6M
                             pgs_lp->dash_cap : pgs_lp->end_cap);
1664
1665
102M
    if (plp->thin) {
1666
        /* We didn't set up the endpoint parameters before, */
1667
        /* because the line was thin.  Do it now. */
1668
92.4k
        set_thin_widths(plp);
1669
92.4k
        adjust_stroke(dev, plp, pgs, true, first == 0 && nplp == 0, flags);
1670
92.4k
        compute_caps(plp);
1671
92.4k
    }
1672
    /* Create an initial cap if desired. */
1673
102M
    if (first == 0 && start_cap == gs_cap_round) {
1674
1.67M
        if ((code = gx_path_add_point(ppath, plp->o.co.x, plp->o.co.y)) < 0 ||
1675
1.67M
            (code = add_pie_cap(ppath, &plp->o)) < 0)
1676
0
            return code;
1677
1.67M
        npoints = 0;
1678
1.67M
        moveto_first = false;
1679
101M
    } else {
1680
101M
        if ((npoints = cap_points((first == 0 ? start_cap : gs_cap_butt),
1681
101M
                                  &plp->o, points)) < 0)
1682
0
            return npoints;
1683
101M
    }
1684
102M
    if (nplp == 0) {
1685
        /* Add a final cap. */
1686
4.48M
        if (end_cap == gs_cap_round) {
1687
1.67M
            ASSIGN_POINT(&points[npoints], plp->e.co);
1688
1.67M
            ++npoints;
1689
1.67M
            if ((code = add_points(ppath, points, npoints, moveto_first)) < 0)
1690
0
                return code;
1691
1.67M
            code = add_pie_cap(ppath, &plp->e);
1692
1.67M
            goto done;
1693
1.67M
        }
1694
2.80M
        code = cap_points(end_cap, &plp->e, points + npoints);
1695
98.3M
    } else if (nplp->thin) /* no join */
1696
99.3k
        code = cap_points(gs_cap_butt, &plp->e, points + npoints);
1697
98.2M
    else if (join == gs_join_round) {
1698
1.17M
        ASSIGN_POINT(&points[npoints], plp->e.co);
1699
1.17M
        ++npoints;
1700
1.17M
        if ((code = add_points(ppath, points, npoints, moveto_first)) < 0)
1701
0
            return code;
1702
1.17M
        code = add_pie_join(ppath, plp, nplp, reflected, true);
1703
1.17M
        goto done;
1704
97.0M
    } else if (flags & nf_all_from_arc) {
1705
        /* If all the segments in 'prev' and 'current' are from a curve
1706
         * then the join should actually be a round one, because it would
1707
         * have been round if we had flattened it enough. */
1708
87.9M
        ASSIGN_POINT(&points[npoints], plp->e.co);
1709
87.9M
        ++npoints;
1710
87.9M
        if ((code = add_points(ppath, points, npoints, moveto_first)) < 0)
1711
0
            return code;
1712
87.9M
        code = add_pie_join(ppath, plp, nplp, reflected, false);
1713
87.9M
        goto done;
1714
87.9M
    } else                      /* non-round join */
1715
9.12M
       code = line_join_points(pgs_lp, plp, nplp, points + npoints,
1716
9.12M
                                (uniform ? (gs_matrix *) 0 : &ctm_only(pgs)),
1717
9.12M
                                join, reflected);
1718
12.0M
    if (code < 0)
1719
0
        return code;
1720
12.0M
    code = add_points(ppath, points, npoints + code, moveto_first);
1721
102M
  done:
1722
102M
    if (code < 0)
1723
0
        return code;
1724
102M
    if ((flags & nf_some_from_arc) && (!plp->thin) &&
1725
102M
        (nplp != NULL) && (!nplp->thin))
1726
91.3M
        code = join_under_pie(ppath, plp, nplp, reflected);
1727
102M
    return gx_path_close_subpath(ppath);
1728
102M
}
1729
1730
/* When painting the 'underjoin' (the 'inside' of a join), we
1731
 * need to take special care if the curve is particularly wide as
1732
 * the leading edge of the underside of the first stroked segment
1733
 * may be beyond the leading edge of the underside of the second
1734
 * stroked segment. Similarly, the trailing edge of the second
1735
 * stroked segment may be behing the trailing edge of the first
1736
 * stroked segment. We detect those cases here.
1737
 *
1738
 * We detect the first case by projecting plp.width onto nplp.vector.
1739
 * If the projected vector is longer then nplp.vector, we have a
1740
 * problem.
1741
 *
1742
 * len_vector_squared = nplp.vector.x * nplp.vector.x + nplp.vector.y * nplp.nvector.y
1743
 * len_vector = sqr(len_vector_squared)
1744
 * len_projection_unnormalised = plp.width.x * nplp.vector.x + plp.width.y * nplp.vector.y
1745
 * len_projection = len_projection_unnormalised / len_vector
1746
 *
1747
 * len_projection > len_vector === len_projection_unnormalised > len_vector * len_vector
1748
 * === len_projection_unnormalised > len_vector_squared
1749
 */
1750
1751
#ifdef SLOWER_BUT_MORE_ACCURATE_STROKING
1752
static bool
1753
wide_underjoin(pl_ptr plp, pl_ptr nplp)
1754
{
1755
    double h_squared = (double)nplp->vector.x * nplp->vector.x + (double)nplp->vector.y * nplp->vector.y;
1756
    double dot = (double)plp->width.x * nplp->vector.x + (double)plp->width.y * nplp->vector.y;
1757
1758
    if (dot < 0)
1759
        dot = -dot;
1760
    if (dot > h_squared)
1761
        return 1;
1762
1763
    h_squared = (double)plp->vector.x * plp->vector.x + (double)plp->vector.y * plp->vector.y;
1764
    dot = (double)nplp->width.x * plp->vector.x + (double)nplp->width.y * plp->vector.y;
1765
    if (dot < 0)
1766
        dot = -dot;
1767
    if (dot > h_squared)
1768
        return 1;
1769
1770
    return 0;
1771
}
1772
#endif
1773
1774
static int
1775
check_miter(const gx_line_params * pgs_lp, pl_ptr plp, pl_ptr nplp,
1776
            const gs_matrix * pmat, p_ptr outp, p_ptr np, p_ptr mpt,
1777
            bool ccw0)
1778
8.82M
{
1779
    /*
1780
     * Check whether a miter join is appropriate.
1781
     * Let a, b be the angles of the two lines.
1782
     * We check tan(a-b) against the miter_check
1783
     * by using the following formula:
1784
     *      If tan(a)=u1/v1 and tan(b)=u2/v2, then
1785
     *      tan(a-b) = (u1*v2 - u2*v1) / (u1*u2 + v1*v2).
1786
     *
1787
     * We can do all the computations unscaled,
1788
     * because we're only concerned with ratios.
1789
     * However, if we have a non-uniform coordinate
1790
     * system (indicated by pmat != 0), we must do the
1791
     * computations in user space.
1792
     */
1793
8.82M
    float check;
1794
8.82M
    double u1, v1, u2, v2;
1795
8.82M
    double num, denom;
1796
8.82M
    int code;
1797
1798
    /*
1799
     * Don't bother with the miter check if the two
1800
     * points to be joined are very close together,
1801
     * namely, in the same square half-pixel.
1802
     */
1803
8.82M
    if (fixed2long(outp->x << 1) == fixed2long(np->x << 1) &&
1804
8.82M
        fixed2long(outp->y << 1) == fixed2long(np->y << 1))
1805
2.52M
        return 1;
1806
1807
6.29M
    check = pgs_lp->miter_check;
1808
6.29M
    u1 = plp->vector.y, v1 = plp->vector.x;
1809
6.29M
    u2 = -nplp->vector.y, v2 = -nplp->vector.x;
1810
1811
6.29M
    if (pmat) {
1812
637k
        gs_point pt;
1813
1814
637k
        code = gs_distance_transform_inverse(v1, u1, pmat, &pt);
1815
637k
        if (code < 0)
1816
0
        return code;
1817
637k
        v1 = pt.x, u1 = pt.y;
1818
637k
        code = gs_distance_transform_inverse(v2, u2, pmat, &pt);
1819
637k
        if (code < 0)
1820
0
            return code;
1821
637k
        v2 = pt.x, u2 = pt.y;
1822
        /*
1823
         * We need to recompute ccw according to the
1824
         * relative positions of the lines in user space.
1825
         * We repeat the computation described above,
1826
         * using the cdelta values instead of the widths.
1827
         * Because the definition of ccw above is inverted
1828
         * from the intuitive one (for historical reasons),
1829
         * we actually have to do the test backwards.
1830
         */
1831
637k
        ccw0 = v1 * u2 < v2 * u1;
1832
#ifdef DEBUG
1833
        {
1834
            double a1 = atan2(u1, v1), a2 = atan2(u2, v2), dif = a1 - a2;
1835
1836
            if (dif < 0)
1837
                dif += 2 * M_PI;
1838
            else if (dif >= 2 * M_PI)
1839
                dif -= 2 * M_PI;
1840
            if (dif != 0 && (dif < M_PI) != ccw0)
1841
                lprintf8("ccw wrong: tan(a1=%g)=%g/%g, tan(a2=%g)=%g,%g, dif=%g, ccw0=%d\n",
1842
                         a1, u1, v1, a2, u2, v2, dif, ccw0);
1843
        }
1844
#endif
1845
637k
    }
1846
6.29M
    num = u1 * v2 - u2 * v1;
1847
6.29M
    denom = u1 * u2 + v1 * v2;
1848
    /*
1849
     * We will want either tan(a-b) or tan(b-a)
1850
     * depending on the orientations of the lines.
1851
     * Fortunately we know the relative orientations already.
1852
     */
1853
6.29M
    if (!ccw0)          /* have plp - nplp, want vice versa */
1854
2.32M
        num = -num;
1855
#ifdef DEBUG
1856
    if (gs_debug_c('O')) {
1857
        dlprintf4("[o]Miter check: u1/v1=%f/%f, u2/v2=%f/%f,\n",
1858
                  u1, v1, u2, v2);
1859
        dlprintf3("        num=%f, denom=%f, check=%f\n",
1860
                  num, denom, check);
1861
    }
1862
#endif
1863
    /*
1864
     * If we define T = num / denom, then we want to use
1865
     * a miter join iff arctan(T) >= arctan(check).
1866
     * We know that both of these angles are in the 1st
1867
     * or 2nd quadrant, and since arctan is monotonic
1868
     * within each quadrant, we can do the comparisons
1869
     * on T and check directly, taking signs into account
1870
     * as follows:
1871
     *              sign(T) sign(check)     atan(T) >= atan(check)
1872
     *              ------- -----------     ----------------------
1873
     *              +       +               T >= check
1874
     *              -       +               true
1875
     *              +       -               false
1876
     *              -       -               T >= check
1877
     */
1878
6.29M
    if (num == 0 && denom == 0)
1879
0
        return_error(gs_error_unregistered); /* Must not happen. */
1880
6.29M
    if (denom < 0)
1881
2.25M
        num = -num, denom = -denom;
1882
    /* Now denom >= 0, so sign(num) = sign(T). */
1883
6.29M
    if (check > 0 ?
1884
6.29M
        (num < 0 || num >= denom * check) :
1885
6.29M
        (num < 0 && num >= denom * check)
1886
6.29M
        ) {
1887
        /* OK to use a miter join. */
1888
6.01M
        gs_fixed_point dirn1, dirn2;
1889
1890
6.01M
        dirn1.x = plp->e.cdelta.x;
1891
6.01M
        dirn1.y = plp->e.cdelta.y;
1892
        /* If this direction is small enough that we might have
1893
         * underflowed and the vector record is suitable for us
1894
         * to use to calculate a better one, then do so. */
1895
6.01M
        if ((abs(dirn1.x) + abs(dirn1.y) < 16) &&
1896
6.01M
            ((plp->vector.x != 0) || (plp->vector.y != 0)))
1897
2.13k
        {
1898
2.13k
            float scale = 65536.0;
1899
2.13k
            if (abs(plp->vector.x) > abs(plp->vector.y))
1900
1.97k
                scale /= abs(plp->vector.x);
1901
160
            else
1902
160
                scale /= abs(plp->vector.y);
1903
2.13k
            dirn1.x = (fixed)(plp->vector.x*scale);
1904
2.13k
            dirn1.y = (fixed)(plp->vector.y*scale);
1905
2.13k
        }
1906
6.01M
        dirn2.x = nplp->o.cdelta.x;
1907
6.01M
        dirn2.y = nplp->o.cdelta.y;
1908
        /* If this direction is small enough that we might have
1909
         * underflowed and the vector record is suitable for us
1910
         * to use to calculate a better one, then do so. */
1911
6.01M
        if ((abs(dirn2.x) + abs(dirn2.y) < 16) &&
1912
6.01M
            ((nplp->vector.x != 0) || (nplp->vector.y != 0)))
1913
2.14k
        {
1914
2.14k
            float scale = 65536.0;
1915
2.14k
            if (abs(nplp->vector.x) > abs(nplp->vector.y))
1916
132
                scale /= abs(nplp->vector.x);
1917
2.00k
            else
1918
2.00k
                scale /= abs(nplp->vector.y);
1919
2.14k
            dirn2.x = (fixed)(-nplp->vector.x*scale);
1920
2.14k
            dirn2.y = (fixed)(-nplp->vector.y*scale);
1921
2.14k
        }
1922
6.01M
        if_debug0('O', "        ... passes.\n");
1923
        /* Compute the intersection of the extended edge lines. */
1924
6.01M
        if (line_intersect(outp, &dirn1, np, &dirn2, mpt) == 0)
1925
5.89M
            return 0;
1926
6.01M
    }
1927
399k
    return 1;
1928
6.29M
}
1929
1930
/* Add a segment to the path.
1931
 * This works by crafting 2 paths, one for each edge, that will later be
1932
 * merged together. */
1933
static int
1934
stroke_add_fast(gx_path * ppath, gx_path * rpath, bool ensure_closed, int first,
1935
                pl_ptr plp, pl_ptr nplp, const gx_device_color * pdevc,
1936
                gx_device * dev, const gs_gstate * pgs,
1937
                const gx_stroke_params * params,
1938
                const gs_fixed_rect * ignore_pbbox, int uniform,
1939
                gs_line_join join, bool reflected, note_flags flags)
1940
0
{
1941
0
    const gx_line_params *pgs_lp = gs_currentlineparams_inline(pgs);
1942
0
    gs_fixed_point points[8];
1943
0
    gs_fixed_point rpoints[8];
1944
0
    int npoints  = 0;
1945
0
    int nrpoints = 0;
1946
0
    int code;
1947
0
    bool moveto_first  = false;
1948
0
    bool rmoveto_first = false;
1949
0
    gs_line_cap start_cap, end_cap;
1950
0
    const gs_matrix *pmat = (uniform ? (const gs_matrix *)NULL : &ctm_only(pgs));
1951
0
    enum {
1952
0
        joinsense_cap = 0,
1953
0
        joinsense_cw = 1,
1954
0
        joinsense_ccw = 2,
1955
0
        joinsense_over = 4,
1956
0
        joinsense_under = 8,
1957
0
    } joinsense = joinsense_cap;
1958
1959
0
    if (plp->thin) {
1960
        /* We didn't set up the endpoint parameters before, */
1961
        /* because the line was thin.  Do it now. */
1962
0
        set_thin_widths(plp);
1963
0
        adjust_stroke(dev, plp, pgs, true, first == 0 && nplp == 0, flags);
1964
0
        compute_caps(plp);
1965
0
    }
1966
0
    start_cap = (flags & nf_dash_head ?
1967
0
                 pgs_lp->dash_cap : pgs_lp->start_cap);
1968
0
    end_cap   = (flags & nf_dash_tail ?
1969
0
                 pgs_lp->dash_cap : pgs_lp->end_cap);
1970
    /* If we're starting a new rpath here, we need to fake a new cap.
1971
     * Don't interfere if we would have been doing a cap anyway. */
1972
0
    if (gx_path_is_void(rpath) && (first != 0)) {
1973
0
        first = 0;
1974
0
        start_cap = gs_cap_butt;
1975
0
        end_cap   = gs_cap_butt;
1976
0
        moveto_first  = true;
1977
0
        rmoveto_first = true;
1978
0
    }
1979
0
    if (first == 0) {
1980
        /* Create an initial cap. */
1981
0
        if (start_cap == gs_cap_round) {
1982
0
            if ((code = gx_path_add_point(ppath, plp->o.co.x, plp->o.co.y)) < 0 ||
1983
0
                (code = add_pie_cap(ppath, &plp->o)) < 0)
1984
0
                return code;
1985
0
            moveto_first = false;
1986
0
        } else {
1987
0
            if ((npoints = cap_points(start_cap, &plp->o, points)) < 0)
1988
0
                return npoints;
1989
0
            moveto_first = true;
1990
0
        }
1991
0
        rmoveto_first = true;
1992
0
        ASSIGN_POINT(&rpoints[0], plp->o.co);
1993
0
        nrpoints = 1;
1994
0
    }
1995
    /* Add points to move us along the edges of this stroke */
1996
0
    ASSIGN_POINT(&points [npoints ], plp->e.co);
1997
0
    ASSIGN_POINT(&rpoints[nrpoints], plp->e.ce);
1998
0
    npoints++;
1999
0
    nrpoints++;
2000
2001
0
    if (nplp != NULL && !nplp->thin) {
2002
        /* We need to do a join. What sense is it it? */
2003
0
        double l, r;
2004
2005
0
        l = (double)(plp->width.x) /* x1 */ * (nplp->width.y) /* y2 */;
2006
0
        r = (double)(nplp->width.x) /* x2 */ * (plp->width.y) /* y1 */;
2007
2008
0
        if ((l == r) && (join == gs_join_round))
2009
0
             joinsense = joinsense_cap;
2010
0
        else if ((l > r) ^ reflected)
2011
0
             joinsense = joinsense_ccw | joinsense_over | joinsense_under;
2012
0
        else
2013
0
             joinsense = joinsense_cw | joinsense_over | joinsense_under;
2014
2015
0
        if (joinsense != joinsense_cap && join == gs_join_miter) {
2016
            /* We need to do a miter line join. Miters are 'special'
2017
             * in that we'd like to do them by adjusting the existing
2018
             * points, rather than adding new ones. */
2019
0
            gs_fixed_point mpt;
2020
0
            if (joinsense & joinsense_ccw) {
2021
                /* Underjoin (in reverse path):
2022
                 * A = plp->o.co, B = plp->e.ce, C = nplp->o.co, D = nplp->e.ce */
2023
0
                double xa =  plp->o.co.x, ya =  plp->o.co.y;
2024
0
                double xb =  plp->e.ce.x, yb =  plp->e.ce.y;
2025
0
                double xc = nplp->o.co.x, yc = nplp->o.co.y;
2026
0
                double xd = nplp->e.ce.x, yd = nplp->e.ce.y;
2027
0
                double xab = xa-xb, xac = xa-xc, xcd = xc-xd;
2028
0
                double yab = ya-yb, yac = ya-yc, ycd = yc-yd;
2029
0
                double t_num = xac * ycd - yac * xcd;
2030
0
                double t_den = xab * ycd - yab * xcd;
2031
0
                code = check_miter(pgs_lp, plp, nplp, pmat, &plp->e.co,
2032
0
                                   &nplp->o.ce, &mpt, true);
2033
0
                if (code < 0)
2034
0
                    return code;
2035
0
                if (code == 0) {
2036
0
                    points[npoints-1].x = mpt.x;
2037
0
                    points[npoints-1].y = mpt.y;
2038
0
                    if (ensure_closed) {
2039
0
                        points[npoints].x = nplp->o.ce.x;
2040
0
                        points[npoints].y = nplp->o.ce.y;
2041
0
                        npoints++;
2042
0
                    }
2043
0
                    joinsense &= ~joinsense_over;
2044
0
                } else
2045
0
                    join = gs_join_bevel;
2046
0
                if (t_den != 0 &&
2047
0
                    ((t_num >= 0 && t_num <= t_den) ||
2048
0
                     (t_num <= 0 && t_num >= t_den))) {
2049
0
                    double x = xa - xab * t_num / t_den;
2050
0
                    double y = ya - yab * t_num / t_den;
2051
0
                    rpoints[nrpoints-1].x = (fixed)x;
2052
0
                    rpoints[nrpoints-1].y = (fixed)y;
2053
0
                    joinsense &= ~joinsense_under;
2054
0
                }
2055
0
            } else {
2056
                /* Underjoin (in fwd path):
2057
                 * A = plp->o.ce, B = plp->e.co, C = nplp->o.ce, D = nplp->e.co */
2058
0
                double xa =  plp->o.ce.x, ya =  plp->o.ce.y;
2059
0
                double xb =  plp->e.co.x, yb =  plp->e.co.y;
2060
0
                double xc = nplp->o.ce.x, yc = nplp->o.ce.y;
2061
0
                double xd = nplp->e.co.x, yd = nplp->e.co.y;
2062
0
                double xab = xa-xb, xac = xa-xc, xcd = xc-xd;
2063
0
                double yab = ya-yb, yac = ya-yc, ycd = yc-yd;
2064
0
                double t_num = xac * ycd - yac * xcd;
2065
0
                double t_den = xab * ycd - yab * xcd;
2066
0
                code = check_miter(pgs_lp, plp, nplp, pmat, &plp->e.ce,
2067
0
                                   &nplp->o.co, &mpt, false);
2068
0
                if (code < 0)
2069
0
                    return code;
2070
0
                if (code == 0) {
2071
0
                    rpoints[nrpoints-1].x = mpt.x;
2072
0
                    rpoints[nrpoints-1].y = mpt.y;
2073
0
                    if (ensure_closed) {
2074
0
                        rpoints[nrpoints].x = nplp->o.co.x;
2075
0
                        rpoints[nrpoints].y = nplp->o.co.y;
2076
0
                        nrpoints++;
2077
0
                    }
2078
0
                    joinsense &= ~joinsense_over;
2079
0
                } else
2080
0
                    join = gs_join_bevel;
2081
0
                if (t_den != 0 &&
2082
0
                    ((t_num >= 0 && t_num <= t_den) ||
2083
0
                     (t_num <= 0 && t_num >= t_den)))   {
2084
0
                    double x = xa - xab * t_num / t_den;
2085
0
                    double y = ya - yab * t_num / t_den;
2086
0
                    points[npoints-1].x = (fixed)x;
2087
0
                    points[npoints-1].y = (fixed)y;
2088
0
                    joinsense &= ~joinsense_under;
2089
0
                }
2090
0
            }
2091
0
        }
2092
0
    }
2093
2094
0
    if ((code = add_points(ppath, points, npoints, moveto_first)) < 0)
2095
0
        return code;
2096
0
    if ((code = add_points(rpath, rpoints, nrpoints, rmoveto_first)) < 0)
2097
0
        return code;
2098
0
    npoints  = 0;
2099
0
    nrpoints = 0;
2100
2101
0
    if (nplp == 0) { /* Add a final cap. */
2102
0
        if (end_cap == gs_cap_round) {
2103
0
            code = add_pie_cap(ppath, &plp->e);
2104
0
        } else {
2105
0
            code = cap_points(end_cap, &plp->e, points);
2106
0
            npoints = code;
2107
0
        }
2108
0
    } else if (nplp->thin) { /* no join */
2109
0
        code = cap_points(gs_cap_butt, &plp->e, points);
2110
0
        npoints = code;
2111
0
    } else if (joinsense == joinsense_cap) {
2112
        /* Do a cap */
2113
0
        code = add_pie_cap(ppath, &plp->e);
2114
0
        if (code >= 0) {
2115
            /* If the next line is in the opposite direction as the current one
2116
             * we want to leave the point on the same side as it was
2117
             * originally. This is required for paths that come to a stop
2118
             * and then reverse themselves, but may produce more complexity
2119
             * than we'd really like at the ends of smooth beziers. */
2120
0
            if ((double)(plp->width.x) * nplp->width.x + (double)plp->width.y * nplp->width.y >= 0)
2121
0
                code = gx_path_add_line(ppath, plp->e.co.x, plp->e.co.y);
2122
0
        }
2123
0
    } else if (joinsense & joinsense_ccw) {
2124
        /* CCW rotation. Join in the forward path. "Underjoin" in the
2125
         * reverse path. */
2126
0
        if (joinsense & joinsense_over) {
2127
            /* RJW: Ideally we should include the "|| flags" clause in
2128
             * the following condition. This forces all joins between
2129
             * line segments generated from arcs to be round. This would
2130
             * solve some flatness issues, but makes some pathological
2131
             * cases incredibly slow. */
2132
0
            if (join == gs_join_round /* || (flags & nf_all_from_arc) */) {
2133
0
                code = add_pie_join_fast_ccw(ppath, plp, nplp, reflected);
2134
0
            } else { /* non-round join */
2135
0
                code = line_join_points_fast_ccw(pgs_lp, plp, nplp,
2136
0
                                                 points, pmat, join);
2137
0
                npoints = code;
2138
0
            }
2139
0
            if (code < 0)
2140
0
                return code;
2141
0
        }
2142
0
        if (joinsense & joinsense_under) {
2143
            /* The underjoin */
2144
0
#ifndef SLOWER_BUT_MORE_ACCURATE_STROKING
2145
0
            if ((flags & (nf_some_from_arc | nf_prev_some_from_arc)) == 0) {
2146
                /* RJW: This is an approximation. We ought to draw a line
2147
                 * back to nplp->o.p, and then independently fill any exposed
2148
                 * region under the curve with a round join. Sadly, that's
2149
                 * a) really hard to do, and b) makes certain pathological
2150
                 * filling cases MUCH slower due to the greater number of
2151
                 * "cross-segment" line segments this produces. Instead,
2152
                 * we just skip the line to the middle, and join across the
2153
                 * bottom instead. This is akin to what other graphics libs
2154
                 * do (such as fitz, libart, etc). It's not perfect but in
2155
                 * most cases it's close, and results in faster to fill
2156
                 * paths.
2157
                 */
2158
                /* RJW: This goes wrong for some paths, as the 'underjoin' wind
2159
                 * will be the wrong way. See bug 694971 */
2160
0
                code = gx_path_add_line(rpath, nplp->o.p.x, nplp->o.p.y);
2161
0
                if (code < 0)
2162
0
                    return code;
2163
0
            }
2164
#else
2165
            if (wide_underjoin(plp, nplp))
2166
            {
2167
                code = gx_path_add_line(rpath, nplp->o.p.x, nplp->o.p.y);
2168
                if (code < 0)
2169
                    return code;
2170
                if ((flags & (nf_some_from_arc | nf_prev_some_from_arc)) != 0) {
2171
                    code = gx_path_add_line(rpath, nplp->o.co.x, nplp->o.co.y);
2172
                    if (code < 0)
2173
                        return code;
2174
                    code = gx_path_add_line(rpath, plp->e.ce.x, plp->e.ce.y);
2175
                    if (code < 0)
2176
                        return code;
2177
                    code = gx_path_add_line(rpath, nplp->o.p.x, nplp->o.p.y);
2178
                    if (code < 0)
2179
                        return code;
2180
                }
2181
            }
2182
#endif
2183
0
            code = gx_path_add_line(rpath, nplp->o.co.x, nplp->o.co.y);
2184
0
        }
2185
0
    } else if (joinsense & joinsense) {
2186
        /* CW rotation. Join in the reverse path. "Underjoin" in the
2187
         * forward path. */
2188
0
        if (joinsense & joinsense_over) {
2189
            /* RJW: Ideally we should include the "|| flags" clause in
2190
             * the following condition. This forces all joins between
2191
             * line segments generated from arcs to be round. This would
2192
             * solve some flatness issues, but makes some pathological
2193
             * cases incredibly slow. */
2194
0
            if (join == gs_join_round /* || (flags & nf_all_from_arc) */) {
2195
0
                code = add_pie_join_fast_cw(rpath, plp, nplp, reflected);
2196
0
            } else { /* non-round join */
2197
0
                code = line_join_points_fast_cw(pgs_lp, plp, nplp,
2198
0
                                                rpoints, pmat, join);
2199
0
                nrpoints = code;
2200
0
            }
2201
0
            if (code < 0)
2202
0
                return code;
2203
0
        }
2204
0
        if (joinsense & joinsense_under) {
2205
            /* The underjoin */
2206
0
#ifndef SLOWER_BUT_MORE_ACCURATE_STROKING
2207
0
            if ((flags & (nf_some_from_arc | nf_prev_some_from_arc)) == 0 &&
2208
0
                join != gs_join_miter) {
2209
                /* RJW: This is an approximation. We ought to draw a line
2210
                 * back to nplp->o.p, and then independently fill any exposed
2211
                 * region under the curve with a round join. Sadly, that's
2212
                 * a) really hard to do, and b) makes certain pathological
2213
                 * filling cases MUCH slower due to the greater number of
2214
                 * "cross-segment" line segments this produces. Instead,
2215
                 * we just skip the line to the middle, and join across the
2216
                 * bottom instead. This is akin to what other graphics libs
2217
                 * do (such as fitz, libart, etc). It's not perfect but in
2218
                 * most cases it's close, and results in faster to fill
2219
                 * paths.
2220
                 */
2221
                /* RJW: This goes wrong for some paths, as the 'underjoin' wind
2222
                 * will be the wrong way. See bug 694971 */
2223
0
                code = gx_path_add_line(ppath, nplp->o.p.x, nplp->o.p.y);
2224
0
                if (code < 0)
2225
0
                    return code;
2226
0
            }
2227
#else
2228
            if (wide_underjoin(plp, nplp))
2229
            {
2230
                code = gx_path_add_line(ppath, nplp->o.p.x, nplp->o.p.y);
2231
                if (code < 0)
2232
                    return code;
2233
                if ((flags & (nf_some_from_arc | nf_prev_some_from_arc)) != 0) {
2234
                    code = gx_path_add_line(ppath, nplp->o.ce.x, nplp->o.ce.y);
2235
                    if (code < 0)
2236
                        return code;
2237
                    code = gx_path_add_line(ppath, plp->e.co.x, plp->e.co.y);
2238
                    if (code < 0)
2239
                        return code;
2240
                    code = gx_path_add_line(ppath, nplp->o.p.x, nplp->o.p.y);
2241
                    if (code < 0)
2242
                        return code;
2243
                }
2244
            }
2245
#endif
2246
0
            code = gx_path_add_line(ppath, nplp->o.ce.x, nplp->o.ce.y);
2247
0
        }
2248
0
    }
2249
0
    if (code < 0)
2250
0
        return code;
2251
0
    if (npoints > 0) {
2252
0
        code = add_points(ppath, points, npoints, false);
2253
0
        if (code < 0)
2254
0
            return code;
2255
0
    }
2256
0
    if (nrpoints > 0) {
2257
0
        code = add_points(rpath, rpoints, nrpoints, false);
2258
0
        if (code < 0)
2259
0
            return code;
2260
0
    }
2261
0
    if (ensure_closed)
2262
0
        return gx_join_path_and_reverse(ppath, rpath);
2263
0
    return 0;
2264
0
}
2265
2266
/* Add a CPSI-compatible segment to the path.  This handles all the complex
2267
 * cases.
2268
 *
2269
 * This method doesn't support start/end/dash caps, but it's only used from
2270
 * postscript, so it doesn't need to.
2271
 */
2272
static int
2273
stroke_add_compat(gx_path * ppath, gx_path *rpath, bool ensure_closed,
2274
                  int first, pl_ptr plp, pl_ptr nplp,
2275
                  const gx_device_color * pdevc, gx_device * dev,
2276
                  const gs_gstate * pgs,
2277
                  const gx_stroke_params * params,
2278
                  const gs_fixed_rect * ignore_pbbox, int uniform,
2279
                  gs_line_join join, bool reflected, note_flags flags)
2280
5.43k
{
2281
    /* Actually it adds 2 contours : one for the segment itself,
2282
       and another one for line join or for the ending cap.
2283
       Note CPSI creates negative contours. */
2284
5.43k
    const gx_line_params *pgs_lp = gs_currentlineparams_inline(pgs);
2285
5.43k
    gs_fixed_point points[6];
2286
5.43k
    int npoints;
2287
5.43k
    bool const moveto_first = true; /* Keeping this code closer to "stroke_add". */
2288
5.43k
    int code;
2289
2290
5.43k
    if (plp->thin) {
2291
        /* We didn't set up the endpoint parameters before, */
2292
        /* because the line was thin.  Do it now. */
2293
93
        set_thin_widths(plp);
2294
93
        adjust_stroke(dev, plp, pgs, true, first == 0 && nplp == 0, flags);
2295
93
        compute_caps(plp);
2296
93
    }
2297
    /* The segment itself : */
2298
5.43k
    ASSIGN_POINT(&points[0], plp->o.ce);
2299
5.43k
    ASSIGN_POINT(&points[1], plp->e.co);
2300
5.43k
    ASSIGN_POINT(&points[2], plp->e.ce);
2301
5.43k
    ASSIGN_POINT(&points[3], plp->o.co);
2302
5.43k
    code = add_points(ppath, points, 4, moveto_first);
2303
5.43k
    if (code < 0)
2304
0
        return code;
2305
5.43k
    code = gx_path_close_subpath(ppath);
2306
5.43k
    if (code < 0)
2307
0
        return code;
2308
5.43k
    npoints = 0;
2309
5.43k
    if (nplp == 0) {
2310
        /* Add a final cap. */
2311
4.09k
        if (pgs_lp->start_cap == gs_cap_butt)
2312
136
            return 0;
2313
3.96k
        if (pgs_lp->start_cap == gs_cap_round) {
2314
3.96k
            ASSIGN_POINT(&points[npoints], plp->e.co);
2315
3.96k
            ++npoints;
2316
3.96k
            if ((code = add_points(ppath, points, npoints, moveto_first)) < 0)
2317
0
                return code;
2318
3.96k
            return add_round_cap(ppath, &plp->e);
2319
3.96k
        }
2320
0
        ASSIGN_POINT(&points[0], plp->e.ce);
2321
0
        ++npoints;
2322
0
        ASSIGN_POINT(&points[npoints], plp->e.co);
2323
0
        ++npoints;
2324
0
        code = cap_points(pgs_lp->start_cap, &plp->e, points + npoints);
2325
0
        if (code < 0)
2326
0
            return code;
2327
0
        npoints += code;
2328
1.33k
    } else if (join == gs_join_round) {
2329
0
        ASSIGN_POINT(&points[npoints], plp->e.co);
2330
0
        ++npoints;
2331
0
        if ((code = add_points(ppath, points, npoints, moveto_first)) < 0)
2332
0
            return code;
2333
0
        return add_round_cap(ppath, &plp->e);
2334
1.33k
    } else if (nplp->thin) {    /* no join */
2335
90
        npoints = 0;
2336
1.24k
    } else {                    /* non-round join */
2337
1.24k
        bool ccw =
2338
1.24k
            (double)(plp->width.x) /* x1 */ * (nplp->width.y) /* y2 */ >
2339
1.24k
            (double)(nplp->width.x) /* x2 */ * (plp->width.y) /* y1 */;
2340
2341
1.24k
        if (ccw ^ reflected) {
2342
1.19k
            ASSIGN_POINT(&points[0], plp->e.co);
2343
1.19k
            ++npoints;
2344
1.19k
            code = line_join_points(pgs_lp, plp, nplp, points + npoints,
2345
1.19k
                                    (uniform ? (gs_matrix *) 0 : &ctm_only(pgs)),
2346
1.19k
                                    join, reflected);
2347
1.19k
            if (code < 0)
2348
0
                return code;
2349
1.19k
            code--; /* Drop the last point of the non-compatible mode. */
2350
1.19k
            npoints += code;
2351
1.19k
        } else {
2352
54
            code = line_join_points(pgs_lp, plp, nplp, points,
2353
54
                                    (uniform ? (gs_matrix *) 0 : &ctm_only(pgs)),
2354
54
                                    join, reflected);
2355
54
            if (code < 0)
2356
0
                return code;
2357
54
            ASSIGN_POINT(&points[0], plp->e.ce); /* Replace the starting point of the non-compatible mode. */
2358
54
            npoints = code;
2359
54
        }
2360
1.24k
    }
2361
1.33k
    code = add_points(ppath, points, npoints, moveto_first);
2362
1.33k
    if (code < 0)
2363
0
        return code;
2364
1.33k
    code = gx_path_close_subpath(ppath);
2365
1.33k
    return code;
2366
1.33k
}
2367
2368
/* Add a CPSI-compatible segment to the path.  This handles all the complex
2369
 * cases.
2370
 *
2371
 * This method doesn't support start/end/dash caps, but it's only used from
2372
 * postscript, so it doesn't need to.
2373
 */
2374
static int
2375
stroke_add_initial_cap_compat(gx_path * ppath, pl_ptr plp, bool adlust_longitude,
2376
           const gx_device_color * pdevc, gx_device * dev,
2377
           const gs_gstate * pgs)
2378
3.96k
{
2379
3.96k
    const gx_line_params *pgs_lp = gs_currentlineparams_inline(pgs);
2380
3.96k
    gs_fixed_point points[5];
2381
3.96k
    int npoints = 0;
2382
3.96k
    int code;
2383
2384
3.96k
    if (pgs_lp->start_cap == gs_cap_butt)
2385
0
        return 0;
2386
3.96k
    if (plp->thin) {
2387
        /* We didn't set up the endpoint parameters before, */
2388
        /* because the line was thin.  Do it now. */
2389
3
        set_thin_widths(plp);
2390
3
        adjust_stroke(dev, plp, pgs, true, adlust_longitude, 0);
2391
3
        compute_caps(plp);
2392
3
    }
2393
    /* Create an initial cap if desired. */
2394
3.96k
    if (pgs_lp->start_cap == gs_cap_round) {
2395
3.96k
        if ((code = gx_path_add_point(ppath, plp->o.co.x, plp->o.co.y)) < 0 ||
2396
3.96k
            (code = add_round_cap(ppath, &plp->o)) < 0
2397
3.96k
            )
2398
0
            return code;
2399
3.96k
        return 0;
2400
3.96k
    } else {
2401
0
        ASSIGN_POINT(&points[0], plp->o.co);
2402
0
        ++npoints;
2403
0
        if ((code = cap_points(pgs_lp->start_cap, &plp->o, points + npoints)) < 0)
2404
0
            return npoints;
2405
0
        npoints += code;
2406
0
        ASSIGN_POINT(&points[npoints], plp->o.ce);
2407
0
        ++npoints;
2408
0
        code = add_points(ppath, points, npoints, true);
2409
0
        if (code < 0)
2410
0
            return code;
2411
0
        return gx_path_close_subpath(ppath);
2412
0
    }
2413
3.96k
}
2414
2415
/* Add lines with a possible initial moveto. */
2416
static int
2417
add_points(gx_path * ppath, const gs_fixed_point * points, int npoints,
2418
           bool moveto_first)
2419
102M
{
2420
102M
    int code;
2421
2422
102M
    if (moveto_first) {
2423
101M
        code = gx_path_add_point(ppath, points[0].x, points[0].y);
2424
101M
        if (code < 0)
2425
0
            return code;
2426
101M
        return gx_path_add_lines(ppath, points + 1, npoints - 1);
2427
101M
    } else {
2428
1.67M
        return gx_path_add_lines(ppath, points, npoints);
2429
1.67M
    }
2430
102M
}
2431
2432
/* ---------------- Join computation ---------------- */
2433
2434
/* Compute the points for a bevel, miter, or triangle join. */
2435
/* Treat no join the same as a bevel join. */
2436
/* If pmat != 0, we must inverse-transform the distances for */
2437
/* the miter check. */
2438
static int
2439
line_join_points(const gx_line_params * pgs_lp, pl_ptr plp, pl_ptr nplp,
2440
                 gs_fixed_point * join_points, const gs_matrix * pmat,
2441
                 gs_line_join join, bool reflected)
2442
9.13M
{
2443
9.13M
#define jp1 join_points[0]
2444
9.13M
#define np1 join_points[1]
2445
9.13M
#define np2 join_points[2]
2446
9.13M
#define jp2 join_points[3]
2447
9.13M
#define jpx join_points[4]
2448
    /*
2449
     * Set np to whichever of nplp->o.co or .ce is outside
2450
     * the current line.  We observe that the point (x2,y2)
2451
     * is counter-clockwise from (x1,y1), relative to the origin,
2452
     * iff
2453
     *  (arctan(y2/x2) - arctan(y1/x1)) mod 2*pi < pi,
2454
     * taking the signs of xi and yi into account to determine
2455
     * the quadrants of the results.  It turns out that
2456
     * even though arctan is monotonic only in the 4th/1st
2457
     * quadrants and the 2nd/3rd quadrants, case analysis on
2458
     * the signs of xi and yi demonstrates that this test
2459
     * is equivalent to the much less expensive test
2460
     *  x1 * y2 > x2 * y1
2461
     * in all cases.
2462
     *
2463
     * In the present instance, x1,y1 are plp->width,
2464
     * x2,y2 are nplp->width, and the origin is
2465
     * their common point (plp->e.p, nplp->o.p).
2466
     * ccw will be true iff nplp.o.co (nplp.o.p + width) is
2467
     * counter-clockwise from plp.e.ce (plp.e.p + width),
2468
     * in which case we want tan(a-b) rather than tan(b-a).
2469
     *
2470
     * We make the test using double arithmetic only because
2471
     * the !@#&^*% C language doesn't give us access to
2472
     * the double-width-result multiplication operation
2473
     * that almost all CPUs provide!
2474
     */
2475
9.13M
    bool ccw =
2476
9.13M
        (double)(plp->width.x) /* x1 */ * (nplp->width.y) /* y2 */ >
2477
9.13M
        (double)(nplp->width.x) /* x2 */ * (plp->width.y) /* y1 */;
2478
9.13M
    bool ccw0 = ccw;
2479
9.13M
    p_ptr outp, np;
2480
9.13M
    int   code;
2481
9.13M
    gs_fixed_point mpt;
2482
2483
9.13M
    ccw ^= reflected;
2484
2485
    /* Initialize for a bevel join. */
2486
9.13M
    ASSIGN_POINT(&jp1, plp->e.co);
2487
9.13M
    ASSIGN_POINT(&jp2, plp->e.ce);
2488
2489
    /*
2490
     * Because of stroke adjustment, it is possible that
2491
     * plp->e.p != nplp->o.p.  For that reason, we must use
2492
     * nplp->o.p as np1 or np2.
2493
     */
2494
9.13M
    if (!ccw) {
2495
4.97M
        outp = &jp2;
2496
4.97M
        ASSIGN_POINT(&np2, nplp->o.co);
2497
4.97M
        ASSIGN_POINT(&np1, nplp->o.p);
2498
4.97M
        np = &np2;
2499
4.97M
    } else {
2500
4.15M
        outp = &jp1;
2501
4.15M
        ASSIGN_POINT(&np1, nplp->o.ce);
2502
4.15M
        ASSIGN_POINT(&np2, nplp->o.p);
2503
4.15M
        np = &np1;
2504
4.15M
    }
2505
9.13M
    if_debug1('O', "[O]use %s\n", (ccw ? "co (ccw)" : "ce (cw)"));
2506
2507
    /* Handle triangular joins now. */
2508
9.13M
    if (join == gs_join_triangle) {
2509
320
        fixed tpx = outp->x - nplp->o.p.x + np->x;
2510
320
        fixed tpy = outp->y - nplp->o.p.y + np->y;
2511
2512
320
        ASSIGN_POINT(&jpx, jp2);
2513
320
        if (!ccw) {
2514
            /* Insert tp between np2 and jp2. */
2515
44
            jp2.x = tpx, jp2.y = tpy;
2516
276
        } else {
2517
            /* Insert tp between jp1 and np1. */
2518
276
            ASSIGN_POINT(&jp2, np2);
2519
276
            ASSIGN_POINT(&np2, np1);
2520
276
            np1.x = tpx, np1.y = tpy;
2521
276
        }
2522
320
        return 5;
2523
320
    }
2524
9.13M
    if (join == gs_join_miter &&
2525
9.13M
        (code = check_miter(pgs_lp, plp, nplp, pmat, outp, np, &mpt, ccw0)) <= 0) {
2526
5.89M
        if (code < 0)
2527
0
            return code;
2528
5.89M
        ASSIGN_POINT(outp, mpt);
2529
5.89M
    }
2530
9.13M
    return 4;
2531
9.13M
}
2532
2533
static int
2534
line_join_points_fast_cw(const gx_line_params * pgs_lp,
2535
                         pl_ptr plp, pl_ptr nplp,
2536
                         gs_fixed_point * rjoin_points,
2537
                         const gs_matrix * pmat,
2538
                         gs_line_join join)
2539
0
{
2540
    /* rjoin_points will be added to a path that is currently at plp->e.ce.
2541
     */
2542
2543
    /* Join will be between plp->e.ce and nplp->o.co */
2544
0
    if (join == gs_join_triangle)
2545
0
    {
2546
0
        gs_fixed_point tp;
2547
2548
0
        tp.x = plp->e.ce.x - nplp->o.p.x + nplp->o.co.x;
2549
0
        tp.y = plp->e.ce.y - nplp->o.p.y + nplp->o.co.y;
2550
0
        ASSIGN_POINT(&rjoin_points[0], tp);
2551
0
        ASSIGN_POINT(&rjoin_points[1], nplp->o.co);
2552
0
        return 2;
2553
0
    }
2554
2555
    /* Set up for a Bevel join */
2556
0
    ASSIGN_POINT(&rjoin_points[0], nplp->o.co);
2557
2558
0
    return 1;
2559
0
}
2560
2561
static int
2562
line_join_points_fast_ccw(const gx_line_params * pgs_lp,
2563
                          pl_ptr plp, pl_ptr nplp,
2564
                          gs_fixed_point * join_points,
2565
                          const gs_matrix * pmat,
2566
                          gs_line_join join)
2567
0
{
2568
    /* join_points will be added to a path that is currently at plp->e.co.
2569
     */
2570
    /* Join will be between plp->e.co and nplp->o.ce */
2571
0
    if (join == gs_join_triangle)
2572
0
    {
2573
0
        gs_fixed_point tp;
2574
2575
0
        tp.x = plp->e.co.x - nplp->o.p.x + nplp->o.ce.x;
2576
0
        tp.y = plp->e.co.y - nplp->o.p.y + nplp->o.ce.y;
2577
0
        ASSIGN_POINT(&join_points[0], tp);
2578
0
        ASSIGN_POINT(&join_points[1], nplp->o.ce);
2579
0
        return 2;
2580
0
    }
2581
2582
    /* Set up for a Bevel join */
2583
0
    ASSIGN_POINT(&join_points[0], nplp->o.ce);
2584
2585
0
    return 1;
2586
0
}
2587
/* ---------------- Cap computations ---------------- */
2588
2589
/* Compute the endpoints of the two caps of a segment. */
2590
/* Only o.p, e.p, width, and cdelta have been set. */
2591
static void
2592
compute_caps(pl_ptr plp)
2593
102M
{
2594
102M
    fixed wx2 = plp->width.x;
2595
102M
    fixed wy2 = plp->width.y;
2596
2597
102M
    plp->o.co.x = plp->o.p.x + wx2, plp->o.co.y = plp->o.p.y + wy2;
2598
102M
    plp->o.cdelta.x = -plp->e.cdelta.x,
2599
102M
        plp->o.cdelta.y = -plp->e.cdelta.y;
2600
102M
    plp->o.ce.x = plp->o.p.x - wx2, plp->o.ce.y = plp->o.p.y - wy2;
2601
102M
    plp->e.co.x = plp->e.p.x - wx2, plp->e.co.y = plp->e.p.y - wy2;
2602
102M
    plp->e.ce.x = plp->e.p.x + wx2, plp->e.ce.y = plp->e.p.y + wy2;
2603
#ifdef DEBUG
2604
    if (gs_debug_c('O')) {
2605
        dlprintf4("[o]Stroke o=(%f,%f) e=(%f,%f)\n",
2606
                  fixed2float(plp->o.p.x), fixed2float(plp->o.p.y),
2607
                  fixed2float(plp->e.p.x), fixed2float(plp->e.p.y));
2608
        dlprintf4("\twxy=(%f,%f) lxy=(%f,%f)\n",
2609
                  fixed2float(wx2), fixed2float(wy2),
2610
                  fixed2float(plp->e.cdelta.x),
2611
                  fixed2float(plp->e.cdelta.y));
2612
    }
2613
#endif
2614
102M
}
2615
2616
#define px endp->p.x
2617
#define py endp->p.y
2618
#define xo endp->co.x
2619
#define yo endp->co.y
2620
#define xe endp->ce.x
2621
#define ye endp->ce.y
2622
#define cdx endp->cdelta.x
2623
#define cdy endp->cdelta.y
2624
2625
/* Add a round cap to a path. */
2626
/* Assume the current point is the cap origin (endp->co). */
2627
static int
2628
add_round_cap(gx_path * ppath, const_ep_ptr endp)
2629
7.92k
{
2630
7.92k
    int code;
2631
2632
    /*
2633
     * Per the Red Book, we draw a full circle, even though a semicircle
2634
     * is sufficient for the join.
2635
     */
2636
7.92k
    if ((code = gx_path_add_partial_arc(ppath, px + cdx, py + cdy,
2637
7.92k
                                        xo + cdx, yo + cdy,
2638
7.92k
                                        quarter_arc_fraction)) < 0 ||
2639
7.92k
        (code = gx_path_add_partial_arc(ppath, xe, ye, xe + cdx, ye + cdy,
2640
7.92k
                                        quarter_arc_fraction)) < 0 ||
2641
7.92k
        (code = gx_path_add_partial_arc(ppath, px - cdx, py - cdy,
2642
7.92k
                                        xe - cdx, ye - cdy,
2643
7.92k
                                        quarter_arc_fraction)) < 0 ||
2644
7.92k
        (code = gx_path_add_partial_arc(ppath, xo, yo, xo - cdx, yo - cdy,
2645
7.92k
                                        quarter_arc_fraction)) < 0 ||
2646
        /* The final point must be (xe,ye). */
2647
7.92k
        (code = gx_path_add_line(ppath, xe, ye)) < 0
2648
7.92k
        )
2649
0
        return code;
2650
7.92k
    return 0;
2651
7.92k
}
2652
2653
/* Add a semicircular cap to a path. */
2654
/* Assume the current point is the cap origin (endp->co). */
2655
static int
2656
add_pie_cap(gx_path * ppath, const_ep_ptr endp)
2657
3.35M
{
2658
3.35M
    int code;
2659
2660
3.35M
    if ((code = gx_path_add_partial_arc(ppath, px + cdx, py + cdy,
2661
3.35M
                                        xo + cdx, yo + cdy,
2662
3.35M
                                        quarter_arc_fraction)) < 0 ||
2663
3.35M
        (code = gx_path_add_partial_arc(ppath, xe, ye, xe + cdx, ye + cdy,
2664
3.35M
                                        quarter_arc_fraction)) < 0 ||
2665
3.35M
        (code = gx_path_add_line(ppath, xe, ye)) < 0)
2666
0
        return code;
2667
3.35M
    return 0;
2668
3.35M
}
2669
2670
static int
2671
do_pie_join(gx_path * ppath, gs_fixed_point *centre,
2672
            gs_fixed_point *current_orig, gs_fixed_point *current_tangent,
2673
            gs_fixed_point *final, gs_fixed_point *final_tangent, bool ccw,
2674
            gs_fixed_point *width)
2675
22.8M
{
2676
22.8M
    int code;
2677
22.8M
    double rad_squared, dist_squared, F;
2678
22.8M
    gs_fixed_point current, tangent, tangmeet;
2679
2680
22.8M
    tangent.x = current_tangent->x;
2681
22.8M
    tangent.y = current_tangent->y;
2682
22.8M
    current.x = current_orig->x;
2683
22.8M
    current.y = current_orig->y;
2684
2685
    /* Is the join more than 90 degrees? */
2686
22.8M
    if ((double)tangent.x * (double)final_tangent->x +
2687
22.8M
        (double)tangent.y * (double)final_tangent->y > 0) {
2688
        /* Yes, so do a quarter turn. */
2689
247k
        code = gx_path_add_partial_arc(ppath,
2690
247k
                                       centre->x + tangent.x,
2691
247k
                                       centre->y + tangent.y,
2692
                                       /* Point where tangents meet */
2693
247k
                                       current.x + tangent.x,
2694
247k
                                       current.y + tangent.y,
2695
247k
                                       quarter_arc_fraction);
2696
247k
        if (code < 0)
2697
0
            return code;
2698
247k
        current.x = centre->x + tangent.x;
2699
247k
        current.y = centre->y + tangent.y;
2700
247k
        if (ccw) {
2701
7.62k
            int tmp = tangent.x;
2702
7.62k
            tangent.x = -tangent.y;
2703
7.62k
            tangent.y = tmp;
2704
239k
        } else {
2705
239k
            int tmp = tangent.x;
2706
239k
            tangent.x = tangent.y;
2707
239k
            tangent.y = -tmp;
2708
239k
        }
2709
247k
    }
2710
2711
    /* Now we are guaranteed that the remaining arc is 90 degrees or
2712
     * less. Find where the tangents meet for this final section. */
2713
22.8M
    if (line_intersect(&current, &tangent,
2714
22.8M
                       final, final_tangent, &tangmeet) != 0) {
2715
10.7M
        return gx_path_add_line(ppath, final->x, final->y);
2716
10.7M
    }
2717
12.1M
    current.x -= tangmeet.x;
2718
12.1M
    current.y -= tangmeet.y;
2719
12.1M
    dist_squared = ((double)current.x) * current.x +
2720
12.1M
                   ((double)current.y) * current.y;
2721
12.1M
    rad_squared  = ((double)width->x) * width->x +
2722
12.1M
                   ((double)width->y) * width->y;
2723
12.1M
    dist_squared /= rad_squared;
2724
12.1M
    F = (4.0/3.0)*(1/(1+sqrt(1+dist_squared)));
2725
12.1M
    return gx_path_add_partial_arc(ppath, final->x, final->y,
2726
22.8M
                                   tangmeet.x, tangmeet.y, F);
2727
22.8M
}
2728
2729
/* Add a pie shaped join to a path. */
2730
/* Assume the current point is the cap origin (endp->co). */
2731
static int
2732
add_pie_join(gx_path * ppath, pl_ptr plp, pl_ptr nplp, bool reflected,
2733
             bool cap)
2734
89.1M
{
2735
89.1M
    int code;
2736
89.1M
    gs_fixed_point *current, *final, *tangent, *final_tangent;
2737
89.1M
    double l, r;
2738
89.1M
    bool ccw;
2739
2740
89.1M
    l = (double)(plp->width.x) /* x1 */ * (nplp->width.y) /* y2 */;
2741
89.1M
    r = (double)(nplp->width.x) /* x2 */ * (plp->width.y) /* y1 */;
2742
2743
89.1M
    if (l == r) {
2744
        /* Colinear. Suppress drawing a cap unless the path reverses direction. */
2745
67.3M
        if (cap &&
2746
67.3M
            ((double)(plp->width.x) * (nplp->width.x) + (double)(nplp->width.y) * (plp->width.y)) < 0)
2747
6.69k
            return add_pie_cap(ppath, &plp->e);
2748
67.3M
        else
2749
67.3M
            return gx_path_add_line(ppath, plp->e.ce.x, plp->e.ce.y);
2750
67.3M
    }
2751
2752
21.7M
    ccw = (l > r);
2753
2754
21.7M
    ccw ^= reflected;
2755
2756
    /* At this point, the current point is plp->e.co */
2757
21.7M
    if (ccw) {
2758
11.0M
        current       = & plp->e.co;
2759
11.0M
        final         = &nplp->o.ce;
2760
11.0M
        tangent       = & plp->e.cdelta;
2761
11.0M
        final_tangent = &nplp->o.cdelta;
2762
        /* Check for no join required */
2763
11.0M
        if (current->x == final->x && current->y == final->y) {
2764
0
            return gx_path_add_line(ppath, plp->e.ce.x, plp->e.ce.y);
2765
0
        }
2766
11.0M
    } else {
2767
10.7M
        current       = &nplp->o.co;
2768
10.7M
        final         = & plp->e.ce;
2769
10.7M
        tangent       = &nplp->o.cdelta;
2770
10.7M
        final_tangent = & plp->e.cdelta;
2771
10.7M
        code = gx_path_add_line(ppath, plp->e.p.x, plp->e.p.y);
2772
10.7M
        if (code < 0)
2773
0
            return code;
2774
10.7M
        code = gx_path_add_line(ppath, current->x, current->y);
2775
10.7M
        if (code < 0)
2776
0
            return code;
2777
10.7M
        if (current->x == final->x && current->y == final->y)
2778
0
            return 0;
2779
10.7M
    }
2780
2781
21.7M
    if ((code = do_pie_join(ppath, &plp->e.p, current, tangent,
2782
21.7M
                            final, final_tangent, !reflected, &plp->width)) < 0)
2783
0
        return code;
2784
21.7M
    if (ccw &&
2785
21.7M
        ((code = gx_path_add_line(ppath, plp->e.p.x, plp->e.p.y)) < 0 ||
2786
11.0M
         (code = gx_path_add_line(ppath, plp->e.ce.x, plp->e.ce.y)) < 0))
2787
0
        return code;
2788
2789
21.7M
    return 0;
2790
21.7M
}
2791
2792
/* Add a pie shaped join to a path. */
2793
static int
2794
add_pie_join_fast_cw(gx_path * rpath, pl_ptr plp, pl_ptr nplp, bool reflected)
2795
0
{
2796
    /* At this point, the current point is plp->e.ce */
2797
0
    if (plp->e.ce.x == nplp->o.co.x && plp->e.ce.y == nplp->o.co.y)
2798
0
        return 0;
2799
2800
0
    return do_pie_join(rpath, &plp->e.p, &plp->e.ce, &plp->e.cdelta,
2801
0
                       &nplp->o.co, &nplp->o.cdelta, reflected, &plp->width);
2802
0
}
2803
2804
static int
2805
add_pie_join_fast_ccw(gx_path * ppath, pl_ptr plp, pl_ptr nplp, bool reflected)
2806
0
{
2807
    /* At this point, the current point is plp->e.co */
2808
    /* Check for no join required */
2809
0
    if (plp->e.co.x == nplp->o.ce.x && plp->e.co.y == nplp->o.ce.y)
2810
0
        return 0;
2811
2812
0
    return do_pie_join(ppath, &plp->e.p, &plp->e.co, &plp->e.cdelta,
2813
0
                       &nplp->o.ce, &nplp->o.cdelta, !reflected, &plp->width);
2814
0
}
2815
2816
static int
2817
join_under_pie(gx_path * ppath, pl_ptr plp, pl_ptr nplp, bool reflected)
2818
91.3M
{
2819
91.3M
    int code;
2820
91.3M
    gs_fixed_point dirn1, dirn2, tangmeet;
2821
91.3M
    double l, r;
2822
91.3M
    bool ccw;
2823
2824
91.3M
    l = (double)(plp->width.x) /* x1 */ * (nplp->width.y) /* y2 */;
2825
91.3M
    r = (double)(nplp->width.x) /* x2 */ * (plp->width.y) /* y1 */;
2826
2827
91.3M
    if (l == r)
2828
67.9M
        return 0;
2829
2830
23.4M
    ccw = (l > r);
2831
2832
23.4M
    ccw ^= reflected;
2833
2834
23.4M
    if (ccw) {
2835
11.8M
        dirn1.x = - plp->width.x;
2836
11.8M
        dirn1.y = - plp->width.y;
2837
11.8M
        dirn2.x = -nplp->width.x;
2838
11.8M
        dirn2.y = -nplp->width.y;
2839
11.8M
        if (line_intersect(& plp->o.co, &dirn1,
2840
11.8M
                           &nplp->e.ce, &dirn2, &tangmeet) != 0)
2841
11.2M
            return 0;
2842
592k
        if ((code = gx_path_close_subpath(ppath)) < 0 ||
2843
592k
            (code = gx_path_add_point(ppath, tangmeet.x, tangmeet.y)) < 0  ||
2844
592k
            (code = gx_path_add_line(ppath,plp->o.co.x,plp->o.co.y)) < 0 ||
2845
592k
            (code = do_pie_join(ppath, &plp->e.p, &plp->o.co, &plp->o.cdelta,
2846
592k
                                &nplp->e.ce, &nplp->e.cdelta, !reflected,
2847
592k
                                &plp->width)))
2848
0
            return code;
2849
11.5M
    } else {
2850
11.5M
        if (line_intersect(& plp->o.ce, & plp->width,
2851
11.5M
                           &nplp->e.co, &nplp->width, &tangmeet) != 0)
2852
11.0M
            return 0;
2853
500k
        if ((code = gx_path_close_subpath(ppath)) < 0 ||
2854
500k
            (code = gx_path_add_point(ppath, tangmeet.x, tangmeet.y)) < 0  ||
2855
500k
            (code = gx_path_add_line(ppath,nplp->e.co.x,nplp->e.co.y)) < 0 ||
2856
500k
            (code = do_pie_join(ppath, &plp->e.p,&nplp->e.co,&nplp->e.cdelta,
2857
500k
                                &plp->o.ce, &plp->o.cdelta, !reflected,
2858
500k
                                &plp->width)))
2859
0
            return code;
2860
500k
    }
2861
1.09M
    return 0;
2862
23.4M
}
2863
2864
/* Compute the points for a non-round cap. */
2865
/* Return the number of points. */
2866
static int
2867
cap_points(gs_line_cap type, const_ep_ptr endp, gs_fixed_point *pts /*[3]*/)
2868
104M
{
2869
104M
#define PUT_POINT(i, px, py)\
2870
208M
  pts[i].x = (px), pts[i].y = (py)
2871
104M
    switch (type) {
2872
103M
        case gs_cap_butt:
2873
103M
            PUT_POINT(0, xo, yo);
2874
103M
            PUT_POINT(1, xe, ye);
2875
103M
            return 2;
2876
258k
        case gs_cap_square:
2877
258k
            PUT_POINT(0, xo + cdx, yo + cdy);
2878
258k
            PUT_POINT(1, xe + cdx, ye + cdy);
2879
258k
            return 2;
2880
610
        case gs_cap_triangle:   /* (not supported by PostScript) */
2881
610
            PUT_POINT(0, xo, yo);
2882
610
            PUT_POINT(1, px + cdx, py + cdy);
2883
610
            PUT_POINT(2, xe, ye);
2884
610
            return 3;
2885
0
        default:                /* can't happen */
2886
0
            return_error(gs_error_unregistered);
2887
104M
    }
2888
104M
#undef PUT_POINT
2889
104M
}