Coverage Report

Created: 2025-06-10 07:27

/src/ghostpdl/brotli/c/enc/block_splitter_inc.h
Line
Count
Source (jump to first uncovered line)
1
/* NOLINT(build/header_guard) */
2
/* Copyright 2013 Google Inc. All Rights Reserved.
3
4
   Distributed under MIT license.
5
   See file LICENSE for detail or copy at https://opensource.org/licenses/MIT
6
*/
7
8
/* template parameters: FN, DataType */
9
10
0
#define HistogramType FN(Histogram)
11
12
static void FN(InitialEntropyCodes)(const DataType* data, size_t length,
13
                                    size_t stride,
14
                                    size_t num_histograms,
15
0
                                    HistogramType* histograms) {
16
0
  uint32_t seed = 7;
17
0
  size_t block_length = length / num_histograms;
18
0
  size_t i;
19
0
  FN(ClearHistograms)(histograms, num_histograms);
20
0
  for (i = 0; i < num_histograms; ++i) {
21
0
    size_t pos = length * i / num_histograms;
22
0
    if (i != 0) {
23
0
      pos += MyRand(&seed) % block_length;
24
0
    }
25
0
    if (pos + stride >= length) {
26
0
      pos = length - stride - 1;
27
0
    }
28
0
    FN(HistogramAddVector)(&histograms[i], data + pos, stride);
29
0
  }
30
0
}
Unexecuted instantiation: block_splitter.c:InitialEntropyCodesLiteral
Unexecuted instantiation: block_splitter.c:InitialEntropyCodesCommand
Unexecuted instantiation: block_splitter.c:InitialEntropyCodesDistance
31
32
static void FN(RandomSample)(uint32_t* seed,
33
                             const DataType* data,
34
                             size_t length,
35
                             size_t stride,
36
0
                             HistogramType* sample) {
37
0
  size_t pos = 0;
38
0
  if (stride >= length) {
39
0
    stride = length;
40
0
  } else {
41
0
    pos = MyRand(seed) % (length - stride + 1);
42
0
  }
43
0
  FN(HistogramAddVector)(sample, data + pos, stride);
44
0
}
Unexecuted instantiation: block_splitter.c:RandomSampleLiteral
Unexecuted instantiation: block_splitter.c:RandomSampleCommand
Unexecuted instantiation: block_splitter.c:RandomSampleDistance
45
46
static void FN(RefineEntropyCodes)(const DataType* data, size_t length,
47
                                   size_t stride,
48
                                   size_t num_histograms,
49
                                   HistogramType* histograms,
50
0
                                   HistogramType* tmp) {
51
0
  size_t iters =
52
0
      kIterMulForRefining * length / stride + kMinItersForRefining;
53
0
  uint32_t seed = 7;
54
0
  size_t iter;
55
0
  iters = ((iters + num_histograms - 1) / num_histograms) * num_histograms;
56
0
  for (iter = 0; iter < iters; ++iter) {
57
0
    FN(HistogramClear)(tmp);
58
0
    FN(RandomSample)(&seed, data, length, stride, tmp);
59
0
    FN(HistogramAddHistogram)(&histograms[iter % num_histograms], tmp);
60
0
  }
61
0
}
Unexecuted instantiation: block_splitter.c:RefineEntropyCodesLiteral
Unexecuted instantiation: block_splitter.c:RefineEntropyCodesCommand
Unexecuted instantiation: block_splitter.c:RefineEntropyCodesDistance
62
63
/* Assigns a block id from the range [0, num_histograms) to each data element
64
   in data[0..length) and fills in block_id[0..length) with the assigned values.
65
   Returns the number of blocks, i.e. one plus the number of block switches. */
66
static size_t FN(FindBlocks)(const DataType* data, const size_t length,
67
                             const double block_switch_bitcost,
68
                             const size_t num_histograms,
69
                             const HistogramType* histograms,
70
                             double* insert_cost,
71
                             double* cost,
72
                             uint8_t* switch_signal,
73
0
                             uint8_t* block_id) {
74
0
  const size_t alphabet_size = FN(HistogramDataSize)();
75
0
  const size_t bitmap_len = (num_histograms + 7) >> 3;
76
0
  size_t num_blocks = 1;
77
0
  size_t byte_ix;
78
0
  size_t i;
79
0
  size_t j;
80
0
  BROTLI_DCHECK(num_histograms <= 256);
81
82
  /* Trivial case: single historgram -> single block type. */
83
0
  if (num_histograms <= 1) {
84
0
    for (i = 0; i < length; ++i) {
85
0
      block_id[i] = 0;
86
0
    }
87
0
    return 1;
88
0
  }
89
90
  /* Fill bitcost for each symbol of all histograms.
91
   * Non-existing symbol cost: 2 + log2(total_count).
92
   * Regular symbol cost: -log2(symbol_count / total_count). */
93
0
  memset(insert_cost, 0,
94
0
         sizeof(insert_cost[0]) * alphabet_size * num_histograms);
95
0
  for (i = 0; i < num_histograms; ++i) {
96
0
    insert_cost[i] = FastLog2((uint32_t)histograms[i].total_count_);
97
0
  }
98
0
  for (i = alphabet_size; i != 0;) {
99
    /* Reverse order to use the 0-th row as a temporary storage. */
100
0
    --i;
101
0
    for (j = 0; j < num_histograms; ++j) {
102
0
      insert_cost[i * num_histograms + j] =
103
0
          insert_cost[j] - BitCost(histograms[j].data_[i]);
104
0
    }
105
0
  }
106
107
  /* After each iteration of this loop, cost[k] will contain the difference
108
     between the minimum cost of arriving at the current byte position using
109
     entropy code k, and the minimum cost of arriving at the current byte
110
     position. This difference is capped at the block switch cost, and if it
111
     reaches block switch cost, it means that when we trace back from the last
112
     position, we need to switch here. */
113
0
  memset(cost, 0, sizeof(cost[0]) * num_histograms);
114
0
  memset(switch_signal, 0, sizeof(switch_signal[0]) * length * bitmap_len);
115
0
  for (byte_ix = 0; byte_ix < length; ++byte_ix) {
116
0
    size_t ix = byte_ix * bitmap_len;
117
0
    size_t symbol = data[byte_ix];
118
0
    size_t insert_cost_ix = symbol * num_histograms;
119
0
    double min_cost = 1e99;
120
0
    double block_switch_cost = block_switch_bitcost;
121
0
    size_t k;
122
0
    for (k = 0; k < num_histograms; ++k) {
123
      /* We are coding the symbol with entropy code k. */
124
0
      cost[k] += insert_cost[insert_cost_ix + k];
125
0
      if (cost[k] < min_cost) {
126
0
        min_cost = cost[k];
127
0
        block_id[byte_ix] = (uint8_t)k;
128
0
      }
129
0
    }
130
    /* More blocks for the beginning. */
131
0
    if (byte_ix < 2000) {
132
0
      block_switch_cost *= 0.77 + 0.07 * (double)byte_ix / 2000;
133
0
    }
134
0
    for (k = 0; k < num_histograms; ++k) {
135
0
      cost[k] -= min_cost;
136
0
      if (cost[k] >= block_switch_cost) {
137
0
        const uint8_t mask = (uint8_t)(1u << (k & 7));
138
0
        cost[k] = block_switch_cost;
139
0
        BROTLI_DCHECK((k >> 3) < bitmap_len);
140
0
        switch_signal[ix + (k >> 3)] |= mask;
141
0
      }
142
0
    }
143
0
  }
144
145
0
  byte_ix = length - 1;
146
0
  {  /* Trace back from the last position and switch at the marked places. */
147
0
    size_t ix = byte_ix * bitmap_len;
148
0
    uint8_t cur_id = block_id[byte_ix];
149
0
    while (byte_ix > 0) {
150
0
      const uint8_t mask = (uint8_t)(1u << (cur_id & 7));
151
0
      BROTLI_DCHECK(((size_t)cur_id >> 3) < bitmap_len);
152
0
      --byte_ix;
153
0
      ix -= bitmap_len;
154
0
      if (switch_signal[ix + (cur_id >> 3)] & mask) {
155
0
        if (cur_id != block_id[byte_ix]) {
156
0
          cur_id = block_id[byte_ix];
157
0
          ++num_blocks;
158
0
        }
159
0
      }
160
0
      block_id[byte_ix] = cur_id;
161
0
    }
162
0
  }
163
0
  return num_blocks;
164
0
}
Unexecuted instantiation: block_splitter.c:FindBlocksLiteral
Unexecuted instantiation: block_splitter.c:FindBlocksCommand
Unexecuted instantiation: block_splitter.c:FindBlocksDistance
165
166
static size_t FN(RemapBlockIds)(uint8_t* block_ids, const size_t length,
167
0
                                uint16_t* new_id, const size_t num_histograms) {
168
0
  static const uint16_t kInvalidId = 256;
169
0
  uint16_t next_id = 0;
170
0
  size_t i;
171
0
  for (i = 0; i < num_histograms; ++i) {
172
0
    new_id[i] = kInvalidId;
173
0
  }
174
0
  for (i = 0; i < length; ++i) {
175
0
    BROTLI_DCHECK(block_ids[i] < num_histograms);
176
0
    if (new_id[block_ids[i]] == kInvalidId) {
177
0
      new_id[block_ids[i]] = next_id++;
178
0
    }
179
0
  }
180
0
  for (i = 0; i < length; ++i) {
181
0
    block_ids[i] = (uint8_t)new_id[block_ids[i]];
182
0
    BROTLI_DCHECK(block_ids[i] < num_histograms);
183
0
  }
184
0
  BROTLI_DCHECK(next_id <= num_histograms);
185
0
  return next_id;
186
0
}
Unexecuted instantiation: block_splitter.c:RemapBlockIdsLiteral
Unexecuted instantiation: block_splitter.c:RemapBlockIdsCommand
Unexecuted instantiation: block_splitter.c:RemapBlockIdsDistance
187
188
static void FN(BuildBlockHistograms)(const DataType* data, const size_t length,
189
                                     const uint8_t* block_ids,
190
                                     const size_t num_histograms,
191
0
                                     HistogramType* histograms) {
192
0
  size_t i;
193
0
  FN(ClearHistograms)(histograms, num_histograms);
194
0
  for (i = 0; i < length; ++i) {
195
0
    FN(HistogramAdd)(&histograms[block_ids[i]], data[i]);
196
0
  }
197
0
}
Unexecuted instantiation: block_splitter.c:BuildBlockHistogramsLiteral
Unexecuted instantiation: block_splitter.c:BuildBlockHistogramsCommand
Unexecuted instantiation: block_splitter.c:BuildBlockHistogramsDistance
198
199
/* Given the initial partitioning build partitioning with limited number
200
 * of histograms (and block types). */
201
static void FN(ClusterBlocks)(MemoryManager* m,
202
                              const DataType* data, const size_t length,
203
                              const size_t num_blocks,
204
                              uint8_t* block_ids,
205
0
                              BlockSplit* split) {
206
0
  uint32_t* histogram_symbols = BROTLI_ALLOC(m, uint32_t, num_blocks);
207
0
  uint32_t* u32 =
208
0
      BROTLI_ALLOC(m, uint32_t, num_blocks + 4 * HISTOGRAMS_PER_BATCH);
209
0
  const size_t expected_num_clusters = CLUSTERS_PER_BATCH *
210
0
      (num_blocks + HISTOGRAMS_PER_BATCH - 1) / HISTOGRAMS_PER_BATCH;
211
0
  size_t all_histograms_size = 0;
212
0
  size_t all_histograms_capacity = expected_num_clusters;
213
0
  HistogramType* all_histograms =
214
0
      BROTLI_ALLOC(m, HistogramType, all_histograms_capacity);
215
0
  size_t cluster_size_size = 0;
216
0
  size_t cluster_size_capacity = expected_num_clusters;
217
0
  uint32_t* cluster_size = BROTLI_ALLOC(m, uint32_t, cluster_size_capacity);
218
0
  size_t num_clusters = 0;
219
0
  HistogramType* histograms = BROTLI_ALLOC(m, HistogramType,
220
0
      BROTLI_MIN(size_t, num_blocks, HISTOGRAMS_PER_BATCH));
221
0
  size_t max_num_pairs =
222
0
      HISTOGRAMS_PER_BATCH * HISTOGRAMS_PER_BATCH / 2;
223
0
  size_t pairs_capacity = max_num_pairs + 1;
224
0
  HistogramPair* pairs = BROTLI_ALLOC(m, HistogramPair, pairs_capacity);
225
0
  size_t pos = 0;
226
0
  uint32_t* clusters;
227
0
  size_t num_final_clusters;
228
0
  static const uint32_t kInvalidIndex = BROTLI_UINT32_MAX;
229
0
  uint32_t* new_index;
230
0
  size_t i;
231
0
  uint32_t* BROTLI_RESTRICT const sizes = u32 + 0 * HISTOGRAMS_PER_BATCH;
232
0
  uint32_t* BROTLI_RESTRICT const new_clusters = u32 + 1 * HISTOGRAMS_PER_BATCH;
233
0
  uint32_t* BROTLI_RESTRICT const symbols = u32 + 2 * HISTOGRAMS_PER_BATCH;
234
0
  uint32_t* BROTLI_RESTRICT const remap = u32 + 3 * HISTOGRAMS_PER_BATCH;
235
0
  uint32_t* BROTLI_RESTRICT const block_lengths =
236
0
      u32 + 4 * HISTOGRAMS_PER_BATCH;
237
  /* TODO(eustas): move to arena? */
238
0
  HistogramType* tmp = BROTLI_ALLOC(m, HistogramType, 2);
239
240
0
  if (BROTLI_IS_OOM(m) || BROTLI_IS_NULL(histogram_symbols) ||
241
0
      BROTLI_IS_NULL(u32) || BROTLI_IS_NULL(all_histograms) ||
242
0
      BROTLI_IS_NULL(cluster_size) || BROTLI_IS_NULL(histograms) ||
243
0
      BROTLI_IS_NULL(pairs) || BROTLI_IS_NULL(tmp)) {
244
0
    return;
245
0
  }
246
247
0
  memset(u32, 0, (num_blocks + 4 * HISTOGRAMS_PER_BATCH) * sizeof(uint32_t));
248
249
  /* Calculate block lengths (convert repeating values -> series length). */
250
0
  {
251
0
    size_t block_idx = 0;
252
0
    for (i = 0; i < length; ++i) {
253
0
      BROTLI_DCHECK(block_idx < num_blocks);
254
0
      ++block_lengths[block_idx];
255
0
      if (i + 1 == length || block_ids[i] != block_ids[i + 1]) {
256
0
        ++block_idx;
257
0
      }
258
0
    }
259
0
    BROTLI_DCHECK(block_idx == num_blocks);
260
0
  }
261
262
  /* Pre-cluster blocks (cluster batches). */
263
0
  for (i = 0; i < num_blocks; i += HISTOGRAMS_PER_BATCH) {
264
0
    const size_t num_to_combine =
265
0
        BROTLI_MIN(size_t, num_blocks - i, HISTOGRAMS_PER_BATCH);
266
0
    size_t num_new_clusters;
267
0
    size_t j;
268
0
    for (j = 0; j < num_to_combine; ++j) {
269
0
      size_t k;
270
0
      size_t block_length = block_lengths[i + j];
271
0
      FN(HistogramClear)(&histograms[j]);
272
0
      for (k = 0; k < block_length; ++k) {
273
0
        FN(HistogramAdd)(&histograms[j], data[pos++]);
274
0
      }
275
0
      histograms[j].bit_cost_ = FN(BrotliPopulationCost)(&histograms[j]);
276
0
      new_clusters[j] = (uint32_t)j;
277
0
      symbols[j] = (uint32_t)j;
278
0
      sizes[j] = 1;
279
0
    }
280
0
    num_new_clusters = FN(BrotliHistogramCombine)(
281
0
        histograms, tmp, sizes, symbols, new_clusters, pairs, num_to_combine,
282
0
        num_to_combine, HISTOGRAMS_PER_BATCH, max_num_pairs);
283
0
    BROTLI_ENSURE_CAPACITY(m, HistogramType, all_histograms,
284
0
        all_histograms_capacity, all_histograms_size + num_new_clusters);
285
0
    BROTLI_ENSURE_CAPACITY(m, uint32_t, cluster_size,
286
0
        cluster_size_capacity, cluster_size_size + num_new_clusters);
287
0
    if (BROTLI_IS_OOM(m)) return;
288
0
    for (j = 0; j < num_new_clusters; ++j) {
289
0
      all_histograms[all_histograms_size++] = histograms[new_clusters[j]];
290
0
      cluster_size[cluster_size_size++] = sizes[new_clusters[j]];
291
0
      remap[new_clusters[j]] = (uint32_t)j;
292
0
    }
293
0
    for (j = 0; j < num_to_combine; ++j) {
294
0
      histogram_symbols[i + j] = (uint32_t)num_clusters + remap[symbols[j]];
295
0
    }
296
0
    num_clusters += num_new_clusters;
297
0
    BROTLI_DCHECK(num_clusters == cluster_size_size);
298
0
    BROTLI_DCHECK(num_clusters == all_histograms_size);
299
0
  }
300
0
  BROTLI_FREE(m, histograms);
301
302
  /* Final clustering. */
303
0
  max_num_pairs =
304
0
      BROTLI_MIN(size_t, 64 * num_clusters, (num_clusters / 2) * num_clusters);
305
0
  if (pairs_capacity < max_num_pairs + 1) {
306
0
    BROTLI_FREE(m, pairs);
307
0
    pairs = BROTLI_ALLOC(m, HistogramPair, max_num_pairs + 1);
308
0
    if (BROTLI_IS_OOM(m) || BROTLI_IS_NULL(pairs)) return;
309
0
  }
310
0
  clusters = BROTLI_ALLOC(m, uint32_t, num_clusters);
311
0
  if (BROTLI_IS_OOM(m) || BROTLI_IS_NULL(clusters)) return;
312
0
  for (i = 0; i < num_clusters; ++i) {
313
0
    clusters[i] = (uint32_t)i;
314
0
  }
315
0
  num_final_clusters = FN(BrotliHistogramCombine)(
316
0
      all_histograms, tmp, cluster_size, histogram_symbols, clusters, pairs,
317
0
      num_clusters, num_blocks, BROTLI_MAX_NUMBER_OF_BLOCK_TYPES,
318
0
      max_num_pairs);
319
0
  BROTLI_FREE(m, pairs);
320
0
  BROTLI_FREE(m, cluster_size);
321
322
  /* Assign blocks to final histograms. */
323
0
  new_index = BROTLI_ALLOC(m, uint32_t, num_clusters);
324
0
  if (BROTLI_IS_OOM(m) || BROTLI_IS_NULL(new_index)) return;
325
0
  for (i = 0; i < num_clusters; ++i) new_index[i] = kInvalidIndex;
326
0
  pos = 0;
327
0
  {
328
0
    uint32_t next_index = 0;
329
0
    for (i = 0; i < num_blocks; ++i) {
330
0
      size_t j;
331
0
      uint32_t best_out;
332
0
      double best_bits;
333
0
      FN(HistogramClear)(tmp);
334
0
      for (j = 0; j < block_lengths[i]; ++j) {
335
0
        FN(HistogramAdd)(tmp, data[pos++]);
336
0
      }
337
      /* Among equally good histograms prefer last used. */
338
      /* TODO(eustas): should we give a block-switch discount here? */
339
0
      best_out = (i == 0) ? histogram_symbols[0] : histogram_symbols[i - 1];
340
0
      best_bits = FN(BrotliHistogramBitCostDistance)(
341
0
          tmp, &all_histograms[best_out], tmp + 1);
342
0
      for (j = 0; j < num_final_clusters; ++j) {
343
0
        const double cur_bits = FN(BrotliHistogramBitCostDistance)(
344
0
            tmp, &all_histograms[clusters[j]], tmp + 1);
345
0
        if (cur_bits < best_bits) {
346
0
          best_bits = cur_bits;
347
0
          best_out = clusters[j];
348
0
        }
349
0
      }
350
0
      histogram_symbols[i] = best_out;
351
0
      if (new_index[best_out] == kInvalidIndex) {
352
0
        new_index[best_out] = next_index++;
353
0
      }
354
0
    }
355
0
  }
356
0
  BROTLI_FREE(m, tmp);
357
0
  BROTLI_FREE(m, clusters);
358
0
  BROTLI_FREE(m, all_histograms);
359
0
  BROTLI_ENSURE_CAPACITY(
360
0
      m, uint8_t, split->types, split->types_alloc_size, num_blocks);
361
0
  BROTLI_ENSURE_CAPACITY(
362
0
      m, uint32_t, split->lengths, split->lengths_alloc_size, num_blocks);
363
0
  if (BROTLI_IS_OOM(m)) return;
364
365
  /* Rewrite final assignment to block-split. There might be less blocks
366
   * than |num_blocks| due to clustering. */
367
0
  {
368
0
    uint32_t cur_length = 0;
369
0
    size_t block_idx = 0;
370
0
    uint8_t max_type = 0;
371
0
    for (i = 0; i < num_blocks; ++i) {
372
0
      cur_length += block_lengths[i];
373
0
      if (i + 1 == num_blocks ||
374
0
          histogram_symbols[i] != histogram_symbols[i + 1]) {
375
0
        const uint8_t id = (uint8_t)new_index[histogram_symbols[i]];
376
0
        split->types[block_idx] = id;
377
0
        split->lengths[block_idx] = cur_length;
378
0
        max_type = BROTLI_MAX(uint8_t, max_type, id);
379
0
        cur_length = 0;
380
0
        ++block_idx;
381
0
      }
382
0
    }
383
0
    split->num_blocks = block_idx;
384
0
    split->num_types = (size_t)max_type + 1;
385
0
  }
386
0
  BROTLI_FREE(m, new_index);
387
0
  BROTLI_FREE(m, u32);
388
0
  BROTLI_FREE(m, histogram_symbols);
389
0
}
Unexecuted instantiation: block_splitter.c:ClusterBlocksLiteral
Unexecuted instantiation: block_splitter.c:ClusterBlocksCommand
Unexecuted instantiation: block_splitter.c:ClusterBlocksDistance
390
391
/* Create BlockSplit (partitioning) given the limits, estimates and "effort"
392
 * parameters.
393
 *
394
 * NB: max_histograms is often less than number of histograms allowed by format;
395
 *     this is done intentionally, to save some "space" for context-aware
396
 *     clustering (here entropy is estimated for context-free symbols). */
397
static void FN(SplitByteVector)(MemoryManager* m,
398
                                const DataType* data, const size_t length,
399
                                const size_t symbols_per_histogram,
400
                                const size_t max_histograms,
401
                                const size_t sampling_stride_length,
402
                                const double block_switch_cost,
403
                                const BrotliEncoderParams* params,
404
0
                                BlockSplit* split) {
405
0
  const size_t data_size = FN(HistogramDataSize)();
406
0
  HistogramType* histograms;
407
0
  HistogramType* tmp;
408
  /* Calculate number of histograms; initial estimate is one histogram per
409
   * specified amount of symbols; however, this value is capped. */
410
0
  size_t num_histograms = length / symbols_per_histogram + 1;
411
0
  if (num_histograms > max_histograms) {
412
0
    num_histograms = max_histograms;
413
0
  }
414
415
  /* Corner case: no input. */
416
0
  if (length == 0) {
417
0
    split->num_types = 1;
418
0
    return;
419
0
  }
420
421
0
  if (length < kMinLengthForBlockSplitting) {
422
0
    BROTLI_ENSURE_CAPACITY(m, uint8_t,
423
0
        split->types, split->types_alloc_size, split->num_blocks + 1);
424
0
    BROTLI_ENSURE_CAPACITY(m, uint32_t,
425
0
        split->lengths, split->lengths_alloc_size, split->num_blocks + 1);
426
0
    if (BROTLI_IS_OOM(m)) return;
427
0
    split->num_types = 1;
428
0
    split->types[split->num_blocks] = 0;
429
0
    split->lengths[split->num_blocks] = (uint32_t)length;
430
0
    split->num_blocks++;
431
0
    return;
432
0
  }
433
0
  histograms = BROTLI_ALLOC(m, HistogramType, num_histograms + 1);
434
0
  tmp = histograms + num_histograms;
435
0
  if (BROTLI_IS_OOM(m) || BROTLI_IS_NULL(histograms)) return;
436
  /* Find good entropy codes. */
437
0
  FN(InitialEntropyCodes)(data, length,
438
0
                          sampling_stride_length,
439
0
                          num_histograms, histograms);
440
0
  FN(RefineEntropyCodes)(data, length,
441
0
                         sampling_stride_length,
442
0
                         num_histograms, histograms, tmp);
443
0
  {
444
    /* Find a good path through literals with the good entropy codes. */
445
0
    uint8_t* block_ids = BROTLI_ALLOC(m, uint8_t, length);
446
0
    size_t num_blocks = 0;
447
0
    const size_t bitmaplen = (num_histograms + 7) >> 3;
448
0
    double* insert_cost = BROTLI_ALLOC(m, double, data_size * num_histograms);
449
0
    double* cost = BROTLI_ALLOC(m, double, num_histograms);
450
0
    uint8_t* switch_signal = BROTLI_ALLOC(m, uint8_t, length * bitmaplen);
451
0
    uint16_t* new_id = BROTLI_ALLOC(m, uint16_t, num_histograms);
452
0
    const size_t iters = params->quality < HQ_ZOPFLIFICATION_QUALITY ? 3 : 10;
453
0
    size_t i;
454
0
    if (BROTLI_IS_OOM(m) || BROTLI_IS_NULL(block_ids) ||
455
0
        BROTLI_IS_NULL(insert_cost) || BROTLI_IS_NULL(cost) ||
456
0
        BROTLI_IS_NULL(switch_signal) || BROTLI_IS_NULL(new_id)) {
457
0
      return;
458
0
    }
459
0
    for (i = 0; i < iters; ++i) {
460
0
      num_blocks = FN(FindBlocks)(data, length,
461
0
                                  block_switch_cost,
462
0
                                  num_histograms, histograms,
463
0
                                  insert_cost, cost, switch_signal,
464
0
                                  block_ids);
465
0
      num_histograms = FN(RemapBlockIds)(block_ids, length,
466
0
                                         new_id, num_histograms);
467
0
      FN(BuildBlockHistograms)(data, length, block_ids,
468
0
                               num_histograms, histograms);
469
0
    }
470
0
    BROTLI_FREE(m, insert_cost);
471
0
    BROTLI_FREE(m, cost);
472
0
    BROTLI_FREE(m, switch_signal);
473
0
    BROTLI_FREE(m, new_id);
474
0
    BROTLI_FREE(m, histograms);
475
0
    FN(ClusterBlocks)(m, data, length, num_blocks, block_ids, split);
476
0
    if (BROTLI_IS_OOM(m)) return;
477
0
    BROTLI_FREE(m, block_ids);
478
0
  }
479
0
}
Unexecuted instantiation: block_splitter.c:SplitByteVectorLiteral
Unexecuted instantiation: block_splitter.c:SplitByteVectorCommand
Unexecuted instantiation: block_splitter.c:SplitByteVectorDistance
480
481
#undef HistogramType