Coverage Report

Created: 2025-06-24 07:01

/src/ghostpdl/base/ets.c
Line
Count
Source (jump to first uncovered line)
1
/* Copyright (C) 2013-2023 Artifex Software, Inc.
2
   All Rights Reserved.
3
4
   This software is provided AS-IS with no warranty, either express or
5
   implied.
6
7
   This software is distributed under license and may not be copied,
8
   modified or distributed except as expressly authorized under the terms
9
   of the license contained in the file LICENSE in this distribution.
10
11
   Refer to licensing information at http://www.artifex.com or contact
12
   Artifex Software, Inc.,  39 Mesa Street, Suite 108A, San Francisco,
13
   CA 94129, USA, for further information.
14
*/
15
16
#include <stdlib.h>
17
#include <string.h>
18
#include <math.h>
19
#include "ets.h"
20
21
/* source for threshold matrix - need to improve build process */
22
#include "ets_tm.h"
23
24
0
#define ETS_VERSION 150
25
26
0
#define ETS_SHIFT 16
27
0
#define IMO_SHIFT 14
28
29
#define FANCY_COUPLING
30
31
typedef struct {
32
    int err; /* Total error carried out of pixel in the line above */
33
    int r;   /* expected distance value (see paper for details) */
34
    int a;   /* expected distance intermediate value (see paper) */
35
    int b;   /* expected distance intermediate value (see paper) */
36
} ETS_PixelData;
37
38
typedef struct {
39
    int           *dst_line;  /* Output pointer */
40
    ETS_PixelData *line;      /* Internal data for each pixel on the line */
41
    int           *lut;       /* Table to map from input source value to internal
42
                               * intensity level. Internal intensity level is 0 to
43
                               * 1<<ETS_SHIFT. */
44
    int           *dist_lut;  /* A table of "expected distance between set pixels"
45
                               * values, stored in fixed point format with (ETS_SHIFT-c1)
46
                               * fractional bits. Values outside of the 'level 0-1' band
47
                               * will be set to 0 to avoid ETS weighting being used. */
48
    char          *rs_lut;   /* Random noise table; values between 0 and 24. x meaning
49
                              * use 32-x bits of random noise, */
50
    int            c1;       /* Shift adjustment for the dist_lut. */
51
    unsigned int   tm_offset;/* Plane offset within tm data */
52
    int            strength; /* Strength */
53
} ETS_PlaneCtx;
54
55
typedef unsigned int uint32;
56
57
typedef void (ETS_LineFn)(ETS_Ctx *etc, unsigned char **dest, const ETS_SrcPixel * const *src);
58
59
struct _ETS_Ctx {
60
    int width;
61
    int n_planes;
62
    int levels; /* Number of levels on output, <= 256 */
63
    ETS_PlaneCtx ** plane_ctx;
64
    int aspect_x;
65
    int aspect_y;
66
    int elo;
67
    int ehi;
68
    int *c_line;
69
70
    int ets_bias;
71
    int r_style;
72
73
    uint32 seeds[2];
74
75
    FILE *dump_file;
76
    ETS_DumpLevel dump_level;
77
78
    /* Threshold modulation array */
79
    unsigned int y;
80
    unsigned int tmwidth;
81
    unsigned int tmheight;
82
    const signed char *tmmat;
83
84
    ETS_LineFn *line_fn;
85
};
86
87
/* Maximum number of planes, but actually we want to dynamically
88
   allocate all scratch buffers that depend on this. */
89
#define M 16
90
91
typedef struct {
92
    int a;
93
    int b;
94
    int r;
95
    int e_1_0;
96
    int e_m1_1;
97
    int e_0_1;
98
    int e_1_1;
99
} ETS_PixelInternals;
100
101
/**
102
 * ets_line_template: Generic code to perform ETS screening
103
 * on an input line. Called to generate optimised versions.
104
 */
105
static inline void
106
ets_line_template(unsigned char * gs_restrict * gs_restrict dest, const ETS_SrcPixel * const gs_restrict * gs_restrict src, int n_planes, int levels, int aspect_x, int aspect_y, int elo, int ehi, int ets_biasing_mode, int r_style, int old_quant, int fancy_coupling, int * gs_restrict c_line,
107
                  const signed char * gs_restrict tmmat, unsigned int tmwidth, unsigned int tmheight, unsigned int y, int xd, ETS_PlaneCtx * gs_restrict * gs_restrict planes, uint32 *seeds, int in_plane_step, int out_plane_step)
108
0
{
109
0
    ETS_PixelInternals pi[M];
110
0
    ETS_PixelInternals * gs_restrict pii;
111
0
    int i;
112
0
    int im;
113
0
    int rg;
114
0
    uint32 seed1, seed2;
115
0
    uint32 sum;
116
0
    int plane_idx;
117
0
    int dith_mul = (old_quant ? levels : levels-1) << 8;
118
0
    int imo_mul = (1 << (ETS_SHIFT + IMO_SHIFT)) / (levels - 1);
119
0
    const int aspect_x2 = aspect_x * aspect_x;
120
0
    const int aspect_y2 = aspect_y * aspect_y;
121
0
    int coupling;
122
0
    int rand_shift;
123
0
    const signed char * gs_restrict tmline = (r_style == ETS_RSTYLE_THRESHOLD) ? (tmmat + (y % tmheight) * tmwidth) : 0;
124
125
    /* Read seeds (but only if we are using them) */
126
0
    seed1 = (r_style == 2 ? seeds[0] : 0);
127
0
    seed2 = (r_style == 2 ? seeds[1] : 0);
128
129
    /* Setup initial conditions for walking across the scanline. Because we
130
     * are dealing with multiple planes, we have arrays of each variable,
131
     * indexed by p = plane number.
132
     *   a[p]     = 2x+1 (where x is the horizontal distance to the nearest set pixel)
133
     *   b[p]     = 2y+1 (where y is the vertical distance to the nearest set pixel)
134
     *   r[p]     = distance^2 to the nearest set pixel in this plane.
135
     *   e_0_1[p] = error from pixel above
136
     *   e_1_0[p] = error from pixel to the left
137
     *   e_m1_1[p]= error from pixel above right
138
     *   e_1_1[p] = error from pixel above left
139
     */
140
141
    /* A potted recap of the distance calculations in the paper for easy
142
     * reference.
143
     *   distance to last dot   = SQR( (aspect_y * x)^2 + (aspect_x * y)^2 )
144
     *   r       =  distance^2  =      (aspect_y * x)^2 + (aspect_x * y)^2
145
     *           =                     aspect_y^2 * x^2 + aspect_x^2 * y^2
146
     *   r_below - r = (aspect_x^2 * (y+1)^2) - (aspect_x^2 * y^2)
147
     *               = aspect_x^2 * ( (y+1)^2 - y^2 )
148
     *               = aspect_x^2 * ( 2y + 1 )
149
     *   r_under - r = (aspect_y^2 * (x+1)^2) - (aspect_y^2 * x^2)
150
     *               = aspect_y^2 * ( (x+1)^2 - x^2 )
151
     *               = aspect_y^2 * ( 2x + 1 )
152
     * So, we keep:
153
     *   a       = aspect_y^2 * (2x+1)
154
     *   b       = aspect_x^2 * (2y+1)
155
     * And we can then update r by adding either a or b at each stage.
156
     */
157
0
    for (plane_idx = 0; plane_idx < n_planes; plane_idx++)
158
0
    {
159
0
        ETS_PlaneCtx *ctx = planes[plane_idx];
160
161
0
        pi[plane_idx].a = aspect_y2; /* aspect_y^2 * (2x + 1) where x = 0 */
162
0
        pi[plane_idx].b = aspect_x2; /* aspect_x^2 * (2y + 1) where y = 0 */
163
0
        pi[plane_idx].r = 0;
164
0
        pi[plane_idx].e_0_1 = 0;
165
0
        pi[plane_idx].e_1_0 = 0;
166
0
        pi[plane_idx].e_m1_1 = ctx->line[0].err;
167
0
    }
168
169
0
    coupling = 0;
170
171
0
    for (i = 0; i < xd; i++)
172
0
    {
173
0
        if (fancy_coupling)
174
0
            coupling += c_line[i];
175
0
        else
176
0
            coupling = 0;
177
        /* Lookup image data and compute R for all planes. */
178
0
        pii = pi;
179
0
        for (plane_idx = 0; plane_idx < n_planes; plane_idx++, pii++)
180
0
        {
181
0
            ETS_PlaneCtx *ctx = planes[plane_idx];
182
0
            ETS_SrcPixel src_pixel = src[plane_idx][i * in_plane_step];
183
0
            int new_r;
184
0
            int c1 = ctx->c1;
185
0
            int rlimit = 1 << (30 - ETS_SHIFT + c1);
186
0
            unsigned char *dst_ptr = dest[plane_idx];
187
0
            int new_e_1_0;
188
0
            int achieved_error;
189
0
            int err;
190
0
            int imo;
191
0
            int expected_r;
192
0
            ETS_PixelData * gs_restrict pd = &ctx->line[i];
193
194
0
            im         = ctx->lut[src_pixel];      /* image pixel (ink level) */
195
0
            expected_r = ctx->dist_lut[src_pixel]; /* expected distance */
196
0
            if (r_style != ETS_RSTYLE_NONE)
197
0
                rand_shift = ctx->rs_lut[src_pixel];   /* random noise shift */
198
199
            /* Forward pass distance computation; equation 2 from paper */
200
0
            if (pii->r + pii->a < pd->r)
201
0
            {
202
0
                pii->r += pii->a;
203
0
                pii->a += 2*aspect_y2;
204
0
            }
205
0
            else
206
0
            {
207
0
                pii->a = pd->a;
208
0
                pii->b = pd->b;
209
0
                pii->r = pd->r;
210
0
            }
211
212
            /* Shuffle all the errors and read the next one. */
213
0
            pii->e_1_1 = pii->e_0_1;
214
0
            pii->e_0_1 = pii->e_m1_1;
215
0
            pii->e_m1_1 = i == xd - 1 ? 0 : pd[1].err;
216
            /* Reuse of variables here; new_e_1_0 is the total error passed
217
             * into this pixel, with the traditional fs weights. */
218
0
            new_e_1_0 = ((pii->e_1_0 * 7 + pii->e_m1_1 * 3 +
219
0
                          pii->e_0_1 * 5 + pii->e_1_1 * 1) >> 4);
220
221
            /* White pixels stay white */
222
0
            if (im == 0)
223
0
            {
224
0
                dst_ptr[i * out_plane_step] = 0;
225
                /* If we are forcing white pixels to stay white, we should
226
                 * not propagate errors through them. Or at the very least
227
                 * we should attenuate such errors. */
228
0
                new_e_1_0 = 0;
229
0
            }
230
0
            else
231
0
            {
232
                /* The guts of ets (Equation 5) */
233
0
                int ets_bias;
234
235
0
                if (expected_r == 0)
236
0
                {
237
0
                    ets_bias = 0;
238
0
                }
239
0
                else
240
0
                {
241
                    /* Read the current distance, and clamp to avoid overflow
242
                     * in subsequent calculations. */
243
0
                    new_r = pii->r;
244
0
                    if (new_r > rlimit)
245
0
                        new_r = rlimit;
246
                    /* Should we store back with the limit? */
247
248
                    /* Change the units on the distance to match our lut
249
                     * and subtract our actual distance (rg) from the expected
250
                     * distance (expected_r). */
251
0
                    rg = new_r << (ETS_SHIFT - c1);
252
0
                    ets_bias = rg - expected_r;
253
254
                    /* So ets_bias is the difference that we want to base our
255
                     * threshold modulation on (section 2.1 of the paper).
256
                     * Exactly how do we do that? We present various options
257
                     * here.
258
                     *   0   no modulation
259
                     *   1   what the code did when it came to me. No reference
260
                     *       to this in the paper.
261
                     *   2   use it unchanged.
262
                     *   3   like 1, but same shift either side of 0.
263
                     *   4+  scale the modulation down.
264
                     */
265
0
                    switch (ets_biasing_mode)
266
0
                    {
267
0
                    case ETS_BIAS_ZERO:
268
0
                        ets_bias = 0;
269
0
                        break;
270
0
                    case ETS_BIAS_REDUCE_POSITIVE:
271
0
                        if (ets_bias > 0) ets_bias >>= 3;
272
0
                        break;
273
0
                    case ETS_BIAS_NONE:
274
0
                        break;
275
0
                    case ETS_BIAS_REDUCE:
276
0
                        ets_bias >>= 3;
277
0
                        break;
278
0
                    default:
279
0
                        ets_bias /= ets_bias-3;
280
0
                    }
281
0
                }
282
283
                /* Non white pixels get biased, and have the error
284
                 * applied. The error starts from the total error passed
285
                 * in. */
286
0
                err = new_e_1_0;
287
288
                /* Plus any ETS bias (calculated above) */
289
0
                err += ets_bias;
290
291
                /* Plus any random noise. Again various options here:
292
                 *    0   No random noise
293
                 *    1   The code as it came to me, using lookup table
294
                 *    2   commented out when it came to me; using pseudo
295
                 *        random numbers generated from seed.
296
                 */
297
0
                switch(r_style)
298
0
                {
299
0
                default:
300
0
                case ETS_RSTYLE_NONE:
301
0
                    break;
302
0
                case ETS_RSTYLE_PSEUDO:
303
                    /* Add the two seeds together */
304
0
                    sum = seed1 + seed2;
305
306
                    /* If the add generated a carry, increment
307
                     * the result of the addition.
308
                     */
309
0
                    if (sum < seed1 || sum < seed2) sum++;
310
311
                    /* Seed2 becomes old seed1, seed1 becomes result */
312
0
                    seed2 = seed1;
313
0
                    seed1 = sum;
314
315
0
                    err -= (sum >> rand_shift) - (0x80000000 >> rand_shift);
316
0
                    break;
317
0
                case ETS_RSTYLE_THRESHOLD:
318
0
                    err += tmline[((unsigned int)(i+ctx->tm_offset)) % tmwidth] << (24 - rand_shift);
319
0
                    break;
320
0
                }
321
322
                /* Clamp the error; this is explained in the paper in
323
                 * section 6 just after equation 7. */
324
                /* FIXME: Understand this better */
325
0
                if (err < elo)
326
0
                    err = elo;
327
0
                else if (err > ehi)
328
0
                    err = ehi;
329
330
                /* Add the coupling to our combined 'error + bias' value */
331
                /* FIXME: Are we sure this shouldn't be clamped? */
332
0
                err += coupling;
333
334
                /* Calculate imo = the quantised image value (Equation 7) */
335
0
                imo = ((err + im) * dith_mul + (old_quant ? 0 : (1 << (ETS_SHIFT + 7)))) >> (ETS_SHIFT + 8);
336
337
                /* Clamp to allow for over/underflow due to large errors */
338
0
                if (imo < 0) imo = 0;
339
0
                else if (imo > levels - 1) imo = levels - 1;
340
341
                /* Store final output pixel */
342
0
                dst_ptr[i * out_plane_step] = imo;
343
344
                /* Calculate the error between the desired and the obtained
345
                 * pixel values. */
346
0
                achieved_error = im - ((imo * imo_mul) >> IMO_SHIFT);
347
348
                /* And the error passed in is updated with the error for
349
                 * this pixel. */
350
0
                new_e_1_0 += achieved_error;
351
352
                /* Do the magic coupling here; strengths is 0 when
353
                 * multiplane optimisation is turned off, hence coupling
354
                 * remains 0 always. Equation 6. */
355
0
                coupling += (achieved_error * ctx->strength) >> 8;
356
357
                /* If we output a set pixel, then reset our distances. */
358
0
                if (imo != 0)
359
0
                {
360
0
                    pii->a = aspect_y2;
361
0
                    pii->b = aspect_x2;
362
0
                    pii->r = 0;
363
0
                }
364
0
            }
365
366
            /* Store the values back for the next pass (Equation 3) */
367
0
            pd->a = pii->a;
368
0
            pd->b = pii->b;
369
0
            pd->r = pii->r;
370
0
            pd->err = new_e_1_0;
371
0
            pii->e_1_0 = new_e_1_0;
372
0
        }
373
0
        if (fancy_coupling)
374
0
        {
375
0
            coupling = coupling >> 1;
376
0
            c_line[i] = coupling;
377
0
        }
378
0
    }
379
380
    /* Note: this isn't white optimized, but the payoff is probably not
381
       that important. */
382
0
    if (fancy_coupling)
383
0
    {
384
0
        coupling = 0;
385
0
        for (i = xd - 1; i >= 0; i--)
386
0
        {
387
0
            coupling = (coupling + c_line[i]) >> 1;
388
0
            c_line[i] = (coupling - (coupling >> 4));
389
0
        }
390
0
    }
391
392
    /* Update distances. Reverse scanline pass. */
393
0
    for (plane_idx = 0; plane_idx < n_planes; plane_idx++)
394
0
    {
395
0
        ETS_PlaneCtx *ctx = planes[plane_idx];
396
0
        int av = aspect_y2;
397
0
        int bv = aspect_x2;
398
0
        int rv = 0;
399
0
        int c1 = ctx->c1;
400
0
        int rlimit = 1 << (30 - ETS_SHIFT + c1);
401
0
        ETS_PixelData * gs_restrict pd = &ctx->line[xd];
402
403
0
        for (i = xd; i > 0; i--)
404
0
        {
405
0
            pd--;
406
            /* Equation 4 from the paper */
407
0
            if (rv + bv + av < pd->r + pd->b)
408
0
            {
409
0
                rv += av;
410
0
                av += (aspect_y2<<1);
411
0
            }
412
0
            else
413
0
            {
414
0
                rv = pd->r;
415
0
                av = pd->a;
416
0
                bv = pd->b;
417
0
            }
418
0
            if (rv > rlimit) rv = rlimit;
419
0
            pd->a = av;
420
0
            pd->b = bv + (aspect_x2 << 1);
421
0
            pd->r = rv + bv;
422
0
        }
423
0
    }
424
425
0
    if (r_style == 2)
426
0
    {
427
0
        seeds[0] = seed1;
428
0
        seeds[1] = seed2;
429
0
    }
430
0
}
431
432
/**
433
 * ets_line: Screen a line using EvenTonedFS screening.
434
 * @ctx: An #EBPlaneCtx context.
435
 * @dest: Array of destination buffers, 8 bpp pixels each.
436
 * @src: Array of source buffer, ET_SrcPixel pixels each.
437
 *
438
 * Screens a single line using Even ToneFS screening.
439
 **/
440
#ifdef OLD_QUANT
441
#define OLD_QUANT_VAL 1
442
#else
443
0
#define OLD_QUANT_VAL 0
444
#endif
445
#ifdef FANCY_COUPLING
446
0
#define FANCY_COUPLING_VAL 1
447
#else
448
#define FANCY_COUPLING_VAL 0
449
#endif
450
451
static void
452
ets_line_none(ETS_Ctx *etc, unsigned char **dest, const ETS_SrcPixel * const *src)
453
0
{
454
0
    ets_line_template(dest, src, etc->n_planes, etc->levels, etc->aspect_x, etc->aspect_y, etc->elo, etc->ehi, etc->ets_bias, ETS_RSTYLE_NONE,
455
0
        OLD_QUANT_VAL, FANCY_COUPLING_VAL,
456
0
        etc->c_line, NULL, 0, 0, etc->y, etc->width, etc->plane_ctx, etc->seeds, etc->n_planes, etc->n_planes);
457
0
}
458
459
static void
460
ets_line_threshold(ETS_Ctx *etc, unsigned char **dest, const ETS_SrcPixel * const * src)
461
0
{
462
0
    ets_line_template(dest, src, etc->n_planes, etc->levels, etc->aspect_x, etc->aspect_y, etc->elo, etc->ehi, etc->ets_bias, ETS_RSTYLE_THRESHOLD,
463
0
        OLD_QUANT_VAL, FANCY_COUPLING_VAL,
464
0
        etc->c_line, etc->tmmat, etc->tmwidth, etc->tmheight, etc->y, etc->width, etc->plane_ctx, etc->seeds, etc->n_planes, etc->n_planes);
465
0
}
466
467
static void
468
ets_line_pseudo(ETS_Ctx *etc, unsigned char **dest, const ETS_SrcPixel * const * src)
469
0
{
470
0
    ets_line_template(dest, src, etc->n_planes, etc->levels, etc->aspect_x, etc->aspect_y, etc->elo, etc->ehi, etc->ets_bias, ETS_RSTYLE_PSEUDO,
471
0
        OLD_QUANT_VAL, FANCY_COUPLING_VAL,
472
0
        etc->c_line, NULL, 0, 0, etc->y, etc->width, etc->plane_ctx, etc->seeds, etc->n_planes, etc->n_planes);
473
0
}
474
475
#ifdef UNUSED
476
static void
477
ets_line_default(ETS_Ctx *etc, unsigned char **dest, const ETS_SrcPixel * const * src)
478
{
479
    ets_line_template(dest, src, etc->n_planes, etc->levels, etc->aspect_x, etc->aspect_y, etc->elo, etc->ehi, etc->ets_bias, etc->r_style,
480
        OLD_QUANT_VAL, FANCY_COUPLING_VAL,
481
        etc->c_line, etc->tmmat, etc->tmwidth, etc->tmheight, etc->y, etc->width, etc->plane_ctx, etc->seeds, etc->n_planes, etc->n_planes);
482
}
483
#endif
484
485
void
486
ets_line(ETS_Ctx *etc, unsigned char **dest, const ETS_SrcPixel * const * gs_restrict src)
487
0
{
488
0
    etc->line_fn(etc, dest, src);
489
0
    etc->y++;
490
0
}
491
492
/**
493
 * ets_plane_free: Free an #EBPlaneCtx context.
494
 * @ctx: The #EBPlaneCtx context to free.
495
 *
496
 * Frees @ctx.
497
 **/
498
static void
499
ets_plane_free(void *malloc_arg, ETS_PlaneCtx *ctx)
500
0
{
501
0
    if (!ctx)
502
0
        return;
503
504
0
    ets_free(malloc_arg, ctx->line);
505
0
    ets_free(malloc_arg, ctx->lut);
506
0
    ets_free(malloc_arg, ctx->dist_lut);
507
0
    ets_free(malloc_arg, ctx->rs_lut);
508
0
    ets_free(malloc_arg, ctx);
509
0
}
510
511
static double
512
compute_distscale(const ETS_Params *params)
513
0
{
514
0
    double distscale = params->distscale;
515
516
0
    if (distscale == 0.0)
517
0
    {
518
0
        distscale = -1;
519
0
        switch(params->aspect_x)
520
0
        {
521
0
        case 1:
522
0
            switch(params->aspect_y)
523
0
            {
524
0
            case 1:
525
0
                distscale = 0.95;
526
0
                break;
527
0
            case 2:
528
0
                distscale = 1.8;
529
0
                break;
530
0
            case 3:
531
0
                distscale = 2.4; /* FIXME */
532
0
                break;
533
0
            case 4:
534
0
                distscale = 3.6;
535
0
                break;
536
0
            }
537
0
            break;
538
0
        case 2:
539
0
            switch(params->aspect_y)
540
0
            {
541
0
            case 1:
542
0
                distscale = 1.8;
543
0
                break;
544
0
            case 2:
545
0
                break;
546
0
            case 3:
547
0
                distscale = 1.35; /* FIXME */
548
0
                break;
549
0
            case 4:
550
0
                break;
551
0
            }
552
0
            break;
553
0
        case 3:
554
0
            switch(params->aspect_y)
555
0
            {
556
0
            case 1:
557
0
                distscale = 2.4; /* FIXME */
558
0
                break;
559
0
            case 2:
560
0
                distscale = 1.35; /* FIXME */
561
0
                break;
562
0
            case 3:
563
0
                break;
564
0
            case 4:
565
0
                distscale = 0.675; /* FIXME */
566
0
                break;
567
0
            }
568
0
            break;
569
0
        case 4:
570
0
            switch(params->aspect_y)
571
0
            {
572
0
            case 1:
573
0
                distscale = 3.6;
574
0
                break;
575
0
            case 2:
576
0
                break;
577
0
            case 3:
578
0
                distscale = 0.675; /* FIXME */
579
0
                break;
580
0
            case 4:
581
0
                break;
582
0
            }
583
0
            break;
584
0
        }
585
0
        if (distscale == -1)
586
0
        {
587
0
            fprintf(stderr, "aspect ratio of %d:%d not supported\n",
588
0
                    params->aspect_x, params->aspect_y);
589
0
            exit(1);
590
0
        }
591
0
    }
592
0
    return distscale;
593
0
}
594
595
static unsigned int
596
ets_log2(unsigned int x)
597
0
{
598
0
    unsigned int y = 0;
599
0
    unsigned int z;
600
601
0
    for (z = x; z > 1; z = z >> 1)
602
0
        y++;
603
0
    return y;
604
0
}
605
606
static unsigned int
607
ets_log2up(unsigned int x)
608
0
{
609
0
    return ets_log2(x-1)+1;
610
0
}
611
612
static int
613
compute_randshift(int nl, int rs_base, int levels)
614
0
{
615
0
    int rs = rs_base;
616
617
0
    if ((nl > (90 << (ETS_SHIFT - 10)) &&
618
0
         nl < (129 << (ETS_SHIFT - 10))) ||
619
0
        (nl > (162 << (ETS_SHIFT - 10)) &&
620
0
         nl < (180 << (ETS_SHIFT - 10))))
621
0
        rs--;
622
0
    else if (nl > (321 << (ETS_SHIFT - 10)) &&
623
0
             nl < (361 << (ETS_SHIFT - 10)))
624
0
    {
625
0
        rs--;
626
0
        if (nl > (331 << (ETS_SHIFT - 10)) &&
627
0
            nl < (351 << (ETS_SHIFT - 10)))
628
0
            rs--;
629
0
    }
630
0
    else if ((nl == (levels - 1) << ETS_SHIFT) &&
631
0
             nl > (((levels - 1) << ETS_SHIFT) -
632
0
                   (1 << (ETS_SHIFT - 2))))
633
0
    {
634
        /* don't add randomness in extreme shadows */
635
0
    }
636
0
    else if ((nl > (3 << (ETS_SHIFT - 2))))
637
0
    {
638
0
        nl -= (nl + (1 << (ETS_SHIFT - 2))) & -(1 << (ETS_SHIFT - 1));
639
0
        if (nl < 0) nl = -nl;
640
0
        if (nl < (1 << (ETS_SHIFT - 4))) rs--;
641
0
        if (nl < (1 << (ETS_SHIFT - 5))) rs--;
642
0
        if (nl < (1 << (ETS_SHIFT - 6))) rs--;
643
0
    }
644
0
    else
645
0
    {
646
0
        if (nl < (3 << (ETS_SHIFT - 3))) nl += 1 << (ETS_SHIFT - 2);
647
0
        nl = nl - (1 << (ETS_SHIFT - 1));
648
0
        if (nl < 0) nl = -nl;
649
0
        if (nl < (1 << (ETS_SHIFT - 4))) rs--;
650
0
        if (nl < (1 << (ETS_SHIFT - 5))) rs--;
651
0
        if (nl < (1 << (ETS_SHIFT - 6))) rs--;
652
0
    }
653
0
    return rs;
654
0
}
655
656
/**
657
 * ets_new: Create new Even ToneFS screening context.
658
 * @source_width: Width of source buffer.
659
 * @dest_width: Width of destination buffer, in pixels.
660
 * @lut: Lookup table for gray values.
661
 *
662
 * Creates a new context for Even ToneFS screening.
663
 *
664
 * If @dest_width is larger than @source_width, then input lines will
665
 * be expanded using nearest-neighbor sampling.
666
 *
667
 * @lut should be an array of 256 values, one for each possible input
668
 * gray value. @lut is a lookup table for gray values. Output is from
669
 * 0 for white (no ink) to ....
670
 *
671
 *
672
 * Return value: The new #EBPlaneCtx context.
673
 **/
674
static ETS_PlaneCtx *
675
ets_plane_new(void *malloc_arg, const ETS_Params *params, ETS_Ctx *etc, int plane_idx, int strength)
676
0
{
677
0
    int width = params->width;
678
0
    int *lut = params->luts[plane_idx];
679
0
    ETS_PlaneCtx *result;
680
0
    int i;
681
0
    int *new_lut = NULL;
682
0
    int *dist_lut = NULL;
683
0
    char *rs_lut = NULL;
684
0
    double distscale = compute_distscale(params);
685
0
    int c1;
686
0
    int rlimit;
687
0
    int log2_levels, log2_aspect;
688
0
    int rs_base;
689
690
0
    result = (ETS_PlaneCtx *)ets_malloc(malloc_arg, sizeof(ETS_PlaneCtx));
691
0
    if (result == NULL)
692
0
        goto fail;
693
694
0
    log2_levels = ets_log2(params->levels);
695
0
    log2_aspect = ets_log2(params->aspect_x) + ets_log2(params->aspect_y); /* FIXME */
696
0
    c1 = 6 + log2_aspect + log2_levels;
697
0
    if (params->c1_scale)
698
0
        c1 -= params->c1_scale[plane_idx];
699
0
    result->c1 = c1;
700
0
    rlimit = 1 << (30 - ETS_SHIFT + c1);
701
0
    result->tm_offset = TM_WIDTH/ets_log2up(params->n_planes);
702
0
    result->strength = strength;
703
704
    /* Set up a lut to map input values from the source domain to the
705
     * amount of ink. Callers can provide a lut of their own, which can be
706
     * used for gamma correction etc. In the absence of this, a linear
707
     * distribution is assumed. The user supplied lut should map from
708
     * 'amount of light' to 'gamma adjusted amount of light', as the code
709
     * subtracts the final value from (1<<ETS_SHIFT) (typically 65536) to
710
     * get 'amount of ink'. */
711
0
    new_lut = (int *)ets_malloc(malloc_arg, (ETS_SRC_MAX + 1) * sizeof(int));
712
0
    if (new_lut == NULL)
713
0
        goto fail;
714
0
    for (i = 0; i < ETS_SRC_MAX + 1; i++)
715
0
    {
716
0
        int nli;
717
718
0
        if (lut == NULL)
719
0
        {
720
0
#if ETS_SRC_MAX == 255
721
0
            nli = (i * 65793 + (i >> 7)) >> (24 - ETS_SHIFT);
722
#else
723
            nli = (i * ((double) (1 << ETS_SHIFT)) / ETS_SRC_MAX) + 0.5;
724
#endif
725
0
        }
726
0
        else
727
0
            nli = lut[i] >> (24 - ETS_SHIFT);
728
0
        if (params->polarity == ETS_BLACK_IS_ZERO)
729
0
            new_lut[i] = (1 << ETS_SHIFT) - nli;
730
0
        else
731
0
            new_lut[i] = nli;
732
0
    }
733
734
    /* Here we calculate 2 more lookup tables. These could be separated out
735
     * into 2 different loops, but are done in 1 to avoid a small amount of
736
     * recalculation.
737
     *   dist_lut[i] = expected distance between dots for a greyscale of level i
738
     *   rs_lut[i]   = whacky random noise scale factor.
739
     */
740
0
    dist_lut = (int *)ets_malloc(malloc_arg, (ETS_SRC_MAX + 1) * sizeof(int));
741
0
    if (dist_lut == NULL)
742
0
        goto fail;
743
0
    rs_lut   = (char *)ets_malloc(malloc_arg, (ETS_SRC_MAX + 1) * sizeof(int));
744
0
    if (rs_lut == NULL)
745
0
        goto fail;
746
747
0
    rs_base = 35 - ETS_SHIFT + log2_levels - params->rand_scale;
748
749
    /* The paper says that the expected 'value' for a grayshade g is:
750
     *     d_avg = 0.95 / 0.95/(g^2)
751
     * This seems wrong to me. Let's consider some common cases; for a given
752
     * greyscale, lay out the 'ideal' dithering, then consider removing each
753
     * set pixel in turn and measuring the distance between that pixel and
754
     * the closest set pixel.
755
     *
756
     * g = 1/2  #.#.#.#.   visibly, expected distance = SQR(2)
757
     *          .#.#.#.#
758
     *          #.#.#.#.
759
     *          .#.#.#.#
760
     *
761
     * g = 1/4  #.#.#.#.  expected distance = 2
762
     *          ........
763
     *          #.#.#.#.
764
     *          ........
765
     *
766
     * g = 1/16 #...#...  expected distance = 4
767
     *          ........
768
     *          ........
769
     *          ........
770
     *          #...#...
771
     *          ........
772
     *          ........
773
     *          ........
774
     *
775
     * This rough approach leads us to suspect that we should be finding
776
     * values roughly proportional to 1/SQR(g). Given the algorithm works in
777
     * terms of square distance, this means 1/g. This is at odds with the
778
     * value given in the paper. Being charitable and assuming that the paper
779
     * means 'squared distance' when it says 'value', we are still a square
780
     * off.
781
     *
782
     * Nonetheless, the code as supplied uses 0.95/g for the squared distance
783
     * (i.e. it appears to agree with our logic here).
784
     */
785
0
    for (i = 0; i <= ETS_SRC_MAX; i++)
786
0
    {
787
0
        double dist;
788
0
        int nl = new_lut[i] * (params->levels - 1);
789
0
        int rs;
790
791
        /* This is (or is supposed to be) equation 5 from the paper. If nl
792
         * is g, why aren't we dividing by nl*nl ? */
793
0
        if (nl == 0)
794
0
        {
795
            /* The expected distance for an ink level of 0 is infinite. Just
796
             * put 0! */
797
0
            dist = 0;
798
0
        }
799
0
        else if (nl >= ((1<<ETS_SHIFT)/(params->levels-1)))
800
0
        {
801
            /* New from RJW: Our distance measurements are only meaningful
802
             * within the bottom 'level band' of the output. Do not apply
803
             * ETS to higher ink levels. */
804
0
            dist = 0;
805
0
        }
806
0
        else
807
0
        {
808
0
            dist = (distscale * (1 << (2 * ETS_SHIFT - c1))) / nl;
809
0
            if (dist > rlimit << (ETS_SHIFT - c1))
810
0
                dist = rlimit << (ETS_SHIFT - c1);
811
0
        }
812
813
0
        if (params->rand_scale_luts == NULL)
814
0
        {
815
0
            rs = compute_randshift(nl, rs_base, params->levels);
816
0
            rs_lut[i] = rs;
817
0
        }
818
0
        else
819
0
        {
820
0
            int val = params->rand_scale_luts[plane_idx][i];
821
822
0
            rs_lut[i] = rs_base + 16 - ets_log2(val + (val >> 1));
823
0
        }
824
0
        dist_lut[i] = (int)dist;
825
0
    }
826
827
0
    result->lut = new_lut;
828
0
    result->dist_lut = dist_lut;
829
0
    result->rs_lut = rs_lut;
830
831
0
    result->line = (ETS_PixelData *)ets_calloc(malloc_arg, width, sizeof(ETS_PixelData));
832
0
    if (result->line == NULL)
833
0
        goto fail;
834
0
    for (i = 0; i < width; i++)
835
0
    {
836
0
        result->line[i].a = 1;
837
0
        result->line[i].b = 1;
838
        /* Initialize error with a non zero random value to ensure dots don't
839
           land on dots when we have same planes with same gray level and
840
           the plane interaction option is turned off.  Ideally the level
841
           of this error should be based upon the values of the first line
842
           to ensure that things get primed properly */
843
0
        result->line[i].err = -((rand () & 0x7fff) << 6) >> (24 - ETS_SHIFT);
844
0
    }
845
846
0
    return result;
847
0
fail:
848
0
    if (result)
849
0
    {
850
0
        ets_free(malloc_arg, new_lut);
851
0
        ets_free(malloc_arg, dist_lut);
852
0
        ets_free(malloc_arg, rs_lut);
853
0
        ets_free(malloc_arg, result->line);
854
0
    }
855
0
    ets_free(malloc_arg, result);
856
0
    return NULL;
857
0
}
858
859
860
/**
861
 * ets_destroy: Destroy an #EvenBetterCtx context.
862
 * @ctx: The #EvenBetterCtx context to destroy.
863
 *
864
 * Frees @ctx.
865
 **/
866
void
867
ets_destroy(void *malloc_arg, ETS_Ctx *ctx)
868
0
{
869
0
    int i;
870
0
    int n_planes;
871
872
0
    if (ctx == NULL)
873
0
        return;
874
875
0
    if (ctx->dump_file)
876
0
        fclose(ctx->dump_file);
877
878
0
    n_planes = ctx->n_planes;
879
0
    for (i = 0; i < n_planes; i++)
880
0
        ets_plane_free(malloc_arg, ctx->plane_ctx[i]);
881
0
    ets_free(malloc_arg,ctx->plane_ctx);
882
0
    ets_free(malloc_arg, ctx->c_line);
883
884
0
    ets_free(malloc_arg, ctx);
885
0
}
886
887
ETS_Ctx *
888
ets_create(void *malloc_arg, const ETS_Params *params)
889
0
{
890
0
    ETS_Ctx *result = (ETS_Ctx *)ets_malloc(malloc_arg, sizeof(ETS_Ctx));
891
0
    int n_planes = params->n_planes;
892
0
    int i;
893
894
0
    if (result == NULL)
895
0
        return NULL;
896
897
0
    if (params->dump_file)
898
0
    {
899
0
        int header[5];
900
901
0
        header[0] = 0x70644245;
902
0
        header[1] = 'M' * 0x1010000 + 'I' * 0x101;
903
0
        header[2] = ETS_VERSION;
904
0
        header[3] = ETS_SRC_MAX;
905
0
        header[4] = sizeof(ETS_SrcPixel);
906
0
        fwrite(header, sizeof(int), sizeof(header) / sizeof(header[0]),
907
0
               params->dump_file);
908
0
        if (params->dump_level >= ETS_DUMP_PARAMS)
909
0
        {
910
0
            fwrite(params, 1, sizeof(ETS_Params), params->dump_file);
911
0
        }
912
0
        if (params->dump_level >= ETS_DUMP_LUTS)
913
0
        {
914
0
            for (i = 0; i < params->n_planes; i++)
915
0
                fwrite(params->luts[i], sizeof(int), ETS_SRC_MAX + 1,
916
0
                       params->dump_file);
917
0
        }
918
0
    }
919
920
0
    result->width = params->width;
921
0
    result->n_planes = n_planes;
922
0
    result->levels = params->levels;
923
924
0
    result->aspect_x = params->aspect_x;
925
0
    result->aspect_y = params->aspect_y;
926
927
0
    result->ehi = (int)(0.6 * (1 << ETS_SHIFT) / (params->levels - 1));
928
0
    result->elo = -result->ehi;
929
930
0
    result->ets_bias = params->ets_bias;
931
0
    result->r_style = params->r_style;
932
933
0
    result->c_line = (int *)ets_calloc(malloc_arg, params->width, sizeof(int));
934
935
0
    result->seeds[0] = 0x5324879f;
936
0
    result->seeds[1] = 0xb78d0945;
937
938
0
    result->dump_file = params->dump_file;
939
0
    result->dump_level = params->dump_level;
940
941
0
    result->plane_ctx = (ETS_PlaneCtx **)ets_calloc(malloc_arg, n_planes, sizeof(ETS_PlaneCtx *));
942
0
    if (result->plane_ctx == NULL)
943
0
        goto fail;
944
0
    for (i = 0; i < n_planes; i++)
945
0
    {
946
0
        result->plane_ctx[i] = ets_plane_new(malloc_arg, params, result, i, params->strengths[i]);
947
0
        if (result->plane_ctx[i] == NULL)
948
0
            goto fail;
949
0
    }
950
0
    result->y = 0;
951
0
    result->tmmat = tmmat;
952
0
    result->tmwidth = TM_WIDTH;
953
0
    result->tmheight = TM_HEIGHT;
954
955
    /* Can replace this with optimised versions - for now, just the random ones. */
956
0
    switch (result->r_style)
957
0
    {
958
0
    default:
959
0
    case ETS_RSTYLE_NONE:
960
0
        result->line_fn = ets_line_none;
961
0
        break;
962
0
    case ETS_RSTYLE_THRESHOLD:
963
0
        result->line_fn = ets_line_threshold;
964
0
        break;
965
0
    case ETS_RSTYLE_PSEUDO:
966
0
        result->line_fn = ets_line_pseudo;
967
0
        break;
968
0
    }
969
970
0
    return result;
971
972
0
fail:
973
0
    ets_destroy(malloc_arg, result);
974
0
    return NULL;
975
0
}