/src/ghostpdl/base/gdevabuf.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* Copyright (C) 2001-2023 Artifex Software, Inc. |
2 | | All Rights Reserved. |
3 | | |
4 | | This software is provided AS-IS with no warranty, either express or |
5 | | implied. |
6 | | |
7 | | This software is distributed under license and may not be copied, |
8 | | modified or distributed except as expressly authorized under the terms |
9 | | of the license contained in the file LICENSE in this distribution. |
10 | | |
11 | | Refer to licensing information at http://www.artifex.com or contact |
12 | | Artifex Software, Inc., 39 Mesa Street, Suite 108A, San Francisco, |
13 | | CA 94129, USA, for further information. |
14 | | */ |
15 | | |
16 | | /* Alpha-buffering memory devices */ |
17 | | #include "memory_.h" |
18 | | #include "gx.h" |
19 | | #include "gserrors.h" |
20 | | #include "gxdevice.h" |
21 | | #include "gxdevmem.h" /* semi-public definitions */ |
22 | | #include "gdevmem.h" /* private definitions */ |
23 | | #include "gzstate.h" |
24 | | #include "gxdevcli.h" |
25 | | #include "gxdevsop.h" |
26 | | |
27 | | /* ================ Alpha devices ================ */ |
28 | | |
29 | | /* |
30 | | * These devices store 2 or 4 bits of alpha. They are a hybrid of a |
31 | | * monobit device (for color mapping) and a 2- or 4-bit device (for painting). |
32 | | * Currently, we only use them for character rasterizing, but they might be |
33 | | * useful for other things someday. |
34 | | */ |
35 | | |
36 | | /* ================ Alpha-buffer device ================ */ |
37 | | |
38 | | /* |
39 | | * This device converts graphics sampled at a higher resolution to |
40 | | * alpha values at a lower resolution. It does this by accumulating |
41 | | * the bits of a band and then converting the band to alphas. |
42 | | * In order to make this work, the client of the device must promise |
43 | | * only to visit each band at most once, except possibly for a single |
44 | | * scan line overlapping the adjacent band, and must promise only to write |
45 | | * a single color into the output. In particular, this works |
46 | | * within a single call on gx_fill_path (if the fill loop is constrained |
47 | | * to process bands of limited height on each pass) or a single masked image |
48 | | * scanned in Y order, but not across such calls and not for other |
49 | | * kinds of painting operations. |
50 | | * |
51 | | * We implement this device as a subclass of a monobit memory device. |
52 | | * (We put its state in the definition of gx_device_memory just because |
53 | | * actual subclassing introduces a lot of needless boilerplate.) |
54 | | * We only allocate enough bits for one band. The height of the band |
55 | | * must be a multiple of the Y scale factor; the minimum height |
56 | | * of the band is twice the Y scale factor. |
57 | | * |
58 | | * The bits in storage are actually a sliding window on the true |
59 | | * oversampled image. To avoid having to copy the bits around when we |
60 | | * move the window, we adjust the mapping between the client's Y values |
61 | | * and our own, as follows: |
62 | | * Client Stored |
63 | | * ------ ------ |
64 | | * y0..y0+m-1 n-m..n-1 |
65 | | * y0+m..y0+n-1 0..n-m-1 |
66 | | * where n and m are multiples of the Y scale factor and 0 <= m <= n <= |
67 | | * the height of the band. (In the device structure, m is called |
68 | | * mapped_start and n is called mapped_height.) This allows us to slide |
69 | | * the window incrementally in either direction without copying any bits. |
70 | | */ |
71 | | |
72 | | /* Procedures */ |
73 | | static dev_proc_close_device(mem_abuf_close); |
74 | | static dev_proc_copy_mono(mem_abuf_copy_mono); |
75 | | static dev_proc_fill_rectangle(mem_abuf_fill_rectangle); |
76 | | static dev_proc_get_clipping_box(mem_abuf_get_clipping_box); |
77 | | static dev_proc_fill_rectangle_hl_color(mem_abuf_fill_rectangle_hl_color); |
78 | | static dev_proc_fill_stroke_path(mem_abuf_fill_stroke_path); |
79 | | |
80 | | /* The device descriptor. */ |
81 | | static void |
82 | | mem_alpha_initialize_device_procs(gx_device *dev) |
83 | 0 | { |
84 | 0 | mem_initialize_device_procs(dev); |
85 | |
|
86 | 0 | set_dev_proc(dev, map_rgb_color, gx_forward_map_rgb_color); |
87 | 0 | set_dev_proc(dev, map_color_rgb, gx_forward_map_color_rgb); |
88 | 0 | set_dev_proc(dev, fill_rectangle, mem_abuf_fill_rectangle); |
89 | 0 | set_dev_proc(dev, copy_mono, mem_abuf_copy_mono); |
90 | 0 | set_dev_proc(dev, copy_color, gx_default_copy_color); |
91 | 0 | set_dev_proc(dev, strip_copy_rop2, gx_no_strip_copy_rop2); |
92 | 0 | set_dev_proc(dev, fill_rectangle_hl_color, mem_abuf_fill_rectangle_hl_color); |
93 | 0 | set_dev_proc(dev, fill_stroke_path, mem_abuf_fill_stroke_path); |
94 | 0 | } |
95 | | |
96 | | static const gx_device_memory mem_alpha_buffer_device = |
97 | | mem_device("image(alpha buffer)", 0, 1, mem_alpha_initialize_device_procs); |
98 | | |
99 | | /* Make an alpha-buffer memory device. */ |
100 | | /* We use abuf instead of alpha_buffer because */ |
101 | | /* gcc under VMS only retains 23 characters of procedure names. */ |
102 | | void |
103 | | gs_make_mem_abuf_device(gx_device_memory * adev, gs_memory_t * mem, |
104 | | gx_device * target, const gs_log2_scale_point * pscale, |
105 | | int alpha_bits, int mapped_x, bool devn) |
106 | 0 | { |
107 | 0 | gs_make_mem_device(adev, &mem_alpha_buffer_device, mem, 0, target); |
108 | 0 | adev->max_fill_band = 1 << pscale->y; |
109 | 0 | adev->log2_scale = *pscale; |
110 | 0 | adev->log2_alpha_bits = alpha_bits >> 1; /* works for 1,2,4 */ |
111 | 0 | adev->mapped_x = mapped_x; |
112 | 0 | set_dev_proc(adev, close_device, mem_abuf_close); |
113 | 0 | set_dev_proc(adev, get_clipping_box, mem_abuf_get_clipping_box); |
114 | 0 | if (!devn) |
115 | 0 | adev->save_hl_color = NULL; /* This is the test for when we flush the |
116 | | the buffer as to what copy_alpha type |
117 | | use */ |
118 | 0 | adev->color_info.anti_alias.text_bits = |
119 | 0 | adev->color_info.anti_alias.graphics_bits = |
120 | 0 | alpha_bits; |
121 | 0 | adev->graphics_type_tag = target->graphics_type_tag; |
122 | 0 | } |
123 | | |
124 | | /* Test whether a device is an alpha-buffering device. */ |
125 | | bool |
126 | | gs_device_is_abuf(const gx_device * dev) |
127 | 20.0M | { /* We can't just compare the procs, or even an individual proc, */ |
128 | | /* because we might be tracing. Instead, check the identity of */ |
129 | | /* the device name. */ |
130 | 20.0M | return dev->dname == mem_alpha_buffer_device.dname; |
131 | 20.0M | } |
132 | | |
133 | | /* Internal routine to flush a block of the buffer. */ |
134 | | /* A block is a group of scan lines whose initial Y is a multiple */ |
135 | | /* of the Y scale and whose height is equal to the Y scale. */ |
136 | | static int |
137 | | abuf_flush_block(gx_device_memory * adev, int y) |
138 | 0 | { |
139 | 0 | gx_device *target = adev->target; |
140 | 0 | int block_height = 1 << adev->log2_scale.y; |
141 | 0 | int alpha_bits = 1 << adev->log2_alpha_bits; |
142 | 0 | int ddepth = |
143 | 0 | (adev->width >> adev->log2_scale.x) << adev->log2_alpha_bits; |
144 | 0 | uint draster = bitmap_raster(ddepth); |
145 | 0 | int buffer_y = y - adev->mapped_y + adev->mapped_start; |
146 | 0 | byte *bits; |
147 | |
|
148 | 0 | if (buffer_y >= adev->height) |
149 | 0 | buffer_y -= adev->height; |
150 | 0 | bits = scan_line_base(adev, buffer_y); |
151 | 0 | {/* |
152 | | * Many bits are typically zero. Save time by computing |
153 | | * an accurate X bounding box before compressing. |
154 | | * Unfortunately, in order to deal with alpha nibble swapping |
155 | | * (see gsbitops.c), we can't expand the box only to pixel |
156 | | * boundaries: |
157 | | int alpha_mask = -1 << adev->log2_alpha_bits; |
158 | | * Instead, we must expand it to byte boundaries, |
159 | | */ |
160 | 0 | int alpha_mask = ~7; |
161 | 0 | gs_int_rect bbox; |
162 | 0 | int width; |
163 | |
|
164 | 0 | bits_bounding_box(bits, block_height, adev->raster, &bbox); |
165 | 0 | bbox.p.x &= alpha_mask; |
166 | 0 | bbox.q.x = (bbox.q.x + ~alpha_mask) & alpha_mask; |
167 | 0 | width = bbox.q.x - bbox.p.x; |
168 | 0 | bits_compress_scaled(bits, bbox.p.x, width, block_height, |
169 | 0 | adev->raster, bits, draster, &adev->log2_scale, |
170 | 0 | adev->log2_alpha_bits); |
171 | | /* Set up with NULL when adev initialized */ |
172 | 0 | if (adev->save_hl_color == NULL) { |
173 | 0 | return (*dev_proc(target, copy_alpha)) (target, |
174 | 0 | bits, 0, draster, gx_no_bitmap_id, |
175 | 0 | (adev->mapped_x + bbox.p.x) >> |
176 | 0 | adev->log2_scale.x, |
177 | 0 | y >> adev->log2_scale.y, |
178 | 0 | width >> adev->log2_scale.x, 1, |
179 | 0 | adev->save_color, alpha_bits); |
180 | 0 | } else { |
181 | 0 | return (*dev_proc(target, copy_alpha_hl_color)) (target, |
182 | 0 | bits, 0, draster, gx_no_bitmap_id, |
183 | 0 | (adev->mapped_x + bbox.p.x) >> |
184 | 0 | adev->log2_scale.x, |
185 | 0 | y >> adev->log2_scale.y, |
186 | 0 | width >> adev->log2_scale.x, 1, |
187 | 0 | adev->save_hl_color, alpha_bits); |
188 | 0 | } |
189 | 0 | } |
190 | 0 | } |
191 | | /* Flush the entire buffer. */ |
192 | | static int |
193 | | abuf_flush(gx_device_memory * adev) |
194 | 0 | { |
195 | 0 | int y, code = 0; |
196 | 0 | int block_height = 1 << adev->log2_scale.y; |
197 | |
|
198 | 0 | for (y = 0; y < adev->mapped_height; y += block_height) |
199 | 0 | if ((code = abuf_flush_block(adev, adev->mapped_y + y)) < 0) |
200 | 0 | return code; |
201 | 0 | adev->mapped_height = adev->mapped_start = 0; |
202 | 0 | return 0; |
203 | 0 | } |
204 | | |
205 | | /* Close the device, flushing the buffer. */ |
206 | | static int |
207 | | mem_abuf_close(gx_device * dev) |
208 | 0 | { |
209 | 0 | gx_device_memory * const mdev = (gx_device_memory *)dev; |
210 | 0 | int code = abuf_flush(mdev); |
211 | |
|
212 | 0 | if (code < 0) |
213 | 0 | return code; |
214 | 0 | return mem_close(dev); |
215 | 0 | } |
216 | | |
217 | | /* |
218 | | * Framework for mapping a requested imaging operation to the buffer. |
219 | | * For now, we assume top-to-bottom transfers and use a very simple algorithm. |
220 | | */ |
221 | | typedef struct y_transfer_s { |
222 | | int y_next; |
223 | | int height_left; |
224 | | int transfer_y; |
225 | | int transfer_height; |
226 | | } y_transfer; |
227 | | static int |
228 | | y_transfer_init(y_transfer * pyt, gx_device * dev, int ty, int th) |
229 | 0 | { |
230 | 0 | gx_device_memory * const mdev = (gx_device_memory *)dev; |
231 | 0 | int bh = 1 << mdev->log2_scale.y; |
232 | |
|
233 | 0 | if (ty < mdev->mapped_y || ty > mdev->mapped_y + mdev->mapped_height) { |
234 | 0 | int code = abuf_flush(mdev); |
235 | 0 | if (code < 0) |
236 | 0 | return code; |
237 | 0 | mdev->mapped_y = ty & -bh; |
238 | 0 | mdev->mapped_height = bh; |
239 | 0 | memset(scan_line_base(mdev, 0), 0, (size_t)bh * mdev->raster); |
240 | 0 | } |
241 | 0 | pyt->y_next = ty; |
242 | 0 | pyt->height_left = th; |
243 | 0 | pyt->transfer_height = 0; |
244 | |
|
245 | 0 | return 0; |
246 | 0 | } |
247 | | /* while ( yt.height_left > 0 ) { y_transfer_next(&yt, mdev); ... } */ |
248 | | static int |
249 | | y_transfer_next(y_transfer * pyt, gx_device * dev) |
250 | 0 | { |
251 | 0 | gx_device_memory * const mdev = (gx_device_memory *)dev; |
252 | 0 | int my = mdev->mapped_y, mh = mdev->mapped_height; |
253 | 0 | int ms = mdev->mapped_start; |
254 | 0 | int ty = pyt->y_next += pyt->transfer_height; |
255 | 0 | int th = pyt->height_left; |
256 | 0 | int bh = 1 << mdev->log2_scale.y; |
257 | | |
258 | | /* From here on, we know that my <= ty <= my + mh. */ |
259 | 0 | int tby, tbh; |
260 | |
|
261 | 0 | if (ty == my + mh) { /* Add a new block at my1. */ |
262 | 0 | if (mh == mdev->height) { |
263 | 0 | int code = abuf_flush_block(mdev, my); |
264 | |
|
265 | 0 | if (code < 0) |
266 | 0 | return code; |
267 | 0 | mdev->mapped_y = my += bh; |
268 | 0 | if ((mdev->mapped_start = ms += bh) == mh) |
269 | 0 | mdev->mapped_start = ms = 0; |
270 | 0 | } else { /* Because we currently never extend backwards, */ |
271 | | /* we know we can't wrap around in this case. */ |
272 | 0 | mdev->mapped_height = mh += bh; |
273 | 0 | } |
274 | 0 | memset(scan_line_base(mdev, (ms == 0 ? mh : ms) - bh), |
275 | 0 | 0, (size_t)bh * mdev->raster); |
276 | 0 | } |
277 | | /* Now we know that my <= ty < my + mh. */ |
278 | 0 | tby = ty - my + ms; |
279 | 0 | if (tby < mdev->height) { |
280 | 0 | tbh = mdev->height - ms; |
281 | 0 | if (tbh > mh) |
282 | 0 | tbh = mh; |
283 | 0 | tbh -= tby - ms; |
284 | 0 | } else { /* wrap around */ |
285 | 0 | tby -= mdev->height; |
286 | 0 | tbh = ms + mh - dev->height - tby; |
287 | 0 | } |
288 | 0 | if_debug7m('V', mdev->memory, |
289 | 0 | "[V]abuf: my=%d, mh=%d, ms=%d, ty=%d, th=%d, tby=%d, tbh=%d\n", |
290 | 0 | my, mh, ms, ty, th, tby, tbh); |
291 | 0 | if (tbh > th) |
292 | 0 | tbh = th; |
293 | 0 | pyt->height_left = th - tbh; |
294 | 0 | pyt->transfer_y = tby; |
295 | 0 | pyt->transfer_height = tbh; |
296 | 0 | return 0; |
297 | 0 | } |
298 | | |
299 | | /* Copy a monobit image. */ |
300 | | static int |
301 | | mem_abuf_copy_mono(gx_device * dev, |
302 | | const byte * base, int sourcex, int sraster, gx_bitmap_id id, |
303 | | int x, int y, int w, int h, gx_color_index zero, gx_color_index one) |
304 | 0 | { |
305 | 0 | gx_device_memory * const mdev = (gx_device_memory *)dev; |
306 | 0 | y_transfer yt; |
307 | 0 | int code; |
308 | |
|
309 | 0 | if (zero != gx_no_color_index || one == gx_no_color_index) |
310 | 0 | return_error(gs_error_undefinedresult); |
311 | 0 | x -= mdev->mapped_x; |
312 | 0 | fit_copy_xyw(dev, base, sourcex, sraster, id, x, y, w, h); /* don't limit h */ |
313 | 0 | if (w <= 0 || h <= 0) |
314 | 0 | return 0; |
315 | 0 | if (mdev->mapped_height != 0 && mdev->save_color != one) { |
316 | | /* Color has changed. Better flush. */ |
317 | 0 | int code = abuf_flush(mdev); |
318 | 0 | if (code < 0) |
319 | 0 | return code; |
320 | 0 | } |
321 | 0 | mdev->save_color = one; |
322 | 0 | code = y_transfer_init(&yt, dev, y, h); |
323 | 0 | if (code < 0) |
324 | 0 | return code; |
325 | 0 | while (yt.height_left > 0) { |
326 | 0 | code = y_transfer_next(&yt, dev); |
327 | 0 | if (code < 0) |
328 | 0 | return code; |
329 | 0 | code = mem_mono_copy_mono(dev, |
330 | 0 | base + (yt.y_next - y) * sraster, |
331 | 0 | sourcex, sraster, gx_no_bitmap_id, |
332 | 0 | x, yt.transfer_y, w, yt.transfer_height, |
333 | 0 | gx_no_color_index, (gx_color_index) 1); |
334 | 0 | if (code < 0) |
335 | 0 | return code; |
336 | 0 | } |
337 | 0 | return 0; |
338 | 0 | } |
339 | | |
340 | | /* Fill a rectangle. */ |
341 | | static int |
342 | | mem_abuf_fill_rectangle(gx_device * dev, int x, int y, int w, int h, |
343 | | gx_color_index color) |
344 | 0 | { |
345 | 0 | gx_device_memory * const mdev = (gx_device_memory *)dev; |
346 | 0 | y_transfer yt; |
347 | 0 | int code; |
348 | |
|
349 | 0 | x -= mdev->mapped_x; |
350 | 0 | fit_fill_xy(dev, x, y, w, h); |
351 | 0 | fit_fill_w(dev, x, w); /* don't limit h */ |
352 | | /* or check w <= 0, h <= 0 */ |
353 | 0 | if (mdev->mapped_height != 0 && mdev->save_color != color) { |
354 | | /* Color has changed. Better flush. */ |
355 | 0 | int code = abuf_flush(mdev); |
356 | 0 | if (code < 0) |
357 | 0 | return code; |
358 | 0 | } |
359 | 0 | mdev->save_color = color; |
360 | 0 | code = y_transfer_init(&yt, dev, y, h); |
361 | 0 | if (code < 0) |
362 | 0 | return code; |
363 | 0 | while (yt.height_left > 0) { |
364 | 0 | code = y_transfer_next(&yt, dev); |
365 | 0 | if (code < 0) |
366 | 0 | return code; |
367 | 0 | code = mem_mono_fill_rectangle(dev, x, yt.transfer_y, |
368 | 0 | w, yt.transfer_height, |
369 | 0 | (gx_color_index) 1); |
370 | 0 | if (code < 0) |
371 | 0 | return code; |
372 | 0 | } |
373 | 0 | return 0; |
374 | 0 | } |
375 | | |
376 | | /* Fill a rectangle. */ |
377 | | static int |
378 | | mem_abuf_fill_rectangle_hl_color(gx_device * dev, const gs_fixed_rect *rect, |
379 | | const gs_gstate *pgs, |
380 | | const gx_drawing_color *pdcolor, |
381 | | const gx_clip_path *pcpath) |
382 | 0 | { |
383 | 0 | gx_device_memory * const mdev = (gx_device_memory *)dev; |
384 | 0 | y_transfer yt; |
385 | 0 | int x = fixed2int(rect->p.x); |
386 | 0 | int y = fixed2int(rect->p.y); |
387 | 0 | int w = fixed2int(rect->q.x) - x; |
388 | 0 | int h = fixed2int(rect->q.y) - y; |
389 | 0 | int code; |
390 | 0 | (void)pgs; |
391 | |
|
392 | 0 | x -= mdev->mapped_x; |
393 | 0 | fit_fill_xy(dev, x, y, w, h); |
394 | 0 | fit_fill_w(dev, x, w); /* don't limit h */ |
395 | | /* or check w <= 0, h <= 0 */ |
396 | 0 | if (mdev->mapped_height != 0 && |
397 | 0 | memcmp(mdev->save_hl_color, pdcolor, sizeof(*pdcolor)) != 0) { |
398 | | /* Color has changed. Better flush. */ |
399 | 0 | int code = abuf_flush(mdev); |
400 | 0 | if (code < 0) |
401 | 0 | return code; |
402 | 0 | } |
403 | 0 | mdev->save_hl_color = pdcolor; |
404 | 0 | code = y_transfer_init(&yt, dev, y, h); |
405 | 0 | if (code < 0) |
406 | 0 | return code; |
407 | 0 | while (yt.height_left > 0) { |
408 | 0 | code = y_transfer_next(&yt, dev); |
409 | 0 | if (code < 0) |
410 | 0 | return code; |
411 | 0 | code = mem_mono_fill_rectangle(dev, x, yt.transfer_y, |
412 | 0 | w, yt.transfer_height, |
413 | 0 | (gx_color_index) 1); |
414 | 0 | if (code < 0) |
415 | 0 | return code; |
416 | 0 | } |
417 | 0 | return 0; |
418 | 0 | } |
419 | | |
420 | | /* |
421 | | * Fill/Stroke a path. This is the default implementation of the driver |
422 | | * fill_path procedure. |
423 | | */ |
424 | | int |
425 | | mem_abuf_fill_stroke_path(gx_device * pdev, const gs_gstate * pgs, |
426 | | gx_path * ppath, |
427 | | const gx_fill_params * params_fill, |
428 | | const gx_device_color * pdevc_fill, |
429 | | const gx_stroke_params * params_stroke, |
430 | | const gx_device_color * pdevc_stroke, |
431 | | const gx_clip_path * pcpath) |
432 | 0 | { |
433 | 0 | int code = 0; |
434 | 0 | int code1; |
435 | 0 | int has_comp = 1; |
436 | 0 | overprint_abuf_state_t param; |
437 | 0 | gx_device_memory* const mdev = (gx_device_memory*)pdev; |
438 | |
|
439 | 0 | param.op_trans = OP_FS_TRANS_PREFILL; |
440 | 0 | param.pgs = pgs; |
441 | 0 | param.pcpath = pcpath; |
442 | 0 | param.ppath = ppath; |
443 | 0 | param.alpha_buf_path_scale = mdev->log2_scale; |
444 | | |
445 | | /* Tell any overprint compositor (maybe a pdf14 device) that's listening to get ready for a fill/stroke. */ |
446 | 0 | code = dev_proc(pdev, dev_spec_op)(pdev, gxdso_abuf_optrans, ¶m, sizeof(param)); |
447 | 0 | if (code == gs_error_undefined) |
448 | 0 | has_comp = false; /* No compositor listening. */ |
449 | 0 | else if (code < 0) |
450 | 0 | return code; /* Any other error is real. */ |
451 | | |
452 | | /* Do the fill. */ |
453 | 0 | code = dev_proc(pdev, fill_path)(pdev, pgs, ppath, params_fill, pdevc_fill, pcpath); |
454 | 0 | if (code < 0) { |
455 | | /* If the fill failed do any tidy up necessary. */ |
456 | 0 | if (has_comp) { |
457 | 0 | param.op_trans = OP_FS_TRANS_CLEANUP; |
458 | 0 | code1 = dev_proc(pdev, dev_spec_op)(pdev, gxdso_abuf_optrans, ¶m, sizeof(param)); |
459 | 0 | if (code1 < 0) |
460 | 0 | code = code1; /* If the pdf14 cleanup failed that is (more) fatal! */ |
461 | 0 | } |
462 | 0 | return code; |
463 | 0 | } |
464 | 0 | abuf_flush(mdev); |
465 | | |
466 | | /* Handle stroke */ |
467 | 0 | gs_swapcolors_quick(pgs); |
468 | 0 | if (has_comp) { |
469 | 0 | param.op_trans = OP_FS_TRANS_PRESTROKE; |
470 | 0 | code = dev_proc(pdev, dev_spec_op)(pdev, gxdso_abuf_optrans, ¶m, sizeof(param)); |
471 | 0 | if (code < 0) |
472 | 0 | { |
473 | 0 | gs_swapcolors_quick(pgs); |
474 | 0 | return code; |
475 | 0 | } |
476 | 0 | } |
477 | 0 | code = dev_proc(pdev, stroke_path)(pdev, pgs, ppath, params_stroke, pdevc_stroke, pcpath); |
478 | 0 | abuf_flush(mdev); |
479 | 0 | gs_swapcolors_quick(pgs); |
480 | | |
481 | | /* Tell the compositors we're done. */ |
482 | 0 | if (has_comp) { |
483 | 0 | param.op_trans = OP_FS_TRANS_POSTSTROKE; |
484 | 0 | code1 = dev_proc(pdev, dev_spec_op)(pdev, gxdso_abuf_optrans, ¶m, sizeof(param)); |
485 | 0 | if (code >= 0) |
486 | 0 | code = code1; |
487 | 0 | } |
488 | 0 | return code; |
489 | 0 | } |
490 | | |
491 | | /* Get the clipping box. We must scale this up by the number of alpha bits. */ |
492 | | static void |
493 | | mem_abuf_get_clipping_box(gx_device * dev, gs_fixed_rect * pbox) |
494 | 0 | { |
495 | 0 | gx_device_memory * const mdev = (gx_device_memory *)dev; |
496 | 0 | gx_device *tdev = mdev->target; |
497 | |
|
498 | 0 | (*dev_proc(tdev, get_clipping_box)) (tdev, pbox); |
499 | 0 | pbox->p.x <<= mdev->log2_scale.x; |
500 | 0 | pbox->p.y <<= mdev->log2_scale.y; |
501 | 0 | pbox->q.x <<= mdev->log2_scale.x; |
502 | 0 | pbox->q.y <<= mdev->log2_scale.y; |
503 | 0 | } |
504 | | |
505 | | /* |
506 | | * Determine the number of bits of alpha buffer for a stroke or fill. |
507 | | * We should do alpha buffering iff this value is >1. |
508 | | */ |
509 | | int |
510 | | alpha_buffer_bits(gs_gstate * pgs) |
511 | 13.9M | { |
512 | 13.9M | gx_device *dev; |
513 | | |
514 | 13.9M | dev = gs_currentdevice_inline(pgs); |
515 | 13.9M | if (gs_device_is_abuf(dev)) { |
516 | | /* We're already writing into an alpha buffer. */ |
517 | 0 | return 0; |
518 | 0 | } |
519 | 13.9M | return (*dev_proc(dev, get_alpha_bits)) |
520 | 13.9M | (dev, (pgs->in_cachedevice ? go_text : go_graphics)); |
521 | 13.9M | } |