/src/ghostpdl/base/gdevplnx.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* Copyright (C) 2001-2023 Artifex Software, Inc. |
2 | | All Rights Reserved. |
3 | | |
4 | | This software is provided AS-IS with no warranty, either express or |
5 | | implied. |
6 | | |
7 | | This software is distributed under license and may not be copied, |
8 | | modified or distributed except as expressly authorized under the terms |
9 | | of the license contained in the file LICENSE in this distribution. |
10 | | |
11 | | Refer to licensing information at http://www.artifex.com or contact |
12 | | Artifex Software, Inc., 39 Mesa Street, Suite 108A, San Francisco, |
13 | | CA 94129, USA, for further information. |
14 | | */ |
15 | | |
16 | | |
17 | | /* Plane extraction device */ |
18 | | #include "gx.h" |
19 | | #include "gserrors.h" |
20 | | #include "gsbitops.h" |
21 | | #include "gsrop.h" /* for logical op access */ |
22 | | #include "gsstruct.h" |
23 | | #include "gsutil.h" |
24 | | #include "gxdcolor.h" |
25 | | #include "gxcmap.h" /* requires gxdcolor.h */ |
26 | | #include "gxdevice.h" |
27 | | #include "gxdevmem.h" |
28 | | #include "gxdither.h" |
29 | | #include "gxgetbit.h" |
30 | | #include "gxiparam.h" |
31 | | #include "gxgstate.h" |
32 | | #include "gsstate.h" |
33 | | #include "gdevplnx.h" |
34 | | |
35 | | /* Define the size of the locally allocated bitmap buffers. */ |
36 | | #define COPY_COLOR_BUF_SIZE 100 |
37 | | #define TILE_RECTANGLE_BUF_SIZE 100 |
38 | | #define COPY_ROP_SOURCE_BUF_SIZE 100 |
39 | | #define COPY_ROP_TEXTURE_BUF_SIZE 100 |
40 | | |
41 | | /* GC procedures */ |
42 | | static |
43 | 0 | ENUM_PTRS_WITH(device_plane_extract_enum_ptrs, gx_device_plane_extract *edev) |
44 | 0 | ENUM_PREFIX(st_device_forward, 1); |
45 | 0 | case 0: ENUM_RETURN(gx_device_enum_ptr(edev->target)); |
46 | 0 | ENUM_PTRS_END |
47 | 0 | static RELOC_PTRS_WITH(device_plane_extract_reloc_ptrs, gx_device_plane_extract *edev) |
48 | 0 | { |
49 | 0 | RELOC_PREFIX(st_device_forward); |
50 | 0 | edev->plane_dev = gx_device_reloc_ptr(edev->plane_dev, gcst); |
51 | 0 | } |
52 | 0 | RELOC_PTRS_END |
53 | | public_st_device_plane_extract(); |
54 | | |
55 | | /* Driver procedures */ |
56 | | static dev_proc_open_device(plane_open_device); |
57 | | static dev_proc_fill_rectangle(plane_fill_rectangle); |
58 | | static dev_proc_copy_mono(plane_copy_mono); |
59 | | static dev_proc_copy_color(plane_copy_color); |
60 | | static dev_proc_copy_alpha(plane_copy_alpha); |
61 | | static dev_proc_fill_path(plane_fill_path); |
62 | | static dev_proc_stroke_path(plane_stroke_path); |
63 | | static dev_proc_fill_mask(plane_fill_mask); |
64 | | static dev_proc_fill_parallelogram(plane_fill_parallelogram); |
65 | | static dev_proc_fill_triangle(plane_fill_triangle); |
66 | | static dev_proc_strip_tile_rectangle(plane_strip_tile_rectangle); |
67 | | static dev_proc_strip_copy_rop2(plane_strip_copy_rop2); |
68 | | static dev_proc_begin_typed_image(plane_begin_typed_image); |
69 | | static dev_proc_get_bits_rectangle(plane_get_bits_rectangle); |
70 | | |
71 | | /* Device prototype */ |
72 | | static void |
73 | | plane_initialize_device_procs(gx_device *dev) |
74 | 0 | { |
75 | 0 | set_dev_proc(dev, open_device, plane_open_device); |
76 | 0 | set_dev_proc(dev, fill_rectangle, plane_fill_rectangle); |
77 | 0 | set_dev_proc(dev, copy_mono, plane_copy_mono); |
78 | 0 | set_dev_proc(dev, copy_color, plane_copy_color); |
79 | 0 | set_dev_proc(dev, copy_alpha, plane_copy_alpha); |
80 | 0 | set_dev_proc(dev, fill_path, plane_fill_path); |
81 | 0 | set_dev_proc(dev, stroke_path, plane_stroke_path); |
82 | 0 | set_dev_proc(dev, fill_mask, plane_fill_mask); |
83 | 0 | set_dev_proc(dev, fill_parallelogram, plane_fill_parallelogram); |
84 | 0 | set_dev_proc(dev, fill_triangle, plane_fill_triangle); |
85 | 0 | set_dev_proc(dev, strip_tile_rectangle, plane_strip_tile_rectangle); |
86 | 0 | set_dev_proc(dev, strip_copy_rop2, plane_strip_copy_rop2); |
87 | 0 | set_dev_proc(dev, begin_typed_image, plane_begin_typed_image); |
88 | 0 | set_dev_proc(dev, get_bits_rectangle, plane_get_bits_rectangle); |
89 | 0 | set_dev_proc(dev, composite, gx_no_composite); /* WRONG */ |
90 | | |
91 | | /* Ideally the following would be initialized to the defaults |
92 | | * automatically, but this does not currently work. */ |
93 | 0 | set_dev_proc(dev, close_device, gx_default_close_device); |
94 | 0 | set_dev_proc(dev, fill_trapezoid, gx_default_fill_trapezoid); |
95 | 0 | set_dev_proc(dev, draw_thin_line, gx_default_draw_thin_line); |
96 | 0 | set_dev_proc(dev, text_begin, gx_default_text_begin); |
97 | 0 | set_dev_proc(dev, fill_rectangle_hl_color, gx_default_fill_rectangle_hl_color); |
98 | 0 | set_dev_proc(dev, include_color_space, gx_default_include_color_space); |
99 | 0 | set_dev_proc(dev, fill_linear_color_scanline, gx_default_fill_linear_color_scanline); |
100 | 0 | set_dev_proc(dev, fill_linear_color_trapezoid, gx_default_fill_linear_color_trapezoid); |
101 | 0 | set_dev_proc(dev, fill_linear_color_triangle, gx_default_fill_linear_color_triangle); |
102 | 0 | set_dev_proc(dev, update_spot_equivalent_colors, gx_default_update_spot_equivalent_colors); |
103 | 0 | set_dev_proc(dev, ret_devn_params, gx_default_ret_devn_params); |
104 | 0 | set_dev_proc(dev, fillpage, gx_default_fillpage); |
105 | 0 | set_dev_proc(dev, strip_tile_rect_devn, gx_default_strip_tile_rect_devn); |
106 | 0 | set_dev_proc(dev, copy_alpha_hl_color, gx_default_copy_alpha_hl_color); |
107 | 0 | } |
108 | | |
109 | | static const gx_device_plane_extract gs_plane_extract_device = { |
110 | | std_device_std_body(gx_device_plane_extract, |
111 | | plane_initialize_device_procs, "plane_extract", |
112 | | 0, 0, 72, 72), |
113 | | { 0 }, |
114 | | /* device-specific members */ |
115 | | NULL, /* target */ |
116 | | NULL, /* plane_dev */ |
117 | | { 0 }, /* plane */ |
118 | | 0, /* plane_white */ |
119 | | 0, /* plane_mask */ |
120 | | 0, /* plane_dev_is_memory */ |
121 | | 1 /*true*/ /* any_marks */ |
122 | | }; |
123 | | |
124 | | /* ---------------- Utilities ---------------- */ |
125 | | |
126 | | /* Extract the selected plane from a color (gx_color_index). */ |
127 | | #define COLOR_PIXEL(edev, color)\ |
128 | 0 | ( ((color) >> (edev)->plane.shift) & (edev)->plane_mask ) |
129 | | /* Do the same if the color might be transparent. */ |
130 | | #define TRANS_COLOR_PIXEL(edev, color)\ |
131 | 0 | ((color) == gx_no_color_index ? gx_no_color_index : COLOR_PIXEL(edev, color)) |
132 | | |
133 | | /* |
134 | | * Reduce the drawing color to one for the selected plane. |
135 | | * All we care about is whether the drawing operation should be skipped. |
136 | | */ |
137 | | typedef enum { |
138 | | REDUCE_SKIP, |
139 | | REDUCE_DRAW, |
140 | | REDUCE_FAILED /* couldn't reduce */ |
141 | | } reduced_color_t; |
142 | | #define REDUCE_PURE(edev, pixel)\ |
143 | 0 | ((pixel) == (edev)->plane_white && !(edev)->any_marks ? REDUCE_SKIP :\ |
144 | 0 | ((edev)->any_marks = true, REDUCE_DRAW)) |
145 | | static reduced_color_t |
146 | | reduce_drawing_color(gx_device_color *ppdc, gx_device_plane_extract *edev, |
147 | | const gx_drawing_color *pdevc, |
148 | | gs_logical_operation_t *plop) |
149 | 0 | { |
150 | 0 | reduced_color_t reduced; |
151 | |
|
152 | 0 | if (gx_dc_is_pure(pdevc)) { |
153 | 0 | gx_color_index pixel = COLOR_PIXEL(edev, gx_dc_pure_color(pdevc)); |
154 | |
|
155 | 0 | set_nonclient_dev_color(ppdc, pixel); |
156 | 0 | reduced = REDUCE_PURE(edev, pixel); |
157 | 0 | } else if (gx_dc_is_binary_halftone(pdevc)) { |
158 | 0 | gx_color_index pixel0 = |
159 | 0 | TRANS_COLOR_PIXEL(edev, gx_dc_binary_color0(pdevc)); |
160 | 0 | gx_color_index pixel1 = |
161 | 0 | TRANS_COLOR_PIXEL(edev, gx_dc_binary_color1(pdevc)); |
162 | |
|
163 | 0 | if (pixel0 == pixel1) { |
164 | 0 | set_nonclient_dev_color(ppdc, pixel0); |
165 | 0 | reduced = REDUCE_PURE(edev, pixel0); |
166 | 0 | } else { |
167 | 0 | *ppdc = *pdevc; |
168 | 0 | ppdc->colors.binary.color[0] = pixel0; |
169 | 0 | ppdc->colors.binary.color[1] = pixel1; |
170 | 0 | edev->any_marks = true; |
171 | 0 | reduced = REDUCE_DRAW; |
172 | 0 | } |
173 | 0 | } else if (color_is_colored_halftone(pdevc)) { |
174 | 0 | int plane = edev->plane.index; |
175 | 0 | int i; |
176 | |
|
177 | 0 | *ppdc = *pdevc; |
178 | 0 | for (i = 0; i < countof(ppdc->colors.colored.c_base); ++i) |
179 | 0 | if (i != edev->plane.index) { |
180 | 0 | ppdc->colors.colored.c_base[i] = 0; |
181 | 0 | ppdc->colors.colored.c_level[i] = 0; |
182 | 0 | } |
183 | 0 | ppdc->colors.colored.plane_mask &= 1 << plane; |
184 | 0 | if (ppdc->colors.colored.c_level[plane] == 0) { |
185 | 0 | gx_devn_reduce_colored_halftone(ppdc, (gx_device *)edev); |
186 | 0 | ppdc->colors.pure = COLOR_PIXEL(edev, ppdc->colors.pure); |
187 | 0 | reduced = REDUCE_PURE(edev, gx_dc_pure_color(ppdc)); |
188 | 0 | } else { |
189 | 0 | gx_devn_reduce_colored_halftone(ppdc, (gx_device *)edev); |
190 | 0 | ppdc->colors.binary.color[0] = |
191 | 0 | COLOR_PIXEL(edev, ppdc->colors.binary.color[0]); |
192 | 0 | ppdc->colors.binary.color[1] = |
193 | 0 | COLOR_PIXEL(edev, ppdc->colors.binary.color[1]); |
194 | 0 | gx_color_load(ppdc, NULL, (gx_device *)edev); |
195 | 0 | edev->any_marks = true; |
196 | 0 | reduced = REDUCE_DRAW; |
197 | 0 | } |
198 | 0 | } else |
199 | 0 | return REDUCE_FAILED; /* can't handle it */ |
200 | 0 | if (*plop & lop_T_transparent) { |
201 | | /* |
202 | | * If the logical operation invokes transparency for the texture, we |
203 | | * must do some extra work, since a color that was originally opaque |
204 | | * may become transparent (white) if reduced to a single plane. If |
205 | | * RasterOp transparency were calculated before halftoning, life |
206 | | * would be easy: we would simply turn off texture transparency in |
207 | | * the logical operation iff the original (not reduced) color was |
208 | | * not white. Unfortunately, RasterOp transparency is calculated |
209 | | * after halftoning. (This is arguably wrong, but it's how we've |
210 | | * defined it.) Therefore, if transparency is involved with a |
211 | | * white color or a halftone that can include white, we must keep |
212 | | * the entire pixel together for the RasterOp. |
213 | | */ |
214 | 0 | gx_color_index white = gx_device_white((gx_device *)edev); |
215 | | |
216 | | /* |
217 | | * Given that we haven't failed, the only possible colors at this |
218 | | * point are pure or binary halftone. |
219 | | */ |
220 | 0 | if (gx_dc_is_pure(ppdc)) { |
221 | 0 | if (gx_dc_pure_color(pdevc) != white) |
222 | 0 | *plop &= ~lop_T_transparent; |
223 | 0 | else if (!gx_dc_is_pure(pdevc)) |
224 | 0 | return REDUCE_FAILED; |
225 | 0 | } else { |
226 | 0 | if (gx_dc_binary_color0(pdevc) != white && |
227 | 0 | gx_dc_binary_color1(pdevc) != white) { |
228 | 0 | *plop &= ~lop_T_transparent; |
229 | 0 | } else |
230 | 0 | return REDUCE_FAILED; |
231 | 0 | } |
232 | 0 | } |
233 | 0 | return reduced; |
234 | 0 | } |
235 | | |
236 | | /* |
237 | | * Set up to create the plane-extracted bitmap corresponding to a |
238 | | * source or halftone pixmap. If the bitmap doesn't fit in the locally |
239 | | * allocated buffer, we may either do the operation in pieces, or allocate |
240 | | * a buffer on the heap. The control structure is: |
241 | | * begin_tiling(&state, ...); |
242 | | * do { |
243 | | * extract_partial_tile(&state); |
244 | | * ... process tile in buffer ... |
245 | | * } while (next_tile(&state)); |
246 | | * end_tiling(&state); |
247 | | * If partial_ok is false, there is only a single tile, so the do ... while |
248 | | * is not used. |
249 | | */ |
250 | | typedef struct tiling_state_s { |
251 | | /* Save the original operands. */ |
252 | | const gx_device_plane_extract *edev; |
253 | | const byte *data; |
254 | | int data_x; |
255 | | uint raster; |
256 | | int width, height; |
257 | | int dest_x; /* only for copy_color, defaults to 0 */ |
258 | | /* Define the (aligned) buffer for doing the operation. */ |
259 | | struct tsb_ { |
260 | | byte *data; |
261 | | uint size; |
262 | | uint raster; |
263 | | bool on_heap; |
264 | | } buffer; |
265 | | /* Record the current tile available for processing. */ |
266 | | /* The client may read these out. */ |
267 | | gs_int_point offset; |
268 | | gs_int_point size; |
269 | | /* Record private tiling parameters. */ |
270 | | int per_tile_width; |
271 | | } tiling_state_t; |
272 | | |
273 | | /* |
274 | | * Extract the plane's data from one subrectangle of a source tile. |
275 | | */ |
276 | | static inline int /* ignore the return value */ |
277 | | extract_partial_tile(const tiling_state_t *pts) |
278 | 0 | { |
279 | 0 | const gx_device_plane_extract * const edev = pts->edev; |
280 | 0 | bits_plane_t dest, source; |
281 | |
|
282 | 0 | dest.data.write = pts->buffer.data + pts->offset.y * pts->buffer.raster; |
283 | 0 | dest.raster = pts->buffer.raster; |
284 | 0 | dest.depth = edev->plane.depth; |
285 | 0 | dest.x = pts->dest_x; |
286 | |
|
287 | 0 | source.data.read = pts->data + pts->offset.y * pts->raster; |
288 | 0 | source.raster = pts->raster; |
289 | 0 | source.depth = edev->color_info.depth; |
290 | 0 | source.x = pts->data_x + pts->offset.x; |
291 | |
|
292 | 0 | bits_extract_plane(&dest, &source, edev->plane.shift, |
293 | 0 | pts->size.x, pts->size.y); |
294 | 0 | return 0; |
295 | 0 | } |
296 | | |
297 | | /* |
298 | | * Set up to start (possibly) tiling. Return 0 if the entire tile fit, |
299 | | * 1 if a partial tile fit, or a negative error code. |
300 | | */ |
301 | | static int |
302 | | begin_tiling(tiling_state_t *pts, gx_device_plane_extract *edev, |
303 | | const byte *data, int data_x, uint raster, int width, int height, |
304 | | byte *local_buffer, uint buffer_size, bool partial_ok) |
305 | 0 | { |
306 | 0 | uint width_raster = |
307 | 0 | bitmap_raster(width * edev->plane_dev->color_info.depth); |
308 | 0 | uint full_size = width_raster * height; |
309 | |
|
310 | 0 | pts->edev = edev; |
311 | 0 | pts->data = data, pts->data_x = data_x, pts->raster = raster; |
312 | 0 | pts->width = width, pts->height = height; |
313 | 0 | pts->dest_x = 0; |
314 | 0 | if (full_size <= buffer_size) { |
315 | 0 | pts->buffer.data = local_buffer; |
316 | 0 | pts->buffer.size = buffer_size; |
317 | 0 | pts->buffer.raster = width_raster; |
318 | 0 | pts->buffer.on_heap = false; |
319 | 0 | pts->size.x = width, pts->size.y = height; |
320 | 0 | } else if (partial_ok) { |
321 | 0 | pts->buffer.data = local_buffer; |
322 | 0 | pts->buffer.size = buffer_size; |
323 | 0 | pts->buffer.on_heap = false; |
324 | 0 | if (buffer_size >= width_raster) { |
325 | 0 | pts->buffer.raster = width_raster; |
326 | 0 | pts->size.x = width; |
327 | 0 | pts->size.y = buffer_size / width_raster; |
328 | 0 | } else { |
329 | 0 | pts->buffer.raster = buffer_size & -align_bitmap_mod; |
330 | 0 | pts->size.x = |
331 | 0 | pts->buffer.raster * (8 / edev->plane_dev->color_info.depth); |
332 | 0 | pts->size.y = 1; |
333 | 0 | } |
334 | 0 | } else { |
335 | 0 | pts->buffer.data = |
336 | 0 | gs_alloc_bytes(edev->memory, full_size, "begin_tiling"); |
337 | 0 | if (!pts->buffer.data) |
338 | 0 | return_error(gs_error_VMerror); |
339 | 0 | pts->buffer.size = full_size; |
340 | 0 | pts->buffer.raster = width_raster; |
341 | 0 | pts->buffer.on_heap = true; |
342 | 0 | pts->size.x = width, pts->size.y = height; |
343 | 0 | } |
344 | 0 | pts->buffer.raster = width_raster; |
345 | 0 | pts->offset.x = pts->offset.y = 0; |
346 | 0 | pts->per_tile_width = pts->size.x; |
347 | 0 | return pts->buffer.size < full_size; |
348 | 0 | } |
349 | | |
350 | | /* |
351 | | * Advance to the next tile. Return true if there are more tiles to do. |
352 | | */ |
353 | | static bool |
354 | | next_tile(tiling_state_t *pts) |
355 | 0 | { |
356 | 0 | if ((pts->offset.x += pts->size.x) >= pts->width) { |
357 | 0 | if ((pts->offset.y += pts->size.y) >= pts->height) |
358 | 0 | return false; |
359 | 0 | pts->offset.x = 0; |
360 | 0 | pts->size.x = pts->per_tile_width; |
361 | 0 | if (pts->offset.y + pts->size.y >= pts->height) |
362 | 0 | pts->size.y = pts->height - pts->offset.y; |
363 | 0 | } else if (pts->offset.x + pts->size.x >= pts->width) |
364 | 0 | pts->size.x = pts->width - pts->offset.x; |
365 | 0 | return true; |
366 | 0 | } |
367 | | |
368 | | /* |
369 | | * Finish tiling by freeing the buffer if necessary. |
370 | | */ |
371 | | static void |
372 | | end_tiling(tiling_state_t *pts) |
373 | 0 | { |
374 | 0 | if (pts->buffer.on_heap) |
375 | 0 | gs_free_object(pts->edev->memory, pts->buffer.data, "end_tiling"); |
376 | 0 | } |
377 | | |
378 | | /* ---------------- Initialization ---------------- */ |
379 | | |
380 | | int |
381 | | plane_device_init(gx_device_plane_extract *edev, gx_device *target, |
382 | | gx_device *plane_dev, const gx_render_plane_t *render_plane, bool clear) |
383 | 0 | { |
384 | 0 | int code; |
385 | | /* Check for compatibility of the plane specification. */ |
386 | 0 | if (render_plane->depth > plane_dev->color_info.depth) |
387 | 0 | return_error(gs_error_rangecheck); |
388 | 0 | code = gx_device_init((gx_device *)edev, |
389 | 0 | (const gx_device *)&gs_plane_extract_device, |
390 | 0 | edev->memory, true); |
391 | 0 | if (code < 0) |
392 | 0 | return code; |
393 | 0 | check_device_separable((gx_device *)edev); |
394 | 0 | gx_device_forward_fill_in_procs((gx_device_forward *)edev); |
395 | 0 | gx_device_set_target((gx_device_forward *)edev, target); |
396 | 0 | gx_device_copy_params((gx_device *)edev, target); |
397 | 0 | edev->plane_dev = plane_dev; |
398 | 0 | gx_device_retain(plane_dev, true); |
399 | 0 | edev->plane = *render_plane; |
400 | 0 | plane_open_device((gx_device *)edev); |
401 | 0 | if (clear) { |
402 | 0 | dev_proc(plane_dev, fill_rectangle) |
403 | 0 | (plane_dev, 0, 0, plane_dev->width, plane_dev->height, |
404 | 0 | edev->plane_white); |
405 | 0 | edev->any_marks = false; |
406 | 0 | } |
407 | 0 | return 0; |
408 | 0 | } |
409 | | |
410 | | /* ---------------- Driver procedures ---------------- */ |
411 | | |
412 | | static int |
413 | | plane_open_device(gx_device *dev) |
414 | 0 | { |
415 | 0 | gx_device_plane_extract * const edev = (gx_device_plane_extract *)dev; |
416 | 0 | gx_device * const plane_dev = edev->plane_dev; |
417 | 0 | int plane_depth = plane_dev->color_info.depth; |
418 | 0 | const gdev_mem_functions *fns = |
419 | 0 | gdev_mem_functions_for_bits(plane_depth); |
420 | |
|
421 | 0 | edev->plane_white = gx_device_white(plane_dev); |
422 | 0 | edev->plane_mask = (1 << plane_depth) - 1; |
423 | 0 | edev->plane_dev_is_memory = fns != NULL && |
424 | 0 | dev_proc(plane_dev, copy_color) == fns->copy_color; |
425 | | /* We don't set or clear any_marks here: see ...init above. */ |
426 | 0 | return 0; |
427 | 0 | } |
428 | | |
429 | | static int |
430 | | plane_fill_rectangle(gx_device *dev, |
431 | | int x, int y, int w, int h, gx_color_index color) |
432 | 0 | { |
433 | 0 | gx_device_plane_extract * const edev = (gx_device_plane_extract *)dev; |
434 | 0 | gx_device * const plane_dev = edev->plane_dev; |
435 | 0 | gx_color_index pixel = COLOR_PIXEL(edev, color); |
436 | |
|
437 | 0 | if (pixel != edev->plane_white) |
438 | 0 | edev->any_marks = true; |
439 | 0 | else if (!edev->any_marks) |
440 | 0 | return 0; |
441 | 0 | return dev_proc(plane_dev, fill_rectangle) |
442 | 0 | (plane_dev, x, y, w, h, pixel); |
443 | 0 | } |
444 | | |
445 | | static int |
446 | | plane_copy_mono(gx_device *dev, |
447 | | const byte *data, int data_x, int raster, gx_bitmap_id id, |
448 | | int x, int y, int w, int h, |
449 | | gx_color_index color0, gx_color_index color1) |
450 | 0 | { |
451 | 0 | gx_device_plane_extract * const edev = (gx_device_plane_extract *)dev; |
452 | 0 | gx_device * const plane_dev = edev->plane_dev; |
453 | 0 | gx_color_index pixel0 = TRANS_COLOR_PIXEL(edev, color0); |
454 | 0 | gx_color_index pixel1 = TRANS_COLOR_PIXEL(edev, color1); |
455 | |
|
456 | 0 | if (pixel0 == pixel1) |
457 | 0 | return plane_fill_rectangle(dev, x, y, w, h, color0); |
458 | 0 | if ((pixel0 == edev->plane_white || pixel0 == gx_no_color_index) && |
459 | 0 | (pixel1 == edev->plane_white || pixel1 == gx_no_color_index)) { |
460 | | /* This operation will only write white. */ |
461 | 0 | if (!edev->any_marks) |
462 | 0 | return 0; |
463 | 0 | } else |
464 | 0 | edev->any_marks = true; |
465 | 0 | return dev_proc(plane_dev, copy_mono) |
466 | 0 | (plane_dev, data, data_x, raster, id, x, y, w, h, pixel0, pixel1); |
467 | 0 | } |
468 | | |
469 | | static int |
470 | | plane_copy_color(gx_device *dev, |
471 | | const byte *data, int data_x, int raster, gx_bitmap_id id, |
472 | | int x, int y, int w, int h) |
473 | 0 | { |
474 | 0 | gx_device_plane_extract * const edev = (gx_device_plane_extract *)dev; |
475 | 0 | gx_device * const plane_dev = edev->plane_dev; |
476 | 0 | tiling_state_t state; |
477 | 0 | long buf[COPY_COLOR_BUF_SIZE / sizeof(long)]; |
478 | 0 | int code; |
479 | |
|
480 | 0 | if (edev->plane_dev_is_memory) { |
481 | | /* Reduce the source directly into the plane device. */ |
482 | 0 | gx_device_memory * const mdev = (gx_device_memory *)plane_dev; |
483 | |
|
484 | 0 | fit_copy(edev, data, data_x, raster, id, x, y, w, h); |
485 | 0 | code = begin_tiling(&state, edev, data, data_x, raster, w, h, |
486 | 0 | scan_line_base(mdev, y), max_uint, false); |
487 | 0 | if (code < 0) |
488 | 0 | return code; |
489 | 0 | state.dest_x = x; |
490 | 0 | state.buffer.raster = mdev->raster; |
491 | 0 | extract_partial_tile(&state); |
492 | 0 | end_tiling(&state); |
493 | 0 | edev->any_marks = true; |
494 | 0 | return 0; |
495 | 0 | } |
496 | 0 | code = begin_tiling(&state, edev, data, data_x, raster, |
497 | 0 | w, h, (byte *)buf, sizeof(buf), true); |
498 | 0 | if (code < 0) |
499 | 0 | return code; |
500 | 0 | do { |
501 | 0 | extract_partial_tile(&state); |
502 | 0 | code = dev_proc(plane_dev, copy_color) |
503 | 0 | (plane_dev, state.buffer.data, 0, state.buffer.raster, |
504 | 0 | gx_no_bitmap_id, x + state.offset.x, y + state.offset.y, |
505 | 0 | state.size.x, state.size.y); |
506 | 0 | } while (code >= 0 && next_tile(&state)); |
507 | 0 | end_tiling(&state); |
508 | 0 | edev->any_marks = true; |
509 | 0 | return code; |
510 | 0 | } |
511 | | |
512 | | static int |
513 | | plane_copy_alpha(gx_device *dev, const byte *data, int data_x, |
514 | | int raster, gx_bitmap_id id, int x, int y, int w, int h, |
515 | | gx_color_index color, int depth) |
516 | 0 | { |
517 | 0 | gx_device_plane_extract * const edev = (gx_device_plane_extract *)dev; |
518 | 0 | gx_device * const plane_dev = edev->plane_dev; |
519 | 0 | gx_color_index pixel = COLOR_PIXEL(edev, color); |
520 | |
|
521 | 0 | if (pixel != edev->plane_white) |
522 | 0 | edev->any_marks = true; |
523 | 0 | else if (!edev->any_marks) |
524 | 0 | return 0; |
525 | 0 | return dev_proc(plane_dev, copy_alpha) |
526 | 0 | (plane_dev, data, data_x, raster, id, x, y, w, h, pixel, depth); |
527 | 0 | } |
528 | | |
529 | | static int |
530 | | plane_fill_path(gx_device *dev, |
531 | | const gs_gstate *pgs, gx_path *ppath, |
532 | | const gx_fill_params *params, |
533 | | const gx_drawing_color *pdevc, const gx_clip_path *pcpath) |
534 | 0 | { |
535 | 0 | gx_device_plane_extract * const edev = (gx_device_plane_extract *)dev; |
536 | 0 | gx_device * const plane_dev = edev->plane_dev; |
537 | 0 | gs_logical_operation_t lop_orig = |
538 | 0 | gs_current_logical_op((const gs_gstate *)pgs); |
539 | 0 | gs_logical_operation_t lop = lop_orig; |
540 | 0 | gx_device_color dcolor; |
541 | |
|
542 | 0 | switch (reduce_drawing_color(&dcolor, edev, pdevc, &lop)) { |
543 | 0 | case REDUCE_SKIP: |
544 | 0 | return 0; |
545 | 0 | case REDUCE_DRAW: { |
546 | 0 | gs_gstate lopgs; |
547 | 0 | const gs_gstate *pgs_draw = pgs; |
548 | |
|
549 | 0 | if (lop != lop_orig) { |
550 | 0 | lopgs = *pgs; |
551 | 0 | gs_set_logical_op((gs_gstate *)&lopgs, lop); |
552 | 0 | pgs_draw = &lopgs; |
553 | 0 | } |
554 | 0 | return dev_proc(plane_dev, fill_path) |
555 | 0 | (plane_dev, pgs_draw, ppath, params, &dcolor, pcpath); |
556 | 0 | } |
557 | 0 | default /*REDUCE_FAILED*/: |
558 | 0 | return gx_default_fill_path(dev, pgs, ppath, params, pdevc, pcpath); |
559 | 0 | } |
560 | 0 | } |
561 | | |
562 | | static int |
563 | | plane_stroke_path(gx_device *dev, |
564 | | const gs_gstate *pgs, gx_path *ppath, |
565 | | const gx_stroke_params *params, |
566 | | const gx_drawing_color *pdevc, const gx_clip_path *pcpath) |
567 | 0 | { |
568 | 0 | gx_device_plane_extract * const edev = (gx_device_plane_extract *)dev; |
569 | 0 | gx_device * const plane_dev = edev->plane_dev; |
570 | 0 | gs_logical_operation_t lop_orig = |
571 | 0 | gs_current_logical_op((const gs_gstate *)pgs); |
572 | 0 | gs_logical_operation_t lop = lop_orig; |
573 | 0 | gx_device_color dcolor; |
574 | |
|
575 | 0 | switch (reduce_drawing_color(&dcolor, edev, pdevc, &lop)) { |
576 | 0 | case REDUCE_SKIP: |
577 | 0 | return 0; |
578 | 0 | case REDUCE_DRAW: { |
579 | 0 | gs_gstate lopgs; |
580 | 0 | const gs_gstate *pgs_draw = pgs; |
581 | |
|
582 | 0 | if (lop != lop_orig) { |
583 | 0 | lopgs = *pgs; |
584 | 0 | gs_set_logical_op((gs_gstate *)&lopgs, lop); |
585 | 0 | pgs_draw = &lopgs; |
586 | 0 | } |
587 | 0 | return dev_proc(plane_dev, stroke_path) |
588 | 0 | (plane_dev, pgs_draw, ppath, params, &dcolor, pcpath); |
589 | 0 | } |
590 | 0 | default /*REDUCE_FAILED*/: |
591 | 0 | return gx_default_stroke_path(dev, pgs, ppath, params, pdevc, pcpath); |
592 | 0 | } |
593 | 0 | } |
594 | | |
595 | | static int |
596 | | plane_fill_mask(gx_device *dev, |
597 | | const byte *data, int data_x, int raster, gx_bitmap_id id, |
598 | | int x, int y, int w, int h, |
599 | | const gx_drawing_color *pdcolor, int depth, |
600 | | gs_logical_operation_t lop, const gx_clip_path *pcpath) |
601 | 0 | { |
602 | 0 | gx_device_plane_extract * const edev = (gx_device_plane_extract *)dev; |
603 | 0 | gx_device * const plane_dev = edev->plane_dev; |
604 | 0 | gx_device_color dcolor; |
605 | |
|
606 | 0 | switch (reduce_drawing_color(&dcolor, edev, pdcolor, &lop)) { |
607 | 0 | case REDUCE_SKIP: |
608 | 0 | return 0; |
609 | 0 | case REDUCE_DRAW: |
610 | 0 | return dev_proc(plane_dev, fill_mask) |
611 | 0 | (plane_dev, data, data_x, raster, gx_no_bitmap_id, x, y, w, h, |
612 | 0 | &dcolor, depth, lop, pcpath); |
613 | 0 | default /*REDUCE_FAILED*/: |
614 | 0 | return gx_default_fill_mask(dev, data, data_x, raster, gx_no_bitmap_id, |
615 | 0 | x, y, w, h, &dcolor, depth, lop, pcpath); |
616 | 0 | } |
617 | 0 | } |
618 | | |
619 | | static int |
620 | | plane_fill_parallelogram(gx_device * dev, |
621 | | fixed px, fixed py, fixed ax, fixed ay, fixed bx, fixed by, |
622 | | const gx_drawing_color * pdcolor, gs_logical_operation_t lop) |
623 | 0 | { |
624 | 0 | gx_device_plane_extract * const edev = (gx_device_plane_extract *)dev; |
625 | 0 | gx_device * const plane_dev = edev->plane_dev; |
626 | 0 | gx_device_color dcolor; |
627 | |
|
628 | 0 | switch (reduce_drawing_color(&dcolor, edev, pdcolor, &lop)) { |
629 | 0 | case REDUCE_SKIP: |
630 | 0 | return 0; |
631 | 0 | case REDUCE_DRAW: |
632 | 0 | return dev_proc(plane_dev, fill_parallelogram) |
633 | 0 | (plane_dev, px, py, ax, ay, bx, by, &dcolor, lop); |
634 | 0 | default /*REDUCE_FAILED*/: |
635 | 0 | return gx_default_fill_parallelogram(dev, px, py, ax, ay, bx, by, |
636 | 0 | pdcolor, lop); |
637 | 0 | } |
638 | 0 | } |
639 | | |
640 | | static int |
641 | | plane_fill_triangle(gx_device * dev, |
642 | | fixed px, fixed py, fixed ax, fixed ay, fixed bx, fixed by, |
643 | | const gx_drawing_color * pdcolor, gs_logical_operation_t lop) |
644 | 0 | { |
645 | 0 | gx_device_plane_extract * const edev = (gx_device_plane_extract *)dev; |
646 | 0 | gx_device * const plane_dev = edev->plane_dev; |
647 | 0 | gx_device_color dcolor; |
648 | |
|
649 | 0 | switch (reduce_drawing_color(&dcolor, edev, pdcolor, &lop)) { |
650 | 0 | case REDUCE_SKIP: |
651 | 0 | return 0; |
652 | 0 | case REDUCE_DRAW: |
653 | 0 | return dev_proc(plane_dev, fill_triangle) |
654 | 0 | (plane_dev, px, py, ax, ay, bx, by, &dcolor, lop); |
655 | 0 | default /*REDUCE_FAILED*/: |
656 | 0 | return gx_default_fill_triangle(dev, px, py, ax, ay, bx, by, |
657 | 0 | pdcolor, lop); |
658 | 0 | } |
659 | 0 | } |
660 | | |
661 | | static int |
662 | | plane_strip_tile_rectangle(gx_device *dev, |
663 | | const gx_strip_bitmap *tiles, int x, int y, int w, int h, |
664 | | gx_color_index color0, gx_color_index color1, |
665 | | int phase_x, int phase_y) |
666 | 0 | { |
667 | 0 | gx_device_plane_extract * const edev = (gx_device_plane_extract *)dev; |
668 | 0 | gx_device * const plane_dev = edev->plane_dev; |
669 | 0 | gx_color_index pixel0 = TRANS_COLOR_PIXEL(edev, color0); |
670 | 0 | gx_color_index pixel1 = TRANS_COLOR_PIXEL(edev, color1); |
671 | |
|
672 | 0 | if (pixel0 == pixel1) { |
673 | 0 | if (pixel0 != gx_no_color_index) |
674 | 0 | return plane_fill_rectangle(dev, x, y, w, h, color0); |
675 | | /* The tile is a pixmap rather than a bitmap. */ |
676 | | /* We should use the default implementation if it is small.... */ |
677 | 0 | { |
678 | 0 | gx_strip_bitmap plane_tile; |
679 | 0 | tiling_state_t state; |
680 | 0 | long buf[TILE_RECTANGLE_BUF_SIZE / sizeof(long)]; |
681 | 0 | int code = begin_tiling(&state, edev, tiles->data, 0, tiles->raster, |
682 | 0 | tiles->size.x, tiles->size.y, |
683 | 0 | (byte *)buf, sizeof(buf), false); |
684 | |
|
685 | 0 | if (code < 0) |
686 | 0 | return gx_default_strip_tile_rectangle(dev, tiles, x, y, w, h, |
687 | 0 | color0, color1, phase_x, phase_y); |
688 | 0 | extract_partial_tile(&state); |
689 | 0 | plane_tile = *tiles; |
690 | 0 | plane_tile.data = state.buffer.data; |
691 | 0 | plane_tile.raster = state.buffer.raster; |
692 | 0 | plane_tile.id = gx_no_bitmap_id; |
693 | 0 | code = dev_proc(plane_dev, strip_tile_rectangle) |
694 | 0 | (plane_dev, &plane_tile, x, y, w, h, pixel0, pixel1, |
695 | 0 | phase_x, phase_y); |
696 | 0 | end_tiling(&state); |
697 | 0 | edev->any_marks = true; |
698 | 0 | return code; |
699 | 0 | } |
700 | 0 | } |
701 | 0 | if ((pixel0 == edev->plane_white || pixel0 == gx_no_color_index) && |
702 | 0 | (pixel1 == edev->plane_white || pixel1 == gx_no_color_index)) { |
703 | | /* This operation will only write white. */ |
704 | 0 | if (!edev->any_marks) |
705 | 0 | return 0; |
706 | 0 | } else |
707 | 0 | edev->any_marks = true; |
708 | 0 | return dev_proc(plane_dev, strip_tile_rectangle) |
709 | 0 | (plane_dev, tiles, x, y, w, h, pixel0, pixel1, phase_x, phase_y); |
710 | 0 | } |
711 | | |
712 | | static int |
713 | | plane_strip_copy_rop2(gx_device *dev, |
714 | | const byte *sdata, int sourcex, uint sraster, gx_bitmap_id id, |
715 | | const gx_color_index *scolors, |
716 | | const gx_strip_bitmap *textures, const gx_color_index *tcolors, |
717 | | int x, int y, int w, int h, |
718 | | int phase_x, int phase_y, gs_logical_operation_t lop, |
719 | | uint plane_height) |
720 | 0 | { |
721 | 0 | gx_device_plane_extract * const edev = (gx_device_plane_extract *)dev; |
722 | 0 | gx_device * const plane_dev = edev->plane_dev; |
723 | 0 | gs_rop3_t rop = lop_sanitize(lop); |
724 | 0 | struct crp_ { |
725 | 0 | gx_color_index pixels[2]; |
726 | 0 | gx_color_index *colors; |
727 | 0 | tiling_state_t state; |
728 | 0 | } source, texture; |
729 | 0 | long sbuf[COPY_ROP_SOURCE_BUF_SIZE / sizeof(long)]; |
730 | 0 | long tbuf[COPY_ROP_TEXTURE_BUF_SIZE / sizeof(long)]; |
731 | 0 | const byte *plane_source; |
732 | 0 | uint plane_raster = 0xbaadf00d; /* Initialize against indeterminizm. */ |
733 | 0 | gx_strip_bitmap plane_texture; |
734 | 0 | const gx_strip_bitmap *plane_textures = NULL; |
735 | 0 | int code; |
736 | |
|
737 | 0 | if (!rop3_uses_S(rop)) { |
738 | 0 | sdata = 0; |
739 | 0 | source.colors = 0; |
740 | 0 | } else if (scolors) { |
741 | 0 | source.pixels[0] = COLOR_PIXEL(edev, scolors[0]); |
742 | 0 | source.pixels[1] = COLOR_PIXEL(edev, scolors[1]); |
743 | 0 | if (source.pixels[0] == source.pixels[1]) |
744 | 0 | sdata = 0; |
745 | 0 | source.colors = source.pixels; |
746 | 0 | } |
747 | 0 | else |
748 | 0 | source.colors = 0; |
749 | 0 | if (!rop3_uses_T(rop)) { |
750 | 0 | textures = 0; |
751 | 0 | texture.colors = 0; |
752 | 0 | } else if (tcolors) { |
753 | 0 | texture.pixels[0] = COLOR_PIXEL(edev, tcolors[0]); |
754 | 0 | texture.pixels[1] = COLOR_PIXEL(edev, tcolors[1]); |
755 | 0 | if (texture.pixels[0] == texture.pixels[1]) |
756 | 0 | textures = 0; |
757 | 0 | texture.colors = texture.pixels; |
758 | 0 | } |
759 | 0 | else |
760 | 0 | texture.colors = 0; |
761 | 0 | if (sdata) { |
762 | 0 | code = begin_tiling(&source.state, edev, sdata, sourcex, sraster, w, y, |
763 | 0 | (byte *)sbuf, sizeof(sbuf), true); |
764 | 0 | if (code < 0) |
765 | 0 | return gx_default_strip_copy_rop2(dev, sdata, sourcex, sraster, id, |
766 | 0 | scolors, textures, tcolors, |
767 | 0 | x, y, w, h, phase_x, phase_y, rop, |
768 | 0 | plane_height); |
769 | 0 | plane_source = source.state.buffer.data; |
770 | 0 | plane_raster = source.state.buffer.raster; |
771 | 0 | } else |
772 | 0 | plane_source = 0; |
773 | 0 | if (textures) { |
774 | 0 | code = begin_tiling(&texture.state, edev, textures->data, 0, |
775 | 0 | textures->raster, textures->size.x, |
776 | 0 | textures->size.y, (byte *)tbuf, sizeof(tbuf), |
777 | 0 | false); |
778 | 0 | if (code < 0) { |
779 | 0 | if (plane_source) |
780 | 0 | end_tiling(&source.state); |
781 | 0 | return code; |
782 | 0 | } |
783 | 0 | plane_texture = *textures; |
784 | 0 | plane_texture.data = texture.state.buffer.data; |
785 | 0 | plane_texture.raster = texture.state.buffer.raster; |
786 | 0 | plane_textures = &plane_texture; |
787 | 0 | } |
788 | 0 | if (textures) |
789 | 0 | extract_partial_tile(&texture.state); |
790 | 0 | do { |
791 | 0 | if (sdata) |
792 | 0 | extract_partial_tile(&source.state); |
793 | 0 | code = dev_proc(plane_dev, strip_copy_rop2) |
794 | 0 | (plane_dev, plane_source, sourcex, plane_raster, gx_no_bitmap_id, |
795 | 0 | source.colors, plane_textures, texture.colors, |
796 | 0 | x, y, w, h, phase_x, phase_y, rop, plane_height); |
797 | 0 | } while (code >= 0 && sdata && next_tile(&source.state)); |
798 | 0 | if (textures) |
799 | 0 | end_tiling(&texture.state); |
800 | 0 | if (sdata) |
801 | 0 | end_tiling(&source.state); |
802 | 0 | return code; |
803 | 0 | } |
804 | | |
805 | | /* ---------------- Images ---------------- */ |
806 | | |
807 | | /* Define the state for image rendering. */ |
808 | | typedef struct plane_image_enum_s { |
809 | | gx_image_enum_common; |
810 | | gx_image_enum_common_t *info; /* plane device enumerator */ |
811 | | gs_gstate *pgs_image; /* modified gs_gstate state */ |
812 | | } plane_image_enum_t; |
813 | | /* Note that we include the pgs_image which is 'bytes' type (not gs_gstate) */ |
814 | | /* It still needs to be traced so that a GC won't free it prematurely. */ |
815 | | gs_private_st_suffix_add2(st_plane_image_enum, plane_image_enum_t, |
816 | | "plane_image_enum_t", plane_image_enum_enum_ptrs, |
817 | | plane_image_enum_reloc_ptrs, st_gx_image_enum_common, info, pgs_image); |
818 | | |
819 | | /* |
820 | | * Reduce drawing colors returned by color mapping. Note that these |
821 | | * assume that the call of reduce_drawing_color will not fail: |
822 | | * plane_begin_typed_image must ensure this. |
823 | | * |
824 | | * In the gs_gstate passed to these procedures, the client data is |
825 | | * the plane_image_enum_t. |
826 | | */ |
827 | | |
828 | | static void |
829 | | plane_cmap_gray(frac gray, gx_device_color * pdc, |
830 | | const gs_gstate *pgs_image, gx_device *dev, gs_color_select_t select) |
831 | 0 | { |
832 | 0 | const plane_image_enum_t *ppie = |
833 | 0 | (const plane_image_enum_t *)pgs_image->client_data; |
834 | 0 | gx_device_plane_extract * const edev = |
835 | 0 | (gx_device_plane_extract *)ppie->dev; |
836 | 0 | gs_logical_operation_t lop = gs_current_logical_op_inline(pgs_image); |
837 | 0 | gx_device_color dcolor; |
838 | |
|
839 | 0 | gx_remap_concrete_gray(gray, &dcolor, ppie->pgs, |
840 | 0 | (gx_device *)edev, select); |
841 | 0 | reduce_drawing_color(pdc, edev, &dcolor, &lop); |
842 | 0 | } |
843 | | static void |
844 | | plane_cmap_rgb(frac r, frac g, frac b, gx_device_color * pdc, |
845 | | const gs_gstate *pgs_image, gx_device *dev, gs_color_select_t select) |
846 | 0 | { |
847 | 0 | const plane_image_enum_t *ppie = |
848 | 0 | (const plane_image_enum_t *)pgs_image->client_data; |
849 | 0 | gx_device_plane_extract * const edev = |
850 | 0 | (gx_device_plane_extract *)ppie->dev; |
851 | 0 | gs_logical_operation_t lop = gs_current_logical_op_inline(pgs_image); |
852 | 0 | gx_device_color dcolor; |
853 | |
|
854 | 0 | gx_remap_concrete_rgb(r, g, b, &dcolor, ppie->pgs, |
855 | 0 | (gx_device *)edev, select); |
856 | 0 | reduce_drawing_color(pdc, edev, &dcolor, &lop); |
857 | 0 | } |
858 | | static void |
859 | | plane_cmap_cmyk(frac c, frac m, frac y, frac k, gx_device_color * pdc, |
860 | | const gs_gstate *pgs_image, gx_device *dev, gs_color_select_t select, |
861 | | const gs_color_space *source_pcs) |
862 | 0 | { |
863 | 0 | const plane_image_enum_t *ppie = |
864 | 0 | (const plane_image_enum_t *)pgs_image->client_data; |
865 | 0 | gx_device_plane_extract * const edev = |
866 | 0 | (gx_device_plane_extract *)ppie->dev; |
867 | 0 | gs_logical_operation_t lop = gs_current_logical_op_inline(pgs_image); |
868 | 0 | gx_device_color dcolor; |
869 | |
|
870 | 0 | gx_remap_concrete_cmyk(c, m, y, k, &dcolor, ppie->pgs, |
871 | 0 | (gx_device *)edev, select, NULL); |
872 | 0 | reduce_drawing_color(pdc, edev, &dcolor, &lop); |
873 | 0 | } |
874 | | static bool |
875 | | plane_cmap_is_halftoned(const gs_gstate *pgs_image, gx_device *dev) |
876 | 0 | { |
877 | 0 | return false; |
878 | 0 | } |
879 | | |
880 | | static const gx_color_map_procs plane_color_map_procs = { |
881 | | plane_cmap_gray, plane_cmap_rgb, plane_cmap_cmyk, |
882 | | NULL, NULL, plane_cmap_is_halftoned |
883 | | }; |
884 | | static const gx_color_map_procs * |
885 | | plane_get_cmap_procs(const gs_gstate *pgs, const gx_device *dev) |
886 | 0 | { |
887 | 0 | return &plane_color_map_procs; |
888 | 0 | } |
889 | | |
890 | | /* Define the image processing procedures. */ |
891 | | static image_enum_proc_plane_data(plane_image_plane_data); |
892 | | static image_enum_proc_end_image(plane_image_end_image); |
893 | | static const gx_image_enum_procs_t plane_image_enum_procs = { |
894 | | plane_image_plane_data, plane_image_end_image |
895 | | }; |
896 | | |
897 | | static int |
898 | | plane_begin_typed_image(gx_device * dev, |
899 | | const gs_gstate * pgs, const gs_matrix * pmat, |
900 | | const gs_image_common_t * pic, const gs_int_rect * prect, |
901 | | const gx_drawing_color * pdcolor, const gx_clip_path * pcpath, |
902 | | gs_memory_t * memory, gx_image_enum_common_t ** pinfo) |
903 | 0 | { |
904 | | /* |
905 | | * For images, we intercept the gs_gstate's cmap_procs and apply |
906 | | * reduce_drawing_color to the colors as they are returned to the image |
907 | | * processing code. For reasons explained above, we can't do this in |
908 | | * some cases of RasterOp that include transparency. |
909 | | */ |
910 | 0 | gx_device_plane_extract * const edev = (gx_device_plane_extract *)dev; |
911 | 0 | gs_logical_operation_t lop = gs_current_logical_op((const gs_gstate *)pgs); |
912 | 0 | const gs_pixel_image_t *pim; |
913 | 0 | plane_image_enum_t *info = 0; |
914 | 0 | gs_gstate *pgs_image = 0; |
915 | 0 | gx_device_color dcolor; |
916 | 0 | bool uses_color = false; |
917 | 0 | int code; |
918 | | |
919 | | /* We can only handle a limited set of image types. */ |
920 | 0 | switch (pic->type->index) { |
921 | 0 | case 1: { |
922 | 0 | const gs_image1_t * const pim1 = (const gs_image1_t *)pic; |
923 | |
|
924 | 0 | if (pim1->Alpha != gs_image_alpha_none) |
925 | 0 | goto fail; |
926 | 0 | uses_color = pim1->ImageMask; |
927 | 0 | break; |
928 | 0 | } |
929 | 0 | case 3: |
930 | 0 | case 4: |
931 | 0 | break; |
932 | 0 | default: |
933 | 0 | goto fail; |
934 | 0 | } |
935 | 0 | pim = (const gs_pixel_image_t *)pic; |
936 | 0 | lop = lop_sanitize(lop); |
937 | 0 | if (uses_color || (pim->CombineWithColor && lop_uses_T(lop))) { |
938 | 0 | if (reduce_drawing_color(&dcolor, edev, pdcolor, &lop) == |
939 | 0 | REDUCE_FAILED) |
940 | 0 | goto fail; |
941 | 0 | } else { |
942 | | /* |
943 | | * The drawing color won't be used, but if RasterOp is involved, |
944 | | * it may still be accessed in some anomalous cases. |
945 | | */ |
946 | 0 | set_nonclient_dev_color(&dcolor, (gx_color_index)0); |
947 | 0 | } |
948 | 0 | info = gs_alloc_struct(memory, plane_image_enum_t, &st_plane_image_enum, |
949 | 0 | "plane_image_begin_typed(info)"); |
950 | 0 | pgs_image = gs_gstate_copy(pgs, memory); |
951 | 0 | if (pgs_image == 0 || info == 0) |
952 | 0 | goto fail; |
953 | 0 | pgs_image->client_data = info; |
954 | 0 | pgs_image->get_cmap_procs = plane_get_cmap_procs; |
955 | 0 | code = dev_proc(edev->plane_dev, begin_typed_image) |
956 | 0 | (edev->plane_dev, pgs_image, pmat, pic, prect, |
957 | 0 | &dcolor, pcpath, memory, &info->info); |
958 | 0 | if (code < 0) |
959 | 0 | goto fail; |
960 | 0 | *((gx_image_enum_common_t *)info) = *info->info; |
961 | 0 | info->procs = &plane_image_enum_procs; |
962 | 0 | info->dev = (gx_device *)edev; |
963 | 0 | info->id = gs_next_ids(memory, 1); |
964 | 0 | info->memory = memory; |
965 | 0 | info->pgs = pgs; |
966 | 0 | info->pgs_level = pgs->level; |
967 | 0 | info->pgs_image = pgs_image; |
968 | 0 | *pinfo = (gx_image_enum_common_t *)info; |
969 | 0 | return code; |
970 | 0 | fail: |
971 | 0 | gs_free_object(memory, pgs_image, "plane_image_begin_typed(pgs_image)"); |
972 | 0 | gs_free_object(memory, info, "plane_image_begin_typed(info)"); |
973 | 0 | return gx_default_begin_typed_image(dev, pgs, pmat, pic, prect, |
974 | 0 | pdcolor, pcpath, memory, pinfo); |
975 | 0 | } |
976 | | |
977 | | static int |
978 | | plane_image_plane_data(gx_image_enum_common_t * info, |
979 | | const gx_image_plane_t * planes, int height, |
980 | | int *rows_used) |
981 | 0 | { |
982 | 0 | plane_image_enum_t * const ppie = (plane_image_enum_t *)info; |
983 | |
|
984 | 0 | if (info->pgs!= NULL && info->pgs->level < info->pgs_level) |
985 | 0 | return_error(gs_error_undefinedresult); |
986 | | |
987 | 0 | return gx_image_plane_data_rows(ppie->info, planes, height, rows_used); |
988 | 0 | } |
989 | | |
990 | | static int |
991 | | plane_image_end_image(gx_image_enum_common_t * info, bool draw_last) |
992 | 0 | { |
993 | 0 | plane_image_enum_t * const ppie = (plane_image_enum_t *)info; |
994 | 0 | int code = gx_image_end(ppie->info, draw_last); |
995 | |
|
996 | 0 | ppie->pgs_image->client_data = NULL; /* this isn't a complete client_data struct */ |
997 | 0 | gs_free_object(ppie->memory, ppie->pgs_image, |
998 | 0 | "plane_image_end_image(pgs_image)"); |
999 | 0 | gx_image_free_enum(&info); |
1000 | 0 | return code; |
1001 | 0 | } |
1002 | | |
1003 | | /* ---------------- Reading back bits ---------------- */ |
1004 | | |
1005 | | static int |
1006 | | plane_get_bits_rectangle(gx_device * dev, const gs_int_rect * prect, |
1007 | | gs_get_bits_params_t * params) |
1008 | 0 | { |
1009 | 0 | gx_device_plane_extract * const edev = (gx_device_plane_extract *)dev; |
1010 | 0 | gx_device * const plane_dev = edev->plane_dev; |
1011 | 0 | int plane_index = edev->plane.index; |
1012 | 0 | gs_get_bits_options_t options = params->options; |
1013 | 0 | gs_get_bits_params_t plane_params; |
1014 | 0 | uchar plane; |
1015 | 0 | int code; |
1016 | | |
1017 | | /* |
1018 | | * The only real option that this device supports is single-plane |
1019 | | * retrieval. However, for the default case of RasterOp, it must be |
1020 | | * able to return chunky pixels in which the other components are |
1021 | | * arbitrary (but might as well be zero). |
1022 | | */ |
1023 | 0 | if ((options & GB_PACKING_PLANAR) && (options & GB_SELECT_PLANES)) { |
1024 | 0 | if (params->data[plane_index] == 0) |
1025 | 0 | return gx_default_get_bits_rectangle(dev, prect, params); |
1026 | | /* If the caller wants any other plane(s), punt. */ |
1027 | 0 | for (plane = 0; plane < dev->color_info.num_components; ++plane) |
1028 | 0 | if (plane != plane_index && params->data[plane] != 0) |
1029 | 0 | return gx_default_get_bits_rectangle(dev, prect, params); |
1030 | | /* Pass the request on to the plane device. */ |
1031 | 0 | plane_params = *params; |
1032 | 0 | plane_params.options = |
1033 | 0 | (options & ~(GB_PACKING_ALL | GB_SELECT_PLANES)) | |
1034 | 0 | GB_PACKING_CHUNKY; |
1035 | 0 | plane_params.data[0] = params->data[plane_index]; |
1036 | 0 | code = dev_proc(plane_dev, get_bits_rectangle) |
1037 | 0 | (plane_dev, prect, &plane_params); |
1038 | 0 | if (code >= 0) { |
1039 | 0 | *params = plane_params; |
1040 | 0 | params->options = (params->options & ~GB_PACKING_ALL) | |
1041 | 0 | (GB_PACKING_PLANAR | GB_SELECT_PLANES); |
1042 | 0 | params->data[plane_index] = params->data[0]; |
1043 | 0 | for (plane = 0; plane < dev->color_info.num_components; ++plane) |
1044 | 0 | if (plane != plane_index) |
1045 | 0 | params->data[plane] = 0; |
1046 | 0 | } |
1047 | 0 | } else if (!(~options & (GB_COLORS_NATIVE | GB_ALPHA_NONE | |
1048 | 0 | GB_PACKING_CHUNKY | GB_RETURN_COPY | |
1049 | 0 | GB_ALIGN_STANDARD | GB_OFFSET_0 | |
1050 | 0 | GB_RASTER_STANDARD))) { |
1051 | | /* Expand the plane into chunky pixels. */ |
1052 | 0 | bits_plane_t dest, source; |
1053 | |
|
1054 | 0 | dest.data.write = params->data[0]; |
1055 | 0 | dest.raster = |
1056 | 0 | bitmap_raster((prect->q.x - prect->p.x) * dev->color_info.depth); |
1057 | 0 | dest.depth = edev->color_info.depth; |
1058 | 0 | dest.x = 0; |
1059 | | |
1060 | | /* not source.data, source.raster, source.x */ |
1061 | 0 | source.depth = plane_dev->color_info.depth; |
1062 | |
|
1063 | 0 | plane_params = *params; |
1064 | 0 | plane_params.options = options &= |
1065 | 0 | (~(GB_COLORS_ALL | GB_ALPHA_ALL | GB_PACKING_ALL | |
1066 | 0 | GB_RETURN_ALL | GB_ALIGN_ALL | GB_OFFSET_ALL | GB_RASTER_ALL) | |
1067 | 0 | GB_COLORS_NATIVE | GB_ALPHA_NONE | GB_PACKING_CHUNKY | |
1068 | | /* Try for a pointer return the first time. */ |
1069 | 0 | GB_RETURN_POINTER | |
1070 | 0 | GB_ALIGN_STANDARD | |
1071 | 0 | (GB_OFFSET_0 | GB_OFFSET_ANY) | |
1072 | 0 | (GB_RASTER_STANDARD | GB_RASTER_ANY)); |
1073 | 0 | plane_params.raster = gx_device_raster(plane_dev, true); |
1074 | 0 | code = dev_proc(plane_dev, get_bits_rectangle) |
1075 | 0 | (plane_dev, prect, &plane_params); |
1076 | 0 | if (code >= 0) { |
1077 | | /* Success, expand the plane into pixels. */ |
1078 | 0 | source.data.read = plane_params.data[0]; |
1079 | 0 | source.raster = plane_params.raster; |
1080 | 0 | source.x = params->x_offset; |
1081 | 0 | code = bits_expand_plane(&dest, &source, edev->plane.shift, |
1082 | 0 | prect->q.x - prect->p.x, |
1083 | 0 | prect->q.y - prect->p.y); |
1084 | 0 | } |
1085 | 0 | params->options = (options & ~GB_RETURN_POINTER) | GB_RETURN_COPY; |
1086 | 0 | } else |
1087 | 0 | return gx_default_get_bits_rectangle(dev, prect, params); |
1088 | 0 | return code; |
1089 | 0 | } |