/src/ghostpdl/base/gscie.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* Copyright (C) 2001-2023 Artifex Software, Inc. |
2 | | All Rights Reserved. |
3 | | |
4 | | This software is provided AS-IS with no warranty, either express or |
5 | | implied. |
6 | | |
7 | | This software is distributed under license and may not be copied, |
8 | | modified or distributed except as expressly authorized under the terms |
9 | | of the license contained in the file LICENSE in this distribution. |
10 | | |
11 | | Refer to licensing information at http://www.artifex.com or contact |
12 | | Artifex Software, Inc., 39 Mesa Street, Suite 108A, San Francisco, |
13 | | CA 94129, USA, for further information. |
14 | | */ |
15 | | |
16 | | |
17 | | /* CIE color rendering cache management */ |
18 | | #include "math_.h" |
19 | | #include "memory_.h" |
20 | | #include "gx.h" |
21 | | #include "gserrors.h" |
22 | | #include "gsstruct.h" |
23 | | #include "gsmatrix.h" /* for gscolor2.h */ |
24 | | #include "gxcspace.h" /* for gxcie.c */ |
25 | | #include "gscolor2.h" /* for gs_set/currentcolorrendering */ |
26 | | #include "gxarith.h" |
27 | | #include "gxcie.h" |
28 | | #include "gxdevice.h" /* for gxcmap.h */ |
29 | | #include "gxcmap.h" |
30 | | #include "gzstate.h" |
31 | | #include "gsicc.h" |
32 | | |
33 | | /* |
34 | | * Define whether to optimize the CIE mapping process by combining steps. |
35 | | * This should only be disabled (commented out) for debugging. |
36 | | */ |
37 | | #define OPTIMIZE_CIE_MAPPING |
38 | | |
39 | | /* Forward references */ |
40 | | static int cie_joint_caches_init(gx_cie_joint_caches *, |
41 | | const gs_cie_common *, |
42 | | gs_cie_render *); |
43 | | static void cie_joint_caches_complete(gx_cie_joint_caches *, |
44 | | const gs_cie_common *, |
45 | | const gs_cie_abc *, |
46 | | const gs_cie_render *); |
47 | | static void cie_cache_restrict(cie_cache_floats *, const gs_range *); |
48 | | static void cie_invert3(const gs_matrix3 *, gs_matrix3 *); |
49 | | static void cie_matrix_init(gs_matrix3 *); |
50 | | |
51 | | /* Allocator structure types */ |
52 | | private_st_joint_caches(); |
53 | | extern_st(st_gs_gstate); |
54 | | |
55 | | #define RESTRICTED_INDEX(v, n, itemp)\ |
56 | 0 | ((uint)(itemp = (int)(v)) >= (n) ?\ |
57 | 0 | (itemp < 0 ? 0 : (n) - 1) : itemp) |
58 | | |
59 | | /* Define cache interpolation threshold values. */ |
60 | | #ifdef CIE_CACHE_INTERPOLATE |
61 | | # ifdef CIE_INTERPOLATE_THRESHOLD |
62 | 162k | # define CACHE_THRESHOLD CIE_INTERPOLATE_THRESHOLD |
63 | | # else |
64 | | # define CACHE_THRESHOLD 0 /* always interpolate */ |
65 | | # endif |
66 | | #else |
67 | | # define CACHE_THRESHOLD 1.0e6 /* never interpolate */ |
68 | | #endif |
69 | | #ifdef CIE_RENDER_TABLE_INTERPOLATE |
70 | | # define RENDER_TABLE_THRESHOLD 0 |
71 | | #else |
72 | | # define RENDER_TABLE_THRESHOLD 1.0e6 |
73 | | #endif |
74 | | |
75 | | /* |
76 | | * Determine whether a function is a linear transformation of the form |
77 | | * f(x) = scale * x + origin. |
78 | | */ |
79 | | static bool |
80 | | cache_is_linear(cie_linear_params_t *params, const cie_cache_floats *pcf) |
81 | 0 | { |
82 | 0 | double origin = pcf->values[0]; |
83 | 0 | double diff = pcf->values[countof(pcf->values) - 1] - origin; |
84 | 0 | double scale = diff / (countof(pcf->values) - 1); |
85 | 0 | int i; |
86 | 0 | double test = origin + scale; |
87 | |
|
88 | 0 | for (i = 1; i < countof(pcf->values) - 1; ++i, test += scale) |
89 | 0 | if (fabs(pcf->values[i] - test) >= 0.5 / countof(pcf->values)) |
90 | 0 | return (params->is_linear = false); |
91 | 0 | params->origin = origin - pcf->params.base; |
92 | 0 | params->scale = |
93 | 0 | diff * pcf->params.factor / (countof(pcf->values) - 1); |
94 | 0 | return (params->is_linear = true); |
95 | 0 | } |
96 | | |
97 | | static void |
98 | | cache_set_linear(cie_cache_floats *pcf) |
99 | 487k | { |
100 | 487k | if (pcf->params.is_identity) { |
101 | 487k | if_debug1('c', "[c]is_linear("PRI_INTPTR") = true (is_identity)\n", |
102 | 487k | (intptr_t)pcf); |
103 | 487k | pcf->params.linear.is_linear = true; |
104 | 487k | pcf->params.linear.origin = 0; |
105 | 487k | pcf->params.linear.scale = 1; |
106 | 487k | } else if (cache_is_linear(&pcf->params.linear, pcf)) { |
107 | 0 | if (pcf->params.linear.origin == 0 && |
108 | 0 | fabs(pcf->params.linear.scale - 1) < 0.00001) |
109 | 0 | pcf->params.is_identity = true; |
110 | 0 | if_debug4('c', |
111 | 0 | "[c]is_linear("PRI_INTPTR") = true, origin = %g, scale = %g%s\n", |
112 | 0 | (intptr_t)pcf, pcf->params.linear.origin, |
113 | 0 | pcf->params.linear.scale, |
114 | 0 | (pcf->params.is_identity ? " (=> is_identity)" : "")); |
115 | 0 | } |
116 | | #ifdef DEBUG |
117 | | else |
118 | | if_debug1('c', "[c]linear("PRI_INTPTR") = false\n", (intptr_t)pcf); |
119 | | #endif |
120 | 487k | } |
121 | | static void |
122 | | cache3_set_linear(gx_cie_vector_cache3_t *pvc) |
123 | 162k | { |
124 | 162k | cache_set_linear(&pvc->caches[0].floats); |
125 | 162k | cache_set_linear(&pvc->caches[1].floats); |
126 | 162k | cache_set_linear(&pvc->caches[2].floats); |
127 | 162k | } |
128 | | |
129 | | #ifdef DEBUG |
130 | | static void |
131 | | if_debug_vector3(const char *str, const gs_vector3 *vec) |
132 | | { |
133 | | if_debug4('c', "%s[%g %g %g]\n", str, vec->u, vec->v, vec->w); |
134 | | } |
135 | | static void |
136 | | if_debug_matrix3(const char *str, const gs_matrix3 *mat) |
137 | | { |
138 | | if_debug10('c', "%s [%g %g %g] [%g %g %g] [%g %g %g]\n", str, |
139 | | mat->cu.u, mat->cu.v, mat->cu.w, |
140 | | mat->cv.u, mat->cv.v, mat->cv.w, |
141 | | mat->cw.u, mat->cw.v, mat->cw.w); |
142 | | } |
143 | | #else |
144 | 1.62M | # define if_debug_vector3(str, vec) DO_NOTHING |
145 | 2.11M | # define if_debug_matrix3(str, mat) DO_NOTHING |
146 | | #endif |
147 | | |
148 | | /* ------ Default values for CIE dictionary elements ------ */ |
149 | | |
150 | | /* Default transformation procedures. */ |
151 | | |
152 | | float |
153 | | a_identity(double in, const gs_cie_a * pcie) |
154 | 0 | { |
155 | 0 | return in; |
156 | 0 | } |
157 | | static float |
158 | | a_from_cache(double in, const gs_cie_a * pcie) |
159 | 0 | { |
160 | 0 | return gs_cie_cached_value(in, &pcie->caches.DecodeA.floats); |
161 | 0 | } |
162 | | |
163 | | float |
164 | | abc_identity(double in, const gs_cie_abc * pcie) |
165 | 0 | { |
166 | 0 | return in; |
167 | 0 | } |
168 | | static float |
169 | | abc_from_cache_0(double in, const gs_cie_abc * pcie) |
170 | 0 | { |
171 | 0 | return gs_cie_cached_value(in, &pcie->caches.DecodeABC.caches[0].floats); |
172 | 0 | } |
173 | | static float |
174 | | abc_from_cache_1(double in, const gs_cie_abc * pcie) |
175 | 0 | { |
176 | 0 | return gs_cie_cached_value(in, &pcie->caches.DecodeABC.caches[1].floats); |
177 | 0 | } |
178 | | static float |
179 | | abc_from_cache_2(double in, const gs_cie_abc * pcie) |
180 | 0 | { |
181 | 0 | return gs_cie_cached_value(in, &pcie->caches.DecodeABC.caches[2].floats); |
182 | 0 | } |
183 | | |
184 | | static float |
185 | | def_identity(double in, const gs_cie_def * pcie) |
186 | 0 | { |
187 | 0 | return in; |
188 | 0 | } |
189 | | static float |
190 | | def_from_cache_0(double in, const gs_cie_def * pcie) |
191 | 0 | { |
192 | 0 | return gs_cie_cached_value(in, &pcie->caches_def.DecodeDEF[0].floats); |
193 | 0 | } |
194 | | static float |
195 | | def_from_cache_1(double in, const gs_cie_def * pcie) |
196 | 0 | { |
197 | 0 | return gs_cie_cached_value(in, &pcie->caches_def.DecodeDEF[1].floats); |
198 | 0 | } |
199 | | static float |
200 | | def_from_cache_2(double in, const gs_cie_def * pcie) |
201 | 0 | { |
202 | 0 | return gs_cie_cached_value(in, &pcie->caches_def.DecodeDEF[2].floats); |
203 | 0 | } |
204 | | |
205 | | static float |
206 | | defg_identity(double in, const gs_cie_defg * pcie) |
207 | 0 | { |
208 | 0 | return in; |
209 | 0 | } |
210 | | static float |
211 | | defg_from_cache_0(double in, const gs_cie_defg * pcie) |
212 | 0 | { |
213 | 0 | return gs_cie_cached_value(in, &pcie->caches_defg.DecodeDEFG[0].floats); |
214 | 0 | } |
215 | | static float |
216 | | defg_from_cache_1(double in, const gs_cie_defg * pcie) |
217 | 0 | { |
218 | 0 | return gs_cie_cached_value(in, &pcie->caches_defg.DecodeDEFG[1].floats); |
219 | 0 | } |
220 | | static float |
221 | | defg_from_cache_2(double in, const gs_cie_defg * pcie) |
222 | 0 | { |
223 | 0 | return gs_cie_cached_value(in, &pcie->caches_defg.DecodeDEFG[2].floats); |
224 | 0 | } |
225 | | static float |
226 | | defg_from_cache_3(double in, const gs_cie_defg * pcie) |
227 | 0 | { |
228 | 0 | return gs_cie_cached_value(in, &pcie->caches_defg.DecodeDEFG[3].floats); |
229 | 0 | } |
230 | | |
231 | | float |
232 | | common_identity(double in, const gs_cie_common * pcie) |
233 | 0 | { |
234 | 0 | return in; |
235 | 0 | } |
236 | | static float |
237 | | lmn_from_cache_0(double in, const gs_cie_common * pcie) |
238 | 0 | { |
239 | 0 | return gs_cie_cached_value(in, &pcie->caches.DecodeLMN[0].floats); |
240 | 0 | } |
241 | | static float |
242 | | lmn_from_cache_1(double in, const gs_cie_common * pcie) |
243 | 0 | { |
244 | 0 | return gs_cie_cached_value(in, &pcie->caches.DecodeLMN[1].floats); |
245 | 0 | } |
246 | | static float |
247 | | lmn_from_cache_2(double in, const gs_cie_common * pcie) |
248 | 0 | { |
249 | 0 | return gs_cie_cached_value(in, &pcie->caches.DecodeLMN[2].floats); |
250 | 0 | } |
251 | | |
252 | | /* Transformation procedures for accessing an already-loaded cache. */ |
253 | | |
254 | | float |
255 | | gs_cie_cached_value(double in, const cie_cache_floats *pcache) |
256 | 0 | { |
257 | | /* |
258 | | * We need to get the same results when we sample an already-loaded |
259 | | * cache, so we need to round the index just a tiny bit. |
260 | | */ |
261 | 0 | int index = |
262 | 0 | (int)((in - pcache->params.base) * pcache->params.factor + 0.0001); |
263 | |
|
264 | 0 | CIE_CLAMP_INDEX(index); |
265 | 0 | return pcache->values[index]; |
266 | 0 | } |
267 | | |
268 | | /* Default vectors and matrices. */ |
269 | | |
270 | | const gs_range3 Range3_default = { |
271 | | { {0, 1}, {0, 1}, {0, 1} } |
272 | | }; |
273 | | const gs_range4 Range4_default = { |
274 | | { {0, 1}, {0, 1}, {0, 1}, {0, 1} } |
275 | | }; |
276 | | const gs_cie_defg_proc4 DecodeDEFG_default = { |
277 | | {defg_identity, defg_identity, defg_identity, defg_identity} |
278 | | }; |
279 | | const gs_cie_defg_proc4 DecodeDEFG_from_cache = { |
280 | | {defg_from_cache_0, defg_from_cache_1, defg_from_cache_2, defg_from_cache_3} |
281 | | }; |
282 | | const gs_cie_def_proc3 DecodeDEF_default = { |
283 | | {def_identity, def_identity, def_identity} |
284 | | }; |
285 | | const gs_cie_def_proc3 DecodeDEF_from_cache = { |
286 | | {def_from_cache_0, def_from_cache_1, def_from_cache_2} |
287 | | }; |
288 | | const gs_cie_abc_proc3 DecodeABC_default = { |
289 | | {abc_identity, abc_identity, abc_identity} |
290 | | }; |
291 | | const gs_cie_abc_proc3 DecodeABC_from_cache = { |
292 | | {abc_from_cache_0, abc_from_cache_1, abc_from_cache_2} |
293 | | }; |
294 | | const gs_cie_common_proc3 DecodeLMN_default = { |
295 | | {common_identity, common_identity, common_identity} |
296 | | }; |
297 | | const gs_cie_common_proc3 DecodeLMN_from_cache = { |
298 | | {lmn_from_cache_0, lmn_from_cache_1, lmn_from_cache_2} |
299 | | }; |
300 | | const gs_matrix3 Matrix3_default = { |
301 | | {1, 0, 0}, |
302 | | {0, 1, 0}, |
303 | | {0, 0, 1}, |
304 | | 1 /*true */ |
305 | | }; |
306 | | const gs_range RangeA_default = {0, 1}; |
307 | | const gs_cie_a_proc DecodeA_default = a_identity; |
308 | | const gs_cie_a_proc DecodeA_from_cache = a_from_cache; |
309 | | const gs_vector3 MatrixA_default = {1, 1, 1}; |
310 | | const gs_vector3 BlackPoint_default = {0, 0, 0}; |
311 | | |
312 | | /* Initialize a CIE color. */ |
313 | | /* This only happens on setcolorspace. */ |
314 | | void |
315 | | gx_init_CIE(gs_client_color * pcc, const gs_color_space * pcs) |
316 | 0 | { |
317 | 0 | gx_init_paint_4(pcc, pcs); |
318 | | /* (0...) may not be within the range of allowable values. */ |
319 | 0 | (*pcs->type->restrict_color)(pcc, pcs); |
320 | 0 | } |
321 | | |
322 | | /* Restrict CIE colors. */ |
323 | | |
324 | | static inline void |
325 | | cie_restrict(float *pv, const gs_range *range) |
326 | 0 | { |
327 | 0 | if (*pv <= range->rmin) |
328 | 0 | *pv = range->rmin; |
329 | 0 | else if (*pv >= range->rmax) |
330 | 0 | *pv = range->rmax; |
331 | 0 | } |
332 | | |
333 | | void |
334 | | gx_restrict_CIEDEFG(gs_client_color * pcc, const gs_color_space * pcs) |
335 | 0 | { |
336 | 0 | const gs_cie_defg *pcie = pcs->params.defg; |
337 | |
|
338 | 0 | cie_restrict(&pcc->paint.values[0], &pcie->RangeDEFG.ranges[0]); |
339 | 0 | cie_restrict(&pcc->paint.values[1], &pcie->RangeDEFG.ranges[1]); |
340 | 0 | cie_restrict(&pcc->paint.values[2], &pcie->RangeDEFG.ranges[2]); |
341 | 0 | cie_restrict(&pcc->paint.values[3], &pcie->RangeDEFG.ranges[3]); |
342 | 0 | } |
343 | | void |
344 | | gx_restrict_CIEDEF(gs_client_color * pcc, const gs_color_space * pcs) |
345 | 0 | { |
346 | 0 | const gs_cie_def *pcie = pcs->params.def; |
347 | |
|
348 | 0 | cie_restrict(&pcc->paint.values[0], &pcie->RangeDEF.ranges[0]); |
349 | 0 | cie_restrict(&pcc->paint.values[1], &pcie->RangeDEF.ranges[1]); |
350 | 0 | cie_restrict(&pcc->paint.values[2], &pcie->RangeDEF.ranges[2]); |
351 | 0 | } |
352 | | void |
353 | | gx_restrict_CIEABC(gs_client_color * pcc, const gs_color_space * pcs) |
354 | 0 | { |
355 | 0 | const gs_cie_abc *pcie = pcs->params.abc; |
356 | |
|
357 | 0 | cie_restrict(&pcc->paint.values[0], &pcie->RangeABC.ranges[0]); |
358 | 0 | cie_restrict(&pcc->paint.values[1], &pcie->RangeABC.ranges[1]); |
359 | 0 | cie_restrict(&pcc->paint.values[2], &pcie->RangeABC.ranges[2]); |
360 | 0 | } |
361 | | void |
362 | | gx_restrict_CIEA(gs_client_color * pcc, const gs_color_space * pcs) |
363 | 0 | { |
364 | 0 | const gs_cie_a *pcie = pcs->params.a; |
365 | |
|
366 | 0 | cie_restrict(&pcc->paint.values[0], &pcie->RangeA); |
367 | 0 | } |
368 | | |
369 | | /* ================ Table setup ================ */ |
370 | | |
371 | | /* ------ Install a CIE color space ------ */ |
372 | | |
373 | | static void cie_cache_mult(gx_cie_vector_cache *, const gs_vector3 *, |
374 | | const cie_cache_floats *, double); |
375 | | static bool cie_cache_mult3(gx_cie_vector_cache3_t *, |
376 | | const gs_matrix3 *, double); |
377 | | |
378 | | int |
379 | | gx_install_cie_abc(gs_cie_abc *pcie, gs_gstate * pgs) |
380 | 0 | { |
381 | 0 | if_debug_matrix3("[c]CIE MatrixABC =", &pcie->MatrixABC); |
382 | 0 | cie_matrix_init(&pcie->MatrixABC); |
383 | 0 | CIE_LOAD_CACHE_BODY(pcie->caches.DecodeABC.caches, pcie->RangeABC.ranges, |
384 | 0 | &pcie->DecodeABC, DecodeABC_default, pcie, |
385 | 0 | "DecodeABC"); |
386 | 0 | gx_cie_load_common_cache(&pcie->common, pgs); |
387 | 0 | gs_cie_abc_complete(pcie); |
388 | 0 | return gs_cie_cs_complete(pgs, true); |
389 | 0 | } |
390 | | |
391 | | int |
392 | | gx_install_CIEDEFG(gs_color_space * pcs, gs_gstate * pgs) |
393 | 0 | { |
394 | 0 | gs_cie_defg *pcie = pcs->params.defg; |
395 | |
|
396 | 0 | CIE_LOAD_CACHE_BODY(pcie->caches_defg.DecodeDEFG, pcie->RangeDEFG.ranges, |
397 | 0 | &pcie->DecodeDEFG, DecodeDEFG_default, pcie, |
398 | 0 | "DecodeDEFG"); |
399 | 0 | return gx_install_cie_abc((gs_cie_abc *)pcie, pgs); |
400 | 0 | } |
401 | | |
402 | | int |
403 | | gx_install_CIEDEF(gs_color_space * pcs, gs_gstate * pgs) |
404 | 0 | { |
405 | 0 | gs_cie_def *pcie = pcs->params.def; |
406 | |
|
407 | 0 | CIE_LOAD_CACHE_BODY(pcie->caches_def.DecodeDEF, pcie->RangeDEF.ranges, |
408 | 0 | &pcie->DecodeDEF, DecodeDEF_default, pcie, |
409 | 0 | "DecodeDEF"); |
410 | 0 | return gx_install_cie_abc((gs_cie_abc *)pcie, pgs); |
411 | 0 | } |
412 | | |
413 | | int |
414 | | gx_install_CIEABC(gs_color_space * pcs, gs_gstate * pgs) |
415 | 0 | { |
416 | 0 | return gx_install_cie_abc(pcs->params.abc, pgs); |
417 | 0 | } |
418 | | |
419 | | int |
420 | | gx_install_CIEA(gs_color_space * pcs, gs_gstate * pgs) |
421 | 0 | { |
422 | 0 | gs_cie_a *pcie = pcs->params.a; |
423 | 0 | gs_sample_loop_params_t lp; |
424 | 0 | int i; |
425 | |
|
426 | 0 | gs_cie_cache_init(&pcie->caches.DecodeA.floats.params, &lp, |
427 | 0 | &pcie->RangeA, "DecodeA"); |
428 | 0 | for (i = 0; i <= lp.N; ++i) { |
429 | 0 | float in = SAMPLE_LOOP_VALUE(i, lp); |
430 | |
|
431 | 0 | pcie->caches.DecodeA.floats.values[i] = (*pcie->DecodeA)(in, pcie); |
432 | 0 | if_debug3m('C', pgs->memory, "[C]DecodeA[%d] = %g => %g\n", |
433 | 0 | i, in, pcie->caches.DecodeA.floats.values[i]); |
434 | 0 | } |
435 | 0 | gx_cie_load_common_cache(&pcie->common, pgs); |
436 | 0 | gs_cie_a_complete(pcie); |
437 | 0 | return gs_cie_cs_complete(pgs, true); |
438 | 0 | } |
439 | | |
440 | | /* Load the common caches when installing the color space. */ |
441 | | /* This routine is exported for the benefit of gsicc.c */ |
442 | | void |
443 | | gx_cie_load_common_cache(gs_cie_common * pcie, gs_gstate * pgs) |
444 | 0 | { |
445 | 0 | if_debug_matrix3("[c]CIE MatrixLMN =", &pcie->MatrixLMN); |
446 | 0 | cie_matrix_init(&pcie->MatrixLMN); |
447 | 0 | CIE_LOAD_CACHE_BODY(pcie->caches.DecodeLMN, pcie->RangeLMN.ranges, |
448 | 0 | &pcie->DecodeLMN, DecodeLMN_default, pcie, |
449 | 0 | "DecodeLMN"); |
450 | 0 | } |
451 | | |
452 | | /* Complete loading the common caches. */ |
453 | | /* This routine is exported for the benefit of gsicc.c */ |
454 | | void |
455 | | gx_cie_common_complete(gs_cie_common *pcie) |
456 | 0 | { |
457 | 0 | int i; |
458 | |
|
459 | 0 | for (i = 0; i < 3; ++i) |
460 | 0 | cache_set_linear(&pcie->caches.DecodeLMN[i].floats); |
461 | 0 | } |
462 | | |
463 | | /* |
464 | | * Restrict the DecodeDEF[G] cache according to RangeHIJ[K], and scale to |
465 | | * the dimensions of Table. |
466 | | */ |
467 | | static void |
468 | | gs_cie_defx_scale(float *values, const gs_range *range, int dim) |
469 | 0 | { |
470 | 0 | double scale = (dim - 1.0) / (range->rmax - range->rmin); |
471 | 0 | int i; |
472 | |
|
473 | 0 | for (i = 0; i < gx_cie_cache_size; ++i) { |
474 | 0 | float value = values[i]; |
475 | |
|
476 | 0 | values[i] = |
477 | 0 | (value <= range->rmin ? 0 : |
478 | 0 | value >= range->rmax ? dim - 1 : |
479 | 0 | (value - range->rmin) * scale); |
480 | 0 | } |
481 | 0 | } |
482 | | |
483 | | /* Complete loading a CIEBasedDEFG color space. */ |
484 | | /* This routine is NOT idempotent. */ |
485 | | void |
486 | | gs_cie_defg_complete(gs_cie_defg * pcie) |
487 | 0 | { |
488 | 0 | int j; |
489 | |
|
490 | 0 | for (j = 0; j < 4; ++j) |
491 | 0 | gs_cie_defx_scale(pcie->caches_defg.DecodeDEFG[j].floats.values, |
492 | 0 | &pcie->RangeHIJK.ranges[j], pcie->Table.dims[j]); |
493 | 0 | gs_cie_abc_complete((gs_cie_abc *)pcie); |
494 | 0 | } |
495 | | |
496 | | /* Complete loading a CIEBasedDEF color space. */ |
497 | | /* This routine is NOT idempotent. */ |
498 | | void |
499 | | gs_cie_def_complete(gs_cie_def * pcie) |
500 | 0 | { |
501 | 0 | int j; |
502 | |
|
503 | 0 | for (j = 0; j < 3; ++j) |
504 | 0 | gs_cie_defx_scale(pcie->caches_def.DecodeDEF[j].floats.values, |
505 | 0 | &pcie->RangeHIJ.ranges[j], pcie->Table.dims[j]); |
506 | 0 | gs_cie_abc_complete((gs_cie_abc *)pcie); |
507 | 0 | } |
508 | | |
509 | | /* Complete loading a CIEBasedABC color space. */ |
510 | | /* This routine is idempotent. */ |
511 | | void |
512 | | gs_cie_abc_complete(gs_cie_abc * pcie) |
513 | 0 | { |
514 | 0 | cache3_set_linear(&pcie->caches.DecodeABC); |
515 | 0 | pcie->caches.skipABC = |
516 | 0 | cie_cache_mult3(&pcie->caches.DecodeABC, &pcie->MatrixABC, |
517 | 0 | CACHE_THRESHOLD); |
518 | 0 | gx_cie_common_complete((gs_cie_common *)pcie); |
519 | 0 | } |
520 | | |
521 | | /* Complete loading a CIEBasedA color space. */ |
522 | | /* This routine is idempotent. */ |
523 | | void |
524 | | gs_cie_a_complete(gs_cie_a * pcie) |
525 | 0 | { |
526 | 0 | cie_cache_mult(&pcie->caches.DecodeA, &pcie->MatrixA, |
527 | 0 | &pcie->caches.DecodeA.floats, |
528 | 0 | CACHE_THRESHOLD); |
529 | 0 | cache_set_linear(&pcie->caches.DecodeA.floats); |
530 | 0 | gx_cie_common_complete((gs_cie_common *)pcie); |
531 | 0 | } |
532 | | |
533 | | /* |
534 | | * Set the ranges where interpolation is required in a vector cache. |
535 | | * This procedure is idempotent. |
536 | | */ |
537 | | typedef struct cie_cache_range_temp_s { |
538 | | cie_cached_value prev; |
539 | | int imin, imax; |
540 | | } cie_cache_range_temp_t; |
541 | | static inline void |
542 | | check_interpolation_required(cie_cache_range_temp_t *pccr, |
543 | | cie_cached_value cur, int i, double threshold) |
544 | 748M | { |
545 | 748M | cie_cached_value prev = pccr->prev; |
546 | | |
547 | 748M | if (cie_cached_abs(cur - prev) > threshold * min(cie_cached_abs(prev), cie_cached_abs(cur))) { |
548 | 63.6M | if (i - 1 < pccr->imin) |
549 | 487k | pccr->imin = i - 1; |
550 | 63.6M | if (i > pccr->imax) |
551 | 63.6M | pccr->imax = i; |
552 | 63.6M | } |
553 | 748M | pccr->prev = cur; |
554 | 748M | } |
555 | | static void |
556 | | cie_cache_set_interpolation(gx_cie_vector_cache *pcache, double threshold) |
557 | 487k | { |
558 | 487k | cie_cached_value base = pcache->vecs.params.base; |
559 | 487k | cie_cached_value factor = pcache->vecs.params.factor; |
560 | 487k | cie_cache_range_temp_t temp[3]; |
561 | 487k | int i, j; |
562 | | |
563 | 1.94M | for (j = 0; j < 3; ++j) |
564 | 1.46M | temp[j].imin = gx_cie_cache_size, temp[j].imax = -1; |
565 | 487k | temp[0].prev = pcache->vecs.values[0].u; |
566 | 487k | temp[1].prev = pcache->vecs.values[0].v; |
567 | 487k | temp[2].prev = pcache->vecs.values[0].w; |
568 | | |
569 | 250M | for (i = 0; i < gx_cie_cache_size; ++i) { |
570 | 249M | check_interpolation_required(&temp[0], pcache->vecs.values[i].u, i, |
571 | 249M | threshold); |
572 | 249M | check_interpolation_required(&temp[1], pcache->vecs.values[i].v, i, |
573 | 249M | threshold); |
574 | 249M | check_interpolation_required(&temp[2], pcache->vecs.values[i].w, i, |
575 | 249M | threshold); |
576 | 249M | } |
577 | | |
578 | 1.94M | for (j = 0; j < 3; ++j) { |
579 | 1.46M | pcache->vecs.params.interpolation_ranges[j].rmin = |
580 | 1.46M | base + (cie_cached_value)((double)temp[j].imin / factor); |
581 | 1.46M | pcache->vecs.params.interpolation_ranges[j].rmax = |
582 | 1.46M | base + (cie_cached_value)((double)temp[j].imax / factor); |
583 | 1.46M | if_debug3('c', "[c]interpolation_ranges[%d] = %g, %g\n", j, |
584 | 1.46M | cie_cached2float(pcache->vecs.params.interpolation_ranges[j].rmin), |
585 | 1.46M | cie_cached2float(pcache->vecs.params.interpolation_ranges[j].rmax)); |
586 | 1.46M | } |
587 | | |
588 | 487k | } |
589 | | |
590 | | /* |
591 | | * Convert a scalar cache to a vector cache by multiplying the scalar |
592 | | * values by a vector. Also set the range where interpolation is needed. |
593 | | * This procedure is idempotent. |
594 | | */ |
595 | | static void |
596 | | cie_cache_mult(gx_cie_vector_cache * pcache, const gs_vector3 * pvec, |
597 | | const cie_cache_floats * pcf, double threshold) |
598 | 487k | { |
599 | 487k | float u = pvec->u, v = pvec->v, w = pvec->w; |
600 | 487k | int i; |
601 | | |
602 | 487k | pcache->vecs.params.base = float2cie_cached(pcf->params.base); |
603 | 487k | pcache->vecs.params.factor = float2cie_cached(pcf->params.factor); |
604 | 487k | pcache->vecs.params.limit = |
605 | 487k | float2cie_cached((gx_cie_cache_size - 1) / pcf->params.factor + |
606 | 487k | pcf->params.base); |
607 | 250M | for (i = 0; i < gx_cie_cache_size; ++i) { |
608 | 249M | float f = pcf->values[i]; |
609 | | |
610 | 249M | pcache->vecs.values[i].u = float2cie_cached(f * u); |
611 | 249M | pcache->vecs.values[i].v = float2cie_cached(f * v); |
612 | 249M | pcache->vecs.values[i].w = float2cie_cached(f * w); |
613 | 249M | } |
614 | 487k | cie_cache_set_interpolation(pcache, threshold); |
615 | 487k | } |
616 | | |
617 | | /* |
618 | | * Set the interpolation ranges in a 3-vector cache, based on the ranges in |
619 | | * the individual vector caches. This procedure is idempotent. |
620 | | */ |
621 | | static void |
622 | | cie_cache3_set_interpolation(gx_cie_vector_cache3_t * pvc) |
623 | 162k | { |
624 | 162k | int j, k; |
625 | | |
626 | | /* Iterate over output components. */ |
627 | 649k | for (j = 0; j < 3; ++j) { |
628 | | /* Iterate over sub-caches. */ |
629 | 487k | cie_interpolation_range_t *p = |
630 | 487k | &pvc->caches[0].vecs.params.interpolation_ranges[j]; |
631 | 487k | cie_cached_value rmin = p->rmin, rmax = p->rmax; |
632 | | |
633 | 1.46M | for (k = 1; k < 3; ++k) { |
634 | 974k | p = &pvc->caches[k].vecs.params.interpolation_ranges[j]; |
635 | 974k | rmin = min(rmin, p->rmin), rmax = max(rmax, p->rmax); |
636 | 974k | } |
637 | 487k | pvc->interpolation_ranges[j].rmin = rmin; |
638 | 487k | pvc->interpolation_ranges[j].rmax = rmax; |
639 | 487k | if_debug3('c', "[c]Merged interpolation_ranges[%d] = %g, %g\n", |
640 | 487k | j, rmin, rmax); |
641 | 487k | } |
642 | 162k | } |
643 | | |
644 | | /* |
645 | | * Convert 3 scalar caches to vector caches by multiplying by a matrix. |
646 | | * Return true iff the resulting cache is an identity transformation. |
647 | | * This procedure is idempotent. |
648 | | */ |
649 | | static bool |
650 | | cie_cache_mult3(gx_cie_vector_cache3_t * pvc, const gs_matrix3 * pmat, |
651 | | double threshold) |
652 | 162k | { |
653 | 162k | cie_cache_mult(&pvc->caches[0], &pmat->cu, &pvc->caches[0].floats, threshold); |
654 | 162k | cie_cache_mult(&pvc->caches[1], &pmat->cv, &pvc->caches[1].floats, threshold); |
655 | 162k | cie_cache_mult(&pvc->caches[2], &pmat->cw, &pvc->caches[2].floats, threshold); |
656 | 162k | cie_cache3_set_interpolation(pvc); |
657 | 162k | return pmat->is_identity & pvc->caches[0].floats.params.is_identity & |
658 | 162k | pvc->caches[1].floats.params.is_identity & |
659 | 162k | pvc->caches[2].floats.params.is_identity; |
660 | 162k | } |
661 | | |
662 | | /* ------ Install a rendering dictionary ------ */ |
663 | | |
664 | | bool |
665 | | vector_equal(const gs_vector3 *p1, const gs_vector3 *p2) |
666 | 0 | { |
667 | 0 | if (p1->u != p2->u) |
668 | 0 | return false; |
669 | 0 | if (p1->v != p2->v) |
670 | 0 | return false; |
671 | 0 | if (p1->w != p2->w) |
672 | 0 | return false; |
673 | 0 | return true; |
674 | 0 | } |
675 | | |
676 | | bool |
677 | | matrix_equal(const gs_matrix3 *p1, const gs_matrix3 *p2) |
678 | 0 | { |
679 | 0 | if (p1->is_identity != p2->is_identity) |
680 | 0 | return false; |
681 | 0 | if (!vector_equal(&(p1->cu), &(p2->cu))) |
682 | 0 | return false; |
683 | 0 | if (!vector_equal(&(p1->cv), &(p2->cv))) |
684 | 0 | return false; |
685 | 0 | if (!vector_equal(&(p1->cw), &(p2->cw))) |
686 | 0 | return false; |
687 | 0 | return true; |
688 | 0 | } |
689 | | |
690 | | static bool |
691 | | transform_equal(const gs_cie_transform_proc3 *p1, const gs_cie_transform_proc3 *p2) |
692 | 0 | { |
693 | 0 | if (p1->proc != p2->proc) |
694 | 0 | return false; |
695 | 0 | if (p1->proc_data.size != p2->proc_data.size) |
696 | 0 | return false; |
697 | 0 | if (memcmp(p1->proc_data.data, p2->proc_data.data, p1->proc_data.size) != 0) |
698 | 0 | return false; |
699 | 0 | if (p1->driver_name != p2->driver_name) |
700 | 0 | return false; |
701 | 0 | if (p1->proc_name != p2->proc_name) |
702 | 0 | return false; |
703 | 0 | return true; |
704 | 0 | } |
705 | | |
706 | | bool |
707 | | range_equal(const gs_range3 *p1, const gs_range3 *p2) |
708 | 0 | { |
709 | 0 | int k; |
710 | |
|
711 | 0 | for (k = 0; k < 3; k++) { |
712 | 0 | if (p1->ranges[k].rmax != p2->ranges[k].rmax) |
713 | 0 | return false; |
714 | 0 | if (p1->ranges[k].rmin != p2->ranges[k].rmin) |
715 | 0 | return false; |
716 | 0 | } |
717 | 0 | return true; |
718 | 0 | } |
719 | | |
720 | | /* setcolorrendering */ |
721 | | int |
722 | | gs_setcolorrendering(gs_gstate * pgs, gs_cie_render * pcrd) |
723 | 162k | { |
724 | 162k | int code = gs_cie_render_complete(pcrd); |
725 | 162k | const gs_cie_render *pcrd_old = pgs->cie_render; |
726 | 162k | bool joint_ok; |
727 | | |
728 | 162k | if (code < 0) |
729 | 0 | return code; |
730 | 162k | if (pcrd_old != 0 && pcrd->id == pcrd_old->id) |
731 | 0 | return 0; /* detect needless reselecting */ |
732 | 162k | joint_ok = |
733 | 162k | pcrd_old != 0 && |
734 | 162k | vector_equal(&pcrd->points.WhitePoint, &pcrd_old->points.WhitePoint) && |
735 | 162k | vector_equal(&pcrd->points.BlackPoint, &pcrd_old->points.BlackPoint) && |
736 | 162k | matrix_equal(&pcrd->MatrixPQR, &pcrd_old->MatrixPQR) && |
737 | 162k | range_equal(&pcrd->RangePQR, &pcrd_old->RangePQR) && |
738 | 162k | transform_equal(&pcrd->TransformPQR, &pcrd_old->TransformPQR); |
739 | 162k | rc_assign(pgs->cie_render, pcrd, "gs_setcolorrendering"); |
740 | | /* Initialize the joint caches if needed. */ |
741 | 162k | if (!joint_ok) |
742 | 162k | code = gs_cie_cs_complete(pgs, true); |
743 | 162k | gx_unset_dev_color(pgs); |
744 | 162k | return code; |
745 | 162k | } |
746 | | |
747 | | /* currentcolorrendering */ |
748 | | const gs_cie_render * |
749 | | gs_currentcolorrendering(const gs_gstate * pgs) |
750 | 0 | { |
751 | 0 | return pgs->cie_render; |
752 | 0 | } |
753 | | |
754 | | /* Unshare (allocating if necessary) the joint caches. */ |
755 | | gx_cie_joint_caches * |
756 | | gx_unshare_cie_caches(gs_gstate * pgs) |
757 | 162k | { |
758 | 162k | gx_cie_joint_caches *pjc = pgs->cie_joint_caches; |
759 | | |
760 | 162k | rc_unshare_struct(pgs->cie_joint_caches, gx_cie_joint_caches, |
761 | 162k | &st_joint_caches, pgs->memory, |
762 | 162k | return 0, "gx_unshare_cie_caches"); |
763 | 162k | if (pgs->cie_joint_caches != pjc) { |
764 | 162k | pjc = pgs->cie_joint_caches; |
765 | 162k | pjc->cspace_id = pjc->render_id = gs_no_id; |
766 | 162k | pjc->id_status = pjc->status = CIE_JC_STATUS_BUILT; |
767 | 162k | } |
768 | 162k | return pjc; |
769 | 162k | } |
770 | | |
771 | | gx_cie_joint_caches * |
772 | | gx_get_cie_caches_ref(gs_gstate * pgs, gs_memory_t * mem) |
773 | 0 | { |
774 | 0 | gx_cie_joint_caches *pjc = pgs->cie_joint_caches; |
775 | | |
776 | | /* Take a reference here, to allow for the one that |
777 | | * rc_unshare_struct might drop if it has to copy it. |
778 | | * Whatever happens we will have taken 1 net new |
779 | | * reference which we return to the caller. */ |
780 | 0 | rc_increment(pgs->cie_joint_caches); |
781 | 0 | rc_unshare_struct(pjc, gx_cie_joint_caches, |
782 | 0 | &st_joint_caches, mem, |
783 | 0 | return NULL, "gx_unshare_cie_caches"); |
784 | 0 | return pjc; |
785 | 0 | } |
786 | | |
787 | | /* Compute the parameters for loading a cache, setting base and factor. */ |
788 | | /* This procedure is idempotent. */ |
789 | | void |
790 | | gs_cie_cache_init(cie_cache_params * pcache, gs_sample_loop_params_t * pslp, |
791 | | const gs_range * domain, client_name_t cname) |
792 | 974k | { |
793 | | /* |
794 | | We need to map the values in the range [domain->rmin..domain->rmax]. |
795 | | However, if rmin < 0 < rmax and the function is non-linear, this can |
796 | | lead to anomalies at zero, which is the default value for CIE colors. |
797 | | The "correct" way to approach this is to run the mapping functions on |
798 | | demand, but we don't want to deal with the complexities of the |
799 | | callbacks this would involve (especially in the middle of rendering |
800 | | images); instead, we adjust the range so that zero maps precisely to a |
801 | | cache slot. Define: |
802 | | |
803 | | A = domain->rmin; |
804 | | B = domain->rmax; |
805 | | N = gx_cie_cache_size - 1; |
806 | | |
807 | | R = B - A; |
808 | | h(v) = N * (v - A) / R; // the index of v in the cache |
809 | | X = h(0). |
810 | | |
811 | | If X is not an integer, we can decrease A and/increase B to make it |
812 | | one. Let A' and B' be the adjusted values of A and B respectively, |
813 | | and let K be the integer derived from X (either floor(X) or ceil(X)). |
814 | | Define |
815 | | |
816 | | f(K) = (K * B' + (N - K) * A') / N). |
817 | | |
818 | | We want f(K) = 0. This occurs precisely when, for any real number |
819 | | C != 0, |
820 | | |
821 | | A' = -K * C; |
822 | | B' = (N - K) * C. |
823 | | |
824 | | In order to ensure A' <= A and B' >= B, we require |
825 | | |
826 | | C >= -A / K; |
827 | | C >= B / (N - K). |
828 | | |
829 | | Since A' and B' must be exactly representable as floats, we round C |
830 | | upward to ensure that it has no more than M mantissa bits, where |
831 | | |
832 | | M = ARCH_FLOAT_MANTISSA_BITS - ceil(log2(N)). |
833 | | */ |
834 | 974k | float A = domain->rmin, B = domain->rmax; |
835 | 974k | double R = B - A, delta; |
836 | 4.87M | #define NN (gx_cie_cache_size - 1) /* 'N' is a member name, see end of proc */ |
837 | 3.89M | #define N NN |
838 | 974k | #define CEIL_LOG2_N CIE_LOG2_CACHE_SIZE |
839 | | |
840 | | /* Adjust the range if necessary. */ |
841 | 974k | if (A < 0 && B >= 0) { |
842 | 487k | const double X = -N * A / R; /* know X > 0 */ |
843 | | /* Choose K to minimize range expansion. */ |
844 | 487k | const int K = (int)(A + B < 0 ? floor(X) : ceil(X)); /* know 0 < K < N */ |
845 | 487k | const int M = ARCH_FLOAT_MANTISSA_BITS - CEIL_LOG2_N; |
846 | 487k | int cexp; |
847 | | |
848 | 487k | double Ca, Cb; |
849 | 487k | double C; |
850 | 487k | double cfrac; |
851 | | |
852 | 487k | if (K != 0) |
853 | 487k | Ca = -A / K; |
854 | 0 | else |
855 | 0 | Ca = 0; |
856 | | |
857 | 487k | if (N != K) |
858 | 487k | Cb = B / (N - K); /* know Ca, Cb > 0 */ |
859 | 0 | else |
860 | 0 | Cb = 0; |
861 | | |
862 | 487k | C = max(Ca, Cb); /* know C > 0 */ |
863 | 487k | cfrac = frexp(C, &cexp); |
864 | | |
865 | 487k | if_debug4('c', "[c]adjusting cache_init(%8g, %8g), X = %8g, K = %d:\n", |
866 | 487k | A, B, X, K); |
867 | | /* Round C to no more than M significant bits. See above. */ |
868 | 487k | C = ldexp(ceil(ldexp(cfrac, M)), cexp - M); |
869 | | /* Finally, compute A' and B'. */ |
870 | 487k | A = -K * C; |
871 | 487k | B = (N - K) * C; |
872 | 487k | if_debug2('c', "[c] => %8g, %8g\n", A, B); |
873 | 487k | R = B - A; |
874 | 487k | } |
875 | 974k | delta = R / N; |
876 | 974k | #ifdef CIE_CACHE_INTERPOLATE |
877 | 974k | pcache->base = A; /* no rounding */ |
878 | | #else |
879 | | pcache->base = A - delta / 2; /* so lookup will round */ |
880 | | #endif |
881 | | /* |
882 | | * If size of the domain is zero, then use 1.0 as the scaling |
883 | | * factor. This prevents divide by zero errors in later calculations. |
884 | | * This should only occurs with zero matrices. It does occur with |
885 | | * Genoa test file 050-01.ps. |
886 | | */ |
887 | 974k | pcache->factor = (any_abs(delta) < 1e-30 ? 1.0 : N / R); |
888 | 974k | if_debug4('c', "[c]cache %s "PRI_INTPTR" base=%g, factor=%g\n", |
889 | 974k | (const char *)cname, (intptr_t)pcache, |
890 | 974k | pcache->base, pcache->factor); |
891 | 974k | pslp->A = A; |
892 | 974k | pslp->B = B; |
893 | 974k | #undef N |
894 | 974k | pslp->N = NN; |
895 | 974k | #undef NN |
896 | 974k | } |
897 | | |
898 | | /* ------ Complete a rendering structure ------ */ |
899 | | |
900 | | /* |
901 | | * Compute the derived values in a CRD that don't involve the cached |
902 | | * procedure values. This procedure is idempotent. |
903 | | */ |
904 | | static void cie_transform_range3(const gs_range3 *, const gs_matrix3 *, |
905 | | gs_range3 *); |
906 | | int |
907 | | gs_cie_render_init(gs_cie_render * pcrd) |
908 | 162k | { |
909 | 162k | gs_matrix3 PQR_inverse; |
910 | | |
911 | 162k | if (pcrd->status >= CIE_RENDER_STATUS_INITED) |
912 | 0 | return 0; /* init already done */ |
913 | 162k | if_debug_matrix3("[c]CRD MatrixLMN =", &pcrd->MatrixLMN); |
914 | 162k | cie_matrix_init(&pcrd->MatrixLMN); |
915 | 162k | if_debug_matrix3("[c]CRD MatrixABC =", &pcrd->MatrixABC); |
916 | 162k | cie_matrix_init(&pcrd->MatrixABC); |
917 | 162k | if_debug_matrix3("[c]CRD MatrixPQR =", &pcrd->MatrixPQR); |
918 | 162k | cie_matrix_init(&pcrd->MatrixPQR); |
919 | 162k | cie_invert3(&pcrd->MatrixPQR, &PQR_inverse); |
920 | 162k | cie_matrix_mult3(&pcrd->MatrixLMN, &PQR_inverse, |
921 | 162k | &pcrd->MatrixPQR_inverse_LMN); |
922 | 162k | cie_transform_range3(&pcrd->RangePQR, &pcrd->MatrixPQR_inverse_LMN, |
923 | 162k | &pcrd->DomainLMN); |
924 | 162k | cie_transform_range3(&pcrd->RangeLMN, &pcrd->MatrixABC, |
925 | 162k | &pcrd->DomainABC); |
926 | 162k | cie_mult3(&pcrd->points.WhitePoint, &pcrd->MatrixPQR, &pcrd->wdpqr); |
927 | 162k | cie_mult3(&pcrd->points.BlackPoint, &pcrd->MatrixPQR, &pcrd->bdpqr); |
928 | 162k | pcrd->status = CIE_RENDER_STATUS_INITED; |
929 | 162k | return 0; |
930 | 162k | } |
931 | | |
932 | | /* |
933 | | * Sample the EncodeLMN, EncodeABC, and RenderTableT CRD procedures, and |
934 | | * load the caches. This procedure is idempotent. |
935 | | */ |
936 | | int |
937 | | gs_cie_render_sample(gs_cie_render * pcrd) |
938 | 162k | { |
939 | 162k | int code; |
940 | | |
941 | 162k | if (pcrd->status >= CIE_RENDER_STATUS_SAMPLED) |
942 | 0 | return 0; /* sampling already done */ |
943 | 162k | code = gs_cie_render_init(pcrd); |
944 | 162k | if (code < 0) |
945 | 0 | return code; |
946 | 162k | CIE_LOAD_CACHE_BODY(pcrd->caches.EncodeLMN.caches, pcrd->DomainLMN.ranges, |
947 | 162k | &pcrd->EncodeLMN, Encode_default, pcrd, "EncodeLMN"); |
948 | 162k | cache3_set_linear(&pcrd->caches.EncodeLMN); |
949 | 162k | CIE_LOAD_CACHE_BODY(pcrd->caches.EncodeABC, pcrd->DomainABC.ranges, |
950 | 162k | &pcrd->EncodeABC, Encode_default, pcrd, "EncodeABC"); |
951 | 162k | if (pcrd->RenderTable.lookup.table != 0) { |
952 | 0 | int i, j, m = pcrd->RenderTable.lookup.m; |
953 | 0 | gs_sample_loop_params_t lp; |
954 | 0 | bool is_identity = true; |
955 | |
|
956 | 0 | for (j = 0; j < m; j++) { |
957 | 0 | gs_cie_cache_init(&pcrd->caches.RenderTableT[j].fracs.params, |
958 | 0 | &lp, &Range3_default.ranges[0], |
959 | 0 | "RenderTableT"); |
960 | 0 | is_identity &= pcrd->RenderTable.T.procs[j] == |
961 | 0 | RenderTableT_default.procs[j]; |
962 | 0 | } |
963 | 0 | pcrd->caches.RenderTableT_is_identity = is_identity; |
964 | | /* |
965 | | * Unfortunately, we defined the first argument of the RenderTable |
966 | | * T procedures as being a byte, limiting the number of distinct |
967 | | * cache entries to 256 rather than gx_cie_cache_size. |
968 | | * We confine this decision to this loop, rather than propagating |
969 | | * it to the procedures that use the cached data, so that we can |
970 | | * change it more easily at some future time. |
971 | | */ |
972 | 0 | for (i = 0; i < gx_cie_cache_size; i++) { |
973 | 0 | #if gx_cie_log2_cache_size >= 8 |
974 | 0 | byte value = i >> (gx_cie_log2_cache_size - 8); |
975 | | #else |
976 | | byte value = (i << (8 - gx_cie_log2_cache_size)) + |
977 | | (i >> (gx_cie_log2_cache_size * 2 - 8)); |
978 | | #endif |
979 | 0 | for (j = 0; j < m; j++) { |
980 | 0 | pcrd->caches.RenderTableT[j].fracs.values[i] = |
981 | 0 | (*pcrd->RenderTable.T.procs[j])(value, pcrd); |
982 | 0 | if_debug3('C', "[C]RenderTableT[%d,%d] = %g\n", |
983 | 0 | i, j, |
984 | 0 | frac2float(pcrd->caches.RenderTableT[j].fracs.values[i])); |
985 | 0 | } |
986 | 0 | } |
987 | 0 | } |
988 | 162k | pcrd->status = CIE_RENDER_STATUS_SAMPLED; |
989 | 162k | return 0; |
990 | 162k | } |
991 | | |
992 | | /* Transform a set of ranges. */ |
993 | | static void |
994 | | cie_transform_range(const gs_range3 * in, double mu, double mv, double mw, |
995 | | gs_range * out) |
996 | 974k | { |
997 | 974k | float umin = mu * in->ranges[0].rmin, umax = mu * in->ranges[0].rmax; |
998 | 974k | float vmin = mv * in->ranges[1].rmin, vmax = mv * in->ranges[1].rmax; |
999 | 974k | float wmin = mw * in->ranges[2].rmin, wmax = mw * in->ranges[2].rmax; |
1000 | 974k | float temp; |
1001 | | |
1002 | 974k | if (umin > umax) |
1003 | 324k | temp = umin, umin = umax, umax = temp; |
1004 | 974k | if (vmin > vmax) |
1005 | 324k | temp = vmin, vmin = vmax, vmax = temp; |
1006 | 974k | if (wmin > wmax) |
1007 | 324k | temp = wmin, wmin = wmax, wmax = temp; |
1008 | 974k | out->rmin = umin + vmin + wmin; |
1009 | 974k | out->rmax = umax + vmax + wmax; |
1010 | 974k | } |
1011 | | static void |
1012 | | cie_transform_range3(const gs_range3 * in, const gs_matrix3 * mat, |
1013 | | gs_range3 * out) |
1014 | 324k | { |
1015 | 324k | cie_transform_range(in, mat->cu.u, mat->cv.u, mat->cw.u, |
1016 | 324k | &out->ranges[0]); |
1017 | 324k | cie_transform_range(in, mat->cu.v, mat->cv.v, mat->cw.v, |
1018 | 324k | &out->ranges[1]); |
1019 | 324k | cie_transform_range(in, mat->cu.w, mat->cv.w, mat->cw.w, |
1020 | 324k | &out->ranges[2]); |
1021 | 324k | } |
1022 | | |
1023 | | /* |
1024 | | * Finish preparing a CRD for installation, by restricting and/or |
1025 | | * transforming the cached procedure values. |
1026 | | * This procedure is idempotent. |
1027 | | */ |
1028 | | int |
1029 | | gs_cie_render_complete(gs_cie_render * pcrd) |
1030 | 162k | { |
1031 | 162k | int code; |
1032 | | |
1033 | 162k | if (pcrd->status >= CIE_RENDER_STATUS_COMPLETED) |
1034 | 0 | return 0; /* completion already done */ |
1035 | 162k | code = gs_cie_render_sample(pcrd); |
1036 | 162k | if (code < 0) |
1037 | 0 | return code; |
1038 | | /* |
1039 | | * Since range restriction happens immediately after |
1040 | | * the cache lookup, we can save a step by restricting |
1041 | | * the values in the cache entries. |
1042 | | * |
1043 | | * If there is no lookup table, we want the final ABC values |
1044 | | * to be fracs; if there is a table, we want them to be |
1045 | | * appropriately scaled ints. |
1046 | | */ |
1047 | 162k | pcrd->MatrixABCEncode = pcrd->MatrixABC; |
1048 | 162k | { |
1049 | 162k | int c; |
1050 | 162k | double f; |
1051 | | |
1052 | 649k | for (c = 0; c < 3; c++) { |
1053 | 487k | gx_cie_float_fixed_cache *pcache = &pcrd->caches.EncodeABC[c]; |
1054 | | |
1055 | 487k | cie_cache_restrict(&pcrd->caches.EncodeLMN.caches[c].floats, |
1056 | 487k | &pcrd->RangeLMN.ranges[c]); |
1057 | 487k | cie_cache_restrict(&pcrd->caches.EncodeABC[c].floats, |
1058 | 487k | &pcrd->RangeABC.ranges[c]); |
1059 | 487k | if (pcrd->RenderTable.lookup.table == 0) { |
1060 | 487k | cie_cache_restrict(&pcache->floats, |
1061 | 487k | &Range3_default.ranges[0]); |
1062 | 487k | gs_cie_cache_to_fracs(&pcache->floats, &pcache->fixeds.fracs); |
1063 | 487k | pcache->fixeds.fracs.params.is_identity = false; |
1064 | 487k | } else { |
1065 | 0 | int i; |
1066 | 0 | int n = pcrd->RenderTable.lookup.dims[c]; |
1067 | |
|
1068 | 0 | #ifdef CIE_RENDER_TABLE_INTERPOLATE |
1069 | 0 | # define SCALED_INDEX(f, n, itemp)\ |
1070 | 0 | RESTRICTED_INDEX(f * (1 << _cie_interpolate_bits),\ |
1071 | 0 | (n) << _cie_interpolate_bits, itemp) |
1072 | | #else |
1073 | | int m = pcrd->RenderTable.lookup.m; |
1074 | | int k = |
1075 | | (c == 0 ? 1 : c == 1 ? |
1076 | | m * pcrd->RenderTable.lookup.dims[2] : m); |
1077 | | # define SCALED_INDEX(f, n, itemp)\ |
1078 | | (RESTRICTED_INDEX(f, n, itemp) * k) |
1079 | | #endif |
1080 | 0 | const gs_range *prange = pcrd->RangeABC.ranges + c; |
1081 | 0 | double scale = (n - 1) / (prange->rmax - prange->rmin); |
1082 | |
|
1083 | 0 | for (i = 0; i < gx_cie_cache_size; ++i) { |
1084 | 0 | float v = |
1085 | 0 | (pcache->floats.values[i] - prange->rmin) * scale |
1086 | | #ifndef CIE_RENDER_TABLE_INTERPOLATE |
1087 | | + 0.5 |
1088 | | #endif |
1089 | 0 | ; |
1090 | 0 | int itemp; |
1091 | |
|
1092 | 0 | if_debug5('c', |
1093 | 0 | "[c]cache[%d][%d] = %g => %g => %d\n", |
1094 | 0 | c, i, pcache->floats.values[i], v, |
1095 | 0 | SCALED_INDEX(v, n, itemp)); |
1096 | 0 | pcache->fixeds.ints.values[i] = |
1097 | 0 | SCALED_INDEX(v, n, itemp); |
1098 | 0 | } |
1099 | 0 | pcache->fixeds.ints.params = pcache->floats.params; |
1100 | 0 | pcache->fixeds.ints.params.is_identity = false; |
1101 | 0 | #undef SCALED_INDEX |
1102 | 0 | } |
1103 | 487k | } |
1104 | | /* Fold the scaling of the EncodeABC cache index */ |
1105 | | /* into MatrixABC. */ |
1106 | 162k | #define MABC(i, t)\ |
1107 | 487k | f = pcrd->caches.EncodeABC[i].floats.params.factor;\ |
1108 | 487k | pcrd->MatrixABCEncode.cu.t *= f;\ |
1109 | 487k | pcrd->MatrixABCEncode.cv.t *= f;\ |
1110 | 487k | pcrd->MatrixABCEncode.cw.t *= f;\ |
1111 | 487k | pcrd->EncodeABC_base[i] =\ |
1112 | 487k | float2cie_cached(pcrd->caches.EncodeABC[i].floats.params.base * f) |
1113 | 162k | MABC(0, u); |
1114 | 162k | MABC(1, v); |
1115 | 162k | MABC(2, w); |
1116 | 162k | #undef MABC |
1117 | 162k | pcrd->MatrixABCEncode.is_identity = 0; |
1118 | 162k | } |
1119 | 162k | cie_cache_mult3(&pcrd->caches.EncodeLMN, &pcrd->MatrixABCEncode, |
1120 | 162k | CACHE_THRESHOLD); |
1121 | 162k | pcrd->status = CIE_RENDER_STATUS_COMPLETED; |
1122 | 162k | return 0; |
1123 | 162k | } |
1124 | | |
1125 | | /* Apply a range restriction to a cache. */ |
1126 | | static void |
1127 | | cie_cache_restrict(cie_cache_floats * pcache, const gs_range * prange) |
1128 | 1.46M | { |
1129 | 1.46M | int i; |
1130 | | |
1131 | 750M | for (i = 0; i < gx_cie_cache_size; i++) { |
1132 | 748M | float v = pcache->values[i]; |
1133 | | |
1134 | 748M | if (v < prange->rmin) |
1135 | 78.6M | pcache->values[i] = prange->rmin; |
1136 | 670M | else if (v > prange->rmax) |
1137 | 107M | pcache->values[i] = prange->rmax; |
1138 | 748M | } |
1139 | 1.46M | } |
1140 | | |
1141 | | /* Convert a cache from floats to fracs. */ |
1142 | | /* Note that the two may be aliased. */ |
1143 | | void |
1144 | | gs_cie_cache_to_fracs(const cie_cache_floats *pfloats, cie_cache_fracs *pfracs) |
1145 | 487k | { |
1146 | 487k | int i; |
1147 | | |
1148 | | /* Loop from bottom to top so that we don't */ |
1149 | | /* overwrite elements before they're used. */ |
1150 | 250M | for (i = 0; i < gx_cie_cache_size; ++i) |
1151 | 249M | pfracs->values[i] = float2frac(pfloats->values[i]); |
1152 | 487k | pfracs->params = pfloats->params; |
1153 | 487k | } |
1154 | | |
1155 | | /* ------ Fill in the joint cache ------ */ |
1156 | | |
1157 | | /* If the current color space is a CIE space, or has a CIE base space, */ |
1158 | | /* return a pointer to the common part of the space; otherwise return 0. */ |
1159 | | static const gs_cie_common * |
1160 | | cie_cs_common_abc(const gs_color_space *pcs_orig, const gs_cie_abc **ppabc) |
1161 | 162k | { |
1162 | 162k | const gs_color_space *pcs = pcs_orig; |
1163 | | |
1164 | 162k | *ppabc = 0; |
1165 | 162k | do { |
1166 | 162k | switch (pcs->type->index) { |
1167 | 0 | case gs_color_space_index_CIEDEF: |
1168 | 0 | *ppabc = (const gs_cie_abc *)pcs->params.def; |
1169 | 0 | return &pcs->params.def->common; |
1170 | 0 | case gs_color_space_index_CIEDEFG: |
1171 | 0 | *ppabc = (const gs_cie_abc *)pcs->params.defg; |
1172 | 0 | return &pcs->params.defg->common; |
1173 | 0 | case gs_color_space_index_CIEABC: |
1174 | 0 | *ppabc = pcs->params.abc; |
1175 | 0 | return &pcs->params.abc->common; |
1176 | 0 | case gs_color_space_index_CIEA: |
1177 | 0 | return &pcs->params.a->common; |
1178 | 162k | default: |
1179 | 162k | pcs = gs_cspace_base_space(pcs); |
1180 | 162k | break; |
1181 | 162k | } |
1182 | 162k | } while (pcs != 0); |
1183 | | |
1184 | 162k | return 0; |
1185 | 162k | } |
1186 | | const gs_cie_common * |
1187 | | gs_cie_cs_common(const gs_gstate * pgs) |
1188 | 162k | { |
1189 | 162k | const gs_cie_abc *ignore_pabc; |
1190 | | |
1191 | 162k | return cie_cs_common_abc(gs_currentcolorspace_inline(pgs), &ignore_pabc); |
1192 | 162k | } |
1193 | | |
1194 | | /* |
1195 | | * Mark the joint caches as needing completion. This is done lazily, |
1196 | | * when a color is being mapped. However, make sure the joint caches |
1197 | | * exist now. |
1198 | | */ |
1199 | | int |
1200 | | gs_cie_cs_complete(gs_gstate * pgs, bool init) |
1201 | 162k | { |
1202 | 162k | gx_cie_joint_caches *pjc = gx_unshare_cie_caches(pgs); |
1203 | | |
1204 | 162k | if (pjc == 0) |
1205 | 0 | return_error(gs_error_VMerror); |
1206 | 162k | pjc->status = (init ? CIE_JC_STATUS_BUILT : CIE_JC_STATUS_INITED); |
1207 | 162k | return 0; |
1208 | 162k | } |
1209 | | /* Actually complete the joint caches. */ |
1210 | | int |
1211 | | gs_cie_jc_complete(const gs_gstate *pgs, const gs_color_space *pcs) |
1212 | 0 | { |
1213 | 0 | const gs_cie_abc *pabc; |
1214 | 0 | const gs_cie_common *common = cie_cs_common_abc(pcs, &pabc); |
1215 | 0 | gs_cie_render *pcrd = pgs->cie_render; |
1216 | 0 | gx_cie_joint_caches *pjc = pgs->cie_joint_caches; |
1217 | |
|
1218 | 0 | if (pjc->cspace_id == pcs->id && |
1219 | 0 | pjc->render_id == pcrd->id) |
1220 | 0 | pjc->status = pjc->id_status; |
1221 | 0 | switch (pjc->status) { |
1222 | 0 | case CIE_JC_STATUS_BUILT: { |
1223 | 0 | int code = cie_joint_caches_init(pjc, common, pcrd); |
1224 | |
|
1225 | 0 | if (code < 0) |
1226 | 0 | return code; |
1227 | 0 | } |
1228 | | /* falls through */ |
1229 | 0 | case CIE_JC_STATUS_INITED: |
1230 | 0 | cie_joint_caches_complete(pjc, common, pabc, pcrd); |
1231 | 0 | pjc->cspace_id = pcs->id; |
1232 | 0 | pjc->render_id = pcrd->id; |
1233 | 0 | pjc->id_status = pjc->status = CIE_JC_STATUS_COMPLETED; |
1234 | | /* falls through */ |
1235 | 0 | case CIE_JC_STATUS_COMPLETED: |
1236 | 0 | break; |
1237 | 0 | } |
1238 | 0 | return 0; |
1239 | 0 | } |
1240 | | |
1241 | | /* |
1242 | | * Compute the source and destination WhitePoint and BlackPoint for |
1243 | | * the TransformPQR procedure. |
1244 | | */ |
1245 | | int |
1246 | | gs_cie_compute_points_sd(gx_cie_joint_caches *pjc, |
1247 | | const gs_cie_common * pcie, |
1248 | | const gs_cie_render * pcrd) |
1249 | 0 | { |
1250 | 0 | gs_cie_wbsd *pwbsd = &pjc->points_sd; |
1251 | |
|
1252 | 0 | pwbsd->ws.xyz = pcie->points.WhitePoint; |
1253 | 0 | cie_mult3(&pwbsd->ws.xyz, &pcrd->MatrixPQR, &pwbsd->ws.pqr); |
1254 | 0 | pwbsd->bs.xyz = pcie->points.BlackPoint; |
1255 | 0 | cie_mult3(&pwbsd->bs.xyz, &pcrd->MatrixPQR, &pwbsd->bs.pqr); |
1256 | 0 | pwbsd->wd.xyz = pcrd->points.WhitePoint; |
1257 | 0 | pwbsd->wd.pqr = pcrd->wdpqr; |
1258 | 0 | pwbsd->bd.xyz = pcrd->points.BlackPoint; |
1259 | 0 | pwbsd->bd.pqr = pcrd->bdpqr; |
1260 | 0 | return 0; |
1261 | 0 | } |
1262 | | |
1263 | | /* |
1264 | | * Sample the TransformPQR procedure for the joint caches. |
1265 | | * This routine is idempotent. |
1266 | | */ |
1267 | | static int |
1268 | | cie_joint_caches_init(gx_cie_joint_caches * pjc, |
1269 | | const gs_cie_common * pcie, |
1270 | | gs_cie_render * pcrd) |
1271 | 0 | { |
1272 | 0 | bool is_identity; |
1273 | 0 | int j; |
1274 | |
|
1275 | 0 | gs_cie_compute_points_sd(pjc, pcie, pcrd); |
1276 | | /* |
1277 | | * If a client pre-loaded the cache, we can't adjust the range. |
1278 | | * ****** WRONG ****** |
1279 | | */ |
1280 | 0 | if (pcrd->TransformPQR.proc == TransformPQR_from_cache.proc) |
1281 | 0 | return 0; |
1282 | 0 | is_identity = pcrd->TransformPQR.proc == TransformPQR_default.proc; |
1283 | 0 | for (j = 0; j < 3; j++) { |
1284 | 0 | int i; |
1285 | 0 | gs_sample_loop_params_t lp; |
1286 | |
|
1287 | 0 | gs_cie_cache_init(&pjc->TransformPQR.caches[j].floats.params, &lp, |
1288 | 0 | &pcrd->RangePQR.ranges[j], "TransformPQR"); |
1289 | 0 | for (i = 0; i <= lp.N; ++i) { |
1290 | 0 | float in = SAMPLE_LOOP_VALUE(i, lp); |
1291 | 0 | float out; |
1292 | 0 | int code = (*pcrd->TransformPQR.proc)(j, in, &pjc->points_sd, |
1293 | 0 | pcrd, &out); |
1294 | |
|
1295 | 0 | if (code < 0) |
1296 | 0 | return code; |
1297 | 0 | pjc->TransformPQR.caches[j].floats.values[i] = out; |
1298 | 0 | if_debug4('C', "[C]TransformPQR[%d,%d] = %g => %g\n", |
1299 | 0 | j, i, in, out); |
1300 | 0 | } |
1301 | 0 | pjc->TransformPQR.caches[j].floats.params.is_identity = is_identity; |
1302 | 0 | } |
1303 | 0 | return 0; |
1304 | 0 | } |
1305 | | |
1306 | | /* |
1307 | | * Complete the loading of the joint caches. |
1308 | | * This routine is idempotent. |
1309 | | */ |
1310 | | static void |
1311 | | cie_joint_caches_complete(gx_cie_joint_caches * pjc, |
1312 | | const gs_cie_common * pcie, |
1313 | | const gs_cie_abc * pabc /* NULL if CIEA */, |
1314 | | const gs_cie_render * pcrd) |
1315 | 0 | { |
1316 | 0 | gs_matrix3 mat3, mat2; |
1317 | 0 | gs_matrix3 MatrixLMN_PQR; |
1318 | 0 | int j; |
1319 | |
|
1320 | 0 | pjc->remap_finish = gx_cie_real_remap_finish; |
1321 | | |
1322 | | /* |
1323 | | * We number the pipeline steps as follows: |
1324 | | * 1 - DecodeABC/MatrixABC |
1325 | | * 2 - DecodeLMN/MatrixLMN/MatrixPQR |
1326 | | * 3 - TransformPQR/MatrixPQR'/MatrixLMN |
1327 | | * 4 - EncodeLMN/MatrixABC |
1328 | | * 5 - EncodeABC, RenderTable (we don't do anything with this here) |
1329 | | * We work from back to front, combining steps where possible. |
1330 | | * Currently we only combine steps if a procedure is the identity |
1331 | | * transform, but we could do it whenever the procedure is linear. |
1332 | | * A project for another day.... |
1333 | | */ |
1334 | | |
1335 | | /* Step 4 */ |
1336 | |
|
1337 | 0 | #ifdef OPTIMIZE_CIE_MAPPING |
1338 | 0 | if (pcrd->caches.EncodeLMN.caches[0].floats.params.is_identity && |
1339 | 0 | pcrd->caches.EncodeLMN.caches[1].floats.params.is_identity && |
1340 | 0 | pcrd->caches.EncodeLMN.caches[2].floats.params.is_identity |
1341 | 0 | ) { |
1342 | | /* Fold step 4 into step 3. */ |
1343 | 0 | if_debug0('c', "[c]EncodeLMN is identity, folding MatrixABC(Encode) into MatrixPQR'+LMN.\n"); |
1344 | 0 | cie_matrix_mult3(&pcrd->MatrixABCEncode, &pcrd->MatrixPQR_inverse_LMN, |
1345 | 0 | &mat3); |
1346 | 0 | pjc->skipEncodeLMN = true; |
1347 | 0 | } else |
1348 | 0 | #endif /* OPTIMIZE_CIE_MAPPING */ |
1349 | 0 | { |
1350 | 0 | if_debug0('c', "[c]EncodeLMN is not identity.\n"); |
1351 | 0 | mat3 = pcrd->MatrixPQR_inverse_LMN; |
1352 | 0 | pjc->skipEncodeLMN = false; |
1353 | 0 | } |
1354 | | |
1355 | | /* Step 3 */ |
1356 | |
|
1357 | 0 | cache3_set_linear(&pjc->TransformPQR); |
1358 | 0 | cie_matrix_mult3(&pcrd->MatrixPQR, &pcie->MatrixLMN, |
1359 | 0 | &MatrixLMN_PQR); |
1360 | |
|
1361 | 0 | #ifdef OPTIMIZE_CIE_MAPPING |
1362 | 0 | if (pjc->TransformPQR.caches[0].floats.params.is_identity & |
1363 | 0 | pjc->TransformPQR.caches[1].floats.params.is_identity & |
1364 | 0 | pjc->TransformPQR.caches[2].floats.params.is_identity |
1365 | 0 | ) { |
1366 | | /* Fold step 3 into step 2. */ |
1367 | 0 | if_debug0('c', "[c]TransformPQR is identity, folding MatrixPQR'+LMN into MatrixLMN+PQR.\n"); |
1368 | 0 | cie_matrix_mult3(&mat3, &MatrixLMN_PQR, &mat2); |
1369 | 0 | pjc->skipPQR = true; |
1370 | 0 | } else |
1371 | 0 | #endif /* OPTIMIZE_CIE_MAPPING */ |
1372 | 0 | { |
1373 | 0 | if_debug0('c', "[c]TransformPQR is not identity.\n"); |
1374 | 0 | mat2 = MatrixLMN_PQR; |
1375 | 0 | for (j = 0; j < 3; j++) { |
1376 | 0 | cie_cache_restrict(&pjc->TransformPQR.caches[j].floats, |
1377 | 0 | &pcrd->RangePQR.ranges[j]); |
1378 | 0 | } |
1379 | 0 | cie_cache_mult3(&pjc->TransformPQR, &mat3, CACHE_THRESHOLD); |
1380 | 0 | pjc->skipPQR = false; |
1381 | 0 | } |
1382 | | |
1383 | | /* Steps 2 & 1 */ |
1384 | |
|
1385 | 0 | #ifdef OPTIMIZE_CIE_MAPPING |
1386 | 0 | if (pcie->caches.DecodeLMN[0].floats.params.is_identity & |
1387 | 0 | pcie->caches.DecodeLMN[1].floats.params.is_identity & |
1388 | 0 | pcie->caches.DecodeLMN[2].floats.params.is_identity |
1389 | 0 | ) { |
1390 | 0 | if_debug0('c', "[c]DecodeLMN is identity, folding MatrixLMN+PQR into MatrixABC.\n"); |
1391 | 0 | if (!pabc) { |
1392 | 0 | pjc->skipDecodeLMN = mat2.is_identity; |
1393 | 0 | pjc->skipDecodeABC = false; |
1394 | 0 | if (!pjc->skipDecodeLMN) { |
1395 | 0 | for (j = 0; j < 3; j++) { |
1396 | 0 | cie_cache_mult(&pjc->DecodeLMN.caches[j], &mat2.cu + j, |
1397 | 0 | &pcie->caches.DecodeLMN[j].floats, |
1398 | 0 | CACHE_THRESHOLD); |
1399 | 0 | } |
1400 | 0 | cie_cache3_set_interpolation(&pjc->DecodeLMN); |
1401 | 0 | } |
1402 | 0 | } else { |
1403 | | /* |
1404 | | * Fold step 2 into step 1. This is a little different because |
1405 | | * the data for step 1 are in the color space structure. |
1406 | | */ |
1407 | 0 | gs_matrix3 mat1; |
1408 | |
|
1409 | 0 | cie_matrix_mult3(&mat2, &pabc->MatrixABC, &mat1); |
1410 | 0 | for (j = 0; j < 3; j++) { |
1411 | 0 | cie_cache_mult(&pjc->DecodeLMN.caches[j], &mat1.cu + j, |
1412 | 0 | &pabc->caches.DecodeABC.caches[j].floats, |
1413 | 0 | CACHE_THRESHOLD); |
1414 | 0 | } |
1415 | 0 | cie_cache3_set_interpolation(&pjc->DecodeLMN); |
1416 | 0 | pjc->skipDecodeLMN = false; |
1417 | 0 | pjc->skipDecodeABC = true; |
1418 | 0 | } |
1419 | 0 | } else |
1420 | 0 | #endif /* OPTIMIZE_CIE_MAPPING */ |
1421 | 0 | { |
1422 | 0 | if_debug0('c', "[c]DecodeLMN is not identity.\n"); |
1423 | 0 | for (j = 0; j < 3; j++) { |
1424 | 0 | cie_cache_mult(&pjc->DecodeLMN.caches[j], &mat2.cu + j, |
1425 | 0 | &pcie->caches.DecodeLMN[j].floats, |
1426 | 0 | CACHE_THRESHOLD); |
1427 | 0 | } |
1428 | 0 | cie_cache3_set_interpolation(&pjc->DecodeLMN); |
1429 | 0 | pjc->skipDecodeLMN = false; |
1430 | 0 | pjc->skipDecodeABC = pabc != 0 && pabc->caches.skipABC; |
1431 | 0 | } |
1432 | |
|
1433 | 0 | } |
1434 | | |
1435 | | /* |
1436 | | * Initialize (just enough of) an gs_gstate so that "concretizing" colors |
1437 | | * using this gs_gstate will do only the CIE->XYZ mapping. This is a |
1438 | | * semi-hack for the PDF writer. |
1439 | | */ |
1440 | | int |
1441 | | gx_cie_to_xyz_alloc(gs_gstate **ppgs, const gs_color_space *pcs, |
1442 | | gs_memory_t *mem) |
1443 | 0 | { |
1444 | | /* |
1445 | | * In addition to the gs_gstate itself, we need the joint caches. |
1446 | | */ |
1447 | 0 | gs_gstate *pgs = |
1448 | 0 | gs_alloc_struct(mem, gs_gstate, &st_gs_gstate, |
1449 | 0 | "gx_cie_to_xyz_alloc(gs_gstate)"); |
1450 | 0 | gx_cie_joint_caches *pjc; |
1451 | 0 | const gs_cie_abc *pabc; |
1452 | 0 | const gs_cie_common *pcie = cie_cs_common_abc(pcs, &pabc); |
1453 | 0 | int j; |
1454 | |
|
1455 | 0 | if (pgs == 0) |
1456 | 0 | return_error(gs_error_VMerror); |
1457 | 0 | memset(pgs, 0, sizeof(*pgs)); /* mostly paranoia */ |
1458 | 0 | pgs->memory = mem; |
1459 | 0 | GS_STATE_INIT_VALUES(pgs, 1.0); |
1460 | 0 | gs_gstate_initialize(pgs, mem); |
1461 | |
|
1462 | 0 | pjc = gs_alloc_struct(mem, gx_cie_joint_caches, &st_joint_caches, |
1463 | 0 | "gx_cie_to_xyz_free(joint caches)"); |
1464 | 0 | if (pjc == 0) { |
1465 | 0 | gs_free_object(mem, pgs, "gx_cie_to_xyz_alloc(gs_gstate)"); |
1466 | 0 | return_error(gs_error_VMerror); |
1467 | 0 | } |
1468 | 0 | rc_init(pjc, mem, 1); |
1469 | | |
1470 | | /* |
1471 | | * Perform an abbreviated version of cie_joint_caches_complete. |
1472 | | * Don't bother with any optimizations. |
1473 | | */ |
1474 | 0 | for (j = 0; j < 3; j++) { |
1475 | 0 | cie_cache_mult(&pjc->DecodeLMN.caches[j], &pcie->MatrixLMN.cu + j, |
1476 | 0 | &pcie->caches.DecodeLMN[j].floats, |
1477 | 0 | CACHE_THRESHOLD); |
1478 | 0 | } |
1479 | 0 | cie_cache3_set_interpolation(&pjc->DecodeLMN); |
1480 | 0 | pjc->skipDecodeLMN = false; |
1481 | 0 | pjc->skipDecodeABC = pabc != 0 && pabc->caches.skipABC; |
1482 | | /* Mark the joint caches as completed. */ |
1483 | 0 | pjc->remap_finish = gx_cie_xyz_remap_finish; |
1484 | 0 | pjc->cspace_id = pcs->id; |
1485 | 0 | pjc->status = CIE_JC_STATUS_COMPLETED; |
1486 | 0 | pgs->cie_joint_caches = pjc; |
1487 | 0 | pgs->cie_to_xyz = true; |
1488 | 0 | *ppgs = pgs; |
1489 | 0 | return 0; |
1490 | 0 | } |
1491 | | void |
1492 | | gx_cie_to_xyz_free(gs_gstate *pgs) |
1493 | 0 | { |
1494 | 0 | gs_memory_t *mem = pgs->memory; |
1495 | |
|
1496 | 0 | rc_decrement(pgs->cie_joint_caches,"gx_cie_to_xyz_free"); |
1497 | | |
1498 | | /* Free up the ICC objects if created */ /* FIXME: does this need to be thread safe */ |
1499 | 0 | if (pgs->icc_link_cache != NULL) { |
1500 | 0 | rc_decrement(pgs->icc_link_cache,"gx_cie_to_xyz_free"); |
1501 | 0 | } |
1502 | 0 | if (pgs->icc_manager != NULL) { |
1503 | 0 | rc_decrement(pgs->icc_manager,"gx_cie_to_xyz_free"); |
1504 | 0 | } |
1505 | 0 | if (pgs->icc_profile_cache != NULL) { |
1506 | 0 | rc_decrement(pgs->icc_profile_cache,"gx_cie_to_xyz_free"); |
1507 | 0 | } |
1508 | 0 | gs_free_object(mem, pgs, "gx_cie_to_xyz_free(gs_gstate)"); |
1509 | 0 | } |
1510 | | |
1511 | | /* ================ Utilities ================ */ |
1512 | | |
1513 | | /* Multiply a vector by a matrix. */ |
1514 | | /* Note that we are computing M * V where v is a column vector. */ |
1515 | | void |
1516 | | cie_mult3(const gs_vector3 * in, register const gs_matrix3 * mat, |
1517 | | gs_vector3 * out) |
1518 | 812k | { |
1519 | 812k | if_debug_vector3("[c]mult", in); |
1520 | 812k | if_debug_matrix3(" *", mat); |
1521 | 812k | { |
1522 | 812k | float u = in->u, v = in->v, w = in->w; |
1523 | | |
1524 | 812k | out->u = (u * mat->cu.u) + (v * mat->cv.u) + (w * mat->cw.u); |
1525 | 812k | out->v = (u * mat->cu.v) + (v * mat->cv.v) + (w * mat->cw.v); |
1526 | 812k | out->w = (u * mat->cu.w) + (v * mat->cv.w) + (w * mat->cw.w); |
1527 | 812k | } |
1528 | 812k | if_debug_vector3(" =", out); |
1529 | 812k | } |
1530 | | |
1531 | | /* |
1532 | | * Multiply two matrices. Note that the composition of the transformations |
1533 | | * M1 followed by M2 is M2 * M1, not M1 * M2. (See gscie.h for details.) |
1534 | | */ |
1535 | | void |
1536 | | cie_matrix_mult3(const gs_matrix3 *ma, const gs_matrix3 *mb, gs_matrix3 *mc) |
1537 | 162k | { |
1538 | 162k | gs_matrix3 mprod; |
1539 | 162k | gs_matrix3 *mp = (mc == ma || mc == mb ? &mprod : mc); |
1540 | | |
1541 | 162k | if_debug_matrix3("[c]matrix_mult", ma); |
1542 | 162k | if_debug_matrix3(" *", mb); |
1543 | 162k | cie_mult3(&mb->cu, ma, &mp->cu); |
1544 | 162k | cie_mult3(&mb->cv, ma, &mp->cv); |
1545 | 162k | cie_mult3(&mb->cw, ma, &mp->cw); |
1546 | 162k | cie_matrix_init(mp); |
1547 | 162k | if_debug_matrix3(" =", mp); |
1548 | 162k | if (mp != mc) |
1549 | 0 | *mc = *mp; |
1550 | 162k | } |
1551 | | |
1552 | | /* |
1553 | | * Transpose a 3x3 matrix. In and out can not be the same |
1554 | | */ |
1555 | | void |
1556 | | cie_matrix_transpose3(const gs_matrix3 *in, gs_matrix3 *out) |
1557 | 0 | { |
1558 | 0 | out->cu.u = in->cu.u; |
1559 | 0 | out->cu.v = in->cv.u; |
1560 | 0 | out->cu.w = in->cw.u; |
1561 | |
|
1562 | 0 | out->cv.u = in->cu.v; |
1563 | 0 | out->cv.v = in->cv.v; |
1564 | 0 | out->cv.w = in->cw.v; |
1565 | |
|
1566 | 0 | out->cw.u = in->cu.w; |
1567 | 0 | out->cw.v = in->cv.w; |
1568 | 0 | out->cw.w = in->cw.w; |
1569 | 0 | } |
1570 | | |
1571 | | /* Invert a matrix. */ |
1572 | | /* The output must not be an alias for the input. */ |
1573 | | static void |
1574 | | cie_invert3(const gs_matrix3 *in, gs_matrix3 *out) |
1575 | 162k | { /* This is a brute force algorithm; maybe there are better. */ |
1576 | | /* We label the array elements */ |
1577 | | /* [ A B C ] */ |
1578 | | /* [ D E F ] */ |
1579 | | /* [ G H I ] */ |
1580 | 974k | #define A cu.u |
1581 | 974k | #define B cv.u |
1582 | 974k | #define C cw.u |
1583 | 812k | #define D cu.v |
1584 | 812k | #define E cv.v |
1585 | 812k | #define F cw.v |
1586 | 812k | #define G cu.w |
1587 | 812k | #define H cv.w |
1588 | 812k | #define I cw.w |
1589 | 162k | double coA = in->E * in->I - in->F * in->H; |
1590 | 162k | double coB = in->F * in->G - in->D * in->I; |
1591 | 162k | double coC = in->D * in->H - in->E * in->G; |
1592 | 162k | double det = in->A * coA + in->B * coB + in->C * coC; |
1593 | | |
1594 | 162k | if_debug_matrix3("[c]invert", in); |
1595 | 162k | out->A = coA / det; |
1596 | 162k | out->D = coB / det; |
1597 | 162k | out->G = coC / det; |
1598 | 162k | out->B = (in->C * in->H - in->B * in->I) / det; |
1599 | 162k | out->E = (in->A * in->I - in->C * in->G) / det; |
1600 | 162k | out->H = (in->B * in->G - in->A * in->H) / det; |
1601 | 162k | out->C = (in->B * in->F - in->C * in->E) / det; |
1602 | 162k | out->F = (in->C * in->D - in->A * in->F) / det; |
1603 | 162k | out->I = (in->A * in->E - in->B * in->D) / det; |
1604 | 162k | if_debug_matrix3(" =", out); |
1605 | 162k | #undef A |
1606 | 162k | #undef B |
1607 | 162k | #undef C |
1608 | 162k | #undef D |
1609 | 162k | #undef E |
1610 | 162k | #undef F |
1611 | 162k | #undef G |
1612 | 162k | #undef H |
1613 | 162k | #undef I |
1614 | 162k | out->is_identity = in->is_identity; |
1615 | 162k | } |
1616 | | |
1617 | | /* Set the is_identity flag that accelerates multiplication. */ |
1618 | | static void |
1619 | | cie_matrix_init(register gs_matrix3 * mat) |
1620 | 649k | { |
1621 | 649k | mat->is_identity = |
1622 | 649k | mat->cu.u == 1.0 && is_fzero2(mat->cu.v, mat->cu.w) && |
1623 | 649k | mat->cv.v == 1.0 && is_fzero2(mat->cv.u, mat->cv.w) && |
1624 | 649k | mat->cw.w == 1.0 && is_fzero2(mat->cw.u, mat->cw.v); |
1625 | 649k | } |
1626 | | |
1627 | | bool |
1628 | | gx_color_space_needs_cie_caches(const gs_color_space * pcs) |
1629 | 0 | { |
1630 | 0 | switch (pcs->type->index) { |
1631 | 0 | case gs_color_space_index_CIEDEFG: |
1632 | 0 | case gs_color_space_index_CIEDEF: |
1633 | 0 | case gs_color_space_index_CIEABC: |
1634 | 0 | case gs_color_space_index_CIEA: |
1635 | 0 | return true; |
1636 | 0 | case gs_color_space_index_ICC: |
1637 | 0 | return false; |
1638 | 0 | case gs_color_space_index_DevicePixel: |
1639 | 0 | case gs_color_space_index_DeviceN: |
1640 | 0 | case gs_color_space_index_Separation: |
1641 | 0 | case gs_color_space_index_Indexed: |
1642 | 0 | case gs_color_space_index_Pattern: |
1643 | 0 | return gx_color_space_needs_cie_caches(pcs->base_space); |
1644 | 0 | default: |
1645 | 0 | return false; |
1646 | 0 | } |
1647 | 0 | } |