/src/ghostpdl/base/gsciemap.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* Copyright (C) 2001-2023 Artifex Software, Inc. |
2 | | All Rights Reserved. |
3 | | |
4 | | This software is provided AS-IS with no warranty, either express or |
5 | | implied. |
6 | | |
7 | | This software is distributed under license and may not be copied, |
8 | | modified or distributed except as expressly authorized under the terms |
9 | | of the license contained in the file LICENSE in this distribution. |
10 | | |
11 | | Refer to licensing information at http://www.artifex.com or contact |
12 | | Artifex Software, Inc., 39 Mesa Street, Suite 108A, San Francisco, |
13 | | CA 94129, USA, for further information. |
14 | | */ |
15 | | |
16 | | |
17 | | /* CIE color rendering */ |
18 | | #include "math_.h" |
19 | | #include "gx.h" |
20 | | #include "gserrors.h" |
21 | | #include "gxcspace.h" /* for gxcie.c */ |
22 | | #include "gxarith.h" |
23 | | #include "gxcie.h" |
24 | | #include "gxdevice.h" /* for gxcmap.h */ |
25 | | #include "gxcmap.h" |
26 | | #include "gxgstate.h" |
27 | | #include "gscolor2.h" |
28 | | #include "gsicc_create.h" /* Needed for delayed creation of ICC profiles from CIE color spaces */ |
29 | | #include "gsicc_manage.h" |
30 | | #include "gsicc.h" |
31 | | #include "gscspace.h" |
32 | | |
33 | | /* |
34 | | * Compute a cache index as (vin - base) * factor. |
35 | | * vin, base, factor, and the result are cie_cached_values. |
36 | | * We know that the result doesn't exceed (gx_cie_cache_size - 1) << fbits. |
37 | | * |
38 | | * Since this operation is extremely time-critical, we don't rely on the |
39 | | * compiler providing 'inline'. |
40 | | */ |
41 | | #define LOOKUP_INDEX_(vin, pcache, fbits)\ |
42 | 0 | (cie_cached_value)\ |
43 | 0 | ((vin) <= (pcache)->vecs.params.base ? 0 :\ |
44 | 0 | (vin) >= (pcache)->vecs.params.limit ? (gx_cie_cache_size - 1) << (fbits) :\ |
45 | 0 | cie_cached_product2int( ((vin) - (pcache)->vecs.params.base),\ |
46 | 0 | (pcache)->vecs.params.factor, fbits )) |
47 | | #define LOOKUP_ENTRY_(vin, pcache)\ |
48 | 0 | (&(pcache)->vecs.values[(int)LOOKUP_INDEX(vin, pcache, 0)]) |
49 | | #ifdef DEBUG |
50 | | static cie_cached_value |
51 | | LOOKUP_INDEX(cie_cached_value vin, const gx_cie_vector_cache *pcache, |
52 | | int fbits) |
53 | | { |
54 | | return LOOKUP_INDEX_(vin, pcache, fbits); |
55 | | } |
56 | | static const cie_cached_vector3 * |
57 | | LOOKUP_ENTRY(cie_cached_value vin, const gx_cie_vector_cache *pcache) |
58 | | { |
59 | | return LOOKUP_ENTRY_(vin, pcache); |
60 | | } |
61 | | #else /* !DEBUG */ |
62 | 0 | # define LOOKUP_INDEX(vin, pcache, fbits) LOOKUP_INDEX_(vin, pcache, fbits) |
63 | 0 | # define LOOKUP_ENTRY(vin, pcache) LOOKUP_ENTRY_(vin, pcache) |
64 | | #endif /* DEBUG */ |
65 | | |
66 | | /* |
67 | | * Call the remap_finish procedure in the structure without going through |
68 | | * the extra level of procedure. |
69 | | */ |
70 | | #ifdef DEBUG |
71 | | # define GX_CIE_REMAP_FINISH(vec3, pconc, cie_xyz, pgs, pcs)\ |
72 | | gx_cie_remap_finish(vec3, pconc, cie_xyz, pgs, pcs) |
73 | | #else |
74 | | # define GX_CIE_REMAP_FINISH(vec3, pconc, cie_xyz, pgs, pcs)\ |
75 | 0 | ((pgs)->cie_joint_caches->remap_finish(vec3, pconc, cie_xyz, pgs, pcs)) |
76 | | #endif |
77 | | |
78 | | /* Forward references */ |
79 | | static void cie_lookup_mult3(cie_cached_vector3 *, |
80 | | const gx_cie_vector_cache3_t *); |
81 | | |
82 | | #ifdef DEBUG |
83 | | static void |
84 | | cie_lookup_map3(cie_cached_vector3 * pvec, |
85 | | const gx_cie_vector_cache3_t * pc, const char *cname) |
86 | | { |
87 | | if_debug5('c', "[c]lookup %s "PRI_INTPTR" [%g %g %g]\n", |
88 | | (const char *)cname, (intptr_t)pc, |
89 | | cie_cached2float(pvec->u), cie_cached2float(pvec->v), |
90 | | cie_cached2float(pvec->w)); |
91 | | cie_lookup_mult3(pvec, pc); |
92 | | if_debug3('c', " =[%g %g %g]\n", |
93 | | cie_cached2float(pvec->u), cie_cached2float(pvec->v), |
94 | | cie_cached2float(pvec->w)); |
95 | | } |
96 | | #else |
97 | 0 | # define cie_lookup_map3(pvec, pc, cname) cie_lookup_mult3(pvec, pc) |
98 | | #endif |
99 | | |
100 | | /* Check used for internal ranges to determine if we need to create a |
101 | | CLUT for the ICC profile and if we need to rescale the incoming |
102 | | CIE data.*/ |
103 | | bool |
104 | | check_range(gs_range *ranges, int num_colorants) |
105 | 0 | { |
106 | 0 | int k; |
107 | |
|
108 | 0 | for (k = 0; k < num_colorants; k++) { |
109 | 0 | if (ranges[k].rmin != 0) return false; |
110 | 0 | if (ranges[k].rmax != 1) return false; |
111 | 0 | } |
112 | 0 | return true; |
113 | 0 | } |
114 | | |
115 | | /* Returns false if range is not 0 1 */ |
116 | | bool |
117 | | check_cie_range(const gs_color_space * pcs) |
118 | 0 | { |
119 | 0 | switch(gs_color_space_get_index(pcs)) { |
120 | 0 | case gs_color_space_index_CIEDEFG: |
121 | 0 | return check_range(&(pcs->params.defg->RangeDEFG.ranges[0]), 4) ; |
122 | 0 | case gs_color_space_index_CIEDEF: |
123 | 0 | return check_range(&(pcs->params.def->RangeDEF.ranges[0]), 3); |
124 | 0 | case gs_color_space_index_CIEABC: |
125 | 0 | return check_range(&(pcs->params.abc->RangeABC.ranges[0]), 3); |
126 | 0 | case gs_color_space_index_CIEA: |
127 | 0 | return check_range(&(pcs->params.a->RangeA), 1); |
128 | 0 | default: |
129 | 0 | return true; |
130 | 0 | } |
131 | 0 | } |
132 | | |
133 | | gs_range* |
134 | | get_cie_range(const gs_color_space * pcs) |
135 | 0 | { |
136 | 0 | switch(gs_color_space_get_index(pcs)) { |
137 | 0 | case gs_color_space_index_CIEDEFG: |
138 | 0 | return &(pcs->params.defg->RangeDEFG.ranges[0]); |
139 | 0 | case gs_color_space_index_CIEDEF: |
140 | 0 | return &(pcs->params.def->RangeDEF.ranges[0]); |
141 | 0 | case gs_color_space_index_CIEABC: |
142 | 0 | return &(pcs->params.abc->RangeABC.ranges[0]); |
143 | 0 | case gs_color_space_index_CIEA: |
144 | 0 | return &(pcs->params.a->RangeA); |
145 | 0 | default: |
146 | 0 | return NULL; |
147 | 0 | } |
148 | 0 | } |
149 | | |
150 | | static void |
151 | | rescale_input_color(gs_range *ranges, int num_colorants, |
152 | | const gs_client_color *src, gs_client_color *des) |
153 | 0 | { |
154 | 0 | int k; |
155 | |
|
156 | 0 | for (k = 0; k < num_colorants; k++) { |
157 | 0 | des->paint.values[k] = (src->paint.values[k] - ranges[k].rmin) / |
158 | 0 | (ranges[k].rmax - ranges[k].rmin); |
159 | 0 | } |
160 | 0 | } |
161 | | |
162 | | /* Returns true if rescale was done */ |
163 | | bool |
164 | | rescale_cie_colors(const gs_color_space * pcs, gs_client_color *cc) |
165 | 0 | { |
166 | 0 | int num, k; |
167 | 0 | gs_range *ranges; |
168 | |
|
169 | 0 | if (!check_cie_range(pcs)) { |
170 | 0 | switch(gs_color_space_get_index(pcs)) { |
171 | 0 | case gs_color_space_index_CIEDEFG: |
172 | 0 | num = 4; |
173 | 0 | ranges = &(pcs->params.defg->RangeDEFG.ranges[0]); |
174 | 0 | break; |
175 | 0 | case gs_color_space_index_CIEDEF: |
176 | 0 | num = 3; |
177 | 0 | ranges = &(pcs->params.def->RangeDEF.ranges[0]); |
178 | 0 | break; |
179 | 0 | case gs_color_space_index_CIEABC: |
180 | 0 | num = 3; |
181 | 0 | ranges = &(pcs->params.abc->RangeABC.ranges[0]); |
182 | 0 | break; |
183 | 0 | case gs_color_space_index_CIEA: |
184 | 0 | num = 1; |
185 | 0 | ranges = &(pcs->params.a->RangeA); |
186 | 0 | break; |
187 | 0 | default: |
188 | 0 | return false; |
189 | 0 | } |
190 | 0 | for (k = 0; k < num; k++) { |
191 | 0 | cc->paint.values[k] = (cc->paint.values[k] - ranges[k].rmin) / |
192 | 0 | (ranges[k].rmax - ranges[k].rmin); |
193 | 0 | } |
194 | 0 | return true; |
195 | 0 | } |
196 | 0 | return false; |
197 | 0 | } |
198 | | |
199 | | /* |
200 | | * Test whether a CIE rendering has been defined; ensure that the joint |
201 | | * caches are loaded. Note that the procedure may return 1 if no rendering |
202 | | * has been defined. The 'cie_to_xyz' flag indicates that we don't need a CRD |
203 | | */ |
204 | | static inline int |
205 | | gx_cie_check_rendering_inline(const gs_color_space * pcs, frac * pconc, const gs_gstate * pgs) |
206 | 0 | { |
207 | 0 | if (pgs->cie_render == 0 && !pgs->cie_to_xyz) { |
208 | | /* No rendering has been defined yet: return black. */ |
209 | 0 | pconc[0] = pconc[1] = pconc[2] = frac_0; |
210 | 0 | return 1; |
211 | 0 | } |
212 | 0 | if (pgs->cie_joint_caches->status == CIE_JC_STATUS_COMPLETED) { |
213 | 0 | if (pgs->cie_joint_caches->cspace_id != pcs->id) |
214 | 0 | pgs->cie_joint_caches->status = CIE_JC_STATUS_BUILT; |
215 | 0 | } |
216 | 0 | if (pgs->cie_render && pgs->cie_joint_caches->status != CIE_JC_STATUS_COMPLETED) { |
217 | 0 | int code = gs_cie_jc_complete(pgs, pcs); |
218 | |
|
219 | 0 | if (code < 0) |
220 | 0 | return code; |
221 | 0 | } |
222 | 0 | return 0; |
223 | 0 | } |
224 | | int |
225 | | gx_cie_check_rendering(const gs_color_space * pcs, frac * pconc, const gs_gstate * pgs) |
226 | 0 | { |
227 | 0 | return gx_cie_check_rendering_inline(pcs, pconc, pgs); |
228 | 0 | } |
229 | | |
230 | | /* Common code shared between remap and concretize for defg */ |
231 | | static int |
232 | | gx_ciedefg_to_icc(gs_color_space **ppcs_icc, gs_color_space *pcs, gs_memory_t *memory) |
233 | 0 | { |
234 | 0 | int code = 0; |
235 | 0 | gs_color_space *palt_cs = pcs->base_space; |
236 | 0 | gx_cie_vector_cache *abc_caches = &(pcs->params.abc->caches.DecodeABC.caches[0]); |
237 | 0 | gx_cie_scalar_cache *lmn_caches = &(pcs->params.abc->common.caches.DecodeLMN[0]); |
238 | 0 | gx_cie_scalar_cache *defg_caches = &(pcs->params.defg->caches_defg.DecodeDEFG[0]); |
239 | |
|
240 | 0 | if_debug0m(gs_debug_flag_icc, memory, |
241 | 0 | "[icc] Creating ICC profile from defg object"); |
242 | | /* build the ICC color space object */ |
243 | 0 | code = gs_cspace_build_ICC(ppcs_icc, NULL, memory->stable_memory); |
244 | 0 | if (code < 0) |
245 | 0 | return gs_rethrow(code, "Failed to build ICC color space"); |
246 | | /* record the cie alt space as the icc alternative color space */ |
247 | 0 | (*ppcs_icc)->base_space = palt_cs; |
248 | 0 | rc_increment_cs(palt_cs); |
249 | 0 | (*ppcs_icc)->cmm_icc_profile_data = gsicc_profile_new(NULL, memory, NULL, 0); |
250 | 0 | if ((*ppcs_icc)->cmm_icc_profile_data == NULL) |
251 | 0 | gs_throw(gs_error_VMerror, "Failed to create ICC profile"); |
252 | 0 | code = gsicc_create_fromdefg(pcs, &((*ppcs_icc)->cmm_icc_profile_data->buffer), |
253 | 0 | &((*ppcs_icc)->cmm_icc_profile_data->buffer_size), memory, |
254 | 0 | abc_caches, lmn_caches, defg_caches); |
255 | 0 | if (code < 0) |
256 | 0 | return gs_rethrow(code, "Failed to create ICC profile from CIEDEFG"); |
257 | 0 | code = gsicc_init_profile_info((*ppcs_icc)->cmm_icc_profile_data); |
258 | 0 | if (code < 0) |
259 | 0 | return gs_rethrow(code, "Failed to create ICC profile from CIEDEFG"); |
260 | 0 | (*ppcs_icc)->cmm_icc_profile_data->default_match = CIE_DEFG; |
261 | 0 | pcs->icc_equivalent = *ppcs_icc; |
262 | 0 | pcs->icc_equivalent->cmm_icc_profile_data->data_cs = gsCMYK; |
263 | 0 | return 0; |
264 | 0 | } |
265 | | |
266 | | int |
267 | | gx_remap_CIEDEFG(const gs_client_color * pc, const gs_color_space * pcs_in, |
268 | | gx_device_color * pdc, const gs_gstate * pgs, gx_device * dev, |
269 | | gs_color_select_t select) |
270 | 0 | { |
271 | 0 | gs_color_space *pcs_icc; |
272 | 0 | int code, i; |
273 | 0 | gs_client_color scale_pc; |
274 | 0 | gs_color_space *pcs = (gs_color_space *) pcs_in; |
275 | |
|
276 | 0 | if_debug4m('c', pgs->memory, "[c]remap CIEDEFG [%g %g %g %g]\n", |
277 | 0 | pc->paint.values[0], pc->paint.values[1], |
278 | 0 | pc->paint.values[2], pc->paint.values[3]); |
279 | | /* If we are comming in here then we have not completed |
280 | | the conversion of the DEFG space to an ICC type. We |
281 | | will finish that process now. */ |
282 | 0 | if (pcs->icc_equivalent == NULL) { |
283 | 0 | code = gx_ciedefg_to_icc(&pcs_icc, pcs, pgs->memory->stable_memory); |
284 | 0 | if (code < 0) |
285 | 0 | return gs_rethrow(code, "Failed to create ICC profile from CIEDEFG"); |
286 | 0 | } else { |
287 | 0 | pcs_icc = pcs->icc_equivalent; |
288 | 0 | } |
289 | | /* Rescale the input based upon the input range since profile is |
290 | | created to remap this range from 0 to 1 */ |
291 | 0 | if (check_range(&(pcs->params.defg->RangeDEFG.ranges[0]), 4)) { |
292 | 0 | return (pcs_icc->type->remap_color)(pc,pcs_icc,pdc,pgs,dev,select); |
293 | 0 | } |
294 | | /* Do the rescale from 0 to 1 */ |
295 | 0 | rescale_input_color(&(pcs->params.defg->RangeDEFG.ranges[0]), 4, pc, &scale_pc); |
296 | | /* Now the icc remap */ |
297 | 0 | code = (pcs_icc->type->remap_color)(&scale_pc,pcs_icc,pdc,pgs,dev,select); |
298 | | /* Save unscaled data for high level device (e.g. pdfwrite) */ |
299 | 0 | for (i = 0; i < 4; i++) |
300 | 0 | pdc->ccolor.paint.values[i] = pc->paint.values[i]; |
301 | 0 | pdc->ccolor_valid = true; |
302 | 0 | return code; |
303 | 0 | } |
304 | | |
305 | | /* Render a CIEBasedDEFG color. */ |
306 | | int |
307 | | gx_concretize_CIEDEFG(const gs_client_color * pc, const gs_color_space * pcs_in, |
308 | | frac * pconc, const gs_gstate * pgs, gx_device *dev) |
309 | 0 | { |
310 | 0 | int code; |
311 | 0 | gs_color_space *pcs_icc; |
312 | 0 | gs_client_color scale_pc; |
313 | 0 | gs_color_space *pcs = (gs_color_space *) pcs_in; |
314 | |
|
315 | 0 | if_debug4m('c', pgs->memory, "[c]concretize DEFG [%g %g %g %g]\n", |
316 | 0 | pc->paint.values[0], pc->paint.values[1], |
317 | 0 | pc->paint.values[2], pc->paint.values[3]); |
318 | | /* If we are comming in here then we have not completed |
319 | | the conversion of the DEFG space to an ICC type. We |
320 | | will finish that process now. */ |
321 | 0 | if (pcs->icc_equivalent == NULL) { |
322 | 0 | code = gx_ciedefg_to_icc(&pcs_icc, pcs, pgs->memory->stable_memory); |
323 | 0 | if (code < 0) |
324 | 0 | return gs_rethrow(code, "Failed to create ICC profile from CIEDEFG"); |
325 | 0 | } else { |
326 | 0 | pcs_icc = pcs->icc_equivalent; |
327 | 0 | } |
328 | | /* Rescale the input based upon the input range since profile is |
329 | | created to remap this range from 0 to 1 */ |
330 | 0 | if (check_range(&(pcs->params.defg->RangeDEFG.ranges[0]), 4)) { |
331 | 0 | return (pcs_icc->type->concretize_color)(pc, pcs_icc, pconc, pgs, dev); |
332 | 0 | } |
333 | | /* Do the rescale from 0 to 1 */ |
334 | 0 | rescale_input_color(&(pcs->params.defg->RangeDEFG.ranges[0]), 4, pc, &scale_pc); |
335 | | /* Now the icc remap */ |
336 | 0 | return (pcs_icc->type->concretize_color)(pc, pcs_icc, pconc, pgs, dev); |
337 | 0 | } |
338 | | |
339 | | /* Used for when we have to mash entire transform to CIEXYZ */ |
340 | | int |
341 | | gx_psconcretize_CIEA(const gs_client_color * pc, const gs_color_space * pcs, |
342 | | frac * pconc, float * cie_xyz, const gs_gstate * pgs) |
343 | 0 | { |
344 | 0 | const gs_cie_a *pcie = pcs->params.a; |
345 | 0 | cie_cached_value a = float2cie_cached(pc->paint.values[0]); |
346 | 0 | cie_cached_vector3 vlmn; |
347 | 0 | int code; |
348 | |
|
349 | 0 | if_debug1m('c', pgs->memory, "[c]concretize CIEA %g\n", pc->paint.values[0]); |
350 | 0 | code = gx_cie_check_rendering_inline(pcs, pconc, pgs); |
351 | 0 | if (code < 0) |
352 | 0 | return code; |
353 | 0 | if (code == 1) |
354 | 0 | return 0; |
355 | | |
356 | | /* Apply DecodeA and MatrixA. */ |
357 | 0 | if (!pgs->cie_joint_caches->skipDecodeABC) |
358 | 0 | vlmn = *LOOKUP_ENTRY(a, &pcie->caches.DecodeA); |
359 | 0 | else |
360 | 0 | vlmn.u = vlmn.v = vlmn.w = a; |
361 | 0 | GX_CIE_REMAP_FINISH(vlmn, pconc, cie_xyz, pgs, pcs); |
362 | 0 | return 0; |
363 | 0 | } |
364 | | |
365 | | /* Used for when we have to mash entire transform to CIEXYZ */ |
366 | | int |
367 | | gx_psconcretize_CIEABC(const gs_client_color * pc, const gs_color_space * pcs, |
368 | | frac * pconc, float * cie_xyz, const gs_gstate * pgs) |
369 | 0 | { |
370 | 0 | const gs_cie_abc *pcie = pcs->params.abc; |
371 | 0 | cie_cached_vector3 vec3; |
372 | 0 | int code; |
373 | |
|
374 | 0 | if_debug3m('c', pgs->memory, "[c]concretize CIEABC [%g %g %g]\n", |
375 | 0 | pc->paint.values[0], pc->paint.values[1], |
376 | 0 | pc->paint.values[2]); |
377 | 0 | code = gx_cie_check_rendering_inline(pcs, pconc, pgs); |
378 | 0 | if (code < 0) |
379 | 0 | return code; |
380 | 0 | if (code == 1) |
381 | 0 | return 0; |
382 | | |
383 | 0 | vec3.u = float2cie_cached(pc->paint.values[0]); |
384 | 0 | vec3.v = float2cie_cached(pc->paint.values[1]); |
385 | 0 | vec3.w = float2cie_cached(pc->paint.values[2]); |
386 | 0 | if (!pgs->cie_joint_caches->skipDecodeABC) |
387 | 0 | cie_lookup_map3(&vec3 /* ABC => LMN */, &pcie->caches.DecodeABC, |
388 | 0 | "Decode/MatrixABC"); |
389 | 0 | GX_CIE_REMAP_FINISH(vec3, pconc, cie_xyz, pgs, pcs); |
390 | 0 | return 0; |
391 | 0 | } |
392 | | |
393 | | /* Used for when we have to mash entire transform to CIEXYZ */ |
394 | | int |
395 | | gx_psconcretize_CIEDEFG(const gs_client_color * pc, const gs_color_space * pcs, |
396 | | frac * pconc, float * cie_xyz, const gs_gstate * pgs) |
397 | 0 | { |
398 | 0 | const gs_cie_defg *pcie = pcs->params.defg; |
399 | 0 | int i; |
400 | 0 | fixed hijk[4]; |
401 | 0 | frac abc[3]; |
402 | 0 | cie_cached_vector3 vec3; |
403 | 0 | int code; |
404 | |
|
405 | 0 | if_debug4m('c', pgs->memory, "[c]concretize DEFG [%g %g %g %g]\n", |
406 | 0 | pc->paint.values[0], pc->paint.values[1], |
407 | 0 | pc->paint.values[2], pc->paint.values[3]); |
408 | 0 | code = gx_cie_check_rendering_inline(pcs, pconc, pgs); |
409 | 0 | if (code < 0) |
410 | 0 | return code; |
411 | 0 | if (code == 1) |
412 | 0 | return 0; |
413 | | /* |
414 | | * Apply DecodeDEFG, including restriction to RangeHIJK and scaling to |
415 | | * the Table dimensions. |
416 | | */ |
417 | 0 | for (i = 0; i < 4; ++i) { |
418 | 0 | int tdim = pcie->Table.dims[i] - 1; |
419 | 0 | double factor = pcie->caches_defg.DecodeDEFG[i].floats.params.factor; |
420 | 0 | double v0 = pc->paint.values[i]; |
421 | 0 | const gs_range *const rangeDEFG = &pcie->RangeDEFG.ranges[i]; |
422 | 0 | double value = |
423 | 0 | (v0 < rangeDEFG->rmin ? 0.0 : factor * |
424 | 0 | (v0 > rangeDEFG->rmax ? rangeDEFG->rmax - rangeDEFG->rmin : |
425 | 0 | v0 - rangeDEFG->rmin )); |
426 | 0 | int vi = (int)value; |
427 | 0 | double vf = value - vi; |
428 | 0 | double v = pcie->caches_defg.DecodeDEFG[i].floats.values[vi]; |
429 | |
|
430 | 0 | if (vf != 0 && vi < factor) |
431 | 0 | v += vf * |
432 | 0 | (pcie->caches_defg.DecodeDEFG[i].floats.values[vi + 1] - v); |
433 | 0 | v = (v < 0 ? 0 : v > tdim ? tdim : v); |
434 | 0 | hijk[i] = float2fixed(v); |
435 | 0 | } |
436 | | /* Apply Table. */ |
437 | 0 | gx_color_interpolate_linear(hijk, &pcie->Table, abc); |
438 | |
|
439 | 0 | #define SCALE_TO_RANGE(range, frac) ( \ |
440 | 0 | float2cie_cached(((range).rmax - (range).rmin) * frac2float(frac) + \ |
441 | 0 | (range).rmin) \ |
442 | 0 | ) |
443 | | /* Scale the abc[] frac values to RangeABC cie_cached result */ |
444 | 0 | vec3.u = SCALE_TO_RANGE(pcie->RangeABC.ranges[0], abc[0]); |
445 | 0 | vec3.v = SCALE_TO_RANGE(pcie->RangeABC.ranges[1], abc[1]); |
446 | 0 | vec3.w = SCALE_TO_RANGE(pcie->RangeABC.ranges[2], abc[2]); |
447 | | /* Apply DecodeABC and MatrixABC. */ |
448 | 0 | if (!pgs->cie_joint_caches->skipDecodeABC) |
449 | 0 | cie_lookup_map3(&vec3 /* ABC => LMN */, &pcie->caches.DecodeABC, |
450 | 0 | "Decode/MatrixABC"); |
451 | 0 | GX_CIE_REMAP_FINISH(vec3, pconc, cie_xyz, pgs, pcs); |
452 | 0 | return 0; |
453 | 0 | } |
454 | | |
455 | | /* Render a CIEBasedDEF color. */ |
456 | | int |
457 | | gx_psconcretize_CIEDEF(const gs_client_color * pc, const gs_color_space * pcs, |
458 | | frac * pconc, float * cie_xyz, const gs_gstate * pgs) |
459 | 0 | { |
460 | 0 | const gs_cie_def *pcie = pcs->params.def; |
461 | 0 | int i; |
462 | 0 | fixed hij[3]; |
463 | 0 | frac abc[3]; |
464 | 0 | cie_cached_vector3 vec3; |
465 | 0 | int code; |
466 | |
|
467 | 0 | if_debug3m('c', pgs->memory, "[c]concretize DEF [%g %g %g]\n", |
468 | 0 | pc->paint.values[0], pc->paint.values[1], |
469 | 0 | pc->paint.values[2]); |
470 | 0 | code = gx_cie_check_rendering_inline(pcs, pconc, pgs); |
471 | 0 | if (code < 0) |
472 | 0 | return code; |
473 | 0 | if (code == 1) |
474 | 0 | return 0; |
475 | | |
476 | | /* |
477 | | * Apply DecodeDEF, including restriction to RangeHIJ and scaling to |
478 | | * the Table dimensions. |
479 | | */ |
480 | 0 | for (i = 0; i < 3; ++i) { |
481 | 0 | int tdim = pcie->Table.dims[i] - 1; |
482 | 0 | double factor = pcie->caches_def.DecodeDEF[i].floats.params.factor; |
483 | 0 | double v0 = pc->paint.values[i]; |
484 | 0 | const gs_range *const rangeDEF = &pcie->RangeDEF.ranges[i]; |
485 | 0 | double value = |
486 | 0 | (v0 < rangeDEF->rmin ? 0.0 : factor * |
487 | 0 | (v0 > rangeDEF->rmax ? rangeDEF->rmax - rangeDEF->rmin : |
488 | 0 | v0 - rangeDEF->rmin )); |
489 | 0 | int vi = (int)value; |
490 | 0 | double vf = value - vi; |
491 | 0 | double v = pcie->caches_def.DecodeDEF[i].floats.values[vi]; |
492 | |
|
493 | 0 | if (vf != 0 && vi < factor) |
494 | 0 | v += vf * |
495 | 0 | (pcie->caches_def.DecodeDEF[i].floats.values[vi + 1] - v); |
496 | 0 | v = (v < 0 ? 0 : v > tdim ? tdim : v); |
497 | 0 | hij[i] = float2fixed(v); |
498 | 0 | } |
499 | | /* Apply Table. */ |
500 | 0 | gx_color_interpolate_linear(hij, &pcie->Table, abc); |
501 | | /* Scale the abc[] frac values to RangeABC cie_cached result */ |
502 | 0 | vec3.u = SCALE_TO_RANGE(pcie->RangeABC.ranges[0], abc[0]); |
503 | 0 | vec3.v = SCALE_TO_RANGE(pcie->RangeABC.ranges[1], abc[1]); |
504 | 0 | vec3.w = SCALE_TO_RANGE(pcie->RangeABC.ranges[2], abc[2]); |
505 | | /* Apply DecodeABC and MatrixABC. */ |
506 | 0 | if (!pgs->cie_joint_caches->skipDecodeABC) |
507 | 0 | cie_lookup_map3(&vec3 /* ABC => LMN */, &pcie->caches.DecodeABC, |
508 | 0 | "Decode/MatrixABC"); |
509 | 0 | GX_CIE_REMAP_FINISH(vec3, pconc, cie_xyz, pgs, pcs); |
510 | 0 | return 0; |
511 | 0 | } |
512 | | #undef SCALE_TO_RANGE |
513 | | |
514 | | /* Common code shared between remap and concretize for def */ |
515 | | static int |
516 | | gx_ciedef_to_icc(gs_color_space **ppcs_icc, gs_color_space *pcs, gs_memory_t *memory) |
517 | 0 | { |
518 | 0 | int code; |
519 | 0 | gs_color_space *palt_cs = pcs->base_space; |
520 | 0 | gx_cie_vector_cache *abc_caches = &(pcs->params.abc->caches.DecodeABC.caches[0]); |
521 | 0 | gx_cie_scalar_cache *lmn_caches = &(pcs->params.abc->common.caches.DecodeLMN[0]); |
522 | 0 | gx_cie_scalar_cache *def_caches = &(pcs->params.def->caches_def.DecodeDEF[0]); |
523 | |
|
524 | 0 | if_debug0(gs_debug_flag_icc,"[icc] Creating ICC profile from def object"); |
525 | | /* build the ICC color space object */ |
526 | 0 | code = gs_cspace_build_ICC(ppcs_icc, NULL, memory->stable_memory); |
527 | 0 | if (code < 0) |
528 | 0 | return gs_rethrow(code, "Failed to build ICC color space"); |
529 | | /* record the cie alt space as the icc alternative color space */ |
530 | 0 | (*ppcs_icc)->base_space = palt_cs; |
531 | 0 | rc_increment_cs(palt_cs); |
532 | 0 | (*ppcs_icc)->cmm_icc_profile_data = gsicc_profile_new(NULL, memory, NULL, 0); |
533 | 0 | if ((*ppcs_icc)->cmm_icc_profile_data == NULL) |
534 | 0 | gs_throw(gs_error_VMerror, "Failed to create ICC profile"); |
535 | 0 | code = gsicc_create_fromdef(pcs, &((*ppcs_icc)->cmm_icc_profile_data->buffer), |
536 | 0 | &((*ppcs_icc)->cmm_icc_profile_data->buffer_size), memory, |
537 | 0 | abc_caches, lmn_caches, def_caches); |
538 | 0 | if (code < 0) |
539 | 0 | return gs_rethrow(code, "Failed to build ICC profile from CIEDEF"); |
540 | 0 | code = gsicc_init_profile_info((*ppcs_icc)->cmm_icc_profile_data); |
541 | 0 | if (code < 0) |
542 | 0 | return gs_rethrow(code, "Failed to build ICC profile from CIEDEF"); |
543 | 0 | (*ppcs_icc)->cmm_icc_profile_data->default_match = CIE_DEF; |
544 | | /* Assign to the icc_equivalent member variable */ |
545 | 0 | pcs->icc_equivalent = *ppcs_icc; |
546 | | |
547 | | /* Bug 699104. The ICC profile is built to be RGB based. Reflect that here */ |
548 | 0 | pcs->icc_equivalent->cmm_icc_profile_data->data_cs = gsRGB; |
549 | 0 | return 0; |
550 | 0 | } |
551 | | |
552 | | int |
553 | | gx_remap_CIEDEF(const gs_client_color * pc, const gs_color_space * pcs_in, |
554 | | gx_device_color * pdc, const gs_gstate * pgs, gx_device * dev, |
555 | | gs_color_select_t select) |
556 | 0 | { |
557 | 0 | gs_color_space *pcs_icc; |
558 | 0 | gs_client_color scale_pc; |
559 | 0 | int i,code; |
560 | 0 | gs_color_space *pcs = (gs_color_space *) pcs_in; |
561 | |
|
562 | 0 | if_debug3m('c', pgs->memory, "[c]remap CIEDEF [%g %g %g]\n", |
563 | 0 | pc->paint.values[0], pc->paint.values[1], |
564 | 0 | pc->paint.values[2]); |
565 | | /* If we are comming in here then we have not completed |
566 | | the conversion of the DEF space to an ICC type. We |
567 | | will finish that process now. */ |
568 | 0 | if (pcs->icc_equivalent == NULL) { |
569 | 0 | code = gx_ciedef_to_icc(&pcs_icc, pcs, pgs->memory->stable_memory); |
570 | 0 | if (code < 0) |
571 | 0 | return gs_rethrow(code, "Failed to build ICC profile from CIEDEF"); |
572 | 0 | } else { |
573 | 0 | pcs_icc = pcs->icc_equivalent; |
574 | 0 | } |
575 | | /* Rescale the input based upon the input range since profile is |
576 | | created to remap this range from 0 to 1 */ |
577 | 0 | if (check_range(&(pcs->params.def->RangeDEF.ranges[0]), 3)) { |
578 | 0 | return (pcs_icc->type->remap_color)(pc,pcs_icc,pdc,pgs,dev,select); |
579 | 0 | } |
580 | | /* Do the rescale from 0 to 1 */ |
581 | 0 | rescale_input_color(&(pcs->params.def->RangeDEF.ranges[0]), 3, pc, &scale_pc); |
582 | | /* Now the icc remap */ |
583 | 0 | code = (pcs_icc->type->remap_color)(&scale_pc,pcs_icc,pdc,pgs,dev,select); |
584 | | /* Save unscaled data for high level device (e.g. pdfwrite) */ |
585 | 0 | for (i = 0; i < 3; i++) |
586 | 0 | pdc->ccolor.paint.values[i] = pc->paint.values[i]; |
587 | 0 | pdc->ccolor_valid = true; |
588 | 0 | return code; |
589 | 0 | } |
590 | | |
591 | | /* Render a CIEBasedDEF color. */ |
592 | | int |
593 | | gx_concretize_CIEDEF(const gs_client_color * pc, const gs_color_space * pcs_in, |
594 | | frac * pconc, const gs_gstate * pgs, gx_device *dev) |
595 | 0 | { |
596 | 0 | int code = 0; |
597 | 0 | gs_color_space *pcs_icc; |
598 | 0 | gs_client_color scale_pc; |
599 | 0 | gs_color_space *pcs = (gs_color_space *) pcs_in; |
600 | |
|
601 | 0 | if_debug3m('c', pgs->memory, "[c]concretize DEF [%g %g %g]\n", |
602 | 0 | pc->paint.values[0], pc->paint.values[1], |
603 | 0 | pc->paint.values[2]); |
604 | | /* If we are comming in here then we have not completed |
605 | | the conversion of the DEF space to an ICC type. We |
606 | | will finish that process now. */ |
607 | 0 | if (pcs->icc_equivalent == NULL) { |
608 | 0 | code = gx_ciedef_to_icc(&pcs_icc, pcs, pgs->memory->stable_memory); |
609 | 0 | if (code < 0) |
610 | 0 | return gs_rethrow(code, "Failed to build ICC profile from CIEDEF"); |
611 | 0 | } else { |
612 | 0 | pcs_icc = pcs->icc_equivalent; |
613 | 0 | } |
614 | | /* Rescale the input based upon the input range since profile is |
615 | | created to remap this range from 0 to 1 */ |
616 | 0 | if (check_range(&(pcs->params.def->RangeDEF.ranges[0]), 3)) { |
617 | 0 | return (pcs_icc->type->concretize_color)(pc, pcs_icc, pconc, pgs, dev); |
618 | 0 | } |
619 | | /* Do the rescale from 0 to 1 */ |
620 | 0 | rescale_input_color(&(pcs->params.def->RangeDEF.ranges[0]), 3, pc, &scale_pc); |
621 | | /* Now the icc remap */ |
622 | 0 | return (pcs_icc->type->concretize_color)(&scale_pc, pcs_icc, pconc, pgs, dev); |
623 | 0 | } |
624 | | #undef SCALE_TO_RANGE |
625 | | |
626 | | /* Common code shared between remap and concretize */ |
627 | | static int |
628 | | gx_cieabc_to_icc(gs_color_space **ppcs_icc, gs_color_space *pcs, bool *islab, |
629 | | gs_memory_t *memory) |
630 | 0 | { |
631 | 0 | int code; |
632 | 0 | gs_color_space *palt_cs = pcs->base_space; |
633 | 0 | gx_cie_vector_cache *abc_caches = &(pcs->params.abc->caches.DecodeABC.caches[0]); |
634 | 0 | gx_cie_scalar_cache *lmn_caches = &(pcs->params.abc->common.caches.DecodeLMN[0]); |
635 | |
|
636 | 0 | if_debug0m(gs_debug_flag_icc, memory, "[icc] Creating ICC profile from abc object"); |
637 | | /* build the ICC color space object */ |
638 | 0 | code = gs_cspace_build_ICC(ppcs_icc, NULL, memory); |
639 | 0 | if (code < 0) |
640 | 0 | return gs_rethrow(code, "Failed to create ICC profile"); |
641 | | /* record the cie alt space as the icc alternative color space */ |
642 | 0 | (*ppcs_icc)->base_space = palt_cs; |
643 | 0 | rc_increment_cs(palt_cs); |
644 | 0 | (*ppcs_icc)->cmm_icc_profile_data = gsicc_profile_new(NULL, memory, NULL, 0); |
645 | 0 | if ((*ppcs_icc)->cmm_icc_profile_data == NULL) |
646 | 0 | gs_throw(gs_error_VMerror, "Failed to create ICC profile"); |
647 | 0 | code = gsicc_create_fromabc(pcs, &((*ppcs_icc)->cmm_icc_profile_data->buffer), |
648 | 0 | &((*ppcs_icc)->cmm_icc_profile_data->buffer_size), memory, |
649 | 0 | abc_caches, lmn_caches, islab); |
650 | 0 | if (code < 0) |
651 | 0 | return gs_rethrow(code, "Failed to build ICC profile from CIEABC"); |
652 | 0 | code = gsicc_init_profile_info((*ppcs_icc)->cmm_icc_profile_data); |
653 | 0 | if (code < 0) |
654 | 0 | return gs_rethrow(code, "Failed to build ICC profile from CIEDEF"); |
655 | 0 | (*ppcs_icc)->cmm_icc_profile_data->default_match = CIE_ABC; |
656 | | /* Assign to the icc_equivalent member variable */ |
657 | 0 | pcs->icc_equivalent = *ppcs_icc; |
658 | 0 | pcs->icc_equivalent->cmm_icc_profile_data->data_cs = gsRGB; |
659 | 0 | return 0; |
660 | 0 | } |
661 | | |
662 | | /* Render a CIEBasedABC color. */ |
663 | | /* We provide both remap and concretize, but only the former */ |
664 | | /* needs to be efficient. */ |
665 | | int |
666 | | gx_remap_CIEABC(const gs_client_color * pc, const gs_color_space * pcs_in, |
667 | | gx_device_color * pdc, const gs_gstate * pgs, gx_device * dev, |
668 | | gs_color_select_t select) |
669 | 0 | { |
670 | 0 | gs_color_space *pcs_icc; |
671 | 0 | gs_client_color scale_pc; |
672 | 0 | bool islab; |
673 | 0 | int i, code; |
674 | 0 | gs_color_space *pcs = (gs_color_space *) pcs_in; |
675 | |
|
676 | 0 | if_debug3m('c', pgs->memory, "[c]remap CIEABC [%g %g %g]\n", |
677 | 0 | pc->paint.values[0], pc->paint.values[1], |
678 | 0 | pc->paint.values[2]); |
679 | | /* If we are comming in here then we have not completed |
680 | | the conversion of the ABC space to an ICC type. We |
681 | | will finish that process now. */ |
682 | 0 | if (pcs->icc_equivalent == NULL) { |
683 | 0 | code = gx_cieabc_to_icc(&pcs_icc, pcs, &islab, pgs->memory->stable_memory); |
684 | 0 | if (code < 0) |
685 | 0 | return gs_rethrow(code, "Failed to create ICC profile from CIEABC"); |
686 | 0 | } else { |
687 | 0 | pcs_icc = pcs->icc_equivalent; |
688 | 0 | } |
689 | | /* Rescale the input based upon the input range since profile is |
690 | | created to remap this range from 0 to 1 */ |
691 | 0 | if (check_range(&(pcs->params.abc->RangeABC.ranges[0]), 3)) { |
692 | 0 | return (pcs_icc->type->remap_color)(pc,pcs_icc,pdc,pgs,dev,select); |
693 | 0 | } |
694 | | /* Do the rescale from 0 to 1 */ |
695 | 0 | rescale_input_color(&(pcs->params.abc->RangeABC.ranges[0]), 3, pc, &scale_pc); |
696 | | /* Now the icc remap */ |
697 | 0 | code = (pcs_icc->type->remap_color)(&scale_pc,pcs_icc,pdc,pgs,dev,select); |
698 | | /* Save unscaled data for high level device (e.g. pdfwrite) */ |
699 | 0 | for (i = 0; i < 3; i++) |
700 | 0 | pdc->ccolor.paint.values[i] = pc->paint.values[i]; |
701 | 0 | pdc->ccolor_valid = true; |
702 | | /* Now the icc remap */ |
703 | 0 | return code; |
704 | 0 | } |
705 | | |
706 | | int |
707 | | gx_concretize_CIEABC(const gs_client_color * pc, const gs_color_space * pcs_in, |
708 | | frac * pconc, const gs_gstate * pgs, gx_device *dev) |
709 | 0 | { |
710 | 0 | gs_color_space *pcs_icc; |
711 | 0 | gs_client_color scale_pc; |
712 | 0 | bool islab; |
713 | 0 | gs_color_space *pcs = (gs_color_space *) pcs_in; |
714 | 0 | int code = 0; |
715 | |
|
716 | 0 | if_debug3m('c', pgs->memory, "[c]concretize CIEABC [%g %g %g]\n", |
717 | 0 | pc->paint.values[0], pc->paint.values[1], |
718 | 0 | pc->paint.values[2]); |
719 | | /* If we are comming in here then we have not completed |
720 | | the conversion of the ABC space to an ICC type. We |
721 | | will finish that process now. */ |
722 | 0 | if (pcs->icc_equivalent == NULL) { |
723 | 0 | code = gx_cieabc_to_icc(&pcs_icc, pcs, &islab, pgs->memory->stable_memory); |
724 | 0 | if (code < 0) |
725 | 0 | return gs_rethrow(code, "Failed to create ICC profile from CIEABC"); |
726 | 0 | } else { |
727 | 0 | pcs_icc = pcs->icc_equivalent; |
728 | 0 | } |
729 | | /* Rescale the input based upon the input range since profile is |
730 | | created to remap this range from 0 to 1 */ |
731 | 0 | if (check_range(&(pcs->params.abc->RangeABC.ranges[0]), 3)) { |
732 | 0 | return (pcs_icc->type->concretize_color)(pc, pcs_icc, pconc, pgs, dev); |
733 | 0 | } |
734 | | /* Do the rescale from 0 to 1 */ |
735 | 0 | rescale_input_color(&(pcs->params.abc->RangeABC.ranges[0]), 3, pc, &scale_pc); |
736 | | /* Now the icc remap */ |
737 | 0 | return (pcs_icc->type->concretize_color)(&scale_pc, pcs_icc, pconc, pgs, dev); |
738 | 0 | } |
739 | | |
740 | | /* Common code shared between remap and concretize */ |
741 | | static int |
742 | | gx_ciea_to_icc(gs_color_space **ppcs_icc, gs_color_space *pcs, gs_memory_t *memory) |
743 | 0 | { |
744 | 0 | int code; |
745 | 0 | gs_color_space *palt_cs = pcs->base_space; |
746 | 0 | gx_cie_vector_cache *a_cache = &(pcs->params.a->caches.DecodeA); |
747 | 0 | gx_cie_scalar_cache *lmn_caches = &(pcs->params.a->common.caches.DecodeLMN[0]); |
748 | |
|
749 | 0 | if_debug0m(gs_debug_flag_icc, memory, |
750 | 0 | "[icc] Creating ICC profile from CIEA object"); |
751 | | /* build the ICC color space object */ |
752 | 0 | code = gs_cspace_build_ICC(ppcs_icc, NULL, memory); |
753 | 0 | if (code < 0) |
754 | 0 | return gs_rethrow(code, "Failed to create ICC profile"); |
755 | | /* record the cie alt space as the icc alternative color space */ |
756 | 0 | (*ppcs_icc)->base_space = palt_cs; |
757 | 0 | rc_increment_cs(palt_cs); |
758 | 0 | (*ppcs_icc)->cmm_icc_profile_data = gsicc_profile_new(NULL, memory, NULL, 0); |
759 | 0 | if ((*ppcs_icc)->cmm_icc_profile_data == NULL) |
760 | 0 | gs_throw(gs_error_VMerror, "Failed to create ICC profile"); |
761 | 0 | code = gsicc_create_froma(pcs, &((*ppcs_icc)->cmm_icc_profile_data->buffer), |
762 | 0 | &((*ppcs_icc)->cmm_icc_profile_data->buffer_size), memory, |
763 | 0 | a_cache, lmn_caches); |
764 | 0 | if (code < 0) |
765 | 0 | return gs_rethrow(code, "Failed to create ICC profile from CIEA"); |
766 | 0 | code = gsicc_init_profile_info((*ppcs_icc)->cmm_icc_profile_data); |
767 | 0 | if (code < 0) |
768 | 0 | return gs_rethrow(code, "Failed to build ICC profile from CIEDEF"); |
769 | 0 | (*ppcs_icc)->cmm_icc_profile_data->default_match = CIE_A; |
770 | | /* Assign to the icc_equivalent member variable */ |
771 | 0 | pcs->icc_equivalent = *ppcs_icc; |
772 | 0 | pcs->icc_equivalent->cmm_icc_profile_data->data_cs = gsGRAY; |
773 | 0 | return 0; |
774 | 0 | } |
775 | | |
776 | | int |
777 | | gx_remap_CIEA(const gs_client_color * pc, const gs_color_space * pcs_in, |
778 | | gx_device_color * pdc, const gs_gstate * pgs, gx_device * dev, |
779 | | gs_color_select_t select) |
780 | 0 | { |
781 | 0 | int code; |
782 | 0 | gs_color_space *pcs_icc; |
783 | 0 | gs_client_color scale_pc; |
784 | 0 | gs_color_space *pcs = (gs_color_space *) pcs_in; |
785 | |
|
786 | 0 | if_debug1m('c', dev->memory, "[c]remap CIEA [%g]\n",pc->paint.values[0]); |
787 | | /* If we are coming in here then we may have not completed |
788 | | the conversion of the CIE A space to an ICC type. We |
789 | | will finish that process now. */ |
790 | 0 | if (pcs->icc_equivalent == NULL) { |
791 | 0 | code = gx_ciea_to_icc(&pcs_icc, pcs, pgs->memory->stable_memory); |
792 | 0 | if (code < 0) |
793 | 0 | return gs_rethrow(code, "Failed to create ICC profile from CIEA"); |
794 | 0 | } else { |
795 | | /* Once the ICC color space is set, we should be doing all the remaps through the ICC equivalent */ |
796 | 0 | pcs_icc = pcs->icc_equivalent; |
797 | 0 | } |
798 | | /* Rescale the input based upon the input range since profile is |
799 | | created to remap this range from 0 to 1 */ |
800 | 0 | if (check_range(&(pcs->params.a->RangeA), 1)) { |
801 | 0 | return (pcs_icc->type->remap_color)(pc,pcs_icc,pdc,pgs,dev,select); |
802 | 0 | } |
803 | | /* Do the rescale from 0 to 1 */ |
804 | 0 | rescale_input_color(&(pcs->params.a->RangeA), 1, pc, &scale_pc); |
805 | | /* Now the icc remap */ |
806 | 0 | code = (pcs_icc->type->remap_color)(&scale_pc,pcs_icc,pdc,pgs,dev,select); |
807 | | /* Save unscaled data for high level device (e.g. pdfwrite) */ |
808 | 0 | pdc->ccolor.paint.values[0] = pc->paint.values[0]; |
809 | 0 | pdc->ccolor_valid = true; |
810 | 0 | return code; |
811 | 0 | } |
812 | | |
813 | | /* Render a CIEBasedA color. */ |
814 | | int |
815 | | gx_concretize_CIEA(const gs_client_color * pc, const gs_color_space * pcs_in, |
816 | | frac * pconc, const gs_gstate * pgs, gx_device *dev) |
817 | 0 | { |
818 | 0 | int code = 0; |
819 | 0 | gs_color_space *pcs_icc; |
820 | 0 | gs_client_color scale_pc; |
821 | 0 | gs_color_space *pcs = (gs_color_space *) pcs_in; |
822 | |
|
823 | 0 | if_debug1m('c', dev->memory, "[c]concretize CIEA %g\n", pc->paint.values[0]); |
824 | | /* If we are comming in here then we have not completed |
825 | | the conversion of the CIE A space to an ICC type. We |
826 | | will finish that process now. */ |
827 | 0 | if (pcs->icc_equivalent == NULL) { |
828 | 0 | code = gx_ciea_to_icc(&pcs_icc, pcs, pgs->memory->stable_memory); |
829 | 0 | if (code < 0) |
830 | 0 | return gs_rethrow(code, "Failed to create ICC profile from CIEA"); |
831 | 0 | } else { |
832 | | /* Once the ICC color space is set, we should be doing all the remaps through the ICC equivalent */ |
833 | 0 | pcs_icc = pcs->icc_equivalent; |
834 | 0 | } |
835 | | /* Rescale the input based upon the input range since profile is |
836 | | created to remap this range from 0 to 1 */ |
837 | 0 | if (check_range(&(pcs->params.a->RangeA), 1)) { |
838 | 0 | return (pcs_icc->type->concretize_color)(pc, pcs_icc, pconc, pgs, dev); |
839 | 0 | } |
840 | | /* Do the rescale from 0 to 1 */ |
841 | 0 | rescale_input_color(&(pcs->params.a->RangeA), 1, pc, &scale_pc); |
842 | | /* Now the icc remap */ |
843 | 0 | return (pcs_icc->type->concretize_color)(&scale_pc, pcs_icc, pconc, pgs, dev); |
844 | 0 | } |
845 | | |
846 | | /* Call for cases where the equivalent icc color space needs to be set */ |
847 | | int |
848 | | gs_colorspace_set_icc_equivalent(gs_color_space *pcs, bool *islab, |
849 | | gs_memory_t *memory) |
850 | 0 | { |
851 | 0 | gs_color_space_index color_space_index = gs_color_space_get_index(pcs); |
852 | 0 | gs_color_space *picc_cs; |
853 | 0 | int code = 0; |
854 | |
|
855 | 0 | *islab = false; /* For non CIEABC cases */ |
856 | 0 | if (pcs->icc_equivalent != NULL || !gs_color_space_is_PSCIE(pcs)) |
857 | 0 | return 0; |
858 | | |
859 | 0 | switch( color_space_index ) { |
860 | 0 | case gs_color_space_index_CIEDEFG: |
861 | 0 | code = gx_ciedefg_to_icc(&picc_cs, pcs, memory->stable_memory); |
862 | 0 | break; |
863 | 0 | case gs_color_space_index_CIEDEF: |
864 | 0 | code = gx_ciedef_to_icc(&picc_cs, pcs, memory->stable_memory); |
865 | 0 | break; |
866 | 0 | case gs_color_space_index_CIEABC: |
867 | 0 | code = gx_cieabc_to_icc(&picc_cs, pcs, islab, memory->stable_memory); |
868 | 0 | break; |
869 | 0 | case gs_color_space_index_CIEA: |
870 | 0 | code = gx_ciea_to_icc(&picc_cs, pcs, memory->stable_memory); |
871 | 0 | break; |
872 | 0 | default: |
873 | | /* do nothing. Sould never happen */ |
874 | 0 | break; |
875 | 0 | } |
876 | 0 | return code; |
877 | 0 | } |
878 | | |
879 | | /* Call the remap_finish procedure in the joint_caches structure. */ |
880 | | int |
881 | | gx_cie_remap_finish(cie_cached_vector3 vec3, frac * pconc, float *cie_xyz, |
882 | | const gs_gstate * pgs, |
883 | | const gs_color_space *pcs) |
884 | 0 | { |
885 | 0 | return pgs->cie_joint_caches->remap_finish(vec3, pconc, cie_xyz, pgs, pcs); |
886 | 0 | } |
887 | | |
888 | | /* Finish remapping a CIEBased color. */ |
889 | | /* Return 3 if RGB, 4 if CMYK. */ |
890 | | /* this procedure is exported for the benefit of gsicc.c */ |
891 | | int |
892 | | gx_cie_real_remap_finish(cie_cached_vector3 vec3, frac * pconc, float * xyz, |
893 | | const gs_gstate * pgs, |
894 | | const gs_color_space *pcs) |
895 | 0 | { |
896 | 0 | const gs_cie_render *pcrd = pgs->cie_render; |
897 | 0 | const gx_cie_joint_caches *pjc = pgs->cie_joint_caches; |
898 | 0 | const gs_const_string *table = pcrd->RenderTable.lookup.table; |
899 | 0 | int tabc[3]; /* indices for final EncodeABC lookup */ |
900 | | |
901 | | |
902 | | /* Apply DecodeLMN, MatrixLMN(decode), and MatrixPQR. */ |
903 | 0 | if (!pjc->skipDecodeLMN) |
904 | 0 | cie_lookup_map3(&vec3 /* LMN => PQR */, &pjc->DecodeLMN, |
905 | 0 | "Decode/MatrixLMN+MatrixPQR"); |
906 | | |
907 | | /* Apply TransformPQR, MatrixPQR', and MatrixLMN(encode). */ |
908 | 0 | if (!pjc->skipPQR) |
909 | 0 | cie_lookup_map3(&vec3 /* PQR => LMN */, &pjc->TransformPQR, |
910 | 0 | "Transform/Matrix'PQR+MatrixLMN"); |
911 | | |
912 | | /* Apply EncodeLMN and MatrixABC(encode). */ |
913 | 0 | if (!pjc->skipEncodeLMN) |
914 | 0 | cie_lookup_map3(&vec3 /* LMN => ABC */, &pcrd->caches.EncodeLMN, |
915 | 0 | "EncodeLMN+MatrixABC"); |
916 | | |
917 | | /* MatrixABCEncode includes the scaling of the EncodeABC */ |
918 | | /* cache index. */ |
919 | 0 | #define SET_TABC(i, t)\ |
920 | 0 | BEGIN\ |
921 | 0 | tabc[i] = cie_cached2int(vec3 /*ABC*/.t - pcrd->EncodeABC_base[i],\ |
922 | 0 | _cie_interpolate_bits);\ |
923 | 0 | if ((uint)tabc[i] > (gx_cie_cache_size - 1) << _cie_interpolate_bits)\ |
924 | 0 | tabc[i] = (tabc[i] < 0 ? 0 :\ |
925 | 0 | (gx_cie_cache_size - 1) << _cie_interpolate_bits);\ |
926 | 0 | END |
927 | 0 | SET_TABC(0, u); |
928 | 0 | SET_TABC(1, v); |
929 | 0 | SET_TABC(2, w); |
930 | 0 | #undef SET_TABC |
931 | 0 | if (table == 0) { |
932 | | /* |
933 | | * No further transformation. |
934 | | * The final mapping step includes both restriction to |
935 | | * the range [0..1] and conversion to fracs. |
936 | | */ |
937 | 0 | #define EABC(i)\ |
938 | 0 | cie_interpolate_fracs(pcrd->caches.EncodeABC[i].fixeds.fracs.values, tabc[i]) |
939 | 0 | pconc[0] = EABC(0); |
940 | 0 | pconc[1] = EABC(1); |
941 | 0 | pconc[2] = EABC(2); |
942 | 0 | #undef EABC |
943 | 0 | return 3; |
944 | 0 | } else { |
945 | | /* |
946 | | * Use the RenderTable. |
947 | | */ |
948 | 0 | int m = pcrd->RenderTable.lookup.m; |
949 | |
|
950 | 0 | #define RT_LOOKUP(j, i) pcrd->caches.RenderTableT[j].fracs.values[i] |
951 | 0 | #ifdef CIE_RENDER_TABLE_INTERPOLATE |
952 | | |
953 | | /* |
954 | | * The final mapping step includes restriction to the |
955 | | * ranges [0..dims[c]] as ints with interpolation bits. |
956 | | */ |
957 | 0 | fixed rfix[3]; |
958 | 0 | const int s = _fixed_shift - _cie_interpolate_bits; |
959 | |
|
960 | 0 | #define EABC(i)\ |
961 | 0 | cie_interpolate_fracs(pcrd->caches.EncodeABC[i].fixeds.ints.values, tabc[i]) |
962 | 0 | #define FABC(i, s)\ |
963 | 0 | ((s) > 0) ? (EABC(i) << (s)) : (EABC(i) >> -(s)) |
964 | 0 | rfix[0] = FABC(0, s); |
965 | 0 | rfix[1] = FABC(1, s); |
966 | 0 | rfix[2] = FABC(2, s); |
967 | 0 | #undef FABC |
968 | 0 | #undef EABC |
969 | 0 | if_debug6m('c', pgs->memory, "[c]ABC=%g,%g,%g => iabc=%g,%g,%g\n", |
970 | 0 | cie_cached2float(vec3.u), cie_cached2float(vec3.v), |
971 | 0 | cie_cached2float(vec3.w), fixed2float(rfix[0]), |
972 | 0 | fixed2float(rfix[1]), fixed2float(rfix[2])); |
973 | 0 | gx_color_interpolate_linear(rfix, &pcrd->RenderTable.lookup, |
974 | 0 | pconc); |
975 | 0 | if_debug3m('c', pgs->memory, "[c] interpolated => %g,%g,%g\n", |
976 | 0 | frac2float(pconc[0]), frac2float(pconc[1]), |
977 | 0 | frac2float(pconc[2])); |
978 | 0 | if (!pcrd->caches.RenderTableT_is_identity) { |
979 | | /* Map the interpolated values. */ |
980 | 0 | #define frac2cache_index(v) frac2bits(v, gx_cie_log2_cache_size) |
981 | 0 | pconc[0] = RT_LOOKUP(0, frac2cache_index(pconc[0])); |
982 | 0 | pconc[1] = RT_LOOKUP(1, frac2cache_index(pconc[1])); |
983 | 0 | pconc[2] = RT_LOOKUP(2, frac2cache_index(pconc[2])); |
984 | 0 | if (m > 3) |
985 | 0 | pconc[3] = RT_LOOKUP(3, frac2cache_index(pconc[3])); |
986 | 0 | #undef frac2cache_index |
987 | 0 | } |
988 | |
|
989 | | #else /* !CIE_RENDER_TABLE_INTERPOLATE */ |
990 | | |
991 | | /* |
992 | | * The final mapping step includes restriction to the ranges |
993 | | * [0..dims[c]], plus scaling of the indices in the strings. |
994 | | */ |
995 | | #define RI(i)\ |
996 | | pcrd->caches.EncodeABC[i].ints.values[tabc[i] >> _cie_interpolate_bits] |
997 | | int ia = RI(0); |
998 | | int ib = RI(1); /* pre-multiplied by m * NC */ |
999 | | int ic = RI(2); /* pre-multiplied by m */ |
1000 | | const byte *prtc = table[ia].data + ib + ic; |
1001 | | |
1002 | | /* (*pcrd->RenderTable.T)(prtc, m, pcrd, pconc); */ |
1003 | | |
1004 | | if_debug6m('c', pgs->memory, "[c]ABC=%g,%g,%g => iabc=%d,%d,%d\n", |
1005 | | cie_cached2float(vec3.u), cie_cached2float(vec3.v), |
1006 | | cie_cached2float(vec3.w), ia, ib, ic); |
1007 | | if (pcrd->caches.RenderTableT_is_identity) { |
1008 | | pconc[0] = byte2frac(prtc[0]); |
1009 | | pconc[1] = byte2frac(prtc[1]); |
1010 | | pconc[2] = byte2frac(prtc[2]); |
1011 | | if (m > 3) |
1012 | | pconc[3] = byte2frac(prtc[3]); |
1013 | | } else { |
1014 | | #if gx_cie_log2_cache_size == 8 |
1015 | | # define byte2cache_index(b) (b) |
1016 | | #else |
1017 | | # if gx_cie_log2_cache_size > 8 |
1018 | | # define byte2cache_index(b)\ |
1019 | | ( ((b) << (gx_cie_log2_cache_size - 8)) +\ |
1020 | | ((b) >> (16 - gx_cie_log2_cache_size)) ) |
1021 | | # else /* < 8 */ |
1022 | | # define byte2cache_index(b) ((b) >> (8 - gx_cie_log2_cache_size)) |
1023 | | # endif |
1024 | | #endif |
1025 | | pconc[0] = RT_LOOKUP(0, byte2cache_index(prtc[0])); |
1026 | | pconc[1] = RT_LOOKUP(1, byte2cache_index(prtc[1])); |
1027 | | pconc[2] = RT_LOOKUP(2, byte2cache_index(prtc[2])); |
1028 | | if (m > 3) |
1029 | | pconc[3] = RT_LOOKUP(3, byte2cache_index(prtc[3])); |
1030 | | #undef byte2cache_index |
1031 | | } |
1032 | | |
1033 | | #endif /* !CIE_RENDER_TABLE_INTERPOLATE */ |
1034 | 0 | #undef RI |
1035 | 0 | #undef RT_LOOKUP |
1036 | 0 | return m; |
1037 | 0 | } |
1038 | 0 | } |
1039 | | |
1040 | | /* |
1041 | | * Finish "remapping" a CIEBased color only to the XYZ intermediate values. |
1042 | | * Note that we can't currently represent values outside the range [0..1]: |
1043 | | * this is a bug that we will have to address someday. |
1044 | | */ |
1045 | | static frac |
1046 | | float2frac_clamp(double x) |
1047 | 0 | { |
1048 | 0 | return float2frac((x <= 0 ? 0 : x >= 1 ? 1 : x)); |
1049 | 0 | } |
1050 | | int |
1051 | | gx_cie_xyz_remap_finish(cie_cached_vector3 vec3, frac * pconc, float *xyz, |
1052 | | const gs_gstate * pgs, |
1053 | | const gs_color_space *pcs) |
1054 | 0 | { |
1055 | 0 | const gx_cie_joint_caches *pjc = pgs->cie_joint_caches; |
1056 | | |
1057 | | /* |
1058 | | * All the steps through DecodeABC/MatrixABC have been applied, i.e., |
1059 | | * vec3 is LMN values. Just apply DecodeLMN/MatrixLMN. |
1060 | | */ |
1061 | 0 | if (!pjc->skipDecodeLMN) |
1062 | 0 | cie_lookup_map3(&vec3 /* LMN => XYZ */, &pjc->DecodeLMN, |
1063 | 0 | "Decode/MatrixLMN"); |
1064 | |
|
1065 | 0 | xyz[0] = cie_cached2float(vec3.u); |
1066 | 0 | xyz[1] = cie_cached2float(vec3.v); |
1067 | 0 | xyz[2] = cie_cached2float(vec3.w); |
1068 | |
|
1069 | 0 | pconc[0] = float2frac_clamp(xyz[0]); |
1070 | 0 | pconc[1] = float2frac_clamp(xyz[1]); |
1071 | 0 | pconc[2] = float2frac_clamp(xyz[2]); |
1072 | 0 | return 3; |
1073 | 0 | } |
1074 | | |
1075 | | /* Look up 3 values in a cache, with cached post-multiplication. */ |
1076 | | static void |
1077 | | cie_lookup_mult3(cie_cached_vector3 * pvec, |
1078 | | const gx_cie_vector_cache3_t * pc) |
1079 | 0 | { |
1080 | 0 | #ifdef CIE_CACHE_INTERPOLATE |
1081 | 0 | cie_cached_value u, v, w; |
1082 | |
|
1083 | | #ifdef CIE_CACHE_USE_FIXED |
1084 | | # define LOOKUP_INTERPOLATE_BETWEEN(v0, v1, i)\ |
1085 | | cie_interpolate_between(v0, v1, i) |
1086 | | #else |
1087 | 0 | float ftemp; |
1088 | |
|
1089 | 0 | # define LOOKUP_INTERPOLATE_BETWEEN(v0, v1, i)\ |
1090 | 0 | ((v0) + ((v1) - (v0)) *\ |
1091 | 0 | ((ftemp = float_rshift(i, _cie_interpolate_bits)), ftemp - (int)ftemp)) |
1092 | 0 | #endif |
1093 | | |
1094 | | /* |
1095 | | * Defining a macro for the entire component calculation would |
1096 | | * minimize source code, but it would make the result impossible |
1097 | | * to trace or debug. We use smaller macros instead, and run |
1098 | | * the usual risks associated with having 3 copies of the code. |
1099 | | * Note that pvec and pc are free variables in these macros. |
1100 | | */ |
1101 | |
|
1102 | 0 | #define I_IN_RANGE(j, n)\ |
1103 | 0 | (pvec->n >= pc->interpolation_ranges[j].rmin &&\ |
1104 | 0 | pvec->n < pc->interpolation_ranges[j].rmax) |
1105 | 0 | #define I_INDEX(j, n)\ |
1106 | 0 | LOOKUP_INDEX(pvec->n, &pc->caches[j], _cie_interpolate_bits) |
1107 | 0 | #define I_ENTRY(i, j)\ |
1108 | 0 | &pc->caches[j].vecs.values[(int)cie_cached_rshift(i, _cie_interpolate_bits)] |
1109 | 0 | #define I_ENTRY1(i, p)\ |
1110 | 0 | (i >= (gx_cie_cache_size - 1) << _cie_interpolate_bits ? p : p + 1) |
1111 | |
|
1112 | 0 | if (I_IN_RANGE(0, u)) { |
1113 | 0 | cie_cached_value i = I_INDEX(0, u); |
1114 | 0 | const cie_cached_vector3 *p = I_ENTRY(i, 0); |
1115 | 0 | const cie_cached_vector3 *p1 = I_ENTRY1(i, p); |
1116 | |
|
1117 | 0 | if_debug0('C', "[c]Interpolating u.\n"); |
1118 | 0 | u = LOOKUP_INTERPOLATE_BETWEEN(p->u, p1->u, i); |
1119 | 0 | v = LOOKUP_INTERPOLATE_BETWEEN(p->v, p1->v, i); |
1120 | 0 | w = LOOKUP_INTERPOLATE_BETWEEN(p->w, p1->w, i); |
1121 | 0 | } else { |
1122 | 0 | const cie_cached_vector3 *p = LOOKUP_ENTRY(pvec->u, &pc->caches[0]); |
1123 | |
|
1124 | 0 | if_debug0('C', "[c]Not interpolating u.\n"); |
1125 | 0 | u = p->u, v = p->v, w = p->w; |
1126 | 0 | } |
1127 | |
|
1128 | 0 | if (I_IN_RANGE(1, v)) { |
1129 | 0 | cie_cached_value i = I_INDEX(1, v); |
1130 | 0 | const cie_cached_vector3 *p = I_ENTRY(i, 1); |
1131 | 0 | const cie_cached_vector3 *p1 = I_ENTRY1(i, p); |
1132 | |
|
1133 | 0 | if_debug0('C', "[c]Interpolating v.\n"); |
1134 | 0 | u += LOOKUP_INTERPOLATE_BETWEEN(p->u, p1->u, i); |
1135 | 0 | v += LOOKUP_INTERPOLATE_BETWEEN(p->v, p1->v, i); |
1136 | 0 | w += LOOKUP_INTERPOLATE_BETWEEN(p->w, p1->w, i); |
1137 | 0 | } else { |
1138 | 0 | const cie_cached_vector3 *p = LOOKUP_ENTRY(pvec->v, &pc->caches[1]); |
1139 | |
|
1140 | 0 | if_debug0('C', "[c]Not interpolating v.\n"); |
1141 | 0 | u += p->u, v += p->v, w += p->w; |
1142 | 0 | } |
1143 | |
|
1144 | 0 | if (I_IN_RANGE(2, w)) { |
1145 | 0 | cie_cached_value i = I_INDEX(2, w); |
1146 | 0 | const cie_cached_vector3 *p = I_ENTRY(i, 2); |
1147 | 0 | const cie_cached_vector3 *p1 = I_ENTRY1(i, p); |
1148 | |
|
1149 | 0 | if_debug0('C', "[c]Interpolating w.\n"); |
1150 | 0 | u += LOOKUP_INTERPOLATE_BETWEEN(p->u, p1->u, i); |
1151 | 0 | v += LOOKUP_INTERPOLATE_BETWEEN(p->v, p1->v, i); |
1152 | 0 | w += LOOKUP_INTERPOLATE_BETWEEN(p->w, p1->w, i); |
1153 | 0 | } else { |
1154 | 0 | const cie_cached_vector3 *p = LOOKUP_ENTRY(pvec->w, &pc->caches[2]); |
1155 | |
|
1156 | 0 | if_debug0('C', "[c]Not interpolating w.\n"); |
1157 | 0 | u += p->u, v += p->v, w += p->w; |
1158 | 0 | } |
1159 | |
|
1160 | 0 | #undef I_IN_RANGE |
1161 | 0 | #undef I_INDEX |
1162 | 0 | #undef I_ENTRY |
1163 | 0 | #undef I_ENTRY1 |
1164 | |
|
1165 | 0 | pvec->u = u; |
1166 | 0 | pvec->v = v; |
1167 | 0 | pvec->w = w; |
1168 | |
|
1169 | | #else /* no interpolation */ |
1170 | | |
1171 | | const cie_cached_vector3 *pu = LOOKUP_ENTRY(pvec->u, &pc->caches[0]); |
1172 | | const cie_cached_vector3 *pv = LOOKUP_ENTRY(pvec->v, &pc->caches[1]); |
1173 | | const cie_cached_vector3 *pw = LOOKUP_ENTRY(pvec->w, &pc->caches[2]); |
1174 | | |
1175 | | if_debug0('C', "[c]Not interpolating.\n"); |
1176 | | |
1177 | | pvec->u = pu->u + pv->u + pw->u; |
1178 | | pvec->v = pu->v + pv->v + pw->v; |
1179 | | pvec->w = pu->w + pv->w + pw->w; |
1180 | | |
1181 | | #endif /* (no) interpolation */ |
1182 | 0 | } |