Coverage Report

Created: 2025-06-24 07:01

/src/ghostpdl/base/gsfunc0.c
Line
Count
Source (jump to first uncovered line)
1
/* Copyright (C) 2001-2023 Artifex Software, Inc.
2
   All Rights Reserved.
3
4
   This software is provided AS-IS with no warranty, either express or
5
   implied.
6
7
   This software is distributed under license and may not be copied,
8
   modified or distributed except as expressly authorized under the terms
9
   of the license contained in the file LICENSE in this distribution.
10
11
   Refer to licensing information at http://www.artifex.com or contact
12
   Artifex Software, Inc.,  39 Mesa Street, Suite 108A, San Francisco,
13
   CA 94129, USA, for further information.
14
*/
15
16
17
/* Implementation of FunctionType 0 (Sampled) Functions */
18
#include "math_.h"
19
#include "gx.h"
20
#include "gserrors.h"
21
#include "gsfunc0.h"
22
#include "gsparam.h"
23
#include "gxfarith.h"
24
#include "gxfunc.h"
25
#include "stream.h"
26
#include "gsccolor.h"           /* Only for GS_CLIENT_COLOR_MAX_COMPONENTS */
27
28
#define POLE_CACHE_DEBUG 0      /* A temporary development technology need.
29
                                   Remove after the beta testing. */
30
416
#define POLE_CACHE_GENERIC_1D 1 /* A temporary development technology need.
31
                                   Didn't decide yet - see fn_Sd_evaluate_cubic_cached_1d. */
32
760
#define POLE_CACHE_IGNORE 0     /* A temporary development technology need.
33
                                   Remove after the beta testing. */
34
35
177k
#define MAX_FAST_COMPS 8
36
37
typedef struct gs_function_Sd_s {
38
    gs_function_head_t head;
39
    gs_function_Sd_params_t params;
40
} gs_function_Sd_t;
41
42
/* GC descriptor */
43
private_st_function_Sd();
44
static
45
170
ENUM_PTRS_WITH(function_Sd_enum_ptrs, gs_function_Sd_t *pfn)
46
68
{
47
68
    index -= 6;
48
68
    if (index < st_data_source_max_ptrs)
49
17
        return ENUM_USING(st_data_source, &pfn->params.DataSource,
50
68
                          sizeof(pfn->params.DataSource), index);
51
51
    return ENUM_USING_PREFIX(st_function, st_data_source_max_ptrs);
52
68
}
53
68
ENUM_PTR3(0, gs_function_Sd_t, params.Encode, params.Decode, params.Size);
54
170
ENUM_PTR3(3, gs_function_Sd_t, params.pole, params.array_step, params.stream_step);
55
170
ENUM_PTRS_END
56
static
57
17
RELOC_PTRS_WITH(function_Sd_reloc_ptrs, gs_function_Sd_t *pfn)
58
17
{
59
17
    RELOC_PREFIX(st_function);
60
17
    RELOC_USING(st_data_source, &pfn->params.DataSource,
61
17
                sizeof(pfn->params.DataSource));
62
17
    RELOC_PTR3(gs_function_Sd_t, params.Encode, params.Decode, params.Size);
63
17
    RELOC_PTR3(gs_function_Sd_t, params.pole, params.array_step, params.stream_step);
64
17
}
65
17
RELOC_PTRS_END
66
67
/* Define the maximum plausible number of inputs and outputs */
68
/* for a Sampled function. */
69
#ifndef GS_CLIENT_SAMPLED_FN_MAX_COMPONENTS   /* Allow override with XCFLAGS */
70
53.1k
#  define max_Sd_m GS_CLIENT_COLOR_MAX_COMPONENTS
71
#  define max_Sd_n GS_CLIENT_COLOR_MAX_COMPONENTS
72
#else
73
#  define max_Sd_m GS_CLIENT_SAMPLED_FN_MAX_COMPONENTS
74
#  define max_Sd_n GS_CLIENT_SAMPLED_FN_MAX_COMPONENTS
75
#endif
76
77
/* Get one set of sample values. */
78
#define SETUP_SAMPLES(bps, nbytes)\
79
53.2M
        int n = pfn->params.n;\
80
53.2M
        byte buf[max_Sd_n * ((bps + 7) >> 3)];\
81
53.2M
        const byte *p;\
82
53.2M
        int i;\
83
53.2M
\
84
53.2M
        data_source_access(&pfn->params.DataSource, offset >> 3,\
85
53.2M
                           nbytes, buf, &p)
86
87
static int
88
fn_gets_1(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
89
0
{
90
0
    SETUP_SAMPLES(1, ((offset & 7) + n + 7) >> 3);
91
0
    for (i = 0; i < n; ++i) {
92
0
        samples[i] = (*p >> (~offset & 7)) & 1;
93
0
        if (!(++offset & 7))
94
0
            p++;
95
0
    }
96
0
    return 0;
97
0
}
98
static int
99
fn_gets_2(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
100
0
{
101
0
    SETUP_SAMPLES(2, (((offset & 7) >> 1) + n + 3) >> 2);
102
0
    for (i = 0; i < n; ++i) {
103
0
        samples[i] = (*p >> (6 - (offset & 7))) & 3;
104
0
        if (!((offset += 2) & 7))
105
0
            p++;
106
0
    }
107
0
    return 0;
108
0
}
109
static int
110
fn_gets_4(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
111
0
{
112
0
    SETUP_SAMPLES(4, (((offset & 7) >> 2) + n + 1) >> 1);
113
0
    for (i = 0; i < n; ++i) {
114
0
        samples[i] = ((offset ^= 4) & 4 ? *p >> 4 : *p++ & 0xf);
115
0
    }
116
0
    return 0;
117
0
}
118
static int
119
fn_gets_8(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
120
53.1M
{
121
53.1M
    SETUP_SAMPLES(8, n);
122
127M
    for (i = 0; i < n; ++i) {
123
74.2M
        samples[i] = *p++;
124
74.2M
    }
125
53.1M
    return 0;
126
53.1M
}
127
static int
128
fn_gets_12(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
129
0
{
130
0
    SETUP_SAMPLES(12, (((offset & 7) >> 2) + 3 * n + 1) >> 1);
131
0
    for (i = 0; i < n; ++i) {
132
0
        if (offset & 4)
133
0
            samples[i] = ((*p & 0xf) << 8) + p[1], p += 2;
134
0
        else
135
0
            samples[i] = (*p << 4) + (p[1] >> 4), p++;
136
0
        offset ^= 4;
137
0
    }
138
0
    return 0;
139
0
}
140
static int
141
fn_gets_16(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
142
57.8k
{
143
57.8k
    SETUP_SAMPLES(16, n * 2);
144
116k
    for (i = 0; i < n; ++i) {
145
58.3k
        samples[i] = (*p << 8) + p[1];
146
58.3k
        p += 2;
147
58.3k
    }
148
57.8k
    return 0;
149
57.8k
}
150
static int
151
fn_gets_24(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
152
0
{
153
0
    SETUP_SAMPLES(24, n * 3);
154
0
    for (i = 0; i < n; ++i) {
155
0
        samples[i] = (*p << 16) + (p[1] << 8) + p[2];
156
0
        p += 3;
157
0
    }
158
0
    return 0;
159
0
}
160
static int
161
fn_gets_32(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
162
0
{
163
0
    SETUP_SAMPLES(32, n * 4);
164
0
    for (i = 0; i < n; ++i) {
165
0
        samples[i] = (*p << 24) + (p[1] << 16) + (p[2] << 8) + p[3];
166
0
        p += 4;
167
0
    }
168
0
    return 0;
169
0
}
170
171
static int (*const fn_get_samples[]) (const gs_function_Sd_t * pfn,
172
                                       ulong offset, uint * samples) =
173
{
174
    0, fn_gets_1, fn_gets_2, 0, fn_gets_4, 0, 0, 0,
175
        fn_gets_8, 0, 0, 0, fn_gets_12, 0, 0, 0,
176
        fn_gets_16, 0, 0, 0, 0, 0, 0, 0,
177
        fn_gets_24, 0, 0, 0, 0, 0, 0, 0,
178
        fn_gets_32
179
};
180
181
/*
182
 * Compute a value by cubic interpolation.
183
 * f[] = f(0), f(1), f(2), f(3); 1 < x < 2.
184
 * The formula is derived from those presented in
185
 * http://www.cs.uwa.edu.au/undergraduate/units/233.413/Handouts/Lecture04.html
186
 * (thanks to Raph Levien for the reference).
187
 */
188
static double
189
interpolate_cubic(double x, double f0, double f1, double f2, double f3)
190
0
{
191
    /*
192
     * The parameter 'a' affects the contribution of the high-frequency
193
     * components.  The abovementioned source suggests a = -0.5.
194
     */
195
0
#define a (-0.5)
196
0
#define SQR(v) ((v) * (v))
197
0
#define CUBE(v) ((v) * (v) * (v))
198
0
    const double xm1 = x - 1, m2x = 2 - x, m3x = 3 - x;
199
0
    const double c =
200
0
        (a * CUBE(x) - 5 * a * SQR(x) + 8 * a * x - 4 * a) * f0 +
201
0
        ((a+2) * CUBE(xm1) - (a+3) * SQR(xm1) + 1) * f1 +
202
0
        ((a+2) * CUBE(m2x) - (a+3) * SQR(m2x) + 1) * f2 +
203
0
        (a * CUBE(m3x) - 5 * a * SQR(m3x) + 8 * a * m3x - 4 * a) * f3;
204
205
0
    if_debug6('~', "[~](%g, %g, %g, %g)order3(%g) => %g\n",
206
0
              f0, f1, f2, f3, x, c);
207
0
    return c;
208
0
#undef a
209
0
#undef SQR
210
0
#undef CUBE
211
0
}
212
213
/*
214
 * Compute a value by quadratic interpolation.
215
 * f[] = f(0), f(1), f(2); 0 < x < 1.
216
 *
217
 * We used to use a quadratic formula for this, derived from
218
 * f(0) = f0, f(1) = f1, f'(1) = (f2 - f0) / 2, but now we
219
 * match what we believe is Acrobat Reader's behavior.
220
 */
221
static inline double
222
interpolate_quadratic(double x, double f0, double f1, double f2)
223
0
{
224
0
    return interpolate_cubic(x + 1, f0, f0, f1, f2);
225
0
}
226
227
/* Calculate a result by multicubic interpolation. */
228
static void
229
fn_interpolate_cubic(const gs_function_Sd_t *pfn, const float *fparts,
230
                     const int *iparts, const ulong *factors,
231
                     float *samples, ulong offset, int m)
232
0
{
233
0
    int j;
234
235
0
top:
236
0
    if (m == 0) {
237
0
        uint sdata[max_Sd_n];
238
239
0
        (*fn_get_samples[pfn->params.BitsPerSample])(pfn, offset, sdata);
240
0
        for (j = pfn->params.n - 1; j >= 0; --j)
241
0
            samples[j] = (float)sdata[j];
242
0
    } else {
243
0
        float fpart = *fparts++;
244
0
        int ipart = *iparts++;
245
0
        ulong delta = *factors++;
246
0
        int size = pfn->params.Size[pfn->params.m - m];
247
0
        float samples1[max_Sd_n], samplesm1[max_Sd_n], samples2[max_Sd_n];
248
249
0
        --m;
250
0
        if (is_fzero(fpart))
251
0
            goto top;
252
0
        fn_interpolate_cubic(pfn, fparts, iparts, factors, samples,
253
0
                             offset, m);
254
0
        fn_interpolate_cubic(pfn, fparts, iparts, factors, samples1,
255
0
                             offset + delta, m);
256
        /* Ensure we don't try to access out of bounds. */
257
        /*
258
         * If size == 1, the only possible value for ipart and fpart is
259
         * 0, so we've already handled this case.
260
         */
261
0
        if (size == 2) { /* ipart = 0 */
262
            /* Use linear interpolation. */
263
0
            for (j = pfn->params.n - 1; j >= 0; --j)
264
0
                samples[j] += (samples1[j] - samples[j]) * fpart;
265
0
            return;
266
0
        }
267
0
        if (ipart == 0) {
268
            /* Use quadratic interpolation. */
269
0
            fn_interpolate_cubic(pfn, fparts, iparts, factors,
270
0
                                 samples2, offset + delta * 2, m);
271
0
            for (j = pfn->params.n - 1; j >= 0; --j)
272
0
                samples[j] =
273
0
                    interpolate_quadratic(fpart, samples[j],
274
0
                                          samples1[j], samples2[j]);
275
0
            return;
276
0
        }
277
        /* At this point we know ipart > 0, size >= 3. */
278
0
        fn_interpolate_cubic(pfn, fparts, iparts, factors, samplesm1,
279
0
                             offset - delta, m);
280
0
        if (ipart == size - 2) {
281
            /* Use quadratic interpolation. */
282
0
            for (j = pfn->params.n - 1; j >= 0; --j)
283
0
                samples[j] =
284
0
                    interpolate_quadratic(1 - fpart, samples1[j],
285
0
                                          samples[j], samplesm1[j]);
286
0
            return;
287
0
        }
288
        /* Now we know 0 < ipart < size - 2, size > 3. */
289
0
        fn_interpolate_cubic(pfn, fparts, iparts, factors,
290
0
                             samples2, offset + delta * 2, m);
291
0
        for (j = pfn->params.n - 1; j >= 0; --j)
292
0
            samples[j] =
293
0
                interpolate_cubic(fpart + 1, samplesm1[j], samples[j],
294
0
                                  samples1[j], samples2[j]);
295
0
    }
296
0
}
297
298
/* Calculate a result by multilinear interpolation. */
299
static void
300
fn_interpolate_linear(const gs_function_Sd_t *pfn, const float *fparts,
301
                 const ulong *factors, float *samples, ulong offset, int m)
302
9.99M
{
303
9.99M
    int j;
304
305
10.3M
top:
306
10.3M
    if (m == 0) {
307
6.77M
        uint sdata[max_Sd_n];
308
309
6.77M
        (*fn_get_samples[pfn->params.BitsPerSample])(pfn, offset, sdata);
310
22.4M
        for (j = pfn->params.n - 1; j >= 0; --j)
311
15.6M
            samples[j] = (float)sdata[j];
312
6.77M
    } else {
313
3.55M
        float fpart = *fparts++;
314
3.55M
        float samples1[max_Sd_n];
315
316
3.55M
        if (is_fzero(fpart)) {
317
330k
            ++factors;
318
330k
            --m;
319
330k
            goto top;
320
330k
        }
321
3.22M
        fn_interpolate_linear(pfn, fparts, factors + 1, samples,
322
3.22M
                              offset, m - 1);
323
3.22M
        fn_interpolate_linear(pfn, fparts, factors + 1, samples1,
324
3.22M
                              offset + *factors, m - 1);
325
10.7M
        for (j = pfn->params.n - 1; j >= 0; --j)
326
7.52M
            samples[j] += (samples1[j] - samples[j]) * fpart;
327
3.22M
    }
328
10.3M
}
329
330
static inline double
331
fn_Sd_encode(const gs_function_Sd_t *pfn, int i, double sample)
332
66.7M
{
333
66.7M
    float d0, d1, r0, r1;
334
66.7M
    double value;
335
66.7M
    int bps = pfn->params.BitsPerSample;
336
    /* x86 machines have problems with shifts if bps >= 32 */
337
66.7M
    uint max_samp = (bps < (sizeof(uint) * 8)) ? ((1 << bps) - 1) : max_uint;
338
339
66.7M
    if (pfn->params.Range)
340
66.7M
        r0 = pfn->params.Range[2 * i], r1 = pfn->params.Range[2 * i + 1];
341
0
    else
342
0
        r0 = 0, r1 = (float)max_samp;
343
66.7M
    if (pfn->params.Decode)
344
25.0M
        d0 = pfn->params.Decode[2 * i], d1 = pfn->params.Decode[2 * i + 1];
345
41.7M
    else
346
41.7M
        d0 = r0, d1 = r1;
347
348
66.7M
    value = sample * (d1 - d0) / max_samp + d0;
349
66.7M
    if (value < r0)
350
0
        value = r0;
351
66.7M
    else if (value > r1)
352
0
        value = r1;
353
66.7M
    return value;
354
66.7M
}
355
356
/* Evaluate a Sampled function. */
357
/* A generic algorithm with a recursion by dimentions. */
358
static int
359
fn_Sd_evaluate_general(const gs_function_t * pfn_common, const float *in, float *out)
360
3.55M
{
361
3.55M
    const gs_function_Sd_t *pfn = (const gs_function_Sd_t *)pfn_common;
362
3.55M
    int bps = pfn->params.BitsPerSample;
363
3.55M
    ulong offset = 0;
364
3.55M
    int i;
365
3.55M
    float encoded[max_Sd_m];
366
3.55M
    int iparts[max_Sd_m]; /* only needed for cubic interpolation */
367
3.55M
    ulong factors[max_Sd_m];
368
3.55M
    float samples[max_Sd_n];
369
370
    /* Encode the input values. */
371
372
7.10M
    for (i = 0; i < pfn->params.m; ++i) {
373
3.55M
        float d0 = pfn->params.Domain[2 * i],
374
3.55M
            d1 = pfn->params.Domain[2 * i + 1];
375
3.55M
        float arg = in[i], enc;
376
377
3.55M
        if (arg < d0)
378
39
            arg = d0;
379
3.55M
        else if (arg > d1)
380
0
            arg = d1;
381
3.55M
        if (pfn->params.Encode) {
382
2.28M
            float e0 = pfn->params.Encode[2 * i];
383
2.28M
            float e1 = pfn->params.Encode[2 * i + 1];
384
385
2.28M
            enc = (arg - d0) * (e1 - e0) / (d1 - d0) + e0;
386
2.28M
            if (enc < 0)
387
0
                encoded[i] = 0;
388
2.28M
            else if (enc >= pfn->params.Size[i] - 1)
389
73.9k
                encoded[i] = (float)pfn->params.Size[i] - 1;
390
2.21M
            else
391
2.21M
                encoded[i] = enc;
392
2.28M
        } else {
393
            /* arg is guaranteed to be in bounds, ergo so is enc */
394
                /* TODO: possible issue here.  if (pfn->params.Size[i] == 1 */
395
1.26M
            encoded[i] = (arg - d0) * (pfn->params.Size[i] - 1) / (d1 - d0);
396
1.26M
        }
397
3.55M
    }
398
399
    /* Look up and interpolate the output values. */
400
401
3.55M
    {
402
3.55M
        ulong factor = (ulong)bps * pfn->params.n;
403
404
7.10M
        for (i = 0; i < pfn->params.m; factor *= pfn->params.Size[i++]) {
405
3.55M
            int ipart = (int)encoded[i];
406
407
3.55M
            offset += (factors[i] = factor) * ipart;
408
3.55M
            iparts[i] = ipart;  /* only needed for cubic interpolation */
409
3.55M
            encoded[i] -= ipart;
410
3.55M
        }
411
3.55M
    }
412
3.55M
    if (pfn->params.Order == 3)
413
0
        fn_interpolate_cubic(pfn, encoded, iparts, factors, samples,
414
0
                             offset, pfn->params.m);
415
3.55M
    else
416
3.55M
        fn_interpolate_linear(pfn, encoded, factors, samples, offset,
417
3.55M
                              pfn->params.m);
418
419
    /* Encode the output values. */
420
421
11.7M
    for (i = 0; i < pfn->params.n; ++i)
422
8.16M
        out[i] = (float)fn_Sd_encode(pfn, i, samples[i]);
423
424
3.55M
    return 0;
425
3.55M
}
426
427
static const double double_stub = 1e90;
428
429
static inline void
430
fn_make_cubic_poles(double *p, double f0, double f1, double f2, double f3,
431
            const int pole_step_minor)
432
12
{   /* The following is poles of the polinomial,
433
       which represents interpolate_cubic in [1,2]. */
434
12
    const double a = -0.5;
435
436
12
    p[pole_step_minor * 1] = (a*f0 + 3*f1 - a*f2)/3.0;
437
12
    p[pole_step_minor * 2] = (-a*f1 + 3*f2 + a*f3)/3.0;
438
12
}
439
440
static void
441
fn_make_poles(double *p, const int pole_step, int power, int bias)
442
12
{
443
12
    const int pole_step_minor = pole_step / 3;
444
12
    switch(power) {
445
0
        case 1: /* A linear 3d power curve. */
446
            /* bias must be 0. */
447
0
            p[pole_step_minor * 1] = (2 * p[pole_step * 0] + 1 * p[pole_step * 1]) / 3;
448
0
            p[pole_step_minor * 2] = (1 * p[pole_step * 0] + 2 * p[pole_step * 1]) / 3;
449
0
            break;
450
0
        case 2:
451
            /* bias may be be 0 or 1. */
452
            /* Duplicate the beginning or the ending pole (the old code compatible). */
453
0
            fn_make_cubic_poles(p + pole_step * bias,
454
0
                    p[pole_step * 0], p[pole_step * bias],
455
0
                    p[pole_step * (1 + bias)], p[pole_step * 2],
456
0
                    pole_step_minor);
457
0
            break;
458
12
        case 3:
459
            /* bias must be 1. */
460
12
            fn_make_cubic_poles(p + pole_step * bias,
461
12
                    p[pole_step * 0], p[pole_step * 1], p[pole_step * 2], p[pole_step * 3],
462
12
                    pole_step_minor);
463
12
            break;
464
0
        default: /* Must not happen. */
465
0
           DO_NOTHING;
466
12
    }
467
12
}
468
469
/* Evaluate a Sampled function.
470
   A cubic interpolation with a pole cache.
471
   Allows a fast check for extreme suspection. */
472
/* This implementation is a particular case of 1 dimension.
473
   maybe we'll use as an optimisation of the generic case,
474
   so keep it for a while. */
475
static int
476
fn_Sd_evaluate_cubic_cached_1d(const gs_function_Sd_t *pfn, const float *in, float *out)
477
0
{
478
0
    float d0 = pfn->params.Domain[2 * 0];
479
0
    float d1 = pfn->params.Domain[2 * 0 + 1];
480
0
    const int pole_step_minor = pfn->params.n;
481
0
    const int pole_step = 3 * pole_step_minor;
482
0
    int i0; /* A cell index. */
483
0
    int ib, ie, i, k;
484
0
    double *p, t0, t1, tt;
485
0
486
0
    tt = (in[0] - d0) * (pfn->params.Size[0] - 1) / (d1 - d0);
487
0
    i0 = (int)floor(tt);
488
0
    ib = max(i0 - 1, 0);
489
0
    ie = min(pfn->params.Size[0], i0 + 3);
490
0
    for (i = ib; i < ie; i++) {
491
0
        if (pfn->params.pole[i * pole_step] == double_stub) {
492
0
            uint sdata[max_Sd_n];
493
0
            int bps = pfn->params.BitsPerSample;
494
0
495
0
            p = &pfn->params.pole[i * pole_step];
496
0
            fn_get_samples[pfn->params.BitsPerSample](pfn, (ulong)i * bps * pfn->params.n, sdata);
497
0
            for (k = 0; k < pfn->params.n; k++, p++)
498
0
                *p = fn_Sd_encode(pfn, k, (double)sdata[k]);
499
0
        }
500
0
    }
501
0
    p = &pfn->params.pole[i0 * pole_step];
502
0
    t0 = tt - i0;
503
0
    if (t0 == 0) {
504
0
        for (k = 0; k < pfn->params.n; k++, p++)
505
0
            out[k] = *p;
506
0
    } else {
507
0
        if (p[1 * pole_step_minor] == double_stub) {
508
0
            for (k = 0; k < pfn->params.n; k++)
509
0
                fn_make_poles(&pfn->params.pole[ib * pole_step + k], pole_step,
510
0
                        ie - ib - 1, i0 - ib);
511
0
        }
512
0
        t1 = 1 - t0;
513
0
        for (k = 0; k < pfn->params.n; k++, p++) {
514
0
            double y = p[0 * pole_step_minor] * t1 * t1 * t1 +
515
0
                       p[1 * pole_step_minor] * t1 * t1 * t0 * 3 +
516
0
                       p[2 * pole_step_minor] * t1 * t0 * t0 * 3 +
517
0
                       p[3 * pole_step_minor] * t0 * t0 * t0;
518
0
            if (y < pfn->params.Range[0])
519
0
                y = pfn->params.Range[0];
520
0
            if (y > pfn->params.Range[1])
521
0
                y = pfn->params.Range[1];
522
0
            out[k] = y;
523
0
        }
524
0
    }
525
0
    return 0;
526
0
}
527
528
static inline void
529
decode_argument(const gs_function_Sd_t *pfn, const float *in, double T[max_Sd_m], int I[max_Sd_m])
530
208
{
531
208
    int i;
532
533
416
    for (i = 0; i < pfn->params.m; i++) {
534
208
        float xi = in[i];
535
208
        float d0 = pfn->params.Domain[2 * i + 0];
536
208
        float d1 = pfn->params.Domain[2 * i + 1];
537
208
        double t;
538
539
208
        if (xi < d0)
540
0
            xi = d0;
541
208
        if (xi > d1)
542
0
            xi = d1;
543
208
        t = (xi - d0) * (pfn->params.Size[i] - 1) / (d1 - d0);
544
208
        I[i] = (int)floor(t);
545
208
        T[i] = t - I[i];
546
208
    }
547
208
}
548
549
static inline void
550
index_span(const gs_function_Sd_t *pfn, int *I, double *T, int ii, int *Ii, int *ib, int *ie)
551
208
{
552
208
    *Ii = I[ii];
553
208
    if (T[ii] != 0) {
554
3
        *ib = max(*Ii - 1, 0);
555
3
        *ie = min(pfn->params.Size[ii], *Ii + 3);
556
205
    } else {
557
205
        *ib = *Ii;
558
205
        *ie = *Ii + 1;
559
205
    }
560
208
}
561
562
static inline int
563
load_vector_to(const gs_function_Sd_t *pfn, int s_offset, double *V)
564
46.4M
{
565
46.4M
    uint sdata[max_Sd_n];
566
46.4M
    int k, code;
567
568
46.4M
    code = fn_get_samples[pfn->params.BitsPerSample](pfn, s_offset, sdata);
569
46.4M
    if (code < 0)
570
0
        return code;
571
105M
    for (k = 0; k < pfn->params.n; k++)
572
58.5M
        V[k] = fn_Sd_encode(pfn, k, (double)sdata[k]);
573
46.4M
    return 0;
574
46.4M
}
575
576
static inline int
577
load_vector(const gs_function_Sd_t *pfn, int a_offset, int s_offset)
578
172
{
579
172
    if (*(pfn->params.pole + a_offset) == double_stub) {
580
172
        uint sdata[max_Sd_n];
581
172
        int k, code;
582
583
172
        code = fn_get_samples[pfn->params.BitsPerSample](pfn, s_offset, sdata);
584
172
        if (code < 0)
585
0
            return code;
586
860
        for (k = 0; k < pfn->params.n; k++)
587
688
            *(pfn->params.pole + a_offset + k) = fn_Sd_encode(pfn, k, (double)sdata[k]);
588
172
    }
589
172
    return 0;
590
172
}
591
592
static inline void
593
interpolate_vector(const gs_function_Sd_t *pfn, int offset, int pole_step, int power, int bias)
594
3
{
595
3
    int k;
596
597
15
    for (k = 0; k < pfn->params.n; k++)
598
12
        fn_make_poles(pfn->params.pole + offset + k, pole_step, power, bias);
599
3
}
600
601
static inline void
602
interpolate_tensors(const gs_function_Sd_t *pfn, int *I, double *T,
603
        int offset, int pole_step, int power, int bias, int ii)
604
3
{
605
3
    if (ii < 0)
606
3
        interpolate_vector(pfn, offset, pole_step, power, bias);
607
0
    else {
608
0
        int s = pfn->params.array_step[ii];
609
0
        int Ii = I[ii];
610
611
0
        if (T[ii] == 0) {
612
0
            interpolate_tensors(pfn, I, T, offset + Ii * s, pole_step, power, bias, ii - 1);
613
0
        } else {
614
0
            int l;
615
616
0
            for (l = 0; l < 4; l++)
617
0
                interpolate_tensors(pfn, I, T, offset + Ii * s + l * s / 3, pole_step, power, bias, ii - 1);
618
0
        }
619
0
    }
620
3
}
621
622
static inline bool
623
is_tensor_done(const gs_function_Sd_t *pfn, int *I, double *T, int a_offset, int ii)
624
208
{
625
    /* Check an inner pole of the cell. */
626
208
    int i, o = 0;
627
628
416
    for (i = ii; i >= 0; i--) {
629
208
        o += I[i] * pfn->params.array_step[i];
630
208
        if (T[i] != 0)
631
3
            o += pfn->params.array_step[i] / 3;
632
208
    }
633
208
    if (*(pfn->params.pole + a_offset + o) != double_stub)
634
45
        return true;
635
163
    return false;
636
208
}
637
638
/* Creates a tensor of Bezier coefficients by node interpolation. */
639
static inline int
640
make_interpolation_tensor(const gs_function_Sd_t *pfn, int *I, double *T,
641
                            int a_offset, int s_offset, int ii)
642
380
{
643
    /* Well, this function isn't obvious. Trying to explain what it does.
644
645
       Suppose we have a 4x4x4...x4 hypercube of nodes, and we want to build
646
       a multicubic interpolation function for the inner 2x2x2...x2 hypercube.
647
       We represent the multicubic function with a tensor of Besier poles,
648
       and the size of the tensor is 4x4x....x4. Note that the corners
649
       of the tensor are equal to the corners of the 2x2x...x2 hypercube.
650
651
       We organize the 'pole' array so that a tensor of a cell
652
       occupies the cell, and tensors for neighbour cells have a common hyperplane.
653
654
       For a 1-dimentional case let the nodes are n0, n1, n2, n3.
655
       It defines 3 cells n0...n1, n1...n2, n2...n3.
656
       For the 2nd cell n1...n2 let the tensor coefficients are q10, q11, q12, q13.
657
       We choose a cubic approximation, in which tangents at nodes n1, n2
658
       are parallel to (n2 - n0) and (n3 - n1) correspondingly.
659
       (Well, this doesn't give a the minimal curvity, but likely it is
660
       what Adobe implementations do, see the bug 687352,
661
       and we agree that it's some reasonable).
662
663
       Then we have :
664
665
       q11 = n0
666
       q12 = (n0/2 + 3*n1 - n2/2)/3;
667
       q11 = (n1/2 + 3*n2 - n3/2)/3;
668
       q13 = n2
669
670
       When the source node array have an insufficient nomber of nodes
671
       along a dimension to determine tangents a cell
672
       (this happens near the array boundaries),
673
       we simply duplicate ending nodes. This solution is done
674
       for the compatibility to the old code, and definitely
675
       there exists a better one. Likely Adobe does the same.
676
677
       For a 2-dimensional case we apply the 1-dimentional case through
678
       the first dimension, and then construct a surface by varying the
679
       second coordinate as a parameter. It gives a bicubic surface,
680
       and the result doesn't depend on the order of coordinates
681
       (I proved the latter with Matematica 3.0).
682
       Then we know that an interpolation by one coordinate and
683
       a differentiation by another coordinate are interchangeble operators.
684
       Due to that poles of the interpolated function are same as
685
       interpolated poles of the function (well, we didn't spend time
686
       for a strong proof, but this fact was confirmed with testing the
687
       implementation with POLE_CACHE_DEBUG).
688
689
       Then we apply the 2-dimentional considerations recursively
690
       to all dimensions. This is exactly what the function does.
691
692
     */
693
380
    int code;
694
695
380
    if (ii < 0) {
696
172
        if (POLE_CACHE_IGNORE || *(pfn->params.pole + a_offset) == double_stub) {
697
172
            code = load_vector(pfn, a_offset, s_offset);
698
172
            if (code < 0)
699
0
                return code;
700
172
        }
701
208
    } else {
702
208
        int Ii, ib, ie, i;
703
208
        int sa = pfn->params.array_step[ii];
704
208
        int ss = pfn->params.stream_step[ii];
705
706
208
        index_span(pfn, I, T, ii, &Ii, &ib, &ie);
707
208
        if (POLE_CACHE_IGNORE || !is_tensor_done(pfn, I, T, a_offset, ii)) {
708
335
            for (i = ib; i < ie; i++) {
709
172
                code = make_interpolation_tensor(pfn, I, T,
710
172
                                a_offset + i * sa, s_offset + i * ss, ii - 1);
711
172
                if (code < 0)
712
0
                    return code;
713
172
            }
714
163
            if (T[ii] != 0)
715
3
                interpolate_tensors(pfn, I, T, a_offset + ib * sa, sa, ie - ib - 1,
716
3
                                Ii - ib, ii - 1);
717
163
        }
718
208
    }
719
380
    return 0;
720
380
}
721
722
/* Creates a subarray of samples. */
723
static inline int
724
make_interpolation_nodes(const gs_function_Sd_t *pfn, double *T0, double *T1,
725
                            int *I, double *T,
726
                            int a_offset, int s_offset, int ii)
727
0
{
728
0
    int code;
729
730
0
    if (ii < 0) {
731
0
        if (POLE_CACHE_IGNORE || *(pfn->params.pole + a_offset) == double_stub) {
732
0
            code = load_vector(pfn, a_offset, s_offset);
733
0
            if (code < 0)
734
0
                return code;
735
0
        }
736
0
        if (pfn->params.Order == 3) {
737
0
            code = make_interpolation_tensor(pfn, I, T, 0, 0, pfn->params.m - 1);
738
0
            if (code < 0)
739
0
                return code;
740
0
        }
741
0
    } else {
742
0
        int i;
743
0
        int i0 = (int)floor(T0[ii]);
744
0
        int i1 = (int)ceil(T1[ii]);
745
0
        int sa = pfn->params.array_step[ii];
746
0
        int ss = pfn->params.stream_step[ii];
747
748
0
        if (i0 < 0 || i0 >= pfn->params.Size[ii])
749
0
            return_error(gs_error_unregistered); /* Must not happen. */
750
0
        if (i1 < 0 || i1 >= pfn->params.Size[ii])
751
0
            return_error(gs_error_unregistered); /* Must not happen. */
752
0
        I[ii] = i0;
753
0
        T[ii] = (i1 > i0 ? 1 : 0);
754
0
        for (i = i0; i <= i1; i++) {
755
0
            code = make_interpolation_nodes(pfn, T0, T1, I, T,
756
0
                            a_offset + i * sa, s_offset + i * ss, ii - 1);
757
0
            if (code < 0)
758
0
                return code;
759
0
        }
760
0
    }
761
0
    return 0;
762
0
}
763
764
static inline int
765
evaluate_from_tenzor(const gs_function_Sd_t *pfn, int *I, double *T, int offset, int ii, double *y)
766
425
{
767
425
    int s = pfn->params.array_step[ii], k, l, code;
768
769
425
    if (ii < 0) {
770
1.08k
        for (k = 0; k < pfn->params.n; k++)
771
868
            y[k] = *(pfn->params.pole + offset + k);
772
217
    } else if (T[ii] == 0) {
773
205
        return evaluate_from_tenzor(pfn, I, T, offset + s * I[ii], ii - 1, y);
774
205
    } else {
775
3
        double t0 = T[ii], t1 = 1 - t0;
776
3
        double p[4][max_Sd_n];
777
778
15
        for (l = 0; l < 4; l++) {
779
12
            code = evaluate_from_tenzor(pfn, I, T, offset + s * I[ii] + l * (s / 3), ii - 1, p[l]);
780
12
            if (code < 0)
781
0
                return code;
782
12
        }
783
15
        for (k = 0; k < pfn->params.n; k++)
784
12
            y[k] = p[0][k] * t1 * t1 * t1 +
785
12
                   p[1][k] * t1 * t1 * t0 * 3 +
786
12
                   p[2][k] * t1 * t0 * t0 * 3 +
787
12
           p[3][k] * t0 * t0 * t0;
788
3
    }
789
220
    return 0;
790
425
}
791
792
/* Evaluate a Sampled function. */
793
/* A cubic interpolation with pole cache. */
794
/* Allows a fast check for extreme suspection with is_tensor_monotonic. */
795
static int
796
fn_Sd_evaluate_multicubic_cached(const gs_function_Sd_t *pfn, const float *in, float *out)
797
208
{
798
208
    double T[max_Sd_m], y[max_Sd_n];
799
208
    int I[max_Sd_m], k, code;
800
801
208
    decode_argument(pfn, in, T, I);
802
208
    code = make_interpolation_tensor(pfn, I, T, 0, 0, pfn->params.m - 1);
803
208
    if (code < 0)
804
0
        return code;
805
208
    evaluate_from_tenzor(pfn, I, T, 0, pfn->params.m - 1, y);
806
1.04k
    for (k = 0; k < pfn->params.n; k++) {
807
832
        double yk = y[k];
808
809
832
        if (yk < pfn->params.Range[k * 2 + 0])
810
0
            yk = pfn->params.Range[k * 2 + 0];
811
832
        if (yk > pfn->params.Range[k * 2 + 1])
812
0
            yk = pfn->params.Range[k * 2 + 1];
813
832
        out[k] = yk;
814
832
    }
815
208
    return 0;
816
208
}
817
818
/* Evaluate a Sampled function. */
819
static int
820
fn_Sd_evaluate(const gs_function_t * pfn_common, const float *in, float *out)
821
3.55M
{
822
3.55M
    const gs_function_Sd_t *pfn = (const gs_function_Sd_t *)pfn_common;
823
3.55M
    int code;
824
825
3.55M
    if (pfn->params.Order == 3) {
826
208
        if (POLE_CACHE_GENERIC_1D || pfn->params.m > 1)
827
208
            code = fn_Sd_evaluate_multicubic_cached(pfn, in, out);
828
0
        else
829
0
            code = fn_Sd_evaluate_cubic_cached_1d(pfn, in, out);
830
# if POLE_CACHE_DEBUG
831
        {   float y[max_Sd_n];
832
            int k, code1;
833
834
            code1 = fn_Sd_evaluate_general(pfn_common, in, y);
835
            if (code != code1)
836
                return_error(gs_error_unregistered); /* Must not happen. */
837
            for (k = 0; k < pfn->params.n; k++) {
838
                if (any_abs(y[k] - out[k]) > 1e-6 * (pfn->params.Range[k * 2 + 1] - pfn->params.Range[k * 2 + 0]))
839
                    return_error(gs_error_unregistered); /* Must not happen. */
840
            }
841
        }
842
# endif
843
208
    } else
844
3.55M
        code = fn_Sd_evaluate_general(pfn_common, in, out);
845
3.55M
    return code;
846
3.55M
}
847
848
/* Map a function subdomain to the sample index subdomain. */
849
static inline int
850
get_scaled_range(const gs_function_Sd_t *const pfn,
851
                   const float *lower, const float *upper,
852
                   int i, float *pw0, float *pw1)
853
73.4k
{
854
73.4k
    float d0 = pfn->params.Domain[i * 2 + 0], d1 = pfn->params.Domain[i * 2 + 1];
855
73.4k
    float v0 = lower[i], v1 = upper[i];
856
73.4k
    float e0, e1, w0, w1, w;
857
73.4k
    const float small_noise = (float)1e-6;
858
859
73.4k
    if (v0 < d0 || v0 > d1)
860
13
        return_error(gs_error_rangecheck);
861
73.4k
    if (pfn->params.Encode)
862
33.3k
        e0 = pfn->params.Encode[i * 2 + 0], e1 = pfn->params.Encode[i * 2 + 1];
863
40.1k
    else
864
40.1k
        e0 = 0, e1 = (float)pfn->params.Size[i] - 1;
865
73.4k
    w0 = (v0 - d0) * (e1 - e0) / (d1 - d0) + e0;
866
73.4k
    if (w0 < 0)
867
0
        w0 = 0;
868
73.4k
    else if (w0 >= pfn->params.Size[i] - 1)
869
15.5k
        w0 = (float)pfn->params.Size[i] - 1;
870
73.4k
    w1 = (v1 - d0) * (e1 - e0) / (d1 - d0) + e0;
871
73.4k
    if (w1 < 0)
872
0
        w1 = 0;
873
73.4k
    else if (w1 >= pfn->params.Size[i] - 1)
874
29.0k
        w1 = (float)pfn->params.Size[i] - 1;
875
73.4k
    if (w0 > w1) {
876
3.84k
        w = w0; w0 = w1; w1 = w;
877
3.84k
    }
878
73.4k
    if (floor(w0 + 1) - w0 < small_noise * any_abs(e1 - e0))
879
154
        w0 = (floor(w0) + 1);
880
73.4k
    if (w1 - floor(w1) < small_noise * any_abs(e1 - e0))
881
46.3k
        w1 = floor(w1);
882
73.4k
    if (w0 > w1)
883
100
        w0 = w1;
884
73.4k
    *pw0 = w0;
885
73.4k
    *pw1 = w1;
886
73.4k
    return 0;
887
73.4k
}
888
889
/* Copy a tensor to a differently indexed pole array. */
890
static int
891
copy_poles(const gs_function_Sd_t *pfn, int *I, double *T0, double *T1, int a_offset,
892
                int ii, double *pole, int p_offset, int pole_step)
893
0
{
894
0
    int i, ei, sa, code;
895
0
    int order = pfn->params.Order;
896
897
0
    if (pole_step <= 0)
898
0
        return_error(gs_error_limitcheck); /* Too small buffer. */
899
0
    ei = (T0[ii] == T1[ii] ? 1 : order + 1);
900
0
    sa = pfn->params.array_step[ii];
901
0
    if (ii == 0) {
902
0
        for (i = 0; i < ei; i++)
903
0
            *(pole + p_offset + i * pole_step) =
904
0
                    *(pfn->params.pole + a_offset + I[ii] * sa + i * (sa / order));
905
0
    } else {
906
0
        for (i = 0; i < ei; i++) {
907
0
            code = copy_poles(pfn, I, T0, T1, a_offset + I[ii] * sa + i * (sa / order), ii - 1,
908
0
                            pole, p_offset + i * pole_step, pole_step / 4);
909
0
            if (code < 0)
910
0
                return code;
911
0
        }
912
0
    }
913
0
    return 0;
914
0
}
915
916
static inline void
917
subcurve(double *pole, int pole_step, double t0, double t1)
918
0
{
919
    /* Generated with subcurve.nb using Mathematica 3.0. */
920
0
    double q0 = pole[pole_step * 0];
921
0
    double q1 = pole[pole_step * 1];
922
0
    double q2 = pole[pole_step * 2];
923
0
    double q3 = pole[pole_step * 3];
924
0
    double t01 = t0 - 1, t11 = t1 - 1;
925
0
    double small = 1e-13;
926
927
0
#define Power2(a) (a) * (a)
928
0
#define Power3(a) (a) * (a) * (a)
929
0
    pole[pole_step * 0] = t0*(t0*(q3*t0 - 3*q2*t01) + 3*q1*Power2(t01)) - q0*Power3(t01);
930
0
    pole[pole_step * 1] = q1*t01*(-2*t0 - t1 + 3*t0*t1) + t0*(q2*t0 + 2*q2*t1 -
931
0
                            3*q2*t0*t1 + q3*t0*t1) - q0*t11*Power2(t01);
932
0
    pole[pole_step * 2] = t1*(2*q2*t0 + q2*t1 - 3*q2*t0*t1 + q3*t0*t1) +
933
0
                            q1*(-t0 - 2*t1 + 3*t0*t1)*t11 - q0*t01*Power2(t11);
934
0
    pole[pole_step * 3] = t1*(t1*(3*q2 - 3*q2*t1 + q3*t1) +
935
0
                            3*q1*Power2(t11)) - q0*Power3(t11);
936
0
#undef Power2
937
0
#undef Power3
938
0
    if (any_abs(pole[pole_step * 1] - pole[pole_step * 0]) < small)
939
0
        pole[pole_step * 1] = pole[pole_step * 0];
940
0
    if (any_abs(pole[pole_step * 2] - pole[pole_step * 3]) < small)
941
0
        pole[pole_step * 2] = pole[pole_step * 3];
942
0
}
943
944
static inline void
945
subline(double *pole, int pole_step, double t0, double t1)
946
0
{
947
0
    double q0 = pole[pole_step * 0];
948
0
    double q1 = pole[pole_step * 1];
949
950
0
    pole[pole_step * 0] = (1 - t0) * q0 + t0 * q1;
951
0
    pole[pole_step * 1] = (1 - t1) * q0 + t1 * q1;
952
0
}
953
954
static void
955
clamp_poles(double *T0, double *T1, int ii, int i, double * pole,
956
                int p_offset, int pole_step, int pole_step_i, int order)
957
0
{
958
0
    if (ii < 0) {
959
0
        if (order == 3)
960
0
            subcurve(pole + p_offset, pole_step_i, T0[i], T1[i]);
961
0
        else
962
0
            subline(pole + p_offset, pole_step_i, T0[i], T1[i]);
963
0
    } else if (i == ii) {
964
0
        clamp_poles(T0, T1, ii - 1, i, pole, p_offset, pole_step / 4, pole_step, order);
965
0
    } else {
966
0
        int j, ei = (T0[ii] == T1[ii] ? 1 : order + 1);
967
968
0
        for (j = 0; j < ei; j++)
969
0
            clamp_poles(T0, T1, ii - 1, i, pole, p_offset + j * pole_step,
970
0
                            pole_step / 4, pole_step_i, order);
971
0
    }
972
0
}
973
974
static inline int /* 3 - don't know, 2 - decreesing, 0 - constant, 1 - increasing. */
975
curve_monotonity(double *pole, int pole_step)
976
0
{
977
0
    double p0 = pole[pole_step * 0];
978
0
    double p1 = pole[pole_step * 1];
979
0
    double p2 = pole[pole_step * 2];
980
0
    double p3 = pole[pole_step * 3];
981
982
0
    if (p0 == p1 && any_abs(p1 - p2) < 1e-13 && p2 == p3)
983
0
        return 0;
984
0
    if (p0 <= p1 && p1 <= p2 && p2 <= p3)
985
0
        return 1;
986
0
    if (p0 >= p1 && p1 >= p2 && p2 >= p3)
987
0
        return 2;
988
    /* Maybe not monotonic.
989
       Don't want to solve quadratic equations, so return "don't know".
990
       This case should be rare.
991
     */
992
0
    return 3;
993
0
}
994
995
static inline int /* 2 - decreesing, 0 - constant, 1 - increasing. */
996
line_monotonity(double *pole, int pole_step)
997
0
{
998
0
    double p0 = pole[pole_step * 0];
999
0
    double p1 = pole[pole_step * 1];
1000
1001
0
    if (p1 - p0 > 1e-13)
1002
0
        return 1;
1003
0
    if (p0 - p1 > 1e-13)
1004
0
        return 2;
1005
0
    return 0;
1006
0
}
1007
1008
static int /* 3 bits per guide : 3 - non-monotonic or don't know,
1009
                    2 - decreesing, 0 - constant, 1 - increasing.
1010
                    The number of guides is order+1. */
1011
tensor_dimension_monotonity(const double *T0, const double *T1, int ii, int i0, double *pole,
1012
                int p_offset, int pole_step, int pole_step_i, int order)
1013
0
{
1014
0
    if (ii < 0) {
1015
0
        if (order == 3)
1016
0
            return curve_monotonity(pole + p_offset, pole_step_i);
1017
0
        else
1018
0
            return line_monotonity(pole + p_offset, pole_step_i);
1019
0
    } else if (i0 == ii) {
1020
        /* Delay the dimension till the end, and adjust pole_step. */
1021
0
        return tensor_dimension_monotonity(T0, T1, ii - 1, i0, pole, p_offset,
1022
0
                            pole_step / 4, pole_step, order);
1023
0
    } else {
1024
0
        int j, ei = (T0[ii] == T1[ii] ? 1 : order + 1), m = 0, mm;
1025
1026
0
        for (j = 0; j < ei; j++) {
1027
0
            mm = tensor_dimension_monotonity(T0, T1, ii - 1, i0, pole, p_offset + j * pole_step,
1028
0
                            pole_step/ 4, pole_step_i, order);
1029
0
            m |= mm << (j * 3);
1030
0
            if (mm == 3) {
1031
                /* If one guide is not monotonic, the dimension is not monotonic.
1032
                   Can return early. */
1033
0
                break;
1034
0
            }
1035
0
        }
1036
0
        return m;
1037
0
    }
1038
0
}
1039
1040
static inline int
1041
is_tensor_monotonic_by_dimension(const gs_function_Sd_t *pfn, int *I, double *T0, double *T1, int i0, int k,
1042
                    uint *mask /* 3 bits per guide : 3 - non-monotonic or don't know,
1043
                    2 - decreesing, 0 - constant, 1 - increasing.
1044
                    The number of guides is order+1. */)
1045
0
{
1046
0
    double pole[4*4*4]; /* For a while restricting with 3-in cubic functions.
1047
                 More arguments need a bigger buffer, but the rest of code is same. */
1048
0
    int i, code, ii = pfn->params.m - 1;
1049
0
    double TT0[3], TT1[3];
1050
1051
0
    *mask = 0;
1052
0
    if (ii >= 3) {
1053
         /* Unimplemented. We don't know practical cases,
1054
            because currently it is only called while decomposing a shading.  */
1055
0
        return_error(gs_error_limitcheck);
1056
0
    }
1057
0
    code = copy_poles(pfn, I, T0, T1, k, ii, pole, 0, count_of(pole) / 4);
1058
0
    if (code < 0)
1059
0
        return code;
1060
0
    for (i = ii; i >= 0; i--) {
1061
0
        TT0[i] = 0;
1062
0
        if (T0[i] != T1[i]) {
1063
0
            if (T0[i] != 0 || T1[i] != 1)
1064
0
                clamp_poles(T0, T1, ii, i, pole, 0, count_of(pole) / 4, -1, pfn->params.Order);
1065
0
            TT1[i] = 1;
1066
0
        } else
1067
0
            TT1[i] = 0;
1068
0
    }
1069
0
    *mask = tensor_dimension_monotonity(TT0, TT1, ii, i0, pole, 0,
1070
0
                        count_of(pole) / 4, 1, pfn->params.Order);
1071
0
    return 0;
1072
0
}
1073
1074
static int /* error code */
1075
is_lattice_monotonic_by_dimension(const gs_function_Sd_t *pfn, const double *T0, const double *T1,
1076
        int *I, double *S0, double *S1, int ii, int i0, int k,
1077
        uint *mask /* 3 bits per guide : 1 - non-monotonic or don't know, 0 - monotonic;
1078
                      The number of guides is order+1. */)
1079
0
{
1080
0
    if (ii == -1) {
1081
        /* fixme : could cache the cell monotonity against redundant evaluation. */
1082
0
        return is_tensor_monotonic_by_dimension(pfn, I, S0, S1, i0, k, mask);
1083
0
    } else {
1084
0
        int i1 = (ii > i0 ? ii : ii == 0 ? i0 : ii - 1); /* Delay the dimension i0 till the end of recursion. */
1085
0
        int j, code;
1086
0
        int bi = (int)floor(T0[i1]);
1087
0
        int ei = (int)floor(T1[i1]);
1088
0
        uint m, mm, m1 = 0x49249249 & ((1 << ((pfn->params.Order + 1) * 3)) - 1);
1089
1090
0
        if (floor(T1[i1]) == T1[i1])
1091
0
            ei --;
1092
0
        m = 0;
1093
0
        for (j = bi; j <= ei; j++) {
1094
            /* fixme : A better performance may be obtained with comparing central nodes with side ones. */
1095
0
            I[i1] = j;
1096
0
            S0[i1] = max(T0[i1] - j, 0);
1097
0
            S1[i1] = min(T1[i1] - j, 1);
1098
0
            code = is_lattice_monotonic_by_dimension(pfn, T0, T1, I, S0, S1, ii - 1, i0, k, &mm);
1099
0
            if (code < 0)
1100
0
                return code;
1101
0
            m |= mm;
1102
0
            if (m == m1) /* Don't return early - shadings need to know about all dimensions. */
1103
0
                break;
1104
0
        }
1105
0
        if (ii == 0) {
1106
            /* Detect non-monotonic guides. */
1107
0
            m = m & (m >> 1);
1108
0
        }
1109
0
        *mask = m;
1110
0
        return 0;
1111
0
    }
1112
0
}
1113
1114
static inline int /* error code */
1115
is_lattice_monotonic(const gs_function_Sd_t *pfn, const double *T0, const double *T1,
1116
         int *I, double *S0, double *S1,
1117
         int k, uint *mask /* 1 bit per dimension : 1 - non-monotonic or don't know,
1118
                      0 - monotonic. */)
1119
0
{
1120
0
    uint m, mm = 0;
1121
0
    int i, code;
1122
1123
0
    for (i = 0; i < pfn->params.m; i++) {
1124
0
        if (T0[i] != T1[i]) {
1125
0
            code = is_lattice_monotonic_by_dimension(pfn, T0, T1, I, S0, S1, pfn->params.m - 1, i, k, &m);
1126
0
            if (code < 0)
1127
0
                return code;
1128
0
            if (m)
1129
0
                mm |= 1 << i;
1130
0
        }
1131
0
    }
1132
0
    *mask = mm;
1133
0
    return 0;
1134
0
}
1135
1136
static int /* 3 bits per result : 3 - non-monotonic or don't know,
1137
               2 - decreesing, 0 - constant, 1 - increasing,
1138
               <0 - error. */
1139
fn_Sd_1arg_linear_monotonic_rec(const gs_function_Sd_t *const pfn, int i0, int i1,
1140
                                const double *V0, const double *V1)
1141
92.8M
{
1142
92.8M
    if (i1 - i0 <= 1) {
1143
46.4M
        int code = 0, i;
1144
1145
104M
        for (i = 0; i < pfn->params.n; i++) {
1146
58.5M
            if (V0[i] < V1[i])
1147
4.31M
                code |= 1 << (i * 3);
1148
54.1M
            else if (V0[i] > V1[i])
1149
3.14M
                code |= 2 << (i * 3);
1150
58.5M
        }
1151
46.4M
        return code;
1152
46.4M
    } else {
1153
46.3M
        double VV[MAX_FAST_COMPS];
1154
46.3M
        int ii = (i0 + i1) / 2, code, cod1;
1155
1156
46.3M
        code = load_vector_to(pfn, ii * pfn->params.n * pfn->params.BitsPerSample, VV);
1157
46.3M
        if (code < 0)
1158
0
            return code;
1159
46.3M
        if (code & (code >> 1))
1160
0
            return code; /* Not monotonic by some component of the result. */
1161
46.3M
        code = fn_Sd_1arg_linear_monotonic_rec(pfn, i0, ii, V0, VV);
1162
46.3M
        if (code < 0)
1163
0
            return code;
1164
46.3M
        cod1 = fn_Sd_1arg_linear_monotonic_rec(pfn, ii, i1, VV, V1);
1165
46.3M
        if (cod1 < 0)
1166
0
            return cod1;
1167
46.3M
        return code | cod1;
1168
46.3M
    }
1169
92.8M
}
1170
1171
static int
1172
fn_Sd_1arg_linear_monotonic(const gs_function_Sd_t *const pfn, double T0, double T1,
1173
                            uint *mask /* 1 - non-monotonic or don't know, 0 - monotonic. */)
1174
73.4k
{
1175
73.4k
    int i0 = (int)floor(T0);
1176
73.4k
    int i1 = (int)ceil(T1), code;
1177
73.4k
    double V0[MAX_FAST_COMPS], V1[MAX_FAST_COMPS];
1178
1179
73.4k
    if (i1 - i0 > 1) {
1180
40.6k
        code = load_vector_to(pfn, i0 * pfn->params.n * pfn->params.BitsPerSample, V0);
1181
40.6k
        if (code < 0)
1182
0
            return code;
1183
40.6k
        code = load_vector_to(pfn, i1 * pfn->params.n * pfn->params.BitsPerSample, V1);
1184
40.6k
        if (code < 0)
1185
0
            return code;
1186
40.6k
        code = fn_Sd_1arg_linear_monotonic_rec(pfn, i0, i1, V0, V1);
1187
40.6k
        if (code < 0)
1188
0
            return code;
1189
40.6k
        if (code & (code >> 1)) {
1190
18.5k
            *mask = 1;
1191
18.5k
            return 0;
1192
18.5k
        }
1193
40.6k
    }
1194
54.8k
    *mask = 0;
1195
54.8k
    return 1;
1196
73.4k
}
1197
1198
0
#define DEBUG_Sd_1arg 0
1199
1200
/* Test whether a Sampled function is monotonic. */
1201
static int /* 1 = monotonic, 0 = not or don't know, <0 = error. */
1202
fn_Sd_is_monotonic_aux(const gs_function_Sd_t *const pfn,
1203
                   const float *lower, const float *upper,
1204
                   uint *mask /* 1 bit per dimension : 1 - non-monotonic or don't know,
1205
                      0 - monotonic. */)
1206
73.4k
{
1207
73.4k
    int i, code, ii = pfn->params.m - 1;
1208
73.4k
    int I[4];
1209
73.4k
    double T0[count_of(I)], T1[count_of(I)];
1210
73.4k
    double S0[count_of(I)], S1[count_of(I)];
1211
73.4k
    uint m, mm, m1;
1212
#   if DEBUG_Sd_1arg
1213
    int code1, mask1;
1214
#   endif
1215
1216
73.4k
    if (ii >= count_of(T0)) {
1217
         /* Unimplemented. We don't know practical cases,
1218
            because currently it is only called while decomposing a shading.  */
1219
0
        return_error(gs_error_limitcheck);
1220
0
    }
1221
146k
    for (i = 0; i <= ii; i++) {
1222
73.4k
        float w0, w1;
1223
1224
73.4k
        code = get_scaled_range(pfn, lower, upper, i, &w0, &w1);
1225
73.4k
        if (code < 0)
1226
13
            return code;
1227
73.4k
        T0[i] = w0;
1228
73.4k
        T1[i] = w1;
1229
73.4k
    }
1230
73.4k
    if (pfn->params.m == 1 && pfn->params.Order == 1 && pfn->params.n <= MAX_FAST_COMPS) {
1231
73.4k
        code = fn_Sd_1arg_linear_monotonic(pfn, T0[0], T1[0], mask);
1232
73.4k
# if !DEBUG_Sd_1arg
1233
73.4k
            return code;
1234
# else
1235
            mask1 = *mask;
1236
            code1 = code;
1237
# endif
1238
73.4k
    }
1239
0
    m1 = (1 << pfn->params.m )- 1;
1240
0
    code = make_interpolation_nodes(pfn, T0, T1, I, S0, 0, 0, ii);
1241
0
    if (code < 0)
1242
0
        return code;
1243
0
    mm = 0;
1244
0
    for (i = 0; i < pfn->params.n; i++) {
1245
0
        code = is_lattice_monotonic(pfn, T0, T1, I, S0, S1, i, &m);
1246
0
        if (code < 0)
1247
0
            return code;
1248
0
        mm |= m;
1249
0
        if (mm == m1) /* Don't return early - shadings need to know about all dimensions. */
1250
0
            break;
1251
0
    }
1252
#   if DEBUG_Sd_1arg
1253
        if (mask1 != mm)
1254
            return_error(gs_error_unregistered);
1255
        if (code1 != !mm)
1256
            return_error(gs_error_unregistered);
1257
#   endif
1258
0
    *mask = mm;
1259
0
    return !mm;
1260
0
}
1261
1262
/* Test whether a Sampled function is monotonic. */
1263
/* 1 = monotonic, 0 = don't know, <0 = error. */
1264
static int
1265
fn_Sd_is_monotonic(const gs_function_t * pfn_common,
1266
                   const float *lower, const float *upper, uint *mask)
1267
73.4k
{
1268
73.4k
    const gs_function_Sd_t *const pfn =
1269
73.4k
        (const gs_function_Sd_t *)pfn_common;
1270
1271
73.4k
    return fn_Sd_is_monotonic_aux(pfn, lower, upper, mask);
1272
73.4k
}
1273
1274
/* Return Sampled function information. */
1275
static void
1276
fn_Sd_get_info(const gs_function_t *pfn_common, gs_function_info_t *pfi)
1277
48.4k
{
1278
48.4k
    const gs_function_Sd_t *const pfn =
1279
48.4k
        (const gs_function_Sd_t *)pfn_common;
1280
48.4k
    long size;
1281
48.4k
    int i;
1282
1283
48.4k
    gs_function_get_info_default(pfn_common, pfi);
1284
48.4k
    pfi->DataSource = &pfn->params.DataSource;
1285
98.0k
    for (i = 0, size = 1; i < pfn->params.m; ++i)
1286
49.6k
        size *= pfn->params.Size[i];
1287
48.4k
    pfi->data_size =
1288
48.4k
        (size * pfn->params.n * pfn->params.BitsPerSample + 7) >> 3;
1289
48.4k
}
1290
1291
/* Write Sampled function parameters on a parameter list. */
1292
static int
1293
fn_Sd_get_params(const gs_function_t *pfn_common, gs_param_list *plist)
1294
17.4k
{
1295
17.4k
    const gs_function_Sd_t *const pfn =
1296
17.4k
        (const gs_function_Sd_t *)pfn_common;
1297
17.4k
    int ecode = fn_common_get_params(pfn_common, plist);
1298
17.4k
    int code;
1299
1300
17.4k
    if (pfn->params.Order != 1) {
1301
40
        if ((code = param_write_int(plist, "Order", &pfn->params.Order)) < 0)
1302
0
            ecode = code;
1303
40
    }
1304
17.4k
    if ((code = param_write_int(plist, "BitsPerSample",
1305
17.4k
                                &pfn->params.BitsPerSample)) < 0)
1306
0
        ecode = code;
1307
17.4k
    if (pfn->params.Encode) {
1308
760
        if ((code = param_write_float_values(plist, "Encode",
1309
760
                                             pfn->params.Encode,
1310
760
                                             2 * pfn->params.m, false)) < 0)
1311
0
            ecode = code;
1312
760
    }
1313
17.4k
    if (pfn->params.Decode) {
1314
4.48k
        if ((code = param_write_float_values(plist, "Decode",
1315
4.48k
                                             pfn->params.Decode,
1316
4.48k
                                             2 * pfn->params.n, false)) < 0)
1317
0
            ecode = code;
1318
4.48k
    }
1319
17.4k
    if (pfn->params.Size) {
1320
17.4k
        if ((code = param_write_int_values(plist, "Size", pfn->params.Size,
1321
17.4k
                                           pfn->params.m, false)) < 0)
1322
0
            ecode = code;
1323
17.4k
    }
1324
17.4k
    return ecode;
1325
17.4k
}
1326
1327
/* Make a scaled copy of a Sampled function. */
1328
static int
1329
fn_Sd_make_scaled(const gs_function_Sd_t *pfn, gs_function_Sd_t **ppsfn,
1330
                  const gs_range_t *pranges, gs_memory_t *mem)
1331
0
{
1332
0
    gs_function_Sd_t *psfn =
1333
0
        gs_alloc_struct(mem, gs_function_Sd_t, &st_function_Sd,
1334
0
                        "fn_Sd_make_scaled");
1335
0
    int code;
1336
1337
0
    if (psfn == 0)
1338
0
        return_error(gs_error_VMerror);
1339
0
    psfn->params = pfn->params;
1340
0
    psfn->params.Encode = 0;    /* in case of failure */
1341
0
    psfn->params.Decode = 0;
1342
0
    psfn->params.Size =
1343
0
        fn_copy_values(pfn->params.Size, pfn->params.m, sizeof(int), mem);
1344
0
    if ((code = (psfn->params.Size == 0 ?
1345
0
                 gs_note_error(gs_error_VMerror) : 0)) < 0 ||
1346
0
        (code = fn_common_scale((gs_function_t *)psfn,
1347
0
                                (const gs_function_t *)pfn,
1348
0
                                pranges, mem)) < 0 ||
1349
0
        (code = fn_scale_pairs(&psfn->params.Encode, pfn->params.Encode,
1350
0
                               pfn->params.m, NULL, mem)) < 0 ||
1351
0
        (code = fn_scale_pairs(&psfn->params.Decode, pfn->params.Decode,
1352
0
                               pfn->params.n, pranges, mem)) < 0) {
1353
0
        gs_function_free((gs_function_t *)psfn, true, mem);
1354
0
    } else
1355
0
        *ppsfn = psfn;
1356
0
    return code;
1357
0
}
1358
1359
/* Free the parameters of a Sampled function. */
1360
void
1361
gs_function_Sd_free_params(gs_function_Sd_params_t * params, gs_memory_t * mem)
1362
47.4k
{
1363
47.4k
    gs_free_const_object(mem, params->Size, "Size");
1364
47.4k
    params->Size = NULL;
1365
47.4k
    gs_free_const_object(mem, params->Decode, "Decode");
1366
47.4k
    params->Decode = NULL;
1367
47.4k
    gs_free_const_object(mem, params->Encode, "Encode");
1368
47.4k
    params->Encode = NULL;
1369
47.4k
    fn_common_free_params((gs_function_params_t *) params, mem);
1370
47.4k
    if (params->DataSource.type == data_source_type_stream && params->DataSource.data.strm != NULL) {
1371
44.0k
        s_close_filters(&params->DataSource.data.strm, params->DataSource.data.strm->strm);
1372
44.0k
        params->DataSource.data.strm = NULL;
1373
44.0k
    }
1374
47.4k
    gs_free_object(mem, params->pole, "gs_function_Sd_free_params");
1375
47.4k
    params->pole = NULL;
1376
47.4k
    gs_free_object(mem, params->array_step, "gs_function_Sd_free_params");
1377
47.4k
    params->array_step = NULL;
1378
47.4k
    gs_free_object(mem, params->stream_step, "gs_function_Sd_free_params");
1379
47.4k
    params->stream_step = NULL;
1380
47.4k
}
1381
1382
/* aA helper for gs_function_Sd_serialize. */
1383
static int serialize_array(const float *a, int half_size, stream *s)
1384
62.1k
{
1385
62.1k
    uint n;
1386
62.1k
    const float dummy[2] = {0, 0};
1387
62.1k
    int i, code;
1388
1389
62.1k
    if (a != NULL)
1390
33.8k
        return sputs(s, (const byte *)a, sizeof(a[0]) * half_size * 2, &n);
1391
99.2k
    for (i = 0; i < half_size; i++) {
1392
70.9k
        code = sputs(s, (const byte *)dummy, sizeof(dummy), &n);
1393
70.9k
        if (code < 0)
1394
0
            return code;
1395
70.9k
    }
1396
28.3k
    return 0;
1397
28.3k
}
1398
1399
/* Serialize. */
1400
static int
1401
gs_function_Sd_serialize(const gs_function_t * pfn, stream *s)
1402
31.0k
{
1403
31.0k
    uint n;
1404
31.0k
    const gs_function_Sd_params_t * p = (const gs_function_Sd_params_t *)&pfn->params;
1405
31.0k
    gs_function_info_t info;
1406
31.0k
    int code = fn_common_serialize(pfn, s);
1407
31.0k
    ulong pos;
1408
31.0k
    uint count;
1409
31.0k
    byte buf[100];
1410
31.0k
    const byte *ptr;
1411
1412
31.0k
    if (code < 0)
1413
0
        return code;
1414
31.0k
    code = sputs(s, (const byte *)&p->Order, sizeof(p->Order), &n);
1415
31.0k
    if (code < 0)
1416
0
        return code;
1417
31.0k
    code = sputs(s, (const byte *)&p->BitsPerSample, sizeof(p->BitsPerSample), &n);
1418
31.0k
    if (code < 0)
1419
0
        return code;
1420
31.0k
    code = serialize_array(p->Encode, p->m, s);
1421
31.0k
    if (code < 0)
1422
0
        return code;
1423
31.0k
    code = serialize_array(p->Decode, p->n, s);
1424
31.0k
    if (code < 0)
1425
0
        return code;
1426
31.0k
    gs_function_get_info(pfn, &info);
1427
31.0k
    code = sputs(s, (const byte *)&info.data_size, sizeof(info.data_size), &n);
1428
31.0k
    if (code < 0)
1429
0
        return code;
1430
343k
    for (pos = 0; pos < info.data_size; pos += count) {
1431
312k
        count = min(sizeof(buf), info.data_size - pos);
1432
312k
        data_source_access_only(info.DataSource, pos, count, buf, &ptr);
1433
312k
        code = sputs(s, ptr, count, &n);
1434
312k
        if (code < 0)
1435
0
            return code;
1436
312k
    }
1437
31.0k
    return 0;
1438
31.0k
}
1439
1440
/* Allocate and initialize a Sampled function. */
1441
int
1442
gs_function_Sd_init(gs_function_t ** ppfn,
1443
                  const gs_function_Sd_params_t * params, gs_memory_t * mem)
1444
53.1k
{
1445
53.1k
    static const gs_function_head_t function_Sd_head = {
1446
53.1k
        function_type_Sampled,
1447
53.1k
        {
1448
53.1k
            (fn_evaluate_proc_t) fn_Sd_evaluate,
1449
53.1k
            (fn_is_monotonic_proc_t) fn_Sd_is_monotonic,
1450
53.1k
            (fn_get_info_proc_t) fn_Sd_get_info,
1451
53.1k
            (fn_get_params_proc_t) fn_Sd_get_params,
1452
53.1k
            (fn_make_scaled_proc_t) fn_Sd_make_scaled,
1453
53.1k
            (fn_free_params_proc_t) gs_function_Sd_free_params,
1454
53.1k
            fn_common_free,
1455
53.1k
            (fn_serialize_proc_t) gs_function_Sd_serialize,
1456
53.1k
        }
1457
53.1k
    };
1458
53.1k
    int code;
1459
53.1k
    int i;
1460
1461
53.1k
    *ppfn = 0;      /* in case of error */
1462
53.1k
    code = fn_check_mnDR((const gs_function_params_t *)params,
1463
53.1k
                         params->m, params->n);
1464
53.1k
    if (code < 0)
1465
21
        return code;
1466
53.1k
    if (params->m > max_Sd_m)
1467
0
        return_error(gs_error_limitcheck);
1468
53.1k
    switch (params->Order) {
1469
875
        case 0:   /* use default */
1470
52.7k
        case 1:
1471
53.1k
        case 3:
1472
53.1k
            break;
1473
0
        default:
1474
0
            return_error(gs_error_rangecheck);
1475
53.1k
    }
1476
53.1k
    switch (params->BitsPerSample) {
1477
0
        case 1:
1478
0
        case 2:
1479
0
        case 4:
1480
51.4k
        case 8:
1481
51.4k
        case 12:
1482
52.8k
        case 16:
1483
52.8k
        case 24:
1484
52.8k
        case 32:
1485
52.8k
            break;
1486
270
        default:
1487
270
            return_error(gs_error_rangecheck);
1488
53.1k
    }
1489
107k
    for (i = 0; i < params->m; ++i)
1490
54.2k
        if (params->Size[i] <= 0)
1491
0
            return_error(gs_error_rangecheck);
1492
52.8k
    {
1493
52.8k
        gs_function_Sd_t *pfn =
1494
52.8k
            gs_alloc_struct(mem, gs_function_Sd_t, &st_function_Sd,
1495
52.8k
                            "gs_function_Sd_init");
1496
52.8k
        int bps, sa, ss, i, order, was;
1497
1498
52.8k
        if (pfn == 0)
1499
0
            return_error(gs_error_VMerror);
1500
52.8k
        pfn->params = *params;
1501
52.8k
        if (params->Order == 0)
1502
875
            pfn->params.Order = 1; /* default */
1503
52.8k
        pfn->params.pole = NULL;
1504
52.8k
        pfn->params.array_step = NULL;
1505
52.8k
        pfn->params.stream_step = NULL;
1506
52.8k
        pfn->head = function_Sd_head;
1507
52.8k
        pfn->params.array_size = 0;
1508
52.8k
        if (pfn->params.m == 1 && pfn->params.Order == 1 && pfn->params.n <= MAX_FAST_COMPS && !DEBUG_Sd_1arg) {
1509
            /* Won't use pole cache. Call fn_Sd_1arg_linear_monotonic instead. */
1510
51.3k
        } else {
1511
1.54k
            pfn->params.array_step = (int *)gs_alloc_byte_array(mem,
1512
1.54k
                                    max_Sd_m, sizeof(int), "gs_function_Sd_init");
1513
1.54k
            pfn->params.stream_step = (int *)gs_alloc_byte_array(mem,
1514
1.54k
                                    max_Sd_m, sizeof(int), "gs_function_Sd_init");
1515
1.54k
            if (pfn->params.array_step == NULL || pfn->params.stream_step == NULL)
1516
0
                return_error(gs_error_VMerror);
1517
1.54k
            bps = pfn->params.BitsPerSample;
1518
1.54k
            sa = pfn->params.n;
1519
1.54k
            ss = pfn->params.n * bps;
1520
1.54k
            order = pfn->params.Order;
1521
4.46k
            for (i = 0; i < pfn->params.m; i++) {
1522
2.92k
                pfn->params.array_step[i] = sa * order;
1523
2.92k
                was = sa;
1524
2.92k
                sa = (pfn->params.Size[i] * order - (order - 1)) * sa;
1525
                /* If the calculation of sa went backwards then we overflowed! */
1526
2.92k
                if (was > sa)
1527
0
                    return_error(gs_error_VMerror);
1528
2.92k
                pfn->params.stream_step[i] = ss;
1529
2.92k
                ss = pfn->params.Size[i] * ss;
1530
2.92k
            }
1531
1.54k
            pfn->params.pole = (double *)gs_alloc_byte_array(mem,
1532
1.54k
                                    sa, sizeof(double), "gs_function_Sd_init");
1533
1.54k
            if (pfn->params.pole == NULL)
1534
0
                return_error(gs_error_VMerror);
1535
4.22M
            for (i = 0; i < sa; i++)
1536
4.22M
                pfn->params.pole[i] = double_stub;
1537
1.54k
            pfn->params.array_size = sa;
1538
1.54k
        }
1539
52.8k
        *ppfn = (gs_function_t *) pfn;
1540
52.8k
    }
1541
0
    return 0;
1542
52.8k
}