/src/ghostpdl/base/gximag3x.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* Copyright (C) 2001-2025 Artifex Software, Inc. |
2 | | All Rights Reserved. |
3 | | |
4 | | This software is provided AS-IS with no warranty, either express or |
5 | | implied. |
6 | | |
7 | | This software is distributed under license and may not be copied, |
8 | | modified or distributed except as expressly authorized under the terms |
9 | | of the license contained in the file LICENSE in this distribution. |
10 | | |
11 | | Refer to licensing information at http://www.artifex.com or contact |
12 | | Artifex Software, Inc., 39 Mesa Street, Suite 108A, San Francisco, |
13 | | CA 94129, USA, for further information. |
14 | | */ |
15 | | |
16 | | |
17 | | /* ImageType 3x image implementation */ |
18 | | /****** THE REAL WORK IS NYI ******/ |
19 | | #include "math_.h" /* for ceil, floor */ |
20 | | #include "memory_.h" |
21 | | #include "gx.h" |
22 | | #include "gserrors.h" |
23 | | #include "gsbitops.h" |
24 | | #include "gscspace.h" |
25 | | #include "gscpixel.h" |
26 | | #include "gsstruct.h" |
27 | | #include "gxdevice.h" |
28 | | #include "gxdevmem.h" |
29 | | #include "gximag3x.h" |
30 | | #include "gxgstate.h" |
31 | | #include "gdevbbox.h" |
32 | | #include <limits.h> /* For INT_MAX etc */ |
33 | | |
34 | | extern_st(st_color_space); |
35 | | |
36 | | /* Forward references */ |
37 | | static dev_proc_begin_typed_image(gx_begin_image3x); |
38 | | static image_enum_proc_plane_data(gx_image3x_plane_data); |
39 | | static image_enum_proc_end_image(gx_image3x_end_image); |
40 | | static image_enum_proc_flush(gx_image3x_flush); |
41 | | static image_enum_proc_planes_wanted(gx_image3x_planes_wanted); |
42 | | |
43 | | /* GC descriptor */ |
44 | | private_st_gs_image3x(); |
45 | | |
46 | | /* Define the image type for ImageType 3x images. */ |
47 | | const gx_image_type_t gs_image_type_3x = { |
48 | | &st_gs_image3x, gx_begin_image3x, |
49 | | gx_image_no_sput, gx_image_no_sget, gx_image_default_release, |
50 | | IMAGE3X_IMAGETYPE |
51 | | }; |
52 | | static const gx_image_enum_procs_t image3x_enum_procs = { |
53 | | gx_image3x_plane_data, gx_image3x_end_image, |
54 | | gx_image3x_flush, gx_image3x_planes_wanted |
55 | | }; |
56 | | |
57 | | /* Initialize an ImageType 3x image. */ |
58 | | static void |
59 | | gs_image3x_mask_init(gs_image3x_mask_t *pimm) |
60 | 6.27k | { |
61 | 6.27k | pimm->InterleaveType = 0; /* not a valid type */ |
62 | 6.27k | pimm->has_Matte = false; |
63 | 6.27k | gs_data_image_t_init(&pimm->MaskDict, 1); |
64 | 6.27k | pimm->MaskDict.BitsPerComponent = 0; /* not supplied */ |
65 | 6.27k | } |
66 | | void |
67 | | gs_image3x_t_init(gs_image3x_t * pim, gs_color_space * color_space) |
68 | 3.13k | { |
69 | 3.13k | gs_pixel_image_t_init((gs_pixel_image_t *) pim, color_space); |
70 | 3.13k | pim->type = &gs_image_type_3x; |
71 | 3.13k | gs_image3x_mask_init(&pim->Opacity); |
72 | 3.13k | gs_image3x_mask_init(&pim->Shape); |
73 | 3.13k | } |
74 | | |
75 | | /* |
76 | | * We implement ImageType 3 images by interposing a mask clipper in |
77 | | * front of an ordinary ImageType 1 image. Note that we build up the |
78 | | * mask row-by-row as we are processing the image. |
79 | | * |
80 | | * We export a generalized form of the begin_image procedure for use by |
81 | | * the PDF and PostScript writers. |
82 | | */ |
83 | | |
84 | | typedef struct image3x_channel_state_s { |
85 | | gx_image_enum_common_t *info; |
86 | | gx_device *mdev; /* gx_device_memory in default impl. */ |
87 | | /* (only for masks) */ |
88 | | gs_image3_interleave_type_t InterleaveType; |
89 | | int width, height, full_height, depth; |
90 | | byte *data; /* (if chunky) */ |
91 | | /* Only the following change dynamically. */ |
92 | | int y; |
93 | | int skip; /* only for masks, # of rows to skip, */ |
94 | | /* see below */ |
95 | | } image3x_channel_state_t; |
96 | | typedef struct gx_image3x_enum_s { |
97 | | gx_image_enum_common; |
98 | | gx_device *pcdev; /* gx_device_mask_clip in default impl. */ |
99 | | int num_components; /* (not counting masks) */ |
100 | | int bpc; /* pixel BitsPerComponent */ |
101 | 3.09M | #define NUM_MASKS 2 /* opacity, shape */ |
102 | | image3x_channel_state_t mask[NUM_MASKS], pixel; |
103 | | } gx_image3x_enum_t; |
104 | | |
105 | | extern_st(st_gx_image_enum_common); |
106 | | gs_private_st_suffix_add9(st_image3x_enum, gx_image3x_enum_t, |
107 | | "gx_image3x_enum_t", image3x_enum_enum_ptrs, image3x_enum_reloc_ptrs, |
108 | | st_gx_image_enum_common, pcdev, mask[0].info, mask[0].mdev, mask[0].data, |
109 | | mask[1].info, mask[1].mdev, mask[1].data, pixel.info, pixel.data); |
110 | | |
111 | | /* |
112 | | * Begin a generic ImageType 3x image, with client handling the creation of |
113 | | * the mask image and mask clip devices. |
114 | | */ |
115 | | typedef struct image3x_channel_values_s { |
116 | | gs_matrix matrix; |
117 | | gs_point corner; |
118 | | gs_int_rect rect; |
119 | | gs_image_t image; |
120 | | } image3x_channel_values_t; |
121 | | static int check_image3x_mask(const gs_image3x_t *pim, |
122 | | const gs_image3x_mask_t *pimm, |
123 | | const image3x_channel_values_t *ppcv, |
124 | | image3x_channel_values_t *pmcv, |
125 | | image3x_channel_state_t *pmcs, |
126 | | gs_memory_t *mem); |
127 | | int |
128 | | gx_begin_image3x_generic(gx_device * dev, |
129 | | const gs_gstate *pgs, const gs_matrix *pmat, |
130 | | const gs_image_common_t *pic, const gs_int_rect *prect, |
131 | | const gx_drawing_color *pdcolor, |
132 | | const gx_clip_path *pcpath, gs_memory_t *mem, |
133 | | image3x_make_mid_proc_t make_mid, |
134 | | image3x_make_mcde_proc_t make_mcde, |
135 | | gx_image_enum_common_t **pinfo, char *OC) |
136 | 3.07k | { |
137 | 3.07k | const gs_image3x_t *pim = (const gs_image3x_t *)pic; |
138 | 3.07k | gx_image3x_enum_t *penum; |
139 | 3.07k | gx_device *pcdev = 0; |
140 | 3.07k | image3x_channel_values_t mask[2], pixel; |
141 | 3.07k | gs_matrix mat; |
142 | 3.07k | gx_device *midev[2]; |
143 | 3.07k | gx_image_enum_common_t *minfo[2]; |
144 | 3.07k | gs_int_point origin[2]; |
145 | 3.07k | int code; |
146 | 3.07k | int i; |
147 | 3.07k | gs_color_space *pmcs = NULL; |
148 | | |
149 | | /* Validate the parameters. */ |
150 | 3.07k | if (pim->Height <= 0) |
151 | 0 | return_error(gs_error_rangecheck); |
152 | 3.07k | penum = gs_alloc_struct(mem, gx_image3x_enum_t, &st_image3x_enum, |
153 | 3.07k | "gx_begin_image3x"); |
154 | 3.07k | if (penum == 0) |
155 | 0 | return_error(gs_error_VMerror); |
156 | | /* Initialize pointers now in case we bail out. */ |
157 | 3.07k | penum->mask[0].info = 0, penum->mask[0].mdev = 0, penum->mask[0].data = 0; |
158 | 3.07k | penum->mask[1].info = 0, penum->mask[1].mdev = 0, penum->mask[1].data = 0; |
159 | 3.07k | penum->pixel.info = 0, penum->pixel.data = 0; |
160 | 3.07k | if (prect) |
161 | 0 | pixel.rect = *prect; |
162 | 3.07k | else { |
163 | 3.07k | pixel.rect.p.x = pixel.rect.p.y = 0; |
164 | 3.07k | pixel.rect.q.x = pim->Width; |
165 | 3.07k | pixel.rect.q.y = pim->Height; |
166 | 3.07k | } |
167 | 3.07k | if ((code = gs_matrix_invert(&pim->ImageMatrix, &pixel.matrix)) < 0 || |
168 | 3.07k | (code = gs_point_transform(pim->Width, pim->Height, &pixel.matrix, |
169 | 3.07k | &pixel.corner)) < 0 || |
170 | 3.07k | (code = check_image3x_mask(pim, &pim->Opacity, &pixel, &mask[0], |
171 | 3.07k | &penum->mask[0], mem)) < 0 || |
172 | 3.07k | (code = check_image3x_mask(pim, &pim->Shape, &pixel, &mask[1], |
173 | 3.06k | &penum->mask[1], mem)) < 0 |
174 | 3.07k | ) { |
175 | 7 | goto out0; |
176 | 7 | } |
177 | 3.06k | penum->num_components = |
178 | 3.06k | gs_color_space_num_components(pim->ColorSpace); |
179 | 3.06k | gx_image_enum_common_init((gx_image_enum_common_t *) penum, |
180 | 3.06k | (const gs_data_image_t *)pim, |
181 | 3.06k | &image3x_enum_procs, dev, |
182 | 3.06k | 1 + penum->num_components, |
183 | 3.06k | pim->format); |
184 | 3.06k | penum->pixel.width = pixel.rect.q.x - pixel.rect.p.x; |
185 | 3.06k | penum->pixel.height = pixel.rect.q.y - pixel.rect.p.y; |
186 | 3.06k | penum->pixel.full_height = pim->Height; |
187 | 3.06k | penum->pixel.y = 0; |
188 | 3.06k | if (penum->mask[0].data || penum->mask[1].data) { |
189 | | /* Also allocate a row buffer for the pixel data. */ |
190 | 0 | penum->pixel.data = |
191 | 0 | gs_alloc_bytes(mem, |
192 | 0 | (penum->pixel.width * pim->BitsPerComponent * |
193 | 0 | penum->num_components + 7) >> 3, |
194 | 0 | "gx_begin_image3x(pixel.data)"); |
195 | 0 | if (penum->pixel.data == 0) { |
196 | 0 | code = gs_note_error(gs_error_VMerror); |
197 | 0 | goto out1; |
198 | 0 | } |
199 | 0 | } |
200 | 3.06k | penum->bpc = pim->BitsPerComponent; |
201 | 3.06k | penum->memory = mem; |
202 | 3.06k | if (pmat == 0) |
203 | 3.06k | pmat = &ctm_only(pgs); |
204 | 9.19k | for (i = 0; i < NUM_MASKS; ++i) { |
205 | 6.13k | gs_rect mrect; |
206 | 6.13k | gx_device *mdev; |
207 | | /* |
208 | | * The mask data has to be defined in a DevicePixel color space |
209 | | * of the correct depth so that no color mapping will occur. |
210 | | */ |
211 | 6.13k | if (penum->mask[i].depth == 0) { /* mask not supplied */ |
212 | 3.06k | midev[i] = 0; |
213 | 3.06k | minfo[i] = 0; |
214 | 3.06k | continue; |
215 | 3.06k | } |
216 | 3.06k | code = gs_cspace_new_DevicePixel(mem, &pmcs, penum->mask[i].depth); |
217 | 3.06k | if (code < 0) |
218 | 0 | goto out1; |
219 | 3.06k | mrect.p.x = mrect.p.y = 0; |
220 | 3.06k | mrect.q.x = penum->mask[i].width; |
221 | 3.06k | mrect.q.y = penum->mask[i].height; |
222 | 3.06k | if ((code = gs_matrix_multiply(&mask[i].matrix, pmat, &mat)) < 0 || |
223 | 3.06k | (code = gs_bbox_transform(&mrect, &mat, &mrect)) < 0 |
224 | 3.06k | ) |
225 | 0 | goto out1; |
226 | | |
227 | | /* Bug 700438: If the rectangle is out of range, bail */ |
228 | 3.06k | if (mrect.p.x >= (double)INT_MAX || mrect.q.x <= (double)INT_MIN || |
229 | 3.06k | mrect.p.y >= (double)INT_MAX || mrect.q.y <= (double)INT_MIN) { |
230 | 2 | code = gs_note_error(gs_error_rangecheck); |
231 | 2 | goto out1; |
232 | 2 | } |
233 | | |
234 | | /* This code was changed for bug 686843/687411, but in a way that |
235 | | * a) looked wrong, and b) doesn't appear to make a difference. Revert |
236 | | * it to the sane version until we have evidence why not. */ |
237 | 3.06k | origin[i].x = (int)floor(mrect.p.x); |
238 | 3.06k | origin[i].y = (int)floor(mrect.p.y); |
239 | 3.06k | code = make_mid(&mdev, dev, |
240 | 3.06k | (int)ceil(mrect.q.x) - origin[i].x, |
241 | 3.06k | (int)ceil(mrect.q.y) - origin[i].y, |
242 | 3.06k | penum->mask[i].depth, mem); |
243 | 3.06k | if (code < 0) |
244 | 0 | goto out1; |
245 | 3.06k | code = dev_proc(dev, get_profile)(dev, &mdev->icc_struct); |
246 | 3.06k | if (code < 0) |
247 | 0 | goto out1; /* Device not yet open */ |
248 | 3.06k | rc_increment(mdev->icc_struct); |
249 | 3.06k | penum->mask[i].mdev = mdev; |
250 | 3.06k | gs_image_t_init(&mask[i].image, pmcs); |
251 | 3.06k | mask[i].image.ColorSpace = pmcs; |
252 | 3.06k | mask[i].image.adjust = false; |
253 | 3.06k | mask[i].image.image_parent_type = gs_image_type3x; |
254 | 3.06k | { |
255 | 3.06k | const gx_image_type_t *type1 = mask[i].image.type; |
256 | 3.06k | const gs_image3x_mask_t *pixm = |
257 | 3.06k | (i == 0 ? &pim->Opacity : &pim->Shape); |
258 | | |
259 | | /* Use memcpy because direct assignment breaks ANSI aliasing */ |
260 | | /* rules and causes SEGV with gcc 4.5.1 */ |
261 | 3.06k | memcpy(&mask[i].image, &pixm->MaskDict, sizeof(pixm->MaskDict)); |
262 | 3.06k | mask[i].image.type = type1; |
263 | 3.06k | mask[i].image.BitsPerComponent = pixm->MaskDict.BitsPerComponent; |
264 | 3.06k | } |
265 | 3.06k | { |
266 | 3.06k | gs_matrix m_mat; |
267 | | |
268 | | /* |
269 | | * Adjust the translation for rendering the mask to include a |
270 | | * negative translation by origin.{x,y} in device space. |
271 | | */ |
272 | 3.06k | m_mat = *pmat; |
273 | 3.06k | m_mat.tx -= origin[i].x; |
274 | 3.06k | m_mat.ty -= origin[i].y; |
275 | | /* |
276 | | * Peter put in a comment that said " Note that pgs = NULL here, |
277 | | * since we don't want to have to create another gs_gstate with |
278 | | * default log_op, etc." and passed NULL instead of pgs to this |
279 | | * routine. However Image type 1 need the gs_gstate (see |
280 | | * bug 688348) thus his optimization was removed. |
281 | | * dcolor = NULL is OK because this is an opaque image with |
282 | | * CombineWithColor = false. |
283 | | */ |
284 | 3.06k | code = gx_device_begin_typed_image(mdev, pgs, &m_mat, |
285 | 3.06k | (const gs_image_common_t *)&mask[i].image, |
286 | 3.06k | &mask[i].rect, NULL, NULL, |
287 | 3.06k | mem, &penum->mask[i].info); |
288 | 3.06k | if (code < 0) |
289 | 0 | goto out2; |
290 | 3.06k | } |
291 | 3.06k | midev[i] = mdev; |
292 | 3.06k | minfo[i] = penum->mask[i].info; |
293 | 3.06k | rc_decrement_only(pmcs, "gx_begin_image3x_generic(pmcs)"); |
294 | 3.06k | pmcs = NULL; |
295 | 3.06k | } |
296 | 3.06k | gs_image_t_init(&pixel.image, pim->ColorSpace); |
297 | 3.06k | { |
298 | 3.06k | const gx_image_type_t *type1 = pixel.image.type; |
299 | | |
300 | 3.06k | *(gs_pixel_image_t *)&pixel.image = *(const gs_pixel_image_t *)pim; |
301 | 3.06k | pixel.image.type = type1; |
302 | 3.06k | pixel.image.image_parent_type = gs_image_type3x; |
303 | 3.06k | } |
304 | 3.06k | if (minfo[0] != NULL) |
305 | 3.06k | minfo[0]->OC = OC; |
306 | | |
307 | 3.06k | code = make_mcde(dev, pgs, pmat, (const gs_image_common_t *)&pixel.image, |
308 | 3.06k | prect, pdcolor, pcpath, mem, &penum->pixel.info, |
309 | 3.06k | &pcdev, midev, minfo, origin, pim); |
310 | 3.06k | if (code < 0) |
311 | 0 | goto out3; |
312 | 3.06k | penum->pcdev = pcdev; |
313 | | /* |
314 | | * Set num_planes, plane_widths, and plane_depths from the values in the |
315 | | * enumerators for the mask(s) and the image data. |
316 | | */ |
317 | 3.06k | { |
318 | 3.06k | int added_depth = 0; |
319 | 3.06k | int pi = 0; |
320 | | |
321 | 9.19k | for (i = 0; i < NUM_MASKS; ++i) { |
322 | 6.13k | if (penum->mask[i].depth == 0) /* no mask */ |
323 | 3.06k | continue; |
324 | 3.06k | switch (penum->mask[i].InterleaveType) { |
325 | 0 | case interleave_chunky: |
326 | | /* Add the mask data to the depth of the image data. */ |
327 | 0 | added_depth += pim->BitsPerComponent; |
328 | 0 | break; |
329 | 3.06k | case interleave_separate_source: |
330 | | /* Insert the mask as a separate plane. */ |
331 | 3.06k | penum->plane_widths[pi] = penum->mask[i].width; |
332 | 3.06k | penum->plane_depths[pi] = penum->mask[i].depth; |
333 | 3.06k | ++pi; |
334 | 3.06k | break; |
335 | 0 | default: /* can't happen */ |
336 | 0 | code = gs_note_error(gs_error_Fatal); |
337 | 0 | goto out3; |
338 | 3.06k | } |
339 | 3.06k | } |
340 | 3.06k | memcpy(&penum->plane_widths[pi], &penum->pixel.info->plane_widths[0], |
341 | 3.06k | penum->pixel.info->num_planes * sizeof(penum->plane_widths[0])); |
342 | 3.06k | memcpy(&penum->plane_depths[pi], &penum->pixel.info->plane_depths[0], |
343 | 3.06k | penum->pixel.info->num_planes * sizeof(penum->plane_depths[0])); |
344 | 3.06k | penum->plane_depths[pi] += added_depth; |
345 | 3.06k | penum->num_planes = pi + penum->pixel.info->num_planes; |
346 | 3.06k | } |
347 | 3.06k | if (midev[0]) |
348 | 3.06k | gx_device_retain(midev[0], true); /* will free explicitly */ |
349 | 3.06k | if (midev[1]) |
350 | 0 | gx_device_retain(midev[1], true); /* ditto */ |
351 | 3.06k | gx_device_retain(pcdev, true); /* ditto */ |
352 | 3.06k | *pinfo = (gx_image_enum_common_t *) penum; |
353 | 3.06k | return 0; |
354 | 0 | out3: |
355 | 0 | if (penum->mask[1].info) |
356 | 0 | gx_image_end(penum->mask[1].info, false); |
357 | 0 | if (penum->mask[0].info) |
358 | 0 | gx_image_end(penum->mask[0].info, false); |
359 | 0 | out2: |
360 | 0 | if (penum->mask[1].mdev) { |
361 | 0 | gs_closedevice(penum->mask[1].mdev); |
362 | 0 | gs_free_object(mem, penum->mask[1].mdev, |
363 | 0 | "gx_begin_image3x(mask[1].mdev)"); |
364 | 0 | } |
365 | 0 | if (penum->mask[0].mdev) { |
366 | 0 | gs_closedevice(penum->mask[0].mdev); |
367 | 0 | gs_free_object(mem, penum->mask[0].mdev, |
368 | 0 | "gx_begin_image3x(mask[0].mdev)"); |
369 | 0 | } |
370 | 2 | out1: |
371 | 2 | rc_decrement(pmcs, "gx_begin_image3x_generic(pmcs)"); |
372 | 2 | gs_free_object(mem, penum->mask[0].data, "gx_begin_image3x(mask[0].data)"); |
373 | 2 | gs_free_object(mem, penum->mask[1].data, "gx_begin_image3x(mask[1].data)"); |
374 | 2 | gs_free_object(mem, penum->pixel.data, "gx_begin_image3x(pixel.data)"); |
375 | 9 | out0: |
376 | 9 | gs_free_object(mem, penum, "gx_begin_image3x"); |
377 | 9 | return code; |
378 | 2 | } |
379 | | static bool |
380 | | check_image3x_extent(double mask_coeff, double data_coeff) |
381 | 12.2k | { |
382 | 12.2k | if (mask_coeff == 0) |
383 | 6.13k | return data_coeff == 0; |
384 | 6.13k | if (data_coeff == 0 || (mask_coeff > 0) != (data_coeff > 0)) |
385 | 0 | return false; |
386 | 6.13k | return true; |
387 | 6.13k | } |
388 | | /* |
389 | | * Check mask parameters. |
390 | | * Reads ppcv->{matrix,corner,rect}, sets pmcv->{matrix,corner,rect} and |
391 | | * pmcs->{InterleaveType,width,height,full_height,depth,data,y,skip}. |
392 | | * If the mask is omitted, sets pmcs->depth = 0 and returns normally. |
393 | | */ |
394 | | static int |
395 | | check_image3x_mask(const gs_image3x_t *pim, const gs_image3x_mask_t *pimm, |
396 | | const image3x_channel_values_t *ppcv, |
397 | | image3x_channel_values_t *pmcv, |
398 | | image3x_channel_state_t *pmcs, gs_memory_t *mem) |
399 | 6.14k | { |
400 | 6.14k | int mask_width = pimm->MaskDict.Width, mask_height = pimm->MaskDict.Height; |
401 | 6.14k | int code; |
402 | | |
403 | 6.14k | if (pimm->MaskDict.BitsPerComponent == 0) { /* mask missing */ |
404 | 3.06k | pmcs->depth = 0; |
405 | 3.06k | pmcs->InterleaveType = 0; /* not a valid type */ |
406 | 3.06k | return 0; |
407 | 3.06k | } |
408 | 3.07k | if (mask_height <= 0) |
409 | 7 | return_error(gs_error_rangecheck); |
410 | 3.06k | switch (pimm->InterleaveType) { |
411 | | /*case interleave_scan_lines:*/ /* not supported */ |
412 | 0 | default: |
413 | 0 | return_error(gs_error_rangecheck); |
414 | 0 | case interleave_chunky: |
415 | 0 | if (mask_width != pim->Width || |
416 | 0 | mask_height != pim->Height || |
417 | 0 | pimm->MaskDict.BitsPerComponent != pim->BitsPerComponent || |
418 | 0 | pim->format != gs_image_format_chunky |
419 | 0 | ) |
420 | 0 | return_error(gs_error_rangecheck); |
421 | 0 | break; |
422 | 3.06k | case interleave_separate_source: |
423 | 3.06k | switch (pimm->MaskDict.BitsPerComponent) { |
424 | 3.06k | case 1: case 2: case 4: case 8: case 12: case 16: |
425 | 3.06k | break; |
426 | 0 | default: |
427 | 0 | return_error(gs_error_rangecheck); |
428 | 3.06k | } |
429 | 3.06k | } |
430 | 3.06k | if (!check_image3x_extent(pim->ImageMatrix.xx, |
431 | 3.06k | pimm->MaskDict.ImageMatrix.xx) || |
432 | 3.06k | !check_image3x_extent(pim->ImageMatrix.xy, |
433 | 3.06k | pimm->MaskDict.ImageMatrix.xy) || |
434 | 3.06k | !check_image3x_extent(pim->ImageMatrix.yx, |
435 | 3.06k | pimm->MaskDict.ImageMatrix.yx) || |
436 | 3.06k | !check_image3x_extent(pim->ImageMatrix.yy, |
437 | 3.06k | pimm->MaskDict.ImageMatrix.yy) |
438 | 3.06k | ) |
439 | 0 | return_error(gs_error_rangecheck); |
440 | 3.06k | if ((code = gs_matrix_invert(&pimm->MaskDict.ImageMatrix, &pmcv->matrix)) < 0 || |
441 | 3.06k | (code = gs_point_transform(mask_width, mask_height, |
442 | 3.06k | &pmcv->matrix, &pmcv->corner)) < 0 |
443 | 3.06k | ) |
444 | 0 | return code; |
445 | 3.06k | if (fabs(ppcv->matrix.tx - pmcv->matrix.tx) >= 0.5 || |
446 | 3.06k | fabs(ppcv->matrix.ty - pmcv->matrix.ty) >= 0.5 || |
447 | 3.06k | fabs(ppcv->corner.x - pmcv->corner.x) >= 0.5 || |
448 | 3.06k | fabs(ppcv->corner.y - pmcv->corner.y) >= 0.5 |
449 | 3.06k | ) |
450 | 0 | return_error(gs_error_rangecheck); |
451 | 3.06k | pmcv->rect.p.x = ppcv->rect.p.x * mask_width / pim->Width; |
452 | 3.06k | pmcv->rect.p.y = ppcv->rect.p.y * mask_height / pim->Height; |
453 | 3.06k | pmcv->rect.q.x = (ppcv->rect.q.x * mask_width + pim->Width - 1) / |
454 | 3.06k | pim->Width; |
455 | 3.06k | pmcv->rect.q.y = (ppcv->rect.q.y * mask_height + pim->Height - 1) / |
456 | 3.06k | pim->Height; |
457 | | /* Initialize the channel state in the enumerator. */ |
458 | 3.06k | pmcs->InterleaveType = pimm->InterleaveType; |
459 | 3.06k | pmcs->width = pmcv->rect.q.x - pmcv->rect.p.x; |
460 | 3.06k | pmcs->height = pmcv->rect.q.y - pmcv->rect.p.y; |
461 | 3.06k | pmcs->full_height = pimm->MaskDict.Height; |
462 | 3.06k | pmcs->depth = pimm->MaskDict.BitsPerComponent; |
463 | 3.06k | if (pmcs->InterleaveType == interleave_chunky) { |
464 | | /* Allocate a buffer for the data. */ |
465 | 0 | pmcs->data = |
466 | 0 | gs_alloc_bytes(mem, |
467 | 0 | (pmcs->width * pimm->MaskDict.BitsPerComponent + 7) >> 3, |
468 | 0 | "gx_begin_image3x(mask data)"); |
469 | 0 | if (pmcs->data == 0) |
470 | 0 | return_error(gs_error_VMerror); |
471 | 0 | } |
472 | 3.06k | pmcs->y = pmcs->skip = 0; |
473 | 3.06k | return 0; |
474 | 3.06k | } |
475 | | |
476 | | /* |
477 | | * Return > 0 if we want more data from channel 1 now, < 0 if we want more |
478 | | * from channel 2 now, 0 if we want both. |
479 | | */ |
480 | | static int |
481 | | channel_next(const image3x_channel_state_t *pics1, |
482 | | const image3x_channel_state_t *pics2) |
483 | 259k | { |
484 | | /* |
485 | | * The invariant we need to maintain is that we always have at least as |
486 | | * much channel N as channel N+1 data, where N = 0 = opacity, 1 = shape, |
487 | | * and 2 = pixel. I.e., for any two consecutive channels c1 and c2, we |
488 | | * require c1.y / c1.full_height >= c2.y / c2.full_height, or, to avoid |
489 | | * floating point, c1.y * c2.full_height >= c2.y * c1.full_height. We |
490 | | * know this condition is true now; return a value that indicates how to |
491 | | * maintain it. |
492 | | */ |
493 | 259k | int h1 = pics1->full_height; |
494 | 259k | int h2 = pics2->full_height; |
495 | 259k | long current = pics1->y * (long)h2 - pics2->y * (long)h1; |
496 | | |
497 | | #ifdef DEBUG |
498 | | if (current < 0) |
499 | | lprintf4("channel_next invariant fails: %d/%d < %d/%d\n", |
500 | | pics1->y, pics1->full_height, |
501 | | pics2->y, pics2->full_height); |
502 | | #endif |
503 | 259k | return ((current -= h1) >= 0 ? -1 : |
504 | 259k | current + h2 >= 0 ? 0 : 1); |
505 | 259k | } |
506 | | |
507 | | /* Define the default implementation of ImageType 3 processing. */ |
508 | | static IMAGE3X_MAKE_MID_PROC(make_midx_default); /* check prototype */ |
509 | | static int |
510 | | make_midx_default(gx_device **pmidev, gx_device *dev, int width, int height, |
511 | | int depth, gs_memory_t *mem) |
512 | 0 | { |
513 | 0 | const gx_device_memory *mdproto = gdev_mem_device_for_bits(depth); |
514 | 0 | gx_device_memory *midev; |
515 | 0 | int code; |
516 | |
|
517 | 0 | if (width != 0) |
518 | 0 | if (height > max_ulong/width) /* protect against overflow in bitmap size */ |
519 | 0 | return_error(gs_error_VMerror); |
520 | 0 | if (mdproto == 0) |
521 | 0 | return_error(gs_error_rangecheck); |
522 | 0 | midev = gs_alloc_struct_immovable(mem, gx_device_memory, &st_device_memory, |
523 | 0 | "make_mid_default"); |
524 | 0 | if (midev == 0) |
525 | 0 | return_error(gs_error_VMerror); |
526 | 0 | gs_make_mem_device(midev, mdproto, mem, 0, NULL); |
527 | 0 | midev->bitmap_memory = mem; |
528 | 0 | midev->width = width; |
529 | 0 | midev->height = height; |
530 | 0 | check_device_separable((gx_device *)midev); |
531 | 0 | gx_device_fill_in_procs((gx_device *)midev); |
532 | 0 | code = dev_proc(midev, open_device)((gx_device *)midev); |
533 | 0 | if (code < 0) { |
534 | 0 | gs_free_object(mem, midev, "make_midx_default"); |
535 | 0 | return code; |
536 | 0 | } |
537 | 0 | midev->is_open = true; |
538 | 0 | dev_proc(midev, fill_rectangle) |
539 | 0 | ((gx_device *)midev, 0, 0, width, height, (gx_color_index)0); |
540 | 0 | *pmidev = (gx_device *)midev; |
541 | 0 | return 0; |
542 | 0 | } |
543 | | static IMAGE3X_MAKE_MCDE_PROC(make_mcdex_default); /* check prototype */ |
544 | | static int |
545 | | make_mcdex_default(gx_device *dev, const gs_gstate *pgs, |
546 | | const gs_matrix *pmat, const gs_image_common_t *pic, |
547 | | const gs_int_rect *prect, const gx_drawing_color *pdcolor, |
548 | | const gx_clip_path *pcpath, gs_memory_t *mem, |
549 | | gx_image_enum_common_t **pinfo, |
550 | | gx_device **pmcdev, gx_device *midev[2], |
551 | | gx_image_enum_common_t *pminfo[2], |
552 | | const gs_int_point origin[2], |
553 | | const gs_image3x_t *pim) |
554 | 0 | { |
555 | | /**************** NYI ****************/ |
556 | | /* |
557 | | * There is no soft-mask analogue of make_mcde_default, because |
558 | | * soft-mask clipping is a more complicated operation, implemented |
559 | | * by the general transparency code. As a default, we simply ignore |
560 | | * the soft mask. However, we have to create an intermediate device |
561 | | * that can be freed at the end and that simply forwards all calls. |
562 | | * The most convenient device for this purpose is the bbox device. |
563 | | */ |
564 | 0 | gx_device_bbox *bbdev; |
565 | 0 | int code; |
566 | 0 | cmm_dev_profile_t *icc_struct; |
567 | |
|
568 | 0 | code = dev_proc(dev, get_profile)(dev, &icc_struct); |
569 | 0 | if (code < 0) { |
570 | 0 | return(code); |
571 | 0 | } |
572 | | |
573 | 0 | bbdev = gs_alloc_struct_immovable(mem, gx_device_bbox, &st_device_bbox, |
574 | 0 | "make_mcdex_default"); |
575 | |
|
576 | 0 | if (bbdev == 0) |
577 | 0 | return_error(gs_error_VMerror); |
578 | | |
579 | 0 | gx_device_bbox_init(bbdev, dev, mem); |
580 | |
|
581 | 0 | bbdev->icc_struct = icc_struct; |
582 | 0 | rc_increment(bbdev->icc_struct); |
583 | |
|
584 | 0 | gx_device_bbox_fwd_open_close(bbdev, false); |
585 | 0 | code = dev_proc(bbdev, begin_typed_image) |
586 | 0 | ((gx_device *)bbdev, pgs, pmat, pic, prect, pdcolor, pcpath, mem, |
587 | 0 | pinfo); |
588 | 0 | if (code < 0) { |
589 | 0 | gs_free_object(mem, bbdev, "make_mcdex_default"); |
590 | 0 | return code; |
591 | 0 | } |
592 | 0 | *pmcdev = (gx_device *)bbdev; |
593 | 0 | return 0; |
594 | 0 | } |
595 | | static int |
596 | | gx_begin_image3x(gx_device * dev, |
597 | | const gs_gstate * pgs, const gs_matrix * pmat, |
598 | | const gs_image_common_t * pic, const gs_int_rect * prect, |
599 | | const gx_drawing_color * pdcolor, const gx_clip_path * pcpath, |
600 | | gs_memory_t * mem, gx_image_enum_common_t ** pinfo) |
601 | 0 | { |
602 | 0 | return gx_begin_image3x_generic(dev, pgs, pmat, pic, prect, pdcolor, |
603 | 0 | pcpath, mem, make_midx_default, |
604 | 0 | make_mcdex_default, pinfo, 0); |
605 | 0 | } |
606 | | |
607 | | /* Process the next piece of an ImageType 3 image. */ |
608 | | static int |
609 | | gx_image3x_plane_data(gx_image_enum_common_t * info, |
610 | | const gx_image_plane_t * planes, int height, |
611 | | int *rows_used) |
612 | 256k | { |
613 | 256k | gx_image3x_enum_t *penum = (gx_image3x_enum_t *) info; |
614 | 256k | int pixel_height = penum->pixel.height; |
615 | 256k | int pixel_used = 0; |
616 | 256k | int mask_height[2]; |
617 | 256k | int mask_used[2]; |
618 | 256k | int h1 = pixel_height - penum->pixel.y; |
619 | 256k | int h; |
620 | 256k | const gx_image_plane_t *pixel_planes; |
621 | 256k | gx_image_plane_t pixel_plane, mask_plane[2]; |
622 | 256k | int code = 0; |
623 | 256k | int i, pi = 0; |
624 | 256k | int num_chunky = 0; |
625 | | |
626 | 770k | for (i = 0; i < NUM_MASKS; ++i) { |
627 | 513k | int mh = mask_height[i] = penum->mask[i].height; |
628 | | |
629 | 513k | mask_plane[i].data = 0; |
630 | 513k | mask_plane[i].raster = 0; |
631 | 513k | mask_used[i] = 0; |
632 | 513k | if (!penum->mask[i].depth) |
633 | 256k | continue; |
634 | 256k | h1 = min(h1, ((mh > penum->mask[i].y) ? (mh - penum->mask[i].y) : mh)); |
635 | 256k | if (penum->mask[i].InterleaveType == interleave_chunky) |
636 | 0 | ++num_chunky; |
637 | 256k | } |
638 | 256k | h = min(height, h1); |
639 | | /* Initialized rows_used in case we get an error. */ |
640 | 256k | *rows_used = 0; |
641 | | |
642 | 256k | if (h <= 0) |
643 | 0 | return 0; |
644 | | |
645 | | /* Handle masks from separate sources. */ |
646 | 770k | for (i = 0; i < NUM_MASKS; ++i) |
647 | 513k | if (penum->mask[i].InterleaveType == interleave_separate_source) { |
648 | | /* |
649 | | * In order to be able to recover from interruptions, we must |
650 | | * limit separate-source processing to 1 scan line at a time. |
651 | | */ |
652 | 256k | if (h > 1) |
653 | 0 | h = 1; |
654 | 256k | mask_plane[i] = planes[pi++]; |
655 | 256k | } |
656 | 256k | pixel_planes = &planes[pi]; |
657 | | |
658 | | /* Handle chunky masks. */ |
659 | 256k | if (num_chunky) { |
660 | 0 | int bpc = penum->bpc; |
661 | 0 | int num_components = penum->num_components; |
662 | 0 | int width = penum->pixel.width; |
663 | | /* Pull apart the source data and the mask data. */ |
664 | | /* We do this in the simplest (not fastest) way for now. */ |
665 | 0 | uint bit_x = bpc * (num_components + num_chunky) * planes[pi].data_x; |
666 | 0 | const byte *sptr = planes[0].data + (bit_x >> 3); |
667 | 0 | int sbit = bit_x & 7; |
668 | 0 | byte *pptr = penum->pixel.data; |
669 | 0 | int pbit = 0; |
670 | 0 | byte pbbyte = (pbit ? (byte)(*pptr & (0xff00 >> pbit)) : 0); |
671 | 0 | byte *dptr[NUM_MASKS]; |
672 | 0 | int dbit[NUM_MASKS]; |
673 | 0 | byte dbbyte[NUM_MASKS]; |
674 | 0 | int depth[NUM_MASKS]; |
675 | 0 | int x; |
676 | |
|
677 | 0 | if (h > 1) { |
678 | | /* Do the operation one row at a time. */ |
679 | 0 | h = 1; |
680 | 0 | } |
681 | 0 | for (i = 0; i < NUM_MASKS; ++i) |
682 | 0 | if (penum->mask[i].data) { |
683 | 0 | depth[i] = penum->mask[i].depth; |
684 | 0 | mask_plane[i].data = dptr[i] = penum->mask[i].data; |
685 | 0 | mask_plane[i].data_x = 0; |
686 | | /* raster doesn't matter */ |
687 | 0 | dbit[i] = 0; |
688 | 0 | dbbyte[i] = 0; |
689 | 0 | } else |
690 | 0 | depth[i] = 0; |
691 | 0 | pixel_plane.data = pptr; |
692 | 0 | pixel_plane.data_x = 0; |
693 | | /* raster doesn't matter */ |
694 | 0 | pixel_planes = &pixel_plane; |
695 | 0 | for (x = 0; x < width; ++x) { |
696 | 0 | uint value; |
697 | |
|
698 | 0 | for (i = 0; i < NUM_MASKS; ++i) |
699 | 0 | if (depth[i]) { |
700 | 0 | if (sample_load_next12(&value, &sptr, &sbit, bpc) < 0) |
701 | 0 | return_error(gs_error_rangecheck); |
702 | 0 | if (sample_store_next12(value, &dptr[i], &dbit[i], depth[i], |
703 | 0 | &dbbyte[i]) < 0) |
704 | 0 | return_error(gs_error_rangecheck); |
705 | 0 | } |
706 | 0 | for (i = 0; i < num_components; ++i) { |
707 | 0 | if (sample_load_next12(&value, &sptr, &sbit, bpc) < 0) |
708 | 0 | return_error(gs_error_rangecheck); |
709 | 0 | if (sample_store_next12(value, &pptr, &pbit, bpc, &pbbyte) < 0) |
710 | 0 | return_error(gs_error_rangecheck); |
711 | 0 | } |
712 | 0 | } |
713 | 0 | for (i = 0; i < NUM_MASKS; ++i) |
714 | 0 | if (penum->mask[i].data) { |
715 | 0 | sample_store_flush(dptr[i], dbit[i], dbbyte[i]); |
716 | 0 | } |
717 | 0 | sample_store_flush(pptr, pbit, pbbyte); |
718 | 0 | } |
719 | | /* |
720 | | * Process the mask data first, so it will set up the mask |
721 | | * device for clipping the pixel data. |
722 | | */ |
723 | 770k | for (i = 0; i < NUM_MASKS; ++i) |
724 | 513k | if (mask_plane[i].data) { |
725 | | /* |
726 | | * If, on the last call, we processed some mask rows |
727 | | * successfully but processing the pixel rows was interrupted, |
728 | | * we set rows_used to indicate the number of pixel rows |
729 | | * processed (since there is no way to return two rows_used |
730 | | * values). If this happened, some mask rows may get presented |
731 | | * again. We must skip over them rather than processing them |
732 | | * again. |
733 | | */ |
734 | 256k | int skip = penum->mask[i].skip; |
735 | | |
736 | 256k | if (skip >= h) { |
737 | 0 | penum->mask[i].skip = skip - (mask_used[i] = h); |
738 | 256k | } else { |
739 | 256k | int mask_h = h - skip; |
740 | | |
741 | 256k | mask_plane[i].data += skip * mask_plane[i].raster; |
742 | 256k | penum->mask[i].skip = 0; |
743 | 256k | code = gx_image_plane_data_rows(penum->mask[i].info, |
744 | 256k | &mask_plane[i], |
745 | 256k | mask_h, &mask_used[i]); |
746 | 256k | mask_used[i] += skip; |
747 | 256k | } |
748 | 256k | *rows_used = mask_used[i]; |
749 | 256k | penum->mask[i].y += mask_used[i]; |
750 | 256k | if (code < 0) |
751 | 0 | return code; |
752 | 256k | } |
753 | 256k | if (pixel_planes[0].data) { |
754 | | /* |
755 | | * If necessary, flush any buffered mask data to the mask clipping |
756 | | * device. |
757 | | */ |
758 | 769k | for (i = 0; i < NUM_MASKS; ++i) |
759 | 512k | if (penum->mask[i].info) |
760 | 256k | gx_image_flush(penum->mask[i].info); |
761 | 256k | code = gx_image_plane_data_rows(penum->pixel.info, pixel_planes, h, |
762 | 256k | &pixel_used); |
763 | | /* |
764 | | * There isn't any way to set rows_used if different amounts of |
765 | | * the mask and pixel data were used. Fake it. |
766 | | */ |
767 | 256k | *rows_used = pixel_used; |
768 | | /* |
769 | | * Don't return code yet: we must account for the fact that |
770 | | * some mask data may have been processed. |
771 | | */ |
772 | 256k | penum->pixel.y += pixel_used; |
773 | 256k | if (code < 0) { |
774 | | /* |
775 | | * We must prevent the mask data from being processed again. |
776 | | * We rely on the fact that h > 1 is only possible if the |
777 | | * mask and pixel data have the same Y scaling. |
778 | | */ |
779 | 0 | for (i = 0; i < NUM_MASKS; ++i) |
780 | 0 | if (mask_used[i] > pixel_used) { |
781 | 0 | int skip = mask_used[i] - pixel_used; |
782 | |
|
783 | 0 | penum->mask[i].skip = skip; |
784 | 0 | penum->mask[i].y -= skip; |
785 | 0 | mask_used[i] = pixel_used; |
786 | 0 | } |
787 | 0 | } |
788 | 256k | } |
789 | 256k | if_debug7m('b', penum->memory, |
790 | 256k | "[b]image3x h=%d %sopacity.y=%d %sopacity.y=%d %spixel.y=%d\n", |
791 | 256k | h, (mask_plane[0].data ? "+" : ""), penum->mask[0].y, |
792 | 256k | (mask_plane[1].data ? "+" : ""), penum->mask[1].y, |
793 | 256k | (pixel_planes[0].data ? "+" : ""), penum->pixel.y); |
794 | 256k | if (penum->mask[0].depth == 0 || penum->mask[0].y >= penum->mask[0].height) { |
795 | 2.65k | if (penum->mask[1].depth == 0 || penum->mask[1].y >= penum->mask[1].height) { |
796 | 2.65k | if (penum->pixel.y >= penum->pixel.height) { |
797 | 2.65k | return 1; |
798 | 2.65k | } |
799 | 2.65k | } |
800 | 2.65k | } |
801 | | /* |
802 | | * The mask may be complete (gx_image_plane_data_rows returned 1), |
803 | | * but there may still be pixel rows to go, so don't return 1 here. |
804 | | */ |
805 | 254k | return (code < 0 ? code : 0); |
806 | 256k | } |
807 | | |
808 | | /* Flush buffered data. */ |
809 | | static int |
810 | | gx_image3x_flush(gx_image_enum_common_t * info) |
811 | 0 | { |
812 | 0 | gx_image3x_enum_t * const penum = (gx_image3x_enum_t *) info; |
813 | 0 | int code = gx_image_flush(penum->mask[0].info); |
814 | |
|
815 | 0 | if (code >= 0) |
816 | 0 | code = gx_image_flush(penum->mask[1].info); |
817 | 0 | if (code >= 0) |
818 | 0 | code = gx_image_flush(penum->pixel.info); |
819 | 0 | return code; |
820 | 0 | } |
821 | | |
822 | | /* Determine which data planes are wanted. */ |
823 | | static bool |
824 | | gx_image3x_planes_wanted(const gx_image_enum_common_t * info, byte *wanted) |
825 | 259k | { |
826 | 259k | const gx_image3x_enum_t * const penum = (const gx_image3x_enum_t *) info; |
827 | | /* |
828 | | * We always want at least as much of the mask(s) to be filled as the |
829 | | * pixel data. |
830 | | */ |
831 | 259k | bool |
832 | 259k | sso = penum->mask[0].InterleaveType == interleave_separate_source, |
833 | 259k | sss = penum->mask[1].InterleaveType == interleave_separate_source; |
834 | | |
835 | 259k | if (sso & sss) { |
836 | | /* Both masks have separate sources. */ |
837 | 0 | int mask_next = channel_next(&penum->mask[1], &penum->pixel); |
838 | |
|
839 | 0 | memset(wanted + 2, (mask_next <= 0 ? 0xff : 0), info->num_planes - 2); |
840 | 0 | wanted[1] = (mask_next >= 0 ? 0xff : 0); |
841 | 0 | if (wanted[1]) { |
842 | 0 | mask_next = channel_next(&penum->mask[0], &penum->mask[1]); |
843 | 0 | wanted[0] = mask_next >= 0; |
844 | 0 | } else |
845 | 0 | wanted[0] = 0; |
846 | 0 | return false; /* see below */ |
847 | 259k | } else if (sso | sss) { |
848 | | /* Only one separate source. */ |
849 | 259k | const image3x_channel_state_t *pics = |
850 | 259k | (sso ? &penum->mask[0] : &penum->mask[1]); |
851 | 259k | int mask_next = channel_next(pics, &penum->pixel); |
852 | | |
853 | 259k | wanted[0] = (mask_next >= 0 ? 0xff : 0); |
854 | 259k | memset(wanted + 1, (mask_next <= 0 ? 0xff : 0), info->num_planes - 1); |
855 | | /* |
856 | | * In principle, wanted will always be true for both mask and pixel |
857 | | * data if the full_heights are equal. Unfortunately, even in this |
858 | | * case, processing may be interrupted after a mask row has been |
859 | | * passed to the underlying image processor but before the data row |
860 | | * has been passed, in which case pixel data will be 'wanted', but |
861 | | * not mask data, for the next call. Therefore, we must return |
862 | | * false. |
863 | | */ |
864 | 259k | return false |
865 | | /*(next == 0 && |
866 | 259k | pics->full_height == penum->pixel.full_height)*/; |
867 | 259k | } else { |
868 | | /* Everything is chunky, only 1 plane. */ |
869 | 0 | wanted[0] = 0xff; |
870 | 0 | return true; |
871 | 0 | } |
872 | 259k | } |
873 | | |
874 | | /* Clean up after processing an ImageType 3x image. */ |
875 | | static int |
876 | | gx_image3x_end_image(gx_image_enum_common_t * info, bool draw_last) |
877 | 3.06k | { |
878 | 3.06k | gx_image3x_enum_t *penum = (gx_image3x_enum_t *) info; |
879 | 3.06k | gs_memory_t *mem = penum->memory; |
880 | 3.06k | gx_device *mdev0 = penum->mask[0].mdev; |
881 | 3.06k | int ocode = |
882 | 3.06k | (penum->mask[0].info ? gx_image_end(penum->mask[0].info, draw_last) : |
883 | 3.06k | 0); |
884 | 3.06k | gx_device *mdev1 = penum->mask[1].mdev; |
885 | 3.06k | int scode = |
886 | 3.06k | (penum->mask[1].info ? gx_image_end(penum->mask[1].info, draw_last) : |
887 | 3.06k | 0); |
888 | 3.06k | gx_device *pcdev = penum->pcdev; |
889 | 3.06k | int pcode = gx_image_end(penum->pixel.info, draw_last); |
890 | | |
891 | 3.06k | rc_decrement(pcdev->icc_struct, "gx_image3x_end_image(pcdev->icc_struct)"); |
892 | 3.06k | pcdev->icc_struct = NULL; |
893 | | |
894 | 3.06k | gs_closedevice(pcdev); |
895 | 3.06k | if (mdev0) |
896 | 3.06k | gs_closedevice(mdev0); |
897 | 3.06k | if (mdev1) |
898 | 0 | gs_closedevice(mdev1); |
899 | 3.06k | gs_free_object(mem, penum->mask[0].data, |
900 | 3.06k | "gx_image3x_end_image(mask[0].data)"); |
901 | 3.06k | gs_free_object(mem, penum->mask[1].data, |
902 | 3.06k | "gx_image3x_end_image(mask[1].data)"); |
903 | 3.06k | gs_free_object(mem, penum->pixel.data, |
904 | 3.06k | "gx_image3x_end_image(pixel.data)"); |
905 | 3.06k | gs_free_object(mem, pcdev, "gx_image3x_end_image(pcdev)"); |
906 | 3.06k | gs_free_object(mem, mdev0, "gx_image3x_end_image(mask[0].mdev)"); |
907 | 3.06k | gs_free_object(mem, mdev1, "gx_image3x_end_image(mask[1].mdev)"); |
908 | 3.06k | gx_image_free_enum(&info); |
909 | 3.06k | return (pcode < 0 ? pcode : scode < 0 ? scode : ocode); |
910 | 3.06k | } |