/src/ghostpdl/base/gxiscale.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* Copyright (C) 2001-2025 Artifex Software, Inc. |
2 | | All Rights Reserved. |
3 | | |
4 | | This software is provided AS-IS with no warranty, either express or |
5 | | implied. |
6 | | |
7 | | This software is distributed under license and may not be copied, |
8 | | modified or distributed except as expressly authorized under the terms |
9 | | of the license contained in the file LICENSE in this distribution. |
10 | | |
11 | | Refer to licensing information at http://www.artifex.com or contact |
12 | | Artifex Software, Inc., 39 Mesa Street, Suite 108A, San Francisco, |
13 | | CA 94129, USA, for further information. |
14 | | */ |
15 | | |
16 | | |
17 | | /* Interpolated image procedures */ |
18 | | #include "gx.h" |
19 | | #include "math_.h" |
20 | | #include "memory_.h" |
21 | | #include "stdint_.h" |
22 | | #include "gpcheck.h" |
23 | | #include "gserrors.h" |
24 | | #include "gxfixed.h" |
25 | | #include "gxfrac.h" |
26 | | #include "gxarith.h" |
27 | | #include "gxmatrix.h" |
28 | | #include "gsccolor.h" |
29 | | #include "gspaint.h" |
30 | | #include "gxdevice.h" |
31 | | #include "gxcmap.h" |
32 | | #include "gxdcolor.h" |
33 | | #include "gxgstate.h" |
34 | | #include "gxdevmem.h" |
35 | | #include "gxcpath.h" |
36 | | #include "gximage.h" |
37 | | #include "stream.h" /* for s_alloc_state */ |
38 | | #include "siinterp.h" /* for spatial interpolation */ |
39 | | #include "siscale.h" /* for Mitchell filtering */ |
40 | | #include "sidscale.h" /* for special case downscale filter */ |
41 | | #include "gscindex.h" /* included for proper handling of index color spaces |
42 | | and keeping data in source color space */ |
43 | | #include "gsbitops.h" |
44 | | #include "gxcolor2.h" /* define of float_color_to_byte_color */ |
45 | | #include "gscspace.h" /* Needed for checking is space is CIE */ |
46 | | #include "gsicc_cache.h" |
47 | | #include "gsicc_manage.h" |
48 | | #include "gsicc.h" |
49 | | #include "gxdevsop.h" |
50 | | #include <limits.h> /* For INT_MAX */ |
51 | | |
52 | | static void |
53 | | decode_sample_frac_to_float(gx_image_enum *penum, frac sample_value, gs_client_color *cc, int i); |
54 | | |
55 | | /* |
56 | | * Define whether we are using Mitchell filtering or spatial |
57 | | * interpolation to implement Interpolate. (The latter doesn't work yet.) |
58 | | */ |
59 | | #define USE_MITCHELL_FILTER |
60 | | |
61 | | /* ------ Strategy procedure ------ */ |
62 | | |
63 | | /* Check the prototype. */ |
64 | | iclass_proc(gs_image_class_0_interpolate); |
65 | | |
66 | | /* If we're interpolating, use special logic. |
67 | | This function just gets interpolation stucture |
68 | | initialized and allocates buffer space if needed */ |
69 | | static irender_proc(image_render_interpolate); |
70 | | static irender_proc(image_render_interpolate_icc); |
71 | | static irender_proc(image_render_interpolate_masked); |
72 | | static irender_proc(image_render_interpolate_masked_hl); |
73 | | static irender_proc(image_render_interpolate_landscape); |
74 | | static irender_proc(image_render_interpolate_landscape_icc); |
75 | | static irender_proc(image_render_interpolate_landscape_masked); |
76 | | static irender_proc(image_render_interpolate_landscape_masked_hl); |
77 | | |
78 | | #if 0 /* Unused now, but potentially useful in the future */ |
79 | | static bool |
80 | | is_high_level_device(gx_device *dev) |
81 | | { |
82 | | char data[] = "HighLevelDevice"; |
83 | | dev_param_req_t request; |
84 | | gs_c_param_list list; |
85 | | int highlevel = 0; |
86 | | int code; |
87 | | |
88 | | gs_c_param_list_write(&list, dev->memory); |
89 | | /* Stuff the data into a structure for passing to the spec_op */ |
90 | | request.Param = data; |
91 | | request.list = &list; |
92 | | code = dev_proc(dev, dev_spec_op)(dev, gxdso_get_dev_param, &request, sizeof(dev_param_req_t)); |
93 | | if (code < 0 && code != gs_error_undefined) { |
94 | | gs_c_param_list_release(&list); |
95 | | return 0; |
96 | | } |
97 | | gs_c_param_list_read(&list); |
98 | | code = param_read_bool((gs_param_list *)&list, |
99 | | "HighLevelDevice", |
100 | | &highlevel); |
101 | | gs_c_param_list_release(&list); |
102 | | if (code < 0) |
103 | | return 0; |
104 | | |
105 | | return highlevel; |
106 | | } |
107 | | #endif |
108 | | |
109 | | static bool |
110 | | device_allows_imagemask_interpolation(gx_device *dev) |
111 | 38 | { |
112 | 38 | char data[] = "NoInterpolateImagemasks"; |
113 | 38 | dev_param_req_t request; |
114 | 38 | gs_c_param_list list; |
115 | 38 | bool nointerpolate = false; |
116 | 38 | int code; |
117 | | |
118 | 38 | gs_c_param_list_write(&list, dev->memory); |
119 | | /* Stuff the data into a structure for passing to the spec_op */ |
120 | 38 | request.Param = data; |
121 | 38 | request.list = &list; |
122 | 38 | code = dev_proc(dev, dev_spec_op)(dev, gxdso_get_dev_param, &request, sizeof(dev_param_req_t)); |
123 | 38 | if (code < 0 && code != gs_error_undefined) { |
124 | 0 | gs_c_param_list_release(&list); |
125 | 0 | return 0; |
126 | 0 | } |
127 | 38 | gs_c_param_list_read(&list); |
128 | 38 | code = param_read_bool((gs_param_list *)&list, |
129 | 38 | "NoInterpolateImagemasks", |
130 | 38 | &nointerpolate); |
131 | 38 | gs_c_param_list_release(&list); |
132 | 38 | if (code < 0) |
133 | 0 | return 0; |
134 | | |
135 | 38 | return !nointerpolate; |
136 | 38 | } |
137 | | |
138 | | #define DC_IS_NULL(pdc)\ |
139 | | (gx_dc_is_pure(pdc) && (pdc)->colors.pure == gx_no_color_index) |
140 | | |
141 | | /* Returns < 0 for error, 0 for pure color, 1 for high level */ |
142 | | static int mask_suitable_for_interpolation(gx_image_enum *penum) |
143 | 38 | { |
144 | 38 | gx_device_color * const pdc1 = penum->icolor1; |
145 | 38 | int code; |
146 | 38 | int high_level_color = 1; |
147 | | |
148 | 38 | if (gx_device_must_halftone(penum->dev)) |
149 | | /* We don't interpolate when going to 1bpp outputs */ |
150 | 0 | return -1; |
151 | 38 | if (dev_proc(penum->dev, dev_spec_op)(penum->dev, gxdso_copy_alpha_disabled, NULL, 0) == 1) |
152 | | /* The target device has copy_alpha() disabled. */ |
153 | 0 | return -1; |
154 | 38 | if (gx_dc_is_pure(pdc1) && (pdc1)->colors.pure != gx_no_color_index && |
155 | 38 | dev_proc(penum->dev, copy_alpha) != NULL && |
156 | 38 | dev_proc(penum->dev, copy_alpha) != gx_no_copy_alpha) { |
157 | | /* We have a 'pure' color, and a valid copy_alpha. We can work with that. */ |
158 | 38 | high_level_color = 0; |
159 | 38 | } else if (dev_proc(penum->dev, copy_alpha_hl_color) == gx_default_no_copy_alpha_hl_color) { |
160 | | /* No copy_alpha_hl_color. We're out of luck. */ |
161 | 0 | return -1; |
162 | 0 | } else if ((code = gx_color_load(pdc1, penum->pgs, penum->dev)) < 0) { |
163 | | /* Otherwise we'll need to load the color value. If this gives an |
164 | | * error, we can't cope. */ |
165 | 0 | return -1; |
166 | 0 | } else if (!gx_dc_is_devn(pdc1)) { |
167 | | /* If it's not a devn color, then we're really out of luck. */ |
168 | 0 | return -1; |
169 | 0 | } |
170 | | |
171 | | /* Never turn this on for devices that disallow it (primarily |
172 | | * high level devices) */ |
173 | 38 | if (!device_allows_imagemask_interpolation(penum->dev)) |
174 | 38 | return -1; |
175 | | |
176 | 0 | return high_level_color; |
177 | 38 | } |
178 | | |
179 | | /* |
180 | | Helper function to take an int64_t, and "fixed2int_pixround_perfect" |
181 | | it while testing for overflow. |
182 | | */ |
183 | | static int |
184 | | safe64fixed2int(int64_t v, int *overflow) |
185 | 28 | { |
186 | 28 | if (v > (int)((1U<<(sizeof(int)*8-1))-128) || |
187 | 28 | v < 0) |
188 | 0 | *overflow = 1; |
189 | 28 | return fixed2int_pixround_perfect(v); |
190 | 28 | } |
191 | | |
192 | | int |
193 | | gs_image_class_0_interpolate(gx_image_enum * penum, irender_proc_t *render_fn) |
194 | 2.28M | { |
195 | 2.28M | gs_memory_t *mem = penum->memory; |
196 | 2.28M | stream_image_scale_params_t iss; |
197 | 2.28M | stream_image_scale_state *pss; |
198 | 2.28M | const stream_template *templat; |
199 | 2.28M | byte *line; |
200 | 2.28M | const gs_color_space *pcs = penum->pcs; |
201 | 2.28M | uint in_size; |
202 | 2.28M | bool use_icc = false; |
203 | 2.28M | int num_des_comps; |
204 | 2.28M | cmm_dev_profile_t *dev_profile; |
205 | 2.28M | int code; |
206 | 2.28M | gx_color_polarity_t pol = GX_CINFO_POLARITY_UNKNOWN; |
207 | 2.28M | int mask_col_high_level = 0; |
208 | 2.28M | int interpolate_control = penum->dev->interpolate_control; |
209 | 2.28M | int abs_interp_limit = max(1, any_abs(interpolate_control)); |
210 | 2.28M | int limited_WidthOut, limited_HeightOut; |
211 | 2.28M | int overflow = 0; |
212 | | |
213 | 2.28M | if (interpolate_control < 0) |
214 | 97 | penum->interpolate = interp_on; /* not the same as "interp_force" -- threshold still used */ |
215 | 2.28M | if (interpolate_control == interp_off || penum->interpolate == interp_off) { |
216 | 2.28M | penum->interpolate = interp_off; |
217 | 2.28M | return 0; |
218 | 2.28M | } |
219 | 97 | if (penum->masked && (mask_col_high_level = mask_suitable_for_interpolation(penum)) < 0) { |
220 | 38 | penum->interpolate = interp_off; |
221 | 38 | return 0; |
222 | 38 | } |
223 | 59 | if (penum->use_mask_color || |
224 | 59 | (penum->posture != image_portrait && |
225 | 59 | penum->posture != image_landscape) || |
226 | 59 | penum->alpha) { |
227 | | /* We can't handle these cases yet. Punt. */ |
228 | 50 | penum->interpolate = interp_off; |
229 | 50 | return 0; |
230 | 50 | } |
231 | 9 | if (penum->Width == 0 || penum->Height == 0) { |
232 | 0 | penum->interpolate = interp_off; /* No need to interpolate and */ |
233 | 0 | return 0; /* causes division by 0 if we try. */ |
234 | 0 | } |
235 | 9 | if (penum->Width == 1 && penum->Height == 1) { |
236 | 0 | penum->interpolate = interp_off; /* No need to interpolate */ |
237 | 0 | return 0; |
238 | 0 | } |
239 | 9 | if (any_abs(penum->dst_width) < 0 || any_abs(penum->dst_height) < 0) |
240 | 0 | { |
241 | | /* A calculation has overflowed. Bale */ |
242 | 0 | return 0; |
243 | 0 | } |
244 | 9 | if (penum->x_extent.x == INT_MIN || penum->x_extent.x == INT_MAX || |
245 | 9 | penum->x_extent.y == INT_MIN || penum->x_extent.y == INT_MAX || |
246 | 9 | penum->y_extent.x == INT_MIN || penum->y_extent.x == INT_MAX || |
247 | 9 | penum->y_extent.y == INT_MIN || penum->y_extent.y == INT_MAX) |
248 | 7 | { |
249 | | /* A calculation has overflowed. Bail */ |
250 | 7 | return 0; |
251 | 7 | } |
252 | | |
253 | 2 | if (penum->masked) { |
254 | 0 | abs_interp_limit = 1; /* ignore this for masked images for now */ |
255 | 0 | use_icc = false; |
256 | 0 | num_des_comps = 1; |
257 | 0 | if (pcs) |
258 | 0 | pol = cs_polarity(pcs); |
259 | 0 | else |
260 | 0 | pol = GX_CINFO_POLARITY_ADDITIVE; |
261 | 2 | } else { |
262 | 2 | if (pcs == NULL) |
263 | 0 | return 0; /* can't handle this */ |
264 | 2 | if (pcs->cmm_icc_profile_data != NULL) { |
265 | 2 | use_icc = true; |
266 | 2 | } |
267 | 2 | if (pcs->type->index == gs_color_space_index_Indexed) { |
268 | 0 | if (pcs->base_space->cmm_icc_profile_data != NULL) { |
269 | 0 | use_icc = true; |
270 | 0 | } |
271 | 0 | } |
272 | 2 | if (!(penum->bps <= 8 || penum->bps == 16)) { |
273 | 0 | use_icc = false; |
274 | 0 | } |
275 | | /* Do not allow mismatch in devices component output with the |
276 | | profile output size. For example sep device with CMYK profile should |
277 | | not go through the fast method */ |
278 | 2 | code = dev_proc(penum->dev, get_profile)(penum->dev, &dev_profile); |
279 | 2 | if (code) { |
280 | 0 | penum->interpolate = interp_off; |
281 | 0 | return 0; |
282 | 0 | } |
283 | 2 | num_des_comps = gsicc_get_device_profile_comps(dev_profile); |
284 | 2 | if (num_des_comps != penum->dev->color_info.num_components || |
285 | 2 | dev_profile->usefastcolor == true) { |
286 | 0 | use_icc = false; |
287 | 0 | } |
288 | | /* If the device has some unique color mapping procs due to its color space, |
289 | | then we will need to use those and go through pixel by pixel instead |
290 | | of blasting through buffers. This is true for example with many of |
291 | | the color spaces for CUPs */ |
292 | 2 | if(!gx_device_uses_std_cmap_procs(penum->dev, penum->pgs)) { |
293 | 0 | use_icc = false; |
294 | 0 | } |
295 | 2 | pol = cs_polarity(pcs); |
296 | 2 | } |
297 | | /* |
298 | | * USE_CONSERVATIVE_INTERPOLATION_RULES is normally NOT defined since |
299 | | * the MITCHELL digital filter seems OK as long as we are going out to |
300 | | * a device that can produce > 15 shades. |
301 | | */ |
302 | | #if defined(USE_MITCHELL_FILTER) && defined(USE_CONSERVATIVE_INTERPOLATION_RULES) |
303 | | /* |
304 | | * We interpolate using a digital filter, rather than Adobe's |
305 | | * spatial interpolation algorithm: this produces very bad-looking |
306 | | * results if the input resolution is close to the output resolution, |
307 | | * especially if the input has low color resolution, so we resort to |
308 | | * some hack tests on the input color resolution and scale to suppress |
309 | | * interpolation if we think the result would look especially bad. |
310 | | * If we used Adobe's spatial interpolation approach, we wouldn't need |
311 | | * to do this, but the spatial interpolation filter doesn't work yet. |
312 | | */ |
313 | | if (penum->bps < 4 || penum->bps * penum->spp < 8 || |
314 | | (fabs(penum->matrix.xx) <= 5 && fabs(penum->matrix.yy <= 5)) |
315 | | ) { |
316 | | penum->interpolate = interp_off; |
317 | | return 0; |
318 | | } |
319 | | #endif |
320 | 2 | iss.abs_interp_limit = abs_interp_limit; |
321 | 2 | if (penum->masked) { |
322 | 0 | iss.BitsPerComponentOut = 8; |
323 | 0 | iss.MaxValueOut = 0xff; |
324 | 2 | } else if (use_icc) { |
325 | 2 | iss.BitsPerComponentOut = 16; |
326 | 2 | iss.MaxValueOut = 0xffff; |
327 | 2 | } else { |
328 | 0 | iss.BitsPerComponentOut = sizeof(frac) * 8; |
329 | 0 | iss.MaxValueOut = frac_1; |
330 | 0 | } |
331 | 2 | iss.PatchWidthIn = penum->drect.w; |
332 | 2 | iss.PatchHeightIn = penum->drect.h; |
333 | 2 | iss.LeftMarginIn = penum->drect.x - penum->rect.x; |
334 | 2 | iss.TopMarginIn = penum->drect.y - penum->rect.y; |
335 | 2 | if (penum->posture == image_portrait) { |
336 | 2 | fixed dw = any_abs(penum->dst_width); |
337 | 2 | fixed dh = any_abs(penum->dst_height); |
338 | 2 | iss.WidthOut = safe64fixed2int((int64_t)(penum->rect.x + penum->rect.w) * |
339 | 2 | dw / penum->Width, &overflow) |
340 | 2 | - safe64fixed2int((int64_t)penum->rect.x * |
341 | 2 | dw / penum->Width, &overflow); |
342 | 2 | iss.HeightOut = safe64fixed2int((int64_t)(penum->rect.y + penum->rect.h) * |
343 | 2 | dh / penum->Height, &overflow) |
344 | 2 | - safe64fixed2int((int64_t)penum->rect.y * |
345 | 2 | dh / penum->Height, &overflow); |
346 | 2 | iss.EntireWidthOut = safe64fixed2int(dw, &overflow); |
347 | 2 | iss.EntireHeightOut = safe64fixed2int(dh, &overflow); |
348 | 2 | iss.TopMarginOut = safe64fixed2int((int64_t)(penum->rrect.y - penum->rect.y) * |
349 | 2 | dh / penum->Height, &overflow); |
350 | 2 | iss.PatchHeightOut = safe64fixed2int((int64_t)penum->rrect.h * |
351 | 2 | dh / penum->Height, &overflow) |
352 | 2 | - iss.TopMarginOut; |
353 | 2 | iss.PatchWidthOut = safe64fixed2int((int64_t)(penum->rrect.x + penum->rrect.w) * |
354 | 2 | dw / penum->Width, &overflow) |
355 | 2 | - safe64fixed2int((int64_t)penum->rrect.x * |
356 | 2 | dw / penum->Width, &overflow); |
357 | 2 | iss.LeftMarginOut = safe64fixed2int((int64_t)(penum->rrect.x - penum->rect.x) * |
358 | 2 | dw / penum->Width, &overflow); |
359 | 2 | iss.TopMarginOut2 = safe64fixed2int((int64_t)penum->rrect.y * |
360 | 2 | dh / penum->Height, &overflow); |
361 | 2 | iss.PatchHeightOut2 = safe64fixed2int((int64_t)(penum->rrect.y + penum->rrect.h) * |
362 | 2 | dh / penum->Height, &overflow) |
363 | 2 | - iss.TopMarginOut2; |
364 | 2 | iss.pad_y = iss.TopMarginOut2 |
365 | 2 | - safe64fixed2int((int64_t)penum->rect.y * |
366 | 2 | dh / penum->Height, &overflow); |
367 | 2 | } else { |
368 | 0 | fixed dw = any_abs(penum->dst_width); |
369 | 0 | fixed dh = any_abs(penum->dst_height); |
370 | 0 | iss.WidthOut = safe64fixed2int((int64_t)(penum->rect.x + penum->rect.w) * |
371 | 0 | dh / penum->Width, &overflow) |
372 | 0 | - safe64fixed2int((int64_t)penum->rect.x * |
373 | 0 | dh / penum->Width, &overflow); |
374 | 0 | iss.HeightOut = safe64fixed2int((int64_t)(penum->rect.y + penum->rect.h) * |
375 | 0 | dw / penum->Height, &overflow) |
376 | 0 | - safe64fixed2int((int64_t)penum->rect.y * |
377 | 0 | dw / penum->Height, &overflow); |
378 | 0 | iss.EntireWidthOut = safe64fixed2int(dh, &overflow); |
379 | 0 | iss.EntireHeightOut = safe64fixed2int(dw, &overflow); |
380 | 0 | iss.TopMarginOut = safe64fixed2int((int64_t)(penum->rrect.y - penum->rect.y) * |
381 | 0 | dw / penum->Height, &overflow); |
382 | 0 | iss.PatchHeightOut = safe64fixed2int((int64_t)penum->rrect.h * |
383 | 0 | dw / penum->Height, &overflow) |
384 | 0 | - iss.TopMarginOut; |
385 | 0 | iss.PatchWidthOut = safe64fixed2int((int64_t)(penum->rrect.x + penum->rrect.w) * |
386 | 0 | dh / penum->Width, &overflow) |
387 | 0 | - safe64fixed2int((int64_t)penum->rrect.x * |
388 | 0 | dh / penum->Width, &overflow); |
389 | 0 | iss.LeftMarginOut = safe64fixed2int((int64_t)(penum->rrect.x - penum->rect.x) * |
390 | 0 | dh / penum->Width, &overflow); |
391 | 0 | iss.TopMarginOut2 = safe64fixed2int((int64_t)penum->rect.y * |
392 | 0 | dw / penum->Height, &overflow); |
393 | 0 | iss.PatchHeightOut2 = safe64fixed2int((int64_t)(penum->rrect.y + penum->rrect.h) * |
394 | 0 | dw / penum->Height, &overflow) |
395 | 0 | - iss.TopMarginOut2; |
396 | 0 | iss.pad_y = 0; |
397 | 0 | } |
398 | 2 | iss.PatchWidthOut = any_abs(iss.PatchWidthOut); |
399 | 2 | if (iss.LeftMarginOut + iss.PatchWidthOut >= iss.WidthOut) { |
400 | 2 | iss.LeftMarginOut = iss.WidthOut - iss.PatchWidthOut; |
401 | 2 | if (iss.LeftMarginOut < 0) { |
402 | 0 | iss.WidthOut += iss.LeftMarginOut; |
403 | 0 | iss.LeftMarginOut = 0; |
404 | 0 | } |
405 | 2 | } |
406 | 2 | iss.src_y_offset = penum->rect.y; |
407 | 2 | iss.EntireWidthIn = penum->Width; |
408 | 2 | iss.EntireHeightIn = penum->Height; |
409 | 2 | iss.WidthIn = penum->rect.w; |
410 | 2 | iss.HeightIn = penum->rect.h; |
411 | 2 | iss.WidthOut = any_abs(iss.WidthOut); |
412 | 2 | iss.HeightOut = any_abs(iss.HeightOut); |
413 | 2 | limited_WidthOut = (iss.WidthOut + abs_interp_limit - 1)/abs_interp_limit; |
414 | 2 | limited_HeightOut = (iss.HeightOut + abs_interp_limit - 1)/abs_interp_limit; |
415 | 2 | if ((penum->posture == image_portrait ? penum->dst_width : penum->dst_height) < 0) |
416 | 0 | iss.LeftMarginOut = iss.WidthOut - iss.LeftMarginOut - iss.PatchWidthOut; |
417 | | /* For interpolator cores that don't set Active, have us always active */ |
418 | 2 | iss.Active = 1; |
419 | 2 | if (iss.EntireWidthOut == 0 || iss.EntireHeightOut == 0 || overflow) |
420 | 2 | { |
421 | 2 | penum->interpolate = interp_off; |
422 | 2 | return 0; |
423 | 2 | } |
424 | 0 | if (penum->masked) { |
425 | 0 | iss.spp_decode = 1; |
426 | 0 | } else { |
427 | | /* If we are in an indexed space then we need to use the number of components |
428 | | in the base space. Otherwise we use the number of components in the source space */ |
429 | 0 | if (pcs->type->index == gs_color_space_index_Indexed) { |
430 | | /* Use the number of colors in the base space */ |
431 | 0 | iss.spp_decode = cs_num_components(pcs->base_space); |
432 | 0 | } else { |
433 | | /* Use the number of colors that exist in the source space |
434 | | as this is where we are doing our interpolation */ |
435 | 0 | iss.spp_decode = cs_num_components(pcs); |
436 | 0 | } |
437 | 0 | } |
438 | | /* Set up the filter template. May be changed for "Special" downscaling */ |
439 | 0 | #ifdef USE_MITCHELL_FILTER |
440 | 0 | templat = &s_IScale_template; |
441 | | #else |
442 | | templat = &s_IIEncode_template; |
443 | | #endif |
444 | |
|
445 | 0 | if ((iss.WidthOut < iss.WidthIn) && |
446 | 0 | (iss.HeightOut < iss.HeightIn) && /* downsampling */ |
447 | 0 | (pol != GX_CINFO_POLARITY_UNKNOWN) && |
448 | 0 | (dev_proc(penum->dev, dev_spec_op)(penum->dev, gxdso_interpolate_antidropout, NULL, 0) > 0)) { |
449 | | /* Special case handling for when we are downsampling to a dithered |
450 | | * device. The point of this non-linear downsampling is to preserve |
451 | | * dark pixels from the source image to avoid dropout. The color |
452 | | * polarity is used for this. */ |
453 | 0 | templat = &s_ISpecialDownScale_template; |
454 | 0 | } else { |
455 | | /* No interpolation unless we exceed the device selected minimum */ |
456 | 0 | int threshold = dev_proc(penum->dev, dev_spec_op)(penum->dev, gxdso_interpolate_threshold, NULL, 0); |
457 | |
|
458 | 0 | if ((iss.WidthOut == iss.WidthIn && iss.HeightOut == iss.HeightIn) || |
459 | 0 | ((penum->interpolate != interp_force) && |
460 | 0 | (threshold > 0) && |
461 | 0 | (iss.WidthOut < iss.WidthIn * threshold) && |
462 | 0 | (iss.HeightOut < iss.HeightIn * threshold))) { |
463 | 0 | penum->interpolate = interp_off; |
464 | 0 | return 0; /* don't interpolate if not scaled up enough */ |
465 | 0 | } |
466 | 0 | } |
467 | | /* The SpecialDownScale filter needs polarity, either ADDITIVE or SUBTRACTIVE */ |
468 | | /* UNKNOWN case (such as for palette colors) has been handled above */ |
469 | 0 | iss.ColorPolarityAdditive = (pol == GX_CINFO_POLARITY_ADDITIVE); |
470 | |
|
471 | 0 | if (iss.HeightOut > iss.EntireHeightIn && use_icc) { |
472 | 0 | iss.early_cm = true; |
473 | 0 | iss.spp_interp = num_des_comps; |
474 | 0 | } else { |
475 | 0 | iss.early_cm = false; |
476 | 0 | iss.spp_interp = iss.spp_decode; |
477 | 0 | } |
478 | 0 | if (penum->bps <= 8 ) { |
479 | | /* If the input is ICC or other device independent format, go ahead |
480 | | and do the interpolation in that space. |
481 | | If we have more than 8 bits per channel then we will need to |
482 | | handle that in a slightly different manner so |
483 | | that the interpolation algorithm handles it properly. |
484 | | The interpolation will still be in the source |
485 | | color space. Note that if image data was less the 8 bps |
486 | | It is handed here to us in 8 bit form already decoded. */ |
487 | 0 | iss.BitsPerComponentIn = 8; |
488 | 0 | iss.MaxValueIn = 0xff; |
489 | 0 | if (penum->masked) { |
490 | 0 | in_size = iss.WidthIn * iss.spp_decode; |
491 | 0 | } else { |
492 | | /* We either use the data as is, or allocate space if it is |
493 | | reversed in X or if the colorspace requires it */ |
494 | | /* Do we need a buffer for reversing each scan line? */ |
495 | 0 | bool reverse = (penum->posture == image_portrait ? |
496 | 0 | penum->matrix.xx : penum->matrix.xy) < 0; |
497 | 0 | in_size = (reverse ? iss.WidthIn * iss.spp_decode : 0); |
498 | | /* If it is not reversed, and we have 8 bit/color channel data then |
499 | | we may not need to allocate extra as we will use the source directly. |
500 | | However, if we have a nonstandard encoding and are in a device |
501 | | color space we will need to allocate in that case also. We will |
502 | | maintain 8 bits but do the decode and then interpolate. |
503 | | This is OK for the linear decode |
504 | | */ |
505 | 0 | if (!penum->device_color || pcs->type->index > gs_color_space_index_DeviceCMYK) { |
506 | 0 | in_size = iss.WidthIn * iss.spp_decode; |
507 | 0 | } |
508 | 0 | } |
509 | 0 | } else { |
510 | | /* If it has more than 8 bits per color channel then we will go to frac |
511 | | for the interpolation to mantain precision or 16 bit for icc */ |
512 | 0 | if (use_icc) { |
513 | 0 | iss.BitsPerComponentIn = 16; |
514 | 0 | iss.MaxValueIn = 0xffff; |
515 | 0 | } else { |
516 | 0 | iss.BitsPerComponentIn = sizeof(frac) * 8; |
517 | 0 | iss.MaxValueIn = frac_1; |
518 | 0 | } |
519 | 0 | in_size = round_up(iss.WidthIn * iss.spp_decode * (int)sizeof(frac), |
520 | 0 | align_bitmap_mod); |
521 | | /* Size to allocate space to store the input as frac type */ |
522 | 0 | } |
523 | | /* Allocate a buffer for one source/destination line. */ |
524 | | /* NB: The out_size is for full device res, regardless of abs_interp_limit */ |
525 | | /* since we will expand into that area in the x-loop */ |
526 | 0 | { |
527 | 0 | uint out_size = iss.WidthOut * max(iss.spp_interp * ((iss.BitsPerComponentOut) / 8), |
528 | 0 | ARCH_SIZEOF_COLOR_INDEX); |
529 | | |
530 | | /* Allocate based upon frac size (as BitsPerComponentOut=16) output scan |
531 | | line input plus output. The outsize may have an adjustment for |
532 | | word boundary on it. Need to account for that now */ |
533 | 0 | out_size += align_bitmap_mod; |
534 | 0 | line = gs_alloc_bytes(mem, in_size + out_size, |
535 | 0 | "image scale src+dst line"); |
536 | 0 | } |
537 | 0 | pss = (stream_image_scale_state *) |
538 | 0 | s_alloc_state(mem, templat->stype, "image scale state"); |
539 | 0 | if (line == 0 || pss == 0 || |
540 | 0 | (pss->params = iss, pss->templat = templat, |
541 | 0 | (*pss->templat->init) ((stream_state *) pss) < 0) |
542 | 0 | ) { |
543 | 0 | gs_free_object(mem, pss, "image scale state"); |
544 | 0 | gs_free_object(mem, line, "image scale src+dst line"); |
545 | | /* Try again without interpolation. */ |
546 | 0 | penum->interpolate = interp_off; |
547 | 0 | return 0; |
548 | 0 | } |
549 | 0 | penum->line = line; /* Set to the input and output buffer */ |
550 | 0 | penum->scaler = pss; |
551 | 0 | penum->line_xy = 0; |
552 | 0 | if (penum->posture == image_portrait) { |
553 | 0 | gx_dda_fixed x0; |
554 | 0 | x0 = penum->dda.pixel0.x; |
555 | | /* We always plot from left to right. If the matrix would have us |
556 | | * plotting from right to left, then adjust to allow for the fact |
557 | | * we'll flip the data later. */ |
558 | 0 | if (penum->matrix.xx < 0) |
559 | 0 | dda_advance(x0, penum->rect.w); |
560 | 0 | penum->xyi.x = fixed2int_pixround(dda_current(x0)) + pss->params.LeftMarginOut; |
561 | 0 | penum->xyi.y = penum->yi0 + fixed2int_pixround_perfect( |
562 | 0 | (fixed)((int64_t)penum->rect.y * |
563 | 0 | penum->dst_height / penum->Height)); |
564 | 0 | } else /* penum->posture == image_landscape */ { |
565 | | /* We always plot from top to bottom. If the matrix would have us |
566 | | * plotting from bottom to top, then adjust to allow for the fact |
567 | | * we'll flip the data later. */ |
568 | 0 | int x0 = penum->rrect.x; |
569 | 0 | if (penum->matrix.xy < 0) |
570 | 0 | x0 += penum->rrect.w; |
571 | 0 | penum->xyi.x = fixed2int_pixround(dda_current(penum->dda.pixel0.x)); |
572 | 0 | penum->xyi.y = penum->yi0 + fixed2int_pixround_perfect( |
573 | 0 | (fixed)((int64_t)x0 * |
574 | 0 | penum->dst_height / penum->Width)); |
575 | 0 | } |
576 | | /* If the InterpolationControl specifies interpolation to less than full device res */ |
577 | | /* Set up a scaling DDA to control scaling back to desired image size. */ |
578 | 0 | if (abs_interp_limit > 1) { |
579 | 0 | dda_init(pss->params.scale_dda.x, 0, iss.WidthOut, limited_WidthOut); |
580 | 0 | dda_init(pss->params.scale_dda.y, 0, iss.HeightOut, limited_HeightOut); |
581 | 0 | } |
582 | 0 | if_debug0m('b', penum->memory, "[b]render=interpolate\n"); |
583 | 0 | if (penum->masked) { |
584 | 0 | if (!mask_col_high_level) { |
585 | 0 | *render_fn = (penum->posture == image_portrait ? |
586 | 0 | &image_render_interpolate_masked : |
587 | 0 | &image_render_interpolate_landscape_masked); |
588 | 0 | return 0; |
589 | 0 | } else { |
590 | 0 | *render_fn = (penum->posture == image_portrait ? |
591 | 0 | &image_render_interpolate_masked_hl : |
592 | 0 | &image_render_interpolate_landscape_masked_hl); |
593 | 0 | return 0; |
594 | 0 | } |
595 | 0 | } else if (use_icc) { |
596 | | /* Set up the link now */ |
597 | 0 | const gs_color_space *pcs; |
598 | 0 | gsicc_rendering_param_t rendering_params; |
599 | 0 | int k; |
600 | 0 | int src_num_comp = cs_num_components(penum->pcs); |
601 | |
|
602 | 0 | penum->icc_setup.need_decode = false; |
603 | | /* Check if we need to do any decoding. If yes, then that will slow us down */ |
604 | 0 | for (k = 0; k < src_num_comp; k++) { |
605 | 0 | if ( penum->map[k].decoding != sd_none ) { |
606 | 0 | penum->icc_setup.need_decode = true; |
607 | 0 | break; |
608 | 0 | } |
609 | 0 | } |
610 | | /* Define the rendering intents */ |
611 | 0 | rendering_params.black_point_comp = penum->pgs->blackptcomp; |
612 | 0 | rendering_params.graphics_type_tag = GS_IMAGE_TAG; |
613 | 0 | rendering_params.override_icc = false; |
614 | 0 | rendering_params.preserve_black = gsBKPRESNOTSPECIFIED; |
615 | 0 | rendering_params.rendering_intent = penum->pgs->renderingintent; |
616 | 0 | rendering_params.cmm = gsCMM_DEFAULT; |
617 | 0 | if (gs_color_space_is_PSCIE(penum->pcs) && penum->pcs->icc_equivalent != NULL) { |
618 | 0 | pcs = penum->pcs->icc_equivalent; |
619 | 0 | } else { |
620 | | /* Look for indexed space */ |
621 | 0 | if ( penum->pcs->type->index == gs_color_space_index_Indexed) { |
622 | 0 | pcs = penum->pcs->base_space; |
623 | 0 | } else { |
624 | 0 | pcs = penum->pcs; |
625 | 0 | } |
626 | 0 | } |
627 | 0 | penum->icc_setup.is_lab = pcs->cmm_icc_profile_data->islab; |
628 | 0 | if (penum->icc_setup.is_lab) penum->icc_setup.need_decode = false; |
629 | 0 | penum->icc_setup.must_halftone = gx_device_must_halftone(penum->dev); |
630 | 0 | penum->icc_setup.has_transfer = |
631 | 0 | gx_has_transfer(penum->pgs, num_des_comps); |
632 | 0 | if (penum->icc_link == NULL) { |
633 | 0 | penum->icc_link = gsicc_get_link(penum->pgs, penum->dev, pcs, NULL, |
634 | 0 | &rendering_params, penum->memory); |
635 | 0 | } |
636 | | /* We need to make sure that we do the proper unpacking proc if we |
637 | | are doing 16 bit */ |
638 | 0 | if (penum->bps == 16) { |
639 | 0 | penum->unpack = sample_unpackicc_16; |
640 | 0 | } |
641 | 0 | *render_fn = (penum->posture == image_portrait ? |
642 | 0 | &image_render_interpolate_icc : |
643 | 0 | &image_render_interpolate_landscape_icc); |
644 | 0 | return 0; |
645 | 0 | } else { |
646 | | |
647 | | /* If we are doing fastcolor we may still have |
648 | | a decode situation. To avoid yet another |
649 | | variable, use the existing one in the |
650 | | icc setup */ |
651 | 0 | if (dev_profile->usefastcolor) { |
652 | 0 | int k; |
653 | 0 | int src_num_comp = cs_num_components(penum->pcs); |
654 | |
|
655 | 0 | penum->icc_setup.need_decode = false; |
656 | | /* Check if we need to do any decoding. If yes, then that will slow us down */ |
657 | 0 | for (k = 0; k < src_num_comp; k++) { |
658 | 0 | if ( penum->map[k].decoding != sd_none ) { |
659 | 0 | penum->icc_setup.need_decode = true; |
660 | 0 | break; |
661 | 0 | } |
662 | 0 | } |
663 | 0 | } |
664 | |
|
665 | 0 | *render_fn = (penum->posture == image_portrait ? |
666 | 0 | &image_render_interpolate : |
667 | 0 | &image_render_interpolate_landscape); |
668 | 0 | return 0; |
669 | 0 | } |
670 | 0 | } |
671 | | |
672 | | /* ------ Rendering for interpolated images ------ */ |
673 | | |
674 | | /* This does some initial required decoding of index spaces and general |
675 | | decoding of odd scaled image data needed prior to interpolation or |
676 | | application of color management. */ |
677 | | static void |
678 | | initial_decode(gx_image_enum * penum, const byte * buffer, int data_x, int h, |
679 | | stream_cursor_read *stream_r, bool is_icc) |
680 | 0 | { |
681 | 0 | stream_image_scale_state *pss = penum->scaler; |
682 | 0 | const gs_color_space *pcs = penum->pcs; |
683 | 0 | int spp_decode = pss->params.spp_decode; |
684 | 0 | byte *out = penum->line; |
685 | 0 | bool need_decode; |
686 | 0 | int reversed = |
687 | 0 | (penum->posture == image_portrait ? penum->matrix.xx : penum->matrix.xy) < 0; |
688 | | /* If cs is neither a device color nor a CIE color then for an image case |
689 | | it is going to be deviceN, sep, or index. */ |
690 | 0 | bool is_devn_sep_index = |
691 | 0 | (!(penum->device_color) && !gs_color_space_is_CIE(pcs)); |
692 | | |
693 | | /* Determine if we need to perform any decode procedures */ |
694 | 0 | if (is_icc) { |
695 | | /* In icc case, decode upfront occurs if specified by icc setup or if |
696 | | cs is neither a device color nor a CIE color (i.e. if it's DeviceN, |
697 | | Index or Separation) The color space cannot be a pattern for an image */ |
698 | 0 | need_decode = (penum->icc_setup.need_decode || is_devn_sep_index); |
699 | 0 | } else { |
700 | 0 | cmm_dev_profile_t *dev_profile; |
701 | |
|
702 | 0 | dev_proc(penum->dev, get_profile)(penum->dev, &dev_profile); |
703 | 0 | if (dev_profile != NULL && dev_profile->usefastcolor) |
704 | 0 | need_decode = (penum->icc_setup.need_decode || is_devn_sep_index); |
705 | 0 | else |
706 | 0 | need_decode = is_devn_sep_index; |
707 | 0 | } |
708 | |
|
709 | 0 | if (h != 0) { |
710 | | /* Convert the unpacked data to concrete values in the source buffer. */ |
711 | 0 | int sizeofPixelIn = pss->params.BitsPerComponentIn / 8; |
712 | 0 | uint row_size = pss->params.WidthIn * spp_decode * sizeofPixelIn; |
713 | | /* raw input data */ |
714 | 0 | const int raw_size = (pcs != NULL && pcs->type->index == gs_color_space_index_Indexed ? |
715 | 0 | 1 : spp_decode); |
716 | 0 | const unsigned char *bdata = buffer + data_x * raw_size * sizeofPixelIn; |
717 | | /* We have the following cases to worry about |
718 | | 1) Device 8 bit color but not indexed (e.g. ICC). |
719 | | Apply CMM after interpolation if needed. |
720 | | Also if ICC CIELAB do not do a decode operation |
721 | | 2) Indexed 8 bit color. Get to the base space. We will then be in |
722 | | the same state as 1. |
723 | | 3) 16 bit not indexed. Remap after interpolation. |
724 | | 4) Indexed 16bit color. Get to base space in 16bit form. We |
725 | | will then be in same state as 3. |
726 | | */ |
727 | 0 | if (sizeofPixelIn == 1) { |
728 | 0 | if (pcs == NULL || pcs->type->index != gs_color_space_index_Indexed) { |
729 | | /* An issue here is that we may not be "device color" due to |
730 | | how the data is encoded. Need to check for that case here */ |
731 | | /* Decide here if we need to decode or not. Essentially, as |
732 | | * far as I can gather, we use the top case if we DON'T need |
733 | | * to decode. This is fairly obviously conditional on |
734 | | * need_decode being set to 0. The major exception to this is |
735 | | * that if the colorspace is CIE, we interpolate, THEN decode, |
736 | | * so the decode is done later in the pipeline, so we needn't |
737 | | * decode here (see Bugs 692225 and 692331). */ |
738 | 0 | if (!need_decode) { |
739 | | /* 8-bit color values, possibly device indep. or device |
740 | | depend., not indexed. Decode range was [0 1] */ |
741 | 0 | if (!reversed) { |
742 | | /* Use the input data directly. sets up data in the |
743 | | stream buffer structure */ |
744 | 0 | stream_r->ptr = bdata - 1; |
745 | 0 | } else { |
746 | | /* Mirror the data in X. */ |
747 | 0 | const byte *p = bdata + row_size - spp_decode; |
748 | 0 | byte *q = out; |
749 | 0 | int i; |
750 | |
|
751 | 0 | for (i = 0; i < pss->params.WidthIn; |
752 | 0 | p -= spp_decode, q += spp_decode, ++i) |
753 | 0 | memcpy(q, p, spp_decode); |
754 | 0 | stream_r->ptr = out - 1; |
755 | 0 | } |
756 | 0 | } else { |
757 | | /* We need to do some decoding. Data will remain in 8 bits |
758 | | This does not occur if color space was CIE encoded. |
759 | | Then we do the decode during concretization which occurs |
760 | | after interpolation */ |
761 | 0 | int dc = penum->spp; |
762 | 0 | const byte *pdata = bdata; |
763 | 0 | byte *psrc = (byte *) penum->line; |
764 | 0 | int i, j; |
765 | 0 | int dpd = dc; |
766 | 0 | gs_client_color cc; |
767 | | |
768 | | /* Go backwards through the data */ |
769 | 0 | if (reversed) { |
770 | 0 | pdata += (pss->params.WidthIn - 1) * dpd; |
771 | 0 | dpd = - dpd; |
772 | 0 | } |
773 | 0 | stream_r->ptr = (byte *) psrc - 1; |
774 | 0 | for (i = 0; i < pss->params.WidthIn; i++, psrc += spp_decode) { |
775 | | /* Do the decode but remain in 8 bits */ |
776 | 0 | for (j = 0; j < dc; ++j) { |
777 | 0 | decode_sample(pdata[j], cc, j); |
778 | 0 | psrc[j] = float_color_to_byte_color(cc.paint.values[j]); |
779 | 0 | } |
780 | 0 | pdata += dpd; |
781 | 0 | } |
782 | 0 | } |
783 | 0 | } else { |
784 | | /* indexed 8 bit color values, possibly a device indep. or |
785 | | device depend. base space. We need to get out of the indexed |
786 | | space and into the base color space. Note that we need to |
787 | | worry about the decode function for the index values. */ |
788 | 0 | int bps = penum->bps; |
789 | 0 | int dc = penum->spp; |
790 | 0 | const byte *pdata = bdata; /* Input buffer */ |
791 | 0 | unsigned char *psrc = (unsigned char *) penum->line; /* Output */ |
792 | 0 | int i; |
793 | 0 | int dpd = dc * (bps <= 8 ? 1 : sizeof(frac)); |
794 | 0 | float max_range; |
795 | | |
796 | | /* Get max of decode range */ |
797 | 0 | max_range = (penum->map[0].decode_factor < 0 ? |
798 | 0 | penum->map[0].decode_base : |
799 | 0 | penum->map[0].decode_base + 255.0 * penum->map[0].decode_factor); |
800 | | /* flip the horizontal direction if indicated by the matrix value */ |
801 | 0 | if (reversed) { |
802 | 0 | pdata += (pss->params.WidthIn - 1) * dpd; |
803 | 0 | dpd = - dpd; |
804 | 0 | } |
805 | 0 | stream_r->ptr = (byte *) psrc - 1; |
806 | |
|
807 | 0 | for (i = 0; i < pss->params.WidthIn; i++, psrc += spp_decode) { |
808 | | /* Let's get directly to a decoded byte type loaded into |
809 | | psrc, and do the interpolation in the source space. Then |
810 | | we will do the appropriate remap function after |
811 | | interpolation. */ |
812 | | /* First we need to get the properly decoded value. */ |
813 | 0 | float decode_value; |
814 | 0 | switch ( penum->map[0].decoding ) |
815 | 0 | { |
816 | 0 | case sd_none: |
817 | | /* while our indexin is going to be 0 to 255.0 due to |
818 | | what is getting handed to us, the range of our |
819 | | original data may not have been as such and we may |
820 | | need to rescale, to properly lookup at the correct |
821 | | location (or do the proc correctly) during the index |
822 | | look-up. This occurs even if decoding was set to |
823 | | sd_none. */ |
824 | 0 | decode_value = (float) pdata[0] * (float)max_range / 255.0; |
825 | 0 | break; |
826 | 0 | case sd_lookup: |
827 | 0 | decode_value = |
828 | 0 | (float) penum->map[0].decode_lookup[pdata[0] >> 4]; |
829 | 0 | break; |
830 | 0 | case sd_compute: |
831 | 0 | decode_value = |
832 | 0 | penum->map[0].decode_base + |
833 | 0 | ((float) pdata[0]) * penum->map[0].decode_factor; |
834 | 0 | break; |
835 | 0 | default: |
836 | 0 | decode_value = 0; /* Quiet gcc warning. */ |
837 | 0 | } |
838 | 0 | gs_cspace_indexed_lookup_bytes(pcs, decode_value,psrc); |
839 | 0 | pdata += dpd; /* Can't have just ++ |
840 | | since we could be going backwards */ |
841 | 0 | } |
842 | 0 | } |
843 | 0 | } else { |
844 | | /* More than 8-bits/color values */ |
845 | | /* Even in this case we need to worry about an indexed color space. |
846 | | We need to get to the base color space for the interpolation and |
847 | | then if necessary do the remap to the device space */ |
848 | 0 | if (pcs == NULL || pcs->type->index != gs_color_space_index_Indexed) { |
849 | 0 | int bps = penum->bps; |
850 | 0 | int dc = penum->spp; |
851 | 0 | const byte *pdata = bdata; |
852 | 0 | frac *psrc = (frac *) penum->line; |
853 | 0 | int i, j; |
854 | 0 | int dpd = dc * (bps <= 8 ? 1 : sizeof(frac)); |
855 | |
|
856 | 0 | if (reversed) { |
857 | 0 | pdata += (pss->params.WidthIn - 1) * dpd; |
858 | 0 | dpd = - dpd; |
859 | 0 | } |
860 | 0 | stream_r->ptr = (byte *) psrc - 1; |
861 | 0 | if_debug0m('B', penum->memory, "[B]Remap row:\n[B]"); |
862 | 0 | if (is_icc) { |
863 | 0 | if (reversed) { |
864 | 0 | byte *to = penum->line; |
865 | 0 | for (i = 0; i < pss->params.WidthIn; i++) { |
866 | 0 | memcpy(to, pdata, -dpd); |
867 | 0 | to -= dpd; |
868 | 0 | pdata += dpd; |
869 | 0 | } |
870 | 0 | } else { |
871 | 0 | stream_r->ptr = (byte *) pdata - 1; |
872 | 0 | } |
873 | 0 | } else { |
874 | 0 | if (sizeof(frac) * dc == dpd) { |
875 | 0 | stream_r->ptr = (byte *) pdata - 1; |
876 | 0 | } else { |
877 | 0 | for (i = 0; i < pss->params.WidthIn; i++, |
878 | 0 | psrc += spp_decode) { |
879 | 0 | for (j = 0; j < dc; ++j) { |
880 | 0 | psrc[j] = ((const frac *)pdata)[j]; |
881 | 0 | } |
882 | 0 | pdata += dpd; |
883 | | #ifdef DEBUG |
884 | | if (gs_debug_c('B')) { |
885 | | int ci; |
886 | | |
887 | | for (ci = 0; ci < spp_decode; ++ci) |
888 | | dmprintf2(penum->memory, "%c%04x", (ci == 0 ? ' ' : ','), psrc[ci]); |
889 | | } |
890 | | #endif |
891 | 0 | } |
892 | 0 | } |
893 | 0 | } |
894 | 0 | if_debug0m('B', penum->memory, "\n"); |
895 | 0 | } else { |
896 | | /* indexed and more than 8bps. Need to get to the base space */ |
897 | 0 | int bps = penum->bps; |
898 | 0 | int dc = penum->spp; |
899 | 0 | const byte *pdata = bdata; /* Input buffer */ |
900 | 0 | frac *psrc = (frac *) penum->line; /* Output buffer */ |
901 | 0 | int i; |
902 | 0 | int dpd = dc * (bps <= 8 ? 1 : sizeof(frac)); |
903 | 0 | float decode_value; |
904 | | |
905 | | /* flip the horizontal direction if indicated by the matrix value */ |
906 | 0 | if (reversed) { |
907 | 0 | pdata += (pss->params.WidthIn - 1) * dpd; |
908 | 0 | dpd = - dpd; |
909 | 0 | } |
910 | 0 | stream_r->ptr = (byte *) psrc - 1; |
911 | 0 | for (i = 0; i < pss->params.WidthIn; i++, psrc += spp_decode) { |
912 | | /* Lets get the decoded value. Then we need to do the lookup |
913 | | of this */ |
914 | 0 | decode_value = penum->map[0].decode_base + |
915 | 0 | (((const frac *)pdata)[0]) * penum->map[0].decode_factor; |
916 | | /* Now we need to do the lookup of this value, and stick it |
917 | | in psrc as a frac, which is what the interpolator is |
918 | | expecting, since we had more than 8 bits of original |
919 | | image data */ |
920 | 0 | gs_cspace_indexed_lookup_frac(pcs, decode_value,psrc); |
921 | 0 | pdata += dpd; |
922 | 0 | } |
923 | 0 | } /* end of else on indexed */ |
924 | 0 | } /* end of else on more than 8 bps */ |
925 | 0 | stream_r->limit = stream_r->ptr + row_size; |
926 | 0 | } else { /* h == 0 */ |
927 | 0 | stream_r->ptr = 0, stream_r->limit = 0; |
928 | 0 | } |
929 | 0 | } |
930 | | |
931 | | static int |
932 | | handle_device_color(gx_image_enum *penum, const frac *psrc, |
933 | | gx_device_color *devc, gx_device *dev, |
934 | | const cmm_dev_profile_t *dev_profile, |
935 | | const gs_color_space *pcs) |
936 | 0 | { |
937 | 0 | const gs_gstate *pgs = penum->pgs; |
938 | |
|
939 | 0 | return (*pcs->type->remap_concrete_color) |
940 | 0 | (pcs, psrc, devc, pgs, dev, gs_color_select_source, dev_profile); |
941 | 0 | } |
942 | | |
943 | | /* LAB colors are normally decoded with a decode array |
944 | | * of [0 100 -128 127 -128 127 ]. The color management |
945 | | * however, expects this decode array NOT to have been |
946 | | * applied. |
947 | | * |
948 | | * It would be possible for an LAB image to be given a |
949 | | * non-standard decode array, in which case, we should |
950 | | * take account of that. The easiest way is to apply the |
951 | | * decode array as given, and then 'undo' the standard |
952 | | * one. |
953 | | */ |
954 | | static int |
955 | | handle_labicc_color8(gx_image_enum *penum, const frac *psrc, |
956 | | gx_device_color *devc, gx_device *dev, |
957 | | const cmm_dev_profile_t *dev_profile, |
958 | | const gs_color_space *pcs) |
959 | 0 | { |
960 | 0 | const gs_gstate *pgs = penum->pgs; |
961 | 0 | gs_client_color cc; |
962 | |
|
963 | 0 | decode_sample_frac_to_float(penum, psrc[0], &cc, 0); |
964 | 0 | decode_sample_frac_to_float(penum, psrc[1], &cc, 1); |
965 | 0 | decode_sample_frac_to_float(penum, psrc[2], &cc, 2); |
966 | 0 | cc.paint.values[0] /= 100.0; |
967 | 0 | cc.paint.values[1] = (cc.paint.values[1] + 128) / 255.0; |
968 | 0 | cc.paint.values[2] = (cc.paint.values[2] + 128) / 255.0; |
969 | 0 | return gx_remap_ICC_imagelab(&cc, pcs, devc, pgs, dev, gs_color_select_source); |
970 | 0 | } |
971 | | |
972 | | static int |
973 | | handle_labicc_color16(gx_image_enum *penum, const frac *psrc, |
974 | | gx_device_color *devc, gx_device *dev, |
975 | | const cmm_dev_profile_t *dev_profile, |
976 | | const gs_color_space *pcs) |
977 | 0 | { |
978 | 0 | const gs_gstate *pgs = penum->pgs; |
979 | 0 | gs_client_color cc; |
980 | |
|
981 | 0 | decode_sample_frac_to_float(penum, psrc[0], &cc, 0); |
982 | 0 | decode_sample_frac_to_float(penum, psrc[1], &cc, 1); |
983 | 0 | decode_sample_frac_to_float(penum, psrc[2], &cc, 2); |
984 | 0 | cc.paint.values[0] *= 0x7ff8 / 25500.0f; |
985 | 0 | cc.paint.values[1] = (cc.paint.values[1] + 128) * 0x7ff8 / 65025.0; |
986 | 0 | cc.paint.values[2] = (cc.paint.values[2] + 128) * 0x7ff8 / 65025.0; |
987 | 0 | return gx_remap_ICC_imagelab(&cc, pcs, devc, pgs, dev, gs_color_select_source); |
988 | 0 | } |
989 | | |
990 | | static int |
991 | | handle_lab_color8(gx_image_enum *penum, const frac *psrc, |
992 | | gx_device_color *devc, gx_device *dev, |
993 | | const cmm_dev_profile_t *dev_profile, |
994 | | const gs_color_space *pcs) |
995 | 0 | { |
996 | 0 | const gs_gstate *pgs = penum->pgs; |
997 | 0 | gs_client_color cc; |
998 | |
|
999 | 0 | decode_sample_frac_to_float(penum, psrc[0], &cc, 0); |
1000 | 0 | decode_sample_frac_to_float(penum, psrc[1], &cc, 1); |
1001 | 0 | decode_sample_frac_to_float(penum, psrc[2], &cc, 2); |
1002 | 0 | cc.paint.values[0] /= 100.0; |
1003 | 0 | cc.paint.values[1] = (cc.paint.values[1] + 128) / 255.0; |
1004 | 0 | cc.paint.values[2] = (cc.paint.values[2] + 128) / 255.0; |
1005 | 0 | return (pcs->type->remap_color) |
1006 | 0 | (&cc, pcs, devc, pgs, dev, gs_color_select_source); |
1007 | 0 | } |
1008 | | |
1009 | | static int |
1010 | | handle_lab_color16(gx_image_enum *penum, const frac *psrc, |
1011 | | gx_device_color *devc, gx_device *dev, |
1012 | | const cmm_dev_profile_t *dev_profile, |
1013 | | const gs_color_space *pcs) |
1014 | 0 | { |
1015 | 0 | const gs_gstate *pgs = penum->pgs; |
1016 | 0 | gs_client_color cc; |
1017 | |
|
1018 | 0 | decode_sample_frac_to_float(penum, psrc[0], &cc, 0); |
1019 | 0 | decode_sample_frac_to_float(penum, psrc[1], &cc, 1); |
1020 | 0 | decode_sample_frac_to_float(penum, psrc[2], &cc, 2); |
1021 | 0 | cc.paint.values[0] *= 0x7ff8 / 25500.0f; |
1022 | 0 | cc.paint.values[1] = (cc.paint.values[1] + 128) * 0x7ff8 / 65025.0; |
1023 | 0 | cc.paint.values[2] = (cc.paint.values[2] + 128) * 0x7ff8 / 65025.0; |
1024 | 0 | return (pcs->type->remap_color) |
1025 | 0 | (&cc, pcs, devc, pgs, dev, gs_color_select_source); |
1026 | 0 | } |
1027 | | |
1028 | | static int |
1029 | | handle_labicc_color2_idx(gx_image_enum *penum, const frac *psrc, |
1030 | | gx_device_color *devc, gx_device *dev, |
1031 | | const cmm_dev_profile_t *dev_profile, |
1032 | | const gs_color_space *pcs) |
1033 | 0 | { |
1034 | 0 | const gs_gstate *pgs = penum->pgs; |
1035 | 0 | gs_client_color cc; |
1036 | 0 | int j; |
1037 | 0 | int num_components = gs_color_space_num_components(pcs); |
1038 | | |
1039 | | /* If we were indexed, dont use the decode procedure for the index |
1040 | | values just get to float directly */ |
1041 | 0 | for (j = 0; j < num_components; ++j) |
1042 | 0 | cc.paint.values[j] = frac2float(psrc[j]); |
1043 | | /* If the source colors are LAB then use the mapping that does not |
1044 | | rescale the source colors */ |
1045 | 0 | return gx_remap_ICC_imagelab(&cc, pcs, devc, pgs, dev, |
1046 | 0 | gs_color_select_source); |
1047 | 0 | } |
1048 | | |
1049 | | static int |
1050 | | handle_remap_color_idx(gx_image_enum *penum, const frac *psrc, |
1051 | | gx_device_color *devc, gx_device *dev, |
1052 | | const cmm_dev_profile_t *dev_profile, |
1053 | | const gs_color_space *pcs) |
1054 | 0 | { |
1055 | 0 | const gs_gstate *pgs = penum->pgs; |
1056 | 0 | gs_client_color cc; |
1057 | 0 | int j; |
1058 | 0 | int num_components = gs_color_space_num_components(pcs); |
1059 | |
|
1060 | 0 | for (j = 0; j < num_components; ++j) |
1061 | 0 | cc.paint.values[j] = frac2float(psrc[j]); |
1062 | |
|
1063 | 0 | return (pcs->type->remap_color) |
1064 | 0 | (&cc, pcs, devc, pgs, dev, gs_color_select_source); |
1065 | 0 | } |
1066 | | |
1067 | | static int |
1068 | | handle_labicc_color2(gx_image_enum *penum, const frac *psrc, |
1069 | | gx_device_color *devc, gx_device *dev, |
1070 | | const cmm_dev_profile_t *dev_profile, |
1071 | | const gs_color_space *pcs) |
1072 | 0 | { |
1073 | 0 | const gs_gstate *pgs = penum->pgs; |
1074 | 0 | gs_client_color cc; |
1075 | 0 | int j; |
1076 | 0 | int num_components = gs_color_space_num_components(pcs); |
1077 | |
|
1078 | 0 | for (j = 0; j < num_components; ++j) |
1079 | 0 | decode_sample_frac_to_float(penum, psrc[j], &cc, j); |
1080 | | /* If the source colors are LAB then use the mapping that does not |
1081 | | rescale the source colors */ |
1082 | 0 | return gx_remap_ICC_imagelab(&cc, pcs, devc, pgs, dev, |
1083 | 0 | gs_color_select_source); |
1084 | 0 | } |
1085 | | |
1086 | | static int |
1087 | | handle_remap_color(gx_image_enum *penum, const frac *psrc, |
1088 | | gx_device_color *devc, gx_device *dev, |
1089 | | const cmm_dev_profile_t *dev_profile, |
1090 | | const gs_color_space *pcs) |
1091 | 0 | { |
1092 | 0 | const gs_gstate *pgs = penum->pgs; |
1093 | 0 | gs_client_color cc; |
1094 | 0 | int j; |
1095 | 0 | int num_components = gs_color_space_num_components(pcs); |
1096 | |
|
1097 | 0 | for (j = 0; j < num_components; ++j) |
1098 | 0 | decode_sample_frac_to_float(penum, psrc[j], &cc, j); |
1099 | |
|
1100 | 0 | return (pcs->type->remap_color) |
1101 | 0 | (&cc, pcs, devc, pgs, dev, gs_color_select_source); |
1102 | 0 | } |
1103 | | |
1104 | | typedef int (color_handler_fn)(gx_image_enum *penum, const frac *psrc, |
1105 | | gx_device_color *devc, gx_device *dev, |
1106 | | const cmm_dev_profile_t *dev_profile, |
1107 | | const gs_color_space *pcs); |
1108 | | |
1109 | | static color_handler_fn * |
1110 | | get_color_handler(gx_image_enum *penum, int spp_decode, |
1111 | | bool islab, const cmm_dev_profile_t *dev_profile, |
1112 | | const gs_color_space **pconc) |
1113 | 0 | { |
1114 | 0 | const gs_gstate *pgs = penum->pgs; |
1115 | 0 | const gs_color_space *pcs = penum->pcs; |
1116 | 0 | bool is_index_space; |
1117 | |
|
1118 | 0 | if (pcs == NULL) |
1119 | 0 | return NULL; /* Must be masked */ |
1120 | | |
1121 | 0 | is_index_space = (pcs->type->index == gs_color_space_index_Indexed); |
1122 | | /* If we are in a non device space then work from the pcs not from the |
1123 | | concrete space also handle index case, where base case was device type */ |
1124 | | /* We'll have done the interpolation in the base space, not the indexed |
1125 | | * space, so allow for that here. Also avoid problems with separation |
1126 | | * color spaces with check for presence of ICC profile */ |
1127 | 0 | if (is_index_space) |
1128 | 0 | pcs = pcs->base_space; |
1129 | 0 | if (dev_profile->usefastcolor && pcs->cmm_icc_profile_data != NULL && |
1130 | 0 | gsicc_is_default_profile(pcs->cmm_icc_profile_data) && |
1131 | 0 | dev_profile->device_profile[GS_DEFAULT_DEVICE_PROFILE]->num_comps == spp_decode) { |
1132 | 0 | const gs_color_space * pconcs = cs_concrete_space(pcs, pgs); |
1133 | 0 | if (pconcs && pconcs == pcs) { |
1134 | 0 | *pconc = pconcs; |
1135 | 0 | return handle_device_color; |
1136 | 0 | } |
1137 | 0 | } |
1138 | | |
1139 | 0 | *pconc = pcs; |
1140 | | /* If we are device dependent we need to get back to float prior to remap.*/ |
1141 | 0 | if (islab) { |
1142 | 0 | if (gs_color_space_is_ICC(pcs) && |
1143 | 0 | pcs->cmm_icc_profile_data != NULL && |
1144 | 0 | pcs->cmm_icc_profile_data->islab) |
1145 | 0 | return penum->bps <= 8 ? handle_labicc_color8 : handle_labicc_color16; |
1146 | 0 | else |
1147 | 0 | return penum->bps <= 8 ? handle_lab_color8 : handle_lab_color16; |
1148 | 0 | } else if (is_index_space) { |
1149 | 0 | if (gs_color_space_is_ICC(pcs) && |
1150 | 0 | pcs->cmm_icc_profile_data != NULL && |
1151 | 0 | pcs->cmm_icc_profile_data->islab) |
1152 | 0 | return handle_labicc_color2_idx; |
1153 | 0 | else |
1154 | 0 | return handle_remap_color_idx; |
1155 | 0 | } else { |
1156 | 0 | if (gs_color_space_is_ICC(pcs) && |
1157 | 0 | pcs->cmm_icc_profile_data != NULL && |
1158 | 0 | pcs->cmm_icc_profile_data->islab) |
1159 | 0 | return handle_labicc_color2; |
1160 | 0 | else |
1161 | 0 | return handle_remap_color; |
1162 | 0 | } |
1163 | 0 | } |
1164 | | |
1165 | | /* returns the expanded width using the dda.x */ |
1166 | | static int |
1167 | | interpolate_scaled_expanded_width(int delta_x, stream_image_scale_state *pss) |
1168 | 0 | { |
1169 | 0 | gx_dda_fixed_point tmp_dda = pss->params.scale_dda; |
1170 | 0 | int start_x = dda_current(tmp_dda.x); |
1171 | |
|
1172 | 0 | do { |
1173 | 0 | dda_next(tmp_dda.x); |
1174 | 0 | } while (--delta_x > 0); |
1175 | |
|
1176 | 0 | return dda_current(tmp_dda.x) - start_x; |
1177 | 0 | } |
1178 | | |
1179 | | /* returns the expanded height using the dda.y */ |
1180 | | static int |
1181 | | interpolate_scaled_expanded_height(int delta_y, stream_image_scale_state *pss) |
1182 | 0 | { |
1183 | 0 | gx_dda_fixed_point tmp_dda = pss->params.scale_dda; |
1184 | 0 | int start_y = dda_current(tmp_dda.y); |
1185 | |
|
1186 | 0 | do { |
1187 | 0 | dda_next(tmp_dda.y); |
1188 | 0 | } while (--delta_y > 0); |
1189 | |
|
1190 | 0 | return dda_current(tmp_dda.y) - start_y; |
1191 | 0 | } |
1192 | | |
1193 | | static int |
1194 | | image_render_interpolate(gx_image_enum * penum, const byte * buffer, |
1195 | | int data_x, uint iw, int h, gx_device * dev) |
1196 | 0 | { |
1197 | 0 | stream_image_scale_state *pss = penum->scaler; |
1198 | 0 | const gs_color_space *pcs = penum->pcs; |
1199 | 0 | gs_logical_operation_t lop = penum->log_op; |
1200 | 0 | int spp_decode = pss->params.spp_decode; |
1201 | 0 | stream_cursor_read stream_r; |
1202 | 0 | stream_cursor_write stream_w; |
1203 | 0 | byte *out = penum->line; |
1204 | 0 | bool islab = false; |
1205 | 0 | int abs_interp_limit = pss->params.abs_interp_limit; |
1206 | 0 | int limited_PatchWidthOut = (pss->params.PatchWidthOut + abs_interp_limit - 1) / abs_interp_limit; |
1207 | 0 | const gs_color_space *pconc; |
1208 | 0 | cmm_dev_profile_t *dev_profile; |
1209 | 0 | int code = dev_proc(penum->dev, get_profile)(penum->dev, &dev_profile); |
1210 | |
|
1211 | 0 | if (code < 0) |
1212 | 0 | return code; |
1213 | | |
1214 | 0 | if (!penum->masked && pcs->cmm_icc_profile_data != NULL) { |
1215 | 0 | islab = pcs->cmm_icc_profile_data->islab; |
1216 | 0 | } |
1217 | | /* Perform any decode procedure if needed */ |
1218 | 0 | initial_decode(penum, buffer, data_x, h, &stream_r, false); |
1219 | | /* |
1220 | | * Process input and/or collect output. By construction, the pixels are |
1221 | | * 1-for-1 with the device if the abs(interpolate_control) is 1 but the |
1222 | | * Y coordinate might be inverted. |
1223 | | */ |
1224 | 0 | { |
1225 | 0 | int xo = penum->xyi.x; |
1226 | 0 | int yo = penum->xyi.y; |
1227 | 0 | int width = (pss->params.WidthOut + abs_interp_limit - 1) / abs_interp_limit; |
1228 | 0 | int sizeofPixelOut = pss->params.BitsPerComponentOut / 8; |
1229 | 0 | int dy; |
1230 | 0 | int bpp = dev->color_info.depth; |
1231 | 0 | uint raster = bitmap_raster(width * bpp); |
1232 | 0 | color_handler_fn *color_handler = NULL; |
1233 | |
|
1234 | 0 | if (penum->matrix.yy > 0) |
1235 | 0 | dy = 1; |
1236 | 0 | else |
1237 | 0 | dy = -1, yo--; |
1238 | 0 | for (;;) { |
1239 | 0 | int ry = yo + penum->line_xy * dy; |
1240 | 0 | int x; |
1241 | 0 | const frac *psrc; |
1242 | 0 | gx_device_color devc; |
1243 | 0 | int status; |
1244 | 0 | byte *l_dptr = out; |
1245 | 0 | int l_dbit = 0; |
1246 | 0 | byte l_dbyte = 0; |
1247 | 0 | int l_xprev = (xo); |
1248 | 0 | int scaled_x_prev = 0; |
1249 | 0 | gx_dda_fixed save_x_dda = pss->params.scale_dda.x; |
1250 | |
|
1251 | 0 | devc.type = gx_dc_type_none; /* Needed for coverity, in call to color_is_pure() if color_handler is NULL. */ |
1252 | 0 | stream_w.limit = out + pss->params.WidthOut * |
1253 | 0 | max(spp_decode * sizeofPixelOut, ARCH_SIZEOF_COLOR_INDEX) - 1; |
1254 | 0 | stream_w.ptr = stream_w.limit - width * spp_decode * sizeofPixelOut; |
1255 | 0 | psrc = (const frac *)(stream_w.ptr + 1); |
1256 | | /* This is where the rescale takes place; this will consume the |
1257 | | * data from stream_r, and post processed data into stream_w. The |
1258 | | * data in stream_w may be bogus if we are outside the active |
1259 | | * region, and this will be indicated by pss->params.Active being |
1260 | | * set to false. */ |
1261 | 0 | status = (*pss->templat->process) |
1262 | 0 | ((stream_state *) pss, &stream_r, &stream_w, h == 0); |
1263 | 0 | if (status < 0 && status != EOFC) |
1264 | 0 | return_error(gs_error_ioerror); |
1265 | 0 | if (stream_w.ptr == stream_w.limit) { |
1266 | 0 | int xe = xo + limited_PatchWidthOut; |
1267 | 0 | int scaled_w = 0; /* accumulate scaled up width */ |
1268 | 0 | int scaled_h = 0; |
1269 | 0 | int scaled_y = 0; |
1270 | |
|
1271 | 0 | if (abs_interp_limit > 1) { |
1272 | 0 | scaled_h = interpolate_scaled_expanded_height(1, pss); |
1273 | 0 | scaled_y = yo + (dy * dda_current(pss->params.scale_dda.y)); |
1274 | 0 | } |
1275 | | |
1276 | | /* Are we active? (i.e. in the render rectangle) */ |
1277 | 0 | if (!pss->params.Active) |
1278 | 0 | goto inactive; |
1279 | 0 | if_debug1m('B', penum->memory, "[B]Interpolated row %d:\n[B]", |
1280 | 0 | penum->line_xy); |
1281 | 0 | psrc += ((pss->params.LeftMarginOut + abs_interp_limit - 1) / abs_interp_limit) * spp_decode; |
1282 | |
|
1283 | 0 | if (color_handler == NULL) |
1284 | 0 | color_handler = get_color_handler(penum, spp_decode, islab, dev_profile, &pconc); |
1285 | 0 | for (x = xo; x < xe;) { |
1286 | 0 | if (color_handler != NULL) { |
1287 | | #ifdef DEBUG |
1288 | | if (gs_debug_c('B')) { |
1289 | | int ci; |
1290 | | |
1291 | | for (ci = 0; ci < spp_decode; ++ci) |
1292 | | dmprintf2(dev->memory, "%c%04x", (ci == 0 ? ' ' : ','), |
1293 | | psrc[ci]); |
1294 | | } |
1295 | | #endif |
1296 | 0 | code = color_handler(penum, psrc, &devc, dev, dev_profile, pconc); |
1297 | 0 | if (code < 0) |
1298 | 0 | return code; |
1299 | 0 | } |
1300 | 0 | if (color_is_pure(&devc)) { |
1301 | 0 | gx_color_index color = devc.colors.pure; |
1302 | 0 | int expand = 1; |
1303 | |
|
1304 | 0 | if (abs_interp_limit > 1) { |
1305 | 0 | expand = interpolate_scaled_expanded_width(1, pss); |
1306 | 0 | } |
1307 | | /* Just pack colors into a scan line. */ |
1308 | | /* Skip runs quickly for the common cases. */ |
1309 | 0 | switch (spp_decode) { |
1310 | 0 | case 1: |
1311 | 0 | do { |
1312 | 0 | scaled_w += expand; |
1313 | 0 | while (expand-- > 0) { |
1314 | 0 | if (sizeof(color) > 4) { |
1315 | 0 | if (sample_store_next64(color, &l_dptr, &l_dbit, bpp, &l_dbyte) < 0) |
1316 | 0 | return_error(gs_error_rangecheck); |
1317 | 0 | } |
1318 | 0 | else { |
1319 | 0 | if (sample_store_next32(color, &l_dptr, &l_dbit, bpp, &l_dbyte) < 0) |
1320 | 0 | return_error(gs_error_rangecheck); |
1321 | 0 | } |
1322 | 0 | }; |
1323 | 0 | x++, psrc += 1; |
1324 | 0 | if (abs_interp_limit > 1) { |
1325 | 0 | dda_next(pss->params.scale_dda.x); |
1326 | 0 | expand = interpolate_scaled_expanded_width(1, pss); |
1327 | 0 | } else |
1328 | 0 | expand = 1; |
1329 | 0 | } while (x < xe && psrc[-1] == psrc[0]); |
1330 | 0 | break; |
1331 | 0 | case 3: |
1332 | 0 | do { |
1333 | 0 | scaled_w += expand; |
1334 | 0 | while (expand-- > 0) { |
1335 | 0 | if (sizeof(color) > 4) { |
1336 | 0 | if (sample_store_next64(color, &l_dptr, &l_dbit, bpp, &l_dbyte) < 0) |
1337 | 0 | return_error(gs_error_rangecheck); |
1338 | 0 | } |
1339 | 0 | else { |
1340 | 0 | if (sample_store_next32(color, &l_dptr, &l_dbit, bpp, &l_dbyte) < 0) |
1341 | 0 | return_error(gs_error_rangecheck); |
1342 | 0 | } |
1343 | 0 | }; |
1344 | 0 | x++, psrc += 3; |
1345 | 0 | if (abs_interp_limit > 1) { |
1346 | 0 | dda_next(pss->params.scale_dda.x); |
1347 | 0 | expand = interpolate_scaled_expanded_width(1, pss); |
1348 | 0 | } else |
1349 | 0 | expand = 1; |
1350 | 0 | } while (x < xe && |
1351 | 0 | psrc[-3] == psrc[0] && |
1352 | 0 | psrc[-2] == psrc[1] && |
1353 | 0 | psrc[-1] == psrc[2]); |
1354 | 0 | break; |
1355 | 0 | case 4: |
1356 | 0 | do { |
1357 | 0 | scaled_w += expand; |
1358 | 0 | while (expand-- > 0) { |
1359 | 0 | if (sizeof(color) > 4) { |
1360 | 0 | if (sample_store_next64(color, &l_dptr, &l_dbit, bpp, &l_dbyte) < 0) |
1361 | 0 | return_error(gs_error_rangecheck); |
1362 | 0 | } |
1363 | 0 | else { |
1364 | 0 | if (sample_store_next32(color, &l_dptr, &l_dbit, bpp, &l_dbyte) < 0) |
1365 | 0 | return_error(gs_error_rangecheck); |
1366 | 0 | } |
1367 | 0 | }; |
1368 | 0 | x++, psrc += 4; |
1369 | 0 | if (abs_interp_limit > 1) { |
1370 | 0 | dda_next(pss->params.scale_dda.x); |
1371 | 0 | expand = interpolate_scaled_expanded_width(1, pss); |
1372 | 0 | } else |
1373 | 0 | expand = 1; |
1374 | 0 | } while (x < xe && |
1375 | 0 | psrc[-4] == psrc[0] && |
1376 | 0 | psrc[-3] == psrc[1] && |
1377 | 0 | psrc[-2] == psrc[2] && |
1378 | 0 | psrc[-1] == psrc[3]); |
1379 | 0 | break; |
1380 | 0 | default: /* no run length check for these spp cases */ |
1381 | 0 | scaled_w += expand; |
1382 | 0 | while (expand-- > 0) { |
1383 | 0 | if (sizeof(color) > 4) { |
1384 | 0 | if (sample_store_next64(color, &l_dptr, &l_dbit, bpp, &l_dbyte) < 0) |
1385 | 0 | return_error(gs_error_rangecheck); |
1386 | 0 | } |
1387 | 0 | else { |
1388 | 0 | if (sample_store_next32(color, &l_dptr, &l_dbit, bpp, &l_dbyte) < 0) |
1389 | 0 | return_error(gs_error_rangecheck); |
1390 | 0 | } |
1391 | 0 | }; |
1392 | 0 | x++, psrc += spp_decode; |
1393 | 0 | if (abs_interp_limit > 1) |
1394 | 0 | dda_next(pss->params.scale_dda.x); |
1395 | 0 | } |
1396 | 0 | } else { |
1397 | 0 | int rcode, rep = 0; |
1398 | | |
1399 | | /* do _COPY in case any pure colors were accumulated above */ |
1400 | 0 | if ( x > l_xprev ) { |
1401 | 0 | sample_store_flush(l_dptr, l_dbit, l_dbyte); |
1402 | 0 | if (abs_interp_limit <= 1) { |
1403 | 0 | code = (*dev_proc(dev, copy_color)) |
1404 | 0 | (dev, out, l_xprev - xo, raster, |
1405 | 0 | gx_no_bitmap_id, l_xprev, ry, x - l_xprev, 1); |
1406 | 0 | if (code < 0) |
1407 | 0 | return code; |
1408 | 0 | } else { |
1409 | | /* scale up in X and Y */ |
1410 | 0 | int scaled_x = xo + scaled_x_prev; |
1411 | 0 | int i = scaled_h; |
1412 | 0 | int iy = scaled_y; |
1413 | |
|
1414 | 0 | for (; i > 0; --i) { |
1415 | 0 | code = (*dev_proc(dev, copy_color)) |
1416 | 0 | (dev, out, scaled_x_prev, raster, |
1417 | 0 | gx_no_bitmap_id, scaled_x, iy, scaled_w, 1); |
1418 | 0 | if (code < 0) |
1419 | 0 | return code; |
1420 | 0 | iy += dy; |
1421 | 0 | } |
1422 | 0 | scaled_x_prev = dda_current(pss->params.scale_dda.x); |
1423 | 0 | } |
1424 | 0 | } |
1425 | | /* as above, see if we can accumulate any runs */ |
1426 | 0 | switch (spp_decode) { |
1427 | 0 | case 1: |
1428 | 0 | do { |
1429 | 0 | rep++, psrc += 1; |
1430 | 0 | } while ((rep + x) < xe && |
1431 | 0 | psrc[-1] == psrc[0]); |
1432 | 0 | break; |
1433 | 0 | case 3: |
1434 | 0 | do { |
1435 | 0 | rep++, psrc += 3; |
1436 | 0 | } while ((rep + x) < xe && |
1437 | 0 | psrc[-3] == psrc[0] && |
1438 | 0 | psrc[-2] == psrc[1] && |
1439 | 0 | psrc[-1] == psrc[2]); |
1440 | 0 | break; |
1441 | 0 | case 4: |
1442 | 0 | do { |
1443 | 0 | rep++, psrc += 4; |
1444 | 0 | } while ((rep + x) < xe && |
1445 | 0 | psrc[-4] == psrc[0] && |
1446 | 0 | psrc[-3] == psrc[1] && |
1447 | 0 | psrc[-2] == psrc[2] && |
1448 | 0 | psrc[-1] == psrc[3]); |
1449 | 0 | break; |
1450 | 0 | default: |
1451 | 0 | rep = 1; |
1452 | 0 | psrc += spp_decode; |
1453 | 0 | break; |
1454 | 0 | } |
1455 | 0 | if (abs_interp_limit <= 1) { |
1456 | 0 | scaled_w = rep; |
1457 | 0 | rcode = gx_fill_rectangle_device_rop(x, ry, rep, 1, &devc, dev, lop); |
1458 | 0 | if (rcode < 0) |
1459 | 0 | return rcode; |
1460 | 0 | } else { |
1461 | 0 | int scaled_x = xo + scaled_x_prev; |
1462 | |
|
1463 | 0 | scaled_w = interpolate_scaled_expanded_width(rep, pss); |
1464 | 0 | rcode = gx_fill_rectangle_device_rop(scaled_x, scaled_y, scaled_w, scaled_h, |
1465 | 0 | &devc, dev, lop); |
1466 | 0 | if (rcode < 0) |
1467 | 0 | return rcode; |
1468 | 0 | dda_advance(pss->params.scale_dda.x, rep); |
1469 | 0 | scaled_x_prev = dda_current(pss->params.scale_dda.x); |
1470 | 0 | } |
1471 | 0 | while (scaled_w-- > 0) |
1472 | 0 | sample_store_skip_next(&l_dptr, &l_dbit, bpp, &l_dbyte); |
1473 | 0 | scaled_w = 0; |
1474 | 0 | l_xprev = x + rep; |
1475 | 0 | x += rep; |
1476 | 0 | } |
1477 | 0 | } /* End on x loop */ |
1478 | 0 | if ( x > l_xprev ) { |
1479 | 0 | sample_store_flush(l_dptr, l_dbit, l_dbyte); |
1480 | 0 | if (abs_interp_limit <= 1) { |
1481 | 0 | code = (*dev_proc(dev, copy_color)) |
1482 | 0 | (dev, out, l_xprev - xo, raster, |
1483 | 0 | gx_no_bitmap_id, l_xprev, ry, x - l_xprev, 1); |
1484 | 0 | if (code < 0) |
1485 | 0 | return code; |
1486 | 0 | } else { |
1487 | | /* scale up in X and Y */ |
1488 | 0 | int scaled_x = xo + scaled_x_prev; |
1489 | |
|
1490 | 0 | for (; scaled_h > 0; --scaled_h) { |
1491 | 0 | code = (*dev_proc(dev, copy_color)) |
1492 | 0 | (dev, out, scaled_x_prev, raster, |
1493 | 0 | gx_no_bitmap_id, scaled_x, scaled_y, scaled_w, 1); |
1494 | 0 | if (code < 0) |
1495 | 0 | return code; |
1496 | 0 | scaled_y += dy; |
1497 | 0 | } |
1498 | 0 | } |
1499 | 0 | } |
1500 | | /*if_debug1m('w', dev->memory, "[w]Y=%d:\n", ry);*/ /* See siscale.c about 'w'. */ |
1501 | 0 | inactive: |
1502 | 0 | penum->line_xy++; |
1503 | 0 | if (abs_interp_limit > 1) { |
1504 | 0 | dda_next(pss->params.scale_dda.y); |
1505 | 0 | pss->params.scale_dda.x = save_x_dda; /* reset X to start of line */ |
1506 | 0 | } |
1507 | 0 | if_debug0m('B', dev->memory, "\n"); |
1508 | 0 | } |
1509 | 0 | if ((status == 0 && stream_r.ptr == stream_r.limit) || status == EOFC) |
1510 | 0 | break; |
1511 | 0 | } |
1512 | 0 | } |
1513 | 0 | return (h == 0 ? 0 : 1); |
1514 | 0 | } |
1515 | | |
1516 | | static int |
1517 | | image_render_interpolate_masked(gx_image_enum * penum, const byte * buffer, |
1518 | | int data_x, uint iw, int h, gx_device * dev) |
1519 | 0 | { |
1520 | 0 | stream_image_scale_state *pss = penum->scaler; |
1521 | 0 | stream_cursor_read stream_r; |
1522 | 0 | stream_cursor_write stream_w; |
1523 | 0 | byte *out = penum->line; |
1524 | 0 | gx_color_index color = penum->icolor1->colors.pure; |
1525 | | |
1526 | | /* Perform any decode procedure if needed */ |
1527 | 0 | initial_decode(penum, buffer, data_x, h, &stream_r, false); |
1528 | | /* |
1529 | | * Process input and/or collect output. By construction, the pixels are |
1530 | | * 1-for-1 with the device, but the Y coordinate might be inverted. |
1531 | | */ |
1532 | 0 | { |
1533 | 0 | int xo = penum->xyi.x; |
1534 | 0 | int yo = penum->xyi.y; |
1535 | 0 | int width = pss->params.WidthOut; |
1536 | 0 | int dy; |
1537 | 0 | int bpp = dev->color_info.depth; |
1538 | 0 | uint raster = bitmap_raster(width * bpp); |
1539 | |
|
1540 | 0 | if (penum->matrix.yy > 0) |
1541 | 0 | dy = 1; |
1542 | 0 | else |
1543 | 0 | dy = -1, yo--; |
1544 | 0 | for (;;) { |
1545 | 0 | int ry = yo + penum->line_xy * dy; |
1546 | 0 | const byte *psrc; |
1547 | 0 | int status, code; |
1548 | |
|
1549 | 0 | stream_w.limit = out + width - 1; |
1550 | 0 | stream_w.ptr = stream_w.limit - width; |
1551 | 0 | psrc = stream_w.ptr + 1; |
1552 | | /* This is where the rescale takes place; this will consume the |
1553 | | * data from stream_r, and post processed data into stream_w. The |
1554 | | * data in stream_w may be bogus if we are outside the active |
1555 | | * region, and this will be indicated by pss->params.Active being |
1556 | | * set to false. */ |
1557 | 0 | status = (*pss->templat->process) |
1558 | 0 | ((stream_state *) pss, &stream_r, &stream_w, h == 0); |
1559 | 0 | if (status < 0 && status != EOFC) |
1560 | 0 | return_error(gs_error_ioerror); |
1561 | 0 | if (stream_w.ptr == stream_w.limit) { |
1562 | 0 | int xe = xo + pss->params.PatchWidthOut; |
1563 | | |
1564 | | /* Are we active? (i.e. in the render rectangle) */ |
1565 | 0 | if (!pss->params.Active) |
1566 | 0 | goto inactive; |
1567 | 0 | if_debug1m('B', penum->memory, "[B]Interpolated mask row %d:\n[B]", |
1568 | 0 | penum->line_xy); |
1569 | 0 | psrc += pss->params.LeftMarginOut; |
1570 | 0 | code = (*dev_proc(dev, copy_alpha)) |
1571 | 0 | (dev, psrc, 0, raster, |
1572 | 0 | gx_no_bitmap_id, xo, ry, xe-xo, 1, |
1573 | 0 | color, 8); |
1574 | 0 | if ( code < 0 ) |
1575 | 0 | return code; |
1576 | 0 | inactive: |
1577 | 0 | penum->line_xy++; |
1578 | 0 | if_debug0m('B', dev->memory, "\n"); |
1579 | 0 | } |
1580 | 0 | if ((status == 0 && stream_r.ptr == stream_r.limit) || status == EOFC) |
1581 | 0 | break; |
1582 | 0 | } |
1583 | 0 | } |
1584 | 0 | return (h == 0 ? 0 : 1); |
1585 | 0 | } |
1586 | | |
1587 | | static int |
1588 | | image_render_interpolate_masked_hl(gx_image_enum * penum, const byte * buffer, |
1589 | | int data_x, uint iw, int h, gx_device * dev) |
1590 | 0 | { |
1591 | 0 | stream_image_scale_state *pss = penum->scaler; |
1592 | 0 | stream_cursor_read stream_r; |
1593 | 0 | stream_cursor_write stream_w; |
1594 | 0 | byte *out = penum->line; |
1595 | | |
1596 | | /* Perform any decode procedure if needed */ |
1597 | 0 | initial_decode(penum, buffer, data_x, h, &stream_r, false); |
1598 | | /* |
1599 | | * Process input and/or collect output. By construction, the pixels are |
1600 | | * 1-for-1 with the device, but the Y coordinate might be inverted. |
1601 | | */ |
1602 | 0 | { |
1603 | 0 | int xo = penum->xyi.x; |
1604 | 0 | int yo = penum->xyi.y; |
1605 | 0 | int width = pss->params.WidthOut; |
1606 | 0 | int dy; |
1607 | 0 | int bpp = dev->color_info.depth; |
1608 | 0 | uint raster = bitmap_raster(width * bpp); |
1609 | |
|
1610 | 0 | if (penum->matrix.yy > 0) |
1611 | 0 | dy = 1; |
1612 | 0 | else |
1613 | 0 | dy = -1, yo--; |
1614 | 0 | for (;;) { |
1615 | 0 | int ry = yo + penum->line_xy * dy; |
1616 | 0 | const byte *psrc; |
1617 | 0 | int status, code; |
1618 | |
|
1619 | 0 | stream_w.limit = out + width - 1; |
1620 | 0 | stream_w.ptr = stream_w.limit - width; |
1621 | 0 | psrc = stream_w.ptr + 1; |
1622 | | /* This is where the rescale takes place; this will consume the |
1623 | | * data from stream_r, and post processed data into stream_w. The |
1624 | | * data in stream_w may be bogus if we are outside the active |
1625 | | * region, and this will be indicated by pss->params.Active being |
1626 | | * set to false. */ |
1627 | 0 | status = (*pss->templat->process) |
1628 | 0 | ((stream_state *) pss, &stream_r, &stream_w, h == 0); |
1629 | 0 | if (status < 0 && status != EOFC) |
1630 | 0 | return_error(gs_error_ioerror); |
1631 | 0 | if (stream_w.ptr == stream_w.limit) { |
1632 | 0 | int xe = xo + pss->params.PatchWidthOut; |
1633 | | |
1634 | | /* Are we active? (i.e. in the render rectangle) */ |
1635 | 0 | if (!pss->params.Active) |
1636 | 0 | goto inactive; |
1637 | 0 | if_debug1m('B', penum->memory, "[B]Interpolated mask row %d:\n[B]", |
1638 | 0 | penum->line_xy); |
1639 | 0 | psrc += pss->params.LeftMarginOut; |
1640 | 0 | code = (*dev_proc(dev, copy_alpha_hl_color)) |
1641 | 0 | (dev, psrc, 0, raster, |
1642 | 0 | gx_no_bitmap_id, xo, ry, xe-xo, 1, |
1643 | 0 | penum->icolor1, 8); |
1644 | 0 | if ( code < 0 ) |
1645 | 0 | return code; |
1646 | 0 | inactive: |
1647 | 0 | penum->line_xy++; |
1648 | 0 | if_debug0m('B', dev->memory, "\n"); |
1649 | 0 | } |
1650 | 0 | if ((status == 0 && stream_r.ptr == stream_r.limit) || status == EOFC) |
1651 | 0 | break; |
1652 | 0 | } |
1653 | 0 | } |
1654 | 0 | return (h == 0 ? 0 : 1); |
1655 | 0 | } |
1656 | | |
1657 | | static void |
1658 | | get_device_color(gx_image_enum * penum, unsigned short *p_cm_interp, |
1659 | | gx_device_color *devc, gx_color_index *color, gx_device * dev) |
1660 | 0 | { |
1661 | 0 | bool must_halftone = penum->icc_setup.must_halftone; |
1662 | 0 | bool has_transfer = penum->icc_setup.has_transfer; |
1663 | |
|
1664 | 0 | if (must_halftone || has_transfer) { |
1665 | | /* We need to do the tranfer function and/or the halftoning */ |
1666 | 0 | cmap_transfer_halftone(p_cm_interp, devc, penum->pgs, dev, |
1667 | 0 | has_transfer, must_halftone, gs_color_select_source); |
1668 | 0 | } else { |
1669 | | /* encode as a color index. avoid all the cv to frac to cv conversions */ |
1670 | 0 | *color = dev_proc(dev, encode_color)(dev, p_cm_interp); |
1671 | | /* check if the encoding was successful; we presume failure is rare */ |
1672 | 0 | if (*color != gx_no_color_index) |
1673 | 0 | color_set_pure(devc, *color); |
1674 | 0 | } |
1675 | 0 | } |
1676 | | |
1677 | | typedef int (*irii_core_fn)(gx_image_enum * penum, int xo, int xe, int spp_cm, unsigned short *p_cm_interp, gx_device *dev, int abs_interp_limit, int bpp, int raster, int yo, int dy, gs_logical_operation_t lop); |
1678 | | |
1679 | | static inline int |
1680 | | irii_inner_template(gx_image_enum * penum, int xo, int xe, int spp_cm, unsigned short *p_cm_interp, gx_device *dev, int abs_interp_limit, int bpp, int raster, int yo, int dy, gs_logical_operation_t lop) |
1681 | 0 | { |
1682 | 0 | int x; |
1683 | 0 | gx_device_color devc; |
1684 | 0 | gx_color_index color; |
1685 | 0 | stream_image_scale_state *pss = penum->scaler; |
1686 | 0 | int scaled_w = 0; /* accumulate scaled up width */ |
1687 | 0 | byte *out = penum->line; |
1688 | 0 | byte *l_dptr = out; |
1689 | 0 | int l_dbit = 0; |
1690 | 0 | byte l_dbyte = 0; |
1691 | 0 | int l_xprev = (xo); |
1692 | 0 | int scaled_x_prev = 0; |
1693 | 0 | int code; |
1694 | 0 | int ry = yo + penum->line_xy * dy; |
1695 | 0 | gx_dda_fixed save_x_dda = pss->params.scale_dda.x; |
1696 | 0 | int scaled_h = 0; |
1697 | 0 | int scaled_y = 0; |
1698 | |
|
1699 | 0 | if (abs_interp_limit > 1) { |
1700 | 0 | scaled_h = interpolate_scaled_expanded_height(1, pss); |
1701 | 0 | scaled_y = yo + (dy * dda_current(pss->params.scale_dda.y)); |
1702 | 0 | } |
1703 | |
|
1704 | 0 | for (x = xo; x < xe;) { |
1705 | |
|
1706 | | #ifdef DEBUG |
1707 | | if (gs_debug_c('B')) { |
1708 | | int ci; |
1709 | | |
1710 | | for (ci = 0; ci < spp_cm; ++ci) |
1711 | | dmprintf2(dev->memory, "%c%04x", (ci == 0 ? ' ' : ','), |
1712 | | p_cm_interp[ci]); |
1713 | | } |
1714 | | #endif |
1715 | | /* Get the device color */ |
1716 | 0 | get_device_color(penum, p_cm_interp, &devc, &color, dev); |
1717 | 0 | if (color_is_pure(&devc)) { |
1718 | 0 | gx_color_index color = devc.colors.pure; |
1719 | 0 | int expand = 1; |
1720 | |
|
1721 | 0 | if (abs_interp_limit > 1) { |
1722 | 0 | expand = interpolate_scaled_expanded_width(1, pss); |
1723 | 0 | } |
1724 | | /* Just pack colors into a scan line. */ |
1725 | | /* Skip runs quickly for the common cases. */ |
1726 | 0 | switch (spp_cm) { |
1727 | 0 | case 1: |
1728 | 0 | do { |
1729 | 0 | scaled_w += expand; |
1730 | 0 | while (expand-- > 0) { |
1731 | 0 | if (sizeof(color) > 4) { |
1732 | 0 | if (sample_store_next64(color, &l_dptr, &l_dbit, bpp, &l_dbyte) < 0) |
1733 | 0 | return_error(gs_error_rangecheck); |
1734 | 0 | } else { |
1735 | 0 | if (sample_store_next32(color, &l_dptr, &l_dbit, bpp, &l_dbyte) < 0) |
1736 | 0 | return_error(gs_error_rangecheck); |
1737 | 0 | } |
1738 | 0 | } |
1739 | 0 | x++, p_cm_interp += 1; |
1740 | 0 | if (abs_interp_limit > 1) { |
1741 | 0 | dda_next(pss->params.scale_dda.x); |
1742 | 0 | expand = interpolate_scaled_expanded_width(1, pss); |
1743 | 0 | } else |
1744 | 0 | expand = 1; |
1745 | 0 | } while (x < xe && p_cm_interp[-1] == p_cm_interp[0]); |
1746 | 0 | break; |
1747 | 0 | case 3: |
1748 | 0 | do { |
1749 | 0 | scaled_w += expand; |
1750 | 0 | while (expand-- > 0) { |
1751 | 0 | if (sizeof(color) > 4) { |
1752 | 0 | if (sample_store_next64(color, &l_dptr, &l_dbit, bpp, &l_dbyte) < 0) |
1753 | 0 | return_error(gs_error_rangecheck); |
1754 | 0 | } else { |
1755 | 0 | if (sample_store_next32(color, &l_dptr, &l_dbit, bpp, &l_dbyte) < 0) |
1756 | 0 | return_error(gs_error_rangecheck); |
1757 | 0 | } |
1758 | 0 | } |
1759 | 0 | x++, p_cm_interp += 3; |
1760 | 0 | if (abs_interp_limit > 1) { |
1761 | 0 | dda_next(pss->params.scale_dda.x); |
1762 | 0 | expand = interpolate_scaled_expanded_width(1, pss); |
1763 | 0 | } else |
1764 | 0 | expand = 1; |
1765 | 0 | } while (x < xe && p_cm_interp[-3] == p_cm_interp[0] && |
1766 | 0 | p_cm_interp[-2] == p_cm_interp[1] && |
1767 | 0 | p_cm_interp[-1] == p_cm_interp[2]); |
1768 | 0 | break; |
1769 | 0 | case 4: |
1770 | 0 | do { |
1771 | 0 | scaled_w += expand; |
1772 | 0 | while (expand-- > 0) { |
1773 | 0 | if (sizeof(color) > 4) { |
1774 | 0 | if (sample_store_next64(color, &l_dptr, &l_dbit, bpp, &l_dbyte) < 0) |
1775 | 0 | return_error(gs_error_rangecheck); |
1776 | 0 | } else { |
1777 | 0 | if (sample_store_next32(color, &l_dptr, &l_dbit, bpp, &l_dbyte) < 0) |
1778 | 0 | return_error(gs_error_rangecheck); |
1779 | 0 | } |
1780 | 0 | } |
1781 | 0 | x++, p_cm_interp += 4; |
1782 | 0 | if (abs_interp_limit > 1) { |
1783 | 0 | dda_next(pss->params.scale_dda.x); |
1784 | 0 | expand = interpolate_scaled_expanded_width(1, pss); |
1785 | 0 | } else |
1786 | 0 | expand = 1; |
1787 | 0 | } while (x < xe && p_cm_interp[-4] == p_cm_interp[0] && |
1788 | 0 | p_cm_interp[-3] == p_cm_interp[1] && |
1789 | 0 | p_cm_interp[-2] == p_cm_interp[2] && |
1790 | 0 | p_cm_interp[-1] == p_cm_interp[3]); |
1791 | 0 | break; |
1792 | 0 | default: |
1793 | 0 | scaled_w += expand; |
1794 | 0 | while (expand-- > 0) { |
1795 | 0 | if (sizeof(color) > 4) { |
1796 | 0 | if (sample_store_next64(color, &l_dptr, &l_dbit, bpp, &l_dbyte) < 0) |
1797 | 0 | return_error(gs_error_rangecheck); |
1798 | 0 | } else { |
1799 | 0 | if (sample_store_next32(color, &l_dptr, &l_dbit, bpp, &l_dbyte) < 0) |
1800 | 0 | return_error(gs_error_rangecheck); |
1801 | 0 | } |
1802 | 0 | }; |
1803 | 0 | x++, p_cm_interp += spp_cm; |
1804 | 0 | if (abs_interp_limit > 1) |
1805 | 0 | dda_next(pss->params.scale_dda.x); |
1806 | 0 | } |
1807 | 0 | } else { |
1808 | 0 | int rcode, rep = 0; |
1809 | | |
1810 | | /* do _COPY in case any pure colors were accumulated above*/ |
1811 | 0 | if ( x > l_xprev ) { |
1812 | 0 | sample_store_flush(l_dptr, l_dbit, l_dbyte); |
1813 | 0 | if (abs_interp_limit <= 1) { |
1814 | 0 | code = (*dev_proc(dev, copy_color)) |
1815 | 0 | (dev, out, l_xprev - xo, raster, |
1816 | 0 | gx_no_bitmap_id, l_xprev, ry, x - l_xprev, 1); |
1817 | 0 | if (code < 0) |
1818 | 0 | return code; |
1819 | 0 | } else { |
1820 | | /* scale up in X and Y */ |
1821 | 0 | int scaled_x = xo + scaled_x_prev; |
1822 | 0 | int i = scaled_h; |
1823 | 0 | int iy = scaled_y; |
1824 | |
|
1825 | 0 | for (; i > 0; --i) { |
1826 | 0 | code = (*dev_proc(dev, copy_color)) |
1827 | 0 | (dev, out, scaled_x_prev, raster, |
1828 | 0 | gx_no_bitmap_id, scaled_x, iy, scaled_w, 1); |
1829 | 0 | if (code < 0) |
1830 | 0 | return code; |
1831 | 0 | iy += dy; |
1832 | 0 | } |
1833 | 0 | scaled_x_prev = dda_current(pss->params.scale_dda.x); |
1834 | 0 | } |
1835 | 0 | } |
1836 | | /* as above, see if we can accumulate any runs */ |
1837 | 0 | switch (spp_cm) { |
1838 | 0 | case 1: |
1839 | 0 | do { |
1840 | 0 | rep++, p_cm_interp += 1; |
1841 | 0 | } while ((rep + x) < xe && p_cm_interp[-1] == p_cm_interp[0]); |
1842 | 0 | break; |
1843 | 0 | case 3: |
1844 | 0 | do { |
1845 | 0 | rep++, p_cm_interp += 3; |
1846 | 0 | } while ((rep + x) < xe && p_cm_interp[-3] == p_cm_interp[0] && |
1847 | 0 | p_cm_interp[-2] == p_cm_interp[1] && |
1848 | 0 | p_cm_interp[-1] == p_cm_interp[2]); |
1849 | 0 | break; |
1850 | 0 | case 4: |
1851 | 0 | do { |
1852 | 0 | rep++, p_cm_interp += 4; |
1853 | 0 | } while ((rep + x) < xe && p_cm_interp[-4] == p_cm_interp[0] && |
1854 | 0 | p_cm_interp[-3] == p_cm_interp[1] && |
1855 | 0 | p_cm_interp[-2] == p_cm_interp[2] && |
1856 | 0 | p_cm_interp[-1] == p_cm_interp[3]); |
1857 | 0 | break; |
1858 | 0 | default: |
1859 | 0 | rep = 1, p_cm_interp += spp_cm; |
1860 | 0 | break; |
1861 | 0 | } |
1862 | 0 | if (abs_interp_limit <= 1) { |
1863 | 0 | scaled_w = rep; |
1864 | 0 | rcode = gx_fill_rectangle_device_rop(x, ry, rep, 1, &devc, dev, lop); |
1865 | 0 | if (rcode < 0) |
1866 | 0 | return rcode; |
1867 | 0 | } else { |
1868 | 0 | int scaled_x = xo + scaled_x_prev; |
1869 | |
|
1870 | 0 | scaled_w = interpolate_scaled_expanded_width(rep, pss); |
1871 | 0 | rcode = gx_fill_rectangle_device_rop(scaled_x, scaled_y, scaled_w, scaled_h, |
1872 | 0 | &devc, dev, lop); |
1873 | 0 | if (rcode < 0) |
1874 | 0 | return rcode; |
1875 | 0 | dda_advance(pss->params.scale_dda.x, rep); |
1876 | 0 | scaled_x_prev = dda_current(pss->params.scale_dda.x); |
1877 | 0 | } |
1878 | 0 | while (scaled_w-- > 0) |
1879 | 0 | sample_store_skip_next(&l_dptr, &l_dbit, bpp, &l_dbyte); |
1880 | 0 | scaled_w = 0; |
1881 | 0 | x += rep; |
1882 | 0 | l_xprev = x; |
1883 | 0 | } |
1884 | 0 | } /* End on x loop */ |
1885 | 0 | if ( x > l_xprev ) { |
1886 | 0 | sample_store_flush(l_dptr, l_dbit, l_dbyte); |
1887 | 0 | if (abs_interp_limit <= 1) { |
1888 | 0 | code = (*dev_proc(dev, copy_color)) |
1889 | 0 | (dev, out, l_xprev - xo, raster, |
1890 | 0 | gx_no_bitmap_id, l_xprev, ry, x - l_xprev, 1); |
1891 | 0 | if (code < 0) |
1892 | 0 | return code; |
1893 | 0 | } else { |
1894 | | /* scale up in X and Y */ |
1895 | 0 | int scaled_x = xo + scaled_x_prev; |
1896 | |
|
1897 | 0 | for (; scaled_h > 0; --scaled_h) { |
1898 | 0 | code = (*dev_proc(dev, copy_color)) |
1899 | 0 | (dev, out, scaled_x_prev, raster, |
1900 | 0 | gx_no_bitmap_id, scaled_x, scaled_y, scaled_w, 1); |
1901 | 0 | if (code < 0) |
1902 | 0 | return code; |
1903 | 0 | scaled_y += dy; |
1904 | 0 | } |
1905 | 0 | } |
1906 | 0 | } |
1907 | 0 | if (abs_interp_limit > 1) { |
1908 | 0 | pss->params.scale_dda.x = save_x_dda; /* reset X to start of line */ |
1909 | 0 | } |
1910 | | /*if_debug1m('w', penum->memory, "[w]Y=%d:\n", ry);*/ /* See siscale.c about 'w'. */ |
1911 | 0 | return 0; |
1912 | 0 | } |
1913 | | |
1914 | | static int irii_inner_32bpp_4spp_1abs(gx_image_enum * penum, int xo, int xe, int spp_cm, unsigned short *p_cm_interp, gx_device *dev, int abs_interp_limit, int bpp, int raster, int yo, int dy, gs_logical_operation_t lop) |
1915 | 0 | { |
1916 | 0 | int x; |
1917 | 0 | gx_device_color devc; |
1918 | 0 | gx_color_index color; |
1919 | 0 | byte *out = penum->line; |
1920 | 0 | byte *l_dptr = out; |
1921 | 0 | int l_xprev = (xo); |
1922 | 0 | int code; |
1923 | 0 | int ry = yo + penum->line_xy * dy; |
1924 | |
|
1925 | 0 | for (x = xo; x < xe;) { |
1926 | |
|
1927 | | #ifdef DEBUG |
1928 | | if (gs_debug_c('B')) { |
1929 | | int ci; |
1930 | | |
1931 | | for (ci = 0; ci < 3; ++ci) |
1932 | | dmprintf2(dev->memory, "%c%04x", (ci == 0 ? ' ' : ','), |
1933 | | p_cm_interp[ci]); |
1934 | | } |
1935 | | #endif |
1936 | | /* Get the device color */ |
1937 | 0 | get_device_color(penum, p_cm_interp, &devc, &color, dev); |
1938 | 0 | if (color_is_pure(&devc)) { |
1939 | 0 | gx_color_index color = devc.colors.pure; |
1940 | | |
1941 | | /* Just pack colors into a scan line. */ |
1942 | | /* Skip runs quickly for the common cases. */ |
1943 | 0 | do { |
1944 | 0 | *l_dptr++ = (byte)(color >> 24); |
1945 | 0 | *l_dptr++ = (byte)(color >> 16); |
1946 | 0 | *l_dptr++ = (byte)(color >> 8); |
1947 | 0 | *l_dptr++ = (byte)(color); |
1948 | 0 | x++, p_cm_interp += 4; |
1949 | 0 | } while (x < xe && p_cm_interp[-4] == p_cm_interp[0] && |
1950 | 0 | p_cm_interp[-3] == p_cm_interp[1] && |
1951 | 0 | p_cm_interp[-2] == p_cm_interp[2] && |
1952 | 0 | p_cm_interp[-1] == p_cm_interp[3]); |
1953 | 0 | } |
1954 | 0 | else { |
1955 | 0 | int rep = 0; |
1956 | | |
1957 | | /* do _COPY in case any pure colors were accumulated above*/ |
1958 | 0 | if (x > l_xprev) { |
1959 | 0 | code = (*dev_proc(dev, copy_color)) |
1960 | 0 | (dev, out, l_xprev - xo, raster, |
1961 | 0 | gx_no_bitmap_id, l_xprev, ry, x - l_xprev, 1); |
1962 | 0 | if (code < 0) |
1963 | 0 | return code; |
1964 | 0 | } |
1965 | | /* as above, see if we can accumulate any runs */ |
1966 | 0 | do { |
1967 | 0 | rep++, p_cm_interp += 4; |
1968 | 0 | } while ((rep + x) < xe && p_cm_interp[-4] == p_cm_interp[0] && |
1969 | 0 | p_cm_interp[-3] == p_cm_interp[1] && |
1970 | 0 | p_cm_interp[-2] == p_cm_interp[2] && |
1971 | 0 | p_cm_interp[-1] == p_cm_interp[3]); |
1972 | 0 | code = gx_fill_rectangle_device_rop(x, ry, rep, 1, &devc, dev, lop); |
1973 | 0 | if (code < 0) |
1974 | 0 | return code; |
1975 | 0 | x += rep; |
1976 | 0 | l_xprev = x; |
1977 | 0 | l_dptr += 4 * rep; |
1978 | 0 | } |
1979 | 0 | } /* End on x loop */ |
1980 | 0 | if (x > l_xprev) { |
1981 | 0 | code = (*dev_proc(dev, copy_color)) |
1982 | 0 | (dev, out, l_xprev - xo, raster, |
1983 | 0 | gx_no_bitmap_id, l_xprev, ry, x - l_xprev, 1); |
1984 | 0 | if (code < 0) |
1985 | 0 | return code; |
1986 | 0 | } |
1987 | | /*if_debug1m('w', penum->memory, "[w]Y=%d:\n", ry);*/ /* See siscale.c about 'w'. */ |
1988 | 0 | return 0; |
1989 | 0 | } |
1990 | | |
1991 | | static int irii_inner_24bpp_3spp_1abs(gx_image_enum * penum, int xo, int xe, int spp_cm, unsigned short *p_cm_interp, gx_device *dev, int abs_interp_limit, int bpp, int raster, int yo, int dy, gs_logical_operation_t lop) |
1992 | 0 | { |
1993 | 0 | int x; |
1994 | 0 | gx_device_color devc; |
1995 | 0 | gx_color_index color; |
1996 | 0 | byte *out = penum->line; |
1997 | 0 | byte *l_dptr = out; |
1998 | 0 | int l_xprev = (xo); |
1999 | 0 | int code; |
2000 | 0 | int ry = yo + penum->line_xy * dy; |
2001 | |
|
2002 | 0 | for (x = xo; x < xe;) { |
2003 | | #ifdef DEBUG |
2004 | | if (gs_debug_c('B')) { |
2005 | | int ci; |
2006 | | |
2007 | | for (ci = 0; ci < 3; ++ci) |
2008 | | dmprintf2(dev->memory, "%c%04x", (ci == 0 ? ' ' : ','), |
2009 | | p_cm_interp[ci]); |
2010 | | } |
2011 | | #endif |
2012 | | /* Get the device color */ |
2013 | 0 | get_device_color(penum, p_cm_interp, &devc, &color, dev); |
2014 | 0 | if (color_is_pure(&devc)) { |
2015 | 0 | gx_color_index color = devc.colors.pure; |
2016 | | |
2017 | | /* Just pack colors into a scan line. */ |
2018 | | /* Skip runs quickly for the common cases. */ |
2019 | 0 | do { |
2020 | 0 | *l_dptr++ = (byte)(color >> 16); |
2021 | 0 | *l_dptr++ = (byte)(color >> 8); |
2022 | 0 | *l_dptr++ = (byte)(color); |
2023 | 0 | x++, p_cm_interp += 3; |
2024 | 0 | } while (x < xe && p_cm_interp[-3] == p_cm_interp[0] && |
2025 | 0 | p_cm_interp[-2] == p_cm_interp[1] && |
2026 | 0 | p_cm_interp[-1] == p_cm_interp[2]); |
2027 | 0 | } |
2028 | 0 | else { |
2029 | 0 | int rep = 0; |
2030 | | |
2031 | | /* do _COPY in case any pure colors were accumulated above*/ |
2032 | 0 | if (x > l_xprev) { |
2033 | 0 | code = (*dev_proc(dev, copy_color)) |
2034 | 0 | (dev, out, l_xprev - xo, raster, |
2035 | 0 | gx_no_bitmap_id, l_xprev, ry, x - l_xprev, 1); |
2036 | 0 | if (code < 0) |
2037 | 0 | return code; |
2038 | 0 | } |
2039 | | /* as above, see if we can accumulate any runs */ |
2040 | 0 | do { |
2041 | 0 | rep++, p_cm_interp += 3; |
2042 | 0 | } while ((rep + x) < xe && p_cm_interp[-3] == p_cm_interp[0] && |
2043 | 0 | p_cm_interp[-2] == p_cm_interp[1] && |
2044 | 0 | p_cm_interp[-1] == p_cm_interp[2]); |
2045 | 0 | code = gx_fill_rectangle_device_rop(x, ry, rep, 1, &devc, dev, lop); |
2046 | 0 | if (code < 0) |
2047 | 0 | return code; |
2048 | 0 | x += rep; |
2049 | 0 | l_xprev = x; |
2050 | 0 | l_dptr += 3 * rep; |
2051 | 0 | } |
2052 | 0 | } /* End on x loop */ |
2053 | 0 | if (x > l_xprev) { |
2054 | 0 | code = (*dev_proc(dev, copy_color)) |
2055 | 0 | (dev, out, l_xprev - xo, raster, |
2056 | 0 | gx_no_bitmap_id, l_xprev, ry, x - l_xprev, 1); |
2057 | 0 | if (code < 0) |
2058 | 0 | return code; |
2059 | 0 | } |
2060 | | /*if_debug1m('w', penum->memory, "[w]Y=%d:\n", ry);*/ /* See siscale.c about 'w'. */ |
2061 | 0 | return 0; |
2062 | 0 | } |
2063 | | |
2064 | | static int irii_inner_8bpp_1spp_1abs(gx_image_enum * penum, int xo, int xe, int spp_cm, unsigned short *p_cm_interp, gx_device *dev, int abs_interp_limit, int bpp, int raster, int yo, int dy, gs_logical_operation_t lop) |
2065 | 0 | { |
2066 | 0 | int x; |
2067 | 0 | gx_device_color devc; |
2068 | 0 | gx_color_index color; |
2069 | 0 | byte *out = penum->line; |
2070 | 0 | byte *l_dptr = out; |
2071 | 0 | int l_xprev = (xo); |
2072 | 0 | int code; |
2073 | 0 | int ry = yo + penum->line_xy * dy; |
2074 | |
|
2075 | 0 | for (x = xo; x < xe;) { |
2076 | | #ifdef DEBUG |
2077 | | if (gs_debug_c('B')) { |
2078 | | int ci; |
2079 | | |
2080 | | for (ci = 0; ci < 3; ++ci) |
2081 | | dmprintf2(dev->memory, "%c%04x", (ci == 0 ? ' ' : ','), |
2082 | | p_cm_interp[ci]); |
2083 | | } |
2084 | | #endif |
2085 | | /* Get the device color */ |
2086 | 0 | get_device_color(penum, p_cm_interp, &devc, &color, dev); |
2087 | 0 | if (color_is_pure(&devc)) { |
2088 | 0 | gx_color_index color = devc.colors.pure; |
2089 | | |
2090 | | /* Just pack colors into a scan line. */ |
2091 | | /* Skip runs quickly for the common cases. */ |
2092 | 0 | do { |
2093 | 0 | *l_dptr++ = (byte)(color); |
2094 | 0 | x++, p_cm_interp++; |
2095 | 0 | } while (x < xe && p_cm_interp[-1] == p_cm_interp[0]); |
2096 | 0 | } |
2097 | 0 | else { |
2098 | 0 | int rep = 0; |
2099 | | |
2100 | | /* do _COPY in case any pure colors were accumulated above*/ |
2101 | 0 | if (x > l_xprev) { |
2102 | 0 | code = (*dev_proc(dev, copy_color)) |
2103 | 0 | (dev, out, l_xprev - xo, raster, |
2104 | 0 | gx_no_bitmap_id, l_xprev, ry, x - l_xprev, 1); |
2105 | 0 | if (code < 0) |
2106 | 0 | return code; |
2107 | 0 | } |
2108 | | /* as above, see if we can accumulate any runs */ |
2109 | 0 | do { |
2110 | 0 | rep++, p_cm_interp++; |
2111 | 0 | } while ((rep + x) < xe && p_cm_interp[-1] == p_cm_interp[0]); |
2112 | 0 | code = gx_fill_rectangle_device_rop(x, ry, rep, 1, &devc, dev, lop); |
2113 | 0 | if (code < 0) |
2114 | 0 | return code; |
2115 | 0 | x += rep; |
2116 | 0 | l_xprev = x; |
2117 | 0 | l_dptr += rep; |
2118 | 0 | } |
2119 | 0 | } /* End on x loop */ |
2120 | 0 | if (x > l_xprev) { |
2121 | 0 | code = (*dev_proc(dev, copy_color)) |
2122 | 0 | (dev, out, l_xprev - xo, raster, |
2123 | 0 | gx_no_bitmap_id, l_xprev, ry, x - l_xprev, 1); |
2124 | 0 | if (code < 0) |
2125 | 0 | return code; |
2126 | 0 | } |
2127 | | /*if_debug1m('w', penum->memory, "[w]Y=%d:\n", ry);*/ /* See siscale.c about 'w'. */ |
2128 | 0 | return 0; |
2129 | 0 | } |
2130 | | |
2131 | | static int irii_inner_generic(gx_image_enum * penum, int xo, int xe, int spp_cm, unsigned short *p_cm_interp, gx_device *dev, int abs_interp_limit, int bpp, int raster, int yo, int dy, gs_logical_operation_t lop) |
2132 | 0 | { |
2133 | 0 | return irii_inner_template(penum, xo, xe, spp_cm, p_cm_interp, dev, abs_interp_limit, bpp, raster, yo, dy, lop); |
2134 | 0 | } |
2135 | | |
2136 | | /* Interpolation with ICC based source spaces. This is done seperately to |
2137 | | enable optimization and avoid the multiple tranformations that occur in |
2138 | | the above code */ |
2139 | | static int |
2140 | | image_render_interpolate_icc(gx_image_enum * penum, const byte * buffer, |
2141 | | int data_x, uint iw, int h, gx_device * dev) |
2142 | 0 | { |
2143 | 0 | stream_image_scale_state *pss = penum->scaler; |
2144 | 0 | const gs_gstate *pgs = penum->pgs; |
2145 | 0 | gs_logical_operation_t lop = penum->log_op; |
2146 | 0 | byte *out = penum->line; |
2147 | 0 | stream_cursor_read stream_r; |
2148 | 0 | stream_cursor_write stream_w; |
2149 | 0 | int abs_interp_limit = pss->params.abs_interp_limit; |
2150 | 0 | int limited_PatchWidthOut = (pss->params.PatchWidthOut + abs_interp_limit - 1) / abs_interp_limit; |
2151 | |
|
2152 | 0 | if (penum->icc_link == NULL) { |
2153 | 0 | return gs_rethrow(-1, "ICC Link not created during gs_image_class_0_interpolate"); |
2154 | 0 | } |
2155 | 0 | initial_decode(penum, buffer, data_x, h, &stream_r, true); |
2156 | | /* |
2157 | | * Process input and/or collect output. By construction, the pixels are |
2158 | | * 1-for-1 with the device, but the Y coordinate might be inverted. |
2159 | | * CM is performed on the entire row. |
2160 | | */ |
2161 | 0 | { |
2162 | 0 | int xo = penum->xyi.x; |
2163 | 0 | int yo = penum->xyi.y; |
2164 | 0 | int width = (pss->params.WidthOut + abs_interp_limit - 1) / abs_interp_limit; |
2165 | 0 | int width_in = pss->params.WidthIn; |
2166 | 0 | int sizeofPixelOut = pss->params.BitsPerComponentOut / 8; |
2167 | 0 | int dy; |
2168 | 0 | int bpp = dev->color_info.depth; |
2169 | 0 | uint raster = bitmap_raster(width * bpp); |
2170 | 0 | unsigned short *p_cm_interp; |
2171 | 0 | byte *p_cm_buff = NULL; |
2172 | 0 | byte *psrc; |
2173 | 0 | int spp_decode = pss->params.spp_decode; |
2174 | 0 | int spp_interp = pss->params.spp_interp; |
2175 | 0 | int spp_cm; |
2176 | 0 | gsicc_bufferdesc_t input_buff_desc; |
2177 | 0 | gsicc_bufferdesc_t output_buff_desc; |
2178 | 0 | int code; |
2179 | 0 | cmm_dev_profile_t *dev_profile; |
2180 | 0 | int num_bytes_decode = pss->params.BitsPerComponentIn / 8; |
2181 | 0 | irii_core_fn irii_core; |
2182 | |
|
2183 | 0 | code = dev_proc(dev, get_profile)(dev, &dev_profile); |
2184 | 0 | if (code) |
2185 | 0 | return code; |
2186 | 0 | spp_cm = gsicc_get_device_profile_comps(dev_profile); |
2187 | 0 | if (penum->matrix.yy > 0) |
2188 | 0 | dy = 1; |
2189 | 0 | else |
2190 | 0 | dy = -1, yo--; |
2191 | 0 | if (spp_cm == 4 && abs_interp_limit == 1 && bpp == 32) |
2192 | 0 | irii_core = &irii_inner_32bpp_4spp_1abs; |
2193 | 0 | else if (spp_cm == 3 && abs_interp_limit == 1 && bpp == 24) |
2194 | 0 | irii_core = &irii_inner_24bpp_3spp_1abs; |
2195 | 0 | else if (spp_cm == 1 && abs_interp_limit == 1 && bpp == 8) |
2196 | 0 | irii_core = &irii_inner_8bpp_1spp_1abs; |
2197 | 0 | else |
2198 | 0 | irii_core = &irii_inner_generic; |
2199 | | |
2200 | | /* If it makes sense (if enlarging), do early CM */ |
2201 | 0 | if (pss->params.early_cm && !penum->icc_link->is_identity |
2202 | 0 | && stream_r.ptr != stream_r.limit) { |
2203 | | /* Get the buffers set up. */ |
2204 | 0 | p_cm_buff = |
2205 | 0 | (byte *) gs_alloc_bytes(pgs->memory, |
2206 | 0 | (size_t)num_bytes_decode * width_in * spp_cm, |
2207 | 0 | "image_render_interpolate_icc"); |
2208 | 0 | if (p_cm_buff == NULL) |
2209 | 0 | return_error(gs_error_VMerror); |
2210 | | |
2211 | | /* Set up the buffer descriptors. We keep the bytes the same */ |
2212 | 0 | gsicc_init_buffer(&input_buff_desc, spp_decode, num_bytes_decode, |
2213 | 0 | false, false, false, 0, width_in * spp_decode, |
2214 | 0 | 1, width_in); |
2215 | 0 | gsicc_init_buffer(&output_buff_desc, spp_cm, num_bytes_decode, |
2216 | 0 | false, false, false, 0, width_in * spp_cm, |
2217 | 0 | 1, width_in); |
2218 | | /* Do the transformation */ |
2219 | 0 | psrc = (byte*) (stream_r.ptr + 1); |
2220 | 0 | code = (penum->icc_link->procs.map_buffer)(dev, penum->icc_link, &input_buff_desc, |
2221 | 0 | &output_buff_desc, (void*) psrc, |
2222 | 0 | (void*) p_cm_buff); |
2223 | 0 | if (code < 0) |
2224 | 0 | return code; |
2225 | | |
2226 | | /* Re-set the reading stream to use the cm data */ |
2227 | 0 | stream_r.ptr = p_cm_buff - 1; |
2228 | 0 | stream_r.limit = stream_r.ptr + num_bytes_decode * width_in * spp_cm; |
2229 | 0 | } else { |
2230 | | /* CM after interpolation (or none). Just set up the buffers |
2231 | | if needed. 16 bit operations if CM takes place. */ |
2232 | 0 | if (!penum->icc_link->is_identity) { |
2233 | 0 | p_cm_buff = (byte *) gs_alloc_bytes(pgs->memory, |
2234 | 0 | sizeof(unsigned short) * width * spp_cm, |
2235 | 0 | "image_render_interpolate_icc"); |
2236 | 0 | if (!p_cm_buff) { |
2237 | 0 | return gs_error_VMerror; |
2238 | 0 | } |
2239 | | /* Set up the buffer descriptors. */ |
2240 | 0 | gsicc_init_buffer(&input_buff_desc, spp_decode, 2, |
2241 | 0 | false, false, false, 0, width * spp_decode, |
2242 | 0 | 1, limited_PatchWidthOut); |
2243 | 0 | gsicc_init_buffer(&output_buff_desc, spp_cm, 2, |
2244 | 0 | false, false, false, 0, width * spp_cm, |
2245 | 0 | 1, limited_PatchWidthOut); |
2246 | 0 | } |
2247 | 0 | } |
2248 | 0 | for (;;) { |
2249 | 0 | const unsigned short *pinterp; |
2250 | 0 | int status; |
2251 | |
|
2252 | 0 | stream_w.limit = out + pss->params.WidthOut * |
2253 | 0 | max(spp_decode * sizeofPixelOut, ARCH_SIZEOF_COLOR_INDEX) - 1; |
2254 | 0 | stream_w.ptr = stream_w.limit - width * spp_interp * sizeofPixelOut; |
2255 | 0 | pinterp = (const unsigned short *)(stream_w.ptr + 1); |
2256 | | /* This is where the rescale takes place; this will consume the |
2257 | | * data from stream_r, and post processed data into stream_w. The |
2258 | | * data in stream_w may be bogus if we are outside the active |
2259 | | * region, and this will be indiated by pss->params.Active being |
2260 | | * set to false. */ |
2261 | 0 | status = (*pss->templat->process) |
2262 | 0 | ((stream_state *) pss, &stream_r, &stream_w, h == 0); |
2263 | 0 | if (status < 0 && status != EOFC) |
2264 | 0 | return_error(gs_error_ioerror); |
2265 | 0 | if (stream_w.ptr == stream_w.limit) { |
2266 | 0 | int xe = xo + limited_PatchWidthOut; |
2267 | | |
2268 | | /* Are we active? (i.e. in the render rectangle) */ |
2269 | 0 | if (!pss->params.Active) |
2270 | 0 | goto inactive; |
2271 | 0 | if_debug1m('B', penum->memory, "[B]Interpolated row %d:\n[B]", |
2272 | 0 | penum->line_xy); |
2273 | | /* Take care of CM on the entire interpolated row, if we |
2274 | | did not already do CM */ |
2275 | 0 | if (penum->icc_link->is_identity || pss->params.early_cm) { |
2276 | | /* Fastest case. No CM needed */ |
2277 | 0 | p_cm_interp = (unsigned short *) pinterp; |
2278 | 0 | p_cm_interp += (pss->params.LeftMarginOut / abs_interp_limit) * spp_cm; |
2279 | 0 | } else { |
2280 | | /* Transform */ |
2281 | 0 | pinterp += (pss->params.LeftMarginOut / abs_interp_limit) * spp_decode; |
2282 | 0 | p_cm_interp = (unsigned short *) p_cm_buff; |
2283 | 0 | p_cm_interp += (pss->params.LeftMarginOut / abs_interp_limit) * spp_cm; |
2284 | 0 | code = (penum->icc_link->procs.map_buffer)(dev, penum->icc_link, |
2285 | 0 | &input_buff_desc, |
2286 | 0 | &output_buff_desc, |
2287 | 0 | (void*) pinterp, |
2288 | 0 | (void*) p_cm_interp); |
2289 | 0 | if (code < 0) |
2290 | 0 | return code; |
2291 | 0 | } |
2292 | 0 | code = irii_core(penum, xo, xe, spp_cm, p_cm_interp, dev, abs_interp_limit, bpp, raster, yo, dy, lop); |
2293 | 0 | if (code < 0) |
2294 | 0 | return code; |
2295 | 0 | inactive: |
2296 | 0 | penum->line_xy++; |
2297 | 0 | if (abs_interp_limit > 1) { |
2298 | 0 | dda_next(pss->params.scale_dda.y); |
2299 | 0 | } |
2300 | 0 | if_debug0m('B', penum->memory, "\n"); |
2301 | 0 | } |
2302 | 0 | if ((status == 0 && stream_r.ptr == stream_r.limit) || status == EOFC) |
2303 | 0 | break; |
2304 | 0 | } |
2305 | | /* Free cm buffer, if it was used */ |
2306 | 0 | if (p_cm_buff != NULL) { |
2307 | 0 | gs_free_object(pgs->memory, (byte *)p_cm_buff, |
2308 | 0 | "image_render_interpolate_icc"); |
2309 | 0 | } |
2310 | 0 | } |
2311 | 0 | return (h == 0 ? 0 : 1); |
2312 | 0 | } |
2313 | | |
2314 | | static int |
2315 | | image_render_interpolate_landscape(gx_image_enum * penum, |
2316 | | const byte * buffer, |
2317 | | int data_x, uint iw, int h, |
2318 | | gx_device * dev) |
2319 | 0 | { |
2320 | 0 | stream_image_scale_state *pss = penum->scaler; |
2321 | 0 | const gs_color_space *pcs = penum->pcs; |
2322 | 0 | gs_logical_operation_t lop = penum->log_op; |
2323 | 0 | int spp_decode = pss->params.spp_decode; |
2324 | 0 | stream_cursor_read stream_r; |
2325 | 0 | stream_cursor_write stream_w; |
2326 | 0 | byte *out = penum->line; |
2327 | 0 | bool islab = false; |
2328 | 0 | int abs_interp_limit = pss->params.abs_interp_limit; |
2329 | 0 | const gs_color_space *pconc; |
2330 | 0 | cmm_dev_profile_t *dev_profile; |
2331 | 0 | int code = dev_proc(penum->dev, get_profile)(penum->dev, &dev_profile); |
2332 | |
|
2333 | 0 | if (code < 0) |
2334 | 0 | return code; |
2335 | | |
2336 | 0 | if (pcs->cmm_icc_profile_data != NULL) { |
2337 | 0 | islab = pcs->cmm_icc_profile_data->islab; |
2338 | 0 | } |
2339 | | /* Perform any decode procedure if needed */ |
2340 | 0 | initial_decode(penum, buffer, data_x, h, &stream_r, false); |
2341 | | /* |
2342 | | * Process input and/or collect output. By construction, the pixels are |
2343 | | * 1-for-1 with the device, but the Y coordinate might be inverted. |
2344 | | */ |
2345 | 0 | { |
2346 | 0 | int xo = penum->xyi.y; |
2347 | 0 | int yo = penum->xyi.x; |
2348 | 0 | int width = (pss->params.WidthOut + abs_interp_limit - 1) / abs_interp_limit; |
2349 | 0 | int sizeofPixelOut = pss->params.BitsPerComponentOut / 8; |
2350 | 0 | int dy; |
2351 | 0 | color_handler_fn *color_handler = NULL; |
2352 | |
|
2353 | 0 | if (penum->matrix.yx > 0) |
2354 | 0 | dy = 1; |
2355 | 0 | else |
2356 | 0 | dy = -1, yo--; |
2357 | 0 | for (;;) { |
2358 | 0 | int ry = yo + penum->line_xy * dy; |
2359 | 0 | int x; |
2360 | 0 | const frac *psrc; |
2361 | 0 | gx_device_color devc; |
2362 | 0 | int status; |
2363 | 0 | int scaled_w = 0; |
2364 | 0 | gx_dda_fixed save_x_dda; |
2365 | |
|
2366 | 0 | if (abs_interp_limit > 1) { |
2367 | 0 | save_x_dda = pss->params.scale_dda.x; |
2368 | 0 | } |
2369 | 0 | stream_w.limit = out + width * |
2370 | 0 | max(spp_decode * sizeofPixelOut, ARCH_SIZEOF_COLOR_INDEX) - 1; |
2371 | 0 | stream_w.ptr = stream_w.limit - width * spp_decode * sizeofPixelOut; |
2372 | 0 | psrc = (const frac *)(stream_w.ptr + 1); |
2373 | | /* This is where the rescale takes place; this will consume the |
2374 | | * data from stream_r, and post processed data into stream_w. The |
2375 | | * data in stream_w may be bogus if we are outside the active |
2376 | | * region, and this will be indicated by pss->params.Active being |
2377 | | * set to false. */ |
2378 | 0 | status = (*pss->templat->process) |
2379 | 0 | ((stream_state *) pss, &stream_r, &stream_w, h == 0); |
2380 | 0 | if (status < 0 && status != EOFC) |
2381 | 0 | return_error(gs_error_ioerror); |
2382 | 0 | if (stream_w.ptr == stream_w.limit) { |
2383 | 0 | int xe = xo + (pss->params.PatchWidthOut + abs_interp_limit - 1) / abs_interp_limit; |
2384 | 0 | int scaled_h = 0; |
2385 | 0 | int scaled_y = 0; |
2386 | |
|
2387 | 0 | if (abs_interp_limit > 1) { |
2388 | 0 | scaled_h = interpolate_scaled_expanded_height(1, pss); |
2389 | 0 | scaled_y = yo + (dy * dda_current(pss->params.scale_dda.y)) - |
2390 | 0 | ((dy < 0) ? (scaled_h - 1) : 0); |
2391 | 0 | } |
2392 | | |
2393 | | /* Are we active? (i.e. in the render rectangle) */ |
2394 | 0 | if (!pss->params.Active) |
2395 | 0 | goto inactive; |
2396 | 0 | if_debug1m('B', penum->memory, "[B]Interpolated (rotated) row %d:\n[B]", |
2397 | 0 | penum->line_xy); |
2398 | 0 | psrc += (pss->params.LeftMarginOut / abs_interp_limit) * spp_decode; |
2399 | 0 | if (color_handler == NULL) |
2400 | 0 | color_handler = get_color_handler(penum, spp_decode, islab, dev_profile, &pconc); |
2401 | 0 | for (x = xo; x < xe;) { |
2402 | 0 | if (color_handler != NULL) { |
2403 | | #ifdef DEBUG |
2404 | | if (gs_debug_c('B')) { |
2405 | | int ci; |
2406 | | |
2407 | | for (ci = 0; ci < spp_decode; ++ci) |
2408 | | dmprintf2(dev->memory, "%c%04x", (ci == 0 ? ' ' : ','), |
2409 | | psrc[ci]); |
2410 | | } |
2411 | | #endif |
2412 | 0 | code = color_handler(penum, psrc, &devc, dev, dev_profile, pconc); |
2413 | 0 | if (code < 0) |
2414 | 0 | return code; |
2415 | 0 | } |
2416 | | /* We scan for vertical runs of pixels, even if they end up |
2417 | | * being split up in most cases within copy_color_unaligned anyway. */ |
2418 | 0 | { |
2419 | 0 | int rcode; |
2420 | 0 | int rep = 0; |
2421 | | |
2422 | | /* as above, see if we can accumulate any runs */ |
2423 | 0 | switch (spp_decode) { |
2424 | 0 | case 1: |
2425 | 0 | do { |
2426 | 0 | rep++, psrc += 1; |
2427 | 0 | } while ((rep + x) < xe && |
2428 | 0 | psrc[-1] == psrc[0]); |
2429 | 0 | break; |
2430 | 0 | case 3: |
2431 | 0 | do { |
2432 | 0 | rep++, psrc += 3; |
2433 | 0 | } while ((rep + x) < xe && |
2434 | 0 | psrc[-3] == psrc[0] && |
2435 | 0 | psrc[-2] == psrc[1] && |
2436 | 0 | psrc[-1] == psrc[2]); |
2437 | 0 | break; |
2438 | 0 | case 4: |
2439 | 0 | do { |
2440 | 0 | rep++, psrc += 4; |
2441 | 0 | } while ((rep + x) < xe && |
2442 | 0 | psrc[-4] == psrc[0] && |
2443 | 0 | psrc[-3] == psrc[1] && |
2444 | 0 | psrc[-2] == psrc[2] && |
2445 | 0 | psrc[-1] == psrc[3]); |
2446 | 0 | break; |
2447 | 0 | default: |
2448 | 0 | rep = 1; |
2449 | 0 | psrc += spp_decode; |
2450 | 0 | break; |
2451 | 0 | } |
2452 | 0 | if (abs_interp_limit <= 1) { |
2453 | 0 | rcode = gx_fill_rectangle_device_rop(ry, x, 1, rep, &devc, dev, lop); |
2454 | 0 | if (rcode < 0) |
2455 | 0 | return rcode; |
2456 | 0 | } else { |
2457 | 0 | int scaled_x = xo + dda_current(pss->params.scale_dda.x); |
2458 | |
|
2459 | 0 | scaled_w = interpolate_scaled_expanded_width(rep, pss); |
2460 | 0 | rcode = gx_fill_rectangle_device_rop(scaled_y, scaled_x, scaled_h, scaled_w, |
2461 | 0 | &devc, dev, lop); |
2462 | 0 | if (rcode < 0) |
2463 | 0 | return rcode; |
2464 | 0 | dda_advance(pss->params.scale_dda.x, rep); |
2465 | 0 | } |
2466 | 0 | x += rep; |
2467 | 0 | } |
2468 | 0 | } |
2469 | | /*if_debug1m('w', dev->memory, "[w]Y=%d:\n", ry);*/ /* See siscale.c about 'w'. */ |
2470 | 0 | inactive: |
2471 | 0 | penum->line_xy++; |
2472 | 0 | if (abs_interp_limit > 1) { |
2473 | 0 | dda_next(pss->params.scale_dda.y); |
2474 | 0 | pss->params.scale_dda.x = save_x_dda; /* reset X to start of line */ |
2475 | 0 | } |
2476 | 0 | if_debug0m('B', dev->memory, "\n"); |
2477 | 0 | } |
2478 | 0 | if ((status == 0 && stream_r.ptr == stream_r.limit) || status == EOFC) |
2479 | 0 | break; |
2480 | 0 | } |
2481 | 0 | } |
2482 | 0 | return (h == 0 ? 0 : 1); |
2483 | 0 | } |
2484 | | |
2485 | | static int |
2486 | | image_render_interpolate_landscape_masked(gx_image_enum * penum, |
2487 | | const byte * buffer, |
2488 | | int data_x, uint iw, int h, |
2489 | | gx_device * dev) |
2490 | 0 | { |
2491 | 0 | stream_image_scale_state *pss = penum->scaler; |
2492 | 0 | int spp_decode = pss->params.spp_decode; |
2493 | 0 | stream_cursor_read stream_r; |
2494 | 0 | stream_cursor_write stream_w; |
2495 | 0 | byte *out = penum->line; |
2496 | 0 | gx_color_index color = penum->icolor1->colors.pure; |
2497 | | |
2498 | | /* Perform any decode procedure if needed. Probably only reversal |
2499 | | * of the data in this case. */ |
2500 | 0 | initial_decode(penum, buffer, data_x, h, &stream_r, false); |
2501 | | /* |
2502 | | * Process input and/or collect output. By construction, the pixels are |
2503 | | * 1-for-1 with the device, but the Y coordinate might be inverted. |
2504 | | */ |
2505 | 0 | { |
2506 | 0 | int xo = penum->xyi.y; |
2507 | 0 | int yo = penum->xyi.x; |
2508 | 0 | int width = pss->params.WidthOut; |
2509 | 0 | int sizeofPixelOut = pss->params.BitsPerComponentOut / 8; |
2510 | 0 | int dy; |
2511 | |
|
2512 | 0 | if (penum->matrix.yx > 0) |
2513 | 0 | dy = 1; |
2514 | 0 | else |
2515 | 0 | dy = -1, yo--; |
2516 | 0 | for (;;) { |
2517 | 0 | int ry = yo + penum->line_xy * dy; |
2518 | 0 | int x; |
2519 | 0 | const byte *psrc; |
2520 | 0 | int status, code; |
2521 | |
|
2522 | 0 | stream_w.limit = out + width * |
2523 | 0 | max(spp_decode * sizeofPixelOut, ARCH_SIZEOF_COLOR_INDEX) - 1; |
2524 | 0 | stream_w.ptr = stream_w.limit - width * spp_decode * sizeofPixelOut; |
2525 | 0 | psrc = stream_w.ptr + 1; |
2526 | | /* This is where the rescale takes place; this will consume the |
2527 | | * data from stream_r, and post processed data into stream_w. The |
2528 | | * data in stream_w may be bogus if we are outside the active |
2529 | | * region, and this will be indicated by pss->params.Active being |
2530 | | * set to false. */ |
2531 | 0 | status = (*pss->templat->process) |
2532 | 0 | ((stream_state *) pss, &stream_r, &stream_w, h == 0); |
2533 | 0 | if (status < 0 && status != EOFC) |
2534 | 0 | return_error(gs_error_ioerror); |
2535 | 0 | if (stream_w.ptr == stream_w.limit) { |
2536 | 0 | int xe = xo + pss->params.PatchWidthOut; |
2537 | | |
2538 | | /* Are we active? (i.e. in the render rectangle) */ |
2539 | 0 | if (!pss->params.Active) |
2540 | 0 | goto inactive; |
2541 | 0 | if_debug1m('B', penum->memory, "[B]Interpolated masked (rotated) row %d:\n[B]", |
2542 | 0 | penum->line_xy); |
2543 | 0 | psrc += pss->params.LeftMarginOut * spp_decode; |
2544 | 0 | for (x = xo; x < xe; x++) { |
2545 | 0 | code = (*dev_proc(dev, copy_alpha))(dev, psrc, 0, 0, |
2546 | 0 | gx_no_bitmap_id, ry, x, 1, 1, color, 8); |
2547 | 0 | if (code < 0) |
2548 | 0 | return code; |
2549 | 0 | psrc += spp_decode; |
2550 | 0 | } |
2551 | | /*if_debug1m('w', dev->memory, "[w]Y=%d:\n", ry);*/ /* See siscale.c about 'w'. */ |
2552 | 0 | inactive: |
2553 | 0 | penum->line_xy++; |
2554 | 0 | if_debug0m('B', dev->memory, "\n"); |
2555 | 0 | } |
2556 | 0 | if ((status == 0 && stream_r.ptr == stream_r.limit) || status == EOFC) |
2557 | 0 | break; |
2558 | 0 | } |
2559 | 0 | } |
2560 | 0 | return (h == 0 ? 0 : 1); |
2561 | 0 | } |
2562 | | |
2563 | | static int |
2564 | | image_render_interpolate_landscape_masked_hl(gx_image_enum * penum, |
2565 | | const byte * buffer, |
2566 | | int data_x, uint iw, int h, |
2567 | | gx_device * dev) |
2568 | 0 | { |
2569 | 0 | stream_image_scale_state *pss = penum->scaler; |
2570 | 0 | int spp_decode = pss->params.spp_decode; |
2571 | 0 | stream_cursor_read stream_r; |
2572 | 0 | stream_cursor_write stream_w; |
2573 | 0 | byte *out = penum->line; |
2574 | | |
2575 | | /* Perform any decode procedure if needed. Probably only reversal |
2576 | | * of the data in this case. */ |
2577 | 0 | initial_decode(penum, buffer, data_x, h, &stream_r, false); |
2578 | | /* |
2579 | | * Process input and/or collect output. By construction, the pixels are |
2580 | | * 1-for-1 with the device, but the Y coordinate might be inverted. |
2581 | | */ |
2582 | 0 | { |
2583 | 0 | int xo = penum->xyi.y; |
2584 | 0 | int yo = penum->xyi.x; |
2585 | 0 | int width = pss->params.WidthOut; |
2586 | 0 | int sizeofPixelOut = pss->params.BitsPerComponentOut / 8; |
2587 | 0 | int dy; |
2588 | |
|
2589 | 0 | if (penum->matrix.yx > 0) |
2590 | 0 | dy = 1; |
2591 | 0 | else |
2592 | 0 | dy = -1, yo--; |
2593 | 0 | for (;;) { |
2594 | 0 | int ry = yo + penum->line_xy * dy; |
2595 | 0 | int x; |
2596 | 0 | const byte *psrc; |
2597 | 0 | int status, code; |
2598 | |
|
2599 | 0 | stream_w.limit = out + width * |
2600 | 0 | max(spp_decode * sizeofPixelOut, ARCH_SIZEOF_COLOR_INDEX) - 1; |
2601 | 0 | stream_w.ptr = stream_w.limit - width * spp_decode * sizeofPixelOut; |
2602 | 0 | psrc = stream_w.ptr + 1; |
2603 | | /* This is where the rescale takes place; this will consume the |
2604 | | * data from stream_r, and post processed data into stream_w. The |
2605 | | * data in stream_w may be bogus if we are outside the active |
2606 | | * region, and this will be indicated by pss->params.Active being |
2607 | | * set to false. */ |
2608 | 0 | status = (*pss->templat->process) |
2609 | 0 | ((stream_state *) pss, &stream_r, &stream_w, h == 0); |
2610 | 0 | if (status < 0 && status != EOFC) |
2611 | 0 | return_error(gs_error_ioerror); |
2612 | 0 | if (stream_w.ptr == stream_w.limit) { |
2613 | 0 | int xe = xo + pss->params.PatchWidthOut; |
2614 | | |
2615 | | /* Are we active? (i.e. in the render rectangle) */ |
2616 | 0 | if (!pss->params.Active) |
2617 | 0 | goto inactive; |
2618 | 0 | if_debug1m('B', penum->memory, "[B]Interpolated masked (rotated) row %d:\n[B]", |
2619 | 0 | penum->line_xy); |
2620 | 0 | psrc += pss->params.LeftMarginOut * spp_decode; |
2621 | 0 | for (x = xo; x < xe; x++) { |
2622 | 0 | code = (*dev_proc(dev, copy_alpha_hl_color))(dev, psrc, 0, 0, |
2623 | 0 | gx_no_bitmap_id, ry, x, 1, 1, penum->icolor1, 8); |
2624 | 0 | if (code < 0) |
2625 | 0 | return code; |
2626 | 0 | psrc += spp_decode; |
2627 | 0 | } |
2628 | | /*if_debug1m('w', dev->memory, "[w]Y=%d:\n", ry);*/ /* See siscale.c about 'w'. */ |
2629 | 0 | inactive: |
2630 | 0 | penum->line_xy++; |
2631 | 0 | if_debug0m('B', dev->memory, "\n"); |
2632 | 0 | } |
2633 | 0 | if ((status == 0 && stream_r.ptr == stream_r.limit) || status == EOFC) |
2634 | 0 | break; |
2635 | 0 | } |
2636 | 0 | } |
2637 | 0 | return (h == 0 ? 0 : 1); |
2638 | 0 | } |
2639 | | |
2640 | | /* Interpolation with ICC based source spaces. This is done seperately to |
2641 | | enable optimization and avoid the multiple tranformations that occur in |
2642 | | the above code */ |
2643 | | static int |
2644 | | image_render_interpolate_landscape_icc(gx_image_enum * penum, |
2645 | | const byte * buffer, |
2646 | | int data_x, uint iw, int h, |
2647 | | gx_device * dev) |
2648 | 0 | { |
2649 | 0 | stream_image_scale_state *pss = penum->scaler; |
2650 | 0 | const gs_gstate *pgs = penum->pgs; |
2651 | 0 | gs_logical_operation_t lop = penum->log_op; |
2652 | 0 | byte *out = penum->line; |
2653 | 0 | stream_cursor_read stream_r; |
2654 | 0 | stream_cursor_write stream_w; |
2655 | 0 | int abs_interp_limit = pss->params.abs_interp_limit; |
2656 | 0 | int limited_PatchWidthOut = (pss->params.PatchWidthOut + abs_interp_limit - 1) / abs_interp_limit; |
2657 | |
|
2658 | 0 | if (penum->icc_link == NULL) { |
2659 | 0 | return gs_rethrow(-1, "ICC Link not created during gs_image_class_0_interpolate"); |
2660 | 0 | } |
2661 | 0 | initial_decode(penum, buffer, data_x, h, &stream_r, true); |
2662 | | /* |
2663 | | * Process input and/or collect output. By construction, the pixels are |
2664 | | * 1-for-1 with the device, but the Y coordinate might be inverted. |
2665 | | * CM is performed on the entire row. |
2666 | | */ |
2667 | 0 | { |
2668 | 0 | int xo = penum->xyi.y; |
2669 | 0 | int yo = penum->xyi.x; |
2670 | 0 | int width = (pss->params.WidthOut + abs_interp_limit - 1) / abs_interp_limit; |
2671 | 0 | int width_in = pss->params.WidthIn; |
2672 | 0 | int sizeofPixelOut = pss->params.BitsPerComponentOut / 8; |
2673 | 0 | int dy; |
2674 | 0 | unsigned short *p_cm_interp; |
2675 | 0 | byte *p_cm_buff = NULL; |
2676 | 0 | byte *psrc; |
2677 | 0 | int spp_decode = pss->params.spp_decode; |
2678 | 0 | int spp_interp = pss->params.spp_interp; |
2679 | 0 | int spp_cm; |
2680 | 0 | gsicc_bufferdesc_t input_buff_desc; |
2681 | 0 | gsicc_bufferdesc_t output_buff_desc; |
2682 | 0 | gx_color_index color; |
2683 | 0 | int code; |
2684 | 0 | cmm_dev_profile_t *dev_profile; |
2685 | 0 | int num_bytes_decode = pss->params.BitsPerComponentIn / 8; |
2686 | |
|
2687 | 0 | code = dev_proc(dev, get_profile)(dev, &dev_profile); |
2688 | 0 | if (code) { |
2689 | 0 | penum->interpolate = interp_off; |
2690 | 0 | return 0; |
2691 | 0 | } |
2692 | 0 | spp_cm = gsicc_get_device_profile_comps(dev_profile); |
2693 | 0 | if (penum->matrix.yx > 0) |
2694 | 0 | dy = 1; |
2695 | 0 | else |
2696 | 0 | dy = -1, yo--; |
2697 | | /* If it makes sense (if enlarging), do early CM */ |
2698 | 0 | if (pss->params.early_cm && !penum->icc_link->is_identity |
2699 | 0 | && stream_r.ptr != stream_r.limit) { |
2700 | | /* Get the buffers set up. */ |
2701 | 0 | p_cm_buff = |
2702 | 0 | (byte *) gs_alloc_bytes(pgs->memory, |
2703 | 0 | (size_t)num_bytes_decode * width_in * spp_cm, |
2704 | 0 | "image_render_interpolate_icc"); |
2705 | 0 | if (p_cm_buff == NULL) |
2706 | 0 | return_error(gs_error_VMerror); |
2707 | | |
2708 | | /* Set up the buffer descriptors. We keep the bytes the same */ |
2709 | 0 | gsicc_init_buffer(&input_buff_desc, spp_decode, num_bytes_decode, |
2710 | 0 | false, false, false, 0, width_in * spp_decode, |
2711 | 0 | 1, width_in); |
2712 | 0 | gsicc_init_buffer(&output_buff_desc, spp_cm, num_bytes_decode, |
2713 | 0 | false, false, false, 0, width_in * spp_cm, |
2714 | 0 | 1, width_in); |
2715 | | /* Do the transformation */ |
2716 | 0 | psrc = (byte*) (stream_r.ptr + 1); |
2717 | 0 | code = (penum->icc_link->procs.map_buffer)(dev, penum->icc_link, &input_buff_desc, |
2718 | 0 | &output_buff_desc, (void*) psrc, |
2719 | 0 | (void*) p_cm_buff); |
2720 | 0 | if (code < 0) |
2721 | 0 | return code; |
2722 | | |
2723 | | /* Re-set the reading stream to use the cm data */ |
2724 | 0 | stream_r.ptr = p_cm_buff - 1; |
2725 | 0 | stream_r.limit = stream_r.ptr + num_bytes_decode * width_in * spp_cm; |
2726 | 0 | } else { |
2727 | | /* CM after interpolation (or none). Just set up the buffers |
2728 | | if needed. 16 bit operations if CM takes place. */ |
2729 | 0 | if (!penum->icc_link->is_identity) { |
2730 | 0 | p_cm_buff = (byte *) gs_alloc_bytes(pgs->memory, |
2731 | 0 | sizeof(unsigned short) * width * spp_cm, |
2732 | 0 | "image_render_interpolate_icc"); |
2733 | 0 | if (p_cm_buff == NULL) |
2734 | 0 | return_error(gs_error_VMerror); |
2735 | | /* Set up the buffer descriptors. */ |
2736 | 0 | gsicc_init_buffer(&input_buff_desc, spp_decode, 2, |
2737 | 0 | false, false, false, 0, width * spp_decode, |
2738 | 0 | 1, limited_PatchWidthOut); |
2739 | 0 | gsicc_init_buffer(&output_buff_desc, spp_cm, 2, |
2740 | 0 | false, false, false, 0, width * spp_cm, |
2741 | 0 | 1, limited_PatchWidthOut); |
2742 | 0 | } |
2743 | 0 | } |
2744 | 0 | for (;;) { |
2745 | 0 | int ry = yo + penum->line_xy * dy; |
2746 | 0 | int x; |
2747 | 0 | const unsigned short *pinterp; |
2748 | 0 | gx_device_color devc; |
2749 | 0 | int status; |
2750 | 0 | int scaled_w = 0; |
2751 | 0 | gx_dda_fixed save_x_dda; |
2752 | |
|
2753 | 0 | if (abs_interp_limit > 1) { |
2754 | 0 | save_x_dda = pss->params.scale_dda.x; |
2755 | 0 | } |
2756 | 0 | stream_w.limit = out + width * |
2757 | 0 | max(spp_interp * sizeofPixelOut, ARCH_SIZEOF_COLOR_INDEX) - 1; |
2758 | 0 | stream_w.ptr = stream_w.limit - width * spp_interp * sizeofPixelOut; |
2759 | 0 | pinterp = (const unsigned short *)(stream_w.ptr + 1); |
2760 | | /* This is where the rescale takes place; this will consume the |
2761 | | * data from stream_r, and post processed data into stream_w. The |
2762 | | * data in stream_w may be bogus if we are outside the active |
2763 | | * region, and this will be indiated by pss->params.Active being |
2764 | | * set to false. */ |
2765 | 0 | status = (*pss->templat->process) |
2766 | 0 | ((stream_state *) pss, &stream_r, &stream_w, h == 0); |
2767 | 0 | if (status < 0 && status != EOFC) |
2768 | 0 | return_error(gs_error_ioerror); |
2769 | 0 | if (stream_w.ptr == stream_w.limit) { |
2770 | 0 | int xe = xo + (pss->params.PatchWidthOut + abs_interp_limit - 1) / abs_interp_limit; |
2771 | 0 | int scaled_h = 0; |
2772 | 0 | int scaled_y = 0; |
2773 | |
|
2774 | 0 | if (abs_interp_limit > 1) { |
2775 | 0 | scaled_h = interpolate_scaled_expanded_height(1, pss); |
2776 | 0 | scaled_y = yo + (dy * dda_current(pss->params.scale_dda.y)) - |
2777 | 0 | ((dy < 0) ? (scaled_h - 1) : 0); |
2778 | 0 | } |
2779 | | |
2780 | | /* Are we active? (i.e. in the render rectangle) */ |
2781 | 0 | if (!pss->params.Active) |
2782 | 0 | goto inactive; |
2783 | 0 | if_debug1m('B', penum->memory, "[B]Interpolated row %d:\n[B]", |
2784 | 0 | penum->line_xy); |
2785 | | /* Take care of CM on the entire interpolated row, if we |
2786 | | did not already do CM */ |
2787 | 0 | if (penum->icc_link->is_identity || pss->params.early_cm) { |
2788 | | /* Fastest case. No CM needed */ |
2789 | 0 | p_cm_interp = (unsigned short *) pinterp; |
2790 | 0 | p_cm_interp += (pss->params.LeftMarginOut / abs_interp_limit) * spp_cm; |
2791 | 0 | } else { |
2792 | | /* Transform */ |
2793 | 0 | pinterp += (pss->params.LeftMarginOut / abs_interp_limit) * spp_decode; |
2794 | 0 | p_cm_interp = (unsigned short *) p_cm_buff; |
2795 | 0 | p_cm_interp += (pss->params.LeftMarginOut / abs_interp_limit) * spp_cm; |
2796 | 0 | code = (penum->icc_link->procs.map_buffer)(dev, penum->icc_link, |
2797 | 0 | &input_buff_desc, |
2798 | 0 | &output_buff_desc, |
2799 | 0 | (void*) pinterp, |
2800 | 0 | (void*) p_cm_interp); |
2801 | 0 | if (code < 0) |
2802 | 0 | return code; |
2803 | 0 | } |
2804 | 0 | for (x = xo; x < xe;) { |
2805 | | #ifdef DEBUG |
2806 | | if (gs_debug_c('B')) { |
2807 | | int ci; |
2808 | | |
2809 | | for (ci = 0; ci < spp_cm; ++ci) |
2810 | | dmprintf2(dev->memory, "%c%04x", (ci == 0 ? ' ' : ','), |
2811 | | p_cm_interp[ci]); |
2812 | | } |
2813 | | #endif |
2814 | | /* Get the device color */ |
2815 | 0 | get_device_color(penum, p_cm_interp, &devc, &color, dev); |
2816 | | /* We scan for vertical runs of pixels, even if they end up |
2817 | | * being split up in most cases within copy_color_unaligned anyway. */ |
2818 | 0 | { |
2819 | 0 | int rcode; |
2820 | 0 | int rep = 0; |
2821 | |
|
2822 | 0 | switch (spp_cm) { |
2823 | 0 | case 1: |
2824 | 0 | do { |
2825 | 0 | rep++, p_cm_interp += 1; |
2826 | 0 | } while ((rep + x) < xe && p_cm_interp[-1] == p_cm_interp[0]); |
2827 | 0 | break; |
2828 | 0 | case 3: |
2829 | 0 | do { |
2830 | 0 | rep++, p_cm_interp += 3; |
2831 | 0 | } while ((rep + x) < xe && p_cm_interp[-3] == p_cm_interp[0] && |
2832 | 0 | p_cm_interp[-2] == p_cm_interp[1] && |
2833 | 0 | p_cm_interp[-1] == p_cm_interp[2]); |
2834 | 0 | break; |
2835 | 0 | case 4: |
2836 | 0 | do { |
2837 | 0 | rep++, p_cm_interp += 4; |
2838 | 0 | } while ((rep + x) < xe && p_cm_interp[-4] == p_cm_interp[0] && |
2839 | 0 | p_cm_interp[-3] == p_cm_interp[1] && |
2840 | 0 | p_cm_interp[-2] == p_cm_interp[2] && |
2841 | 0 | p_cm_interp[-1] == p_cm_interp[3]); |
2842 | 0 | break; |
2843 | 0 | default: |
2844 | 0 | rep = 1, p_cm_interp += spp_cm; |
2845 | 0 | break; |
2846 | 0 | } |
2847 | | |
2848 | 0 | if (abs_interp_limit <= 1) { |
2849 | 0 | rcode = gx_fill_rectangle_device_rop(ry, x, 1, rep, &devc, dev, lop); |
2850 | 0 | if (rcode < 0) |
2851 | 0 | return rcode; |
2852 | 0 | } else { |
2853 | 0 | int scaled_x = xo + dda_current(pss->params.scale_dda.x); |
2854 | |
|
2855 | 0 | scaled_w = interpolate_scaled_expanded_width(rep, pss); |
2856 | 0 | rcode = gx_fill_rectangle_device_rop(scaled_y, scaled_x, scaled_h, scaled_w, |
2857 | 0 | &devc, dev, lop); |
2858 | 0 | if (rcode < 0) |
2859 | 0 | return rcode; |
2860 | 0 | dda_advance(pss->params.scale_dda.x, rep); |
2861 | 0 | } |
2862 | 0 | x += rep; |
2863 | 0 | } |
2864 | 0 | } /* End on x loop */ |
2865 | | /*if_debug1m('w', penum->memory, "[w]Y=%d:\n", ry);*/ /* See siscale.c about 'w'. */ |
2866 | 0 | inactive: |
2867 | 0 | penum->line_xy++; |
2868 | 0 | if (abs_interp_limit > 1) { |
2869 | 0 | dda_next(pss->params.scale_dda.y); |
2870 | 0 | pss->params.scale_dda.x = save_x_dda; /* reset X to start of line */ |
2871 | 0 | } |
2872 | 0 | if_debug0m('B', penum->memory, "\n"); |
2873 | 0 | } |
2874 | 0 | if ((status == 0 && stream_r.ptr == stream_r.limit) || status == EOFC) |
2875 | 0 | break; |
2876 | 0 | } |
2877 | | /* Free cm buffer, if it was used */ |
2878 | 0 | if (p_cm_buff != NULL) { |
2879 | 0 | gs_free_object(pgs->memory, (byte *)p_cm_buff, |
2880 | 0 | "image_render_interpolate_icc"); |
2881 | 0 | } |
2882 | 0 | } |
2883 | 0 | return (h == 0 ? 0 : 1); |
2884 | 0 | } |
2885 | | |
2886 | | /* Decode a 16-bit sample into a floating point color component. |
2887 | | This is used for cases where the spatial interpolation function output is 16 bit. |
2888 | | It is only used here, hence the static declaration for now. */ |
2889 | | |
2890 | | static void |
2891 | | decode_sample_frac_to_float(gx_image_enum *penum, frac sample_value, gs_client_color *cc, int i) |
2892 | 0 | { |
2893 | 0 | switch ( penum->map[i].decoding ) |
2894 | 0 | { |
2895 | 0 | case sd_none: |
2896 | 0 | cc->paint.values[i] = frac2float(sample_value); |
2897 | 0 | break; |
2898 | 0 | case sd_lookup: |
2899 | 0 | cc->paint.values[i] = |
2900 | 0 | penum->map[i].decode_lookup[(frac2byte(sample_value)) >> 4]; |
2901 | 0 | break; |
2902 | 0 | case sd_compute: |
2903 | 0 | cc->paint.values[i] = |
2904 | 0 | penum->map[i].decode_base + frac2float(sample_value)*255.0 * penum->map[i].decode_factor; |
2905 | 0 | } |
2906 | 0 | } |