Coverage Report

Created: 2025-06-24 07:01

/src/ghostpdl/base/gxpcopy.c
Line
Count
Source (jump to first uncovered line)
1
/* Copyright (C) 2001-2023 Artifex Software, Inc.
2
   All Rights Reserved.
3
4
   This software is provided AS-IS with no warranty, either express or
5
   implied.
6
7
   This software is distributed under license and may not be copied,
8
   modified or distributed except as expressly authorized under the terms
9
   of the license contained in the file LICENSE in this distribution.
10
11
   Refer to licensing information at http://www.artifex.com or contact
12
   Artifex Software, Inc.,  39 Mesa Street, Suite 108A, San Francisco,
13
   CA 94129, USA, for further information.
14
*/
15
16
17
/* Path copying and flattening */
18
#include "math_.h"
19
#include "gx.h"
20
#include "gserrors.h"
21
#include "gxfixed.h"
22
#include "gxfarith.h"
23
#include "gxgstate.h"   /* for access to line params */
24
#include "gzpath.h"
25
26
/* Forward declarations */
27
static void adjust_point_to_tangent(segment *, const segment *,
28
                                     const gs_fixed_point *);
29
30
static inline int
31
break_line_if_long(gx_path *ppath, const segment *pseg)
32
100M
{
33
100M
    fixed x0 = ppath->position.x;
34
100M
    fixed y0 = ppath->position.y;
35
36
100M
    if (gx_check_fixed_diff_overflow(pseg->pt.x, x0) ||
37
100M
        gx_check_fixed_diff_overflow(pseg->pt.y, y0)) {
38
34.3k
        fixed x, y;
39
40
34.3k
        if (gx_check_fixed_sum_overflow(pseg->pt.x, x0))
41
2.05k
            x = (pseg->pt.x >> 1) + (x0 >> 1);
42
32.3k
        else
43
32.3k
            x = (pseg->pt.x + x0) >> 1;
44
34.3k
        if (gx_check_fixed_sum_overflow(pseg->pt.y, y0))
45
1.14k
            y = (pseg->pt.y >> 1) + (y0 >> 1);
46
33.2k
        else
47
33.2k
            y = (pseg->pt.y + y0) >> 1;
48
34.3k
        return gx_path_add_line_notes(ppath, x, y, pseg->notes);
49
        /* WARNING: Stringly speaking, the next half segment must get
50
           the sn_not_first flag. We don't bother, because that flag
51
           has no important meaning with colinear segments.
52
         */
53
34.3k
    }
54
100M
    return 0;
55
100M
}
56
static inline int
57
break_gap_if_long(gx_path *ppath, const segment *pseg)
58
0
{
59
0
    fixed x0 = ppath->position.x;
60
0
    fixed y0 = ppath->position.y;
61
62
0
    if (gx_check_fixed_diff_overflow(pseg->pt.x, x0) ||
63
0
        gx_check_fixed_diff_overflow(pseg->pt.y, y0)) {
64
0
        fixed x, y;
65
66
0
        if (gx_check_fixed_sum_overflow(pseg->pt.x, x0))
67
0
            x = (pseg->pt.x >> 1) + (x0 >> 1);
68
0
        else
69
0
            x = (pseg->pt.x + x0) >> 1;
70
0
        if (gx_check_fixed_sum_overflow(pseg->pt.y, y0))
71
0
            y = (pseg->pt.y >> 1) + (y0 >> 1);
72
0
        else
73
0
            y = (pseg->pt.y + y0) >> 1;
74
0
        return gx_path_add_gap_notes(ppath, x, y, pseg->notes);
75
        /* WARNING: Stringly speaking, the next half segment must get
76
           the sn_not_first flag. We don't bother, because that flag
77
           has no important meaning with colinear segments.
78
         */
79
0
    }
80
0
    return 0;
81
0
}
82
83
/* Copy a path, optionally flattening or monotonizing it. */
84
/* If the copy fails, free the new path. */
85
int
86
gx_path_copy_reducing(const gx_path *ppath_old, gx_path *ppath,
87
                      fixed fixed_flatness, const gs_gstate *pgs,
88
                      gx_path_copy_options options)
89
18.5M
{
90
18.5M
    const segment *pseg;
91
18.5M
    fixed flat = fixed_flatness;
92
18.5M
    gs_fixed_point expansion;
93
    /*
94
     * Since we're going to be adding to the path, unshare it
95
     * before we start.
96
     */
97
18.5M
    int code = gx_path_unshare(ppath);
98
99
18.5M
    if (code < 0)
100
0
        return code;
101
#ifdef DEBUG
102
    if (gs_debug_c('P'))
103
        gx_dump_path(ppath_old, "before reducing");
104
#endif
105
18.5M
    if (options & pco_for_stroke) {
106
        /* Precompute the maximum expansion of the bounding box. */
107
254k
        double width = pgs->line_params.half_width;
108
109
254k
        expansion.x =
110
254k
            float2fixed((fabs(pgs->ctm.xx) + fabs(pgs->ctm.yx)) * width) * 2;
111
254k
        expansion.y =
112
254k
            float2fixed((fabs(pgs->ctm.xy) + fabs(pgs->ctm.yy)) * width) * 2;
113
254k
    } else
114
18.3M
        expansion.x = expansion.y = 0; /* Quiet gcc warning. */
115
18.5M
    pseg = (const segment *)(ppath_old->first_subpath);
116
227M
    while (pseg) {
117
208M
        switch (pseg->type) {
118
19.8M
            case s_start:
119
19.8M
                code = gx_path_add_point(ppath,
120
19.8M
                                         pseg->pt.x, pseg->pt.y);
121
19.8M
                break;
122
88.9M
            case s_curve:
123
88.9M
                {
124
88.9M
                    const curve_segment *pc = (const curve_segment *)pseg;
125
126
88.9M
                    if (fixed_flatness == max_fixed) { /* don't flatten */
127
55.2M
                        if (options & pco_monotonize)
128
0
                            code = gx_curve_monotonize(ppath, pc);
129
55.2M
                        else
130
55.2M
                            code = gx_path_add_curve_notes(ppath,
131
55.2M
                                     pc->p1.x, pc->p1.y, pc->p2.x, pc->p2.y,
132
55.2M
                                           pc->pt.x, pc->pt.y, pseg->notes);
133
55.2M
                    } else {
134
33.7M
                        fixed x0 = ppath->position.x;
135
33.7M
                        fixed y0 = ppath->position.y;
136
33.7M
                        segment_notes notes = pseg->notes;
137
33.7M
                        curve_segment cseg;
138
33.7M
                        int k;
139
140
33.7M
                        if (options & pco_for_stroke) {
141
                            /*
142
                             * When flattening for stroking, the flatness
143
                             * must apply to the outside of the resulting
144
                             * stroked region.  We approximate this by
145
                             * dividing the flatness by the ratio of the
146
                             * expanded bounding box to the original
147
                             * bounding box.  This is crude, but pretty
148
                             * simple to calculate, and produces reasonably
149
                             * good results.
150
                             */
151
2.45M
                            fixed min01, max01, min23, max23;
152
2.45M
                            fixed ex, ey, flat_x, flat_y;
153
154
2.45M
#define SET_EXTENT(r, c0, c1, c2, c3)\
155
4.90M
    BEGIN\
156
4.90M
        if (c0 < c1) min01 = c0, max01 = c1;\
157
4.90M
        else         min01 = c1, max01 = c0;\
158
4.90M
        if (c2 < c3) min23 = c2, max23 = c3;\
159
4.90M
        else         min23 = c3, max23 = c2;\
160
4.90M
        r = max(max01, max23) - min(min01, min23);\
161
4.90M
    END
162
2.45M
                            SET_EXTENT(ex, x0, pc->p1.x, pc->p2.x, pc->pt.x);
163
2.45M
                            SET_EXTENT(ey, y0, pc->p1.y, pc->p2.y, pc->pt.y);
164
2.45M
#undef SET_EXTENT
165
                            /*
166
                             * We check for the degenerate case specially
167
                             * to avoid a division by zero.
168
                             */
169
2.45M
                            if (ex == 0 || ey == 0)
170
222k
                                if (ex != 0) {
171
82.9k
                                    flat = fixed_mult_quo(fixed_flatness, ex,
172
82.9k
                                                          ex + expansion.x);
173
82.9k
                                    k = gx_curve_log2_samples(x0,y0,pc,flat);
174
139k
                                } else if (ey != 0) {
175
8.65k
                                    flat = fixed_mult_quo(fixed_flatness, ey,
176
8.65k
                                                          ey + expansion.y);
177
8.65k
                                    k = gx_curve_log2_samples(x0,y0,pc,flat);
178
8.65k
                                } else
179
131k
                                    k = 0;
180
2.22M
                            else {
181
2.22M
                                flat_x =
182
2.22M
                                    fixed_mult_quo(fixed_flatness, ex,
183
2.22M
                                                   ex + expansion.x);
184
2.22M
                                flat_y =
185
2.22M
                                    fixed_mult_quo(fixed_flatness, ey,
186
2.22M
                                                   ey + expansion.y);
187
2.22M
                                flat = min(flat_x, flat_y);
188
2.22M
                                k = gx_curve_log2_samples(x0, y0, pc, flat);
189
2.22M
                            }
190
2.45M
                        } else
191
31.3M
                            k = gx_curve_log2_samples(x0, y0, pc, flat);
192
33.7M
                        if (options & pco_accurate) {
193
33.7M
                            segment *start;
194
33.7M
                            segment *end;
195
196
                            /*
197
                             * Add an extra line, which will become
198
                             * the tangent segment.
199
                             */
200
33.7M
                            code = gx_path_add_line_notes(ppath, x0, y0,
201
33.7M
                                                          notes);
202
33.7M
                            if (code < 0)
203
0
                                break;
204
33.7M
                            start = ppath->current_subpath->last;
205
33.7M
                            notes |= sn_not_first;
206
33.7M
                            cseg = *pc;
207
33.7M
                            code = gx_subdivide_curve(ppath, k, &cseg, notes);
208
33.7M
                            if (code < 0)
209
0
                                break;
210
                            /*
211
                             * Adjust the first and last segments so that
212
                             * they line up with the tangents.
213
                             */
214
33.7M
                            end = ppath->current_subpath->last;
215
33.7M
                            if ((code = gx_path_add_line_notes(ppath,
216
33.7M
                                                          ppath->position.x,
217
33.7M
                                                          ppath->position.y,
218
33.7M
                                            pseg->notes | sn_not_first)) < 0)
219
0
                                break;
220
33.7M
                            if (start->next->pt.x != pc->p1.x || start->next->pt.y != pc->p1.y)
221
33.6M
                                adjust_point_to_tangent(start, start->next, &pc->p1);
222
165k
                            else if (start->next->pt.x != pc->p2.x || start->next->pt.y != pc->p2.y)
223
495
                                adjust_point_to_tangent(start, start->next, &pc->p2);
224
164k
                            else
225
164k
                                adjust_point_to_tangent(start, start->next, &end->prev->pt);
226
33.7M
                            if (end->prev->pt.x != pc->p2.x || end->prev->pt.y != pc->p2.y)
227
33.5M
                                adjust_point_to_tangent(end, end->prev, &pc->p2);
228
174k
                            else if (end->prev->pt.x != pc->p1.x || end->prev->pt.y != pc->p1.y)
229
2.62k
                                adjust_point_to_tangent(end, end->prev, &pc->p1);
230
171k
                            else
231
171k
                                adjust_point_to_tangent(end, end->prev, &start->pt);
232
33.7M
                        } else {
233
0
                            cseg = *pc;
234
0
                            code = gx_subdivide_curve(ppath, k, &cseg, notes);
235
0
                        }
236
33.7M
                    }
237
88.9M
                    break;
238
88.9M
                }
239
88.9M
            case s_line:
240
82.6M
                code = break_line_if_long(ppath, pseg);
241
82.6M
                if (code < 0)
242
0
                    break;
243
82.6M
                code = gx_path_add_line_notes(ppath,
244
82.6M
                                       pseg->pt.x, pseg->pt.y, pseg->notes);
245
82.6M
                break;
246
0
            case s_gap:
247
0
                code = break_gap_if_long(ppath, pseg);
248
0
                if (code < 0)
249
0
                    break;
250
0
                code = gx_path_add_gap_notes(ppath,
251
0
                                       pseg->pt.x, pseg->pt.y, pseg->notes);
252
0
                break;
253
0
            case s_dash:
254
0
                {
255
0
                    const dash_segment *pd = (const dash_segment *)pseg;
256
257
0
                    code = gx_path_add_dash_notes(ppath,
258
0
                                       pd->pt.x, pd->pt.y, pd->tangent.x, pd->tangent.y, pseg->notes);
259
0
                    break;
260
0
                }
261
17.4M
            case s_line_close:
262
17.4M
                code = break_line_if_long(ppath, pseg);
263
17.4M
                if (code < 0)
264
0
                    break;
265
17.4M
                code = gx_path_close_subpath(ppath);
266
17.4M
                break;
267
0
            default:    /* can't happen */
268
0
                code = gs_note_error(gs_error_unregistered);
269
208M
        }
270
208M
        if (code < 0) {
271
0
            gx_path_new(ppath);
272
0
            return code;
273
0
        }
274
208M
        pseg = pseg->next;
275
208M
    }
276
18.5M
    if (path_last_is_moveto(ppath_old)) {
277
1.95M
        code = gx_path_add_point(ppath, ppath_old->position.x,
278
1.95M
                          ppath_old->position.y);
279
1.95M
        if (code < 0) {
280
0
            gx_path_new(ppath);
281
0
            return code;
282
0
        }
283
1.95M
    }
284
18.5M
    if (ppath_old->bbox_set) {
285
0
        if (ppath->bbox_set) {
286
0
            ppath->bbox.p.x = min(ppath_old->bbox.p.x, ppath->bbox.p.x);
287
0
            ppath->bbox.p.y = min(ppath_old->bbox.p.y, ppath->bbox.p.y);
288
0
            ppath->bbox.q.x = max(ppath_old->bbox.q.x, ppath->bbox.q.x);
289
0
            ppath->bbox.q.y = max(ppath_old->bbox.q.y, ppath->bbox.q.y);
290
0
        } else {
291
0
            ppath->bbox_set = true;
292
0
            ppath->bbox = ppath_old->bbox;
293
0
        }
294
0
    }
295
#ifdef DEBUG
296
    if (gs_debug_c('P'))
297
        gx_dump_path(ppath, "after reducing");
298
#endif
299
18.5M
    return 0;
300
18.5M
}
301
302
/*
303
 * Adjust one end of a line (the first or last line of a flattened curve)
304
 * so it falls on the curve tangent.  The closest point on the line from
305
 * (0,0) to (C,D) to a point (U,V) -- i.e., the point on the line at which
306
 * a perpendicular line from the point intersects it -- is given by
307
 *      T = (C*U + D*V) / (C^2 + D^2)
308
 *      (X,Y) = (C*T,D*T)
309
 * However, any smaller value of T will also work: the one we actually
310
 * use is 0.25 * the value we just derived.  We must check that
311
 * numerical instabilities don't lead to a negative value of T.
312
 */
313
static void
314
adjust_point_to_tangent(segment * pseg, const segment * next,
315
                        const gs_fixed_point * p1)
316
67.5M
{
317
67.5M
    const fixed x0 = pseg->pt.x, y0 = pseg->pt.y;
318
67.5M
    const fixed fC = p1->x - x0, fD = p1->y - y0;
319
320
    /*
321
     * By far the commonest case is that the end of the curve is
322
     * horizontal or vertical.  Check for this specially, because
323
     * we can handle it with far less work (and no floating point).
324
     */
325
67.5M
    if (fC == 0) {
326
        /* Vertical tangent. */
327
13.9M
        const fixed DT = arith_rshift(next->pt.y - y0, 2);
328
329
13.9M
        if (fD == 0)
330
728k
            return;    /* anomalous case */
331
13.9M
        if_debug1('2', "[2]adjusting vertical: DT = %g\n",
332
13.2M
                  fixed2float(DT));
333
13.2M
        if ((DT ^ fD) > 0) /* lgtm [cpp/bitwise-sign-check] */
334
13.1M
            pseg->pt.y = DT + y0;
335
53.5M
    } else if (fD == 0) {
336
        /* Horizontal tangent. */
337
16.6M
        const fixed CT = arith_rshift(next->pt.x - x0, 2);
338
339
16.6M
        if_debug1('2', "[2]adjusting horizontal: CT = %g\n",
340
16.6M
                  fixed2float(CT));
341
16.6M
        if ((CT ^ fC) > 0) /* lgtm [cpp/bitwise-sign-check] */
342
16.4M
            pseg->pt.x = CT + x0;
343
36.9M
    } else {
344
        /* General case. */
345
36.9M
        const double C = fC, D = fD;
346
36.9M
        double T = (C * (next->pt.x - x0) + D * (next->pt.y - y0)) /
347
36.9M
        (C * C + D * D);
348
349
36.9M
        if_debug3('2', "[2]adjusting: C = %g, D = %g, T = %g\n",
350
36.9M
                  C, D, T);
351
36.9M
        if (T > 0) {
352
36.8M
            if (T > 1) {
353
                /* Don't go outside the curve bounding box. */
354
16.7M
                T = 1;
355
16.7M
            }
356
36.8M
            pseg->pt.x = arith_rshift((fixed) (C * T), 2) + x0;
357
36.8M
            pseg->pt.y = arith_rshift((fixed) (D * T), 2) + y0;
358
36.8M
        }
359
36.9M
    }
360
67.5M
}
361
362
/* ---------------- Monotonic curves ---------------- */
363
364
/* Test whether a path is free of non-monotonic curves. */
365
bool
366
gx_path__check_curves(const gx_path * ppath, gx_path_copy_options options, fixed fixed_flat)
367
0
{
368
0
    const segment *pseg = (const segment *)(ppath->first_subpath);
369
0
    gs_fixed_point pt0;
370
371
0
    pt0.x = pt0.y = 0; /* Quiet gcc warning. */
372
0
    while (pseg) {
373
0
        switch (pseg->type) {
374
0
            case s_start:
375
0
                {
376
0
                    const subpath *psub = (const subpath *)pseg;
377
378
                    /* Skip subpaths without curves. */
379
0
                    if (!psub->curve_count)
380
0
                        pseg = psub->last;
381
0
                }
382
0
                break;
383
0
            case s_line:
384
0
            case s_gap:
385
0
                if (gx_check_fixed_diff_overflow(pseg->pt.x, pt0.x) ||
386
0
                    gx_check_fixed_diff_overflow(pseg->pt.y, pt0.y))
387
0
                    return false;
388
0
                break;
389
0
            case s_curve:
390
0
                {
391
0
                    const curve_segment *pc = (const curve_segment *)pseg;
392
393
0
                    if (options & pco_monotonize) {
394
0
                        double t[2];
395
0
                        int nz = gx_curve_monotonic_points(pt0.y,
396
0
                                               pc->p1.y, pc->p2.y, pc->pt.y, t);
397
398
0
                        if (nz != 0)
399
0
                            return false;
400
0
                        nz = gx_curve_monotonic_points(pt0.x,
401
0
                                               pc->p1.x, pc->p2.x, pc->pt.x, t);
402
0
                        if (nz != 0)
403
0
                            return false;
404
0
                    }
405
0
                    if (options & pco_small_curves) {
406
0
                        fixed ax, bx, cx, ay, by, cy;
407
0
                        int k = gx_curve_log2_samples(pt0.x, pt0.y, pc, fixed_flat);
408
409
0
                        if(!curve_coeffs_ranged(pt0.x, pc->p1.x, pc->p2.x, pc->pt.x,
410
0
                                pt0.y, pc->p1.y, pc->p2.y, pc->pt.y,
411
0
                                &ax, &bx, &cx, &ay, &by, &cy, k))
412
0
                            return false;
413
0
                    if (gx_check_fixed_diff_overflow(pseg->pt.x, pt0.x) ||
414
0
                        gx_check_fixed_diff_overflow(pseg->pt.y, pt0.y))
415
0
                        return false;
416
0
                    }
417
0
                }
418
0
                break;
419
0
            default:
420
0
                ;
421
0
        }
422
0
        pt0 = pseg->pt;
423
0
        pseg = pseg->next;
424
0
    }
425
0
    return true;
426
0
}
427
428
/* Test whether a path is free of long segments. */
429
/* WARNING : This function checks the distance between
430
 * the starting point and the ending point of a segment.
431
 * When they are not too far, a curve nevertheless may be too long.
432
 * Don't worry about it here, because we assume
433
 * this function is never called with paths which have curves.
434
 */
435
bool
436
gx_path_has_long_segments(const gx_path * ppath)
437
4.01M
{
438
4.01M
    const segment *pseg = (const segment *)(ppath->first_subpath);
439
4.01M
    gs_fixed_point pt0;
440
441
4.01M
    pt0.x = pt0.y = 0; /* Quiet gcc warning. */
442
19.4M
    while (pseg) {
443
15.3M
        switch (pseg->type) {
444
4.34M
            case s_start:
445
4.34M
                break;
446
11.0M
            default:
447
11.0M
                if (gx_check_fixed_diff_overflow(pseg->pt.x, pt0.x) ||
448
11.0M
                    gx_check_fixed_diff_overflow(pseg->pt.y, pt0.y))
449
6.94k
                    return true;
450
11.0M
                break;
451
15.3M
        }
452
15.3M
        pt0 = pseg->pt;
453
15.3M
        pseg = pseg->next;
454
15.3M
    }
455
4.00M
    return false;
456
4.01M
}
457
458
/* Monotonize a curve, by splitting it if necessary. */
459
/* In the worst case, this could split the curve into 9 pieces. */
460
int
461
gx_curve_monotonize(gx_path * ppath, const curve_segment * pc)
462
0
{
463
0
    fixed x0 = ppath->position.x, y0 = ppath->position.y;
464
0
    segment_notes notes = pc->notes;
465
0
    double t[5], tt = 1, tp;
466
0
    int c[5];
467
0
    int n0, n1, n, i, j, k = 0;
468
0
    fixed ax, bx, cx, ay, by, cy, v01, v12;
469
0
    fixed px, py, qx, qy, rx, ry, sx, sy;
470
0
    const double delta = 0.0000001;
471
472
    /* Roots of the derivative : */
473
0
    n0 = gx_curve_monotonic_points(x0, pc->p1.x, pc->p2.x, pc->pt.x, t);
474
0
    n1 = gx_curve_monotonic_points(y0, pc->p1.y, pc->p2.y, pc->pt.y, t + n0);
475
0
    n = n0 + n1;
476
0
    if (n == 0)
477
0
        return gx_path_add_curve_notes(ppath, pc->p1.x, pc->p1.y,
478
0
                pc->p2.x, pc->p2.y, pc->pt.x, pc->pt.y, notes);
479
0
    if (n0 > 0)
480
0
        c[0] = 1;
481
0
    if (n0 > 1)
482
0
        c[1] = 1;
483
0
    if (n1 > 0)
484
0
        c[n0] = 2;
485
0
    if (n1 > 1)
486
0
        c[n0 + 1] = 2;
487
    /* Order roots : */
488
0
    for (i = 0; i < n; i++)
489
0
        for (j = i + 1; j < n; j++)
490
0
            if (t[i] > t[j]) {
491
0
                int w;
492
0
                double v = t[i]; t[i] = t[j]; t[j] = v;
493
0
                w = c[i]; c[i] = c[j]; c[j] = w;
494
0
            }
495
    /* Drop roots near zero : */
496
0
    for (k = 0; k < n; k++)
497
0
        if (t[k] >= delta)
498
0
            break;
499
    /* Merge close roots, and drop roots at 1 : */
500
0
    if (t[n - 1] > 1 - delta)
501
0
        n--;
502
0
    for (i = k + 1, j = k; i < n && t[k] < 1 - delta; i++)
503
0
        if (any_abs(t[i] - t[j]) < delta) {
504
0
            t[j] = (t[j] + t[i]) / 2; /* Unlikely 3 roots are close. */
505
0
            c[j] |= c[i];
506
0
        } else {
507
0
            j++;
508
0
            t[j] = t[i];
509
0
            c[j] = c[i];
510
0
        }
511
0
    n = j + 1;
512
    /* Do split : */
513
0
    curve_points_to_coefficients(x0, pc->p1.x, pc->p2.x, pc->pt.x, ax, bx, cx, v01, v12);
514
0
    curve_points_to_coefficients(y0, pc->p1.y, pc->p2.y, pc->pt.y, ay, by, cy, v01, v12);
515
0
    ax *= 3, bx *= 2; /* Coefficients of the derivative. */
516
0
    ay *= 3, by *= 2;
517
0
    px = x0;
518
0
    py = y0;
519
0
    qx = (fixed)((pc->p1.x - px) * t[0] + 0.5);
520
0
    qy = (fixed)((pc->p1.y - py) * t[0] + 0.5);
521
0
    tp = 0;
522
0
    for (i = k; i < n; i++) {
523
0
        double ti = t[i];
524
0
        double t2 = ti * ti, t3 = t2 * ti;
525
0
        double omt = 1 - ti, omt2 = omt * omt, omt3 = omt2 * omt;
526
0
        double x = x0 * omt3 + 3 * pc->p1.x * omt2 * ti + 3 * pc->p2.x * omt * t2 + pc->pt.x * t3;
527
0
        double y = y0 * omt3 + 3 * pc->p1.y * omt2 * ti + 3 * pc->p2.y * omt * t2 + pc->pt.y * t3;
528
0
        double ddx = (c[i] & 1 ? 0 : ax * t2 + bx * ti + cx); /* Suppress noise. */
529
0
        double ddy = (c[i] & 2 ? 0 : ay * t2 + by * ti + cy);
530
0
        fixed dx = (fixed)(ddx + 0.5);
531
0
        fixed dy = (fixed)(ddy + 0.5);
532
0
        int code;
533
534
0
        tt = (i + 1 < n ? t[i + 1] : 1) - ti;
535
0
        rx = (fixed)(dx * (t[i] - tp) / 3 + 0.5);
536
0
        ry = (fixed)(dy * (t[i] - tp) / 3 + 0.5);
537
0
        sx = (fixed)(x + 0.5);
538
0
        sy = (fixed)(y + 0.5);
539
        /* Suppress the derivative sign noise near a peak : */
540
0
        if ((double)(sx - px) * qx + (double)(sy - py) * qy < 0)
541
0
            qx = -qx, qy = -qy;
542
0
        if ((double)(sx - px) * rx + (double)(sy - py) * ry < 0)
543
0
            rx = -rx, ry = -qy;
544
        /* Do add : */
545
0
        code = gx_path_add_curve_notes(ppath, px + qx, py + qy, sx - rx, sy - ry, sx, sy, notes);
546
0
        if (code < 0)
547
0
            return code;
548
0
        notes |= sn_not_first;
549
0
        px = sx;
550
0
        py = sy;
551
0
        qx = (fixed)(dx * tt / 3 + 0.5);
552
0
        qy = (fixed)(dy * tt / 3 + 0.5);
553
0
        tp = t[i];
554
0
    }
555
0
    sx = pc->pt.x;
556
0
    sy = pc->pt.y;
557
0
    rx = (fixed)((pc->pt.x - pc->p2.x) * tt + 0.5);
558
0
    ry = (fixed)((pc->pt.y - pc->p2.y) * tt + 0.5);
559
    /* Suppress the derivative sign noise near peaks : */
560
0
    if ((double)(sx - px) * qx + (double)(sy - py) * qy < 0)
561
0
        qx = -qx, qy = -qy;
562
0
    if ((double)(sx - px) * rx + (double)(sy - py) * ry < 0)
563
0
        rx = -rx, ry = -qy;
564
0
    return gx_path_add_curve_notes(ppath, px + qx, py + qy, sx - rx, sy - ry, sx, sy, notes);
565
0
}
566
567
/*
568
 * Split a curve if necessary into pieces that are monotonic in X or Y as a
569
 * function of the curve parameter t.  This allows us to rasterize curves
570
 * directly without pre-flattening.  This takes a fair amount of analysis....
571
 * Store the values of t of the split points in pst[0] and pst[1].  Return
572
 * the number of split points (0, 1, or 2).
573
 */
574
int
575
gx_curve_monotonic_points(fixed v0, fixed v1, fixed v2, fixed v3,
576
                          double pst[2])
577
0
{
578
    /*
579
       Let
580
       v(t) = a*t^3 + b*t^2 + c*t + d, 0 <= t <= 1.
581
       Then
582
       dv(t) = 3*a*t^2 + 2*b*t + c.
583
       v(t) has a local minimum or maximum (or inflection point)
584
       precisely where dv(t) = 0.  Now the roots of dv(t) = 0 (i.e.,
585
       the zeros of dv(t)) are at
586
       t =  ( -2*b +/- sqrt(4*b^2 - 12*a*c) ) / 6*a
587
       =    ( -b +/- sqrt(b^2 - 3*a*c) ) / 3*a
588
       (Note that real roots exist iff b^2 >= 3*a*c.)
589
       We want to know if these lie in the range (0..1).
590
       (The endpoints don't count.)  Call such a root a "valid zero."
591
       Since computing the roots is expensive, we would like to have
592
       some cheap tests to filter out cases where they don't exist
593
       (i.e., where the curve is already monotonic).
594
     */
595
0
    fixed v01, v12, a, b, c, b2, a3;
596
0
    fixed dv_end, b2abs, a3abs;
597
598
0
    curve_points_to_coefficients(v0, v1, v2, v3, a, b, c, v01, v12);
599
0
    b2 = b << 1;
600
0
    a3 = (a << 1) + a;
601
    /*
602
       If a = 0, the only possible zero is t = -c / 2*b.
603
       This zero is valid iff sign(c) != sign(b) and 0 < |c| < 2*|b|.
604
     */
605
0
    if (a == 0) {
606
0
        if ((b ^ c) < 0 && any_abs(c) < any_abs(b2) && c != 0) {
607
0
            *pst = (double)(-c) / b2;
608
0
            return 1;
609
0
        } else
610
0
            return 0;
611
0
    }
612
    /*
613
       Iff a curve is horizontal at t = 0, c = 0.  In this case,
614
       there can be at most one other zero, at -2*b / 3*a.
615
       This zero is valid iff sign(a) != sign(b) and 0 < 2*|b| < 3*|a|.
616
     */
617
0
    if (c == 0) {
618
0
        if ((a ^ b) < 0 && any_abs(b2) < any_abs(a3) && b != 0) {
619
0
            *pst = (double)(-b2) / a3;
620
0
            return 1;
621
0
        } else
622
0
            return 0;
623
0
    }
624
    /*
625
       Similarly, iff a curve is horizontal at t = 1, 3*a + 2*b + c = 0.
626
       In this case, there can be at most one other zero,
627
       at -1 - 2*b / 3*a, iff sign(a) != sign(b) and 1 < -2*b / 3*a < 2,
628
       i.e., 3*|a| < 2*|b| < 6*|a|.
629
     */
630
0
    else if ((dv_end = a3 + b2 + c) == 0) {
631
0
        if ((a ^ b) < 0 &&
632
0
            (b2abs = any_abs(b2)) > (a3abs = any_abs(a3)) &&
633
0
            b2abs < a3abs << 1
634
0
            ) {
635
0
            *pst = (double)(-b2 - a3) / a3;
636
0
            return 1;
637
0
        } else
638
0
            return 0;
639
0
    }
640
    /*
641
       If sign(dv_end) != sign(c), at least one valid zero exists,
642
       since dv(0) and dv(1) have opposite signs and hence
643
       dv(t) must be zero somewhere in the interval [0..1].
644
     */
645
0
    else if ((dv_end ^ c) < 0);
646
    /*
647
       If sign(a) = sign(b), no valid zero exists,
648
       since dv is monotonic on [0..1] and has the same sign
649
       at both endpoints.
650
     */
651
0
    else if ((a ^ b) >= 0)
652
0
        return 0;
653
    /*
654
       Otherwise, dv(t) may be non-monotonic on [0..1]; it has valid zeros
655
       iff its sign anywhere in this interval is different from its sign
656
       at the endpoints, which occurs iff it has an extremum in this
657
       interval and the extremum is of the opposite sign from c.
658
       To find this out, we look for the local extremum of dv(t)
659
       by observing
660
       d2v(t) = 6*a*t + 2*b
661
       which has a zero only at
662
       t1 = -b / 3*a
663
       Now if t1 <= 0 or t1 >= 1, no valid zero exists.
664
       Note that we just determined that sign(a) != sign(b), so we know t1 > 0.
665
     */
666
0
    else if (any_abs(b) >= any_abs(a3))
667
0
        return 0;
668
    /*
669
       Otherwise, we just go ahead with the computation of the roots,
670
       and test them for being in the correct range.  Note that a valid
671
       zero is an inflection point of v(t) iff d2v(t) = 0; we don't
672
       bother to check for this case, since it's rare.
673
     */
674
0
    {
675
0
        double nbf = (double)(-b);
676
0
        double a3f = (double)a3;
677
0
        double radicand = nbf * nbf - a3f * c;
678
679
0
        if (radicand < 0) {
680
0
            if_debug1('2', "[2]negative radicand = %g\n", radicand);
681
0
            return 0;
682
0
        } {
683
0
            double root = sqrt(radicand);
684
0
            int nzeros = 0;
685
0
            double z = (nbf - root) / a3f;
686
687
            /*
688
             * We need to return the zeros in the correct order.
689
             * We know that root is non-negative, but a3f may be either
690
             * positive or negative, so we need to check the ordering
691
             * explicitly.
692
             */
693
0
            if_debug2('2', "[2]zeros at %g, %g\n", z, (nbf + root) / a3f);
694
0
            if (z > 0 && z < 1)
695
0
                *pst = z, nzeros = 1;
696
0
            if (root != 0) {
697
0
                z = (nbf + root) / a3f;
698
0
                if (z > 0 && z < 1) {
699
0
                    if (nzeros && a3f < 0) /* order is reversed */
700
0
                        pst[1] = *pst, *pst = z;
701
0
                    else
702
0
                        pst[nzeros] = z;
703
0
                    nzeros++;
704
0
                }
705
0
            }
706
0
            return nzeros;
707
0
        }
708
0
    }
709
0
}
710
711
/* ---------------- Path optimization for the filling algorithm. ---------------- */
712
713
static bool
714
find_contacting_segments(const subpath *sp0, segment *sp0last,
715
                         const subpath *sp1, segment *sp1last,
716
                         segment **sc0, segment **sc1)
717
0
{
718
0
    segment *s0, *s1;
719
0
    const segment *s0s, *s1s;
720
0
    int count0, count1, search_limit = 50;
721
0
    int min_length = fixed_1 * 1;
722
723
    /* This is a simplified algorithm, which only checks for quazi-colinear vertical lines.
724
       "Quazi-vertical" means dx <= 1 && dy >= min_length . */
725
    /* To avoid a big unuseful expence of the processor time,
726
       we search the first subpath from the end
727
       (assuming that it was recently merged near the end),
728
       and restrict the search with search_limit segments
729
       against a quadratic scanning of two long subpaths.
730
       Thus algorithm is not necessary finds anything contacting.
731
       Instead it either quickly finds something, or maybe not. */
732
0
    for (s0 = sp0last, count0 = 0; count0 < search_limit && s0 != (segment *)sp0; s0 = s0->prev, count0++) {
733
0
        s0s = s0->prev;
734
0
        if ((s0->type == s_line || s0->type == s_gap) &&
735
0
            (s0s->pt.x == s0->pt.x ||
736
0
             (any_abs(s0s->pt.x - s0->pt.x) == 1 &&
737
0
              any_abs(s0s->pt.y - s0->pt.y) > min_length))) {
738
0
            for (s1 = sp1last, count1 = 0; count1 < search_limit && s1 != (segment *)sp1; s1 = s1->prev, count1++) {
739
0
                s1s = s1->prev;
740
0
                if ((s1->type == s_line || s1->type == s_gap) &&
741
0
                    (s1s->pt.x == s1->pt.x ||
742
0
                     (any_abs(s1s->pt.x - s1->pt.x) == 1 && any_abs(s1s->pt.y - s1->pt.y) > min_length))) {
743
0
                    if (s0s->pt.x == s1s->pt.x || s0->pt.x == s1->pt.x || s0->pt.x == s1s->pt.x || s0s->pt.x == s1->pt.x) {
744
0
                        if (s0s->pt.y < s0->pt.y && s1s->pt.y > s1->pt.y) {
745
0
                            fixed y0 = max(s0s->pt.y, s1->pt.y);
746
0
                            fixed y1 = min(s0->pt.y, s1s->pt.y);
747
748
0
                            if (y0 <= y1) {
749
0
                                *sc0 = s0;
750
0
                                *sc1 = s1;
751
0
                                return true;
752
0
                            }
753
0
                        }
754
0
                        if (s0s->pt.y > s0->pt.y && s1s->pt.y < s1->pt.y) {
755
0
                            fixed y0 = max(s0->pt.y, s1s->pt.y);
756
0
                            fixed y1 = min(s0s->pt.y, s1->pt.y);
757
758
0
                            if (y0 <= y1) {
759
0
                                *sc0 = s0;
760
0
                                *sc1 = s1;
761
0
                                return true;
762
0
                            }
763
0
                        }
764
0
                    }
765
0
                }
766
0
            }
767
0
        }
768
0
    }
769
0
    return false;
770
0
}
771
772
int
773
gx_path_merge_contacting_contours(gx_path *ppath)
774
0
{
775
    /* Now this is a simplified algorithm,
776
       which merge only contours by a common quazi-vertical line. */
777
    /* Note the merged contour is not equivalent to sum of original contours,
778
       because we ignore small coordinate differences within fixed_epsilon. */
779
0
    int window = 5/* max spot holes */ * 6/* segments per subpath */;
780
0
    subpath *sp0 = ppath->segments->contents.subpath_first;
781
782
0
    for (; sp0 != NULL; sp0 = (subpath *)sp0->last->next) {
783
0
        segment *sp0last = sp0->last;
784
0
        subpath *sp1 = (subpath *)sp0last->next, *spnext;
785
0
        subpath *sp1p = sp0;
786
0
        int count;
787
788
0
        for (count = 0; sp1 != NULL && count < window; sp1 = spnext, count++) {
789
0
            segment *sp1last = sp1->last;
790
0
            segment *sc0, *sc1, *old_first;
791
792
0
            spnext = (subpath *)sp1last->next;
793
0
            if (find_contacting_segments(sp0, sp0last, sp1, sp1last, &sc0, &sc1)) {
794
                /* Detach the subpath 1 from the path: */
795
0
                sp1->prev->next = sp1last->next;
796
0
                if (sp1last->next != NULL)
797
0
                    sp1last->next->prev = sp1->prev;
798
0
                sp1->prev = 0;
799
0
                sp1last->next = 0;
800
0
                old_first = sp1->next;
801
                /* sp1 is not longer in use. Move subpath_current from it for safe removing : */
802
0
                if (ppath->segments->contents.subpath_current == sp1) {
803
0
                    ppath->segments->contents.subpath_current = sp1p;
804
0
                }
805
0
                if (sp1last->type == s_line_close) {
806
                    /* Change 'closepath' of the subpath 1 to a line (maybe degenerate) : */
807
0
                    sp1last->type = s_line;
808
                    /* sp1 is not longer in use. Free it : */
809
0
                    gs_free_object(gs_memory_stable(ppath->memory), sp1, "gx_path_merge_contacting_contours");
810
0
                } else if (sp1last->pt.x == sp1->pt.x && sp1last->pt.y == sp1->pt.y) {
811
                    /* Implicit closepath with zero length. Don't need a new segment. */
812
                    /* sp1 is not longer in use. Free it : */
813
0
                    gs_free_object(gs_memory_stable(ppath->memory), sp1, "gx_path_merge_contacting_contours");
814
0
                } else {
815
                    /* Insert the closing line segment. */
816
                    /* sp1 is not longer in use. Convert it to the line segment : */
817
0
                    sp1->type = s_line;
818
0
                    sp1last->next = (segment *)sp1;
819
0
                    sp1->next = NULL;
820
0
                    sp1->prev = sp1last;
821
0
                    sp1->last = NULL; /* Safety for garbager. */
822
0
                    sp1last = (segment *)sp1;
823
0
                }
824
0
                sp1 = 0; /* Safety. */
825
                /* Rotate the subpath 1 to sc1 : */
826
0
                {   /* Detach s_start and make a loop : */
827
0
                    sp1last->next = old_first;
828
0
                    old_first->prev = sp1last;
829
                    /* Unlink before sc1 : */
830
0
                    sp1last = sc1->prev;
831
0
                    sc1->prev->next = 0;
832
0
                    sc1->prev = 0; /* Safety. */
833
                    /* sp1 is not longer in use. Free it : */
834
0
                    if (ppath->segments->contents.subpath_current == sp1) {
835
0
                        ppath->segments->contents.subpath_current = sp1p;
836
0
                    }
837
0
                    gs_free_object(gs_memory_stable(ppath->memory), sp1, "gx_path_merge_contacting_contours");
838
0
                    sp1 = 0; /* Safety. */
839
0
                }
840
                /* Insert the subpath 1 into the subpath 0 before sc0 :*/
841
0
                sc0->prev->next = sc1;
842
0
                sc1->prev = sc0->prev;
843
0
                sp1last->next = sc0;
844
0
                sc0->prev = sp1last;
845
                /* Remove degenearte "bridge" segments : (fixme: Not done due to low importance). */
846
                /* Edit the subpath count : */
847
0
                ppath->subpath_count--;
848
0
            } else
849
0
                sp1p = sp1;
850
0
        }
851
0
    }
852
0
    return 0;
853
0
}
854
855
static int
856
is_colinear(gs_fixed_rect *rect, fixed x, fixed y)
857
0
{
858
0
    fixed x0 = rect->p.x;
859
0
    fixed y0 = rect->p.y;
860
0
    fixed x1 = rect->q.x;
861
0
    fixed y1 = rect->q.y;
862
863
0
    if (x0 == x1) {
864
0
        if (y0 == y1) {
865
            /* Initial case */
866
            /* Still counts as colinear */
867
0
        } else if (x == x0) {
868
            /* OK! */
869
0
        } else {
870
0
            return 0; /* Not colinear */
871
0
        }
872
0
    } else if (rect->p.y == rect->q.y) {
873
0
        if (y == rect->p.y) {
874
            /* OK */
875
0
        } else {
876
0
            return 0; /* Not colinear */
877
0
        }
878
0
    } else {
879
        /* Need to do hairy maths */
880
        /* The distance of a point (x,y) from the line passing through
881
         * (x0,y0) and (x1,y1) is:
882
         * d = |(y1-y0)x - (x1-x0)y + x1y0 - y1x0| / SQR((y1-y0)^2 + (x1-x0)^2)
883
         *
884
         * We want d <= epsilon to count as colinear.
885
         *
886
         * d = |(y1-y0)x - (x1-x0)y + x1y0 - y1x0| / SQR((y1-y0)^2 + (x1-x0)^2) <= epsilon
887
         *
888
         * |(y1-y0)x - (x1-x0)y + x1y0 - y1x0| <= epsilon * SQR((y1-y0)^2 + (x1-x0)^2)
889
         *
890
         * ((y1-y0)x - (x1-x0)y + x1y0 - y1x0)^2 <= epsilon^2 * ((y1-y0)^2 + (x1-x0)^2)
891
         */
892
0
        int64_t ix1 = ((int64_t)x1);
893
0
        int64_t iy1 = ((int64_t)y1);
894
0
        int64_t dx  = ix1 - x0;
895
0
        int64_t dy  = iy1 - y0;
896
0
        int64_t num = dy*x - dx*y + ix1*y0 - iy1*x0;
897
0
        int64_t den = dx*dx + dy*dy;
898
0
        int epsilon_squared = 2;
899
900
0
        if (num < 0)
901
0
            num = -num;
902
0
        while (num > (1<<30)) {
903
0
            num >>= 2;
904
0
            den >>= 1;
905
0
            if (den == 0)
906
0
                return 0; /* Not colinear */
907
0
        }
908
0
        num *= num;
909
0
        if (num > epsilon_squared * den)
910
0
            return 0;
911
0
    }
912
    /* rect is not really a rect. It's just a pair of points. We guarantee that x0 <= x1. */
913
0
    if (x == x0) {
914
0
        if (y < y0)
915
0
            rect->p.y = y;
916
0
        else if (y > y1)
917
0
            rect->q.y = y;
918
0
    } else if (x < x0) {
919
0
        rect->p.x = x;
920
0
        rect->p.y = y;
921
0
    } else {
922
0
        rect->q.x = x;
923
0
        rect->q.y = y;
924
0
    }
925
926
0
    return 1;
927
0
}
928
929
static int
930
gx_path_copy_eliding_1d(const gx_path *ppath_old, gx_path *ppath)
931
0
{
932
0
    const segment *pseg;
933
    /*
934
     * Since we're going to be adding to the path, unshare it
935
     * before we start.
936
     */
937
0
    int code = gx_path_unshare(ppath);
938
939
0
    if (code < 0)
940
0
        return code;
941
#ifdef DEBUG
942
    if (gs_debug_c('P'))
943
        gx_dump_path(ppath_old, "before eliding_1d");
944
#endif
945
946
0
    pseg = (const segment *)(ppath_old->first_subpath);
947
0
    while (pseg != NULL) {
948
0
        const segment *look = pseg;
949
0
        gs_fixed_rect rect;
950
951
0
        rect.p.x = rect.q.x = look->pt.x;
952
0
        rect.p.y = rect.q.y = look->pt.y;
953
954
0
        if (look->type != s_start) {
955
0
            dlprintf("Unlikely?");
956
0
        }
957
958
0
        look = look->next;
959
0
        while (look != NULL && look->type != s_start) {
960
0
            if (look->type == s_curve) {
961
0
                const curve_segment *pc = (const curve_segment *)look;
962
0
                if (!is_colinear(&rect, pc->p1.x, pc->p1.y) ||
963
0
                    !is_colinear(&rect, pc->p2.x, pc->p2.y) ||
964
0
                    !is_colinear(&rect, pc->pt.x, pc->pt.y))
965
0
                    goto not_colinear;
966
0
            } else if (!is_colinear(&rect, look->pt.x, look->pt.y)) {
967
0
                goto not_colinear;
968
0
            }
969
0
            look = look->next;
970
0
        }
971
0
        pseg = look;
972
0
        if (0)
973
0
        {
974
0
not_colinear:
975
            /* Not colinear. We want to keep this section. */
976
0
            while (look != NULL && look->type != s_start)
977
0
                look = look->next;
978
0
            while (pseg != look && code >= 0) {
979
                /* Copy */
980
0
                switch (pseg->type) {
981
0
                    case s_start:
982
0
                        code = gx_path_add_point(ppath,
983
0
                                                 pseg->pt.x, pseg->pt.y);
984
0
                        break;
985
0
                    case s_curve:
986
0
                        {
987
0
                            const curve_segment *pc = (const curve_segment *)pseg;
988
989
0
                            code = gx_path_add_curve_notes(ppath,
990
0
                                             pc->p1.x, pc->p1.y, pc->p2.x, pc->p2.y,
991
0
                                                   pc->pt.x, pc->pt.y, pseg->notes);
992
0
                            break;
993
0
                        }
994
0
                    case s_line:
995
0
                        code = gx_path_add_line_notes(ppath,
996
0
                                               pseg->pt.x, pseg->pt.y, pseg->notes);
997
0
                        break;
998
0
                    case s_gap:
999
0
                        code = gx_path_add_gap_notes(ppath,
1000
0
                                               pseg->pt.x, pseg->pt.y, pseg->notes);
1001
0
                        break;
1002
0
                    case s_dash:
1003
0
                        {
1004
0
                            const dash_segment *pd = (const dash_segment *)pseg;
1005
1006
0
                            code = gx_path_add_dash_notes(ppath,
1007
0
                                               pd->pt.x, pd->pt.y, pd->tangent.x, pd->tangent.y, pseg->notes);
1008
0
                            break;
1009
0
                        }
1010
0
                    case s_line_close:
1011
0
                        code = gx_path_close_subpath(ppath);
1012
0
                        break;
1013
0
                    default:    /* can't happen */
1014
0
                        code = gs_note_error(gs_error_unregistered);
1015
0
                }
1016
0
                pseg = pseg->next;
1017
0
            }
1018
0
            if (code < 0) {
1019
0
                gx_path_new(ppath);
1020
0
                return code;
1021
0
            }
1022
0
        }
1023
0
    }
1024
0
    ppath->bbox_set = false;
1025
#ifdef DEBUG
1026
    if (gs_debug_c('P'))
1027
        gx_dump_path(ppath, "after eliding_1d");
1028
#endif
1029
0
    return 0;
1030
0
}
1031
1032
int
1033
gx_path_elide_1d(gx_path *ppath)
1034
0
{
1035
0
    int code;
1036
0
    gx_path path;
1037
1038
0
    gx_path_init_local(&path, ppath->memory);
1039
0
    code = gx_path_copy_eliding_1d(ppath, &path);
1040
0
    if (code < 0)
1041
0
        return code;
1042
0
    gx_path_assign_free(ppath, &path);
1043
0
    gx_path_free(&path, "gx_path_elide_1d");
1044
1045
0
    return 0;
1046
0
}