/src/ghostpdl/base/gxshade1.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* Copyright (C) 2001-2023 Artifex Software, Inc. |
2 | | All Rights Reserved. |
3 | | |
4 | | This software is provided AS-IS with no warranty, either express or |
5 | | implied. |
6 | | |
7 | | This software is distributed under license and may not be copied, |
8 | | modified or distributed except as expressly authorized under the terms |
9 | | of the license contained in the file LICENSE in this distribution. |
10 | | |
11 | | Refer to licensing information at http://www.artifex.com or contact |
12 | | Artifex Software, Inc., 39 Mesa Street, Suite 108A, San Francisco, |
13 | | CA 94129, USA, for further information. |
14 | | */ |
15 | | |
16 | | |
17 | | /* Rendering for non-mesh shadings */ |
18 | | #include "math_.h" |
19 | | #include "memory_.h" |
20 | | #include "gx.h" |
21 | | #include "gserrors.h" |
22 | | #include "gsmatrix.h" /* for gscoord.h */ |
23 | | #include "gscoord.h" |
24 | | #include "gspath.h" |
25 | | #include "gsptype2.h" |
26 | | #include "gxcspace.h" |
27 | | #include "gxdcolor.h" |
28 | | #include "gxfarith.h" |
29 | | #include "gxfixed.h" |
30 | | #include "gxgstate.h" |
31 | | #include "gxpath.h" |
32 | | #include "gxshade.h" |
33 | | #include "gxdevcli.h" |
34 | | #include "gxshade4.h" |
35 | | #include "gsicc_cache.h" |
36 | | |
37 | | /* ---------------- Function-based shading ---------------- */ |
38 | | |
39 | | typedef struct Fb_frame_s { /* A rudiment of old code. */ |
40 | | gs_rect region; |
41 | | gs_client_color cc[4]; /* colors at 4 corners */ |
42 | | int state; |
43 | | } Fb_frame_t; |
44 | | |
45 | | typedef struct Fb_fill_state_s { |
46 | | shading_fill_state_common; |
47 | | const gs_shading_Fb_t *psh; |
48 | | gs_matrix_fixed ptm; /* parameter space -> device space */ |
49 | | Fb_frame_t frame; |
50 | | } Fb_fill_state_t; |
51 | | /****** NEED GC DESCRIPTOR ******/ |
52 | | |
53 | | static inline void |
54 | | make_other_poles(patch_curve_t curve[4]) |
55 | 358k | { |
56 | 358k | int i, j; |
57 | | |
58 | 1.79M | for (i = 0; i < 4; i++) { |
59 | 1.43M | j = (i + 1) % 4; |
60 | 1.43M | curve[i].control[0].x = (curve[i].vertex.p.x * 2 + curve[j].vertex.p.x) / 3; |
61 | 1.43M | curve[i].control[0].y = (curve[i].vertex.p.y * 2 + curve[j].vertex.p.y) / 3; |
62 | 1.43M | curve[i].control[1].x = (curve[i].vertex.p.x + curve[j].vertex.p.x * 2) / 3; |
63 | 1.43M | curve[i].control[1].y = (curve[i].vertex.p.y + curve[j].vertex.p.y * 2) / 3; |
64 | 1.43M | curve[i].straight = true; |
65 | 1.43M | } |
66 | 358k | } |
67 | | |
68 | | /* Transform a point with a fixed-point result. */ |
69 | | static void |
70 | | gs_point_transform2fixed_clamped(const gs_matrix_fixed * pmat, |
71 | | double x, double y, gs_fixed_point * ppt) |
72 | 0 | { |
73 | 0 | gs_point fpt; |
74 | |
|
75 | 0 | gs_point_transform(x, y, (const gs_matrix *)pmat, &fpt); |
76 | 0 | ppt->x = clamp_coord(fpt.x); |
77 | 0 | ppt->y = clamp_coord(fpt.y); |
78 | 0 | } |
79 | | |
80 | | static int |
81 | | Fb_fill_region(Fb_fill_state_t * pfs, const gs_fixed_rect *rect) |
82 | 0 | { |
83 | 0 | patch_fill_state_t pfs1; |
84 | 0 | patch_curve_t curve[4]; |
85 | 0 | Fb_frame_t * fp = &pfs->frame; |
86 | 0 | int code; |
87 | |
|
88 | 0 | memcpy(&pfs1, (shading_fill_state_t *)pfs, sizeof(shading_fill_state_t)); |
89 | 0 | pfs1.Function = pfs->psh->params.Function; |
90 | 0 | code = init_patch_fill_state(&pfs1); |
91 | 0 | if (code < 0) |
92 | 0 | return code; |
93 | 0 | pfs1.maybe_self_intersecting = false; |
94 | 0 | pfs1.n_color_args = 2; |
95 | 0 | pfs1.rect = *rect; |
96 | 0 | gs_point_transform2fixed(&pfs->ptm, fp->region.p.x, fp->region.p.y, &curve[0].vertex.p); |
97 | 0 | gs_point_transform2fixed(&pfs->ptm, fp->region.q.x, fp->region.p.y, &curve[1].vertex.p); |
98 | 0 | gs_point_transform2fixed(&pfs->ptm, fp->region.q.x, fp->region.q.y, &curve[2].vertex.p); |
99 | 0 | gs_point_transform2fixed(&pfs->ptm, fp->region.p.x, fp->region.q.y, &curve[3].vertex.p); |
100 | 0 | make_other_poles(curve); |
101 | 0 | curve[0].vertex.cc[0] = fp->region.p.x; curve[0].vertex.cc[1] = fp->region.p.y; |
102 | 0 | curve[1].vertex.cc[0] = fp->region.q.x; curve[1].vertex.cc[1] = fp->region.p.y; |
103 | 0 | curve[2].vertex.cc[0] = fp->region.q.x; curve[2].vertex.cc[1] = fp->region.q.y; |
104 | 0 | curve[3].vertex.cc[0] = fp->region.p.x; curve[3].vertex.cc[1] = fp->region.q.y; |
105 | 0 | code = patch_fill(&pfs1, curve, NULL, NULL); |
106 | 0 | if (term_patch_fill_state(&pfs1)) |
107 | 0 | return_error(gs_error_unregistered); /* Must not happen. */ |
108 | 0 | return code; |
109 | 0 | } |
110 | | |
111 | | int |
112 | | gs_shading_Fb_fill_rectangle(const gs_shading_t * psh0, const gs_rect * rect, |
113 | | const gs_fixed_rect * rect_clip, |
114 | | gx_device * dev, gs_gstate * pgs) |
115 | 0 | { |
116 | 0 | const gs_shading_Fb_t * const psh = (const gs_shading_Fb_t *)psh0; |
117 | 0 | gs_matrix save_ctm; |
118 | 0 | int xi, yi, code; |
119 | 0 | float x[2], y[2]; |
120 | 0 | Fb_fill_state_t state; |
121 | |
|
122 | 0 | code = shade_init_fill_state((shading_fill_state_t *) & state, psh0, dev, pgs); |
123 | 0 | if (code < 0) |
124 | 0 | return code; |
125 | 0 | state.psh = psh; |
126 | | /****** HACK FOR FIXED-POINT MATRIX MULTIPLY ******/ |
127 | 0 | gs_currentmatrix((gs_gstate *) pgs, &save_ctm); |
128 | 0 | gs_concat((gs_gstate *) pgs, &psh->params.Matrix); |
129 | 0 | state.ptm = pgs->ctm; |
130 | 0 | gs_setmatrix((gs_gstate *) pgs, &save_ctm); |
131 | | /* Compute the parameter X and Y ranges. */ |
132 | 0 | { |
133 | 0 | gs_rect pbox; |
134 | |
|
135 | 0 | code = gs_bbox_transform_inverse(rect, &psh->params.Matrix, &pbox); |
136 | 0 | if (code < 0) |
137 | 0 | return code; |
138 | 0 | x[0] = max(pbox.p.x, psh->params.Domain[0]); |
139 | 0 | x[1] = min(pbox.q.x, psh->params.Domain[1]); |
140 | 0 | y[0] = max(pbox.p.y, psh->params.Domain[2]); |
141 | 0 | y[1] = min(pbox.q.y, psh->params.Domain[3]); |
142 | 0 | } |
143 | 0 | if (x[0] > x[1] || y[0] > y[1]) { |
144 | | /* The region is outside the shading area. */ |
145 | 0 | if (state.icclink != NULL) gsicc_release_link(state.icclink); |
146 | 0 | return 0; |
147 | 0 | } |
148 | 0 | for (xi = 0; xi < 2; ++xi) |
149 | 0 | for (yi = 0; yi < 2; ++yi) { |
150 | 0 | float v[2]; |
151 | |
|
152 | 0 | v[0] = x[xi], v[1] = y[yi]; |
153 | 0 | gs_function_evaluate(psh->params.Function, v, |
154 | 0 | state.frame.cc[yi * 2 + xi].paint.values); |
155 | 0 | } |
156 | 0 | state.frame.region.p.x = x[0]; |
157 | 0 | state.frame.region.p.y = y[0]; |
158 | 0 | state.frame.region.q.x = x[1]; |
159 | 0 | state.frame.region.q.y = y[1]; |
160 | 0 | code = Fb_fill_region(&state, rect_clip); |
161 | 0 | if (state.icclink != NULL) gsicc_release_link(state.icclink); |
162 | 0 | return code; |
163 | 0 | } |
164 | | |
165 | | /* ---------------- Axial shading ---------------- */ |
166 | | |
167 | | typedef struct A_fill_state_s { |
168 | | const gs_shading_A_t *psh; |
169 | | gs_point delta; |
170 | | double length; |
171 | | double t0, t1; |
172 | | double v0, v1, u0, u1; |
173 | | } A_fill_state_t; |
174 | | /****** NEED GC DESCRIPTOR ******/ |
175 | | |
176 | | /* Note t0 and t1 vary over [0..1], not the Domain. */ |
177 | | |
178 | | typedef struct |
179 | | { |
180 | | patch_curve_t curve[4]; |
181 | | gs_point corners[4]; |
182 | | } corners_and_curves; |
183 | | |
184 | | /* Ghostscript cannot possibly render any patch whose bounds aren't |
185 | | * representable in fixed's. In fact, this is a larger limit than |
186 | | * we need. We notionally have an area defined by coordinates |
187 | | * that can be represented in fixed point with at least 1 bit to |
188 | | * spare. |
189 | | * |
190 | | * Any patch that lies completely outside this region can be clipped |
191 | | * away. Any patch that isn't representable by fixed points can be |
192 | | * subdivided into 4. |
193 | | * |
194 | | * This avoids us subdividing patches huge numbers of times because |
195 | | * one side is just outside the region we will accept. |
196 | | */ |
197 | | |
198 | | |
199 | | #define MIN_CLIP_LIMIT ((int)(fixed2int(min_fixed)/2)) |
200 | | #define MAX_CLIP_LIMIT ((int)(fixed2int(max_fixed)/2)) |
201 | | |
202 | | static int not_clipped_away(const gs_point *p, const gs_fixed_rect *rect) |
203 | 401M | { |
204 | 401M | if (p[0].x < rect->p.x && |
205 | 401M | p[1].x < rect->p.x && |
206 | 401M | p[2].x < rect->p.x && |
207 | 401M | p[3].x < rect->p.x) |
208 | 109M | return 0; /* Clipped away! */ |
209 | 292M | if (p[0].x > rect->q.x && |
210 | 292M | p[1].x > rect->q.x && |
211 | 292M | p[2].x > rect->q.x && |
212 | 292M | p[3].x > rect->q.x) |
213 | 111M | return 0; /* Clipped away! */ |
214 | 180M | if (p[0].y < rect->p.y && |
215 | 180M | p[1].y < rect->p.y && |
216 | 180M | p[2].y < rect->p.y && |
217 | 180M | p[3].y < rect->p.y) |
218 | 5 | return 0; /* Clipped away! */ |
219 | 180M | if (p[0].y > rect->q.y && |
220 | 180M | p[1].y > rect->q.y && |
221 | 180M | p[2].y > rect->q.y && |
222 | 180M | p[3].y > rect->q.y) |
223 | 0 | return 0; /* Clipped away! */ |
224 | 180M | return 1; |
225 | 180M | } |
226 | | |
227 | | #define midpoint(a,b)\ |
228 | 1.29G | (arith_rshift_1(a) + arith_rshift_1(b) + (((a) | (b)) & 1)) |
229 | | |
230 | | #define quarterpoint(a,b)\ |
231 | 482M | (midpoint(a,midpoint(a,b))) |
232 | | |
233 | | static int |
234 | | subdivide_patch_fill(patch_fill_state_t *pfs, patch_curve_t c[4]) |
235 | 80.1M | { |
236 | 80.1M | fixed m0, m1; |
237 | 80.1M | int v0, v1; |
238 | 80.1M | int changed; |
239 | | |
240 | 80.1M | if (pfs->rect.p.x >= pfs->rect.q.x || pfs->rect.p.y >= pfs->rect.q.y) |
241 | 392 | return 0; |
242 | | |
243 | | /* On entry we have a patch: |
244 | | * c[0].vertex c[1].vertex |
245 | | * |
246 | | * c[3].vertex c[2].vertex |
247 | | * |
248 | | * Only the corners are set. The control points are not! |
249 | | * |
250 | | * BUT... in terms of spacial coords, it might be different... |
251 | | * They might be flipped on X, Y or both, giving: |
252 | | * 01 or 10 or 32 or 23 |
253 | | * 32 23 01 10 |
254 | | * or they might be rotated, and then flipped on X, Y or both, giving: |
255 | | * 03 or 30 or 12 or 21 |
256 | | * 12 21 03 30 |
257 | | */ |
258 | | |
259 | | /* The +MIDPOINT_ACCURACY in the tests below is to allow for us finding the midpoint of [a] = z+1 and [b] = z, and getting z+1, |
260 | | * and updating [a] to be z+1, hence never actually shrinking the gap. Just accept not culling the patch as |
261 | | * much as we might. See bug 706378 for an example. */ |
262 | 455M | #define MIDPOINT_ACCURACY 1 |
263 | 309M | #define QUARTERPOINT_ACCURACY 3 |
264 | | |
265 | 80.1M | do { |
266 | 80.1M | changed = 0; |
267 | | |
268 | | /* Is the whole of our patch outside the clipping rectangle? */ |
269 | | /* Tempting to try to roll this into the cases below, but that |
270 | | * doesn't work because we want <= or >= here. Do X ones first. */ |
271 | 80.1M | if ((c[0].vertex.p.x <= pfs->rect.p.x && |
272 | 80.1M | c[1].vertex.p.x <= pfs->rect.p.x && |
273 | 80.1M | c[2].vertex.p.x <= pfs->rect.p.x && |
274 | 80.1M | c[3].vertex.p.x <= pfs->rect.p.x) || |
275 | 80.1M | (c[0].vertex.p.x >= pfs->rect.q.x && |
276 | 80.1M | c[1].vertex.p.x >= pfs->rect.q.x && |
277 | 80.1M | c[2].vertex.p.x >= pfs->rect.q.x && |
278 | 80.1M | c[3].vertex.p.x >= pfs->rect.q.x)) |
279 | 6.61M | return 0; |
280 | | |
281 | | /* First, let's try to see if we can cull the patch horizontally with the clipping |
282 | | * rectangle. */ |
283 | | /* Non rotated cases first. Can we cull the left hand half? */ |
284 | 73.5M | if (c[0].vertex.p.x < pfs->rect.p.x && c[3].vertex.p.x < pfs->rect.p.x) |
285 | 42.7M | { |
286 | | /* Check 0+3 off left. */ |
287 | 42.7M | v0 = 0; |
288 | 42.7M | v1 = 3; |
289 | 42.7M | goto check_left; |
290 | 42.7M | } |
291 | 30.8M | else if (c[1].vertex.p.x < pfs->rect.p.x && c[2].vertex.p.x < pfs->rect.p.x) |
292 | 33 | { |
293 | | /* Check 1+2 off left. */ |
294 | 33 | v0 = 1; |
295 | 33 | v1 = 2; |
296 | 42.7M | check_left: |
297 | | /* At this point we know that the condition for the following loop is true, so it |
298 | | * can be a do...while rather than a while. */ |
299 | 42.7M | do |
300 | 79.1M | { |
301 | | /* Let's form (X coords only): |
302 | | * |
303 | | * c[v0].vertex m0 c[v0^1].vertex |
304 | | * c[v1].vertex m1 c[v1^1].vertex |
305 | | */ |
306 | 79.1M | m0 = midpoint(c[0].vertex.p.x, c[1].vertex.p.x); |
307 | 79.1M | if (m0 >= pfs->rect.p.x) |
308 | 42.7M | goto check_left_quarter; |
309 | 36.4M | m1 = midpoint(c[3].vertex.p.x, c[2].vertex.p.x); |
310 | 36.4M | if (m1 >= pfs->rect.p.x) |
311 | 2 | goto check_left_quarter; |
312 | | /* So, we can completely discard the left hand half of the patch. */ |
313 | 36.4M | c[v0].vertex.p.x = m0; |
314 | 36.4M | c[v0].vertex.p.y = midpoint(c[0].vertex.p.y, c[1].vertex.p.y); |
315 | 36.4M | c[v1].vertex.p.x = m1; |
316 | 36.4M | c[v1].vertex.p.y = midpoint(c[3].vertex.p.y, c[2].vertex.p.y); |
317 | 36.4M | c[v0].vertex.cc[0] = (c[0].vertex.cc[0] + c[1].vertex.cc[0])/2; |
318 | 36.4M | c[v1].vertex.cc[0] = (c[3].vertex.cc[0] + c[2].vertex.cc[0])/2; |
319 | 36.4M | changed = 1; |
320 | 36.4M | } |
321 | 42.7M | while (c[v0].vertex.p.x < pfs->rect.p.x && c[v1].vertex.p.x < pfs->rect.p.x); |
322 | 0 | if (0) |
323 | 0 | { |
324 | 42.7M | check_left_quarter: |
325 | | /* At this point we know that the condition for the following loop is true, so it |
326 | | * can be a do...while rather than a while. */ |
327 | 42.7M | do |
328 | 65.8M | { |
329 | | /* Let's form (X coords only): |
330 | | * |
331 | | * c[v0].vertex m0 x x c[v0^1].vertex |
332 | | * c[v1].vertex m1 x x c[v1^1].vertex |
333 | | */ |
334 | 65.8M | m0 = quarterpoint(c[v0].vertex.p.x, c[v0^1].vertex.p.x); |
335 | 65.8M | if (m0 >= pfs->rect.p.x) |
336 | 42.7M | break; |
337 | 23.0M | m1 = quarterpoint(c[v1].vertex.p.x, c[v1^1].vertex.p.x); |
338 | 23.0M | if (m1 >= pfs->rect.p.x) |
339 | 2 | break; |
340 | | /* So, we can completely discard the left hand quarter of the patch. */ |
341 | 23.0M | c[v0].vertex.p.x = m0; |
342 | 23.0M | c[v0].vertex.p.y = midpoint(c[v0].vertex.p.y, c[v0^1].vertex.p.y); |
343 | 23.0M | c[v1].vertex.p.x = m1; |
344 | 23.0M | c[v1].vertex.p.y = midpoint(c[v1].vertex.p.y, c[v1^1].vertex.p.y); |
345 | 23.0M | c[v0].vertex.cc[0] = (c[v0].vertex.cc[0] + 3*c[v0^1].vertex.cc[0])/4; |
346 | 23.0M | c[v1].vertex.cc[0] = (c[v1].vertex.cc[0] + 3*c[v1^1].vertex.cc[0])/4; |
347 | 23.0M | changed = 1; |
348 | 23.0M | } |
349 | 42.7M | while (c[v0].vertex.p.x < pfs->rect.p.x && c[v1].vertex.p.x < pfs->rect.p.x); |
350 | 42.7M | } |
351 | 0 | } |
352 | | |
353 | | /* or the right hand half? */ |
354 | 73.5M | if (c[0].vertex.p.x > pfs->rect.q.x && c[3].vertex.p.x > pfs->rect.q.x) |
355 | 58 | { |
356 | | /* Check 0+3 off right. */ |
357 | 58 | v0 = 0; |
358 | 58 | v1 = 3; |
359 | 58 | goto check_right; |
360 | 58 | } |
361 | 73.5M | else if (c[1].vertex.p.x > pfs->rect.q.x && c[2].vertex.p.x > pfs->rect.q.x) |
362 | 42.7M | { |
363 | | /* Check 1+2 off right. */ |
364 | 42.7M | v0 = 1; |
365 | 42.7M | v1 = 2; |
366 | 42.7M | check_right: |
367 | | /* At this point we know that the condition for the following loop is true, so it |
368 | | * can be a do...while rather than a while. */ |
369 | 42.7M | do |
370 | 79.2M | { |
371 | | /* Let's form (X coords only): |
372 | | * |
373 | | * c[v0].vertex m0 c[v0^1].vertex |
374 | | * c[v1].vertex m1 c[v1^1].vertex |
375 | | */ |
376 | 79.2M | m0 = midpoint(c[0].vertex.p.x, c[1].vertex.p.x); |
377 | 79.2M | if (m0 <= pfs->rect.q.x+MIDPOINT_ACCURACY) |
378 | 122 | goto check_right_quarter; |
379 | 79.2M | m1 = midpoint(c[3].vertex.p.x, c[2].vertex.p.x); |
380 | 79.2M | if (m1 <= pfs->rect.q.x+MIDPOINT_ACCURACY) |
381 | 42.7M | goto check_right_quarter; |
382 | | /* So, we can completely discard the left hand half of the patch. */ |
383 | 36.4M | c[v0].vertex.p.x = m0; |
384 | 36.4M | c[v0].vertex.p.y = midpoint(c[0].vertex.p.y, c[1].vertex.p.y); |
385 | 36.4M | c[v1].vertex.p.x = m1; |
386 | 36.4M | c[v1].vertex.p.y = midpoint(c[3].vertex.p.y, c[2].vertex.p.y); |
387 | 36.4M | c[v0].vertex.cc[0] = (c[0].vertex.cc[0] + c[1].vertex.cc[0])/2; |
388 | 36.4M | c[v1].vertex.cc[0] = (c[3].vertex.cc[0] + c[2].vertex.cc[0])/2; |
389 | 36.4M | changed = 1; |
390 | 36.4M | } |
391 | 42.7M | while (c[v0].vertex.p.x > pfs->rect.q.x+MIDPOINT_ACCURACY && c[v1].vertex.p.x > pfs->rect.q.x+MIDPOINT_ACCURACY); |
392 | 0 | if (0) |
393 | 0 | { |
394 | 42.7M | check_right_quarter: |
395 | | /* At this point we know that the condition for the following loop is true, so it |
396 | | * can be a do...while rather than a while. */ |
397 | 42.7M | do |
398 | 65.8M | { |
399 | | /* Let's form (X coords only): |
400 | | * |
401 | | * c[v0].vertex m0 x x c[v0^1].vertex |
402 | | * c[v1].vertex m1 x x c[v1^1].vertex |
403 | | */ |
404 | 65.8M | m0 = quarterpoint(c[v0].vertex.p.x, c[v0^1].vertex.p.x); |
405 | 65.8M | if (m0 <= pfs->rect.q.x+QUARTERPOINT_ACCURACY) |
406 | 122 | break; |
407 | 65.8M | m1 = quarterpoint(c[v1].vertex.p.x, c[v1^1].vertex.p.x); |
408 | 65.8M | if (m1 <= pfs->rect.q.x+QUARTERPOINT_ACCURACY) |
409 | 42.7M | break; |
410 | | /* So, we can completely discard the left hand half of the patch. */ |
411 | 23.0M | c[v0].vertex.p.x = m0; |
412 | 23.0M | c[v0].vertex.p.y = quarterpoint(c[v0].vertex.p.y, c[v0^1].vertex.p.y); |
413 | 23.0M | c[v1].vertex.p.x = m1; |
414 | 23.0M | c[v1].vertex.p.y = quarterpoint(c[v1].vertex.p.y, c[v1^1].vertex.p.y); |
415 | 23.0M | c[v0].vertex.cc[0] = (c[v0].vertex.cc[0] + 3*c[v0^1].vertex.cc[0])/4; |
416 | 23.0M | c[v1].vertex.cc[0] = (c[v1].vertex.cc[0] + 3*c[v1^1].vertex.cc[0])/4; |
417 | 23.0M | changed = 1; |
418 | 23.0M | } |
419 | 42.7M | while (c[v0].vertex.p.x > pfs->rect.q.x+QUARTERPOINT_ACCURACY && c[v1].vertex.p.x > pfs->rect.q.x+QUARTERPOINT_ACCURACY); |
420 | 42.7M | } |
421 | 0 | } |
422 | | |
423 | | /* Now, rotated cases: Can we cull the left hand half? */ |
424 | 73.5M | if (c[0].vertex.p.x < pfs->rect.p.x && c[1].vertex.p.x < pfs->rect.p.x) |
425 | 18.5k | { |
426 | | /* Check 0+1 off left. */ |
427 | 18.5k | v0 = 0; |
428 | 18.5k | v1 = 1; |
429 | 18.5k | goto check_rot_left; |
430 | 18.5k | } |
431 | 73.5M | else if (c[3].vertex.p.x < pfs->rect.p.x && c[2].vertex.p.x < pfs->rect.p.x) |
432 | 30.4M | { |
433 | | /* Check 3+2 off left. */ |
434 | 30.4M | v0 = 3; |
435 | 30.4M | v1 = 2; |
436 | 30.4M | check_rot_left: |
437 | | /* At this point we know that the condition for the following loop is true, so it |
438 | | * can be a do...while rather than a while. */ |
439 | 30.4M | do |
440 | 61.8M | { |
441 | | /* Let's form (X coords only): |
442 | | * |
443 | | * c[v0].vertex m0 c[v0^3].vertex |
444 | | * c[v1^3].vertex m1 c[v1].vertex |
445 | | */ |
446 | 61.8M | m0 = midpoint(c[0].vertex.p.x, c[3].vertex.p.x); |
447 | 61.8M | if (m0 >= pfs->rect.p.x) |
448 | 25.3k | goto check_rot_left_quarter; |
449 | 61.8M | m1 = midpoint(c[1].vertex.p.x, c[2].vertex.p.x); |
450 | 61.8M | if (m1 >= pfs->rect.p.x) |
451 | 30.4M | goto check_rot_left_quarter; |
452 | | /* So, we can completely discard the left hand half of the patch. */ |
453 | 31.4M | c[v0].vertex.p.x = m0; |
454 | 31.4M | c[v0].vertex.p.y = midpoint(c[0].vertex.p.y, c[3].vertex.p.y); |
455 | 31.4M | c[v1].vertex.p.x = m1; |
456 | 31.4M | c[v1].vertex.p.y = midpoint(c[1].vertex.p.y, c[2].vertex.p.y); |
457 | 31.4M | c[v0].vertex.cc[0] = (c[0].vertex.cc[0] + c[3].vertex.cc[0])/2; |
458 | 31.4M | c[v1].vertex.cc[0] = (c[1].vertex.cc[0] + c[2].vertex.cc[0])/2; |
459 | 31.4M | changed = 1; |
460 | 31.4M | } |
461 | 31.4M | while (c[v0].vertex.p.x < pfs->rect.p.x && c[v1].vertex.p.x < pfs->rect.p.x); |
462 | 0 | if (0) |
463 | 0 | { |
464 | 30.4M | check_rot_left_quarter: |
465 | | /* At this point we know that the condition for the following loop is true, so it |
466 | | * can be a do...while rather than a while. */ |
467 | 30.4M | do |
468 | 46.0M | { |
469 | | /* Let's form (X coords only): |
470 | | * |
471 | | * c[v0].vertex m0 x x c[v0^3].vertex |
472 | | * c[v1].vertex m1 x x c[v1^3].vertex |
473 | | */ |
474 | 46.0M | m0 = quarterpoint(c[v0].vertex.p.x, c[v0^3].vertex.p.x); |
475 | 46.0M | if (m0 >= pfs->rect.p.x) |
476 | 20.0k | break; |
477 | 46.0M | m1 = quarterpoint(c[v1].vertex.p.x, c[v1^3].vertex.p.x); |
478 | 46.0M | if (m1 >= pfs->rect.p.x) |
479 | 30.4M | break; |
480 | | /* So, we can completely discard the left hand half of the patch. */ |
481 | 15.6M | c[v0].vertex.p.x = m0; |
482 | 15.6M | c[v0].vertex.p.y = quarterpoint(c[v0].vertex.p.y, c[v0^3].vertex.p.y); |
483 | 15.6M | c[v1].vertex.p.x = m1; |
484 | 15.6M | c[v1].vertex.p.y = quarterpoint(c[v1].vertex.p.y, c[v1^3].vertex.p.y); |
485 | 15.6M | c[v0].vertex.cc[0] = (c[v0].vertex.cc[0] + 3*c[v0^3].vertex.cc[0])/4; |
486 | 15.6M | c[v1].vertex.cc[0] = (c[v1].vertex.cc[0] + 3*c[v1^3].vertex.cc[0])/4; |
487 | 15.6M | changed = 1; |
488 | 15.6M | } |
489 | 30.4M | while (c[v0].vertex.p.x < pfs->rect.p.x && c[v1].vertex.p.x < pfs->rect.p.x); |
490 | 30.4M | } |
491 | 0 | } |
492 | | |
493 | | /* or the right hand half? */ |
494 | 73.5M | if (c[0].vertex.p.x > pfs->rect.q.x && c[1].vertex.p.x > pfs->rect.q.x) |
495 | 30.4M | { |
496 | | /* Check 0+1 off right. */ |
497 | 30.4M | v0 = 0; |
498 | 30.4M | v1 = 1; |
499 | 30.4M | goto check_rot_right; |
500 | 30.4M | } |
501 | 43.1M | else if (c[3].vertex.p.x > pfs->rect.q.x && c[2].vertex.p.x > pfs->rect.q.x) |
502 | 15.1k | { |
503 | | /* Check 3+2 off right. */ |
504 | 15.1k | v0 = 3; |
505 | 15.1k | v1 = 2; |
506 | 30.4M | check_rot_right: |
507 | | /* At this point we know that the condition for the following loop is true, so it |
508 | | * can be a do...while rather than a while. */ |
509 | 30.4M | do |
510 | 61.8M | { |
511 | | /* Let's form (X coords only): |
512 | | * |
513 | | * c[v0].vertex m0 c[v0^3].vertex |
514 | | * c[v1].vertex m1 c[v1^3].vertex |
515 | | */ |
516 | 61.8M | m0 = midpoint(c[0].vertex.p.x, c[3].vertex.p.x); |
517 | 61.8M | if (m0 <= pfs->rect.q.x+MIDPOINT_ACCURACY) |
518 | 30.4M | goto check_rot_right_quarter; |
519 | 31.4M | m1 = midpoint(c[1].vertex.p.x, c[2].vertex.p.x); |
520 | 31.4M | if (m1 <= pfs->rect.q.x+MIDPOINT_ACCURACY) |
521 | 668 | goto check_rot_right_quarter; |
522 | | /* So, we can completely discard the left hand half of the patch. */ |
523 | 31.4M | c[v0].vertex.p.x = m0; |
524 | 31.4M | c[v0].vertex.p.y = midpoint(c[0].vertex.p.y, c[3].vertex.p.y); |
525 | 31.4M | c[v1].vertex.p.x = m1; |
526 | 31.4M | c[v1].vertex.p.y = midpoint(c[1].vertex.p.y, c[2].vertex.p.y); |
527 | 31.4M | c[v0].vertex.cc[0] = (c[0].vertex.cc[0] + c[3].vertex.cc[0])/2; |
528 | 31.4M | c[v1].vertex.cc[0] = (c[1].vertex.cc[0] + c[2].vertex.cc[0])/2; |
529 | 31.4M | changed = 1; |
530 | 31.4M | } |
531 | 31.4M | while (c[v0].vertex.p.x > pfs->rect.q.x+MIDPOINT_ACCURACY && c[v1].vertex.p.x > pfs->rect.q.x+MIDPOINT_ACCURACY); |
532 | 0 | if (0) |
533 | 0 | { |
534 | 30.4M | check_rot_right_quarter: |
535 | | /* At this point we know that the condition for the following loop is true, so it |
536 | | * can be a do...while rather than a while. */ |
537 | 30.4M | do |
538 | 46.0M | { |
539 | | /* Let's form (X coords only): |
540 | | * |
541 | | * c[v0].vertex m0 c[v0^3].vertex |
542 | | * c[v1].vertex m1 c[v1^3].vertex |
543 | | */ |
544 | 46.0M | m0 = quarterpoint(c[v0].vertex.p.x, c[v0^3].vertex.p.x); |
545 | 46.0M | if (m0 <= pfs->rect.q.x+QUARTERPOINT_ACCURACY) |
546 | 30.4M | break; |
547 | 15.6M | m1 = quarterpoint(c[v1].vertex.p.x, c[v1^3].vertex.p.x); |
548 | 15.6M | if (m1 <= pfs->rect.q.x+QUARTERPOINT_ACCURACY) |
549 | 6.51k | break; |
550 | | /* So, we can completely discard the left hand half of the patch. */ |
551 | 15.6M | c[v0].vertex.p.x = m0; |
552 | 15.6M | c[v0].vertex.p.y = quarterpoint(c[v0].vertex.p.y, c[v0^3].vertex.p.y); |
553 | 15.6M | c[v1].vertex.p.x = m1; |
554 | 15.6M | c[v1].vertex.p.y = quarterpoint(c[v1].vertex.p.y, c[v1^3].vertex.p.y); |
555 | 15.6M | c[v0].vertex.cc[0] = (c[v0].vertex.cc[0] + 3*c[v0^3].vertex.cc[0])/4; |
556 | 15.6M | c[v1].vertex.cc[0] = (c[v1].vertex.cc[0] + 3*c[v1^3].vertex.cc[0])/4; |
557 | 15.6M | changed = 1; |
558 | 15.6M | } |
559 | 30.4M | while (c[v0].vertex.p.x > pfs->rect.q.x+QUARTERPOINT_ACCURACY && c[v1].vertex.p.x > pfs->rect.q.x+QUARTERPOINT_ACCURACY); |
560 | 30.4M | } |
561 | 0 | } |
562 | | |
563 | | /* Is the whole of our patch outside the clipping rectangle? */ |
564 | | /* Tempting to try to roll this into the cases below, but that |
565 | | * doesn't work because we want <= or >= here. Do Y ones. Can't have |
566 | | * done this earlier, as the previous set of tests might have reduced |
567 | | * the range here. */ |
568 | 73.5M | if ((c[0].vertex.p.y <= pfs->rect.p.y && |
569 | 73.5M | c[1].vertex.p.y <= pfs->rect.p.y && |
570 | 73.5M | c[2].vertex.p.y <= pfs->rect.p.y && |
571 | 73.5M | c[3].vertex.p.y <= pfs->rect.p.y) || |
572 | 73.5M | (c[0].vertex.p.y >= pfs->rect.q.y && |
573 | 73.5M | c[1].vertex.p.y >= pfs->rect.q.y && |
574 | 73.5M | c[2].vertex.p.y >= pfs->rect.q.y && |
575 | 73.5M | c[3].vertex.p.y >= pfs->rect.q.y)) |
576 | 73.2M | return 0; |
577 | | |
578 | | /* Now, let's try to see if we can cull the patch vertically with the clipping |
579 | | * rectangle. */ |
580 | | /* Non rotated cases first. Can we cull the top half? */ |
581 | 372k | if (c[0].vertex.p.y < pfs->rect.p.y && c[1].vertex.p.y < pfs->rect.p.y) |
582 | 10.1k | { |
583 | | /* Check 0+1 off above. */ |
584 | 10.1k | v0 = 0; |
585 | 10.1k | v1 = 1; |
586 | 10.1k | goto check_above; |
587 | 10.1k | } |
588 | 362k | else if (c[3].vertex.p.y < pfs->rect.p.y && c[2].vertex.p.y < pfs->rect.p.y) |
589 | 7.44k | { |
590 | | /* Check 3+2 off above. */ |
591 | 7.44k | v0 = 3; |
592 | 7.44k | v1 = 2; |
593 | 17.5k | check_above: |
594 | | /* At this point we know that the condition for the following loop is true, so it |
595 | | * can be a do...while rather than a while. */ |
596 | 17.5k | do |
597 | 19.9k | { |
598 | | /* Let's form (Y coords only): |
599 | | * |
600 | | * c[v0].vertex c[v1].vertex |
601 | | * m0 m1 |
602 | | * c[v0^3].vertex c[v1^3].vertex |
603 | | */ |
604 | 19.9k | m0 = midpoint(c[0].vertex.p.y, c[3].vertex.p.y); |
605 | 19.9k | if (m0 >= pfs->rect.p.y) |
606 | 6.57k | goto check_above_quarter; |
607 | 13.4k | m1 = midpoint(c[1].vertex.p.y, c[2].vertex.p.y); |
608 | 13.4k | if (m1 >= pfs->rect.p.y) |
609 | 10.9k | goto check_above_quarter; |
610 | | /* So, we can completely discard the top half of the patch. */ |
611 | 2.45k | c[v0].vertex.p.x = midpoint(c[0].vertex.p.x, c[3].vertex.p.x); |
612 | 2.45k | c[v0].vertex.p.y = m0; |
613 | 2.45k | c[v1].vertex.p.x = midpoint(c[1].vertex.p.x, c[2].vertex.p.x); |
614 | 2.45k | c[v1].vertex.p.y = m1; |
615 | 2.45k | c[v0].vertex.cc[0] = (c[0].vertex.cc[0] + c[3].vertex.cc[0])/2; |
616 | 2.45k | c[v1].vertex.cc[0] = (c[1].vertex.cc[0] + c[2].vertex.cc[0])/2; |
617 | 2.45k | changed = 1; |
618 | 2.45k | } |
619 | 17.5k | while (c[v0].vertex.p.y < pfs->rect.p.y && c[v1].vertex.p.y < pfs->rect.p.y); |
620 | 0 | if (0) |
621 | 0 | { |
622 | 17.5k | check_above_quarter: |
623 | | /* At this point we know that the condition for the following loop is true, so it |
624 | | * can be a do...while rather than a while. */ |
625 | 17.5k | do |
626 | 21.3k | { |
627 | | /* Let's form (Y coords only): |
628 | | * |
629 | | * c[v0].vertex c[v1].vertex |
630 | | * m0 m1 |
631 | | * x x |
632 | | * x x |
633 | | * c[v0^3].vertex c[v1^3].vertex |
634 | | */ |
635 | 21.3k | m0 = quarterpoint(c[v0].vertex.p.y, c[v0^3].vertex.p.y); |
636 | 21.3k | if (m0 >= pfs->rect.p.y) |
637 | 5.59k | break; |
638 | 15.7k | m1 = quarterpoint(c[v1].vertex.p.y, c[v1^3].vertex.p.y); |
639 | 15.7k | if (m1 >= pfs->rect.p.y) |
640 | 11.9k | break; |
641 | | /* So, we can completely discard the top half of the patch. */ |
642 | 3.75k | c[v0].vertex.p.x = quarterpoint(c[v0].vertex.p.x, c[v0^3].vertex.p.x); |
643 | 3.75k | c[v0].vertex.p.y = m0; |
644 | 3.75k | c[v1].vertex.p.x = quarterpoint(c[v1].vertex.p.x, c[v1^3].vertex.p.x); |
645 | 3.75k | c[v1].vertex.p.y = m1; |
646 | 3.75k | c[v0].vertex.cc[0] = (c[v0].vertex.cc[0] + 3*c[v0^3].vertex.cc[0])/4; |
647 | 3.75k | c[v1].vertex.cc[0] = (c[v1].vertex.cc[0] + 3*c[v1^3].vertex.cc[0])/4; |
648 | 3.75k | changed = 1; |
649 | 3.75k | } |
650 | 17.5k | while (c[v0].vertex.p.y < pfs->rect.p.y && c[v1].vertex.p.y < pfs->rect.p.y); |
651 | 17.5k | } |
652 | 0 | } |
653 | | |
654 | | /* or the bottom half? */ |
655 | 372k | if (c[0].vertex.p.y > pfs->rect.q.y && c[1].vertex.p.y > pfs->rect.q.y) |
656 | 7.67k | { |
657 | | /* Check 0+1 off bottom. */ |
658 | 7.67k | v0 = 0; |
659 | 7.67k | v1 = 1; |
660 | 7.67k | goto check_bottom; |
661 | 7.67k | } |
662 | 364k | else if (c[3].vertex.p.y > pfs->rect.q.y && c[2].vertex.p.y > pfs->rect.q.y) |
663 | 9.69k | { |
664 | | /* Check 3+2 off bottom. */ |
665 | 9.69k | v0 = 3; |
666 | 9.69k | v1 = 2; |
667 | 17.3k | check_bottom: |
668 | | /* At this point we know that the condition for the following loop is true, so it |
669 | | * can be a do...while rather than a while. */ |
670 | 17.3k | do |
671 | 20.0k | { |
672 | | /* Let's form (Y coords only): |
673 | | * |
674 | | * c[v0].vertex c[v1].vertex |
675 | | * m0 m1 |
676 | | * c[v0^3].vertex c[v1^3].vertex |
677 | | */ |
678 | 20.0k | m0 = midpoint(c[0].vertex.p.y, c[3].vertex.p.y); |
679 | 20.0k | if (m0 <= pfs->rect.q.y+MIDPOINT_ACCURACY) |
680 | 13.1k | goto check_bottom_quarter; |
681 | 6.87k | m1 = midpoint(c[1].vertex.p.y, c[2].vertex.p.y); |
682 | 6.87k | if (m1 <= pfs->rect.q.y+MIDPOINT_ACCURACY) |
683 | 4.17k | goto check_bottom_quarter; |
684 | | /* So, we can completely discard the bottom half of the patch. */ |
685 | 2.69k | c[v0].vertex.p.x = midpoint(c[0].vertex.p.x, c[3].vertex.p.x); |
686 | 2.69k | c[v0].vertex.p.y = m0; |
687 | 2.69k | c[v1].vertex.p.x = midpoint(c[1].vertex.p.x, c[2].vertex.p.x); |
688 | 2.69k | c[v1].vertex.p.y = m1; |
689 | 2.69k | c[v0].vertex.cc[0] = (c[0].vertex.cc[0] + c[3].vertex.cc[0])/2; |
690 | 2.69k | c[v1].vertex.cc[0] = (c[1].vertex.cc[0] + c[2].vertex.cc[0])/2; |
691 | 2.69k | changed = 1; |
692 | 2.69k | } |
693 | 17.3k | while (c[v0].vertex.p.y > pfs->rect.q.y+MIDPOINT_ACCURACY && c[v1].vertex.p.y > pfs->rect.q.y+MIDPOINT_ACCURACY); |
694 | 0 | if (0) |
695 | 0 | { |
696 | 17.3k | check_bottom_quarter: |
697 | | /* At this point we know that the condition for the following loop is true, so it |
698 | | * can be a do...while rather than a while. */ |
699 | 17.3k | do |
700 | 21.4k | { |
701 | | /* Let's form (Y coords only): |
702 | | * |
703 | | * c[v0].vertex c[v1].vertex |
704 | | * x x |
705 | | * x x |
706 | | * m0 m1 |
707 | | * c[v0^3].vertex c[v1^3].vertex |
708 | | */ |
709 | 21.4k | m0 = quarterpoint(c[v0].vertex.p.y, c[v0^3].vertex.p.y); |
710 | 21.4k | if (m0 <= pfs->rect.q.y+QUARTERPOINT_ACCURACY) |
711 | 12.6k | break; |
712 | 8.81k | m1 = quarterpoint(c[v1].vertex.p.y, c[v1^3].vertex.p.y); |
713 | 8.81k | if (m1 <= pfs->rect.q.y+QUARTERPOINT_ACCURACY) |
714 | 4.71k | break; |
715 | | /* So, we can completely discard the bottom half of the patch. */ |
716 | 4.10k | c[v0].vertex.p.x = quarterpoint(c[v0].vertex.p.x, c[v0^3].vertex.p.x); |
717 | 4.10k | c[v0].vertex.p.y = m0; |
718 | 4.10k | c[v1].vertex.p.x = quarterpoint(c[v1].vertex.p.x, c[v1^3].vertex.p.x); |
719 | 4.10k | c[v1].vertex.p.y = m1; |
720 | 4.10k | c[v0].vertex.cc[0] = (c[v0].vertex.cc[0] + 3*c[v0^3].vertex.cc[0])/4; |
721 | 4.10k | c[v1].vertex.cc[0] = (c[v1].vertex.cc[0] + 3*c[v1^3].vertex.cc[0])/4; |
722 | 4.10k | changed = 1; |
723 | 4.10k | } |
724 | 17.3k | while (c[v0].vertex.p.y > pfs->rect.q.y+QUARTERPOINT_ACCURACY && c[v1].vertex.p.y > pfs->rect.q.y+QUARTERPOINT_ACCURACY); |
725 | 17.3k | } |
726 | 0 | } |
727 | | |
728 | | /* Now, rotated cases: Can we cull the top half? */ |
729 | 372k | if (c[0].vertex.p.y < pfs->rect.p.y && c[3].vertex.p.y < pfs->rect.p.y) |
730 | 1.00k | { |
731 | | /* Check 0+3 off above. */ |
732 | 1.00k | v0 = 0; |
733 | 1.00k | v1 = 3; |
734 | 1.00k | goto check_rot_above; |
735 | 1.00k | } |
736 | 371k | else if (c[1].vertex.p.y < pfs->rect.p.y && c[2].vertex.p.y < pfs->rect.p.y) |
737 | 700 | { |
738 | | /* Check 1+2 off above. */ |
739 | 700 | v0 = 1; |
740 | 700 | v1 = 2; |
741 | 1.70k | check_rot_above: |
742 | | /* At this point we know that the condition for the following loop is true, so it |
743 | | * can be a do...while rather than a while. */ |
744 | 1.70k | do |
745 | 2.12k | { |
746 | | /* Let's form (Y coords only): |
747 | | * |
748 | | * c[v0].vertex c[v1].vertex |
749 | | * m0 m1 |
750 | | * c[v0^1].vertex c[v1^1].vertex |
751 | | */ |
752 | 2.12k | m0 = midpoint(c[0].vertex.p.y, c[1].vertex.p.y); |
753 | 2.12k | if (m0 >= pfs->rect.p.y) |
754 | 1.69k | goto check_rot_above_quarter; |
755 | 431 | m1 = midpoint(c[3].vertex.p.y, c[2].vertex.p.y); |
756 | 431 | if (m1 >= pfs->rect.p.y) |
757 | 9 | goto check_rot_above_quarter; |
758 | | /* So, we can completely discard the top half of the patch. */ |
759 | 422 | c[v0].vertex.p.x = midpoint(c[0].vertex.p.x, c[1].vertex.p.x); |
760 | 422 | c[v0].vertex.p.y = m0; |
761 | 422 | c[v1].vertex.p.x = midpoint(c[3].vertex.p.x, c[2].vertex.p.x); |
762 | 422 | c[v1].vertex.p.y = m1; |
763 | 422 | c[v0].vertex.cc[0] = (c[0].vertex.cc[0] + c[1].vertex.cc[0])/2; |
764 | 422 | c[v1].vertex.cc[0] = (c[3].vertex.cc[0] + c[2].vertex.cc[0])/2; |
765 | 422 | changed = 1; |
766 | 422 | } |
767 | 1.70k | while (c[v0].vertex.p.y < pfs->rect.p.y && c[v1].vertex.p.y < pfs->rect.p.y); |
768 | 0 | if (0) |
769 | 0 | { |
770 | 1.70k | check_rot_above_quarter: |
771 | | /* At this point we know that the condition for the following loop is true, so it |
772 | | * can be a do...while rather than a while. */ |
773 | 1.70k | do |
774 | 1.76k | { |
775 | | /* Let's form (Y coords only): |
776 | | * |
777 | | * c[v0].vertex c[v1].vertex |
778 | | * m0 m1 |
779 | | * x x |
780 | | * x x |
781 | | * c[v0^1].vertex c[v1^1].vertex |
782 | | */ |
783 | 1.76k | m0 = quarterpoint(c[v0].vertex.p.y, c[v0^1].vertex.p.y); |
784 | 1.76k | if (m0 >= pfs->rect.p.y) |
785 | 1.69k | break; |
786 | 70 | m1 = quarterpoint(c[v1].vertex.p.y, c[v1^1].vertex.p.y); |
787 | 70 | if (m1 >= pfs->rect.p.y) |
788 | 9 | break; |
789 | | /* So, we can completely discard the top half of the patch. */ |
790 | 61 | c[v0].vertex.p.x = quarterpoint(c[v0].vertex.p.x, c[v0^1].vertex.p.x); |
791 | 61 | c[v0].vertex.p.y = m0; |
792 | 61 | c[v1].vertex.p.x = quarterpoint(c[v1].vertex.p.x, c[v1^1].vertex.p.x); |
793 | 61 | c[v1].vertex.p.y = m1; |
794 | 61 | c[v0].vertex.cc[0] = (c[v0].vertex.cc[0] + 3*c[v0^1].vertex.cc[0])/4; |
795 | 61 | c[v1].vertex.cc[0] = (c[v1].vertex.cc[0] + 3*c[v1^1].vertex.cc[0])/4; |
796 | 61 | changed = 1; |
797 | 61 | } |
798 | 1.70k | while (c[v0].vertex.p.y < pfs->rect.p.y && c[v1].vertex.p.y < pfs->rect.p.y); |
799 | 1.70k | } |
800 | 0 | } |
801 | | |
802 | | /* or the bottom half? */ |
803 | 372k | if (c[0].vertex.p.y > pfs->rect.q.y && c[3].vertex.p.y > pfs->rect.q.y) |
804 | 38 | { |
805 | | /* Check 0+3 off the bottom. */ |
806 | 38 | v0 = 0; |
807 | 38 | v1 = 3; |
808 | 38 | goto check_rot_bottom; |
809 | 38 | } |
810 | 372k | else if (c[1].vertex.p.y > pfs->rect.q.y && c[2].vertex.p.y > pfs->rect.q.y) |
811 | 71 | { |
812 | | /* Check 1+2 off the bottom. */ |
813 | 71 | v0 = 1; |
814 | 71 | v1 = 2; |
815 | 109 | check_rot_bottom: |
816 | | /* At this point we know that the condition for the following loop is true, so it |
817 | | * can be a do...while rather than a while. */ |
818 | 109 | do |
819 | 448 | { |
820 | | /* Let's form (Y coords only): |
821 | | * |
822 | | * c[v0].vertex c[v1].vertex |
823 | | * m0 m1 |
824 | | * c[v0^1].vertex c[v1^1].vertex |
825 | | */ |
826 | 448 | m0 = midpoint(c[0].vertex.p.y, c[1].vertex.p.y); |
827 | 448 | if (m0 <= pfs->rect.q.y+MIDPOINT_ACCURACY) |
828 | 109 | goto check_rot_bottom_quarter; |
829 | 339 | m1 = midpoint(c[3].vertex.p.y, c[2].vertex.p.y); |
830 | 339 | if (m1 <= pfs->rect.q.y+MIDPOINT_ACCURACY) |
831 | 0 | goto check_rot_bottom_quarter; |
832 | | /* So, we can completely discard the left hand half of the patch. */ |
833 | 339 | c[v0].vertex.p.x = midpoint(c[0].vertex.p.x, c[1].vertex.p.x); |
834 | 339 | c[v0].vertex.p.y = m0; |
835 | 339 | c[v1].vertex.p.x = midpoint(c[3].vertex.p.x, c[2].vertex.p.x); |
836 | 339 | c[v1].vertex.p.y = m1; |
837 | 339 | c[v0].vertex.cc[0] = (c[0].vertex.cc[0] + c[1].vertex.cc[0])/2; |
838 | 339 | c[v1].vertex.cc[0] = (c[3].vertex.cc[0] + c[2].vertex.cc[0])/2; |
839 | 339 | changed = 1; |
840 | 339 | } |
841 | 339 | while (c[v0].vertex.p.y > pfs->rect.q.y+MIDPOINT_ACCURACY && c[v1].vertex.p.y > pfs->rect.q.y+MIDPOINT_ACCURACY); |
842 | 0 | if (0) |
843 | 0 | { |
844 | 109 | check_rot_bottom_quarter: |
845 | | /* At this point we know that the condition for the following loop is true, so it |
846 | | * can be a do...while rather than a while. */ |
847 | 109 | do |
848 | 157 | { |
849 | | /* Let's form (Y coords only): |
850 | | * |
851 | | * c[v0].vertex c[v1].vertex |
852 | | * x x |
853 | | * x x |
854 | | * m0 m1 |
855 | | * c[v0^1].vertex c[v1^1].vertex |
856 | | */ |
857 | 157 | m0 = quarterpoint(c[v0].vertex.p.y, c[v0^1].vertex.p.y); |
858 | 157 | if (m0 <= pfs->rect.q.y+QUARTERPOINT_ACCURACY) |
859 | 109 | break; |
860 | 48 | m1 = quarterpoint(c[v1].vertex.p.y, c[v1^1].vertex.p.y); |
861 | 48 | if (m1 <= pfs->rect.q.y+QUARTERPOINT_ACCURACY) |
862 | 0 | break; |
863 | | /* So, we can completely discard the left hand half of the patch. */ |
864 | 48 | c[v0].vertex.p.x = quarterpoint(c[v0].vertex.p.x, c[v0^1].vertex.p.x); |
865 | 48 | c[v0].vertex.p.y = m0; |
866 | 48 | c[v1].vertex.p.x = quarterpoint(c[v1].vertex.p.x, c[v1^1].vertex.p.x); |
867 | 48 | c[v1].vertex.p.y = m1; |
868 | 48 | c[v0].vertex.cc[0] = (c[v0].vertex.cc[0] + 3*c[v0^1].vertex.cc[0])/4; |
869 | 48 | c[v1].vertex.cc[0] = (c[v1].vertex.cc[0] + 3*c[v1^1].vertex.cc[0])/4; |
870 | 48 | changed = 1; |
871 | 48 | } |
872 | 109 | while (c[v0].vertex.p.y > pfs->rect.q.y+QUARTERPOINT_ACCURACY && c[v1].vertex.p.y > pfs->rect.q.y+QUARTERPOINT_ACCURACY); |
873 | 109 | } |
874 | 0 | } |
875 | 372k | } while (changed); |
876 | | |
877 | 358k | c[0].vertex.cc[1] = c[1].vertex.cc[1] = |
878 | 358k | c[2].vertex.cc[1] = |
879 | 358k | c[3].vertex.cc[1] = 0; |
880 | 358k | make_other_poles(c); |
881 | 358k | return patch_fill(pfs, c, NULL, NULL); |
882 | 80.1M | } |
883 | | #undef midpoint |
884 | | #undef quarterpoint |
885 | | #undef MIDPOINT_ACCURACY |
886 | | #undef QUARTERPOINT_ACCURACY |
887 | | |
888 | 964M | #define f_fits_in_fixed(f) f_fits_in_bits(f, fixed_int_bits) |
889 | | |
890 | | static int |
891 | | A_fill_region_floats(patch_fill_state_t *pfs1, corners_and_curves *cc, int depth) |
892 | 180M | { |
893 | 180M | corners_and_curves sub[4]; |
894 | 180M | int code; |
895 | | |
896 | 180M | if (depth == 32) |
897 | 4 | return gs_error_limitcheck; |
898 | | |
899 | 180M | if (depth > 0 && |
900 | 180M | f_fits_in_fixed(cc->corners[0].x) && |
901 | 180M | f_fits_in_fixed(cc->corners[0].y) && |
902 | 180M | f_fits_in_fixed(cc->corners[1].x) && |
903 | 180M | f_fits_in_fixed(cc->corners[1].y) && |
904 | 180M | f_fits_in_fixed(cc->corners[2].x) && |
905 | 180M | f_fits_in_fixed(cc->corners[2].y) && |
906 | 180M | f_fits_in_fixed(cc->corners[3].x) && |
907 | 180M | f_fits_in_fixed(cc->corners[3].y)) |
908 | 79.8M | { |
909 | 79.8M | cc->curve[0].vertex.p.x = float2fixed(cc->corners[0].x); |
910 | 79.8M | cc->curve[0].vertex.p.y = float2fixed(cc->corners[0].y); |
911 | 79.8M | cc->curve[1].vertex.p.x = float2fixed(cc->corners[1].x); |
912 | 79.8M | cc->curve[1].vertex.p.y = float2fixed(cc->corners[1].y); |
913 | 79.8M | cc->curve[2].vertex.p.x = float2fixed(cc->corners[2].x); |
914 | 79.8M | cc->curve[2].vertex.p.y = float2fixed(cc->corners[2].y); |
915 | 79.8M | cc->curve[3].vertex.p.x = float2fixed(cc->corners[3].x); |
916 | 79.8M | cc->curve[3].vertex.p.y = float2fixed(cc->corners[3].y); |
917 | 79.8M | return subdivide_patch_fill(pfs1, cc->curve); |
918 | 79.8M | } |
919 | | |
920 | | /* We have patches with corners: |
921 | | * 0 1 |
922 | | * 3 2 |
923 | | * We subdivide these into 4 smaller patches: |
924 | | * |
925 | | * 0 10 1 Where 0123 are corners |
926 | | * [0] [1] [0][1][2][3] are patches. |
927 | | * 3 23 2 |
928 | | * 0 10 1 |
929 | | * [3] [2] |
930 | | * 3 23 2 |
931 | | */ |
932 | | |
933 | 100M | sub[0].corners[0].x = cc->corners[0].x; |
934 | 100M | sub[0].corners[0].y = cc->corners[0].y; |
935 | 100M | sub[1].corners[1].x = cc->corners[1].x; |
936 | 100M | sub[1].corners[1].y = cc->corners[1].y; |
937 | 100M | sub[2].corners[2].x = cc->corners[2].x; |
938 | 100M | sub[2].corners[2].y = cc->corners[2].y; |
939 | 100M | sub[3].corners[3].x = cc->corners[3].x; |
940 | 100M | sub[3].corners[3].y = cc->corners[3].y; |
941 | 100M | sub[1].corners[0].x = sub[0].corners[1].x = (cc->corners[0].x + cc->corners[1].x)/2; |
942 | 100M | sub[1].corners[0].y = sub[0].corners[1].y = (cc->corners[0].y + cc->corners[1].y)/2; |
943 | 100M | sub[3].corners[2].x = sub[2].corners[3].x = (cc->corners[2].x + cc->corners[3].x)/2; |
944 | 100M | sub[3].corners[2].y = sub[2].corners[3].y = (cc->corners[2].y + cc->corners[3].y)/2; |
945 | 100M | sub[3].corners[0].x = sub[0].corners[3].x = (cc->corners[0].x + cc->corners[3].x)/2; |
946 | 100M | sub[3].corners[0].y = sub[0].corners[3].y = (cc->corners[0].y + cc->corners[3].y)/2; |
947 | 100M | sub[2].corners[1].x = sub[1].corners[2].x = (cc->corners[1].x + cc->corners[2].x)/2; |
948 | 100M | sub[2].corners[1].y = sub[1].corners[2].y = (cc->corners[1].y + cc->corners[2].y)/2; |
949 | 100M | sub[0].corners[2].x = sub[1].corners[3].x = |
950 | 100M | sub[2].corners[0].x = |
951 | 100M | sub[3].corners[1].x = (sub[0].corners[3].x + sub[1].corners[2].x)/2; |
952 | 100M | sub[0].corners[2].y = sub[1].corners[3].y = |
953 | 100M | sub[2].corners[0].y = |
954 | 100M | sub[3].corners[1].y = (sub[0].corners[3].y + sub[1].corners[2].y)/2; |
955 | 100M | sub[0].curve[0].vertex.cc[0] = sub[0].curve[3].vertex.cc[0] = |
956 | 100M | sub[3].curve[0].vertex.cc[0] = |
957 | 100M | sub[3].curve[3].vertex.cc[0] = cc->curve[0].vertex.cc[0]; |
958 | 100M | sub[1].curve[1].vertex.cc[0] = sub[1].curve[2].vertex.cc[0] = |
959 | 100M | sub[2].curve[1].vertex.cc[0] = |
960 | 100M | sub[2].curve[2].vertex.cc[0] = cc->curve[1].vertex.cc[0]; |
961 | 100M | sub[0].curve[1].vertex.cc[0] = sub[0].curve[2].vertex.cc[0] = |
962 | 100M | sub[1].curve[0].vertex.cc[0] = |
963 | 100M | sub[1].curve[3].vertex.cc[0] = |
964 | 100M | sub[2].curve[0].vertex.cc[0] = |
965 | 100M | sub[2].curve[3].vertex.cc[0] = |
966 | 100M | sub[3].curve[1].vertex.cc[0] = |
967 | 100M | sub[3].curve[2].vertex.cc[0] = (cc->curve[0].vertex.cc[0] + cc->curve[1].vertex.cc[0])/2; |
968 | | |
969 | 100M | depth++; |
970 | 100M | if (not_clipped_away(sub[0].corners, &pfs1->rect)) { |
971 | 39.5M | code = A_fill_region_floats(pfs1, &sub[0], depth); |
972 | 39.5M | if (code < 0) |
973 | 128 | return code; |
974 | 39.5M | } |
975 | 100M | if (not_clipped_away(sub[1].corners, &pfs1->rect)) { |
976 | 49.4M | code = A_fill_region_floats(pfs1, &sub[1], depth); |
977 | 49.4M | if (code < 0) |
978 | 0 | return code; |
979 | 49.4M | } |
980 | 100M | if (not_clipped_away(sub[2].corners, &pfs1->rect)) { |
981 | 39.5M | code = A_fill_region_floats(pfs1, &sub[2], depth); |
982 | 39.5M | if (code < 0) |
983 | 0 | return code; |
984 | 39.5M | } |
985 | 100M | if (not_clipped_away(sub[3].corners, &pfs1->rect)) { |
986 | 51.7M | code = A_fill_region_floats(pfs1, &sub[3], depth); |
987 | 51.7M | if (code < 0) |
988 | 0 | return code; |
989 | 51.7M | } |
990 | | |
991 | 100M | return 0; |
992 | 100M | } |
993 | | |
994 | 2.41k | #define midpoint(a,b) ((a+b)/2) |
995 | | |
996 | 127 | #define quarterpoint(a,b) ((a+3*b)/4) |
997 | | |
998 | | static int |
999 | | subdivide_patch_fill_floats(patch_fill_state_t *pfs, corners_and_curves *cc) |
1000 | 353 | { |
1001 | 353 | double m0, m1; |
1002 | 353 | int v0, v1; |
1003 | 353 | int changed; |
1004 | | |
1005 | 353 | if (pfs->rect.p.x >= pfs->rect.q.x || pfs->rect.p.y >= pfs->rect.q.y) |
1006 | 269 | return 0; |
1007 | | |
1008 | | /* On entry we have a patch: |
1009 | | * c[0].vertex c[1].vertex |
1010 | | * |
1011 | | * c[3].vertex c[2].vertex |
1012 | | * |
1013 | | * Only the corners are set. The control points are not! |
1014 | | * |
1015 | | * BUT... in terms of spacial coords, it might be different... |
1016 | | * They might be flipped on X, Y or both, giving: |
1017 | | * 01 or 10 or 32 or 23 |
1018 | | * 32 23 01 10 |
1019 | | * or they might be rotated, and then flipped on X, Y or both, giving: |
1020 | | * 03 or 30 or 12 or 21 |
1021 | | * 12 21 03 30 |
1022 | | */ |
1023 | | |
1024 | | /* The +MIDPOINT_ACCURACY in the tests below is to allow for us finding the midpoint of [a] = z+1 and [b] = z, and getting z+1, |
1025 | | * and updating [a] to be z+1, hence never actually shrinking the gap. Just accept not culling the patch as |
1026 | | * much as we might. See bug 706378 for an example. */ |
1027 | 1.45k | #define MIDPOINT_ACCURACY 0.0001 |
1028 | 84 | #define QUARTERPOINT_ACCURACY 0.0003 |
1029 | | |
1030 | 120 | do { |
1031 | 120 | changed = 0; |
1032 | | |
1033 | | /* Is the whole of our patch outside the clipping rectangle? */ |
1034 | | /* Tempting to try to roll this into the cases below, but that |
1035 | | * doesn't work because we want <= or >= here. Do the X ones |
1036 | | * first. */ |
1037 | 120 | if ((cc->corners[0].x <= pfs->rect.p.x && |
1038 | 120 | cc->corners[1].x <= pfs->rect.p.x && |
1039 | 120 | cc->corners[2].x <= pfs->rect.p.x && |
1040 | 120 | cc->corners[3].x <= pfs->rect.p.x) || |
1041 | 120 | (cc->corners[0].x >= pfs->rect.q.x && |
1042 | 92 | cc->corners[1].x >= pfs->rect.q.x && |
1043 | 92 | cc->corners[2].x >= pfs->rect.q.x && |
1044 | 92 | cc->corners[3].x >= pfs->rect.q.x)) |
1045 | 44 | return 0; |
1046 | | |
1047 | | /* First, let's try to see if we can cull the patch horizontally with the clipping |
1048 | | * rectangle. */ |
1049 | | /* Non rotated cases first. Can we cull the left hand half? */ |
1050 | 76 | if (cc->corners[0].x < pfs->rect.p.x && cc->corners[3].x < pfs->rect.p.x) |
1051 | 10 | { |
1052 | | /* Check 0+3 off left. */ |
1053 | 10 | v0 = 0; |
1054 | 10 | v1 = 3; |
1055 | 10 | goto check_left; |
1056 | 10 | } |
1057 | 66 | else if (cc->corners[1].x < pfs->rect.p.x && cc->corners[2].x < pfs->rect.p.x) |
1058 | 31 | { |
1059 | | /* Check 1+2 off left. */ |
1060 | 31 | v0 = 1; |
1061 | 31 | v1 = 2; |
1062 | 41 | check_left: |
1063 | | /* At this point we know that the condition for the following loop is true, so it |
1064 | | * can be a do...while rather than a while. */ |
1065 | 41 | do |
1066 | 269 | { |
1067 | | /* Let's form (X coords only): |
1068 | | * |
1069 | | * c[v0].vertex m0 c[v0^1].vertex |
1070 | | * c[v1].vertex m1 c[v1^1].vertex |
1071 | | */ |
1072 | 269 | m0 = midpoint(cc->corners[0].x, cc->corners[1].x); |
1073 | 269 | if (m0 >= pfs->rect.p.x) |
1074 | 41 | goto check_left_quarter; |
1075 | 228 | m1 = midpoint(cc->corners[3].x, cc->corners[2].x); |
1076 | 228 | if (m1 >= pfs->rect.p.x) |
1077 | 0 | goto check_left_quarter; |
1078 | | /* So, we can completely discard the left hand half of the patch. */ |
1079 | 228 | cc->corners[v0].x = m0; |
1080 | 228 | cc->corners[v0].y = midpoint(cc->corners[0].y, cc->corners[1].y); |
1081 | 228 | cc->corners[v1].x = m1; |
1082 | 228 | cc->corners[v1].y = midpoint(cc->corners[3].y, cc->corners[2].y); |
1083 | 228 | cc->curve[v0].vertex.cc[0] = (cc->curve[0].vertex.cc[0] + cc->curve[1].vertex.cc[0])/2; |
1084 | 228 | cc->curve[v1].vertex.cc[0] = (cc->curve[3].vertex.cc[0] + cc->curve[2].vertex.cc[0])/2; |
1085 | 228 | changed = 1; |
1086 | 228 | } |
1087 | 228 | while (cc->corners[v0].x < pfs->rect.p.x && cc->corners[v1].x < pfs->rect.p.x); |
1088 | 0 | if (0) |
1089 | 0 | { |
1090 | 41 | check_left_quarter: |
1091 | | /* At this point we know that the condition for the following loop is true, so it |
1092 | | * can be a do...while rather than a while. */ |
1093 | 41 | do |
1094 | 41 | { |
1095 | | /* Let's form (X coords only): |
1096 | | * |
1097 | | * c[v0].vertex m0 x x c[v0^1].vertex |
1098 | | * c[v1].vertex m1 x x c[v1^1].vertex |
1099 | | */ |
1100 | 41 | m0 = quarterpoint(cc->corners[v0].x, cc->corners[v0^1].x); |
1101 | 41 | if (m0 >= pfs->rect.p.x) |
1102 | 41 | break; |
1103 | 0 | m1 = quarterpoint(cc->corners[v1].x, cc->corners[v1^1].x); |
1104 | 0 | if (m1 >= pfs->rect.p.x) |
1105 | 0 | break; |
1106 | | /* So, we can completely discard the left hand quarter of the patch. */ |
1107 | 0 | cc->corners[v0].x = m0; |
1108 | 0 | cc->corners[v0].y = midpoint(cc->corners[v0].y, cc->corners[v0^1].y); |
1109 | 0 | cc->corners[v1].x = m1; |
1110 | 0 | cc->corners[v1].y = midpoint(cc->corners[v1].y, cc->corners[v1^1].y); |
1111 | 0 | cc->curve[v0].vertex.cc[0] = (cc->curve[v0].vertex.cc[0] + 3*cc->curve[v0^1].vertex.cc[0])/4; |
1112 | 0 | cc->curve[v1].vertex.cc[0] = (cc->curve[v1].vertex.cc[0] + 3*cc->curve[v1^1].vertex.cc[0])/4; |
1113 | 0 | changed = 1; |
1114 | 0 | } |
1115 | 41 | while (cc->corners[v0].x < pfs->rect.p.x && cc->corners[v1].x < pfs->rect.p.x); |
1116 | 41 | } |
1117 | 0 | } |
1118 | | |
1119 | | /* or the right hand half? */ |
1120 | 76 | if (cc->corners[0].x > pfs->rect.q.x && cc->corners[3].x > pfs->rect.q.x) |
1121 | 41 | { |
1122 | | /* Check 0+3 off right. */ |
1123 | 41 | v0 = 0; |
1124 | 41 | v1 = 3; |
1125 | 41 | goto check_right; |
1126 | 41 | } |
1127 | 35 | else if (cc->corners[1].x > pfs->rect.q.x && cc->corners[2].x > pfs->rect.q.x) |
1128 | 3 | { |
1129 | | /* Check 1+2 off right. */ |
1130 | 3 | v0 = 1; |
1131 | 3 | v1 = 2; |
1132 | 44 | check_right: |
1133 | | /* At this point we know that the condition for the following loop is true, so it |
1134 | | * can be a do...while rather than a while. */ |
1135 | 44 | do |
1136 | 321 | { |
1137 | | /* Let's form (X coords only): |
1138 | | * |
1139 | | * c[v0].vertex m0 c[v0^1].vertex |
1140 | | * c[v1].vertex m1 c[v1^1].vertex |
1141 | | */ |
1142 | 321 | m0 = midpoint(cc->corners[0].x, cc->corners[1].x); |
1143 | 321 | if (m0 <= pfs->rect.q.x+MIDPOINT_ACCURACY) |
1144 | 43 | goto check_right_quarter; |
1145 | 278 | m1 = midpoint(cc->corners[3].x, cc->corners[2].x); |
1146 | 278 | if (m1 <= pfs->rect.q.x+MIDPOINT_ACCURACY) |
1147 | 1 | goto check_right_quarter; |
1148 | | /* So, we can completely discard the left hand half of the patch. */ |
1149 | 277 | cc->corners[v0].x = m0; |
1150 | 277 | cc->corners[v0].y = midpoint(cc->corners[0].y, cc->corners[1].y); |
1151 | 277 | cc->corners[v1].x = m1; |
1152 | 277 | cc->corners[v1].y = midpoint(cc->corners[3].y, cc->corners[2].y); |
1153 | 277 | cc->curve[v0].vertex.cc[0] = (cc->curve[0].vertex.cc[0] + cc->curve[1].vertex.cc[0])/2; |
1154 | 277 | cc->curve[v1].vertex.cc[0] = (cc->curve[3].vertex.cc[0] + cc->curve[2].vertex.cc[0])/2; |
1155 | 277 | changed = 1; |
1156 | 277 | } |
1157 | 277 | while (cc->corners[v0].x > pfs->rect.q.x+MIDPOINT_ACCURACY && cc->corners[v1].x > pfs->rect.q.x+MIDPOINT_ACCURACY); |
1158 | 0 | if (0) |
1159 | 0 | { |
1160 | 44 | check_right_quarter: |
1161 | | /* At this point we know that the condition for the following loop is true, so it |
1162 | | * can be a do...while rather than a while. */ |
1163 | 44 | do |
1164 | 44 | { |
1165 | | /* Let's form (X coords only): |
1166 | | * |
1167 | | * c[v0].vertex m0 x x c[v0^1].vertex |
1168 | | * c[v1].vertex m1 x x c[v1^1].vertex |
1169 | | */ |
1170 | 44 | m0 = quarterpoint(cc->corners[v0].x, cc->corners[v0^1].x); |
1171 | 44 | if (m0 <= pfs->rect.q.x+QUARTERPOINT_ACCURACY) |
1172 | 43 | break; |
1173 | 1 | m1 = quarterpoint(cc->corners[v1].x, cc->corners[v1^1].x); |
1174 | 1 | if (m1 <= pfs->rect.q.x+QUARTERPOINT_ACCURACY) |
1175 | 1 | break; |
1176 | | /* So, we can completely discard the left hand half of the patch. */ |
1177 | 0 | cc->corners[v0].x = m0; |
1178 | 0 | cc->corners[v0].y = quarterpoint(cc->corners[v0].y, cc->corners[v0^1].y); |
1179 | 0 | cc->corners[v1].x = m1; |
1180 | 0 | cc->corners[v1].y = quarterpoint(cc->corners[v1].y, cc->corners[v1^1].y); |
1181 | 0 | cc->curve[v0].vertex.cc[0] = (cc->curve[v0].vertex.cc[0] + 3*cc->curve[v0^1].vertex.cc[0])/4; |
1182 | 0 | cc->curve[v1].vertex.cc[0] = (cc->curve[v1].vertex.cc[0] + 3*cc->curve[v1^1].vertex.cc[0])/4; |
1183 | 0 | changed = 1; |
1184 | 0 | } |
1185 | 44 | while (cc->corners[v0].x > pfs->rect.q.x+QUARTERPOINT_ACCURACY && cc->corners[v1].x > pfs->rect.q.x+QUARTERPOINT_ACCURACY); |
1186 | 44 | } |
1187 | 0 | } |
1188 | | |
1189 | | /* Now, rotated cases: Can we cull the left hand half? */ |
1190 | 76 | if (cc->corners[0].x < pfs->rect.p.x && cc->corners[1].x < pfs->rect.p.x) |
1191 | 0 | { |
1192 | | /* Check 0+1 off left. */ |
1193 | 0 | v0 = 0; |
1194 | 0 | v1 = 1; |
1195 | 0 | goto check_rot_left; |
1196 | 0 | } |
1197 | 76 | else if (cc->corners[3].x < pfs->rect.p.x && cc->corners[2].x < pfs->rect.p.x) |
1198 | 0 | { |
1199 | | /* Check 3+2 off left. */ |
1200 | 0 | v0 = 3; |
1201 | 0 | v1 = 2; |
1202 | 0 | check_rot_left: |
1203 | | /* At this point we know that the condition for the following loop is true, so it |
1204 | | * can be a do...while rather than a while. */ |
1205 | 0 | do |
1206 | 0 | { |
1207 | | /* Let's form (X coords only): |
1208 | | * |
1209 | | * c[v0].vertex m0 c[v0^3].vertex |
1210 | | * c[v1^3].vertex m1 c[v1].vertex |
1211 | | */ |
1212 | 0 | m0 = midpoint(cc->corners[0].x, cc->corners[3].x); |
1213 | 0 | if (m0 >= pfs->rect.p.x) |
1214 | 0 | goto check_rot_left_quarter; |
1215 | 0 | m1 = midpoint(cc->corners[1].x, cc->corners[2].x); |
1216 | 0 | if (m1 >= pfs->rect.p.x) |
1217 | 0 | goto check_rot_left_quarter; |
1218 | | /* So, we can completely discard the left hand half of the patch. */ |
1219 | 0 | cc->corners[v0].x = m0; |
1220 | 0 | cc->corners[v0].y = midpoint(cc->corners[0].y, cc->corners[3].y); |
1221 | 0 | cc->corners[v1].x = m1; |
1222 | 0 | cc->corners[v1].y = midpoint(cc->corners[1].y, cc->corners[2].y); |
1223 | 0 | cc->curve[v0].vertex.cc[0] = (cc->curve[0].vertex.cc[0] + cc->curve[3].vertex.cc[0])/2; |
1224 | 0 | cc->curve[v1].vertex.cc[0] = (cc->curve[1].vertex.cc[0] + cc->curve[2].vertex.cc[0])/2; |
1225 | 0 | changed = 1; |
1226 | 0 | } |
1227 | 0 | while (cc->corners[v0].x < pfs->rect.p.x && cc->corners[v1].x < pfs->rect.p.x); |
1228 | 0 | if (0) |
1229 | 0 | { |
1230 | 0 | check_rot_left_quarter: |
1231 | | /* At this point we know that the condition for the following loop is true, so it |
1232 | | * can be a do...while rather than a while. */ |
1233 | 0 | do |
1234 | 0 | { |
1235 | | /* Let's form (X coords only): |
1236 | | * |
1237 | | * c[v0].vertex m0 x x c[v0^3].vertex |
1238 | | * c[v1].vertex m1 x x c[v1^3].vertex |
1239 | | */ |
1240 | 0 | m0 = quarterpoint(cc->corners[v0].x, cc->corners[v0^3].x); |
1241 | 0 | if (m0 >= pfs->rect.p.x) |
1242 | 0 | break; |
1243 | 0 | m1 = quarterpoint(cc->corners[v1].x, cc->corners[v1^3].x); |
1244 | 0 | if (m1 >= pfs->rect.p.x) |
1245 | 0 | break; |
1246 | | /* So, we can completely discard the left hand half of the patch. */ |
1247 | 0 | cc->corners[v0].x = m0; |
1248 | 0 | cc->corners[v0].y = quarterpoint(cc->corners[v0].y, cc->corners[v0^3].y); |
1249 | 0 | cc->corners[v1].x = m1; |
1250 | 0 | cc->corners[v1].y = quarterpoint(cc->corners[v1].y, cc->corners[v1^3].y); |
1251 | 0 | cc->curve[v0].vertex.cc[0] = (cc->curve[v0].vertex.cc[0] + 3*cc->curve[v0^3].vertex.cc[0])/4; |
1252 | 0 | cc->curve[v1].vertex.cc[0] = (cc->curve[v1].vertex.cc[0] + 3*cc->curve[v1^3].vertex.cc[0])/4; |
1253 | 0 | changed = 1; |
1254 | 0 | } |
1255 | 0 | while (cc->corners[v0].x < pfs->rect.p.x && cc->corners[v1].x < pfs->rect.p.x); |
1256 | 0 | } |
1257 | 0 | } |
1258 | | |
1259 | | /* or the right hand half? */ |
1260 | 76 | if (cc->corners[0].x > pfs->rect.q.x && cc->corners[1].x > pfs->rect.q.x) |
1261 | 0 | { |
1262 | | /* Check 0+1 off right. */ |
1263 | 0 | v0 = 0; |
1264 | 0 | v1 = 1; |
1265 | 0 | goto check_rot_right; |
1266 | 0 | } |
1267 | 76 | else if (cc->corners[3].x > pfs->rect.q.x && cc->corners[2].x > pfs->rect.q.x) |
1268 | 0 | { |
1269 | | /* Check 3+2 off right. */ |
1270 | 0 | v0 = 3; |
1271 | 0 | v1 = 2; |
1272 | 0 | check_rot_right: |
1273 | | /* At this point we know that the condition for the following loop is true, so it |
1274 | | * can be a do...while rather than a while. */ |
1275 | 0 | do |
1276 | 0 | { |
1277 | | /* Let's form (X coords only): |
1278 | | * |
1279 | | * c[v0].vertex m0 c[v0^3].vertex |
1280 | | * c[v1].vertex m1 c[v1^3].vertex |
1281 | | */ |
1282 | 0 | m0 = midpoint(cc->corners[0].x, cc->corners[3].x); |
1283 | 0 | if (m0 <= pfs->rect.q.x+MIDPOINT_ACCURACY) |
1284 | 0 | goto check_rot_right_quarter; |
1285 | 0 | m1 = midpoint(cc->corners[1].x, cc->corners[2].x); |
1286 | 0 | if (m1 <= pfs->rect.q.x+MIDPOINT_ACCURACY) |
1287 | 0 | goto check_rot_right_quarter; |
1288 | | /* So, we can completely discard the left hand half of the patch. */ |
1289 | 0 | cc->corners[v0].x = m0; |
1290 | 0 | cc->corners[v0].y = midpoint(cc->corners[0].y, cc->corners[3].y); |
1291 | 0 | cc->corners[v1].x = m1; |
1292 | 0 | cc->corners[v1].y = midpoint(cc->corners[1].y, cc->corners[2].y); |
1293 | 0 | cc->curve[v0].vertex.cc[0] = (cc->curve[0].vertex.cc[0] + cc->curve[3].vertex.cc[0])/2; |
1294 | 0 | cc->curve[v1].vertex.cc[0] = (cc->curve[1].vertex.cc[0] + cc->curve[2].vertex.cc[0])/2; |
1295 | 0 | changed = 1; |
1296 | 0 | } |
1297 | 0 | while (cc->corners[v0].x > pfs->rect.q.x+MIDPOINT_ACCURACY && cc->corners[v1].x > pfs->rect.q.x+MIDPOINT_ACCURACY); |
1298 | 0 | if (0) |
1299 | 0 | { |
1300 | 0 | check_rot_right_quarter: |
1301 | | /* At this point we know that the condition for the following loop is true, so it |
1302 | | * can be a do...while rather than a while. */ |
1303 | 0 | do |
1304 | 0 | { |
1305 | | /* Let's form (X coords only): |
1306 | | * |
1307 | | * c[v0].vertex m0 c[v0^3].vertex |
1308 | | * c[v1].vertex m1 c[v1^3].vertex |
1309 | | */ |
1310 | 0 | m0 = quarterpoint(cc->corners[v0].x, cc->corners[v0^3].x); |
1311 | 0 | if (m0 <= pfs->rect.q.x+QUARTERPOINT_ACCURACY) |
1312 | 0 | break; |
1313 | 0 | m1 = quarterpoint(cc->corners[v1].x, cc->corners[v1^3].x); |
1314 | 0 | if (m1 <= pfs->rect.q.x+QUARTERPOINT_ACCURACY) |
1315 | 0 | break; |
1316 | | /* So, we can completely discard the left hand half of the patch. */ |
1317 | 0 | cc->corners[v0].x = m0; |
1318 | 0 | cc->corners[v0].y = quarterpoint(cc->corners[v0].y, cc->corners[v0^3].y); |
1319 | 0 | cc->corners[v1].x = m1; |
1320 | 0 | cc->corners[v1].y = quarterpoint(cc->corners[v1].y, cc->corners[v1^3].y); |
1321 | 0 | cc->curve[v0].vertex.cc[0] = (cc->curve[v0].vertex.cc[0] + 3*cc->curve[v0^3].vertex.cc[0])/4; |
1322 | 0 | cc->curve[v1].vertex.cc[0] = (cc->curve[v1].vertex.cc[0] + 3*cc->curve[v1^3].vertex.cc[0])/4; |
1323 | 0 | changed = 1; |
1324 | 0 | } |
1325 | 0 | while (cc->corners[v0].x > pfs->rect.q.x+QUARTERPOINT_ACCURACY && cc->corners[v1].x > pfs->rect.q.x+QUARTERPOINT_ACCURACY); |
1326 | 0 | } |
1327 | 0 | } |
1328 | | |
1329 | | /* Is the whole of our patch outside the clipping rectangle? */ |
1330 | | /* Tempting to try to roll this into the cases below, but that |
1331 | | * doesn't work because we want <= or >= here. Do the Y ones. |
1332 | | * Can't do these at the same time as the X ones, as the cases |
1333 | | * above may have reduced Y by the time we get here. */ |
1334 | 76 | if ((cc->corners[0].y <= pfs->rect.p.y && |
1335 | 76 | cc->corners[1].y <= pfs->rect.p.y && |
1336 | 76 | cc->corners[2].y <= pfs->rect.p.y && |
1337 | 76 | cc->corners[3].y <= pfs->rect.p.y) || |
1338 | 76 | (cc->corners[0].y >= pfs->rect.q.y && |
1339 | 59 | cc->corners[1].y >= pfs->rect.q.y && |
1340 | 59 | cc->corners[2].y >= pfs->rect.q.y && |
1341 | 59 | cc->corners[3].y >= pfs->rect.q.y)) |
1342 | 17 | return 0; |
1343 | | |
1344 | | /* Now, let's try to see if we can cull the patch vertically with the clipping |
1345 | | * rectangle. */ |
1346 | | /* Non rotated cases first. Can we cull the top half? */ |
1347 | 59 | if (cc->corners[0].y < pfs->rect.p.y && cc->corners[1].y < pfs->rect.p.y) |
1348 | 8 | { |
1349 | | /* Check 0+1 off above. */ |
1350 | 8 | v0 = 0; |
1351 | 8 | v1 = 1; |
1352 | 8 | goto check_above; |
1353 | 8 | } |
1354 | 51 | else if (cc->corners[3].y < pfs->rect.p.y && cc->corners[2].y < pfs->rect.p.y) |
1355 | 0 | { |
1356 | | /* Check 3+2 off above. */ |
1357 | 0 | v0 = 3; |
1358 | 0 | v1 = 2; |
1359 | 8 | check_above: |
1360 | | /* At this point we know that the condition for the following loop is true, so it |
1361 | | * can be a do...while rather than a while. */ |
1362 | 8 | do |
1363 | 8 | { |
1364 | | /* Let's form (Y coords only): |
1365 | | * |
1366 | | * c[v0].vertex c[v1].vertex |
1367 | | * m0 m1 |
1368 | | * c[v0^3].vertex c[v1^3].vertex |
1369 | | */ |
1370 | 8 | m0 = midpoint(cc->corners[0].y, cc->corners[3].y); |
1371 | 8 | if (m0 >= pfs->rect.p.y) |
1372 | 8 | goto check_above_quarter; |
1373 | 0 | m1 = midpoint(cc->corners[1].y, cc->corners[2].y); |
1374 | 0 | if (m1 >= pfs->rect.p.y) |
1375 | 0 | goto check_above_quarter; |
1376 | | /* So, we can completely discard the top half of the patch. */ |
1377 | 0 | cc->corners[v0].x = midpoint(cc->corners[0].x, cc->corners[3].x); |
1378 | 0 | cc->corners[v0].y = m0; |
1379 | 0 | cc->corners[v1].x = midpoint(cc->corners[1].x, cc->corners[2].x); |
1380 | 0 | cc->corners[v1].y = m1; |
1381 | 0 | cc->curve[v0].vertex.cc[0] = (cc->curve[0].vertex.cc[0] + cc->curve[3].vertex.cc[0])/2; |
1382 | 0 | cc->curve[v1].vertex.cc[0] = (cc->curve[1].vertex.cc[0] + cc->curve[2].vertex.cc[0])/2; |
1383 | 0 | changed = 1; |
1384 | 0 | } |
1385 | 8 | while (cc->corners[v0].y < pfs->rect.p.y && cc->corners[v1].y < pfs->rect.p.y); |
1386 | 0 | if (0) |
1387 | 0 | { |
1388 | 8 | check_above_quarter: |
1389 | | /* At this point we know that the condition for the following loop is true, so it |
1390 | | * can be a do...while rather than a while. */ |
1391 | 8 | do |
1392 | 8 | { |
1393 | | /* Let's form (Y coords only): |
1394 | | * |
1395 | | * c[v0].vertex c[v1].vertex |
1396 | | * m0 m1 |
1397 | | * x x |
1398 | | * x x |
1399 | | * c[v0^3].vertex c[v1^3].vertex |
1400 | | */ |
1401 | 8 | m0 = quarterpoint(cc->corners[v0].y, cc->corners[v0^3].y); |
1402 | 8 | if (m0 >= pfs->rect.p.y) |
1403 | 8 | break; |
1404 | 0 | m1 = quarterpoint(cc->corners[v1].y, cc->corners[v1^3].y); |
1405 | 0 | if (m1 >= pfs->rect.p.y) |
1406 | 0 | break; |
1407 | | /* So, we can completely discard the top half of the patch. */ |
1408 | 0 | cc->corners[v0].x = quarterpoint(cc->corners[v0].x, cc->corners[v0^3].x); |
1409 | 0 | cc->corners[v0].y = m0; |
1410 | 0 | cc->corners[v1].x = quarterpoint(cc->corners[v1].x, cc->corners[v1^3].x); |
1411 | 0 | cc->corners[v1].y = m1; |
1412 | 0 | cc->curve[v0].vertex.cc[0] = (cc->curve[v0].vertex.cc[0] + 3*cc->curve[v0^3].vertex.cc[0])/4; |
1413 | 0 | cc->curve[v1].vertex.cc[0] = (cc->curve[v1].vertex.cc[0] + 3*cc->curve[v1^3].vertex.cc[0])/4; |
1414 | 0 | changed = 1; |
1415 | 0 | } |
1416 | 8 | while (cc->corners[v0].y < pfs->rect.p.y && cc->corners[v1].y < pfs->rect.p.y); |
1417 | 8 | } |
1418 | 0 | } |
1419 | | |
1420 | | /* or the bottom half? */ |
1421 | 59 | if (cc->corners[0].y > pfs->rect.q.y && cc->corners[1].y > pfs->rect.q.y) |
1422 | 0 | { |
1423 | | /* Check 0+1 off bottom. */ |
1424 | 0 | v0 = 0; |
1425 | 0 | v1 = 1; |
1426 | 0 | goto check_bottom; |
1427 | 0 | } |
1428 | 59 | else if (cc->corners[3].y > pfs->rect.q.y && cc->corners[2].y > pfs->rect.q.y) |
1429 | 0 | { |
1430 | | /* Check 3+2 off bottom. */ |
1431 | 0 | v0 = 3; |
1432 | 0 | v1 = 2; |
1433 | 0 | check_bottom: |
1434 | | /* At this point we know that the condition for the following loop is true, so it |
1435 | | * can be a do...while rather than a while. */ |
1436 | 0 | do |
1437 | 0 | { |
1438 | | /* Let's form (Y coords only): |
1439 | | * |
1440 | | * c[v0].vertex c[v1].vertex |
1441 | | * m0 m1 |
1442 | | * c[v0^3].vertex c[v1^3].vertex |
1443 | | */ |
1444 | 0 | m0 = midpoint(cc->corners[0].y, cc->corners[3].y); |
1445 | 0 | if (m0 <= pfs->rect.q.y+MIDPOINT_ACCURACY) |
1446 | 0 | goto check_bottom_quarter; |
1447 | 0 | m1 = midpoint(cc->corners[1].y, cc->corners[2].y); |
1448 | 0 | if (m1 <= pfs->rect.q.y+MIDPOINT_ACCURACY) |
1449 | 0 | goto check_bottom_quarter; |
1450 | | /* So, we can completely discard the bottom half of the patch. */ |
1451 | 0 | cc->corners[v0].x = midpoint(cc->corners[0].x, cc->corners[3].x); |
1452 | 0 | cc->corners[v0].y = m0; |
1453 | 0 | cc->corners[v1].x = midpoint(cc->corners[1].x, cc->corners[2].x); |
1454 | 0 | cc->corners[v1].y = m1; |
1455 | 0 | cc->curve[v0].vertex.cc[0] = (cc->curve[0].vertex.cc[0] + cc->curve[3].vertex.cc[0])/2; |
1456 | 0 | cc->curve[v1].vertex.cc[0] = (cc->curve[1].vertex.cc[0] + cc->curve[2].vertex.cc[0])/2; |
1457 | 0 | changed = 1; |
1458 | 0 | } |
1459 | 0 | while (cc->corners[v0].y > pfs->rect.q.y+MIDPOINT_ACCURACY && cc->corners[v1].y > pfs->rect.q.y+MIDPOINT_ACCURACY); |
1460 | 0 | if (0) |
1461 | 0 | { |
1462 | 0 | check_bottom_quarter: |
1463 | | /* At this point we know that the condition for the following loop is true, so it |
1464 | | * can be a do...while rather than a while. */ |
1465 | 0 | do |
1466 | 0 | { |
1467 | | /* Let's form (Y coords only): |
1468 | | * |
1469 | | * c[v0].vertex c[v1].vertex |
1470 | | * x x |
1471 | | * x x |
1472 | | * m0 m1 |
1473 | | * c[v0^3].vertex c[v1^3].vertex |
1474 | | */ |
1475 | 0 | m0 = quarterpoint(cc->corners[v0].y, cc->corners[v0^3].y); |
1476 | 0 | if (m0 <= pfs->rect.q.y+QUARTERPOINT_ACCURACY) |
1477 | 0 | break; |
1478 | 0 | m1 = quarterpoint(cc->corners[v1].y, cc->corners[v1^3].y); |
1479 | 0 | if (m1 <= pfs->rect.q.y+QUARTERPOINT_ACCURACY) |
1480 | 0 | break; |
1481 | | /* So, we can completely discard the bottom half of the patch. */ |
1482 | 0 | cc->corners[v0].x = quarterpoint(cc->corners[v0].x, cc->corners[v0^3].x); |
1483 | 0 | cc->corners[v0].y = m0; |
1484 | 0 | cc->corners[v1].x = quarterpoint(cc->corners[v1].x, cc->corners[v1^3].x); |
1485 | 0 | cc->corners[v1].y = m1; |
1486 | 0 | cc->curve[v0].vertex.cc[0] = (cc->curve[v0].vertex.cc[0] + 3*cc->curve[v0^3].vertex.cc[0])/4; |
1487 | 0 | cc->curve[v1].vertex.cc[0] = (cc->curve[v1].vertex.cc[0] + 3*cc->curve[v1^3].vertex.cc[0])/4; |
1488 | 0 | changed = 1; |
1489 | 0 | } |
1490 | 0 | while (cc->corners[v0].y > pfs->rect.q.y+QUARTERPOINT_ACCURACY && cc->corners[v1].y > pfs->rect.q.y+QUARTERPOINT_ACCURACY); |
1491 | 0 | } |
1492 | 0 | } |
1493 | | |
1494 | | /* Now, rotated cases: Can we cull the top half? */ |
1495 | 59 | if (cc->corners[0].y < pfs->rect.p.y && cc->corners[3].y < pfs->rect.p.y) |
1496 | 16 | { |
1497 | | /* Check 0+3 off above. */ |
1498 | 16 | v0 = 0; |
1499 | 16 | v1 = 3; |
1500 | 16 | goto check_rot_above; |
1501 | 16 | } |
1502 | 43 | else if (cc->corners[1].y < pfs->rect.p.y && cc->corners[2].y < pfs->rect.p.y) |
1503 | 3 | { |
1504 | | /* Check 1+2 off above. */ |
1505 | 3 | v0 = 1; |
1506 | 3 | v1 = 2; |
1507 | 19 | check_rot_above: |
1508 | | /* At this point we know that the condition for the following loop is true, so it |
1509 | | * can be a do...while rather than a while. */ |
1510 | 19 | do |
1511 | 80 | { |
1512 | | /* Let's form (Y coords only): |
1513 | | * |
1514 | | * c[v0].vertex c[v1].vertex |
1515 | | * m0 m1 |
1516 | | * c[v0^1].vertex c[v1^1].vertex |
1517 | | */ |
1518 | 80 | m0 = midpoint(cc->corners[0].y, cc->corners[1].y); |
1519 | 80 | if (m0 >= pfs->rect.p.y) |
1520 | 8 | goto check_rot_above_quarter; |
1521 | 72 | m1 = midpoint(cc->corners[3].y, cc->corners[2].y); |
1522 | 72 | if (m1 >= pfs->rect.p.y) |
1523 | 11 | goto check_rot_above_quarter; |
1524 | | /* So, we can completely discard the top half of the patch. */ |
1525 | 61 | cc->corners[v0].x = midpoint(cc->corners[0].x, cc->corners[1].x); |
1526 | 61 | cc->corners[v0].y = m0; |
1527 | 61 | cc->corners[v1].x = midpoint(cc->corners[3].x, cc->corners[2].x); |
1528 | 61 | cc->corners[v1].y = m1; |
1529 | 61 | cc->curve[v0].vertex.cc[0] = (cc->curve[0].vertex.cc[0] + cc->curve[1].vertex.cc[0])/2; |
1530 | 61 | cc->curve[v1].vertex.cc[0] = (cc->curve[3].vertex.cc[0] + cc->curve[2].vertex.cc[0])/2; |
1531 | 61 | changed = 1; |
1532 | 61 | } |
1533 | 61 | while (cc->corners[v0].y < pfs->rect.p.y && cc->corners[v1].y < pfs->rect.p.y); |
1534 | 0 | if (0) |
1535 | 0 | { |
1536 | 19 | check_rot_above_quarter: |
1537 | | /* At this point we know that the condition for the following loop is true, so it |
1538 | | * can be a do...while rather than a while. */ |
1539 | 19 | do |
1540 | 19 | { |
1541 | | /* Let's form (Y coords only): |
1542 | | * |
1543 | | * c[v0].vertex c[v1].vertex |
1544 | | * m0 m1 |
1545 | | * x x |
1546 | | * x x |
1547 | | * c[v0^1].vertex c[v1^1].vertex |
1548 | | */ |
1549 | 19 | m0 = quarterpoint(cc->corners[v0].y, cc->corners[v0^1].y); |
1550 | 19 | if (m0 >= pfs->rect.p.y) |
1551 | 8 | break; |
1552 | 11 | m1 = quarterpoint(cc->corners[v1].y, cc->corners[v1^1].y); |
1553 | 11 | if (m1 >= pfs->rect.p.y) |
1554 | 11 | break; |
1555 | | /* So, we can completely discard the top half of the patch. */ |
1556 | 0 | cc->corners[v0].x = quarterpoint(cc->corners[v0].x, cc->corners[v0^1].x); |
1557 | 0 | cc->corners[v0].y = m0; |
1558 | 0 | cc->corners[v1].x = quarterpoint(cc->corners[v1].x, cc->corners[v1^1].x); |
1559 | 0 | cc->corners[v1].y = m1; |
1560 | 0 | cc->curve[v0].vertex.cc[0] = (cc->curve[v0].vertex.cc[0] + 3*cc->curve[v0^1].vertex.cc[0])/4; |
1561 | 0 | cc->curve[v1].vertex.cc[0] = (cc->curve[v1].vertex.cc[0] + 3*cc->curve[v1^1].vertex.cc[0])/4; |
1562 | 0 | changed = 1; |
1563 | 0 | } |
1564 | 19 | while (cc->corners[v0].y < pfs->rect.p.y && cc->corners[v1].y < pfs->rect.p.y); |
1565 | 19 | } |
1566 | 0 | } |
1567 | | |
1568 | | /* or the bottom half? */ |
1569 | 59 | if (cc->corners[0].y > pfs->rect.q.y && cc->corners[3].y > pfs->rect.q.y) |
1570 | 3 | { |
1571 | | /* Check 0+3 off the bottom. */ |
1572 | 3 | v0 = 0; |
1573 | 3 | v1 = 3; |
1574 | 3 | goto check_rot_bottom; |
1575 | 3 | } |
1576 | 56 | else if (cc->corners[1].y > pfs->rect.q.y && cc->corners[2].y > pfs->rect.q.y) |
1577 | 0 | { |
1578 | | /* Check 1+2 off the bottom. */ |
1579 | 0 | v0 = 1; |
1580 | 0 | v1 = 2; |
1581 | 3 | check_rot_bottom: |
1582 | | /* At this point we know that the condition for the following loop is true, so it |
1583 | | * can be a do...while rather than a while. */ |
1584 | 3 | do |
1585 | 8 | { |
1586 | | /* Let's form (Y coords only): |
1587 | | * |
1588 | | * c[v0].vertex c[v1].vertex |
1589 | | * m0 m1 |
1590 | | * c[v0^1].vertex c[v1^1].vertex |
1591 | | */ |
1592 | 8 | m0 = midpoint(cc->corners[0].y, cc->corners[1].y); |
1593 | 8 | if (m0 <= pfs->rect.q.y+MIDPOINT_ACCURACY) |
1594 | 3 | goto check_rot_bottom_quarter; |
1595 | 5 | m1 = midpoint(cc->corners[3].y, cc->corners[2].y); |
1596 | 5 | if (m1 <= pfs->rect.q.y+MIDPOINT_ACCURACY) |
1597 | 0 | goto check_rot_bottom_quarter; |
1598 | | /* So, we can completely discard the left hand half of the patch. */ |
1599 | 5 | cc->corners[v0].x = midpoint(cc->corners[0].x, cc->corners[1].x); |
1600 | 5 | cc->corners[v0].y = m0; |
1601 | 5 | cc->corners[v1].x = midpoint(cc->corners[3].x, cc->corners[2].x); |
1602 | 5 | cc->corners[v1].y = m1; |
1603 | 5 | cc->curve[v0].vertex.cc[0] = (cc->curve[0].vertex.cc[0] + cc->curve[1].vertex.cc[0])/2; |
1604 | 5 | cc->curve[v1].vertex.cc[0] = (cc->curve[3].vertex.cc[0] + cc->curve[2].vertex.cc[0])/2; |
1605 | 5 | changed = 1; |
1606 | 5 | } |
1607 | 5 | while (cc->corners[v0].y > pfs->rect.q.y+MIDPOINT_ACCURACY && cc->corners[v1].y > pfs->rect.q.y+MIDPOINT_ACCURACY); |
1608 | 0 | if (0) |
1609 | 0 | { |
1610 | 3 | check_rot_bottom_quarter: |
1611 | | /* At this point we know that the condition for the following loop is true, so it |
1612 | | * can be a do...while rather than a while. */ |
1613 | 3 | do |
1614 | 3 | { |
1615 | | /* Let's form (Y coords only): |
1616 | | * |
1617 | | * c[v0].vertex c[v1].vertex |
1618 | | * x x |
1619 | | * x x |
1620 | | * m0 m1 |
1621 | | * c[v0^1].vertex c[v1^1].vertex |
1622 | | */ |
1623 | 3 | m0 = quarterpoint(cc->corners[v0].y, cc->corners[v0^1].y); |
1624 | 3 | if (m0 <= pfs->rect.q.y+QUARTERPOINT_ACCURACY) |
1625 | 3 | break; |
1626 | 0 | m1 = quarterpoint(cc->corners[v1].y, cc->corners[v1^1].y); |
1627 | 0 | if (m1 <= pfs->rect.q.y+QUARTERPOINT_ACCURACY) |
1628 | 0 | break; |
1629 | | /* So, we can completely discard the left hand half of the patch. */ |
1630 | 0 | cc->corners[v0].x = quarterpoint(cc->corners[v0].x, cc->corners[v0^1].x); |
1631 | 0 | cc->corners[v0].y = m0; |
1632 | 0 | cc->corners[v1].x = quarterpoint(cc->corners[v1].x, cc->corners[v1^1].x); |
1633 | 0 | cc->corners[v1].y = m1; |
1634 | 0 | cc->curve[v0].vertex.cc[0] = (cc->curve[v0].vertex.cc[0] + 3*cc->curve[v0^1].vertex.cc[0])/4; |
1635 | 0 | cc->curve[v1].vertex.cc[0] = (cc->curve[v1].vertex.cc[0] + 3*cc->curve[v1^1].vertex.cc[0])/4; |
1636 | 0 | changed = 1; |
1637 | 0 | } |
1638 | 3 | while (cc->corners[v0].y > pfs->rect.q.y+QUARTERPOINT_ACCURACY && cc->corners[v1].y > pfs->rect.q.y+QUARTERPOINT_ACCURACY); |
1639 | 3 | } |
1640 | 0 | } |
1641 | 59 | } while (changed); |
1642 | | |
1643 | 23 | return A_fill_region_floats(pfs, cc, 0); |
1644 | 84 | } |
1645 | | #undef midpoint |
1646 | | #undef quarterpoint |
1647 | | #undef MIDPOINT_ACCURACY |
1648 | | #undef QUARTERPOINT_ACCURACY |
1649 | | |
1650 | | static int |
1651 | | A_fill_region(A_fill_state_t * pfs, patch_fill_state_t *pfs1) |
1652 | 361k | { |
1653 | 361k | const gs_shading_A_t * const psh = pfs->psh; |
1654 | 361k | double x0 = psh->params.Coords[0] + pfs->delta.x * pfs->v0; |
1655 | 361k | double y0 = psh->params.Coords[1] + pfs->delta.y * pfs->v0; |
1656 | 361k | double x1 = psh->params.Coords[0] + pfs->delta.x * pfs->v1; |
1657 | 361k | double y1 = psh->params.Coords[1] + pfs->delta.y * pfs->v1; |
1658 | 361k | double h0 = pfs->u0, h1 = pfs->u1; |
1659 | 361k | corners_and_curves cc; |
1660 | 361k | int code; |
1661 | | |
1662 | 361k | double dx0 = pfs->delta.x * h0; |
1663 | 361k | double dy0 = pfs->delta.y * h0; |
1664 | 361k | double dx1 = pfs->delta.x * h1; |
1665 | 361k | double dy1 = pfs->delta.y * h1; |
1666 | | |
1667 | 361k | cc.curve[0].vertex.cc[0] = pfs->t0; /* The element cc[1] is set to a dummy value against */ |
1668 | 361k | cc.curve[1].vertex.cc[0] = pfs->t1; /* interrupts while an idle processing in gxshade6.c . */ |
1669 | 361k | cc.curve[2].vertex.cc[0] = pfs->t1; |
1670 | 361k | cc.curve[3].vertex.cc[0] = pfs->t0; |
1671 | 361k | cc.corners[0].x = x0 + dy0; |
1672 | 361k | cc.corners[0].y = y0 - dx0; |
1673 | 361k | cc.corners[1].x = x1 + dy0; |
1674 | 361k | cc.corners[1].y = y1 - dx0; |
1675 | 361k | cc.corners[2].x = x1 + dy1; |
1676 | 361k | cc.corners[2].y = y1 - dx1; |
1677 | 361k | cc.corners[3].x = x0 + dy1; |
1678 | 361k | cc.corners[3].y = y0 - dx1; |
1679 | 361k | code = gs_point_transform2fixed(&pfs1->pgs->ctm, cc.corners[0].x, cc.corners[0].y, &cc.curve[0].vertex.p); |
1680 | 361k | if (code < 0) |
1681 | 342 | goto fail; |
1682 | 361k | code = gs_point_transform2fixed(&pfs1->pgs->ctm, cc.corners[1].x, cc.corners[1].y, &cc.curve[1].vertex.p); |
1683 | 361k | if (code < 0) |
1684 | 11 | goto fail; |
1685 | 361k | code = gs_point_transform2fixed(&pfs1->pgs->ctm, cc.corners[2].x, cc.corners[2].y, &cc.curve[2].vertex.p); |
1686 | 361k | if (code < 0) |
1687 | 0 | goto fail; |
1688 | 361k | code = gs_point_transform2fixed(&pfs1->pgs->ctm, cc.corners[3].x, cc.corners[3].y, &cc.curve[3].vertex.p); |
1689 | 361k | if (code < 0) |
1690 | 0 | goto fail; |
1691 | 361k | return subdivide_patch_fill(pfs1, cc.curve); |
1692 | 353 | fail: |
1693 | 353 | if (code != gs_error_limitcheck) |
1694 | 0 | return code; |
1695 | 353 | code = gs_point_transform(cc.corners[0].x, cc.corners[0].y, (const gs_matrix *)&pfs1->pgs->ctm, &cc.corners[0]); |
1696 | 353 | if (code < 0) |
1697 | 0 | return code; |
1698 | 353 | code = gs_point_transform(cc.corners[1].x, cc.corners[1].y, (const gs_matrix *)&pfs1->pgs->ctm, &cc.corners[1]); |
1699 | 353 | if (code < 0) |
1700 | 0 | return code; |
1701 | 353 | code = gs_point_transform(cc.corners[2].x, cc.corners[2].y, (const gs_matrix *)&pfs1->pgs->ctm, &cc.corners[2]); |
1702 | 353 | if (code < 0) |
1703 | 0 | return code; |
1704 | 353 | code = gs_point_transform(cc.corners[3].x, cc.corners[3].y, (const gs_matrix *)&pfs1->pgs->ctm, &cc.corners[3]); |
1705 | 353 | if (code < 0) |
1706 | 0 | return code; |
1707 | 353 | return subdivide_patch_fill_floats(pfs1, &cc); |
1708 | 353 | } |
1709 | | |
1710 | | static inline int |
1711 | | gs_shading_A_fill_rectangle_aux(const gs_shading_t * psh0, const gs_rect * rect, |
1712 | | const gs_fixed_rect *clip_rect, |
1713 | | gx_device * dev, gs_gstate * pgs) |
1714 | 264k | { |
1715 | 264k | const gs_shading_A_t *const psh = (const gs_shading_A_t *)psh0; |
1716 | 264k | gs_function_t * const pfn = psh->params.Function; |
1717 | 264k | gs_matrix cmat; |
1718 | 264k | gs_rect t_rect; |
1719 | 264k | A_fill_state_t state; |
1720 | 264k | patch_fill_state_t pfs1; |
1721 | 264k | float d0 = psh->params.Domain[0], d1 = psh->params.Domain[1]; |
1722 | 264k | float dd = d1 - d0; |
1723 | 264k | double t0, t1; |
1724 | 264k | gs_point dist; |
1725 | 264k | int code; |
1726 | | |
1727 | 264k | state.psh = psh; |
1728 | 264k | code = shade_init_fill_state((shading_fill_state_t *)&pfs1, psh0, dev, pgs); |
1729 | 264k | if (code < 0) |
1730 | 37 | return code; |
1731 | 264k | pfs1.Function = pfn; |
1732 | 264k | pfs1.rect = *clip_rect; |
1733 | 264k | code = init_patch_fill_state(&pfs1); |
1734 | 264k | if (code < 0) |
1735 | 0 | goto fail; |
1736 | 264k | pfs1.maybe_self_intersecting = false; |
1737 | 264k | pfs1.function_arg_shift = 1; |
1738 | | /* |
1739 | | * Compute the parameter range. We construct a matrix in which |
1740 | | * (0,0) corresponds to t = 0 and (0,1) corresponds to t = 1, |
1741 | | * and use it to inverse-map the rectangle to be filled. |
1742 | | */ |
1743 | 264k | cmat.tx = psh->params.Coords[0]; |
1744 | 264k | cmat.ty = psh->params.Coords[1]; |
1745 | 264k | state.delta.x = psh->params.Coords[2] - psh->params.Coords[0]; |
1746 | 264k | state.delta.y = psh->params.Coords[3] - psh->params.Coords[1]; |
1747 | 264k | cmat.yx = state.delta.x; |
1748 | 264k | cmat.yy = state.delta.y; |
1749 | 264k | cmat.xx = cmat.yy; |
1750 | 264k | cmat.xy = -cmat.yx; |
1751 | 264k | code = gs_bbox_transform_inverse(rect, &cmat, &t_rect); |
1752 | 264k | if (code < 0) { |
1753 | 0 | code = 0; /* Swallow this silently */ |
1754 | 0 | goto fail; |
1755 | 0 | } |
1756 | 264k | t0 = min(max(t_rect.p.y, 0), 1); |
1757 | 264k | t1 = max(min(t_rect.q.y, 1), 0); |
1758 | 264k | state.v0 = t0; |
1759 | 264k | state.v1 = t1; |
1760 | 264k | state.u0 = t_rect.p.x; |
1761 | 264k | state.u1 = t_rect.q.x; |
1762 | 264k | state.t0 = t0 * dd + d0; |
1763 | 264k | state.t1 = t1 * dd + d0; |
1764 | 264k | code = gs_distance_transform(state.delta.x, state.delta.y, &ctm_only(pgs), |
1765 | 264k | &dist); |
1766 | 264k | if (code < 0) |
1767 | 0 | goto fail; |
1768 | 264k | state.length = hypot(dist.x, dist.y); /* device space line length */ |
1769 | 264k | code = A_fill_region(&state, &pfs1); |
1770 | 264k | if (psh->params.Extend[0] && t0 > t_rect.p.y) { |
1771 | 48.5k | if (code < 0) |
1772 | 0 | goto fail; |
1773 | | /* Use the general algorithm, because we need the trapping. */ |
1774 | 48.5k | state.v0 = t_rect.p.y; |
1775 | 48.5k | state.v1 = t0; |
1776 | 48.5k | state.t0 = state.t1 = t0 * dd + d0; |
1777 | 48.5k | code = A_fill_region(&state, &pfs1); |
1778 | 48.5k | } |
1779 | 264k | if (psh->params.Extend[1] && t1 < t_rect.q.y) { |
1780 | 48.7k | if (code < 0) |
1781 | 0 | goto fail; |
1782 | | /* Use the general algorithm, because we need the trapping. */ |
1783 | 48.7k | state.v0 = t1; |
1784 | 48.7k | state.v1 = t_rect.q.y; |
1785 | 48.7k | state.t0 = state.t1 = t1 * dd + d0; |
1786 | 48.7k | code = A_fill_region(&state, &pfs1); |
1787 | 48.7k | } |
1788 | 264k | fail: |
1789 | 264k | gsicc_release_link(pfs1.icclink); |
1790 | 264k | if (term_patch_fill_state(&pfs1)) |
1791 | 0 | return_error(gs_error_unregistered); /* Must not happen. */ |
1792 | 264k | return code; |
1793 | 264k | } |
1794 | | |
1795 | | int |
1796 | | gs_shading_A_fill_rectangle(const gs_shading_t * psh0, const gs_rect * rect, |
1797 | | const gs_fixed_rect * rect_clip, |
1798 | | gx_device * dev, gs_gstate * pgs) |
1799 | 264k | { |
1800 | 264k | return gs_shading_A_fill_rectangle_aux(psh0, rect, rect_clip, dev, pgs); |
1801 | 264k | } |
1802 | | |
1803 | | /* ---------------- Radial shading ---------------- */ |
1804 | | |
1805 | | /* Some notes on what I have struggled to understand about the following |
1806 | | * function. This function renders the 'tube' given by interpolating one |
1807 | | * circle to another. |
1808 | | * |
1809 | | * The first circle is at (x0, y0) with radius r0, and has 'color' t0. |
1810 | | * The other circle is at (x1, y1) with radius r1, and has 'color' t1. |
1811 | | * |
1812 | | * We perform this rendering by approximating each quadrant of the 'tube' |
1813 | | * by a tensor patch. The tensor patch is formed by taking a curve along |
1814 | | * 1/4 of the circumference of the first circle, a straight line to the |
1815 | | * equivalent point on the circumference of the second circle, a curve |
1816 | | * back along the circumference of the second circle, and then a straight |
1817 | | * line back to where we started. |
1818 | | * |
1819 | | * There is additional logic in this function that forms the directions of |
1820 | | * the curves differently for different quadrants. This is done to ensure |
1821 | | * that we always paint 'around' the tube from the back towards the front, |
1822 | | * so we don't get unexpected regions showing though. This is explained more |
1823 | | * below. |
1824 | | * |
1825 | | * The original code here examined the position change between the two |
1826 | | * circles dx and dy. Based upon this vector it would pick which quadrant/ |
1827 | | * tensor patch to draw first. It would draw the quadrants/tensor patches |
1828 | | * in anticlockwise order. Presumably this was intended to be done so that |
1829 | | * the 'top' quadrant would be drawn last. |
1830 | | * |
1831 | | * Unfortunately this did not always work; see bug 692513. If the quadrants |
1832 | | * were rendered in the order 0,1,2,3, the rendering of 1 was leaving traces |
1833 | | * on top of 0, which was unexpected. |
1834 | | * |
1835 | | * I have therefore altered the code slightly; rather than picking a start |
1836 | | * quadrant and moving anticlockwise, we now draw the 'undermost' quadrant, |
1837 | | * then the two adjacent quadrants, then the topmost quadrant. |
1838 | | * |
1839 | | * For the purposes of explanation, we shall label the octants as below: |
1840 | | * |
1841 | | * \2|1/ and Quadrants as: | |
1842 | | * 3\|/0 Q1 | Q0 |
1843 | | * ---+--- ----+---- |
1844 | | * 4/|\7 Q2 | Q3 |
1845 | | * /5|6\ | |
1846 | | * |
1847 | | * We find (dx,dy), the difference between the centres of the circles. |
1848 | | * We look to see which octant this falls in. Firstly, this tells us which |
1849 | | * quadrant of the circle we need to draw first (Octant n, starts with |
1850 | | * Quadrant floor(n/2)). Secondly, it tells us which direction to form the |
1851 | | * tensor patch in; we always want to draw from the side 'closest' to |
1852 | | * dx/dy to the side further away. This ensures that we don't overwrite |
1853 | | * pixels in the incorrect order as the patch decomposes. |
1854 | | */ |
1855 | | static int |
1856 | | R_tensor_annulus(patch_fill_state_t *pfs, |
1857 | | double x0, double y0, double r0, double t0, |
1858 | | double x1, double y1, double r1, double t1) |
1859 | 337 | { |
1860 | 337 | double dx = x1 - x0, dy = y1 - y0; |
1861 | 337 | double d = hypot(dx, dy); |
1862 | 337 | gs_point p0, p1, pc0, pc1; |
1863 | 337 | int k, j, code, dirn; |
1864 | 337 | bool inside = 0; |
1865 | | |
1866 | | /* pc0 and pc1 are the centres of the respective circles. */ |
1867 | 337 | pc0.x = x0, pc0.y = y0; |
1868 | 337 | pc1.x = x1, pc1.y = y1; |
1869 | | /* Set p0 up so it's a unit vector giving the direction of 90 degrees |
1870 | | * to the right of the major axis as we move from p0c to p1c. */ |
1871 | 337 | if (r0 + d <= r1 || r1 + d <= r0) { |
1872 | | /* One circle is inside another one. |
1873 | | Use any subdivision, |
1874 | | but don't depend on dx, dy, which may be too small. */ |
1875 | 337 | p0.x = 0, p0.y = -1, dirn = 0; |
1876 | | /* Align stripes along radii for faster triangulation : */ |
1877 | 337 | inside = 1; |
1878 | 337 | pfs->function_arg_shift = 1; |
1879 | 337 | } else { |
1880 | | /* Must generate canonic quadrangle arcs, |
1881 | | because we approximate them with curves. */ |
1882 | 0 | if(dx >= 0) { |
1883 | 0 | if (dy >= 0) |
1884 | 0 | p0.x = 1, p0.y = 0, dirn = (dx >= dy ? 1 : 0); |
1885 | 0 | else |
1886 | 0 | p0.x = 0, p0.y = -1, dirn = (dx >= -dy ? 0 : 1); |
1887 | 0 | } else { |
1888 | 0 | if (dy >= 0) |
1889 | 0 | p0.x = 0, p0.y = 1, dirn = (-dx >= dy ? 1 : 0); |
1890 | 0 | else |
1891 | 0 | p0.x = -1, p0.y = 0, dirn = (-dx >= -dy ? 0 : 1); |
1892 | 0 | } |
1893 | 0 | pfs->function_arg_shift = 0; |
1894 | 0 | } |
1895 | | /* fixme: wish: cut invisible parts off. |
1896 | | Note : when r0 != r1 the invisible part is not a half circle. */ |
1897 | 1.66k | for (k = 0; k < 4; k++) { |
1898 | 1.34k | gs_point p[12]; |
1899 | 1.34k | patch_curve_t curve[4]; |
1900 | | |
1901 | | /* Set p1 to be 90 degrees anticlockwise from p0 */ |
1902 | 1.34k | p1.x = -p0.y; p1.y = p0.x; |
1903 | 1.34k | if (dirn == 0) { /* Clockwise */ |
1904 | 1.00k | make_quadrant_arc(p + 0, &pc0, &p1, &p0, r0); |
1905 | 1.00k | make_quadrant_arc(p + 6, &pc1, &p0, &p1, r1); |
1906 | 1.00k | } else { /* Anticlockwise */ |
1907 | 337 | make_quadrant_arc(p + 0, &pc0, &p0, &p1, r0); |
1908 | 337 | make_quadrant_arc(p + 6, &pc1, &p1, &p0, r1); |
1909 | 337 | } |
1910 | 1.34k | p[4].x = (p[3].x * 2 + p[6].x) / 3; |
1911 | 1.34k | p[4].y = (p[3].y * 2 + p[6].y) / 3; |
1912 | 1.34k | p[5].x = (p[3].x + p[6].x * 2) / 3; |
1913 | 1.34k | p[5].y = (p[3].y + p[6].y * 2) / 3; |
1914 | 1.34k | p[10].x = (p[9].x * 2 + p[0].x) / 3; |
1915 | 1.34k | p[10].y = (p[9].y * 2 + p[0].y) / 3; |
1916 | 1.34k | p[11].x = (p[9].x + p[0].x * 2) / 3; |
1917 | 1.34k | p[11].y = (p[9].y + p[0].y * 2) / 3; |
1918 | 6.70k | for (j = 0; j < 4; j++) { |
1919 | 5.36k | int jj = (j + inside) % 4; |
1920 | | |
1921 | 5.36k | if (gs_point_transform2fixed(&pfs->pgs->ctm, p[j*3 + 0].x, p[j*3 + 0].y, &curve[jj].vertex.p) < 0) |
1922 | 0 | gs_point_transform2fixed_clamped(&pfs->pgs->ctm, p[j*3 + 0].x, p[j*3 + 0].y, &curve[jj].vertex.p); |
1923 | | |
1924 | 5.36k | if (gs_point_transform2fixed(&pfs->pgs->ctm, p[j*3 + 1].x, p[j*3 + 1].y, &curve[jj].control[0]) < 0) |
1925 | 0 | gs_point_transform2fixed_clamped(&pfs->pgs->ctm, p[j*3 + 1].x, p[j*3 + 1].y, &curve[jj].control[0]); |
1926 | | |
1927 | 5.36k | if (gs_point_transform2fixed(&pfs->pgs->ctm, p[j*3 + 2].x, p[j*3 + 2].y, &curve[jj].control[1]) < 0) |
1928 | 0 | gs_point_transform2fixed_clamped(&pfs->pgs->ctm, p[j*3 + 2].x, p[j*3 + 2].y, &curve[jj].control[1]); |
1929 | 5.36k | curve[j].straight = (((j + inside) & 1) != 0); |
1930 | 5.36k | } |
1931 | 1.34k | curve[(0 + inside) % 4].vertex.cc[0] = t0; |
1932 | 1.34k | curve[(1 + inside) % 4].vertex.cc[0] = t0; |
1933 | 1.34k | curve[(2 + inside) % 4].vertex.cc[0] = t1; |
1934 | 1.34k | curve[(3 + inside) % 4].vertex.cc[0] = t1; |
1935 | 1.34k | curve[0].vertex.cc[1] = curve[1].vertex.cc[1] = 0; /* Initialize against FPE. */ |
1936 | 1.34k | curve[2].vertex.cc[1] = curve[3].vertex.cc[1] = 0; /* Initialize against FPE. */ |
1937 | 1.34k | code = patch_fill(pfs, curve, NULL, NULL); |
1938 | 1.34k | if (code < 0) |
1939 | 8 | return code; |
1940 | | /* Move p0 to be ready for the next position */ |
1941 | 1.33k | if (k == 0) { |
1942 | | /* p0 moves clockwise */ |
1943 | 337 | p1 = p0; |
1944 | 337 | p0.x = p1.y; p0.y = -p1.x; |
1945 | 337 | dirn = 0; |
1946 | 995 | } else if (k == 1) { |
1947 | | /* p0 flips sides */ |
1948 | 337 | p0.x = -p0.x; p0.y = -p0.y; |
1949 | 337 | dirn = 1; |
1950 | 658 | } else if (k == 2) { |
1951 | | /* p0 moves anti-clockwise */ |
1952 | 329 | p1 = p0; |
1953 | 329 | p0.x = -p1.y; p0.y = p1.x; |
1954 | 329 | dirn = 0; |
1955 | 329 | } |
1956 | 1.33k | } |
1957 | 329 | return 0; |
1958 | 337 | } |
1959 | | |
1960 | | /* Find the control points for two points on the arc of a circle |
1961 | | * the points must be within the same quadrant. |
1962 | | */ |
1963 | | static int find_arc_control_points(gs_point *from, gs_point *to, gs_point *from_control, gs_point *to_control, gs_point *centre) |
1964 | 0 | { |
1965 | 0 | double from_tan_alpha, to_tan_alpha, from_alpha, to_alpha; |
1966 | 0 | double half_inscribed_angle, intersect_x, intersect_y, intersect_dist; |
1967 | 0 | double radius = sqrt(((from->x - centre->x) * (from->x - centre->x)) + ((from->y - centre->y) * (from->y - centre->y))); |
1968 | 0 | double tangent_intersect_dist; |
1969 | 0 | double F; |
1970 | 0 | int quadrant; |
1971 | | |
1972 | | /* Quadrant 0 is upper right, numbered anti-clockwise. |
1973 | | * If the direction of the from->to is atni-clockwise, add 4 |
1974 | | */ |
1975 | 0 | if (from->x > to->x) { |
1976 | 0 | if (from->y > to->y) { |
1977 | 0 | if (to->y >= centre->y) |
1978 | 0 | quadrant = 1 + 4; |
1979 | 0 | else |
1980 | 0 | quadrant = 3; |
1981 | 0 | } else { |
1982 | 0 | if (to->x >= centre->x) |
1983 | 0 | quadrant = 0 + 4; |
1984 | 0 | else |
1985 | 0 | quadrant = 2; |
1986 | 0 | } |
1987 | 0 | } else { |
1988 | 0 | if (from->y > to->y) { |
1989 | 0 | if (from->x >= centre->x) |
1990 | 0 | quadrant = 0; |
1991 | 0 | else |
1992 | 0 | quadrant = 2 + 4; |
1993 | 0 | } else { |
1994 | 0 | if (from->x >= centre->x) |
1995 | 0 | quadrant = 3 + 4; |
1996 | 0 | else |
1997 | 0 | quadrant = 1; |
1998 | 0 | } |
1999 | 0 | } |
2000 | |
|
2001 | 0 | switch(quadrant) { |
2002 | | /* quadrant 0, arc goes clockwise */ |
2003 | 0 | case 0: |
2004 | 0 | if (from->x == centre->x) { |
2005 | 0 | from_alpha = M_PI / 2; |
2006 | 0 | } else { |
2007 | 0 | from_tan_alpha = (from->y - centre->y) / (from->x - centre->x); |
2008 | 0 | from_alpha = atan(from_tan_alpha); |
2009 | 0 | } |
2010 | 0 | to_tan_alpha = (to->y - centre->y) / (to->x - centre->x); |
2011 | 0 | to_alpha = atan(to_tan_alpha); |
2012 | |
|
2013 | 0 | half_inscribed_angle = (from_alpha - to_alpha) / 2; |
2014 | 0 | intersect_dist = radius / cos(half_inscribed_angle); |
2015 | 0 | tangent_intersect_dist = tan(half_inscribed_angle) * radius; |
2016 | |
|
2017 | 0 | intersect_x = centre->x + cos(to_alpha + half_inscribed_angle) * intersect_dist; |
2018 | 0 | intersect_y = centre->y + sin(to_alpha + half_inscribed_angle) * intersect_dist; |
2019 | 0 | break; |
2020 | | /* quadrant 1, arc goes clockwise */ |
2021 | 0 | case 1: |
2022 | 0 | from_tan_alpha = (from->y - centre->y) / (centre->x - from->x); |
2023 | 0 | from_alpha = atan(from_tan_alpha); |
2024 | |
|
2025 | 0 | if (to->x == centre->x) { |
2026 | 0 | to_alpha = M_PI / 2; |
2027 | 0 | } else { |
2028 | 0 | to_tan_alpha = (to->y - centre->y) / (centre->x - to->x); |
2029 | 0 | to_alpha = atan(to_tan_alpha); |
2030 | 0 | } |
2031 | |
|
2032 | 0 | half_inscribed_angle = (to_alpha - from_alpha) / 2; |
2033 | 0 | intersect_dist = radius / cos(half_inscribed_angle); |
2034 | 0 | tangent_intersect_dist = tan(half_inscribed_angle) * radius; |
2035 | |
|
2036 | 0 | intersect_x = centre->x - cos(from_alpha + half_inscribed_angle) * intersect_dist; |
2037 | 0 | intersect_y = centre->y + sin(from_alpha + half_inscribed_angle) * intersect_dist; |
2038 | 0 | break; |
2039 | | /* quadrant 2, arc goes clockwise */ |
2040 | 0 | case 2: |
2041 | 0 | if (from->x == centre->x) { |
2042 | 0 | from_alpha = M_PI / 2; |
2043 | 0 | } else { |
2044 | 0 | from_tan_alpha = (centre->y - from->y) / (centre->x - from->x); |
2045 | 0 | from_alpha = atan(from_tan_alpha); |
2046 | 0 | } |
2047 | |
|
2048 | 0 | to_tan_alpha = (centre->y - to->y) / (centre->x - to->x); |
2049 | 0 | to_alpha = atan(to_tan_alpha); |
2050 | |
|
2051 | 0 | half_inscribed_angle = (to_alpha - from_alpha) / 2; |
2052 | 0 | intersect_dist = radius / cos(half_inscribed_angle); |
2053 | 0 | tangent_intersect_dist = tan(half_inscribed_angle) * radius; |
2054 | |
|
2055 | 0 | intersect_x = centre->x - cos(from_alpha + half_inscribed_angle) * intersect_dist; |
2056 | 0 | intersect_y = centre->y - sin(from_alpha + half_inscribed_angle) * intersect_dist; |
2057 | 0 | break; |
2058 | | /* quadrant 3, arc goes clockwise */ |
2059 | 0 | case 3: |
2060 | 0 | from_tan_alpha = (centre->y - from->y) / (from->x - centre->x); |
2061 | 0 | from_alpha = atan(from_tan_alpha); |
2062 | |
|
2063 | 0 | if (to->x == centre->x) { |
2064 | 0 | to_alpha = M_PI / 2; |
2065 | 0 | } else { |
2066 | 0 | to_tan_alpha = (centre->y - to->y) / (to->x - centre->x); |
2067 | 0 | to_alpha = atan(to_tan_alpha); |
2068 | 0 | } |
2069 | |
|
2070 | 0 | half_inscribed_angle = (to_alpha - from_alpha) / 2; |
2071 | 0 | intersect_dist = radius / cos(half_inscribed_angle); |
2072 | 0 | tangent_intersect_dist = tan(half_inscribed_angle) * radius; |
2073 | |
|
2074 | 0 | intersect_x = centre->x + cos(from_alpha + half_inscribed_angle) * intersect_dist; |
2075 | 0 | intersect_y = centre->y - sin(from_alpha + half_inscribed_angle) * intersect_dist; |
2076 | 0 | break; |
2077 | | /* quadrant 0, arc goes anti-clockwise */ |
2078 | 0 | case 4: |
2079 | 0 | from_tan_alpha = (from->y - centre->y) / (from->x - centre->x); |
2080 | 0 | from_alpha = atan(from_tan_alpha); |
2081 | |
|
2082 | 0 | if (to->y == centre->y) |
2083 | 0 | to_alpha = M_PI / 2; |
2084 | 0 | else { |
2085 | 0 | to_tan_alpha = (to->y - centre->y) / (to->x - centre->x); |
2086 | 0 | to_alpha = atan(to_tan_alpha); |
2087 | 0 | } |
2088 | |
|
2089 | 0 | half_inscribed_angle = (to_alpha - from_alpha) / 2; |
2090 | 0 | intersect_dist = radius / cos(half_inscribed_angle); |
2091 | 0 | tangent_intersect_dist = tan(half_inscribed_angle) * radius; |
2092 | |
|
2093 | 0 | intersect_x = centre->x + cos(from_alpha + half_inscribed_angle) * intersect_dist; |
2094 | 0 | intersect_y = centre->y + sin(from_alpha + half_inscribed_angle) * intersect_dist; |
2095 | 0 | break; |
2096 | | /* quadrant 1, arc goes anti-clockwise */ |
2097 | 0 | case 5: |
2098 | 0 | from_tan_alpha = (centre->x - from->x) / (from->y - centre->y); |
2099 | 0 | from_alpha = atan(from_tan_alpha); |
2100 | |
|
2101 | 0 | if (to->y == centre->y) { |
2102 | 0 | to_alpha = M_PI / 2; |
2103 | 0 | } |
2104 | 0 | else { |
2105 | 0 | to_tan_alpha = (centre->x - to->x) / (to->y - centre->y); |
2106 | 0 | to_alpha = atan(to_tan_alpha); |
2107 | 0 | } |
2108 | |
|
2109 | 0 | half_inscribed_angle = (to_alpha - from_alpha) / 2; |
2110 | 0 | intersect_dist = radius / cos(half_inscribed_angle); |
2111 | 0 | tangent_intersect_dist = tan(half_inscribed_angle) * radius; |
2112 | |
|
2113 | 0 | intersect_x = centre->x - sin(from_alpha + half_inscribed_angle) * intersect_dist; |
2114 | 0 | intersect_y = centre->y + cos(from_alpha + half_inscribed_angle) * intersect_dist; |
2115 | 0 | break; |
2116 | | /* quadrant 2, arc goes anti-clockwise */ |
2117 | 0 | case 6: |
2118 | 0 | from_tan_alpha = (from->y - centre->y) / (centre->x - from->x); |
2119 | 0 | from_alpha = atan(from_tan_alpha); |
2120 | |
|
2121 | 0 | if (to->x == centre->x) { |
2122 | 0 | to_alpha = M_PI / 2; |
2123 | 0 | } else { |
2124 | 0 | to_tan_alpha = (centre->y - to->y) / (centre->x - to->x); |
2125 | 0 | to_alpha = atan(to_tan_alpha); |
2126 | 0 | } |
2127 | |
|
2128 | 0 | half_inscribed_angle = (to_alpha - from_alpha) / 2; |
2129 | 0 | intersect_dist = radius / cos(half_inscribed_angle); |
2130 | 0 | tangent_intersect_dist = tan(half_inscribed_angle) * radius; |
2131 | |
|
2132 | 0 | intersect_x = centre->x - cos(from_alpha + half_inscribed_angle) * intersect_dist; |
2133 | 0 | intersect_y = centre->y - sin(from_alpha + half_inscribed_angle) * intersect_dist; |
2134 | 0 | break; |
2135 | | /* quadrant 3, arc goes anti-clockwise */ |
2136 | 0 | case 7: |
2137 | 0 | if (from->x == centre->x) { |
2138 | 0 | from_alpha = M_PI / 2; |
2139 | 0 | } else { |
2140 | 0 | from_tan_alpha = (centre->y - from->y) / (from->x - centre->x); |
2141 | 0 | from_alpha = atan(from_tan_alpha); |
2142 | 0 | } |
2143 | 0 | to_tan_alpha = (centre->y - to->y) / (to->x - centre->x); |
2144 | 0 | to_alpha = atan(to_tan_alpha); |
2145 | |
|
2146 | 0 | half_inscribed_angle = (from_alpha - to_alpha) / 2; |
2147 | 0 | intersect_dist = radius / cos(half_inscribed_angle); |
2148 | 0 | tangent_intersect_dist = tan(half_inscribed_angle) * radius; |
2149 | |
|
2150 | 0 | intersect_x = centre->x + cos(to_alpha + half_inscribed_angle) * intersect_dist; |
2151 | 0 | intersect_y = centre->y - sin(to_alpha + half_inscribed_angle) * intersect_dist; |
2152 | 0 | break; |
2153 | 0 | } |
2154 | | |
2155 | 0 | F = (4.0 / 3.0) / (1 + sqrt(1 + ((tangent_intersect_dist / radius) * (tangent_intersect_dist / radius)))); |
2156 | |
|
2157 | 0 | from_control->x = from->x - ((from->x - intersect_x) * F); |
2158 | 0 | from_control->y = from->y - ((from->y - intersect_y) * F); |
2159 | 0 | to_control->x = to->x - ((to->x - intersect_x) * F); |
2160 | 0 | to_control->y = to->y - ((to->y - intersect_y) * F); |
2161 | |
|
2162 | 0 | return 0; |
2163 | 0 | } |
2164 | | |
2165 | | /* Create a 'patch_curve' element whch is a straight line between two points */ |
2166 | | static int patch_lineto(gs_matrix_fixed *ctm, gs_point *from, gs_point *to, patch_curve_t *p, float t) |
2167 | 0 | { |
2168 | 0 | double x_1third, x_2third, y_1third, y_2third; |
2169 | |
|
2170 | 0 | x_1third = (to->x - from->x) / 3; |
2171 | 0 | x_2third = x_1third * 2; |
2172 | 0 | y_1third = (to->y - from->y) / 3; |
2173 | 0 | y_2third = y_1third * 2; |
2174 | |
|
2175 | 0 | gs_point_transform2fixed(ctm, from->x, from->y, &p->vertex.p); |
2176 | 0 | gs_point_transform2fixed(ctm, from->x + x_1third, from->y + y_1third, &p->control[0]); |
2177 | 0 | gs_point_transform2fixed(ctm, from->x + x_2third, from->y + y_2third, &p->control[1]); |
2178 | |
|
2179 | 0 | p->vertex.cc[0] = t; |
2180 | 0 | p->vertex.cc[1] = t; |
2181 | 0 | p->straight = 1; |
2182 | |
|
2183 | 0 | return 0; |
2184 | 0 | } |
2185 | | |
2186 | | static int patch_curveto(gs_matrix_fixed *ctm, gs_point *centre, gs_point *from, gs_point *to, patch_curve_t *p, float t) |
2187 | 0 | { |
2188 | 0 | gs_point from_control, to_control; |
2189 | |
|
2190 | 0 | find_arc_control_points(from, to, &from_control, &to_control, centre); |
2191 | |
|
2192 | 0 | gs_point_transform2fixed(ctm, from->x, from->y, &p->vertex.p); |
2193 | 0 | gs_point_transform2fixed(ctm, from_control.x, from_control.y, &p->control[0]); |
2194 | 0 | gs_point_transform2fixed(ctm, to_control.x, to_control.y, &p->control[1]); |
2195 | 0 | p->vertex.cc[0] = t; |
2196 | 0 | p->vertex.cc[1] = t; |
2197 | 0 | p->straight = 0; |
2198 | |
|
2199 | 0 | return 0; |
2200 | 0 | } |
2201 | | |
2202 | | static int draw_quarter_annulus(patch_fill_state_t *pfs, gs_point *centre, double radius, gs_point *corner, float t) |
2203 | 0 | { |
2204 | 0 | gs_point p0, p1, initial; |
2205 | 0 | patch_curve_t p[4]; |
2206 | 0 | int code; |
2207 | |
|
2208 | 0 | if (corner->x > centre->x) { |
2209 | 0 | initial.x = centre->x + radius; |
2210 | 0 | } |
2211 | 0 | else { |
2212 | 0 | initial.x = centre->x - radius; |
2213 | 0 | } |
2214 | 0 | initial.y = centre->y; |
2215 | |
|
2216 | 0 | p1.x = initial.x; |
2217 | 0 | p1.y = corner->y; |
2218 | 0 | patch_lineto(&pfs->pgs->ctm, &initial, &p1, &p[0], t); |
2219 | 0 | p0.x = centre->x; |
2220 | 0 | p0.y = p1.y; |
2221 | 0 | patch_lineto(&pfs->pgs->ctm, &p1, &p0, &p[1], t); |
2222 | 0 | p1.x = centre->x; |
2223 | 0 | if (centre->y > corner->y) { |
2224 | 0 | p1.y = centre->y - radius; |
2225 | 0 | } else { |
2226 | 0 | p1.y = centre->y + radius; |
2227 | 0 | } |
2228 | 0 | patch_lineto(&pfs->pgs->ctm, &p0, &p1, &p[2], t); |
2229 | 0 | patch_curveto(&pfs->pgs->ctm, centre, &p1, &initial, &p[3], t); |
2230 | 0 | code = patch_fill(pfs, (const patch_curve_t *)&p, NULL, NULL); |
2231 | 0 | if (code < 0) |
2232 | 0 | return code; |
2233 | | |
2234 | 0 | if (corner->x > centre->x) |
2235 | 0 | initial.x = corner->x - (corner->x - (centre->x + radius)); |
2236 | 0 | else |
2237 | 0 | initial.x = centre->x - radius; |
2238 | 0 | initial.y = corner->y; |
2239 | 0 | patch_lineto(&pfs->pgs->ctm, corner, &initial, &p[0], t); |
2240 | |
|
2241 | 0 | p0.x = initial.x; |
2242 | 0 | p0.y = centre->y; |
2243 | 0 | patch_lineto(&pfs->pgs->ctm, &initial, &p0, &p[1], t); |
2244 | |
|
2245 | 0 | p1.y = p0.y; |
2246 | 0 | p1.x = corner->x; |
2247 | 0 | patch_lineto(&pfs->pgs->ctm, &p0, &p1, &p[2], t); |
2248 | 0 | patch_lineto(&pfs->pgs->ctm, &p1, corner, &p[3], t); |
2249 | |
|
2250 | 0 | return (patch_fill(pfs, (const patch_curve_t *)&p, NULL, NULL)); |
2251 | 0 | } |
2252 | | |
2253 | | static int R_tensor_annulus_extend_tangent(patch_fill_state_t *pfs, |
2254 | | double x0, double y0, double r0, double t0, |
2255 | | double x1, double y1, double r1, double t1, double r2) |
2256 | 0 | { |
2257 | 0 | patch_curve_t curve[4]; |
2258 | 0 | gs_point p0, p1; |
2259 | 0 | int code = 0, q = 0; |
2260 | | |
2261 | | /* special case axis aligned circles. Its quicker to handle these specially as it |
2262 | | * avoid lots of trigonometry in the general case code, and avoids us |
2263 | | * having to watch out for infinity as the result of tan() operations. |
2264 | | */ |
2265 | 0 | if (x0 == x1 || y0 == y1) { |
2266 | 0 | if (x0 == x1 && y0 > y1) { |
2267 | | /* tangent at top of circles */ |
2268 | 0 | p0.x = x1, p0.y = y1; |
2269 | 0 | p1.x = x1 + r2, p1.y = y1 - r2; |
2270 | 0 | draw_quarter_annulus(pfs, &p0, r1, &p1, t0); |
2271 | 0 | p1.x = x1 - r2, p1.y = y1 - r2; |
2272 | 0 | draw_quarter_annulus(pfs, &p0, r1, &p1, t0); |
2273 | 0 | p1.x = x1 + r2, p1.y = y1 + r1; |
2274 | 0 | draw_quarter_annulus(pfs, &p0, r1, &p1, t0); |
2275 | 0 | p1.x = x1 - r2, p1.y = y1 + r1; |
2276 | 0 | draw_quarter_annulus(pfs, &p0, r1, &p1, t0); |
2277 | 0 | } |
2278 | 0 | if (x0 == x1 && y0 < y1) { |
2279 | | /* tangent at bottom of circles */ |
2280 | 0 | p0.x = x1, p0.y = y1; |
2281 | 0 | p1.x = x1 + r2, p1.y = y1 + r2; |
2282 | 0 | draw_quarter_annulus(pfs, &p0, r1, &p1, t0); |
2283 | 0 | p1.x = x1 - r2, p1.y = y1 + r2; |
2284 | 0 | draw_quarter_annulus(pfs, &p0, r1, &p1, t0); |
2285 | 0 | p1.x = x1 + r2, p1.y = y1 - r1; |
2286 | 0 | draw_quarter_annulus(pfs, &p0, r1, &p1, t0); |
2287 | 0 | p1.x = x1 - r2, p1.y = y1 - r1; |
2288 | 0 | draw_quarter_annulus(pfs, &p0, r1, &p1, t0); |
2289 | 0 | } |
2290 | 0 | if (y0 == y1 && x0 > x1) { |
2291 | | /* tangent at right of circles */ |
2292 | 0 | p0.x = x1, p0.y = y1; |
2293 | 0 | p1.x = x1 - r2, p1.y = y1 - r2; |
2294 | 0 | draw_quarter_annulus(pfs, &p0, r1, &p1, t0); |
2295 | 0 | p1.x = x1 - r2, p1.y = y1 + r2; |
2296 | 0 | draw_quarter_annulus(pfs, &p0, r1, &p1, t0); |
2297 | 0 | p1.x = x1 + r1, p1.y = y1 + r2; |
2298 | 0 | draw_quarter_annulus(pfs, &p0, r1, &p1, t0); |
2299 | 0 | p1.x = x1 + r1, p1.y = y1 - r2; |
2300 | 0 | draw_quarter_annulus(pfs, &p0, r1, &p1, t0); |
2301 | 0 | } |
2302 | 0 | if (y0 == y1 && x0 < x1) { |
2303 | | /* tangent at left of circles */ |
2304 | 0 | p0.x = x1, p0.y = y1; |
2305 | 0 | p1.x = x1 + r2, p1.y = y1 - r2; |
2306 | 0 | draw_quarter_annulus(pfs, &p0, r1, &p1, t0); |
2307 | 0 | p1.x = x1 + r2, p1.y = y1 + r2; |
2308 | 0 | draw_quarter_annulus(pfs, &p0, r1, &p1, t0); |
2309 | 0 | p1.x = x1 - r1, p1.y = y1 + r2; |
2310 | 0 | draw_quarter_annulus(pfs, &p0, r1, &p1, t0); |
2311 | 0 | p1.x = x1 - r1, p1.y = y1 - r2; |
2312 | 0 | draw_quarter_annulus(pfs, &p0, r1, &p1, t0); |
2313 | 0 | } |
2314 | 0 | } |
2315 | 0 | else { |
2316 | 0 | double tx, ty, endx, endy, intersectx, intersecty, alpha, sinalpha, cosalpha, tanalpha; |
2317 | 0 | gs_point centre; |
2318 | | |
2319 | | /* First lets figure out which quadrant the smaller circle is in (we always |
2320 | | * get called to fill from the larger circle), x0, y0, r0 is the smaller circle. |
2321 | | */ |
2322 | 0 | if (x0 < x1) { |
2323 | 0 | if (y0 < y1) |
2324 | 0 | q = 2; |
2325 | 0 | else |
2326 | 0 | q = 1; |
2327 | 0 | } else { |
2328 | 0 | if (y0 < y1) |
2329 | 0 | q = 3; |
2330 | 0 | else |
2331 | 0 | q = 0; |
2332 | 0 | } |
2333 | 0 | switch(q) { |
2334 | 0 | case 0: |
2335 | | /* We have two four-sided elements, from the tangent point |
2336 | | * each side, to the point where the tangent crosses an |
2337 | | * axis of the larger circle. A line back to the edge |
2338 | | * of the larger circle, a line to the point where an axis |
2339 | | * crosses the smaller circle, then an arc back to the starting point. |
2340 | | */ |
2341 | | /* Figure out the tangent point */ |
2342 | | /* sin (angle) = y1 - y0 / r1 - r0 |
2343 | | * ty = ((y1 - y0) / (r1 - r0)) * r1 |
2344 | | */ |
2345 | 0 | ty = y1 + ((y0 - y1) / (r1 - r0)) * r1; |
2346 | 0 | tx = x1 + ((x0 - x1) / (r1 - r0)) * r1; |
2347 | | /* Now actually calculating the point where the tangent crosses the axis of the larger circle |
2348 | | * So we need to know the angle the tangent makes with the axis of the smaller circle |
2349 | | * as its the same angle where it crosses the axis of the larger circle. |
2350 | | * We know the centres and the tangent are co-linear, so sin(a) = y0 - y1 / r1 - r0 |
2351 | | * We know the tangent is r1 from the centre of the larger circle, so the hypotenuse |
2352 | | * is r0 / cos(a). That gives us 'x' and we already know y as its the centre of the larger |
2353 | | * circle |
2354 | | */ |
2355 | 0 | sinalpha = (y0 - y1) / (r1 - r0); |
2356 | 0 | alpha = asin(sinalpha); |
2357 | 0 | cosalpha = cos(alpha); |
2358 | 0 | intersectx = x1 + (r1 / cosalpha); |
2359 | 0 | intersecty = y1; |
2360 | |
|
2361 | 0 | p0.x = tx, p0.y = ty; |
2362 | 0 | p1.x = tx + (intersectx - tx) / 2, p1.y = ty - (ty - intersecty) / 2; |
2363 | 0 | patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0); |
2364 | 0 | p0.x = intersectx, p0.y = intersecty; |
2365 | 0 | patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0); |
2366 | 0 | p1.x = x1 + r1, p1.y = y1; |
2367 | 0 | patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0); |
2368 | 0 | p0.x = tx, p0.y = ty; |
2369 | 0 | centre.x = x1, centre.y = y1; |
2370 | 0 | patch_curveto(&pfs->pgs->ctm, ¢re, &p1, &p0, &curve[3], t0); |
2371 | 0 | code = patch_fill(pfs, curve, NULL, NULL); |
2372 | 0 | if (code < 0) |
2373 | 0 | return code; |
2374 | | |
2375 | 0 | if (intersectx < x1 + r2) { |
2376 | | /* didn't get all the way to the edge, quadrant 3 is composed of 2 quads :-( |
2377 | | * An 'annulus' where the right edge is less than the normal extent and a |
2378 | | * quad which is a rectangle with one corner chopped of at an angle. |
2379 | | */ |
2380 | 0 | p0.x = x1, p0.y = y1; |
2381 | 0 | p1.x = intersectx, p1.y = y1 - r2; |
2382 | 0 | draw_quarter_annulus(pfs, &p0, r1, &p1, t0); |
2383 | 0 | endx = x1 + r2; |
2384 | 0 | endy = y1 - (tan ((M_PI / 2) - alpha)) * (endx - intersectx); |
2385 | 0 | p0.x = intersectx, p0.y = y1; |
2386 | 0 | p1.x = x1 + r2, p1.y = endy; |
2387 | 0 | patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0); |
2388 | 0 | p0.x = x1 + r2, p0.y = y0 - r2; |
2389 | 0 | patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0); |
2390 | 0 | p1.x = intersectx, p1.y = p0.y; |
2391 | 0 | patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0); |
2392 | 0 | p0.x = intersectx, p0.y = y1; |
2393 | 0 | patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[3], t0); |
2394 | 0 | code = patch_fill(pfs, curve, NULL, NULL); |
2395 | 0 | if (code < 0) |
2396 | 0 | return code; |
2397 | |
|
2398 | 0 | } else { |
2399 | | /* Quadrant 3 is a normal quarter annulua */ |
2400 | 0 | p0.x = x1, p0.y = y1; |
2401 | 0 | p1.x = x1 + r2, p1.y = y1 - r2; |
2402 | 0 | draw_quarter_annulus(pfs, &p0, r1, &p1, t0); |
2403 | 0 | } |
2404 | | |
2405 | | /* Q2 is always a full annulus... */ |
2406 | 0 | p0.x = x1, p0.y = y1; |
2407 | 0 | p1.x = x1 - r2, p1.y = y1 - r2; |
2408 | 0 | draw_quarter_annulus(pfs, &p0, r1, &p1, t0); |
2409 | | |
2410 | | /* alpha is now the angle between the x axis and the tangent to the |
2411 | | * circles. |
2412 | | */ |
2413 | 0 | alpha = (M_PI / 2) - alpha; |
2414 | 0 | cosalpha = cos(alpha); |
2415 | 0 | endy = y1 + (r1 / cosalpha); |
2416 | 0 | endx = x1; |
2417 | |
|
2418 | 0 | p0.x = tx, p0.y = ty; |
2419 | 0 | p1.x = endx - ((endx - tx) / 2), p1.y = endy - ((endy - ty) / 2); |
2420 | 0 | patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0); |
2421 | 0 | p0.x = endx, p0.y = endy; |
2422 | 0 | patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0); |
2423 | 0 | p1.x = x1, p1.y = y1 + r1; |
2424 | 0 | patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0); |
2425 | 0 | p0.x = tx, p0.y = ty; |
2426 | 0 | centre.x = x1, centre.y = y1; |
2427 | 0 | patch_curveto(&pfs->pgs->ctm, ¢re, &p1, &p0, &curve[3], t0); |
2428 | 0 | code = patch_fill(pfs, curve, NULL, NULL); |
2429 | 0 | if (code < 0) |
2430 | 0 | return code; |
2431 | | |
2432 | | /* Q1 is simimlar to Q3, either a full quarter annulus |
2433 | | * or a partial one, depending on where the tangent crosses |
2434 | | * the y axis |
2435 | | */ |
2436 | 0 | tanalpha = tan(alpha); |
2437 | 0 | intersecty = y1 + tanalpha * (r2 + (intersectx - x1)); |
2438 | 0 | intersectx = x1 - r2; |
2439 | |
|
2440 | 0 | if (endy < y1 + r2) { |
2441 | | /* didn't get all the way to the edge, quadrant 1 is composed of 2 quads :-( |
2442 | | * An 'annulus' where the right edge is less than the normal extent and a |
2443 | | * quad which is a rectangle with one corner chopped of at an angle. |
2444 | | */ |
2445 | 0 | p0.x = x1, p0.y = y1; |
2446 | 0 | p1.x = x1 - r2, p1.y = endy; |
2447 | 0 | draw_quarter_annulus(pfs, &p0, r1, &p1, t0); |
2448 | 0 | p0.x = x1, p0.y = y1 + r1; |
2449 | 0 | p1.x = x1, p1.y = endy; |
2450 | 0 | patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0); |
2451 | 0 | p0.x = x1 - r2, p0.y = intersecty; |
2452 | 0 | patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0); |
2453 | 0 | p1.x = p0.x, p1.y = y1 + r1; |
2454 | 0 | patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0); |
2455 | 0 | p0.x = x1, p0.y = y1 + r1; |
2456 | 0 | patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[3], t0); |
2457 | 0 | code = patch_fill(pfs, curve, NULL, NULL); |
2458 | 0 | if (code < 0) |
2459 | 0 | return code; |
2460 | 0 | } else { |
2461 | | /* Quadrant 1 is a normal quarter annulua */ |
2462 | 0 | p0.x = x1, p0.y = y1; |
2463 | 0 | p1.x = x1 - r2, p1.y = y1 + r2; |
2464 | 0 | draw_quarter_annulus(pfs, &p0, r1, &p1, t0); |
2465 | 0 | } |
2466 | 0 | break; |
2467 | 0 | case 1: |
2468 | | /* We have two four-sided elements, from the tangent point |
2469 | | * each side, to the point where the tangent crosses an |
2470 | | * axis of the larger circle. A line back to the edge |
2471 | | * of the larger circle, a line to the point where an axis |
2472 | | * crosses the smaller circle, then an arc back to the starting point. |
2473 | | */ |
2474 | | /* Figure out the tangent point */ |
2475 | | /* sin (angle) = y1 - y0 / r1 - r0 |
2476 | | * ty = ((y1 - y0) / (r1 - r0)) * r1 |
2477 | | */ |
2478 | 0 | ty = y1 + ((y0 - y1) / (r1 - r0)) * r1; |
2479 | 0 | tx = x1 - ((x1 - x0) / (r1 - r0)) * r1; |
2480 | | /* Now actually calculating the point where the tangent crosses the axis of the larger circle |
2481 | | * So we need to know the angle the tangent makes with the axis of the smaller circle |
2482 | | * as its the same angle where it crosses the axis of the larger circle. |
2483 | | * We know the centres and the tangent are co-linear, so sin(a) = y0 - y1 / r1 - r0 |
2484 | | * We know the tangent is r1 from the centre of the larger circle, so the hypotenuse |
2485 | | * is r0 / cos(a). That gives us 'x' and we already know y as its the centre of the larger |
2486 | | * circle |
2487 | | */ |
2488 | 0 | sinalpha = (y0 - y1) / (r1 - r0); |
2489 | 0 | alpha = asin(sinalpha); |
2490 | 0 | cosalpha = cos(alpha); |
2491 | 0 | intersectx = x1 - (r1 / cosalpha); |
2492 | 0 | intersecty = y1; |
2493 | |
|
2494 | 0 | p0.x = tx, p0.y = ty; |
2495 | 0 | p1.x = tx - (tx - intersectx) / 2, p1.y = ty - (ty - intersecty) / 2; |
2496 | 0 | patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0); |
2497 | 0 | p0.x = intersectx, p0.y = intersecty; |
2498 | 0 | patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0); |
2499 | 0 | p1.x = x1 - r1, p1.y = y1; |
2500 | 0 | patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0); |
2501 | 0 | p0.x = tx, p0.y = ty; |
2502 | 0 | centre.x = x1, centre.y = y1; |
2503 | 0 | patch_curveto(&pfs->pgs->ctm, ¢re, &p1, &p0, &curve[3], t0); |
2504 | 0 | code = patch_fill(pfs, curve, NULL, NULL); |
2505 | 0 | if (code < 0) |
2506 | 0 | return code; |
2507 | | |
2508 | 0 | if (intersectx > x1 - r2) { |
2509 | | /* didn't get all the way to the edge, quadrant 2 is composed of 2 quads :-( |
2510 | | * An 'annulus' where the right edge is less than the normal extent and a |
2511 | | * quad which is a rectangle with one corner chopped of at an angle. |
2512 | | */ |
2513 | 0 | p0.x = x1, p0.y = y1; |
2514 | 0 | p1.x = intersectx, p1.y = y1 - r2; |
2515 | 0 | draw_quarter_annulus(pfs, &p0, r1, &p1, t0); |
2516 | 0 | endx = x1 - r2; |
2517 | 0 | endy = y1 - (tan ((M_PI / 2) - alpha)) * (intersectx - endx); |
2518 | 0 | p0.x = intersectx, p0.y = y1; |
2519 | 0 | p1.x = x1 - r2, p1.y = endy; |
2520 | 0 | patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0); |
2521 | 0 | p0.x = x1 - r2, p0.y = y0 - r2; |
2522 | 0 | patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0); |
2523 | 0 | p1.x = intersectx, p1.y = p0.y; |
2524 | 0 | patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0); |
2525 | 0 | p0.x = intersectx, p0.y = y1; |
2526 | 0 | patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[3], t0); |
2527 | 0 | code = patch_fill(pfs, curve, NULL, NULL); |
2528 | 0 | if (code < 0) |
2529 | 0 | return code; |
2530 | |
|
2531 | 0 | } else { |
2532 | | /* Quadrant 2 is a normal quarter annulua */ |
2533 | 0 | p0.x = x1, p0.y = y1; |
2534 | 0 | p1.x = x1 - r2, p1.y = y1 - r2; |
2535 | 0 | draw_quarter_annulus(pfs, &p0, r1, &p1, t0); |
2536 | 0 | } |
2537 | | |
2538 | | /* Q3 is always a full annulus... */ |
2539 | 0 | p0.x = x1, p0.y = y1; |
2540 | 0 | p1.x = x1 + r2, p1.y = y1 - r2; |
2541 | 0 | draw_quarter_annulus(pfs, &p0, r1, &p1, t0); |
2542 | | |
2543 | | /* alpha is now the angle between the x axis and the tangent to the |
2544 | | * circles. |
2545 | | */ |
2546 | 0 | alpha = (M_PI / 2) - alpha; |
2547 | 0 | cosalpha = cos(alpha); |
2548 | 0 | endy = y1 + (r1 / cosalpha); |
2549 | 0 | endx = x1; |
2550 | |
|
2551 | 0 | p0.x = tx, p0.y = ty; |
2552 | 0 | p1.x = endx + ((tx - endx) / 2), p1.y = endy - ((endy - ty) / 2); |
2553 | 0 | patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0); |
2554 | 0 | p0.x = endx, p0.y = endy; |
2555 | 0 | patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0); |
2556 | 0 | p1.x = x1, p1.y = y1 + r1; |
2557 | 0 | patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0); |
2558 | 0 | p0.x = tx, p0.y = ty; |
2559 | 0 | centre.x = x1, centre.y = y1; |
2560 | 0 | patch_curveto(&pfs->pgs->ctm, ¢re, &p1, &p0, &curve[3], t0); |
2561 | 0 | code = patch_fill(pfs, curve, NULL, NULL); |
2562 | 0 | if (code < 0) |
2563 | 0 | return code; |
2564 | | |
2565 | | /* Q0 is simimlar to Q2, either a full quarter annulus |
2566 | | * or a partial one, depending on where the tangent crosses |
2567 | | * the y axis |
2568 | | */ |
2569 | 0 | tanalpha = tan(alpha); |
2570 | 0 | intersecty = y1 + tanalpha * (r2 + (x1 - intersectx)); |
2571 | 0 | intersectx = x1 + r2; |
2572 | |
|
2573 | 0 | if (endy < y1 + r2) { |
2574 | | /* didn't get all the way to the edge, quadrant 0 is composed of 2 quads :-( |
2575 | | * An 'annulus' where the right edge is less than the normal extent and a |
2576 | | * quad which is a rectangle with one corner chopped of at an angle. |
2577 | | */ |
2578 | 0 | p0.x = x1, p0.y = y1; |
2579 | 0 | p1.x = x1 + r2, p1.y = endy; |
2580 | 0 | draw_quarter_annulus(pfs, &p0, r1, &p1, t0); |
2581 | 0 | p0.x = x1, p0.y = y1 + r1; |
2582 | 0 | p1.x = x1, p1.y = endy; |
2583 | 0 | patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0); |
2584 | 0 | p0.x = x1 + r2, p0.y = intersecty; |
2585 | 0 | patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0); |
2586 | 0 | p1.x = p0.x, p1.y = y1 + r1; |
2587 | 0 | patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0); |
2588 | 0 | p0.x = x1, p0.y = y1 + r1; |
2589 | 0 | patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[3], t0); |
2590 | 0 | code = patch_fill(pfs, curve, NULL, NULL); |
2591 | 0 | if (code < 0) |
2592 | 0 | return code; |
2593 | 0 | } else { |
2594 | | /* Quadrant 0 is a normal quarter annulua */ |
2595 | 0 | p0.x = x1, p0.y = y1; |
2596 | 0 | p1.x = x1 + r2, p1.y = y1 + r2; |
2597 | 0 | draw_quarter_annulus(pfs, &p0, r1, &p1, t0); |
2598 | 0 | } |
2599 | 0 | break; |
2600 | 0 | case 2: |
2601 | | /* We have two four-sided elements, from the tangent point |
2602 | | * each side, to the point where the tangent crosses an |
2603 | | * axis of the larger circle. A line back to the edge |
2604 | | * of the larger circle, a line to the point where an axis |
2605 | | * crosses the smaller circle, then an arc back to the starting point. |
2606 | | */ |
2607 | | /* Figure out the tangent point */ |
2608 | | /* sin (angle) = y1 - y0 / r1 - r0 |
2609 | | * ty = ((y1 - y0) / (r1 - r0)) * r1 |
2610 | | */ |
2611 | 0 | ty = y1 - ((y1 - y0) / (r1 - r0)) * r1; |
2612 | 0 | tx = x1 - ((x1 - x0) / (r1 - r0)) * r1; |
2613 | | /* Now actually calculating the point where the tangent crosses the axis of the larger circle |
2614 | | * So we need to know the angle the tangent makes with the axis of the smaller circle |
2615 | | * as its the same angle where it crosses the axis of the larger circle. |
2616 | | * We know the centres and the tangent are co-linear, so sin(a) = y0 - y1 / r1 - r0 |
2617 | | * We know the tangent is r1 from the centre of the larger circle, so the hypotenuse |
2618 | | * is r0 / cos(a). That gives us 'x' and we already know y as its the centre of the larger |
2619 | | * circle |
2620 | | */ |
2621 | 0 | sinalpha = (y1 - y0) / (r1 - r0); |
2622 | 0 | alpha = asin(sinalpha); |
2623 | 0 | cosalpha = cos(alpha); |
2624 | 0 | intersectx = x1 - (r1 / cosalpha); |
2625 | 0 | intersecty = y1; |
2626 | |
|
2627 | 0 | p0.x = tx, p0.y = ty; |
2628 | 0 | p1.x = tx + (intersectx - tx) / 2, p1.y = ty - (ty - intersecty) / 2; |
2629 | 0 | patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0); |
2630 | 0 | p0.x = intersectx, p0.y = intersecty; |
2631 | 0 | patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0); |
2632 | 0 | p1.x = x1 - r1, p1.y = y1; |
2633 | 0 | patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0); |
2634 | 0 | p0.x = tx, p0.y = ty; |
2635 | 0 | centre.x = x1, centre.y = y1; |
2636 | 0 | patch_curveto(&pfs->pgs->ctm, ¢re, &p1, &p0, &curve[3], t0); |
2637 | 0 | code = patch_fill(pfs, curve, NULL, NULL); |
2638 | 0 | if (code < 0) |
2639 | 0 | return code; |
2640 | 0 | if (intersectx > x1 - r2) { |
2641 | | /* didn't get all the way to the edge, quadrant 1 is composed of 2 quads :-( |
2642 | | * An 'annulus' where the right edge is less than the normal extent and a |
2643 | | * quad which is a rectangle with one corner chopped of at an angle. |
2644 | | */ |
2645 | 0 | p0.x = x1, p0.y = y1; |
2646 | 0 | p1.x = intersectx, p1.y = y1 + r2; |
2647 | 0 | draw_quarter_annulus(pfs, &p0, r1, &p1, t0); |
2648 | 0 | endy = y1+r2; |
2649 | 0 | endx = intersectx - ((endy - intersecty) / (tan ((M_PI / 2) - alpha))); |
2650 | 0 | p0.x = intersectx, p0.y = y1; |
2651 | 0 | p1.x = endx, p1.y = endy; |
2652 | 0 | patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0); |
2653 | 0 | p0.x = x1 - r1, p0.y = endy; |
2654 | 0 | patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0); |
2655 | 0 | p1.x = x1 - r1, p1.y = y1; |
2656 | 0 | patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0); |
2657 | 0 | p0.x = intersectx, p0.y = y1; |
2658 | 0 | patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[3], t0); |
2659 | 0 | code = patch_fill(pfs, curve, NULL, NULL); |
2660 | 0 | if (code < 0) |
2661 | 0 | return code; |
2662 | 0 | } else { |
2663 | | /* Quadrant 1 is a normal quarter annulua */ |
2664 | 0 | p0.x = x1, p0.y = y1; |
2665 | 0 | p1.x = x1 - r2, p1.y = y1 + r2; |
2666 | 0 | draw_quarter_annulus(pfs, &p0, r1, &p1, t0); |
2667 | 0 | } |
2668 | | |
2669 | | /* Q0 is always a full annulus... */ |
2670 | 0 | p0.x = x1, p0.y = y1; |
2671 | 0 | p1.x = x1 + r2, p1.y = y1 + r2; |
2672 | 0 | if (p1.y < 0) |
2673 | 0 | p1.y = 0; |
2674 | 0 | draw_quarter_annulus(pfs, &p0, r1, &p1, t0); |
2675 | | |
2676 | | /* alpha is now the angle between the x axis and the tangent to the |
2677 | | * circles. |
2678 | | */ |
2679 | 0 | alpha = (M_PI / 2) - alpha; |
2680 | 0 | cosalpha = cos(alpha); |
2681 | 0 | endy = y1 - (r1 / cosalpha); |
2682 | 0 | endx = x1; |
2683 | |
|
2684 | 0 | p0.x = tx, p0.y = ty; |
2685 | 0 | p1.x = endx + ((endx - tx) / 2), p1.y = endy - ((ty - endy) / 2); |
2686 | 0 | patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0); |
2687 | 0 | p0.x = endx, p0.y = endy; |
2688 | 0 | patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0); |
2689 | 0 | p1.x = x1, p1.y = y1 - r1; |
2690 | 0 | patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0); |
2691 | 0 | p0.x = tx, p0.y = ty; |
2692 | 0 | centre.x = x1, centre.y = y1; |
2693 | 0 | patch_curveto(&pfs->pgs->ctm, ¢re, &p1, &p0, &curve[3], t0); |
2694 | 0 | code = patch_fill(pfs, curve, NULL, NULL); |
2695 | 0 | if (code < 0) |
2696 | 0 | return code; |
2697 | | |
2698 | | /* Q3 is simimlar to Q1, either a full quarter annulus |
2699 | | * or a partial one, depending on where the tangent crosses |
2700 | | * the y axis |
2701 | | */ |
2702 | 0 | tanalpha = tan(alpha); |
2703 | 0 | intersecty = y1 - tanalpha * (r2 + (x1 - intersectx)); |
2704 | 0 | intersectx = x1 + r2; |
2705 | |
|
2706 | 0 | if (endy > y1 - r2) { |
2707 | | /* didn't get all the way to the edge, quadrant 3 is composed of 2 quads :-( |
2708 | | * An 'annulus' where the right edge is less than the normal extent and a |
2709 | | * quad which is a rectangle with one corner chopped of at an angle. |
2710 | | */ |
2711 | 0 | p0.x = x1, p0.y = y1; |
2712 | 0 | p1.x = x1 + r2, p1.y = endy; |
2713 | 0 | draw_quarter_annulus(pfs, &p0, r1, &p1, t0); |
2714 | 0 | p0.x = x1, p0.y = y1 - r1; |
2715 | 0 | p1.x = x1, p1.y = endy; |
2716 | 0 | patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0); |
2717 | 0 | p0.x = x1 + r2, p0.y = intersecty; |
2718 | 0 | patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0); |
2719 | 0 | p1.x = p0.x, p1.y = y1 - r1; |
2720 | 0 | patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0); |
2721 | 0 | p0.x = x1, p0.y = y1 - r1; |
2722 | 0 | patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[3], t0); |
2723 | 0 | code = patch_fill(pfs, curve, NULL, NULL); |
2724 | 0 | if (code < 0) |
2725 | 0 | return code; |
2726 | 0 | } else { |
2727 | | /* Quadrant 1 is a normal quarter annulua */ |
2728 | 0 | p0.x = x1, p0.y = y1; |
2729 | 0 | p1.x = x1 + r2, p1.y = y1 - r2; |
2730 | 0 | draw_quarter_annulus(pfs, &p0, r1, &p1, t0); |
2731 | 0 | } |
2732 | 0 | break; |
2733 | 0 | case 3: |
2734 | | /* We have two four-sided elements, from the tangent point |
2735 | | * each side, to the point where the tangent crosses an |
2736 | | * axis of the larger circle. A line back to the edge |
2737 | | * of the larger circle, a line to the point where an axis |
2738 | | * crosses the smaller circle, then an arc back to the starting point. |
2739 | | */ |
2740 | | /* Figure out the tangent point */ |
2741 | | /* sin (angle) = y1 - y0 / r1 - r0 |
2742 | | * ty = ((y1 - y0) / (r1 - r0)) * r1 |
2743 | | */ |
2744 | 0 | ty = y1 - ((y1 - y0) / (r1 - r0)) * r1; |
2745 | 0 | tx = x1 + ((x0 - x1) / (r1 - r0)) * r1; |
2746 | | /* Now actually calculating the point where the tangent crosses the axis of the larger circle |
2747 | | * So we need to know the angle the tangent makes with the axis of the smaller circle |
2748 | | * as its the same angle where it crosses the axis of the larger circle. |
2749 | | * We know the centres and the tangent are co-linear, so sin(a) = y0 - y1 / r1 - r0 |
2750 | | * We know the tangent is r1 from the centre of the larger circle, so the hypotenuse |
2751 | | * is r0 / cos(a). That gives us 'x' and we already know y as its the centre of the larger |
2752 | | * circle |
2753 | | */ |
2754 | 0 | sinalpha = (y1 - y0) / (r1 - r0); |
2755 | 0 | alpha = asin(sinalpha); |
2756 | 0 | cosalpha = cos(alpha); |
2757 | 0 | intersectx = x1 + (r1 / cosalpha); |
2758 | 0 | intersecty = y1; |
2759 | |
|
2760 | 0 | p0.x = tx, p0.y = ty; |
2761 | 0 | p1.x = tx + (intersectx - tx) / 2, p1.y = ty + (intersecty - ty) / 2; |
2762 | 0 | patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0); |
2763 | 0 | p0.x = intersectx, p0.y = intersecty; |
2764 | 0 | patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0); |
2765 | 0 | p1.x = x1 + r1, p1.y = y1; |
2766 | 0 | patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0); |
2767 | 0 | p0.x = tx, p0.y = ty; |
2768 | 0 | centre.x = x1, centre.y = y1; |
2769 | 0 | patch_curveto(&pfs->pgs->ctm, ¢re, &p1, &p0, &curve[3], t0); |
2770 | 0 | code = patch_fill(pfs, curve, NULL, NULL); |
2771 | 0 | if (code < 0) |
2772 | 0 | return code; |
2773 | 0 | if (intersectx < x1 + r2) { |
2774 | | /* didn't get all the way to the edge, quadrant 0 is composed of 2 quads :-( |
2775 | | * An 'annulus' where the right edge is less than the normal extent and a |
2776 | | * quad which is a rectangle with one corner chopped of at an angle. |
2777 | | */ |
2778 | 0 | p0.x = x1, p0.y = y1; |
2779 | 0 | p1.x = intersectx, p1.y = y1 + r2; |
2780 | 0 | draw_quarter_annulus(pfs, &p0, r1, &p1, t0); |
2781 | 0 | endy = y1 + r2; |
2782 | 0 | endx = intersectx + ((endy - intersecty) / (tan ((M_PI / 2) - alpha))); |
2783 | 0 | p0.x = intersectx, p0.y = y1; |
2784 | 0 | p1.x = endx, p1.y = endy; |
2785 | 0 | patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0); |
2786 | 0 | p0.x = x1 + r1, p0.y = endy; |
2787 | 0 | patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0); |
2788 | 0 | p1.x = x1 + r1, p1.y = y1; |
2789 | 0 | patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0); |
2790 | 0 | p0.x = intersectx, p0.y = y1; |
2791 | 0 | patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[3], t0); |
2792 | 0 | code = patch_fill(pfs, curve, NULL, NULL); |
2793 | 0 | if (code < 0) |
2794 | 0 | return code; |
2795 | |
|
2796 | 0 | } else { |
2797 | | /* Quadrant 0 is a normal quarter annulua */ |
2798 | 0 | p0.x = x1, p0.y = y1; |
2799 | 0 | p1.x = x1 + r2, p1.y = y1 + r2; |
2800 | 0 | draw_quarter_annulus(pfs, &p0, r1, &p1, t0); |
2801 | 0 | } |
2802 | | /* Q1 is always a full annulus... */ |
2803 | 0 | p0.x = x1, p0.y = y1; |
2804 | 0 | p1.x = x1 - r2, p1.y = y1 + r2; |
2805 | 0 | draw_quarter_annulus(pfs, &p0, r1, &p1, t0); |
2806 | | |
2807 | | /* alpha is now the angle between the x axis and the tangent to the |
2808 | | * circles. |
2809 | | */ |
2810 | 0 | alpha = (M_PI / 2) - alpha; |
2811 | 0 | cosalpha = cos(alpha); |
2812 | 0 | endy = y1 - (r1 / cosalpha); |
2813 | 0 | endx = x1; |
2814 | |
|
2815 | 0 | p0.x = tx, p0.y = ty; |
2816 | 0 | p1.x = endx + ((tx - endx) / 2), p1.y = endy + ((ty - endy) / 2); |
2817 | 0 | patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0); |
2818 | 0 | p0.x = endx, p0.y = endy; |
2819 | 0 | patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0); |
2820 | 0 | p1.x = x1, p1.y = y1 - r1; |
2821 | 0 | patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0); |
2822 | 0 | p0.x = tx, p0.y = ty; |
2823 | 0 | centre.x = x1, centre.y = y1; |
2824 | 0 | patch_curveto(&pfs->pgs->ctm, ¢re, &p1, &p0, &curve[3], t0); |
2825 | 0 | code = patch_fill(pfs, curve, NULL, NULL); |
2826 | 0 | if (code < 0) |
2827 | 0 | return code; |
2828 | | |
2829 | | /* Q3 is simimlar to Q1, either a full quarter annulus |
2830 | | * or a partial one, depending on where the tangent crosses |
2831 | | * the y axis |
2832 | | */ |
2833 | 0 | tanalpha = tan(alpha); |
2834 | 0 | intersecty = y1 - tanalpha * (r2 + (intersectx - x1)); |
2835 | 0 | intersectx = x1 - r2; |
2836 | |
|
2837 | 0 | if (endy > y1 - r2) { |
2838 | | /* didn't get all the way to the edge, quadrant 3 is composed of 2 quads :-( |
2839 | | * An 'annulus' where the right edge is less than the normal extent and a |
2840 | | * quad which is a rectangle with one corner chopped of at an angle. |
2841 | | */ |
2842 | 0 | p0.x = x1, p0.y = y1; |
2843 | 0 | p1.x = x1 - r2, p1.y = endy; |
2844 | 0 | draw_quarter_annulus(pfs, &p0, r1, &p1, t0); |
2845 | 0 | p0.x = x1, p0.y = y1 - r1; |
2846 | 0 | p1.x = x1, p1.y = endy; |
2847 | 0 | patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0); |
2848 | 0 | p0.x = x1 - r2, p0.y = intersecty; |
2849 | 0 | patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0); |
2850 | 0 | p1.x = p0.x, p1.y = y1 - r1; |
2851 | 0 | patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0); |
2852 | 0 | p0.x = x1, p0.y = y1 - r1; |
2853 | 0 | patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[3], t0); |
2854 | 0 | code = patch_fill(pfs, curve, NULL, NULL); |
2855 | 0 | if (code < 0) |
2856 | 0 | return code; |
2857 | 0 | } else { |
2858 | | /* Quadrant 1 is a normal quarter annulua */ |
2859 | 0 | p0.x = x1, p0.y = y1; |
2860 | 0 | p1.x = x1 - r2, p1.y = y1 - r2; |
2861 | 0 | draw_quarter_annulus(pfs, &p0, r1, &p1, t0); |
2862 | 0 | } |
2863 | 0 | break; |
2864 | 0 | } |
2865 | 0 | } |
2866 | 0 | return 0; |
2867 | 0 | } |
2868 | | |
2869 | | static int |
2870 | | R_outer_circle(patch_fill_state_t *pfs, const gs_rect *rect, |
2871 | | double x0, double y0, double r0, |
2872 | | double x1, double y1, double r1, |
2873 | | double *x2, double *y2, double *r2) |
2874 | 0 | { |
2875 | 0 | double dx = x1 - x0, dy = y1 - y0; |
2876 | 0 | double sp, sq, s; |
2877 | | |
2878 | | /* Compute a cone circle, which contacts the rect externally. */ |
2879 | | /* Don't bother with all 4 sides of the rect, |
2880 | | just do with the X or Y span only, |
2881 | | so it's not an exact contact, sorry. */ |
2882 | 0 | if (any_abs(dx) > any_abs(dy)) { |
2883 | | /* Solving : |
2884 | | x0 + (x1 - x0) * sq + r0 + (r1 - r0) * sq == bbox_px |
2885 | | (x1 - x0) * sp + (r1 - r0) * sp == bbox_px - x0 - r0 |
2886 | | sp = (bbox_px - x0 - r0) / (x1 - x0 + r1 - r0) |
2887 | | |
2888 | | x0 + (x1 - x0) * sq - r0 - (r1 - r0) * sq == bbox_qx |
2889 | | (x1 - x0) * sq - (r1 - r0) * sq == bbox_x - x0 + r0 |
2890 | | sq = (bbox_x - x0 + r0) / (x1 - x0 - r1 + r0) |
2891 | | */ |
2892 | 0 | if (x1 - x0 + r1 - r0 == 0) /* We checked for obtuse cone. */ |
2893 | 0 | return_error(gs_error_unregistered); /* Must not happen. */ |
2894 | 0 | if (x1 - x0 - r1 + r0 == 0) /* We checked for obtuse cone. */ |
2895 | 0 | return_error(gs_error_unregistered); /* Must not happen. */ |
2896 | 0 | sp = (rect->p.x - x0 - r0) / (x1 - x0 + r1 - r0); |
2897 | 0 | sq = (rect->q.x - x0 + r0) / (x1 - x0 - r1 + r0); |
2898 | 0 | } else { |
2899 | | /* Same by Y. */ |
2900 | 0 | if (y1 - y0 + r1 - r0 == 0) /* We checked for obtuse cone. */ |
2901 | 0 | return_error(gs_error_unregistered); /* Must not happen. */ |
2902 | 0 | if (y1 - y0 - r1 + r0 == 0) /* We checked for obtuse cone. */ |
2903 | 0 | return_error(gs_error_unregistered); /* Must not happen. */ |
2904 | 0 | sp = (rect->p.y - y0 - r0) / (y1 - y0 + r1 - r0); |
2905 | 0 | sq = (rect->q.y - y0 + r0) / (y1 - y0 - r1 + r0); |
2906 | 0 | } |
2907 | 0 | if (sp >= 1 && sq >= 1) |
2908 | 0 | s = max(sp, sq); |
2909 | 0 | else if(sp >= 1) |
2910 | 0 | s = sp; |
2911 | 0 | else if (sq >= 1) |
2912 | 0 | s = sq; |
2913 | 0 | else { |
2914 | | /* The circle 1 is outside the rect, use it. */ |
2915 | 0 | s = 1; |
2916 | 0 | } |
2917 | 0 | if (r0 + (r1 - r0) * s < 0) { |
2918 | | /* Passed the cone apex, use the apex. */ |
2919 | 0 | s = r0 / (r0 - r1); |
2920 | 0 | *r2 = 0; |
2921 | 0 | } else |
2922 | 0 | *r2 = r0 + (r1 - r0) * s; |
2923 | 0 | *x2 = x0 + (x1 - x0) * s; |
2924 | 0 | *y2 = y0 + (y1 - y0) * s; |
2925 | 0 | return 0; |
2926 | 0 | } |
2927 | | |
2928 | | static double |
2929 | | R_rect_radius(const gs_rect *rect, double x0, double y0) |
2930 | 146 | { |
2931 | 146 | double d, dd; |
2932 | | |
2933 | 146 | dd = hypot(rect->p.x - x0, rect->p.y - y0); |
2934 | 146 | d = hypot(rect->p.x - x0, rect->q.y - y0); |
2935 | 146 | dd = max(dd, d); |
2936 | 146 | d = hypot(rect->q.x - x0, rect->q.y - y0); |
2937 | 146 | dd = max(dd, d); |
2938 | 146 | d = hypot(rect->q.x - x0, rect->p.y - y0); |
2939 | 146 | dd = max(dd, d); |
2940 | 146 | return dd; |
2941 | 146 | } |
2942 | | |
2943 | | static int |
2944 | | R_fill_triangle_new(patch_fill_state_t *pfs, const gs_rect *rect, |
2945 | | double x0, double y0, double x1, double y1, double x2, double y2, double t) |
2946 | 0 | { |
2947 | 0 | shading_vertex_t p0, p1, p2; |
2948 | 0 | patch_color_t *c; |
2949 | 0 | int code; |
2950 | 0 | reserve_colors(pfs, &c, 1); /* Can't fail */ |
2951 | |
|
2952 | 0 | p0.c = c; |
2953 | 0 | p1.c = c; |
2954 | 0 | p2.c = c; |
2955 | 0 | code = gs_point_transform2fixed(&pfs->pgs->ctm, x0, y0, &p0.p); |
2956 | 0 | if (code >= 0) |
2957 | 0 | code = gs_point_transform2fixed(&pfs->pgs->ctm, x1, y1, &p1.p); |
2958 | 0 | if (code >= 0) |
2959 | 0 | code = gs_point_transform2fixed(&pfs->pgs->ctm, x2, y2, &p2.p); |
2960 | 0 | if (code >= 0) { |
2961 | 0 | c->t[0] = c->t[1] = t; |
2962 | 0 | patch_resolve_color(c, pfs); |
2963 | 0 | code = mesh_triangle(pfs, &p0, &p1, &p2); |
2964 | 0 | } |
2965 | 0 | release_colors(pfs, pfs->color_stack, 1); |
2966 | 0 | return code; |
2967 | 0 | } |
2968 | | |
2969 | | static int |
2970 | | R_obtuse_cone(patch_fill_state_t *pfs, const gs_rect *rect, |
2971 | | double x0, double y0, double r0, |
2972 | | double x1, double y1, double r1, double t0, double r_rect) |
2973 | 0 | { |
2974 | 0 | double dx = x1 - x0, dy = y1 - y0, dr = any_abs(r1 - r0); |
2975 | 0 | double d = hypot(dx, dy); |
2976 | | /* Assuming dr > d / 3 && d > dr + 1e-7 * (d + dr), see the caller. */ |
2977 | 0 | double r = r_rect * 1.4143; /* A few bigger than sqrt(2). */ |
2978 | 0 | double ax, ay, as; /* Cone apex. */ |
2979 | 0 | double g0; /* The distance from apex to the tangent point of the 0th circle. */ |
2980 | 0 | int code; |
2981 | |
|
2982 | 0 | as = r0 / (r0 - r1); |
2983 | 0 | ax = x0 + (x1 - x0) * as; |
2984 | 0 | ay = y0 + (y1 - y0) * as; |
2985 | 0 | g0 = sqrt(dx * dx + dy * dy - dr * dr) * as; |
2986 | 0 | if (g0 < 1e-7 * r0) { |
2987 | | /* Nearly degenerate, replace with half-plane. */ |
2988 | | /* Restrict the half plane with triangle, which covers the rect. */ |
2989 | 0 | gs_point p0, p1, p2; /* Right tangent limit, apex limit, left tangent linit, |
2990 | | (right, left == when looking from the apex). */ |
2991 | |
|
2992 | 0 | p0.x = ax - dy * r / d; |
2993 | 0 | p0.y = ay + dx * r / d; |
2994 | 0 | p1.x = ax - dx * r / d; |
2995 | 0 | p1.y = ay - dy * r / d; |
2996 | 0 | p2.x = ax + dy * r / d; |
2997 | 0 | p2.y = ay - dx * r / d; |
2998 | | /* Split into 2 triangles at the apex, |
2999 | | so that the apex is preciselly covered. |
3000 | | Especially important when it is not exactly degenerate. */ |
3001 | 0 | code = R_fill_triangle_new(pfs, rect, ax, ay, p0.x, p0.y, p1.x, p1.y, t0); |
3002 | 0 | if (code < 0) |
3003 | 0 | return code; |
3004 | 0 | return R_fill_triangle_new(pfs, rect, ax, ay, p1.x, p1.y, p2.x, p2.y, t0); |
3005 | 0 | } else { |
3006 | | /* Compute the "limit" circle so that its |
3007 | | tangent points are outside the rect. */ |
3008 | | /* Note: this branch is executed when the condition above is false : |
3009 | | g0 >= 1e-7 * r0 . |
3010 | | We believe that computing this branch with doubles |
3011 | | provides enough precision after converting coordinates into 'fixed', |
3012 | | and that the limit circle radius is not dramatically big. |
3013 | | */ |
3014 | 0 | double es, er; /* The limit circle parameter, radius. */ |
3015 | 0 | double ex, ey; /* The limit circle centrum. */ |
3016 | |
|
3017 | 0 | es = as - as * r / g0; /* Always negative. */ |
3018 | 0 | er = r * r0 / g0 ; |
3019 | 0 | ex = x0 + dx * es; |
3020 | 0 | ey = y0 + dy * es; |
3021 | | /* Fill the annulus: */ |
3022 | 0 | code = R_tensor_annulus(pfs, x0, y0, r0, t0, ex, ey, er, t0); |
3023 | 0 | if (code < 0) |
3024 | 0 | return code; |
3025 | | /* Fill entire ending circle to ensure entire rect is covered. */ |
3026 | 0 | return R_tensor_annulus(pfs, ex, ey, er, t0, ex, ey, 0, t0); |
3027 | 0 | } |
3028 | 0 | } |
3029 | | |
3030 | | static int |
3031 | | R_tensor_cone_apex(patch_fill_state_t *pfs, const gs_rect *rect, |
3032 | | double x0, double y0, double r0, |
3033 | | double x1, double y1, double r1, double t) |
3034 | 0 | { |
3035 | 0 | double as = r0 / (r0 - r1); |
3036 | 0 | double ax = x0 + (x1 - x0) * as; |
3037 | 0 | double ay = y0 + (y1 - y0) * as; |
3038 | |
|
3039 | 0 | return R_tensor_annulus(pfs, x1, y1, r1, t, ax, ay, 0, t); |
3040 | 0 | } |
3041 | | |
3042 | | /* |
3043 | | * A map of this code: |
3044 | | * |
3045 | | * R_extensions |
3046 | | * |-> (R_rect_radius) |
3047 | | * |-> (R_outer_circle) |
3048 | | * |-> R_obtuse_cone |
3049 | | * | |-> R_fill_triangle_new |
3050 | | * | | '-> mesh_triangle |
3051 | | * | | '-> mesh_triangle_rec <--. |
3052 | | * | | |--------------------' |
3053 | | * | | |-> small_mesh_triangle |
3054 | | * | | | '-> fill_triangle |
3055 | | * | | | '-> triangle_by_4 <--. |
3056 | | * | | | |----------------' |
3057 | | * | | | |-> constant_color_triangle |
3058 | | * | | | |-> make_wedge_median (etc) |
3059 | | * | | '-----------+--------------------. |
3060 | | * | '-------------------. | |
3061 | | * |-> R_tensor_cone_apex | | |
3062 | | * | '-------------------+ | |
3063 | | * '-> R_tensor_annulus <--' \|/ |
3064 | | * |-> (make_quadrant_arc) | |
3065 | | * '-> patch_fill | |
3066 | | * |-> fill_patch <--. | |
3067 | | * | |-------------' | |
3068 | | * | |------------------------------------+ |
3069 | | * | '-> fill_stripe | |
3070 | | * | |-----------------------. | |
3071 | | * | \|/ | | |
3072 | | * |-> fill_wedges | | |
3073 | | * '-> fill_wedges_aux <--. | | |
3074 | | * |------------------' \|/ | |
3075 | | * |----------------> mesh_padding ' |
3076 | | * | '----------------------------------. |
3077 | | * '-> wedge_by_triangles <--. . | |
3078 | | * |---------------------' | | |
3079 | | * '-> fill_triangle_wedge <----' | |
3080 | | * '-> fill_triangle_wedge_aux | |
3081 | | * '-> fill_wedge_trap | |
3082 | | * '-> wedge_trap_decompose | |
3083 | | * '-> linear_color_trapezoid | |
3084 | | * '-> decompose_linear_color <--| |
3085 | | * |-------------------------' |
3086 | | * '-> constant_color_trapezoid |
3087 | | */ |
3088 | | static int |
3089 | | R_extensions(patch_fill_state_t *pfs, const gs_shading_R_t *psh, const gs_rect *rect, |
3090 | | double t0, double t1, bool Extend0, bool Extend1) |
3091 | 296 | { |
3092 | 296 | float x0 = psh->params.Coords[0], y0 = psh->params.Coords[1]; |
3093 | 296 | double r0 = psh->params.Coords[2]; |
3094 | 296 | float x1 = psh->params.Coords[3], y1 = psh->params.Coords[4]; |
3095 | 296 | double r1 = psh->params.Coords[5]; |
3096 | 296 | double dx = x1 - x0, dy = y1 - y0, dr = any_abs(r1 - r0); |
3097 | 296 | double d = hypot(dx, dy), r; |
3098 | 296 | int code; |
3099 | | |
3100 | | /* In order for the circles to be nested, one end circle |
3101 | | * needs to be sufficiently large to cover the entirety |
3102 | | * of the other end circle. i.e. |
3103 | | * |
3104 | | * max(r0,r1) >= d + min(r0,r1) |
3105 | | * === min(r0,r1) + dr >= d + min(r0,r1) |
3106 | | * === dr >= d |
3107 | | * |
3108 | | * This, plus a fudge factor for FP operation is what we use below. |
3109 | | * |
3110 | | * An "Obtuse Cone" is defined to be one for which the "opening |
3111 | | * angle" is obtuse. |
3112 | | * |
3113 | | * Consider two circles; one at (r0,r0) of radius r0, and one at |
3114 | | * (r1,r1) of radius r1. These clearly lie on the acute/obtuse |
3115 | | * boundary. The distance between the centres of these two circles |
3116 | | * is d = sqr(2.(r0-r1)^2) by pythagoras. Thus d = sqr(2).dr. |
3117 | | * By observation if d gets longer, we become acute, shorter, obtuse. |
3118 | | * i.e. if sqr(2).dr > d we are obtuse, if d > sqr(2).dr we are acute. |
3119 | | * (Thanks to Paul Gardiner for this reasoning). |
3120 | | * |
3121 | | * The code below tests (dr > d/3) (i.e. 3.dr > d). This |
3122 | | * appears to be a factor of 2 and a bit out, so I am confused |
3123 | | * by it. |
3124 | | * |
3125 | | * Either Igor meant something different to the standard meaning |
3126 | | * of "Obtuse Cone", or he got his maths wrong. Or he was more |
3127 | | * cunning than I can understand. Leave it as it until we find |
3128 | | * an actual example that goes wrong. |
3129 | | */ |
3130 | | |
3131 | | /* Tests with Acrobat seem to indicate that it uses a fudge factor |
3132 | | * of around .0001. (i.e. [1.0001 0 0 0 0 1] is accepted as a |
3133 | | * non nested circle, but [1.00009 0 0 0 0 1] is a nested one. |
3134 | | * Approximate the same sort of value here to appease bug 690831. |
3135 | | */ |
3136 | 296 | if (any_abs (dr - d) < 0.001) { |
3137 | 0 | if ((r0 > r1 && Extend0) || (r1 > r0 && Extend1)) { |
3138 | 0 | r = R_rect_radius(rect, x0, y0); |
3139 | 0 | if (r0 < r1) |
3140 | 0 | code = R_tensor_annulus_extend_tangent(pfs, x0, y0, r0, t1, x1, y1, r1, t1, r); |
3141 | 0 | else |
3142 | 0 | code = R_tensor_annulus_extend_tangent(pfs, x1, y1, r1, t0, x0, y0, r0, t0, r); |
3143 | 0 | if (code < 0) |
3144 | 0 | return code; |
3145 | 0 | } else { |
3146 | 0 | if (r0 > r1) { |
3147 | 0 | if (Extend1 && r1 > 0) |
3148 | 0 | return R_tensor_annulus(pfs, x1, y1, r1, t1, x1, y1, 0, t1); |
3149 | 0 | } |
3150 | 0 | else { |
3151 | 0 | if (Extend0 && r0 > 0) |
3152 | 0 | return R_tensor_annulus(pfs, x0, y0, r0, t0, x0, y0, 0, t0); |
3153 | 0 | } |
3154 | 0 | } |
3155 | 0 | } else |
3156 | 296 | if (dr > d - 1e-4 * (d + dr)) { |
3157 | | /* Nested circles, or degenerate. */ |
3158 | 296 | if (r0 > r1) { |
3159 | 5 | if (Extend0) { |
3160 | 0 | r = R_rect_radius(rect, x0, y0); |
3161 | 0 | if (r > r0) { |
3162 | 0 | code = R_tensor_annulus(pfs, x0, y0, r, t0, x0, y0, r0, t0); |
3163 | 0 | if (code < 0) |
3164 | 0 | return code; |
3165 | 0 | } |
3166 | 0 | } |
3167 | 5 | if (Extend1 && r1 > 0) |
3168 | 5 | return R_tensor_annulus(pfs, x1, y1, r1, t1, x1, y1, 0, t1); |
3169 | 291 | } else { |
3170 | 291 | if (Extend1) { |
3171 | 146 | r = R_rect_radius(rect, x1, y1); |
3172 | 146 | if (r > r1) { |
3173 | 146 | code = R_tensor_annulus(pfs, x1, y1, r, t1, x1, y1, r1, t1); |
3174 | 146 | if (code < 0) |
3175 | 0 | return code; |
3176 | 146 | } |
3177 | 146 | } |
3178 | 291 | if (Extend0 && r0 > 0) |
3179 | 0 | return R_tensor_annulus(pfs, x0, y0, r0, t0, x0, y0, 0, t0); |
3180 | 291 | } |
3181 | 296 | } else if (dr > d / 3) { |
3182 | | /* Obtuse cone. */ |
3183 | 0 | if (r0 > r1) { |
3184 | 0 | if (Extend0) { |
3185 | 0 | r = R_rect_radius(rect, x0, y0); |
3186 | 0 | code = R_obtuse_cone(pfs, rect, x0, y0, r0, x1, y1, r1, t0, r); |
3187 | 0 | if (code < 0) |
3188 | 0 | return code; |
3189 | 0 | } |
3190 | 0 | if (Extend1 && r1 != 0) |
3191 | 0 | return R_tensor_cone_apex(pfs, rect, x0, y0, r0, x1, y1, r1, t1); |
3192 | 0 | return 0; |
3193 | 0 | } else { |
3194 | 0 | if (Extend1) { |
3195 | 0 | r = R_rect_radius(rect, x1, y1); |
3196 | 0 | code = R_obtuse_cone(pfs, rect, x1, y1, r1, x0, y0, r0, t1, r); |
3197 | 0 | if (code < 0) |
3198 | 0 | return code; |
3199 | 0 | } |
3200 | 0 | if (Extend0 && r0 != 0) |
3201 | 0 | return R_tensor_cone_apex(pfs, rect, x1, y1, r1, x0, y0, r0, t0); |
3202 | 0 | } |
3203 | 0 | } else { |
3204 | | /* Acute cone or cylinder. */ |
3205 | 0 | double x2, y2, r2, x3, y3, r3; |
3206 | |
|
3207 | 0 | if (Extend0) { |
3208 | 0 | code = R_outer_circle(pfs, rect, x1, y1, r1, x0, y0, r0, &x3, &y3, &r3); |
3209 | 0 | if (code < 0) |
3210 | 0 | return code; |
3211 | 0 | if (x3 != x1 || y3 != y1) { |
3212 | 0 | code = R_tensor_annulus(pfs, x0, y0, r0, t0, x3, y3, r3, t0); |
3213 | 0 | if (code < 0) |
3214 | 0 | return code; |
3215 | 0 | } |
3216 | 0 | } |
3217 | 0 | if (Extend1) { |
3218 | 0 | code = R_outer_circle(pfs, rect, x0, y0, r0, x1, y1, r1, &x2, &y2, &r2); |
3219 | 0 | if (code < 0) |
3220 | 0 | return code; |
3221 | 0 | if (x2 != x0 || y2 != y0) { |
3222 | 0 | code = R_tensor_annulus(pfs, x1, y1, r1, t1, x2, y2, r2, t1); |
3223 | 0 | if (code < 0) |
3224 | 0 | return code; |
3225 | 0 | } |
3226 | 0 | } |
3227 | 0 | } |
3228 | 291 | return 0; |
3229 | 296 | } |
3230 | | |
3231 | | static int |
3232 | | R_fill_rect_with_const_color(patch_fill_state_t *pfs, const gs_fixed_rect *clip_rect, float t) |
3233 | 1 | { |
3234 | | #if 0 /* Disabled because the clist writer device doesn't pass |
3235 | | the clipping path with fill_recatangle. */ |
3236 | | patch_color_t pc; |
3237 | | const gs_color_space *pcs = pfs->direct_space; |
3238 | | gx_device_color dc; |
3239 | | int code; |
3240 | | |
3241 | | code = gs_function_evaluate(pfs->Function, &t, pc.cc.paint.values); |
3242 | | if (code < 0) |
3243 | | return code; |
3244 | | pcs->type->restrict_color(&pc.cc, pcs); |
3245 | | code = patch_color_to_device_color(pfs, &pc, &dc); |
3246 | | if (code < 0) |
3247 | | return code; |
3248 | | return gx_fill_rectangle_device_rop(fixed2int_pixround(clip_rect->p.x), fixed2int_pixround(clip_rect->p.y), |
3249 | | fixed2int_pixround(clip_rect->q.x) - fixed2int_pixround(clip_rect->p.x), |
3250 | | fixed2int_pixround(clip_rect->q.y) - fixed2int_pixround(clip_rect->p.y), |
3251 | | &dc, pfs->dev, pfs->pgs->log_op); |
3252 | | #else |
3253 | | /* Can't apply fill_rectangle, because the clist writer device doesn't pass |
3254 | | the clipping path with fill_recatangle. Convert into trapezoids instead. |
3255 | | */ |
3256 | 1 | quadrangle_patch p; |
3257 | 1 | shading_vertex_t pp[2][2]; |
3258 | 1 | const gs_color_space *pcs = pfs->direct_space; |
3259 | 1 | patch_color_t pc; |
3260 | 1 | int code; |
3261 | | |
3262 | 1 | code = gs_function_evaluate(pfs->Function, &t, pc.cc.paint.values); |
3263 | 1 | if (code < 0) |
3264 | 0 | return code; |
3265 | 1 | pcs->type->restrict_color(&pc.cc, pcs); |
3266 | 1 | pc.t[0] = pc.t[1] = t; |
3267 | 1 | pp[0][0].p = clip_rect->p; |
3268 | 1 | pp[0][1].p.x = clip_rect->q.x; |
3269 | 1 | pp[0][1].p.y = clip_rect->p.y; |
3270 | 1 | pp[1][0].p.x = clip_rect->p.x; |
3271 | 1 | pp[1][0].p.y = clip_rect->q.y; |
3272 | 1 | pp[1][1].p = clip_rect->q; |
3273 | 1 | pp[0][0].c = pp[0][1].c = pp[1][0].c = pp[1][1].c = &pc; |
3274 | 1 | p.p[0][0] = &pp[0][0]; |
3275 | 1 | p.p[0][1] = &pp[0][1]; |
3276 | 1 | p.p[1][0] = &pp[1][0]; |
3277 | 1 | p.p[1][1] = &pp[1][1]; |
3278 | 1 | return constant_color_quadrangle(pfs, &p, false); |
3279 | 1 | #endif |
3280 | 1 | } |
3281 | | |
3282 | | typedef struct radial_shading_attrs_s { |
3283 | | double x0, y0; |
3284 | | double x1, y1; |
3285 | | double span[2][2]; |
3286 | | double apex; |
3287 | | bool have_apex; |
3288 | | bool have_root[2]; /* ongoing contact, outgoing contact. */ |
3289 | | bool outer_contact[2]; |
3290 | | gs_point p[6]; /* 4 corners of the rectangle, p[4] = p[0], p[5] = p[1] */ |
3291 | | } radial_shading_attrs_t; |
3292 | | |
3293 | 5.04k | #define Pw2(a) ((a)*(a)) |
3294 | | |
3295 | | static void |
3296 | | radial_shading_external_contact(radial_shading_attrs_t *rsa, int point_index, double t, double r0, double r1, bool at_corner, int root_index) |
3297 | 738 | { |
3298 | 738 | double cx = rsa->x0 + (rsa->x1 - rsa->x0) * t; |
3299 | 738 | double cy = rsa->y0 + (rsa->y1 - rsa->y0) * t; |
3300 | 738 | double rx = rsa->p[point_index].x - cx; |
3301 | 738 | double ry = rsa->p[point_index].y - cy; |
3302 | 738 | double dx = rsa->p[point_index - 1].x - rsa->p[point_index].x; |
3303 | 738 | double dy = rsa->p[point_index - 1].y - rsa->p[point_index].y; |
3304 | | |
3305 | 738 | if (at_corner) { |
3306 | 720 | double Dx = rsa->p[point_index + 1].x - rsa->p[point_index].x; |
3307 | 720 | double Dy = rsa->p[point_index + 1].y - rsa->p[point_index].y; |
3308 | 720 | bool b1 = (dx * rx + dy * ry >= 0); |
3309 | 720 | bool b2 = (Dx * rx + Dy * ry >= 0); |
3310 | | |
3311 | 720 | if (b1 & b2) |
3312 | 164 | rsa->outer_contact[root_index] = true; |
3313 | 720 | } else { |
3314 | 18 | if (rx * dy - ry * dx < 0) |
3315 | 6 | rsa->outer_contact[root_index] = true; |
3316 | 18 | } |
3317 | 738 | } |
3318 | | |
3319 | | static void |
3320 | | store_roots(radial_shading_attrs_t *rsa, const bool have_root[2], const double t[2], double r0, double r1, int point_index, bool at_corner) |
3321 | 1.44k | { |
3322 | 1.44k | int i; |
3323 | | |
3324 | 4.32k | for (i = 0; i < 2; i++) { |
3325 | 2.88k | bool good_root; |
3326 | | |
3327 | 2.88k | if (!have_root[i]) |
3328 | 1.42k | continue; |
3329 | 1.45k | good_root = (!rsa->have_apex || (rsa->apex <= 0 || r0 == 0 ? t[i] >= rsa->apex : t[i] <= rsa->apex)); |
3330 | 1.45k | if (good_root) { |
3331 | 738 | radial_shading_external_contact(rsa, point_index, t[i], r0, r1, at_corner, i); |
3332 | 738 | if (!rsa->have_root[i]) { |
3333 | 45 | rsa->span[i][0] = rsa->span[i][1] = t[i]; |
3334 | 45 | rsa->have_root[i] = true; |
3335 | 693 | } else { |
3336 | 693 | if (rsa->span[i][0] > t[i]) |
3337 | 46 | rsa->span[i][0] = t[i]; |
3338 | 693 | if (rsa->span[i][1] < t[i]) |
3339 | 101 | rsa->span[i][1] = t[i]; |
3340 | 693 | } |
3341 | 738 | } |
3342 | 1.45k | } |
3343 | 1.44k | } |
3344 | | |
3345 | | static void |
3346 | | compute_radial_shading_span_extended_side(radial_shading_attrs_t *rsa, double r0, double r1, int point_index) |
3347 | 720 | { |
3348 | 720 | double cc, c; |
3349 | 720 | bool have_root[2] = {false, false}; |
3350 | 720 | double t[2]; |
3351 | 720 | bool by_x = (rsa->p[point_index].x != rsa->p[point_index + 1].x); |
3352 | 720 | int i; |
3353 | | |
3354 | | /* As t moves from 0 to 1, the circles move from r0 to r1, and from |
3355 | | * from position p0 to py. For simplicity, adjust so that p0 is at |
3356 | | * the origin. Consider the projection of the circle drawn at any given |
3357 | | * time onto the x axis. The range of points would be: |
3358 | | * p1x*t +/- (r0+(r1-r0)*t). We are interested in the first (and last) |
3359 | | * moments when the range includes a point c on the x axis. So solve for: |
3360 | | * p1x*t +/- (r0+(r1-r0)*t) = c. Let cc = p1x. |
3361 | | * So p1x*t0 + (r1-r0)*t0 = c - r0 => t0 = (c - r0)/(p1x + r1 - r0) |
3362 | | * p1x*t1 - (r1-r0)*t1 = c + r0 => t1 = (c + r0)/(p1x - r1 + r0) |
3363 | | */ |
3364 | 720 | if (by_x) { |
3365 | 344 | c = rsa->p[point_index].x - rsa->x0; |
3366 | 344 | cc = rsa->x1 - rsa->x0; |
3367 | 376 | } else { |
3368 | 376 | c = rsa->p[point_index].y - rsa->y0; |
3369 | 376 | cc = rsa->y1 - rsa->y0; |
3370 | 376 | } |
3371 | 720 | t[0] = (c - r0) / (cc + r1 - r0); |
3372 | 720 | t[1] = (c + r0) / (cc - r1 + r0); |
3373 | 720 | if (t[0] > t[1]) { |
3374 | 504 | c = t[0]; |
3375 | 504 | t[0] = t[1]; |
3376 | 504 | t[1] = c; |
3377 | 504 | } |
3378 | 2.16k | for (i = 0; i < 2; i++) { |
3379 | 1.44k | double d, d0, d1; |
3380 | | |
3381 | 1.44k | if (by_x) { |
3382 | 688 | d = rsa->y1 - rsa->y0 + r0 + (r1 - r0) * t[i]; |
3383 | 688 | d0 = rsa->p[point_index].y; |
3384 | 688 | d1 = rsa->p[point_index + 1].y; |
3385 | 752 | } else { |
3386 | 752 | d = rsa->x1 - rsa->x0 + r0 + (r1 - r0) * t[i]; |
3387 | 752 | d0 = rsa->p[point_index].x; |
3388 | 752 | d1 = rsa->p[point_index + 1].x; |
3389 | 752 | } |
3390 | 1.44k | if (d1 > d0 ? d0 <= d && d <= d1 : d1 <= d && d <= d0) |
3391 | 18 | have_root[i] = true; |
3392 | 1.44k | } |
3393 | 720 | store_roots(rsa, have_root, t, r0, r1, point_index, false); |
3394 | 720 | } |
3395 | | |
3396 | | static int |
3397 | | compute_radial_shading_span_extended_point(radial_shading_attrs_t *rsa, double r0, double r1, int point_index) |
3398 | 720 | { |
3399 | | /* As t moves from 0 to 1, the circles move from r0 to r1, and from |
3400 | | * from position p0 to py. At any given time t, therefore, we |
3401 | | * paint the points that are distance r0+(r1-r0)*t from point |
3402 | | * (p0x+(p1x-p0x)*t,p0y+(p1y-p0y)*t) = P(t). |
3403 | | * |
3404 | | * To simplify our algebra, adjust so that (p0x, p0y) is at the origin. |
3405 | | * To find the time(s) t at which the a point q is painted, we therefore |
3406 | | * solve for t in: |
3407 | | * |
3408 | | * |q-P(t)| = r0+(r1-r0)*t |
3409 | | * |
3410 | | * (qx-p1x*t)^2 + (qy-p1y*t)^2 - (r0+(r1-r0)*t)^2 = 0 |
3411 | | * = qx^2 - 2qx.p1x.t + p1x^2.t^2 + qy^2 - 2qy.p1y.t + p1y^2.t^2 - |
3412 | | * (r0^2 + 2r0(r1-r0)t + (r1-r0)^2.t^2) |
3413 | | * = qx^2 + qy^2 - r0^2 |
3414 | | * + -2(qx.p1x + qy.p1y + r0(r1-r0)).t |
3415 | | * + (p1x^2 + p1y^2 - (r1-r0)^2).t^2 |
3416 | | * |
3417 | | * So solve using the usual t = (-b +/- SQRT(b^2 - 4ac)) where |
3418 | | * a = p1x^2 + p1y^2 - (r1-r0)^2 |
3419 | | * b = -2(qx.p1x + qy.p1y + r0(r1-r0)) |
3420 | | * c = qx^2 + qy^2 - r0^2 |
3421 | | */ |
3422 | 720 | double p1x = rsa->x1 - rsa->x0; |
3423 | 720 | double p1y = rsa->y1 - rsa->y0; |
3424 | 720 | double qx = rsa->p[point_index].x - rsa->x0; |
3425 | 720 | double qy = rsa->p[point_index].y - rsa->y0; |
3426 | 720 | double a = (Pw2(p1x) + Pw2(p1y) - Pw2(r0 - r1)); |
3427 | 720 | bool have_root[2] = {false, false}; |
3428 | 720 | double t[2]; |
3429 | | |
3430 | 720 | if (fabs(a) < 1e-8) { |
3431 | | /* Linear equation. */ |
3432 | | /* This case is always the ongoing ellipse contact. */ |
3433 | 0 | double cx = rsa->x0 - (rsa->x1 - rsa->x0) * r0 / (r1 - r0); |
3434 | 0 | double cy = rsa->y0 - (rsa->y1 - rsa->y0) * r0 / (r1 - r0); |
3435 | |
|
3436 | 0 | t[0] = (Pw2(qx) + Pw2(qy))/(cx*qx + cy*qy) / 2; |
3437 | 0 | have_root[0] = true; |
3438 | 720 | } else { |
3439 | | /* Square equation. No solution if b^2 - 4ac = 0. Equivalently if |
3440 | | * (b^2)/4 -a.c = 0 === (b/2)^2 - a.c = 0 === (-b/2)^2 - a.c = 0 */ |
3441 | 720 | double minushalfb = r0*(r1-r0) + p1x*qx + p1y*qy; |
3442 | 720 | double c = Pw2(qx) + Pw2(qy) - Pw2(r0); |
3443 | 720 | double desc2 = Pw2(minushalfb) - a*c; /* desc2 = 1/4 (b^2-4ac) */ |
3444 | | |
3445 | 720 | if (desc2 < 0) { |
3446 | 0 | return -1; /* The point is outside the shading coverage. |
3447 | | Do not shorten, because we didn't observe it in practice. */ |
3448 | 720 | } else { |
3449 | 720 | double desc1 = sqrt(desc2); /* desc1 = 1/2 SQRT(b^2-4ac) */ |
3450 | | |
3451 | 720 | if (a > 0) { |
3452 | 0 | t[0] = (minushalfb - desc1) / a; |
3453 | 0 | t[1] = (minushalfb + desc1) / a; |
3454 | 720 | } else { |
3455 | 720 | t[0] = (minushalfb + desc1) / a; |
3456 | 720 | t[1] = (minushalfb - desc1) / a; |
3457 | 720 | } |
3458 | 720 | have_root[0] = have_root[1] = true; |
3459 | 720 | } |
3460 | 720 | } |
3461 | 720 | store_roots(rsa, have_root, t, r0, r1, point_index, true); |
3462 | 720 | if (have_root[0] && have_root[1]) |
3463 | 720 | return 15; |
3464 | 0 | if (have_root[0]) |
3465 | 0 | return 15 - 4; |
3466 | 0 | if (have_root[1]) |
3467 | 0 | return 15 - 2; |
3468 | 0 | return -1; |
3469 | 0 | } |
3470 | | |
3471 | | #undef Pw2 |
3472 | | |
3473 | | static int |
3474 | | compute_radial_shading_span_extended(radial_shading_attrs_t *rsa, double r0, double r1) |
3475 | 180 | { |
3476 | 180 | int span_type0, span_type1; |
3477 | | |
3478 | 180 | span_type0 = compute_radial_shading_span_extended_point(rsa, r0, r1, 1); |
3479 | 180 | if (span_type0 == -1) |
3480 | 0 | return -1; |
3481 | 180 | span_type1 = compute_radial_shading_span_extended_point(rsa, r0, r1, 2); |
3482 | 180 | if (span_type0 != span_type1) |
3483 | 0 | return -1; |
3484 | 180 | span_type1 = compute_radial_shading_span_extended_point(rsa, r0, r1, 3); |
3485 | 180 | if (span_type0 != span_type1) |
3486 | 0 | return -1; |
3487 | 180 | span_type1 = compute_radial_shading_span_extended_point(rsa, r0, r1, 4); |
3488 | 180 | if (span_type0 != span_type1) |
3489 | 0 | return -1; |
3490 | 180 | compute_radial_shading_span_extended_side(rsa, r0, r1, 1); |
3491 | 180 | compute_radial_shading_span_extended_side(rsa, r0, r1, 2); |
3492 | 180 | compute_radial_shading_span_extended_side(rsa, r0, r1, 3); |
3493 | 180 | compute_radial_shading_span_extended_side(rsa, r0, r1, 4); |
3494 | 180 | return span_type0; |
3495 | 180 | } |
3496 | | |
3497 | | static int |
3498 | | compute_radial_shading_span(radial_shading_attrs_t *rsa, float x0, float y0, double r0, float x1, float y1, double r1, const gs_rect * rect) |
3499 | 45 | { |
3500 | | /* If the shading area is much larger than the path bbox, |
3501 | | we want to shorten the shading for a faster rendering. |
3502 | | If any point of the path bbox falls outside the shading area, |
3503 | | our math is not applicable, and we render entire shading. |
3504 | | If the path bbox is inside the shading area, |
3505 | | we compute 1 or 2 'spans' - the shading parameter intervals, |
3506 | | which covers the bbox. For doing that we need to resolve |
3507 | | a square eqation by the shading parameter |
3508 | | for each corner of the bounding box, |
3509 | | and for each side of the shading bbox. |
3510 | | Note the equation to be solved in the user space. |
3511 | | Since each equation gives 2 roots (because the points are |
3512 | | strongly inside the shading area), we will get 2 parameter intervals - |
3513 | | the 'lower' one corresponds to the first (ongoing) contact of |
3514 | | the running circle, and the second one corresponds to the last (outgoing) contact |
3515 | | (like in a sun eclipse; well our sun is rectangular). |
3516 | | |
3517 | | Here are few exceptions. |
3518 | | |
3519 | | First, the equation degenerates when the distance sqrt((x1-x0)^2 + (y1-y0)^2) |
3520 | | appears equal to r0-r1. In this case the base circles do contact, |
3521 | | and the running circle does contact at the same point. |
3522 | | The equation degenerates to a linear one. |
3523 | | Since we don't want float precision noize to affect the result, |
3524 | | we compute this condition in 'fixed' coordinates. |
3525 | | |
3526 | | Second, Postscript approximates any circle with 3d order beziers. |
3527 | | This approximation may give a 2% error. |
3528 | | Therefore using the precise roots may cause a dropout. |
3529 | | To prevetn them, we slightly modify the base radii. |
3530 | | However the sign of modification smartly depends |
3531 | | on the relative sizes of the base circles, |
3532 | | and on the contact number. Currently we don't want to |
3533 | | define and debug the smart optimal logic for that, |
3534 | | so we simply try all 4 variants for each source equation, |
3535 | | and use the union of intervals. |
3536 | | |
3537 | | Third, we could compute which quarter of the circle |
3538 | | really covers the path bbox. Using it we could skip |
3539 | | rendering of uncovering quarters. Currently we do not |
3540 | | implement this optimization. The general tensor patch algorithm |
3541 | | will skip uncovering parts. |
3542 | | |
3543 | | Fourth, when one base circle is (almost) inside the other, |
3544 | | the parameter interval must include the shading apex. |
3545 | | To know that, we determine whether the contacting circle |
3546 | | is outside the rectangle (the "outer" contact), |
3547 | | or it is (partially) inside the rectangle. |
3548 | | |
3549 | | At last, a small shortening of a shading won't give a |
3550 | | sensible speedup, but it may replace a symmetric function domain |
3551 | | with an assymmetric one, so that the rendering |
3552 | | would be asymmetyric for a symmetric shading. |
3553 | | Therefore we do not perform a small sortening. |
3554 | | Instead we shorten only if the shading span |
3555 | | is much smaller that the shading domain. |
3556 | | */ |
3557 | 45 | const double extent = 1.02; |
3558 | 45 | int span_type0, span_type1, span_type; |
3559 | | |
3560 | 45 | memset(rsa, 0, sizeof(*rsa)); |
3561 | 45 | rsa->x0 = x0; |
3562 | 45 | rsa->y0 = y0; |
3563 | 45 | rsa->x1 = x1; |
3564 | 45 | rsa->y1 = y1; |
3565 | 45 | rsa->p[0] = rsa->p[4] = rect->p; |
3566 | 45 | rsa->p[1].x = rsa->p[5].x = rect->p.x; |
3567 | 45 | rsa->p[1].y = rsa->p[5].y = rect->q.y; |
3568 | 45 | rsa->p[2] = rect->q; |
3569 | 45 | rsa->p[3].x = rect->q.x; |
3570 | 45 | rsa->p[3].y = rect->p.y; |
3571 | 45 | rsa->have_apex = any_abs(r1 - r0) > 1e-7 * any_abs(r1 + r0); |
3572 | 45 | rsa->apex = (rsa->have_apex ? -r0 / (r1 - r0) : 0); |
3573 | 45 | span_type0 = compute_radial_shading_span_extended(rsa, r0 / extent, r1 * extent); |
3574 | 45 | if (span_type0 == -1) |
3575 | 0 | return -1; |
3576 | 45 | span_type1 = compute_radial_shading_span_extended(rsa, r0 / extent, r1 / extent); |
3577 | 45 | if (span_type0 != span_type1) |
3578 | 0 | return -1; |
3579 | 45 | span_type1 = compute_radial_shading_span_extended(rsa, r0 * extent, r1 * extent); |
3580 | 45 | if (span_type0 != span_type1) |
3581 | 0 | return -1; |
3582 | 45 | span_type1 = compute_radial_shading_span_extended(rsa, r0 * extent, r1 / extent); |
3583 | 45 | if (span_type1 == -1) |
3584 | 0 | return -1; |
3585 | 45 | if (r0 < r1) { |
3586 | 40 | if (rsa->have_root[0] && !rsa->outer_contact[0]) |
3587 | 0 | rsa->span[0][0] = rsa->apex; /* Likely never happens. Remove ? */ |
3588 | 40 | if (rsa->have_root[1] && !rsa->outer_contact[1]) |
3589 | 10 | rsa->span[1][0] = rsa->apex; |
3590 | 40 | } else if (r0 > r1) { |
3591 | 5 | if (rsa->have_root[0] && !rsa->outer_contact[0]) |
3592 | 0 | rsa->span[0][1] = rsa->apex; |
3593 | 5 | if (rsa->have_root[1] && !rsa->outer_contact[1]) |
3594 | 0 | rsa->span[1][1] = rsa->apex; /* Likely never happens. Remove ? */ |
3595 | 5 | } |
3596 | 45 | span_type = 0; |
3597 | 45 | if (rsa->have_root[0] && rsa->span[0][0] < 0) |
3598 | 0 | span_type |= 1; |
3599 | 45 | if (rsa->have_root[1] && rsa->span[1][0] < 0) |
3600 | 0 | span_type |= 1; |
3601 | 45 | if (rsa->have_root[0] && rsa->span[0][1] > 0 && rsa->span[0][0] < 1) |
3602 | 5 | span_type |= 2; |
3603 | 45 | if (rsa->have_root[1] && rsa->span[1][1] > 0 && rsa->span[1][0] < 1) |
3604 | 39 | span_type |= 4; |
3605 | 45 | if (rsa->have_root[0] && rsa->span[0][1] > 1) |
3606 | 5 | span_type |= 8; |
3607 | 45 | if (rsa->have_root[1] && rsa->span[1][1] > 1) |
3608 | 8 | span_type |= 8; |
3609 | 45 | return span_type; |
3610 | 45 | } |
3611 | | |
3612 | | static bool |
3613 | | shorten_radial_shading(float *x0, float *y0, double *r0, float *d0, float *x1, float *y1, double *r1, float *d1, double span_[2]) |
3614 | 44 | { |
3615 | 44 | double s0 = span_[0], s1 = span_[1], w; |
3616 | | |
3617 | 44 | if (s0 < 0) |
3618 | 0 | s0 = 0; |
3619 | 44 | if (s1 < 0) |
3620 | 0 | s1 = 0; |
3621 | 44 | if (s0 > 1) |
3622 | 0 | s0 = 1; |
3623 | 44 | if (s1 > 1) |
3624 | 12 | s1 = 1; |
3625 | 44 | w = s1 - s0; |
3626 | 44 | if (w == 0) |
3627 | 0 | return false; /* Don't pass a degenerate shading. */ |
3628 | 44 | if (w > 0.3) |
3629 | 33 | return false; /* The span is big, don't shorten it. */ |
3630 | 11 | { /* Do shorten. */ |
3631 | 11 | double R0 = *r0, X0 = *x0, Y0 = *y0, D0 = *d0; |
3632 | 11 | double R1 = *r1, X1 = *x1, Y1 = *y1, D1 = *d1; |
3633 | | |
3634 | 11 | *r0 = R0 + (R1 - R0) * s0; |
3635 | 11 | *x0 = X0 + (X1 - X0) * s0; |
3636 | 11 | *y0 = Y0 + (Y1 - Y0) * s0; |
3637 | 11 | *d0 = D0 + (D1 - D0) * s0; |
3638 | 11 | *r1 = R0 + (R1 - R0) * s1; |
3639 | 11 | *x1 = X0 + (X1 - X0) * s1; |
3640 | 11 | *y1 = Y0 + (Y1 - Y0) * s1; |
3641 | 11 | *d1 = D0 + (D1 - D0) * s1; |
3642 | 11 | } |
3643 | 11 | return true; |
3644 | 44 | } |
3645 | | |
3646 | | static bool inline |
3647 | | is_radial_shading_large(double x0, double y0, double r0, double x1, double y1, double r1, const gs_rect * rect) |
3648 | 187 | { |
3649 | 187 | const double d = hypot(x1 - x0, y1 - y0); |
3650 | 187 | const double area0 = M_PI * r0 * r0 / 2; |
3651 | 187 | const double area1 = M_PI * r1 * r1 / 2; |
3652 | 187 | const double area2 = (r0 + r1) / 2 * d; |
3653 | 187 | const double arbitrary = 8; |
3654 | 187 | double areaX, areaY; |
3655 | | |
3656 | | /* The shading area is not equal to area0 + area1 + area2 |
3657 | | when one circle is (almost) inside the other. |
3658 | | We believe that the 'arbitrary' coefficient recovers that |
3659 | | when it is set greater than 2. */ |
3660 | | /* If one dimension is large enough, the shading parameter span is wide. */ |
3661 | 187 | areaX = (rect->q.x - rect->p.x) * (rect->q.x - rect->p.x); |
3662 | 187 | if (areaX * arbitrary < area0 + area1 + area2) |
3663 | 35 | return true; |
3664 | 152 | areaY = (rect->q.y - rect->p.y) * (rect->q.y - rect->p.y); |
3665 | 152 | if (areaY * arbitrary < area0 + area1 + area2) |
3666 | 10 | return true; |
3667 | 142 | return false; |
3668 | 152 | } |
3669 | | |
3670 | | static int |
3671 | | gs_shading_R_fill_rectangle_aux(const gs_shading_t * psh0, const gs_rect * rect, |
3672 | | const gs_fixed_rect *clip_rect, |
3673 | | gx_device * dev, gs_gstate * pgs) |
3674 | 191 | { |
3675 | 191 | const gs_shading_R_t *const psh = (const gs_shading_R_t *)psh0; |
3676 | 191 | float d0 = psh->params.Domain[0], d1 = psh->params.Domain[1]; |
3677 | 191 | float x0 = psh->params.Coords[0], y0 = psh->params.Coords[1]; |
3678 | 191 | double r0 = psh->params.Coords[2]; |
3679 | 191 | float x1 = psh->params.Coords[3], y1 = psh->params.Coords[4]; |
3680 | 191 | double r1 = psh->params.Coords[5]; |
3681 | 191 | radial_shading_attrs_t rsa; |
3682 | 191 | int span_type; /* <0 - don't shorten, 1 - extent0, 2 - first contact, 4 - last contact, 8 - extent1. */ |
3683 | 191 | int code; |
3684 | 191 | patch_fill_state_t pfs1; |
3685 | | |
3686 | 191 | if (r0 == 0 && r1 == 0) |
3687 | 4 | return 0; /* PLRM requires to paint nothing. */ |
3688 | 187 | code = shade_init_fill_state((shading_fill_state_t *)&pfs1, psh0, dev, pgs); |
3689 | 187 | if (code < 0) |
3690 | 0 | return code; |
3691 | 187 | pfs1.Function = psh->params.Function; |
3692 | 187 | code = init_patch_fill_state(&pfs1); |
3693 | 187 | if (code < 0) { |
3694 | 0 | if (pfs1.icclink != NULL) gsicc_release_link(pfs1.icclink); |
3695 | 0 | return code; |
3696 | 0 | } |
3697 | 187 | pfs1.function_arg_shift = 0; |
3698 | 187 | pfs1.rect = *clip_rect; |
3699 | 187 | pfs1.maybe_self_intersecting = false; |
3700 | 187 | if (is_radial_shading_large(x0, y0, r0, x1, y1, r1, rect)) |
3701 | 45 | span_type = compute_radial_shading_span(&rsa, x0, y0, r0, x1, y1, r1, rect); |
3702 | 142 | else |
3703 | 142 | span_type = -1; |
3704 | 187 | if (span_type < 0) { |
3705 | 142 | code = R_extensions(&pfs1, psh, rect, d0, d1, psh->params.Extend[0], false); |
3706 | 142 | if (code >= 0) |
3707 | 142 | code = R_tensor_annulus(&pfs1, x0, y0, r0, d0, x1, y1, r1, d1); |
3708 | 142 | if (code >= 0) |
3709 | 142 | code = R_extensions(&pfs1, psh, rect, d0, d1, false, psh->params.Extend[1]); |
3710 | 142 | } else if (span_type == 1) { |
3711 | 0 | code = R_fill_rect_with_const_color(&pfs1, clip_rect, d0); |
3712 | 45 | } else if (span_type == 8) { |
3713 | 1 | code = R_fill_rect_with_const_color(&pfs1, clip_rect, d1); |
3714 | 44 | } else { |
3715 | 44 | bool second_interval = true; |
3716 | | |
3717 | 44 | code = 0; |
3718 | 44 | if (span_type & 1) |
3719 | 0 | code = R_extensions(&pfs1, psh, rect, d0, d1, psh->params.Extend[0], false); |
3720 | 44 | if ((code >= 0) && (span_type & 2)) { |
3721 | 5 | float X0 = x0, Y0 = y0, D0 = d0, X1 = x1, Y1 = y1, D1 = d1; |
3722 | 5 | double R0 = r0, R1 = r1; |
3723 | | |
3724 | 5 | if ((span_type & 4) && rsa.span[0][1] >= rsa.span[1][0]) { |
3725 | 0 | double united[2]; |
3726 | |
|
3727 | 0 | united[0] = rsa.span[0][0]; |
3728 | 0 | united[1] = rsa.span[1][1]; |
3729 | 0 | shorten_radial_shading(&X0, &Y0, &R0, &D0, &X1, &Y1, &R1, &D1, united); |
3730 | 0 | second_interval = false; |
3731 | 5 | } else { |
3732 | 5 | second_interval = shorten_radial_shading(&X0, &Y0, &R0, &D0, &X1, &Y1, &R1, &D1, rsa.span[0]); |
3733 | 5 | } |
3734 | 5 | code = R_tensor_annulus(&pfs1, X0, Y0, R0, D0, X1, Y1, R1, D1); |
3735 | 5 | } |
3736 | 44 | if (code >= 0 && second_interval) { |
3737 | 44 | if (span_type & 4) { |
3738 | 39 | float X0 = x0, Y0 = y0, D0 = d0, X1 = x1, Y1 = y1, D1 = d1; |
3739 | 39 | double R0 = r0, R1 = r1; |
3740 | | |
3741 | 39 | shorten_radial_shading(&X0, &Y0, &R0, &D0, &X1, &Y1, &R1, &D1, rsa.span[1]); |
3742 | 39 | code = R_tensor_annulus(&pfs1, X0, Y0, R0, D0, X1, Y1, R1, D1); |
3743 | 39 | } |
3744 | 44 | } |
3745 | 44 | if (code >= 0 && (span_type & 8)) |
3746 | 12 | code = R_extensions(&pfs1, psh, rect, d0, d1, false, psh->params.Extend[1]); |
3747 | 44 | } |
3748 | 187 | if (pfs1.icclink != NULL) gsicc_release_link(pfs1.icclink); |
3749 | 187 | if (term_patch_fill_state(&pfs1)) |
3750 | 0 | return_error(gs_error_unregistered); /* Must not happen. */ |
3751 | 187 | return code; |
3752 | 187 | } |
3753 | | |
3754 | | int |
3755 | | gs_shading_R_fill_rectangle(const gs_shading_t * psh0, const gs_rect * rect, |
3756 | | const gs_fixed_rect * rect_clip, |
3757 | | gx_device * dev, gs_gstate * pgs) |
3758 | 191 | { |
3759 | 191 | return gs_shading_R_fill_rectangle_aux(psh0, rect, rect_clip, dev, pgs); |
3760 | 191 | } |