Coverage Report

Created: 2025-06-24 07:01

/src/ghostpdl/base/gxshade6.c
Line
Count
Source (jump to first uncovered line)
1
/* Copyright (C) 2001-2024 Artifex Software, Inc.
2
   All Rights Reserved.
3
4
   This software is provided AS-IS with no warranty, either express or
5
   implied.
6
7
   This software is distributed under license and may not be copied,
8
   modified or distributed except as expressly authorized under the terms
9
   of the license contained in the file LICENSE in this distribution.
10
11
   Refer to licensing information at http://www.artifex.com or contact
12
   Artifex Software, Inc.,  39 Mesa Street, Suite 108A, San Francisco,
13
   CA 94129, USA, for further information.
14
*/
15
16
17
/* Rendering for Coons and tensor patch shadings */
18
/*
19
   A contiguous non-overlapping decomposition
20
   of a tensor shading into linear color triangles.
21
 */
22
#include "memory_.h"
23
#include "gx.h"
24
#include "gserrors.h"
25
#include "gsmatrix.h"           /* for gscoord.h */
26
#include "gscoord.h"
27
#include "gscicach.h"
28
#include "gxcspace.h"
29
#include "gxdcolor.h"
30
#include "gxgstate.h"
31
#include "gxshade.h"
32
#include "gxdevcli.h"
33
#include "gxshade4.h"
34
#include "gxarith.h"
35
#include "gzpath.h"
36
#include "stdint_.h"
37
#include "math_.h"
38
#include "gsicc_cache.h"
39
#include "gxdevsop.h"
40
41
/* The original version of the shading code 'decompose's shadings into
42
 * smaller and smaller regions until they are smaller than 1 pixel, and then
43
 * fills them. (Either with a constant colour, or with a linear filled trap).
44
 *
45
 * Previous versions of the code (from svn revision 7936 until June 2011
46
 * (shortly after the switch to git)) changed this limit to be 1 point or 1
47
 * pixel (whichever is larger) (on the grounds that as resolution increases,
48
 * we are unlikely to be able to notice increasingly small inaccuracies in
49
 * the shading). Given how people abuse the resolution at which things are
50
 * rendered (especially when rendering to images that can subsequently be
51
 * zoomed), this seems a poor trade off. See bug 691152.
52
 *
53
 * The code has now been changed back to operate with the proper 1 pixel
54
 * decomposition, which will cost us performance in some cases. Should
55
 * people want to restore the previous operation, they should build with
56
 * MAX_SHADING_RESOLUTION predefined to 72. In general, this symbol can be
57
 * set to the maximum dpi that shading should ever be performed at. Leaving
58
 * it undefined will leave the default (1 pixel limit) in place.
59
 *
60
 * A possible future optimisation here may be to use different max shading
61
 * resolutions for linear and non-linear shadings; linear shadings appear to
62
 * result in calls to "fill linear traps", and non linear ones appear to
63
 * result in calls to "fill constant color". As such linear shadings are much
64
 * more forgiving of a higher decomposition threshold.
65
 */
66
67
#if NOFILL_TEST
68
static bool dbg_nofill = false;
69
#endif
70
#if SKIP_TEST
71
static int dbg_patch_cnt = 0;
72
static int dbg_quad_cnt = 0;
73
static int dbg_triangle_cnt = 0;
74
static int dbg_wedge_triangle_cnt = 0;
75
#endif
76
77
enum {
78
    min_linear_grades = 255 /* The minimal number of device color grades,
79
            required to apply linear color device functions. */
80
};
81
82
/* ================ Utilities ================ */
83
84
static int
85
allocate_color_stack(patch_fill_state_t *pfs, gs_memory_t *memory)
86
267k
{
87
267k
    if (pfs->color_stack != NULL)
88
0
        return 0;
89
267k
    pfs->color_stack_step = offset_of(patch_color_t, cc.paint.values[pfs->num_components]);
90
267k
    pfs->color_stack_step = (pfs->color_stack_step + sizeof(void *) - 1) / sizeof(void *) * sizeof(void *); /* Alignment */
91
92
267k
    pfs->color_stack_size = pfs->color_stack_step * SHADING_COLOR_STACK_SIZE;
93
267k
    pfs->color_stack = gs_alloc_bytes(memory, pfs->color_stack_size, "allocate_color_stack");
94
267k
    if (pfs->color_stack == NULL)
95
0
        return_error(gs_error_VMerror);
96
267k
    pfs->color_stack_limit = pfs->color_stack + pfs->color_stack_size;
97
267k
    pfs->color_stack_ptr = pfs->color_stack;
98
267k
    pfs->memory = memory;
99
267k
    return 0;
100
267k
}
101
102
static inline byte *
103
reserve_colors_inline(patch_fill_state_t *pfs, patch_color_t *c[], int n)
104
263M
{
105
263M
    int i;
106
263M
    byte *ptr0 = pfs->color_stack_ptr, *ptr = ptr0;
107
108
844M
    for (i = 0; i < n; i++, ptr += pfs->color_stack_step)
109
580M
        c[i] = (patch_color_t *)ptr;
110
263M
    if (ptr > pfs->color_stack_limit) {
111
0
        c[0] = NULL; /* safety. */
112
0
        return NULL;
113
0
    }
114
263M
    pfs->color_stack_ptr = ptr;
115
263M
    return ptr0;
116
263M
}
117
118
byte *
119
reserve_colors(patch_fill_state_t *pfs, patch_color_t *c[], int n)
120
778
{
121
778
    return reserve_colors_inline(pfs, c, n);
122
778
}
123
124
static inline void
125
release_colors_inline(patch_fill_state_t *pfs, byte *ptr, int n)
126
263M
{
127
#if 0 /* Saving the invariant for records. */
128
    pfs->color_stack_ptr = pfs->color_stack_step * n;
129
    assert((byte *)pfs->color_stack_ptr == ptr);
130
#else
131
263M
    pfs->color_stack_ptr = ptr;
132
263M
#endif
133
263M
}
134
void
135
release_colors(patch_fill_state_t *pfs, byte *ptr, int n)
136
778
{
137
778
    release_colors_inline(pfs, ptr, n);
138
778
}
139
140
/* Get colors for patch vertices. */
141
static int
142
shade_next_colors(shade_coord_stream_t * cs, patch_curve_t * curves,
143
                  int num_vertices)
144
767k
{
145
767k
    int i, code = 0;
146
147
3.21M
    for (i = 0; i < num_vertices && code >= 0; ++i) {
148
2.44M
        curves[i].vertex.cc[1] = 0; /* safety. (patch_fill may assume 2 arguments) */
149
2.44M
        code = shade_next_color(cs, curves[i].vertex.cc);
150
2.44M
    }
151
767k
    return code;
152
767k
}
153
154
/* Get a Bezier or tensor patch element. */
155
static int
156
shade_next_curve(shade_coord_stream_t * cs, patch_curve_t * curve)
157
1.99M
{
158
1.99M
    int code = shade_next_coords(cs, &curve->vertex.p, 1);
159
160
1.99M
    if (code >= 0)
161
1.99M
        code = shade_next_coords(cs, curve->control,
162
1.99M
                                 countof(curve->control));
163
1.99M
    return code;
164
1.99M
}
165
166
/*
167
 * Parse the next patch out of the input stream.  Return 1 if done,
168
 * 0 if patch, <0 on error.
169
 */
170
static int
171
shade_next_patch(shade_coord_stream_t * cs, int BitsPerFlag,
172
        patch_curve_t curve[4], gs_fixed_point interior[4] /* 0 for Coons patch */)
173
768k
{
174
768k
    int flag = shade_next_flag(cs, BitsPerFlag);
175
768k
    int num_colors, code;
176
177
768k
    if (flag < 0) {
178
1.20k
        if (!cs->is_eod(cs))
179
0
            return_error(gs_error_rangecheck);
180
1.20k
        return 1;               /* no more data */
181
1.20k
    }
182
767k
    if (cs->first_patch && (flag & 3) != 0) {
183
0
        return_error(gs_error_rangecheck);
184
0
    }
185
767k
    cs->first_patch = 0;
186
767k
    switch (flag & 3) {
187
0
        default:
188
0
            return_error(gs_error_rangecheck);  /* not possible */
189
456k
        case 0:
190
456k
            if ((code = shade_next_curve(cs, &curve[0])) < 0 ||
191
456k
                (code = shade_next_coords(cs, &curve[1].vertex.p, 1)) < 0
192
456k
                )
193
62
                return code;
194
456k
            num_colors = 4;
195
456k
            goto vx;
196
85.6k
        case 1:
197
85.6k
            curve[0] = curve[1], curve[1].vertex = curve[2].vertex;
198
85.6k
            goto v3;
199
91.6k
        case 2:
200
91.6k
            curve[0] = curve[2], curve[1].vertex = curve[3].vertex;
201
91.6k
            goto v3;
202
134k
        case 3:
203
134k
            curve[1].vertex = curve[0].vertex, curve[0] = curve[3];
204
311k
v3:         num_colors = 2;
205
767k
vx:         if ((code = shade_next_coords(cs, curve[1].control, 2)) < 0 ||
206
767k
                (code = shade_next_curve(cs, &curve[2])) < 0 ||
207
767k
                (code = shade_next_curve(cs, &curve[3])) < 0 ||
208
767k
                (interior != 0 &&
209
767k
                 (code = shade_next_coords(cs, interior, 4)) < 0) ||
210
767k
                (code = shade_next_colors(cs, &curve[4 - num_colors],
211
767k
                                          num_colors)) < 0
212
767k
                )
213
740
                return code;
214
766k
            cs->align(cs, 8); /* See shade_next_vertex. */
215
767k
    }
216
766k
    return 0;
217
767k
}
218
219
static inline bool
220
is_linear_color_applicable(const patch_fill_state_t *pfs)
221
10.4M
{
222
10.4M
    if (!USE_LINEAR_COLOR_PROCS)
223
0
        return false;
224
10.4M
    if (!colors_are_separable_and_linear(&pfs->dev->color_info))
225
5.54M
        return false;
226
4.85M
    if (gx_get_cmap_procs(pfs->pgs, pfs->dev)->is_halftoned(pfs->pgs, pfs->dev))
227
395k
        return false;
228
4.46M
    return true;
229
4.85M
}
230
231
static int
232
alloc_patch_fill_memory(patch_fill_state_t *pfs, gs_memory_t *memory, const gs_color_space *pcs)
233
267k
{
234
267k
    int code;
235
236
267k
    pfs->memory = memory;
237
267k
#   if LAZY_WEDGES
238
267k
        code = wedge_vertex_list_elem_buffer_alloc(pfs);
239
267k
        if (code < 0)
240
0
            return code;
241
267k
#   endif
242
267k
    pfs->max_small_coord = 1 << ((sizeof(int64_t) * 8 - 1/*sign*/) / 3);
243
267k
    code = allocate_color_stack(pfs, memory);
244
267k
    if (code < 0)
245
0
        return code;
246
267k
    if (pfs->unlinear || pcs == NULL)
247
14.6k
        pfs->pcic = NULL;
248
252k
    else {
249
252k
        pfs->pcic = gs_color_index_cache_create(memory, pcs, pfs->dev, pfs->pgs, true, pfs->trans_device);
250
252k
        if (pfs->pcic == NULL)
251
0
            return_error(gs_error_VMerror);
252
252k
    }
253
267k
    return 0;
254
267k
}
255
256
int
257
init_patch_fill_state(patch_fill_state_t *pfs)
258
267k
{
259
    /* Warning : pfs->Function must be set in advance. */
260
267k
    const gs_color_space *pcs = pfs->direct_space;
261
267k
    gs_client_color fcc0, fcc1;
262
267k
    int i;
263
264
1.04M
    for (i = 0; i < pfs->num_components; i++) {
265
779k
        fcc0.paint.values[i] = -1000000;
266
779k
        fcc1.paint.values[i] = 1000000;
267
779k
    }
268
267k
    pcs->type->restrict_color(&fcc0, pcs);
269
267k
    pcs->type->restrict_color(&fcc1, pcs);
270
1.04M
    for (i = 0; i < pfs->num_components; i++)
271
779k
        pfs->color_domain.paint.values[i] = max(fcc1.paint.values[i] - fcc0.paint.values[i], 1);
272
267k
    pfs->vectorization = false; /* A stub for a while. Will use with pclwrite. */
273
267k
    pfs->maybe_self_intersecting = true;
274
267k
    pfs->monotonic_color = (pfs->Function == NULL);
275
267k
    pfs->function_arg_shift = 0;
276
267k
    pfs->linear_color = false;
277
267k
    pfs->inside = false;
278
267k
    pfs->n_color_args = 1;
279
#ifdef MAX_SHADING_RESOLUTION
280
    pfs->decomposition_limit = float2fixed(min(pfs->dev->HWResolution[0],
281
                                               pfs->dev->HWResolution[1]) / MAX_SHADING_RESOLUTION);
282
    pfs->decomposition_limit = max(pfs->decomposition_limit, fixed_1);
283
#else
284
267k
    pfs->decomposition_limit = fixed_1;
285
267k
#endif
286
267k
    pfs->fixed_flat = float2fixed(pfs->pgs->flatness);
287
    /* Restrict the pfs->smoothness with 1/min_linear_grades, because cs_is_linear
288
       can't provide a better precision due to the color
289
       representation with integers.
290
     */
291
267k
    pfs->smoothness = max(pfs->pgs->smoothness, 1.0 / min_linear_grades);
292
267k
    pfs->color_stack_size = 0;
293
267k
    pfs->color_stack_step = 0;
294
267k
    pfs->color_stack_ptr = NULL;
295
267k
    pfs->color_stack = NULL;
296
267k
    pfs->color_stack_limit = NULL;
297
267k
    pfs->unlinear = !is_linear_color_applicable(pfs);
298
267k
    pfs->pcic = NULL;
299
267k
    return alloc_patch_fill_memory(pfs, pfs->pgs->memory, pcs);
300
267k
}
301
302
bool
303
term_patch_fill_state(patch_fill_state_t *pfs)
304
267k
{
305
267k
    bool b = (pfs->color_stack_ptr != pfs->color_stack);
306
267k
#   if LAZY_WEDGES
307
267k
        wedge_vertex_list_elem_buffer_free(pfs);
308
267k
#   endif
309
267k
    if (pfs->color_stack)
310
267k
        gs_free_object(pfs->memory, pfs->color_stack, "term_patch_fill_state");
311
267k
    if (pfs->pcic != NULL)
312
252k
        gs_color_index_cache_destroy(pfs->pcic);
313
267k
    return b;
314
267k
}
315
316
/* Resolve a patch color using the Function if necessary. */
317
static inline void
318
patch_resolve_color_inline(patch_color_t * ppcr, const patch_fill_state_t *pfs)
319
106M
{
320
106M
    if (pfs->Function) {
321
103M
        const gs_color_space *pcs = pfs->direct_space;
322
323
103M
        gs_function_evaluate(pfs->Function, ppcr->t, ppcr->cc.paint.values);
324
103M
        pcs->type->restrict_color(&ppcr->cc, pcs);
325
103M
    }
326
106M
}
327
328
void
329
patch_resolve_color(patch_color_t * ppcr, const patch_fill_state_t *pfs)
330
0
{
331
0
    patch_resolve_color_inline(ppcr, pfs);
332
0
}
333
334
/*
335
 * Calculate the interpolated color at a given point.
336
 * Note that we must do this twice for bilinear interpolation.
337
 * We use the name ppcr rather than ppc because an Apple compiler defines
338
 * ppc when compiling on PowerPC systems (!).
339
 */
340
static void
341
patch_interpolate_color(patch_color_t * ppcr, const patch_color_t * ppc0,
342
       const patch_color_t * ppc1, const patch_fill_state_t *pfs, double t)
343
318M
{
344
    /* The old code gives -IND on Intel. */
345
318M
    if (pfs->Function) {
346
64.7M
        ppcr->t[0] = ppc0->t[0] * (1 - t) + t * ppc1->t[0];
347
64.7M
        ppcr->t[1] = ppc0->t[1] * (1 - t) + t * ppc1->t[1];
348
64.7M
        patch_resolve_color_inline(ppcr, pfs);
349
253M
    } else {
350
253M
        int ci;
351
352
1.20G
        for (ci = pfs->num_components - 1; ci >= 0; --ci)
353
950M
            ppcr->cc.paint.values[ci] =
354
950M
                ppc0->cc.paint.values[ci] * (1 - t) + t * ppc1->cc.paint.values[ci];
355
253M
    }
356
318M
}
357
358
/* ================ Specific shadings ================ */
359
360
/*
361
 * The curves are stored in a clockwise or counter-clockwise order that maps
362
 * to the patch definition in a non-intuitive way.  The documentation
363
 * (pp. 277-281 of the PostScript Language Reference Manual, Third Edition)
364
 * says that the curves are in the order D1, C2, D2, C1.
365
 */
366
/* The starting points of the curves: */
367
0
#define D1START 0
368
0
#define C2START 1
369
0
#define D2START 3
370
0
#define C1START 0
371
/* The control points of the curves (x means reversed order): */
372
0
#define D1CTRL 0
373
0
#define C2CTRL 1
374
0
#define D2XCTRL 2
375
0
#define C1XCTRL 3
376
/* The end points of the curves: */
377
0
#define D1END 1
378
0
#define C2END 2
379
0
#define D2END 2
380
0
#define C1END 3
381
382
/* ---------------- Common code ---------------- */
383
384
/* Evaluate a curve at a given point. */
385
static void
386
curve_eval(gs_fixed_point * pt, const gs_fixed_point * p0,
387
           const gs_fixed_point * p1, const gs_fixed_point * p2,
388
           const gs_fixed_point * p3, double t)
389
0
{
390
0
    fixed a, b, c, d;
391
0
    fixed t01, t12;
392
393
0
    d = p0->x;
394
0
    curve_points_to_coefficients(d, p1->x, p2->x, p3->x,
395
0
                                 a, b, c, t01, t12);
396
0
    pt->x = (fixed) (((a * t + b) * t + c) * t + d);
397
0
    d = p0->y;
398
0
    curve_points_to_coefficients(d, p1->y, p2->y, p3->y,
399
0
                                 a, b, c, t01, t12);
400
0
    pt->y = (fixed) (((a * t + b) * t + c) * t + d);
401
0
    if_debug3('2', "[2]t=%g => (%g,%g)\n", t, fixed2float(pt->x),
402
0
              fixed2float(pt->y));
403
0
}
404
405
/* ---------------- Coons patch shading ---------------- */
406
407
/* Calculate the device-space coordinate corresponding to (u,v). */
408
static void
409
Cp_transform(gs_fixed_point * pt, const patch_curve_t curve[4],
410
             const gs_fixed_point ignore_interior[4], double u, double v)
411
0
{
412
0
    double co_u = 1.0 - u, co_v = 1.0 - v;
413
0
    gs_fixed_point c1u, d1v, c2u, d2v;
414
415
0
    curve_eval(&c1u, &curve[C1START].vertex.p,
416
0
               &curve[C1XCTRL].control[1], &curve[C1XCTRL].control[0],
417
0
               &curve[C1END].vertex.p, u);
418
0
    curve_eval(&d1v, &curve[D1START].vertex.p,
419
0
               &curve[D1CTRL].control[0], &curve[D1CTRL].control[1],
420
0
               &curve[D1END].vertex.p, v);
421
0
    curve_eval(&c2u, &curve[C2START].vertex.p,
422
0
               &curve[C2CTRL].control[0], &curve[C2CTRL].control[1],
423
0
               &curve[C2END].vertex.p, u);
424
0
    curve_eval(&d2v, &curve[D2START].vertex.p,
425
0
               &curve[D2XCTRL].control[1], &curve[D2XCTRL].control[0],
426
0
               &curve[D2END].vertex.p, v);
427
0
#define COMPUTE_COORD(xy)\
428
0
    pt->xy = (fixed)\
429
0
        ((co_v * c1u.xy + v * c2u.xy) + (co_u * d1v.xy + u * d2v.xy) -\
430
0
         (co_v * (co_u * curve[C1START].vertex.p.xy +\
431
0
                  u * curve[C1END].vertex.p.xy) +\
432
0
          v * (co_u * curve[C2START].vertex.p.xy +\
433
0
               u * curve[C2END].vertex.p.xy)))
434
0
    COMPUTE_COORD(x);
435
0
    COMPUTE_COORD(y);
436
0
#undef COMPUTE_COORD
437
0
    if_debug4('2', "[2](u=%g,v=%g) => (%g,%g)\n",
438
0
              u, v, fixed2float(pt->x), fixed2float(pt->y));
439
0
}
440
441
int
442
gs_shading_Cp_fill_rectangle(const gs_shading_t * psh0, const gs_rect * rect,
443
                             const gs_fixed_rect * rect_clip,
444
                             gx_device * dev, gs_gstate * pgs)
445
58
{
446
58
    const gs_shading_Cp_t * const psh = (const gs_shading_Cp_t *)psh0;
447
58
    patch_fill_state_t state;
448
58
    shade_coord_stream_t cs;
449
58
    patch_curve_t curve[4];
450
58
    int code;
451
452
58
    code = mesh_init_fill_state((mesh_fill_state_t *) &state,
453
58
                         (const gs_shading_mesh_t *)psh0, rect_clip, dev, pgs);
454
58
    if (code < 0) {
455
0
        if (state.icclink != NULL) gsicc_release_link(state.icclink);
456
0
        return code;
457
0
    }
458
58
    state.Function = psh->params.Function;
459
58
    code = init_patch_fill_state(&state);
460
58
    if(code < 0) {
461
0
        if (state.icclink != NULL) gsicc_release_link(state.icclink);
462
0
        return code;
463
0
    }
464
465
58
    curve[0].straight = curve[1].straight = curve[2].straight = curve[3].straight = false;
466
58
    shade_next_init(&cs, (const gs_shading_mesh_params_t *)&psh->params, pgs);
467
300
    while ((code = shade_next_patch(&cs, psh->params.BitsPerFlag,
468
300
                                    curve, NULL)) == 0 &&
469
300
           (code = patch_fill(&state, curve, NULL, Cp_transform)) >= 0
470
242
        ) {
471
242
        DO_NOTHING;
472
242
    }
473
58
    if (term_patch_fill_state(&state))
474
0
        return_error(gs_error_unregistered); /* Must not happen. */
475
58
    if (state.icclink != NULL) gsicc_release_link(state.icclink);
476
58
    return min(code, 0);
477
58
}
478
479
/* ---------------- Tensor product patch shading ---------------- */
480
481
/* Calculate the device-space coordinate corresponding to (u,v). */
482
static void
483
Tpp_transform(gs_fixed_point * pt, const patch_curve_t curve[4],
484
              const gs_fixed_point interior[4], double u, double v)
485
0
{
486
0
    double Bu[4], Bv[4];
487
0
    gs_fixed_point pts[4][4];
488
0
    int i, j;
489
0
    double x = 0, y = 0;
490
491
    /* Compute the Bernstein polynomials of u and v. */
492
0
    {
493
0
        double u2 = u * u, co_u = 1.0 - u, co_u2 = co_u * co_u;
494
0
        double v2 = v * v, co_v = 1.0 - v, co_v2 = co_v * co_v;
495
496
0
        Bu[0] = co_u * co_u2, Bu[1] = 3 * u * co_u2,
497
0
            Bu[2] = 3 * u2 * co_u, Bu[3] = u * u2;
498
0
        Bv[0] = co_v * co_v2, Bv[1] = 3 * v * co_v2,
499
0
            Bv[2] = 3 * v2 * co_v, Bv[3] = v * v2;
500
0
    }
501
502
    /* Arrange the points into an indexable order. */
503
0
    pts[0][0] = curve[0].vertex.p;
504
0
    pts[0][1] = curve[0].control[0];
505
0
    pts[0][2] = curve[0].control[1];
506
0
    pts[0][3] = curve[1].vertex.p;
507
0
    pts[1][3] = curve[1].control[0];
508
0
    pts[2][3] = curve[1].control[1];
509
0
    pts[3][3] = curve[2].vertex.p;
510
0
    pts[3][2] = curve[2].control[0];
511
0
    pts[3][1] = curve[2].control[1];
512
0
    pts[3][0] = curve[3].vertex.p;
513
0
    pts[2][0] = curve[3].control[0];
514
0
    pts[1][0] = curve[3].control[1];
515
0
    pts[1][1] = interior[0];
516
0
    pts[2][1] = interior[1];
517
0
    pts[2][2] = interior[2];
518
0
    pts[1][2] = interior[3];
519
520
    /* Now compute the actual point. */
521
0
    for (i = 0; i < 4; ++i)
522
0
        for (j = 0; j < 4; ++j) {
523
0
            double coeff = Bu[i] * Bv[j];
524
525
0
            x += pts[i][j].x * coeff, y += pts[i][j].y * coeff;
526
0
        }
527
0
    pt->x = (fixed)x, pt->y = (fixed)y;
528
0
}
529
530
int
531
gs_shading_Tpp_fill_rectangle(const gs_shading_t * psh0, const gs_rect * rect,
532
                             const gs_fixed_rect * rect_clip,
533
                              gx_device * dev, gs_gstate * pgs)
534
1.95k
{
535
1.95k
    const gs_shading_Tpp_t * const psh = (const gs_shading_Tpp_t *)psh0;
536
1.95k
    patch_fill_state_t state;
537
1.95k
    shade_coord_stream_t cs;
538
1.95k
    patch_curve_t curve[4];
539
1.95k
    gs_fixed_point interior[4];
540
1.95k
    int code;
541
542
1.95k
    code = mesh_init_fill_state((mesh_fill_state_t *) & state,
543
1.95k
                         (const gs_shading_mesh_t *)psh0, rect_clip, dev, pgs);
544
1.95k
    if (code < 0) {
545
0
        if (state.icclink != NULL) gsicc_release_link(state.icclink);
546
0
        return code;
547
0
    }
548
1.95k
    state.Function = psh->params.Function;
549
1.95k
    code = init_patch_fill_state(&state);
550
1.95k
    if(code < 0)
551
0
        return code;
552
1.95k
    curve[0].straight = curve[1].straight = curve[2].straight = curve[3].straight = false;
553
1.95k
    shade_next_init(&cs, (const gs_shading_mesh_params_t *)&psh->params, pgs);
554
768k
    while ((code = shade_next_patch(&cs, psh->params.BitsPerFlag,
555
768k
                                    curve, interior)) == 0) {
556
        /*
557
         * The order of points appears to be consistent with that for Coons
558
         * patches, which is different from that documented in Red Book 3.
559
         */
560
766k
        gs_fixed_point swapped_interior[4];
561
562
766k
        swapped_interior[0] = interior[0];
563
766k
        swapped_interior[1] = interior[3];
564
766k
        swapped_interior[2] = interior[2];
565
766k
        swapped_interior[3] = interior[1];
566
766k
        code = patch_fill(&state, curve, swapped_interior, Tpp_transform);
567
766k
        if (code < 0)
568
0
            break;
569
766k
    }
570
1.95k
    if (term_patch_fill_state(&state))
571
0
        return_error(gs_error_unregistered); /* Must not happen. */
572
1.95k
    if (state.icclink != NULL) gsicc_release_link(state.icclink);
573
1.95k
    return min(code, 0);
574
1.95k
}
575
576
/*
577
    This algorithm performs a decomposition of the shading area
578
    into a set of constant color trapezoids, some of which
579
    may use the transpozed coordinate system.
580
581
    The target device assumes semi-open intrvals by X to be painted
582
    (See PLRM3, 7.5. Scan conversion details), i.e.
583
    it doesn't paint pixels which falls exactly to the right side.
584
    Note that with raster devices the algorithm doesn't paint pixels,
585
    whigh are partially covered by the shading area,
586
    but which's centers are outside the area.
587
588
    Pixels inside a monotonic part of the shading area are painted
589
    at once, but some exceptions may happen :
590
591
        - While flattening boundaries of a subpatch,
592
        to keep the plane coverage contiguity we insert wedges
593
        between neighbor subpatches, which use a different
594
        flattening factor. With non-monotonic curves
595
        those wedges may overlap or be self-overlapping, and a pixel
596
        is painted so many times as many wedges cover it. Fortunately
597
        the area of most wedges is zero or extremily small.
598
599
        - Since quazi-horizontal wedges may have a non-constant color,
600
        they can't decompose into constant color trapezoids with
601
        keeping the coverage contiguity. To represent them we
602
        apply the XY plane transposition. But with the transposition
603
        a semiopen interval can met a non-transposed one,
604
        so that some lines are not covered. Therefore we emulate
605
        closed intervals with expanding the transposed trapesoids in
606
        fixed_epsilon, and pixels at that boundary may be painted twice.
607
608
        - A boundary of a monotonic area can't compute in XY
609
        preciselly due to high order polynomial equations.
610
        Therefore the subdivision near the monotonity boundary
611
        may paint some pixels twice within same monotonic part.
612
613
    Non-monotonic areas slow down due to a tinny subdivision required.
614
615
    The target device may be either raster or vector.
616
    Vector devices should preciselly pass trapezoids to the output.
617
    Note that ends of sides of a trapesoid are not necessary
618
    the trapezoid's vertices. Converting this thing into
619
    an exact quadrangle may cause an arithmetic error,
620
    and the rounding must be done so that the coverage
621
    contiguity is not lost.
622
623
    When a device passes a trapezoid to it's output,
624
    a regular rounding would keep the coverage contiguity,
625
    except for the transposed trapesoids.
626
    If a transposed trapezoid is being transposed back,
627
    it doesn't become a canonic trapezoid, and a further
628
    decomposition is neccessary. But rounding errors here
629
    would break the coverage contiguity at boundaries
630
    of the tansposed part of the area.
631
632
    Devices, which have no transposed trapezoids and represent
633
    trapezoids only with 8 coordinates of vertices of the quadrangle
634
    (pclwrite is an example) may apply the backward transposition,
635
    and a clipping instead the further decomposition.
636
    Note that many clip regions may appear for all wedges.
637
    Note that in some cases the adjustment of the right side to be
638
    withdrown before the backward transposition.
639
 */
640
 /* We believe that a multiplication of 32-bit integers with a
641
    64-bit result is performed by modern platforms performs
642
    in hardware level. Therefore we widely use it here,
643
    but we minimize the usage of a multiplication of longer integers.
644
645
    Unfortunately we do need a multiplication of long integers
646
    in intersection_of_small_bars, because solving the linear system
647
    requires tripple multiples of 'fixed'. Therefore we retain
648
    of it's usage in the algorithm of the main branch.
649
    Configuration macro QUADRANGLES prevents it.
650
  */
651
652
typedef struct {
653
    gs_fixed_point pole[4][4]; /* [v][u] */
654
    patch_color_t *c[2][2];     /* [v][u] */
655
} tensor_patch;
656
657
typedef enum {
658
    interpatch_padding = 1, /* A Padding between patches for poorly designed documents. */
659
    inpatch_wedge = 2  /* Wedges while a patch decomposition. */
660
} wedge_type_t;
661
662
int
663
wedge_vertex_list_elem_buffer_alloc(patch_fill_state_t *pfs)
664
267k
{
665
267k
    const int max_level = LAZY_WEDGES_MAX_LEVEL;
666
267k
    gs_memory_t *memory = pfs->memory;
667
668
    /* We have 'max_level' levels, each of which divides 1 or 3 sides.
669
       LAZY_WEDGES stores all 2^level divisions until
670
       the other area of same bnoundary is processed.
671
       Thus the upper estimation of the buffer size is :
672
       max_level * (1 << max_level) * 3.
673
       Likely this estimation to be decreased to
674
       max_level * (1 << max_level) * 2.
675
       because 1 side of a triangle is always outside the division path.
676
       For now we set the smaller estimation for obtaining an experimental data
677
       from the wild. */
678
267k
    pfs->wedge_vertex_list_elem_count_max = max_level * (1 << max_level) * 2;
679
267k
    pfs->wedge_vertex_list_elem_buffer = (wedge_vertex_list_elem_t *)gs_alloc_bytes(memory,
680
267k
            sizeof(wedge_vertex_list_elem_t) * pfs->wedge_vertex_list_elem_count_max,
681
267k
            "alloc_wedge_vertex_list_elem_buffer");
682
267k
    if (pfs->wedge_vertex_list_elem_buffer == NULL)
683
0
        return_error(gs_error_VMerror);
684
267k
    pfs->free_wedge_vertex = NULL;
685
267k
    pfs->wedge_vertex_list_elem_count = 0;
686
267k
    return 0;
687
267k
}
688
689
void
690
wedge_vertex_list_elem_buffer_free(patch_fill_state_t *pfs)
691
267k
{
692
267k
    gs_memory_t *memory = pfs->memory;
693
694
267k
    gs_free_object(memory, pfs->wedge_vertex_list_elem_buffer,
695
267k
                "wedge_vertex_list_elem_buffer_free");
696
267k
    pfs->wedge_vertex_list_elem_buffer = NULL;
697
267k
    pfs->free_wedge_vertex = NULL;
698
267k
}
699
700
static inline wedge_vertex_list_elem_t *
701
wedge_vertex_list_elem_reserve(patch_fill_state_t *pfs)
702
30.5M
{
703
30.5M
    wedge_vertex_list_elem_t *e = pfs->free_wedge_vertex;
704
705
30.5M
    if (e != NULL) {
706
29.5M
        pfs->free_wedge_vertex = e->next;
707
29.5M
        return e;
708
29.5M
    }
709
950k
    if (pfs->wedge_vertex_list_elem_count < pfs->wedge_vertex_list_elem_count_max)
710
950k
        return pfs->wedge_vertex_list_elem_buffer + pfs->wedge_vertex_list_elem_count++;
711
0
    return NULL;
712
950k
}
713
714
static inline void
715
wedge_vertex_list_elem_release(patch_fill_state_t *pfs, wedge_vertex_list_elem_t *e)
716
30.5M
{
717
30.5M
    e->next = pfs->free_wedge_vertex;
718
30.5M
    pfs->free_wedge_vertex = e;
719
30.5M
}
720
721
static inline void
722
release_wedge_vertex_list_interval(patch_fill_state_t *pfs,
723
    wedge_vertex_list_elem_t *beg, wedge_vertex_list_elem_t *end)
724
15.9M
{
725
15.9M
    wedge_vertex_list_elem_t *e = beg->next, *ee;
726
727
15.9M
    beg->next = end;
728
15.9M
    end->prev = beg;
729
30.8M
    for (; e != end; e = ee) {
730
14.9M
        ee = e->next;
731
14.9M
        wedge_vertex_list_elem_release(pfs, e);
732
14.9M
    }
733
15.9M
}
734
735
static inline int
736
release_wedge_vertex_list(patch_fill_state_t *pfs, wedge_vertex_list_t *ll, int n)
737
7.78M
{
738
7.78M
    int i;
739
740
15.5M
    for (i = 0; i < n; i++) {
741
7.78M
        wedge_vertex_list_t *l = ll + i;
742
743
7.78M
        if (l->beg != NULL) {
744
7.78M
            if (l->end == NULL)
745
0
                return_error(gs_error_unregistered); /* Must not happen. */
746
7.78M
            release_wedge_vertex_list_interval(pfs, l->beg, l->end);
747
7.78M
            wedge_vertex_list_elem_release(pfs, l->beg);
748
7.78M
            wedge_vertex_list_elem_release(pfs, l->end);
749
7.78M
            l->beg = l->end = NULL;
750
7.78M
        } else if (l->end != NULL)
751
0
            return_error(gs_error_unregistered); /* Must not happen. */
752
7.78M
    }
753
7.78M
    return 0;
754
7.78M
}
755
756
static inline wedge_vertex_list_elem_t *
757
wedge_vertex_list_find(wedge_vertex_list_elem_t *beg, const wedge_vertex_list_elem_t *end,
758
            int level)
759
9.80M
{
760
9.80M
    wedge_vertex_list_elem_t *e = beg;
761
762
9.80M
    if (beg == NULL || end == NULL)
763
0
        return NULL; /* Must not happen. */
764
26.7M
    for (; e != end; e = e->next)
765
26.7M
        if (e->level == level)
766
9.80M
            return e;
767
0
    return NULL;
768
9.80M
}
769
770
static inline void
771
init_wedge_vertex_list(wedge_vertex_list_t *l, int n)
772
65.1M
{
773
65.1M
    memset(l, 0, sizeof(*l) * n);
774
65.1M
}
775
776
/* For a given set of poles in the tensor patch (for instance
777
 * [0][0], [0][1], [0][2], [0][3] or [0][2], [1][2], [2][2], [3][2])
778
 * return the number of subdivisions required to flatten the bezier
779
 * given by those poles to the required flatness.
780
 */
781
static inline int
782
curve_samples(patch_fill_state_t *pfs,
783
                const gs_fixed_point *pole, int pole_step, fixed fixed_flat)
784
30.8M
{
785
30.8M
    curve_segment s;
786
30.8M
    int k;
787
788
30.8M
    s.p1.x = pole[pole_step].x;
789
30.8M
    s.p1.y = pole[pole_step].y;
790
30.8M
    s.p2.x = pole[pole_step * 2].x;
791
30.8M
    s.p2.y = pole[pole_step * 2].y;
792
30.8M
    s.pt.x = pole[pole_step * 3].x;
793
30.8M
    s.pt.y = pole[pole_step * 3].y;
794
30.8M
    k = gx_curve_log2_samples(pole[0].x, pole[0].y, &s, fixed_flat);
795
30.8M
    {
796
30.8M
#       if LAZY_WEDGES || QUADRANGLES
797
30.8M
            int k1;
798
30.8M
            fixed L = any_abs(pole[pole_step * 1].x - pole[pole_step * 0].x) + any_abs(pole[pole_step * 1].y - pole[pole_step * 0].y) +
799
30.8M
                      any_abs(pole[pole_step * 2].x - pole[pole_step * 1].x) + any_abs(pole[pole_step * 2].y - pole[pole_step * 1].y) +
800
30.8M
                      any_abs(pole[pole_step * 3].x - pole[pole_step * 2].x) + any_abs(pole[pole_step * 3].y - pole[pole_step * 2].y);
801
30.8M
#       endif
802
803
30.8M
#       if LAZY_WEDGES
804
            /* Restrict lengths for a reasonable memory consumption : */
805
30.8M
            k1 = ilog2(L / fixed_1 / (1 << (LAZY_WEDGES_MAX_LEVEL - 1)));
806
30.8M
            k = max(k, k1);
807
30.8M
#       endif
808
#       if QUADRANGLES
809
            /* Restrict lengths for intersection_of_small_bars : */
810
            k = max(k, ilog2(L) - ilog2(pfs->max_small_coord));
811
#       endif
812
30.8M
    }
813
30.8M
    return 1 << k;
814
30.8M
}
815
816
static inline bool
817
intersection_of_small_bars(const gs_fixed_point q[4], int i0, int i1, int i2, int i3, fixed *ry, fixed *ey)
818
0
{
819
    /* This function is only used with QUADRANGLES. */
820
0
    return gx_intersect_small_bars(q[i0].x, q[i0].y, q[i1].x, q[i1].y, q[i2].x, q[i2].y, q[i3].x, q[i3].y, ry, ey);
821
0
}
822
823
static inline void
824
adjust_swapped_boundary(fixed *b, bool swap_axes)
825
129M
{
826
129M
    if (swap_axes) {
827
        /*  Sinse the rasterizer algorithm assumes semi-open interval
828
            when computing pixel coverage, we should expand
829
            the right side of the area. Otherwise a dropout can happen :
830
            if the left neighbour is painted with !swap_axes,
831
            the left side of this area appears to be the left side
832
            of the neighbour area, and the side is not included
833
            into both areas.
834
         */
835
56.6M
        *b += fixed_epsilon;
836
56.6M
    }
837
129M
}
838
839
static inline void
840
make_trapezoid(const gs_fixed_point q[4],
841
        int vi0, int vi1, int vi2, int vi3, fixed ybot, fixed ytop,
842
        bool swap_axes, bool orient, gs_fixed_edge *le, gs_fixed_edge *re)
843
29.3M
{
844
29.3M
    if (!orient) {
845
16.3M
        le->start = q[vi0];
846
16.3M
        le->end = q[vi1];
847
16.3M
        re->start = q[vi2];
848
16.3M
        re->end = q[vi3];
849
16.3M
    } else {
850
12.9M
        le->start = q[vi2];
851
12.9M
        le->end = q[vi3];
852
12.9M
        re->start = q[vi0];
853
12.9M
        re->end = q[vi1];
854
12.9M
    }
855
29.3M
    adjust_swapped_boundary(&re->start.x, swap_axes);
856
29.3M
    adjust_swapped_boundary(&re->end.x, swap_axes);
857
29.3M
}
858
859
static inline int
860
gx_shade_trapezoid(patch_fill_state_t *pfs, const gs_fixed_point q[4],
861
        int vi0, int vi1, int vi2, int vi3, fixed ybot0, fixed ytop0,
862
        bool swap_axes, const gx_device_color *pdevc, bool orient)
863
2.06M
{
864
2.06M
    gs_fixed_edge le, re;
865
2.06M
    int code;
866
2.06M
    fixed ybot = max(ybot0, swap_axes ? pfs->rect.p.x : pfs->rect.p.y);
867
2.06M
    fixed ytop = min(ytop0, swap_axes ? pfs->rect.q.x : pfs->rect.q.y);
868
2.06M
    fixed xleft  = (swap_axes ? pfs->rect.p.y : pfs->rect.p.x);
869
2.06M
    fixed xright = (swap_axes ? pfs->rect.q.y : pfs->rect.q.x);
870
871
2.06M
    if (ybot >= ytop)
872
682k
        return 0;
873
#   if NOFILL_TEST
874
        if (dbg_nofill)
875
            return 0;
876
#   endif
877
1.38M
    make_trapezoid(q, vi0, vi1, vi2, vi3, ybot, ytop, swap_axes, orient, &le, &re);
878
1.38M
    if (!pfs->inside) {
879
684k
        bool clip = false;
880
881
        /* We are asked to clip a trapezoid to a rectangle. If the rectangle
882
         * is entirely contained within the rectangle, then no clipping is
883
         * actually required. If the left edge is entirely to the right of
884
         * the rectangle, or the right edge is entirely to the left, we
885
         * clip away to nothing. If the left edge is entirely to the left of
886
         * the rectangle, then we can simplify it to a vertical edge along
887
         * the edge of the rectangle. Likewise with the right edge if it's
888
         * entirely to the right of the rectangle.*/
889
684k
        if (le.start.x > xright) {
890
56.8k
            if (le.end.x > xright) {
891
126
                return 0;
892
126
            }
893
56.6k
            clip = true;
894
627k
        } else if (le.end.x > xright) {
895
36.6k
            clip = true;
896
36.6k
        }
897
684k
        if (le.start.x < xleft) {
898
281k
            if (le.end.x < xleft) {
899
64.4k
                le.start.x = xleft;
900
64.4k
                le.end.x   = xleft;
901
64.4k
                le.start.y = ybot;
902
64.4k
                le.end.y   = ytop;
903
216k
            } else {
904
216k
                clip = true;
905
216k
            }
906
403k
        } else if (le.end.x < xleft) {
907
145k
            clip = true;
908
145k
        }
909
684k
        if (re.start.x < xleft) {
910
41.6k
            if (re.end.x < xleft) {
911
39
                return 0;
912
39
            }
913
41.6k
            clip = true;
914
642k
        } else if (re.end.x < xleft) {
915
56.5k
            clip = true;
916
56.5k
        }
917
684k
        if (re.start.x > xright) {
918
199k
            if (re.end.x > xright) {
919
53.0k
                re.start.x = xright;
920
53.0k
                re.end.x   = xright;
921
53.0k
                re.start.y = ybot;
922
53.0k
                re.end.y   = ytop;
923
146k
            } else {
924
146k
                clip = true;
925
146k
            }
926
485k
        } else if (re.end.x > xright) {
927
214k
            clip = true;
928
214k
        }
929
684k
        if (clip)
930
481k
        {
931
            /* Some form of clipping seems to be required. A certain amount
932
             * of horridness goes on here to ensure that we round 'outwards'
933
             * in all cases. */
934
481k
            gs_fixed_edge lenew, renew;
935
481k
            fixed ybl, ybr, ytl, ytr, ymid;
936
937
            /* Reduce the clipping region horizontally if possible. */
938
481k
            if (re.start.x > re.end.x) {
939
177k
                if (re.start.x < xright)
940
31.2k
                    xright = re.start.x;
941
304k
            } else if (re.end.x < xright)
942
39.6k
                xright = re.end.x;
943
481k
            if (le.start.x > le.end.x) {
944
177k
                if (le.end.x > xleft)
945
31.9k
                    xleft = le.end.x;
946
304k
            } else if (le.start.x > xleft)
947
35.1k
                xleft = le.start.x;
948
949
481k
            ybot = max(ybot, min(le.start.y, re.start.y));
950
481k
            ytop = min(ytop, max(le.end.y, re.end.y));
951
#if 0
952
            /* RJW: I've disabled this code a) because it doesn't make any
953
             * difference in the cluster tests, and b) because I think it's wrong.
954
             * Taking the first case as an example; just because the le.start.x
955
             * is > xright, does not mean that we can simply truncate the edge at
956
             * xright, as this may throw away part of the trap between ybot and
957
             * the new le.start.y. */
958
            /* Reduce the edges to the left/right of the clipping region. */
959
            /* Only in the 4 cases which can bring ytop/ybot closer */
960
            if (le.start.x > xright) {
961
                le.start.y += (fixed)((int64_t)(le.end.y-le.start.y)*
962
                                      (int64_t)(le.start.x-xright)/
963
                                      (int64_t)(le.start.x-le.end.x));
964
                le.start.x = xright;
965
            }
966
            if (re.start.x < xleft) {
967
                re.start.y += (fixed)((int64_t)(re.end.y-re.start.y)*
968
                                      (int64_t)(xleft-re.start.x)/
969
                                      (int64_t)(re.end.x-re.start.x));
970
                re.start.x = xleft;
971
            }
972
            if (le.end.x > xright) {
973
                le.end.y -= (fixed)((int64_t)(le.end.y-le.start.y)*
974
                                    (int64_t)(le.end.x-xright)/
975
                                    (int64_t)(le.end.x-le.start.x));
976
                le.end.x = xright;
977
            }
978
            if (re.end.x < xleft) {
979
                re.end.y -= (fixed)((int64_t)(re.end.y-re.start.y)*
980
                                    (int64_t)(xleft-re.end.x)/
981
                                    (int64_t)(re.start.x-re.end.x));
982
                re.end.x = xleft;
983
            }
984
#endif
985
986
481k
            if (ybot >= ytop)
987
0
                return 0;
988
            /* Follow the edges in, so that le.start.y == ybot etc. */
989
481k
            if (le.start.y < ybot) {
990
265k
                int round = ((le.end.x < le.start.x) ?
991
138k
                             (le.end.y-le.start.y-1) : 0);
992
265k
                le.start.x += (fixed)(((int64_t)(ybot-le.start.y)*
993
265k
                                       (int64_t)(le.end.x-le.start.x)-round)/
994
265k
                                      (int64_t)(le.end.y-le.start.y));
995
265k
                le.start.y = ybot;
996
265k
            }
997
481k
            if (le.end.y > ytop) {
998
267k
                int round = ((le.end.x > le.start.x) ?
999
224k
                             (le.end.y-le.start.y-1) : 0);
1000
267k
                le.end.x += (fixed)(((int64_t)(le.end.y-ytop)*
1001
267k
                                     (int64_t)(le.start.x-le.end.x)-round)/
1002
267k
                                    (int64_t)(le.end.y-le.start.y));
1003
267k
                le.end.y = ytop;
1004
267k
            }
1005
481k
            if ((le.start.x < xleft) && (le.end.x < xleft)) {
1006
266k
                le.start.x = xleft;
1007
266k
                le.end.x   = xleft;
1008
266k
                le.start.y = ybot;
1009
266k
                le.end.y   = ytop;
1010
266k
            }
1011
481k
            if (re.start.y < ybot) {
1012
268k
                int round = ((re.end.x > re.start.x) ?
1013
224k
                             (re.end.y-re.start.y-1) : 0);
1014
268k
                re.start.x += (fixed)(((int64_t)(ybot-re.start.y)*
1015
268k
                                       (int64_t)(re.end.x-re.start.x)+round)/
1016
268k
                                      (int64_t)(re.end.y-re.start.y));
1017
268k
                re.start.y = ybot;
1018
268k
            }
1019
481k
            if (re.end.y > ytop) {
1020
270k
                int round = ((re.end.x < re.start.x) ?
1021
138k
                             (re.end.y-re.start.y-1) : 0);
1022
270k
                re.end.x += (fixed)(((int64_t)(re.end.y-ytop)*
1023
270k
                                     (int64_t)(re.start.x-re.end.x)+round)/
1024
270k
                                    (int64_t)(re.end.y-re.start.y));
1025
270k
                re.end.y = ytop;
1026
270k
            }
1027
481k
            if ((re.start.x > xright) && (re.end.x > xright)) {
1028
95.1k
                re.start.x = xright;
1029
95.1k
                re.end.x   = xright;
1030
95.1k
                re.start.y = ybot;
1031
95.1k
                re.end.y   = ytop;
1032
95.1k
            }
1033
            /* Now, check whether the left and right edges cross. Previously
1034
             * this comment said: "This can only happen (for well formed
1035
             * input) in the case where one of the edges was completely out
1036
             * of range and has now been pulled in to the edge of the clip
1037
             * region." I now do not believe this to be true. */
1038
481k
            if (le.start.x > re.start.x) {
1039
76.4k
                if (le.start.x == le.end.x) {
1040
36.9k
                    if (re.start.x == re.end.x)
1041
0
                        return 0;
1042
36.9k
                    ybot += (fixed)((int64_t)(re.end.y-re.start.y)*
1043
36.9k
                                    (int64_t)(le.start.x-re.start.x)/
1044
36.9k
                                    (int64_t)(re.end.x-re.start.x));
1045
36.9k
                    re.start.x = le.start.x;
1046
39.4k
                } else {
1047
39.4k
                    ybot += (fixed)((int64_t)(le.end.y-le.start.y)*
1048
39.4k
                                    (int64_t)(le.start.x-re.start.x)/
1049
39.4k
                                    (int64_t)(le.start.x-le.end.x));
1050
39.4k
                    le.start.x = re.start.x;
1051
39.4k
                }
1052
76.4k
                if (ybot >= ytop)
1053
26.1k
                    return 0;
1054
50.3k
                le.start.y = ybot;
1055
50.3k
                re.start.y = ybot;
1056
50.3k
            }
1057
455k
            if (le.end.x > re.end.x) {
1058
49.7k
                if (le.start.x == le.end.x) {
1059
30.4k
                    if (re.start.x == re.end.x)
1060
0
                        return 0;
1061
30.4k
                    ytop -= (fixed)((int64_t)(re.end.y-re.start.y)*
1062
30.4k
                                    (int64_t)(le.end.x-re.end.x)/
1063
30.4k
                                    (int64_t)(re.start.x-re.end.x));
1064
30.4k
                    re.end.x = le.end.x;
1065
30.4k
                } else {
1066
19.2k
                    ytop -= (fixed)((int64_t)(le.end.y-le.start.y)*
1067
19.2k
                                    (int64_t)(le.end.x-re.end.x)/
1068
19.2k
                                    (int64_t)(le.end.x-le.start.x));
1069
19.2k
                    le.end.x = re.end.x;
1070
19.2k
                }
1071
49.7k
                if (ybot >= ytop)
1072
24.2k
                    return 0;
1073
25.4k
                le.end.y = ytop;
1074
25.4k
                re.end.y = ytop;
1075
25.4k
            }
1076
            /* At this point we are guaranteed that le and re are constrained
1077
             * as tightly as possible to the ybot/ytop range, and that the
1078
             * entire ybot/ytop range will be marked at least somewhere. All
1079
             * we need to do now is to actually fill the region.
1080
             */
1081
431k
            lenew.start.x = xleft;
1082
431k
            lenew.start.y = ybot;
1083
431k
            lenew.end.x   = xleft;
1084
431k
            lenew.end.y   = ytop;
1085
431k
            renew.start.x = xright;
1086
431k
            renew.start.y = ybot;
1087
431k
            renew.end.x   = xright;
1088
431k
            renew.end.y   = ytop;
1089
            /* Figure out where the left edge intersects with the left at
1090
             * the bottom */
1091
431k
            ybl = ybot;
1092
431k
            if (le.start.x > le.end.x) {
1093
65.9k
                ybl += (fixed)((int64_t)(le.start.x-xleft) *
1094
65.9k
                               (int64_t)(le.end.y-le.start.y) /
1095
65.9k
                               (int64_t)(le.start.x-le.end.x));
1096
65.9k
                if (ybl > ytop)
1097
26.2k
                    ybl = ytop;
1098
65.9k
            }
1099
            /* Figure out where the right edge intersects with the right at
1100
             * the bottom */
1101
431k
            ybr = ybot;
1102
431k
            if (re.start.x < re.end.x) {
1103
149k
                ybr += (fixed)((int64_t)(xright-re.start.x) *
1104
149k
                               (int64_t)(re.end.y-re.start.y) /
1105
149k
                               (int64_t)(re.end.x-re.start.x));
1106
149k
                if (ybr > ytop)
1107
28.3k
                    ybr = ytop;
1108
149k
            }
1109
            /* Figure out where the left edge intersects with the left at
1110
             * the top */
1111
431k
            ytl = ytop;
1112
431k
            if (le.end.x > le.start.x) {
1113
72.6k
                ytl -= (fixed)((int64_t)(le.end.x-xleft) *
1114
72.6k
                               (int64_t)(le.end.y-le.start.y) /
1115
72.6k
                               (int64_t)(le.end.x-le.start.x));
1116
72.6k
                if (ytl < ybot)
1117
26.4k
                    ytl = ybot;
1118
72.6k
            }
1119
            /* Figure out where the right edge intersects with the right at
1120
             * the bottom */
1121
431k
            ytr = ytop;
1122
431k
            if (re.end.x < re.start.x) {
1123
160k
                ytr -= (fixed)((int64_t)(xright-re.end.x) *
1124
160k
                               (int64_t)(re.end.y-re.start.y) /
1125
160k
                               (int64_t)(re.start.x-re.end.x));
1126
160k
                if (ytr < ybot)
1127
25.8k
                    ytr = ybot;
1128
160k
            }
1129
            /* Check for the 2 cases where top and bottom diagonal extents
1130
             * overlap, and deal with them explicitly. */
1131
431k
            if (ytl < ybr) {
1132
                /*     |     |
1133
                 *  ---+-----+---
1134
                 *     | /222|
1135
                 *     |/111/|
1136
                 *     |000/ |
1137
                 *  ---+-----+---
1138
                 *     |     |
1139
                 */
1140
28.8k
                code = dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
1141
28.8k
                                        &lenew, &re, ybot, ytl,
1142
28.8k
                                        swap_axes, pdevc, pfs->pgs->log_op);
1143
28.8k
                if (code < 0)
1144
0
                    return code;
1145
28.8k
                code = dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
1146
28.8k
                                        &le, &re, ytl, ybr,
1147
28.8k
                                        swap_axes, pdevc, pfs->pgs->log_op);
1148
28.8k
                if (code < 0)
1149
0
                    return code;
1150
28.8k
                ybot = ybr;
1151
28.8k
                return dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
1152
28.8k
                                        &le, &renew, ybr, ytop,
1153
28.8k
                                        swap_axes, pdevc, pfs->pgs->log_op);
1154
402k
            } else if (ytr < ybl) {
1155
                /*     |     |
1156
                 *  ---+-----+----
1157
                 *     |555\ |
1158
                 *     |\444\|
1159
                 *     | \333|
1160
                 *  ---+-----+---
1161
                 *     |     |
1162
                 */
1163
33.6k
                code = dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
1164
33.6k
                                        &le, &renew, ybot, ytr,
1165
33.6k
                                        swap_axes, pdevc, pfs->pgs->log_op);
1166
33.6k
                if (code < 0)
1167
0
                    return code;
1168
33.6k
                code = dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
1169
33.6k
                                        &le, &re, ytr, ybl,
1170
33.6k
                                        swap_axes, pdevc, pfs->pgs->log_op);
1171
33.6k
                if (code < 0)
1172
0
                    return code;
1173
33.6k
                return dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
1174
33.6k
                                        &le, &re, ybl, ytop,
1175
33.6k
                                        swap_axes, pdevc, pfs->pgs->log_op);
1176
33.6k
            }
1177
            /* Fill in any section where both left and right edges are
1178
             * diagonal at the bottom */
1179
369k
            ymid = ybl;
1180
369k
            if (ymid > ybr)
1181
22.3k
                ymid = ybr;
1182
369k
            if (ymid > ybot) {
1183
                /*     |\   |          |   /|
1184
                 *     | \6/|    or    |\6/ |
1185
                 *  ---+----+---    ---+----+---
1186
                 *     |    |          |    |
1187
                 */
1188
8.78k
                code = dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
1189
8.78k
                                        &le, &re, ybot, ymid,
1190
8.78k
                                        swap_axes, pdevc, pfs->pgs->log_op);
1191
8.78k
                if (code < 0)
1192
0
                    return code;
1193
8.78k
                ybot = ymid;
1194
8.78k
            }
1195
            /* Fill in any section where both left and right edges are
1196
             * diagonal at the top */
1197
369k
            ymid = ytl;
1198
369k
            if (ymid < ytr)
1199
18.2k
                ymid = ytr;
1200
369k
            if (ymid < ytop) {
1201
                /*     |    |          |    |
1202
                 *  ---+----+---    ---+----+---
1203
                 *     |/7\ |    or    | /7\|
1204
                 *     |   \|          |/   |
1205
                 */
1206
10.3k
                code = dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
1207
10.3k
                                        &le, &re, ymid, ytop,
1208
10.3k
                                        swap_axes, pdevc, pfs->pgs->log_op);
1209
10.3k
                if (code < 0)
1210
0
                    return code;
1211
10.3k
                ytop = ymid;
1212
10.3k
            }
1213
            /* Now do the single diagonal cases at the bottom */
1214
369k
            if (ybl > ybot) {
1215
                /*     |    |
1216
                 *     |\666|
1217
                 *  ---+----+---
1218
                 *     |    |
1219
                 */
1220
22.3k
                code = dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
1221
22.3k
                                        &le, &renew, ybot, ybl,
1222
22.3k
                                        swap_axes, pdevc, pfs->pgs->log_op);
1223
22.3k
                if (code < 0)
1224
0
                    return code;
1225
22.3k
                ybot = ybl;
1226
346k
            } else if (ybr > ybot) {
1227
                /*     |    |
1228
                 *     |777/|
1229
                 *  ---+----+---
1230
                 *     |    |
1231
                 */
1232
19.3k
                code = dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
1233
19.3k
                                        &lenew, &re, ybot, ybr,
1234
19.3k
                                        swap_axes, pdevc, pfs->pgs->log_op);
1235
19.3k
                if (code < 0)
1236
0
                    return code;
1237
19.3k
                ybot = ybr;
1238
19.3k
            }
1239
            /* Now do the single diagonal cases at the top */
1240
369k
            if (ytl < ytop) {
1241
                /*     |    |
1242
                 *  ---+----+---
1243
                 *     |/888|
1244
                 *     |    |
1245
                 */
1246
18.2k
                code = dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
1247
18.2k
                                        &le, &renew, ytl, ytop,
1248
18.2k
                                        swap_axes, pdevc, pfs->pgs->log_op);
1249
18.2k
                if (code < 0)
1250
0
                    return code;
1251
18.2k
                ytop = ytl;
1252
350k
            } else if (ytr < ytop) {
1253
                /*     |    |
1254
                 *  ---+----+---
1255
                 *     |999\|
1256
                 *     |    |
1257
                 */
1258
24.0k
                code = dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
1259
24.0k
                                        &lenew, &re, ytr, ytop,
1260
24.0k
                                        swap_axes, pdevc, pfs->pgs->log_op);
1261
24.0k
                if (code < 0)
1262
0
                    return code;
1263
24.0k
                ytop = ytr;
1264
24.0k
            }
1265
            /* And finally just whatever rectangular section is left over in
1266
             * the middle */
1267
369k
            if (ybot > ytop)
1268
0
                return 0;
1269
369k
            return dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
1270
369k
                                        &lenew, &renew, ybot, ytop,
1271
369k
                                        swap_axes, pdevc, pfs->pgs->log_op);
1272
369k
        }
1273
684k
    }
1274
905k
    return dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
1275
905k
            &le, &re, ybot, ytop, swap_axes, pdevc, pfs->pgs->log_op);
1276
1.38M
}
1277
1278
static inline void
1279
dc2fc31(const patch_fill_state_t *pfs, gx_device_color *pdevc,
1280
            frac31 fc[GX_DEVICE_COLOR_MAX_COMPONENTS])
1281
0
{
1282
0
    int j;
1283
0
    const gx_device_color_info *cinfo = &pfs->trans_device->color_info;
1284
    /* Note trans device is actually either the transparency parent
1285
       device if transparency is present or the target device.  Basically
1286
       the device from which we want to get the color information from
1287
       for this */
1288
1289
0
    if (pdevc->type == &gx_dc_type_data_pure) {
1290
0
        for (j = 0; j < cinfo->num_components; j++) {
1291
0
                int shift = cinfo->comp_shift[j];
1292
0
                int bits = cinfo->comp_bits[j];
1293
1294
0
                fc[j] = ((pdevc->colors.pure >> shift) & ((1 << bits) - 1)) <<
1295
0
                        (sizeof(frac31) * 8 - 1 - bits);
1296
0
        }
1297
0
    } else {
1298
0
        for (j = 0; j < cinfo->num_components; j++) {
1299
0
                fc[j] = cv2frac31(pdevc->colors.devn.values[j]);
1300
0
        }
1301
0
    }
1302
0
}
1303
1304
853M
#define DEBUG_COLOR_INDEX_CACHE 0
1305
1306
static inline int
1307
patch_color_to_device_color_inline(const patch_fill_state_t *pfs,
1308
                                   const patch_color_t *c, gx_device_color *pdevc,
1309
                                   frac31 *frac_values)
1310
213M
{
1311
    /* Must return 2 if the color is not pure.
1312
       See try_device_linear_color.
1313
     */
1314
213M
    int code;
1315
213M
    gx_device_color devc;
1316
1317
213M
#ifdef PACIFY_VALGRIND
1318
    /* This is a hack to get us around some valgrind warnings seen
1319
     * when transparency is in use with the clist. We run through
1320
     * the shading code dealing with pfs->num_components components.
1321
     * I believe this is intended to match the source space of the
1322
     * shading, as we have to perform all shadings in the source
1323
     * space initially, and only convert after decomposition.
1324
     * When this reaches down to the clist writing phase, the
1325
     * clist writes pfs->dev->color_info.num_components color
1326
     * components to the clist. In the example I am using
1327
     *  pfs->num_components = 1
1328
     *  pfs->dev->color_info.num_components=3
1329
     * So valgrind complains that 2 of the 3 color components
1330
     * it is writing are uninitialised. Magically, it appears
1331
     * not to actually use them when read back though, so
1332
     * it suffices to blank them to kill the warnings now.
1333
     * If pfs->num_components > pfs->dev->color_info.num_components
1334
     * then we'll not be writing enough information to the clist
1335
     * and so hopefully we'll see bad rendering!
1336
     *
1337
     * An example that shows why this is required:
1338
     *  make gsdebugvg
1339
     *  valgrind --track-origins=yes debugbin/gs -sOutputFile=test.ps
1340
     *    -dMaxBitmap=1000 -sDEVICE=ps2write  -r300  -Z: -dNOPAUSE
1341
     *    -dBATCH -K2000000 -dClusterJob Bug693480.pdf
1342
     * (though ps2write is not implicated here).
1343
     */
1344
213M
     if (frac_values) {
1345
141M
        int i;
1346
141M
  int n = pfs->dev->color_info.num_components;
1347
168M
  for (i = pfs->num_components; i < n; i++) {
1348
27.0M
            frac_values[i] = 0;
1349
27.0M
  }
1350
141M
    }
1351
213M
#endif
1352
1353
213M
    if (DEBUG_COLOR_INDEX_CACHE && pdevc == NULL)
1354
0
        pdevc = &devc;
1355
213M
    if (pfs->pcic) {
1356
143M
        code = gs_cached_color_index(pfs->pcic, c->cc.paint.values, pdevc, frac_values);
1357
143M
        if (code < 0)
1358
0
            return code;
1359
143M
    }
1360
213M
    if (DEBUG_COLOR_INDEX_CACHE || pfs->pcic == NULL) {
1361
#       if DEBUG_COLOR_INDEX_CACHE
1362
        gx_color_index cindex = pdevc->colors.pure;
1363
#       endif
1364
70.1M
        gs_client_color fcc;
1365
70.1M
        const gs_color_space *pcs = pfs->direct_space;
1366
1367
70.1M
        if (pcs != NULL) {
1368
1369
70.1M
            if (pdevc == NULL)
1370
0
                pdevc = &devc;
1371
70.1M
            memcpy(fcc.paint.values, c->cc.paint.values,
1372
70.1M
                        sizeof(fcc.paint.values[0]) * pfs->num_components);
1373
70.1M
            code = pcs->type->remap_color(&fcc, pcs, pdevc, pfs->pgs,
1374
70.1M
                                      pfs->trans_device, gs_color_select_texture);
1375
70.1M
            if (code < 0)
1376
0
                return code;
1377
70.1M
            if (frac_values != NULL) {
1378
0
                if (!(pdevc->type == &gx_dc_type_data_devn ||
1379
0
                      pdevc->type == &gx_dc_type_data_pure))
1380
0
                    return 2;
1381
0
                dc2fc31(pfs, pdevc, frac_values);
1382
0
            }
1383
#           if DEBUG_COLOR_INDEX_CACHE
1384
            if (cindex != pdevc->colors.pure)
1385
                return_error(gs_error_unregistered);
1386
#           endif
1387
70.1M
        } else {
1388
            /* This is reserved for future extension,
1389
            when a linear color triangle with frac31 colors is being decomposed
1390
            during a clist rasterization. In this case frac31 colors are written into
1391
            the patch color, and pcs==NULL means an identity color mapping.
1392
            For a while we assume here pfs->pcic is also NULL. */
1393
0
            int j;
1394
0
            const gx_device_color_info *cinfo = &pfs->dev->color_info;
1395
1396
0
            for (j = 0; j < cinfo->num_components; j++)
1397
0
                frac_values[j] = (frac31)c->cc.paint.values[j];
1398
0
            pdevc->type = &gx_dc_type_data_pure;
1399
0
        }
1400
70.1M
    }
1401
213M
    return 0;
1402
213M
}
1403
1404
int
1405
patch_color_to_device_color(const patch_fill_state_t *pfs, const patch_color_t *c, gx_device_color *pdevc)
1406
0
{
1407
0
    return patch_color_to_device_color_inline(pfs, c, pdevc, NULL);
1408
0
}
1409
1410
static inline double
1411
color_span(const patch_fill_state_t *pfs, const patch_color_t *c0, const patch_color_t *c1)
1412
337M
{
1413
337M
    int n = pfs->num_components, i;
1414
337M
    double m;
1415
1416
    /* Dont want to copy colors, which are big things. */
1417
337M
    m = any_abs(c1->cc.paint.values[0] - c0->cc.paint.values[0]) / pfs->color_domain.paint.values[0];
1418
1.25G
    for (i = 1; i < n; i++)
1419
922M
        m = max(m, any_abs(c1->cc.paint.values[i] - c0->cc.paint.values[i]) / pfs->color_domain.paint.values[i]);
1420
337M
    return m;
1421
337M
}
1422
1423
static inline void
1424
color_diff(const patch_fill_state_t *pfs, const patch_color_t *c0, const patch_color_t *c1, patch_color_t *d)
1425
67.2M
{
1426
67.2M
    int n = pfs->num_components, i;
1427
1428
320M
    for (i = 0; i < n; i++)
1429
252M
        d->cc.paint.values[i] = c1->cc.paint.values[i] - c0->cc.paint.values[i];
1430
67.2M
}
1431
1432
static inline double
1433
color_norm(const patch_fill_state_t *pfs, const patch_color_t *c)
1434
51.6M
{
1435
51.6M
    int n = pfs->num_components, i;
1436
51.6M
    double m;
1437
1438
51.6M
    m = any_abs(c->cc.paint.values[0]) / pfs->color_domain.paint.values[0];
1439
194M
    for (i = 1; i < n; i++)
1440
142M
        m = max(m, any_abs(c->cc.paint.values[i]) / pfs->color_domain.paint.values[i]);
1441
51.6M
    return m;
1442
51.6M
}
1443
1444
static inline int
1445
isnt_color_monotonic(const patch_fill_state_t *pfs, const patch_color_t *c0, const patch_color_t *c1)
1446
14.2M
{   /* checks whether the color is monotonic in the n-dimensional interval,
1447
       where n is the number of parameters in c0->t, c1->t.
1448
       returns : 0 = monotonic,
1449
       bit 0 = not or don't know by t0,
1450
       bit 1 = not or don't know by t1,
1451
       <0 = error. */
1452
    /* When pfs->Function is not set, the color is monotonic.
1453
       In this case do not call this function because
1454
       it doesn't check whether pfs->Function is set.
1455
       Actually pfs->monotonic_color prevents that.
1456
     */
1457
    /* This assumes that the color space is always monotonic.
1458
       Non-monotonic color spaces are not recommended by PLRM,
1459
       and the result with them may be imprecise.
1460
     */
1461
14.2M
    uint mask;
1462
14.2M
    int code = gs_function_is_monotonic(pfs->Function, c0->t, c1->t, &mask);
1463
1464
14.2M
    if (code >= 0)
1465
14.2M
        return mask;
1466
21
    return code;
1467
14.2M
}
1468
1469
static inline bool
1470
covers_pixel_centers(fixed ybot, fixed ytop)
1471
38.0M
{
1472
38.0M
    return fixed_pixround(ybot) < fixed_pixround(ytop);
1473
38.0M
}
1474
1475
static inline int
1476
constant_color_trapezoid(patch_fill_state_t *pfs, gs_fixed_edge *le, gs_fixed_edge *re,
1477
        fixed ybot, fixed ytop, bool swap_axes, const patch_color_t *c)
1478
19.8M
{
1479
19.8M
    gx_device_color dc;
1480
19.8M
    int code;
1481
1482
#   if NOFILL_TEST
1483
        /* if (dbg_nofill)
1484
                return 0; */
1485
#   endif
1486
1487
19.8M
    code = patch_color_to_device_color_inline(pfs, c, &dc, NULL);
1488
19.8M
    if (code < 0)
1489
0
        return code;
1490
1491
19.8M
    dc.tag = device_current_tag(pfs->dev);
1492
1493
19.8M
    return dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
1494
19.8M
        le, re, ybot, ytop, swap_axes, &dc, pfs->pgs->log_op);
1495
19.8M
}
1496
1497
static inline float
1498
function_linearity(const patch_fill_state_t *pfs, const patch_color_t *c0, const patch_color_t *c1)
1499
168M
{
1500
168M
    float s = 0;
1501
1502
168M
    if (pfs->Function != NULL) {
1503
19.0M
        patch_color_t c;
1504
        /* Solaris 9 (Sun C 5.5) compiler cannot initialize a 'const' */
1505
        /* unless it is 'static const' */
1506
19.0M
        static const float q[2] = {(float)0.3, (float)0.7};
1507
19.0M
        int i, j;
1508
1509
55.6M
        for (j = 0; j < count_of(q); j++) {
1510
37.3M
            c.t[0] = c0->t[0] * (1 - q[j]) + c1->t[0] * q[j];
1511
37.3M
            c.t[1] = c0->t[1] * (1 - q[j]) + c1->t[1] * q[j];
1512
37.3M
            patch_resolve_color_inline(&c, pfs);
1513
142M
            for (i = 0; i < pfs->num_components; i++) {
1514
105M
                float v = c0->cc.paint.values[i] * (1 - q[j]) + c1->cc.paint.values[i] * q[j];
1515
105M
                float d = v - c.cc.paint.values[i];
1516
105M
                float s1 = any_abs(d) / pfs->color_domain.paint.values[i];
1517
1518
105M
                if (s1 > pfs->smoothness)
1519
778k
                    return s1;
1520
105M
                if (s < s1)
1521
9.59M
                    s = s1;
1522
105M
            }
1523
37.3M
        }
1524
19.0M
    }
1525
167M
    return s;
1526
168M
}
1527
1528
static inline int
1529
is_color_linear(const patch_fill_state_t *pfs, const patch_color_t *c0, const patch_color_t *c1)
1530
55.4M
{   /* returns : 1 = linear, 0 = unlinear, <0 = error. */
1531
55.4M
    if (pfs->unlinear)
1532
10.0M
        return 1; /* Disable this check. */
1533
45.3M
    else {
1534
45.3M
        const gs_color_space *cs = pfs->direct_space;
1535
45.3M
        int code;
1536
45.3M
        float s = function_linearity(pfs, c0, c1);
1537
1538
45.3M
        if (s > pfs->smoothness)
1539
450k
            return 0;
1540
44.9M
        if (pfs->cs_always_linear)
1541
18.7M
            return 1;
1542
26.1M
        code = cs_is_linear(cs, pfs->pgs, pfs->trans_device,
1543
26.1M
                &c0->cc, &c1->cc, NULL, NULL, pfs->smoothness - s, pfs->icclink);
1544
26.1M
        if (code <= 0)
1545
159k
            return code;
1546
25.9M
        return 1;
1547
26.1M
    }
1548
55.4M
}
1549
1550
static int
1551
decompose_linear_color(patch_fill_state_t *pfs, gs_fixed_edge *le, gs_fixed_edge *re,
1552
        fixed ybot, fixed ytop, bool swap_axes, const patch_color_t *c0,
1553
        const patch_color_t *c1)
1554
83.5M
{
1555
    /* Assuming a very narrow trapezoid - ignore the transversal color variation. */
1556
    /* Assuming the XY span is restricted with curve_samples.
1557
       It is important for intersection_of_small_bars to compute faster. */
1558
83.5M
    int code;
1559
83.5M
    patch_color_t *c;
1560
83.5M
    byte *color_stack_ptr;
1561
83.5M
    bool save_inside = pfs->inside;
1562
1563
83.5M
    if (!pfs->inside) {
1564
71.9M
        gs_fixed_rect r, r1;
1565
1566
71.9M
        if(swap_axes) {
1567
31.2M
            r.p.y = min(le->start.x, le->end.x);
1568
31.2M
            r.p.x = min(le->start.y, le->end.y);
1569
31.2M
            r.q.y = max(re->start.x, re->end.x);
1570
31.2M
            r.q.x = max(re->start.y, re->end.y);
1571
40.7M
        } else {
1572
40.7M
            r.p.x = min(le->start.x, le->end.x);
1573
40.7M
            r.p.y = min(le->start.y, le->end.y);
1574
40.7M
            r.q.x = max(re->start.x, re->end.x);
1575
40.7M
            r.q.y = max(re->start.y, re->end.y);
1576
40.7M
        }
1577
71.9M
        r1 = r;
1578
71.9M
        rect_intersect(r, pfs->rect);
1579
71.9M
        if (r.q.x <= r.p.x || r.q.y <= r.p.y)
1580
43.9M
            return 0;
1581
27.9M
        if (r1.p.x == r.p.x && r1.p.y == r.p.y &&
1582
27.9M
            r1.q.x == r.q.x && r1.q.y == r.q.y)
1583
10.5M
            pfs->inside = true;
1584
27.9M
    }
1585
39.5M
    color_stack_ptr = reserve_colors_inline(pfs, &c, 1);
1586
39.5M
    if (color_stack_ptr == NULL)
1587
0
        return_error(gs_error_unregistered); /* Must not happen. */
1588
    /* Use the recursive decomposition due to isnt_color_monotonic
1589
       based on fn_is_monotonic_proc_t is_monotonic,
1590
       which applies to intervals. */
1591
39.5M
    patch_interpolate_color(c, c0, c1, pfs, 0.5);
1592
39.5M
    if (ytop - ybot < pfs->decomposition_limit) /* Prevent an infinite color decomposition. */
1593
3.20M
        code = constant_color_trapezoid(pfs, le, re, ybot, ytop, swap_axes, c);
1594
36.3M
    else {
1595
36.3M
        bool monotonic_color_save = pfs->monotonic_color;
1596
36.3M
        bool linear_color_save = pfs->linear_color;
1597
1598
36.3M
        if (!pfs->monotonic_color) {
1599
11.9M
            code = isnt_color_monotonic(pfs, c0, c1);
1600
11.9M
            if (code < 0)
1601
21
                goto out;
1602
11.9M
            if (!code)
1603
9.35M
                pfs->monotonic_color = true;
1604
11.9M
        }
1605
36.3M
        if (pfs->monotonic_color && !pfs->linear_color) {
1606
19.8M
            code = is_color_linear(pfs, c0, c1);
1607
19.8M
            if (code < 0)
1608
0
                goto out;
1609
19.8M
            if (code > 0)
1610
19.6M
                pfs->linear_color =  true;
1611
19.8M
        }
1612
36.3M
        if (!pfs->unlinear && pfs->linear_color) {
1613
9.56M
            gx_device *pdev = pfs->dev;
1614
9.56M
            frac31 fc[2][GX_DEVICE_COLOR_MAX_COMPONENTS];
1615
9.56M
            gs_fill_attributes fa;
1616
9.56M
            gs_fixed_rect clip;
1617
1618
9.56M
            memset(fc, 0x99, sizeof(fc));
1619
1620
9.56M
            clip = pfs->rect;
1621
9.56M
            if (swap_axes) {
1622
3.23M
                fixed v;
1623
1624
3.23M
                v = clip.p.x; clip.p.x = clip.p.y; clip.p.y = v;
1625
3.23M
                v = clip.q.x; clip.q.x = clip.q.y; clip.q.y = v;
1626
                /* Don't need adjust_swapped_boundary here. */
1627
3.23M
            }
1628
9.56M
            clip.p.y = max(clip.p.y, ybot);
1629
9.56M
            clip.q.y = min(clip.q.y, ytop);
1630
9.56M
            fa.clip = &clip;
1631
9.56M
            fa.ht = NULL;
1632
9.56M
            fa.swap_axes = swap_axes;
1633
9.56M
            fa.lop = 0;
1634
9.56M
            fa.ystart = ybot;
1635
9.56M
            fa.yend = ytop;
1636
9.56M
            code = patch_color_to_device_color_inline(pfs, c0, NULL, fc[0]);
1637
9.56M
            if (code < 0)
1638
0
                goto out;
1639
9.56M
            if (code == 2) {
1640
                /* Must not happen. */
1641
0
                code=gs_note_error(gs_error_unregistered);
1642
0
                goto out;
1643
0
            }
1644
9.56M
            code = patch_color_to_device_color_inline(pfs, c1, NULL, fc[1]);
1645
9.56M
            if (code < 0)
1646
0
                goto out;
1647
9.56M
            code = dev_proc(pdev, fill_linear_color_trapezoid)(pdev, &fa,
1648
9.56M
                            &le->start, &le->end, &re->start, &re->end,
1649
9.56M
                            fc[0], fc[1], NULL, NULL);
1650
9.56M
            if (code == 1) {
1651
9.56M
                pfs->monotonic_color = monotonic_color_save;
1652
9.56M
                pfs->linear_color = linear_color_save;
1653
9.56M
                code = 0; /* The area is filled. */
1654
9.56M
                goto out;
1655
9.56M
            }
1656
17
            if (code < 0)
1657
17
                goto out;
1658
0
            else {      /* code == 0, the device requested to decompose the area. */
1659
0
                code = gs_note_error(gs_error_unregistered); /* Must not happen. */
1660
0
                goto out;
1661
0
            }
1662
17
        }
1663
26.7M
        if (!pfs->unlinear || !pfs->linear_color ||
1664
26.7M
                color_span(pfs, c0, c1) > pfs->smoothness) {
1665
10.1M
            fixed y = (ybot + ytop) / 2;
1666
1667
10.1M
            code = decompose_linear_color(pfs, le, re, ybot, y, swap_axes, c0, c);
1668
10.1M
            if (code >= 0)
1669
10.1M
                code = decompose_linear_color(pfs, le, re, y, ytop, swap_axes, c, c1);
1670
10.1M
        } else
1671
16.6M
            code = constant_color_trapezoid(pfs, le, re, ybot, ytop, swap_axes, c);
1672
26.7M
        pfs->monotonic_color = monotonic_color_save;
1673
26.7M
        pfs->linear_color = linear_color_save;
1674
26.7M
    }
1675
39.5M
out:
1676
39.5M
    pfs->inside = save_inside;
1677
39.5M
    release_colors_inline(pfs, color_stack_ptr, 1);
1678
39.5M
    return code;
1679
39.5M
}
1680
1681
static inline int
1682
linear_color_trapezoid(patch_fill_state_t *pfs, gs_fixed_point q[4], int i0, int i1, int i2, int i3,
1683
                fixed ybot, fixed ytop, bool swap_axes, const patch_color_t *c0, const patch_color_t *c1,
1684
                bool orient)
1685
27.9M
{
1686
    /* Assuming a very narrow trapezoid - ignore the transversal color change. */
1687
27.9M
    gs_fixed_edge le, re;
1688
1689
27.9M
    make_trapezoid(q, i0, i1, i2, i3, ybot, ytop, swap_axes, orient, &le, &re);
1690
27.9M
    return decompose_linear_color(pfs, &le, &re, ybot, ytop, swap_axes, c0, c1);
1691
27.9M
}
1692
1693
static int
1694
wedge_trap_decompose(patch_fill_state_t *pfs, gs_fixed_point q[4],
1695
        fixed ybot, fixed ytop, const patch_color_t *c0, const patch_color_t *c1,
1696
        bool swap_axes, bool self_intersecting)
1697
38.0M
{
1698
    /* Assuming a very narrow trapezoid - ignore the transversal color change. */
1699
38.0M
    fixed dx1, dy1, dx2, dy2;
1700
38.0M
    bool orient;
1701
1702
38.0M
    if (!pfs->vectorization && !covers_pixel_centers(ybot, ytop))
1703
10.1M
        return 0;
1704
27.9M
    if (ybot == ytop)
1705
0
        return 0;
1706
27.9M
    dx1 = q[1].x - q[0].x, dy1 = q[1].y - q[0].y;
1707
27.9M
    dx2 = q[2].x - q[0].x, dy2 = q[2].y - q[0].y;
1708
27.9M
    if ((int64_t)dx1 * dy2 != (int64_t)dy1 * dx2) {
1709
13.9M
        orient = ((int64_t)dx1 * dy2 > (int64_t)dy1 * dx2);
1710
13.9M
        return linear_color_trapezoid(pfs, q, 0, 1, 2, 3, ybot, ytop, swap_axes, c0, c1, orient);
1711
14.0M
    } else {
1712
14.0M
        fixed dx3 = q[3].x - q[0].x, dy3 = q[3].y - q[0].y;
1713
1714
14.0M
        orient = ((int64_t)dx1 * dy3 > (int64_t)dy1 * dx3);
1715
14.0M
        return linear_color_trapezoid(pfs, q, 0, 1, 2, 3, ybot, ytop, swap_axes, c0, c1, orient);
1716
14.0M
    }
1717
27.9M
}
1718
1719
static inline int
1720
fill_wedge_trap(patch_fill_state_t *pfs, const gs_fixed_point *p0, const gs_fixed_point *p1,
1721
            const gs_fixed_point *q0, const gs_fixed_point *q1, const patch_color_t *c0, const patch_color_t *c1,
1722
            bool swap_axes, bool self_intersecting)
1723
38.0M
{
1724
    /* We assume that the width of the wedge is close to zero,
1725
       so we can ignore the slope when computing transversal distances. */
1726
38.0M
    gs_fixed_point p[4];
1727
38.0M
    const patch_color_t *cc0, *cc1;
1728
1729
38.0M
    if (p0->y < p1->y) {
1730
18.5M
        p[2] = *p0;
1731
18.5M
        p[3] = *p1;
1732
18.5M
        cc0 = c0;
1733
18.5M
        cc1 = c1;
1734
19.5M
    } else {
1735
19.5M
        p[2] = *p1;
1736
19.5M
        p[3] = *p0;
1737
19.5M
        cc0 = c1;
1738
19.5M
        cc1 = c0;
1739
19.5M
    }
1740
38.0M
    p[0] = *q0;
1741
38.0M
    p[1] = *q1;
1742
38.0M
    return wedge_trap_decompose(pfs, p, p[2].y, p[3].y, cc0, cc1, swap_axes, self_intersecting);
1743
38.0M
}
1744
1745
static void
1746
split_curve_s(const gs_fixed_point *pole, gs_fixed_point *q0, gs_fixed_point *q1, int pole_step)
1747
229M
{
1748
    /*  This copies a code fragment from split_curve_midpoint,
1749
        substituting another data type.
1750
     */
1751
    /*
1752
     * We have to define midpoint carefully to avoid overflow.
1753
     * (If it overflows, something really pathological is going
1754
     * on, but we could get infinite recursion that way....)
1755
     */
1756
229M
#define midpoint(a,b)\
1757
2.74G
  (arith_rshift_1(a) + arith_rshift_1(b) + (((a) | (b)) & 1))
1758
229M
    fixed x12 = midpoint(pole[1 * pole_step].x, pole[2 * pole_step].x);
1759
229M
    fixed y12 = midpoint(pole[1 * pole_step].y, pole[2 * pole_step].y);
1760
1761
    /* q[0] and q[1] must not be the same as pole. */
1762
229M
    q0[1 * pole_step].x = midpoint(pole[0 * pole_step].x, pole[1 * pole_step].x);
1763
229M
    q0[1 * pole_step].y = midpoint(pole[0 * pole_step].y, pole[1 * pole_step].y);
1764
229M
    q1[2 * pole_step].x = midpoint(pole[2 * pole_step].x, pole[3 * pole_step].x);
1765
229M
    q1[2 * pole_step].y = midpoint(pole[2 * pole_step].y, pole[3 * pole_step].y);
1766
229M
    q0[2 * pole_step].x = midpoint(q0[1 * pole_step].x, x12);
1767
229M
    q0[2 * pole_step].y = midpoint(q0[1 * pole_step].y, y12);
1768
229M
    q1[1 * pole_step].x = midpoint(x12, q1[2 * pole_step].x);
1769
229M
    q1[1 * pole_step].y = midpoint(y12, q1[2 * pole_step].y);
1770
229M
    q0[0 * pole_step].x = pole[0 * pole_step].x;
1771
229M
    q0[0 * pole_step].y = pole[0 * pole_step].y;
1772
229M
    q0[3 * pole_step].x = q1[0 * pole_step].x = midpoint(q0[2 * pole_step].x, q1[1 * pole_step].x);
1773
229M
    q0[3 * pole_step].y = q1[0 * pole_step].y = midpoint(q0[2 * pole_step].y, q1[1 * pole_step].y);
1774
229M
    q1[3 * pole_step].x = pole[3 * pole_step].x;
1775
229M
    q1[3 * pole_step].y = pole[3 * pole_step].y;
1776
229M
#undef midpoint
1777
229M
}
1778
1779
static void
1780
split_curve(const gs_fixed_point pole[4], gs_fixed_point q0[4], gs_fixed_point q1[4])
1781
5.81M
{
1782
5.81M
    split_curve_s(pole, q0, q1, 1);
1783
5.81M
}
1784
1785
#ifdef SHADING_SWAP_AXES_FOR_PRECISION
1786
static inline void
1787
do_swap_axes(gs_fixed_point *p, int k)
1788
{
1789
    int i;
1790
1791
    for (i = 0; i < k; i++) {
1792
        p[i].x ^= p[i].y; p[i].y ^= p[i].x; p[i].x ^= p[i].y;
1793
    }
1794
}
1795
1796
static inline fixed
1797
span_x(const gs_fixed_point *p, int k)
1798
{
1799
    int i;
1800
    fixed xmin = p[0].x, xmax = p[0].x;
1801
1802
    for (i = 1; i < k; i++) {
1803
        xmin = min(xmin, p[i].x);
1804
        xmax = max(xmax, p[i].x);
1805
    }
1806
    return xmax - xmin;
1807
}
1808
1809
static inline fixed
1810
span_y(const gs_fixed_point *p, int k)
1811
{
1812
    int i;
1813
    fixed ymin = p[0].y, ymax = p[0].y;
1814
1815
    for (i = 1; i < k; i++) {
1816
        ymin = min(ymin, p[i].y);
1817
        ymax = max(ymax, p[i].y);
1818
    }
1819
    return ymax - ymin;
1820
}
1821
#endif
1822
1823
static inline fixed
1824
manhattan_dist(const gs_fixed_point *p0, const gs_fixed_point *p1)
1825
25.0M
{
1826
25.0M
    fixed dx = any_abs(p1->x - p0->x), dy = any_abs(p1->y - p0->y);
1827
1828
25.0M
    return max(dx, dy);
1829
25.0M
}
1830
1831
static inline int
1832
create_wedge_vertex_list(patch_fill_state_t *pfs, wedge_vertex_list_t *l,
1833
        const gs_fixed_point *p0, const gs_fixed_point *p1)
1834
7.78M
{
1835
7.78M
    if (l->end != NULL)
1836
0
        return_error(gs_error_unregistered); /* Must not happen. */
1837
7.78M
    l->beg = wedge_vertex_list_elem_reserve(pfs);
1838
7.78M
    l->end = wedge_vertex_list_elem_reserve(pfs);
1839
7.78M
    if (l->beg == NULL)
1840
0
        return_error(gs_error_unregistered); /* Must not happen. */
1841
7.78M
    if (l->end == NULL)
1842
0
        return_error(gs_error_unregistered); /* Must not happen. */
1843
7.78M
    l->beg->prev = l->end->next = NULL;
1844
7.78M
    l->beg->next = l->end;
1845
7.78M
    l->end->prev = l->beg;
1846
7.78M
    l->beg->p = *p0;
1847
7.78M
    l->end->p = *p1;
1848
7.78M
    l->beg->level = l->end->level = 0;
1849
7.78M
    return 0;
1850
7.78M
}
1851
1852
static inline int
1853
insert_wedge_vertex_list_elem(patch_fill_state_t *pfs, wedge_vertex_list_t *l,
1854
                              const gs_fixed_point *p, wedge_vertex_list_elem_t **r)
1855
14.9M
{
1856
14.9M
    wedge_vertex_list_elem_t *e = wedge_vertex_list_elem_reserve(pfs);
1857
1858
    /* We have got enough free elements due to the preliminary decomposition
1859
       of curves to LAZY_WEDGES_MAX_LEVEL, see curve_samples. */
1860
14.9M
    if (e == NULL)
1861
0
        return_error(gs_error_unregistered); /* Must not happen. */
1862
14.9M
    if (l->beg->next != l->end)
1863
0
        return_error(gs_error_unregistered); /* Must not happen. */
1864
14.9M
    if (l->end->prev != l->beg)
1865
0
        return_error(gs_error_unregistered); /* Must not happen. */
1866
14.9M
    e->next = l->end;
1867
14.9M
    e->prev = l->beg;
1868
14.9M
    e->p = *p;
1869
14.9M
    e->level = max(l->beg->level, l->end->level) + 1;
1870
14.9M
    e->divide_count = 0;
1871
14.9M
    l->beg->next = l->end->prev = e;
1872
14.9M
    {   int sx = l->beg->p.x < l->end->p.x ? 1 : -1;
1873
14.9M
        int sy = l->beg->p.y < l->end->p.y ? 1 : -1;
1874
1875
14.9M
        if ((p->x - l->beg->p.x) * sx < 0)
1876
0
            return_error(gs_error_unregistered); /* Must not happen. */
1877
14.9M
        if ((p->y - l->beg->p.y) * sy < 0)
1878
0
            return_error(gs_error_unregistered); /* Must not happen. */
1879
14.9M
        if ((l->end->p.x - p->x) * sx < 0)
1880
0
            return_error(gs_error_unregistered); /* Must not happen. */
1881
14.9M
        if ((l->end->p.y - p->y) * sy < 0)
1882
0
            return_error(gs_error_unregistered); /* Must not happen. */
1883
14.9M
    }
1884
14.9M
    *r = e;
1885
14.9M
    return 0;
1886
14.9M
}
1887
1888
static inline int
1889
open_wedge_median(patch_fill_state_t *pfs, wedge_vertex_list_t *l,
1890
        const gs_fixed_point *p0, const gs_fixed_point *p1, const gs_fixed_point *pm,
1891
        wedge_vertex_list_elem_t **r)
1892
22.6M
{
1893
22.6M
    wedge_vertex_list_elem_t *e;
1894
22.6M
    int code;
1895
1896
22.6M
    if (!l->last_side) {
1897
14.5M
        if (l->beg == NULL) {
1898
7.55M
            code = create_wedge_vertex_list(pfs, l, p0, p1);
1899
7.55M
            if (code < 0)
1900
0
                return code;
1901
7.55M
        }
1902
14.5M
        if (l->beg->p.x != p0->x)
1903
0
            return_error(gs_error_unregistered); /* Must not happen. */
1904
14.5M
        if (l->beg->p.y != p0->y)
1905
0
            return_error(gs_error_unregistered); /* Must not happen. */
1906
14.5M
        if (l->end->p.x != p1->x)
1907
0
            return_error(gs_error_unregistered); /* Must not happen. */
1908
14.5M
        if (l->end->p.y != p1->y)
1909
0
            return_error(gs_error_unregistered); /* Must not happen. */
1910
14.5M
        code = insert_wedge_vertex_list_elem(pfs, l, pm, &e);
1911
14.5M
        if (code < 0)
1912
0
            return code;
1913
14.5M
        e->divide_count++;
1914
14.5M
    } else if (l->beg == NULL) {
1915
230k
        code = create_wedge_vertex_list(pfs, l, p1, p0);
1916
230k
        if (code < 0)
1917
0
            return code;
1918
230k
        code = insert_wedge_vertex_list_elem(pfs, l, pm, &e);
1919
230k
        if (code < 0)
1920
0
            return code;
1921
230k
        e->divide_count++;
1922
7.92M
    } else {
1923
7.92M
        if (l->beg->p.x != p1->x)
1924
0
            return_error(gs_error_unregistered); /* Must not happen. */
1925
7.92M
        if (l->beg->p.y != p1->y)
1926
0
            return_error(gs_error_unregistered); /* Must not happen. */
1927
7.92M
        if (l->end->p.x != p0->x)
1928
0
            return_error(gs_error_unregistered); /* Must not happen. */
1929
7.92M
        if (l->end->p.y != p0->y)
1930
0
            return_error(gs_error_unregistered); /* Must not happen. */
1931
7.92M
        if (l->beg->next == l->end) {
1932
180k
            code = insert_wedge_vertex_list_elem(pfs, l, pm, &e);
1933
180k
            if (code < 0)
1934
0
                return code;
1935
180k
            e->divide_count++;
1936
7.74M
        } else {
1937
7.74M
            e = wedge_vertex_list_find(l->beg, l->end,
1938
7.74M
                        max(l->beg->level, l->end->level) + 1);
1939
7.74M
            if (e == NULL)
1940
0
                return_error(gs_error_unregistered); /* Must not happen. */
1941
7.74M
            if (e->p.x != pm->x || e->p.y != pm->y)
1942
0
                return_error(gs_error_unregistered); /* Must not happen. */
1943
7.74M
            e->divide_count++;
1944
7.74M
        }
1945
7.92M
    }
1946
22.6M
    *r = e;
1947
22.6M
    return 0;
1948
22.6M
}
1949
1950
static inline int
1951
make_wedge_median(patch_fill_state_t *pfs, wedge_vertex_list_t *l,
1952
        wedge_vertex_list_t *l0, bool forth,
1953
        const gs_fixed_point *p0, const gs_fixed_point *p1, const gs_fixed_point *pm)
1954
22.6M
{
1955
22.6M
    int code;
1956
1957
22.6M
    l->last_side = l0->last_side;
1958
22.6M
    if (!l->last_side ^ !forth) {
1959
13.1M
        code = open_wedge_median(pfs, l0, p0, p1, pm, &l->end);
1960
13.1M
        l->beg = l0->beg;
1961
13.1M
    } else {
1962
9.50M
        code = open_wedge_median(pfs, l0, p0, p1, pm, &l->beg);
1963
9.50M
        l->end = l0->end;
1964
9.50M
    }
1965
22.6M
    return code;
1966
22.6M
}
1967
1968
static int fill_wedge_from_list(patch_fill_state_t *pfs, const wedge_vertex_list_t *l,
1969
            const patch_color_t *c0, const patch_color_t *c1);
1970
1971
static inline int
1972
close_wedge_median(patch_fill_state_t *pfs, wedge_vertex_list_t *l,
1973
        const patch_color_t *c0, const patch_color_t *c1)
1974
22.6M
{
1975
22.6M
    int code;
1976
1977
22.6M
    if (!l->last_side)
1978
14.5M
        return 0;
1979
8.15M
    code = fill_wedge_from_list(pfs, l, c1, c0);
1980
8.15M
    if (code < 0)
1981
0
        return code;
1982
8.15M
    release_wedge_vertex_list_interval(pfs, l->beg, l->end);
1983
8.15M
    return 0;
1984
8.15M
}
1985
1986
static inline void
1987
move_wedge(wedge_vertex_list_t *l, const wedge_vertex_list_t *l0, bool forth)
1988
22.6M
{
1989
22.6M
    if (!l->last_side ^ !forth) {
1990
13.1M
        l->beg = l->end;
1991
13.1M
        l->end = l0->end;
1992
13.1M
    } else {
1993
9.50M
        l->end = l->beg;
1994
9.50M
        l->beg = l0->beg;
1995
9.50M
    }
1996
22.6M
}
1997
1998
static inline int
1999
fill_triangle_wedge_aux(patch_fill_state_t *pfs,
2000
            const shading_vertex_t *q0, const shading_vertex_t *q1, const shading_vertex_t *q2)
2001
19.0M
{   int code;
2002
19.0M
    const gs_fixed_point *p0, *p1, *p2;
2003
19.0M
    gs_fixed_point qq0, qq1, qq2;
2004
19.0M
    fixed dx = any_abs(q0->p.x - q1->p.x), dy = any_abs(q0->p.y - q1->p.y);
2005
19.0M
    bool swap_axes;
2006
2007
#   if SKIP_TEST
2008
        dbg_wedge_triangle_cnt++;
2009
#   endif
2010
19.0M
    if (dx > dy) {
2011
10.7M
        swap_axes = true;
2012
10.7M
        qq0.x = q0->p.y;
2013
10.7M
        qq0.y = q0->p.x;
2014
10.7M
        qq1.x = q1->p.y;
2015
10.7M
        qq1.y = q1->p.x;
2016
10.7M
        qq2.x = q2->p.y;
2017
10.7M
        qq2.y = q2->p.x;
2018
10.7M
        p0 = &qq0;
2019
10.7M
        p1 = &qq1;
2020
10.7M
        p2 = &qq2;
2021
10.7M
    } else {
2022
8.26M
        swap_axes = false;
2023
8.26M
        p0 = &q0->p;
2024
8.26M
        p1 = &q1->p;
2025
8.26M
        p2 = &q2->p;
2026
8.26M
    }
2027
    /* We decompose the thin triangle into 2 thin trapezoids.
2028
       An optimization with decomposing into 2 triangles
2029
       appears low useful, because the self_intersecting argument
2030
       with inline expansion does that job perfectly. */
2031
19.0M
    if (p0->y < p1->y) {
2032
9.30M
        code = fill_wedge_trap(pfs, p0, p2, p0, p1, q0->c, q2->c, swap_axes, false);
2033
9.30M
        if (code < 0)
2034
2
            return code;
2035
9.30M
        return fill_wedge_trap(pfs, p2, p1, p0, p1, q2->c, q1->c, swap_axes, false);
2036
9.74M
    } else {
2037
9.74M
        code = fill_wedge_trap(pfs, p0, p2, p1, p0, q0->c, q2->c, swap_axes, false);
2038
9.74M
        if (code < 0)
2039
6
            return code;
2040
9.74M
        return fill_wedge_trap(pfs, p2, p1, p1, p0, q2->c, q1->c, swap_axes, false);
2041
9.74M
    }
2042
19.0M
}
2043
2044
static inline int
2045
try_device_linear_color(patch_fill_state_t *pfs, bool wedge,
2046
        const shading_vertex_t *p0, const shading_vertex_t *p1,
2047
        const shading_vertex_t *p2)
2048
91.7M
{
2049
    /*  Returns :
2050
        <0 - error;
2051
        0 - success;
2052
        1 - decompose to linear color areas;
2053
        2 - decompose to constant color areas;
2054
     */
2055
91.7M
    int code;
2056
2057
91.7M
    if (pfs->unlinear)
2058
50.5M
        return 2;
2059
41.2M
    if (!wedge) {
2060
41.2M
        const gs_color_space *cs = pfs->direct_space;
2061
2062
41.2M
        if (cs != NULL) {
2063
41.2M
            float s0, s1, s2, s01, s012;
2064
2065
41.2M
            s0 = function_linearity(pfs, p0->c, p1->c);
2066
41.2M
            if (s0 > pfs->smoothness)
2067
198k
                return 1;
2068
41.0M
            s1 = function_linearity(pfs, p1->c, p2->c);
2069
41.0M
            if (s1 > pfs->smoothness)
2070
127k
                return 1;
2071
40.9M
            s2 = function_linearity(pfs, p2->c, p0->c);
2072
40.9M
            if (s2 > pfs->smoothness)
2073
1.80k
                return 1;
2074
            /* fixme: check an inner color ? */
2075
40.9M
            s01 = max(s0, s1);
2076
40.9M
            s012 = max(s01, s2);
2077
40.9M
            if (pfs->cs_always_linear)
2078
13.8M
                code = 1;
2079
27.0M
            else
2080
27.0M
                code = cs_is_linear(cs, pfs->pgs, pfs->trans_device,
2081
40.9M
                                  &p0->c->cc, &p1->c->cc, &p2->c->cc, NULL,
2082
40.9M
                                  pfs->smoothness - s012, pfs->icclink);
2083
40.9M
            if (code < 0)
2084
0
                return code;
2085
40.9M
            if (code == 0)
2086
127k
                return 1;
2087
40.9M
        }
2088
41.2M
    }
2089
40.7M
    {   gx_device *pdev = pfs->dev;
2090
40.7M
        frac31 fc[3][GX_DEVICE_COLOR_MAX_COMPONENTS];
2091
40.7M
        gs_fill_attributes fa;
2092
40.7M
        gx_device_color dc[3];
2093
2094
40.7M
        fa.clip = &pfs->rect;
2095
40.7M
        fa.ht = NULL;
2096
40.7M
        fa.swap_axes = false;
2097
40.7M
        fa.lop = 0;
2098
40.7M
        code = patch_color_to_device_color_inline(pfs, p0->c, &dc[0], fc[0]);
2099
40.7M
        if (code != 0)
2100
0
            return code;
2101
40.7M
        if (!(dc[0].type == &gx_dc_type_data_pure ||
2102
40.7M
            dc[0].type == &gx_dc_type_data_devn))
2103
0
            return 2;
2104
40.7M
        if (!wedge) {
2105
40.7M
            code = patch_color_to_device_color_inline(pfs, p1->c, &dc[1], fc[1]);
2106
40.7M
            if (code != 0)
2107
0
                return code;
2108
40.7M
        }
2109
40.7M
        code = patch_color_to_device_color_inline(pfs, p2->c, &dc[2], fc[2]);
2110
40.7M
        if (code != 0)
2111
0
            return code;
2112
40.7M
        code = dev_proc(pdev, fill_linear_color_triangle)(pdev, &fa,
2113
40.7M
                        &p0->p, &p1->p, &p2->p,
2114
40.7M
                        fc[0], (wedge ? NULL : fc[1]), fc[2]);
2115
40.7M
        if (code == 1)
2116
40.7M
            return 0; /* The area is filled. */
2117
0
        if (code < 0)
2118
0
            return code;
2119
0
        else /* code == 0, the device requested to decompose the area. */
2120
0
            return 1;
2121
0
    }
2122
0
}
2123
2124
static inline int
2125
fill_triangle_wedge(patch_fill_state_t *pfs,
2126
            const shading_vertex_t *q0, const shading_vertex_t *q1, const shading_vertex_t *q2)
2127
36.4M
{
2128
36.4M
    if ((int64_t)(q1->p.x - q0->p.x) * (q2->p.y - q0->p.y) ==
2129
36.4M
        (int64_t)(q1->p.y - q0->p.y) * (q2->p.x - q0->p.x))
2130
17.4M
        return 0; /* Zero area. */
2131
    /*
2132
        Can't apply try_device_linear_color here
2133
        because didn't check is_color_linear.
2134
        Maybe need a decomposition.
2135
        Do same as for 'unlinear', and branch later.
2136
     */
2137
19.0M
    return fill_triangle_wedge_aux(pfs, q0, q1, q2);
2138
36.4M
}
2139
2140
static inline int
2141
fill_triangle_wedge_from_list(patch_fill_state_t *pfs,
2142
    const wedge_vertex_list_elem_t *beg, const wedge_vertex_list_elem_t *end,
2143
    const wedge_vertex_list_elem_t *mid,
2144
    const patch_color_t *c0, const patch_color_t *c1)
2145
7.19M
{
2146
7.19M
    shading_vertex_t p[3];
2147
7.19M
    patch_color_t *c;
2148
7.19M
    byte *color_stack_ptr = reserve_colors_inline(pfs, &c, 1);
2149
7.19M
    int code;
2150
2151
7.19M
    if (color_stack_ptr == NULL)
2152
0
        return_error(gs_error_unregistered); /* Must not happen. */
2153
7.19M
    p[2].c = c;
2154
7.19M
    p[0].p = beg->p;
2155
7.19M
    p[0].c = c0;
2156
7.19M
    p[1].p = end->p;
2157
7.19M
    p[1].c = c1;
2158
7.19M
    p[2].p = mid->p;
2159
7.19M
    patch_interpolate_color(c, c0, c1, pfs, 0.5);
2160
7.19M
    code = fill_triangle_wedge(pfs, &p[0], &p[1], &p[2]);
2161
7.19M
    release_colors_inline(pfs, color_stack_ptr, 1);
2162
7.19M
    return code;
2163
7.19M
}
2164
2165
static int
2166
fill_wedge_from_list_rec(patch_fill_state_t *pfs,
2167
            wedge_vertex_list_elem_t *beg, const wedge_vertex_list_elem_t *end,
2168
            int level, const patch_color_t *c0, const patch_color_t *c1)
2169
20.0M
{
2170
20.0M
    if (beg->next == end)
2171
5.11M
        return 0;
2172
14.9M
    else if (beg->next->next == end) {
2173
12.8M
        if (beg->next->divide_count != 1 && beg->next->divide_count != 2)
2174
0
            return_error(gs_error_unregistered); /* Must not happen. */
2175
12.8M
        if (beg->next->divide_count != 1)
2176
7.69M
            return 0;
2177
5.18M
        return fill_triangle_wedge_from_list(pfs, beg, end, beg->next, c0, c1);
2178
12.8M
    } else {
2179
2.05M
        gs_fixed_point p;
2180
2.05M
        wedge_vertex_list_elem_t *e;
2181
2.05M
        patch_color_t *c;
2182
2.05M
        int code;
2183
2.05M
        byte *color_stack_ptr = reserve_colors_inline(pfs, &c, 1);
2184
2185
2.05M
        if (color_stack_ptr == NULL)
2186
0
            return_error(gs_error_unregistered); /* Must not happen. */
2187
2.05M
        p.x = (beg->p.x + end->p.x) / 2;
2188
2.05M
        p.y = (beg->p.y + end->p.y) / 2;
2189
2.05M
        e = wedge_vertex_list_find(beg, end, level + 1);
2190
2.05M
        if (e == NULL)
2191
0
            return_error(gs_error_unregistered); /* Must not happen. */
2192
2.05M
        if (e->p.x != p.x || e->p.y != p.y)
2193
0
            return_error(gs_error_unregistered); /* Must not happen. */
2194
2.05M
        patch_interpolate_color(c, c0, c1, pfs, 0.5);
2195
2.05M
        code = fill_wedge_from_list_rec(pfs, beg, e, level + 1, c0, c);
2196
2.05M
        if (code >= 0)
2197
2.05M
            code = fill_wedge_from_list_rec(pfs, e, end, level + 1, c, c1);
2198
2.05M
        if (code >= 0) {
2199
2.05M
            if (e->divide_count != 1 && e->divide_count != 2)
2200
0
                return_error(gs_error_unregistered); /* Must not happen. */
2201
2.05M
            if (e->divide_count == 1)
2202
2.00M
                code = fill_triangle_wedge_from_list(pfs, beg, end, e, c0, c1);
2203
2.05M
        }
2204
2.05M
        release_colors_inline(pfs, color_stack_ptr, 1);
2205
2.05M
        return code;
2206
2.05M
    }
2207
20.0M
}
2208
2209
static int
2210
fill_wedge_from_list(patch_fill_state_t *pfs, const wedge_vertex_list_t *l,
2211
            const patch_color_t *c0, const patch_color_t *c1)
2212
15.9M
{
2213
15.9M
    return fill_wedge_from_list_rec(pfs, l->beg, l->end,
2214
15.9M
                    max(l->beg->level, l->end->level), c0, c1);
2215
15.9M
}
2216
2217
static inline int
2218
terminate_wedge_vertex_list(patch_fill_state_t *pfs, wedge_vertex_list_t *l,
2219
        const patch_color_t *c0, const patch_color_t *c1)
2220
200M
{
2221
200M
    if (l->beg != NULL) {
2222
7.78M
        int code = fill_wedge_from_list(pfs, l, c0, c1);
2223
2224
7.78M
        if (code < 0)
2225
0
            return code;
2226
7.78M
        return release_wedge_vertex_list(pfs, l, 1);
2227
7.78M
    }
2228
193M
    return 0;
2229
200M
}
2230
2231
static int
2232
wedge_by_triangles(patch_fill_state_t *pfs, int ka,
2233
        const gs_fixed_point pole[4], const patch_color_t *c0, const patch_color_t *c1)
2234
5.55M
{   /* Assuming ka >= 2, see fill_wedges. */
2235
5.55M
    gs_fixed_point q[2][4];
2236
5.55M
    patch_color_t *c;
2237
5.55M
    shading_vertex_t p[3];
2238
5.55M
    int code;
2239
5.55M
    byte *color_stack_ptr = reserve_colors_inline(pfs, &c, 1);
2240
2241
5.55M
    if (color_stack_ptr == NULL)
2242
0
        return_error(gs_error_unregistered); /* Must not happen. */
2243
5.55M
    p[2].c = c;
2244
5.55M
    split_curve(pole, q[0], q[1]);
2245
5.55M
    p[0].p = pole[0];
2246
5.55M
    p[0].c = c0;
2247
5.55M
    p[1].p = pole[3];
2248
5.55M
    p[1].c = c1;
2249
5.55M
    p[2].p = q[0][3];
2250
5.55M
    patch_interpolate_color(c, c0, c1, pfs, 0.5);
2251
5.55M
    code = fill_triangle_wedge(pfs, &p[0], &p[1], &p[2]);
2252
5.55M
    if (code >= 0) {
2253
5.55M
        if (ka == 2)
2254
2.83M
            goto out;
2255
2.71M
        code = wedge_by_triangles(pfs, ka / 2, q[0], c0, p[2].c);
2256
2.71M
    }
2257
2.71M
    if (code >= 0)
2258
2.71M
        code = wedge_by_triangles(pfs, ka / 2, q[1], p[2].c, c1);
2259
5.55M
out:
2260
5.55M
    release_colors_inline(pfs, color_stack_ptr, 1);
2261
5.55M
    return code;
2262
2.71M
}
2263
2264
int
2265
mesh_padding(patch_fill_state_t *pfs, const gs_fixed_point *p0, const gs_fixed_point *p1,
2266
            const patch_color_t *c0, const patch_color_t *c1)
2267
35.3M
{
2268
35.3M
    gs_fixed_point q0, q1;
2269
35.3M
    const patch_color_t *cc0, *cc1;
2270
35.3M
    fixed dx = p1->x - p0->x;
2271
35.3M
    fixed dy = p1->y - p0->y;
2272
35.3M
    bool swap_axes = (any_abs(dx) > any_abs(dy));
2273
35.3M
    gs_fixed_edge le, re;
2274
35.3M
    const fixed adjust = INTERPATCH_PADDING;
2275
2276
35.3M
    if (swap_axes) {
2277
12.8M
        if (p0->x < p1->x) {
2278
6.29M
            q0.x = p0->y;
2279
6.29M
            q0.y = p0->x;
2280
6.29M
            q1.x = p1->y;
2281
6.29M
            q1.y = p1->x;
2282
6.29M
            cc0 = c0;
2283
6.29M
            cc1 = c1;
2284
6.55M
        } else {
2285
6.55M
            q0.x = p1->y;
2286
6.55M
            q0.y = p1->x;
2287
6.55M
            q1.x = p0->y;
2288
6.55M
            q1.y = p0->x;
2289
6.55M
            cc0 = c1;
2290
6.55M
            cc1 = c0;
2291
6.55M
        }
2292
22.4M
    } else if (p0->y < p1->y) {
2293
3.80M
        q0 = *p0;
2294
3.80M
        q1 = *p1;
2295
3.80M
        cc0 = c0;
2296
3.80M
        cc1 = c1;
2297
18.6M
    } else {
2298
18.6M
        q0 = *p1;
2299
18.6M
        q1 = *p0;
2300
18.6M
        cc0 = c1;
2301
18.6M
        cc1 = c0;
2302
18.6M
    }
2303
35.3M
    le.start.x = q0.x - adjust;
2304
35.3M
    re.start.x = q0.x + adjust;
2305
35.3M
    le.start.y = re.start.y = q0.y - adjust;
2306
35.3M
    le.end.x = q1.x - adjust;
2307
35.3M
    re.end.x = q1.x + adjust;
2308
35.3M
    le.end.y = re.end.y = q1.y + adjust;
2309
35.3M
    adjust_swapped_boundary(&re.start.x, swap_axes);
2310
35.3M
    adjust_swapped_boundary(&re.end.x, swap_axes);
2311
35.3M
    return decompose_linear_color(pfs, &le, &re, le.start.y, le.end.y, swap_axes, cc0, cc1);
2312
    /* fixme : for a better performance and quality, we would like to
2313
       consider the bar as an oriented one and to know at what side of it the spot resides.
2314
       If we know that, we could expand only to outside the spot.
2315
       Note that if the boundary has a self-intersection,
2316
       we still need to expand to both directions.
2317
     */
2318
35.3M
}
2319
2320
static inline void
2321
bbox_of_points(gs_fixed_rect *r,
2322
        const gs_fixed_point *p0, const gs_fixed_point *p1,
2323
        const gs_fixed_point *p2, const gs_fixed_point *p3)
2324
38.1M
{
2325
38.1M
    r->p.x = r->q.x = p0->x;
2326
38.1M
    r->p.y = r->q.y = p0->y;
2327
2328
38.1M
    if (r->p.x > p1->x)
2329
15.6M
        r->p.x = p1->x;
2330
38.1M
    if (r->q.x < p1->x)
2331
15.8M
        r->q.x = p1->x;
2332
38.1M
    if (r->p.y > p1->y)
2333
16.0M
        r->p.y = p1->y;
2334
38.1M
    if (r->q.y < p1->y)
2335
15.3M
        r->q.y = p1->y;
2336
2337
38.1M
    if (r->p.x > p2->x)
2338
8.25M
        r->p.x = p2->x;
2339
38.1M
    if (r->q.x < p2->x)
2340
8.32M
        r->q.x = p2->x;
2341
38.1M
    if (r->p.y > p2->y)
2342
7.87M
        r->p.y = p2->y;
2343
38.1M
    if (r->q.y < p2->y)
2344
8.56M
        r->q.y = p2->y;
2345
2346
38.1M
    if (p3 == NULL)
2347
27.8M
        return;
2348
2349
10.3M
    if (r->p.x > p3->x)
2350
2.13M
        r->p.x = p3->x;
2351
10.3M
    if (r->q.x < p3->x)
2352
2.58M
        r->q.x = p3->x;
2353
10.3M
    if (r->p.y > p3->y)
2354
2.10M
        r->p.y = p3->y;
2355
10.3M
    if (r->q.y < p3->y)
2356
2.26M
        r->q.y = p3->y;
2357
10.3M
}
2358
2359
static int
2360
fill_wedges_aux(patch_fill_state_t *pfs, int k, int ka,
2361
        const gs_fixed_point pole[4], const patch_color_t *c0, const patch_color_t *c1,
2362
        int wedge_type)
2363
2.79M
{
2364
2.79M
    int code;
2365
2366
2.79M
    if (k > 1) {
2367
1.02M
        gs_fixed_point q[2][4];
2368
1.02M
        patch_color_t *c;
2369
1.02M
        bool save_inside = pfs->inside;
2370
1.02M
        byte *color_stack_ptr;
2371
2372
1.02M
        if (!pfs->inside) {
2373
949k
            gs_fixed_rect r, r1;
2374
2375
949k
            bbox_of_points(&r, &pole[0], &pole[1], &pole[2], &pole[3]);
2376
949k
            r.p.x -= INTERPATCH_PADDING;
2377
949k
            r.p.y -= INTERPATCH_PADDING;
2378
949k
            r.q.x += INTERPATCH_PADDING;
2379
949k
            r.q.y += INTERPATCH_PADDING;
2380
949k
            r1 = r;
2381
949k
            rect_intersect(r, pfs->rect);
2382
949k
            if (r.q.x <= r.p.x || r.q.y <= r.p.y)
2383
766k
                return 0;
2384
182k
            if (r1.p.x == r.p.x && r1.p.y == r.p.y &&
2385
182k
                r1.q.x == r.q.x && r1.q.y == r.q.y)
2386
58.9k
                pfs->inside = true;
2387
182k
        }
2388
259k
        color_stack_ptr = reserve_colors_inline(pfs, &c, 1);
2389
259k
        if (color_stack_ptr == NULL)
2390
0
            return_error(gs_error_unregistered); /* Must not happen. */
2391
259k
        patch_interpolate_color(c, c0, c1, pfs, 0.5);
2392
259k
        split_curve(pole, q[0], q[1]);
2393
259k
        code = fill_wedges_aux(pfs, k / 2, ka, q[0], c0, c, wedge_type);
2394
259k
        if (code >= 0)
2395
259k
            code = fill_wedges_aux(pfs, k / 2, ka, q[1], c, c1, wedge_type);
2396
259k
        release_colors_inline(pfs, color_stack_ptr, 1);
2397
259k
        pfs->inside = save_inside;
2398
259k
        return code;
2399
1.76M
    } else {
2400
1.76M
        if ((INTERPATCH_PADDING != 0) && (wedge_type & interpatch_padding)) {
2401
1.71M
            code = mesh_padding(pfs, &pole[0], &pole[3], c0, c1);
2402
1.71M
            if (code < 0)
2403
0
                return code;
2404
1.71M
        }
2405
1.76M
        if (ka >= 2 && (wedge_type & inpatch_wedge))
2406
114k
            return wedge_by_triangles(pfs, ka, pole, c0, c1);
2407
1.65M
        return 0;
2408
1.76M
    }
2409
2.79M
}
2410
2411
static int
2412
fill_wedges(patch_fill_state_t *pfs, int k0, int k1,
2413
        const gs_fixed_point *pole, int pole_step,
2414
        const patch_color_t *c0, const patch_color_t *c1,
2415
        int wedge_type)
2416
24.0M
{
2417
    /* Generate wedges between 2 variants of a curve flattening. */
2418
    /* k0, k1 is a power of 2. */
2419
24.0M
    gs_fixed_point p[4];
2420
2421
24.0M
    if (!(wedge_type & interpatch_padding) && k0 == k1)
2422
21.7M
        return 0; /* Wedges are zero area. */
2423
2.27M
    if (k0 > k1) { /* Swap if required, so that k0 <= k1 */
2424
0
        k0 ^= k1; k1 ^= k0; k0 ^= k1;
2425
0
    }
2426
2.27M
    p[0] = pole[0];
2427
2.27M
    p[1] = pole[pole_step];
2428
2.27M
    p[2] = pole[pole_step * 2];
2429
2.27M
    p[3] = pole[pole_step * 3];
2430
2.27M
    return fill_wedges_aux(pfs, k0, k1 / k0, p, c0, c1, wedge_type);
2431
24.0M
}
2432
2433
static inline void
2434
make_vertices(gs_fixed_point q[4], const quadrangle_patch *p)
2435
690k
{
2436
690k
    q[0] = p->p[0][0]->p;
2437
690k
    q[1] = p->p[0][1]->p;
2438
690k
    q[2] = p->p[1][1]->p;
2439
690k
    q[3] = p->p[1][0]->p;
2440
690k
}
2441
2442
static inline void
2443
wrap_vertices_by_y(gs_fixed_point q[4], const gs_fixed_point s[4])
2444
690k
{
2445
690k
    fixed y = s[0].y;
2446
690k
    int i = 0;
2447
2448
690k
    if (y > s[1].y)
2449
291k
        i = 1, y = s[1].y;
2450
690k
    if (y > s[2].y)
2451
121k
        i = 2, y = s[2].y;
2452
690k
    if (y > s[3].y)
2453
57.1k
        i = 3, y = s[3].y;
2454
690k
    q[0] = s[(i + 0) % 4];
2455
690k
    q[1] = s[(i + 1) % 4];
2456
690k
    q[2] = s[(i + 2) % 4];
2457
690k
    q[3] = s[(i + 3) % 4];
2458
690k
}
2459
2460
static int
2461
ordered_triangle(patch_fill_state_t *pfs, gs_fixed_edge *le, gs_fixed_edge *re, patch_color_t *c)
2462
51.3M
{
2463
51.3M
    gs_fixed_edge ue;
2464
51.3M
    int code;
2465
51.3M
    gx_device_color dc;
2466
2467
#   if NOFILL_TEST
2468
        if (dbg_nofill)
2469
            return 0;
2470
#   endif
2471
51.3M
    code = patch_color_to_device_color_inline(pfs, c, &dc, NULL);
2472
51.3M
    if (code < 0)
2473
0
        return code;
2474
51.3M
    if (le->end.y < re->end.y) {
2475
23.2M
        code = dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
2476
23.2M
            le, re, le->start.y, le->end.y, false, &dc, pfs->pgs->log_op);
2477
23.2M
        if (code >= 0) {
2478
23.2M
            ue.start = le->end;
2479
23.2M
            ue.end = re->end;
2480
23.2M
            code = dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
2481
23.2M
                &ue, re, le->end.y, re->end.y, false, &dc, pfs->pgs->log_op);
2482
23.2M
        }
2483
28.0M
    } else if (le->end.y > re->end.y) {
2484
21.6M
        code = dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
2485
21.6M
            le, re, le->start.y, re->end.y, false, &dc, pfs->pgs->log_op);
2486
21.6M
        if (code >= 0) {
2487
21.6M
            ue.start = re->end;
2488
21.6M
            ue.end = le->end;
2489
21.6M
            code = dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
2490
21.6M
                le, &ue, re->end.y, le->end.y, false, &dc, pfs->pgs->log_op);
2491
21.6M
        }
2492
21.6M
    } else
2493
6.41M
        code = dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
2494
6.41M
            le, re, le->start.y, le->end.y, false, &dc, pfs->pgs->log_op);
2495
51.3M
    return code;
2496
51.3M
}
2497
2498
static int
2499
constant_color_triangle(patch_fill_state_t *pfs,
2500
        const shading_vertex_t *p0, const shading_vertex_t *p1, const shading_vertex_t *p2)
2501
45.0M
{
2502
45.0M
    patch_color_t *c[2];
2503
45.0M
    gs_fixed_edge le, re;
2504
45.0M
    fixed dx0, dy0, dx1, dy1;
2505
45.0M
    const shading_vertex_t *pp;
2506
45.0M
    int i, code = 0;
2507
45.0M
    byte *color_stack_ptr = reserve_colors_inline(pfs, c, 2);
2508
2509
45.0M
    if (color_stack_ptr == NULL)
2510
0
        return_error(gs_error_unregistered); /* Must not happen. */
2511
45.0M
    patch_interpolate_color(c[0], p0->c, p1->c, pfs, 0.5);
2512
45.0M
    patch_interpolate_color(c[1], p2->c, c[0], pfs, 0.5);
2513
180M
    for (i = 0; i < 3; i++) {
2514
        /* fixme : does optimizer compiler expand this cycle ? */
2515
135M
        if (p0->p.y <= p1->p.y && p0->p.y <= p2->p.y) {
2516
51.3M
            le.start = re.start = p0->p;
2517
51.3M
            le.end = p1->p;
2518
51.3M
            re.end = p2->p;
2519
2520
51.3M
            dx0 = le.end.x - le.start.x;
2521
51.3M
            dy0 = le.end.y - le.start.y;
2522
51.3M
            dx1 = re.end.x - re.start.x;
2523
51.3M
            dy1 = re.end.y - re.start.y;
2524
51.3M
            if ((int64_t)dx0 * dy1 < (int64_t)dy0 * dx1)
2525
24.3M
                code = ordered_triangle(pfs, &le, &re, c[1]);
2526
26.9M
            else
2527
26.9M
                code = ordered_triangle(pfs, &re, &le, c[1]);
2528
51.3M
            if (code < 0)
2529
0
                break;
2530
51.3M
        }
2531
135M
        pp = p0; p0 = p1; p1 = p2; p2 = pp;
2532
135M
    }
2533
45.0M
    release_colors_inline(pfs, color_stack_ptr, 2);
2534
45.0M
    return code;
2535
45.0M
}
2536
2537
static inline int
2538
constant_color_quadrangle_aux(patch_fill_state_t *pfs, const quadrangle_patch *p, bool self_intersecting,
2539
        patch_color_t *c[3])
2540
690k
{
2541
    /* Assuming the XY span is restricted with curve_samples.
2542
       It is important for intersection_of_small_bars to compute faster. */
2543
690k
    gs_fixed_point q[4];
2544
690k
    fixed ry, ey;
2545
690k
    int code;
2546
690k
    bool swap_axes = false;
2547
690k
    gx_device_color dc;
2548
690k
    bool orient;
2549
2550
690k
    dc.tag = device_current_tag(pfs->dev);
2551
2552
690k
    patch_interpolate_color(c[1], p->p[0][0]->c, p->p[0][1]->c, pfs, 0.5);
2553
690k
    patch_interpolate_color(c[2], p->p[1][0]->c, p->p[1][1]->c, pfs, 0.5);
2554
690k
    patch_interpolate_color(c[0], c[1], c[2], pfs, 0.5);
2555
690k
    code = patch_color_to_device_color_inline(pfs, c[0], &dc, NULL);
2556
690k
    if (code < 0)
2557
0
        return code;
2558
690k
    {   gs_fixed_point qq[4];
2559
2560
690k
        make_vertices(qq, p);
2561
#ifdef SHADING_SWAP_AXES_FOR_PRECISION
2562
             /* Swapping axes may improve the precision,
2563
                but slows down due to the area expansion needed
2564
                in gx_shade_trapezoid. */
2565
            dx = span_x(qq, 4);
2566
            dy = span_y(qq, 4);
2567
            if (dy < dx) {
2568
                do_swap_axes(qq, 4);
2569
                swap_axes = true;
2570
            }
2571
#endif
2572
690k
        wrap_vertices_by_y(q, qq);
2573
690k
    }
2574
690k
    {   fixed dx1 = q[1].x - q[0].x, dy1 = q[1].y - q[0].y;
2575
690k
        fixed dx3 = q[3].x - q[0].x, dy3 = q[3].y - q[0].y;
2576
690k
        int64_t g13 = (int64_t)dx1 * dy3, h13 = (int64_t)dy1 * dx3;
2577
2578
690k
        if (g13 == h13) {
2579
1.37k
            fixed dx2 = q[2].x - q[0].x, dy2 = q[2].y - q[0].y;
2580
1.37k
            int64_t g23 = (int64_t)dx2 * dy3, h23 = (int64_t)dy2 * dx3;
2581
2582
1.37k
            if (dx1 == 0 && dy1 == 0 && g23 == h23)
2583
0
                return 0;
2584
1.37k
            if (g23 != h23) {
2585
1.37k
                orient = (g23 > h23);
2586
1.37k
                if (q[2].y <= q[3].y) {
2587
1.11k
                    if ((code = gx_shade_trapezoid(pfs, q, 1, 2, 0, 3, q[1].y, q[2].y, swap_axes, &dc, orient)) < 0)
2588
0
                        return code;
2589
1.11k
                    return gx_shade_trapezoid(pfs, q, 2, 3, 0, 3, q[2].y, q[3].y, swap_axes, &dc, orient);
2590
1.11k
                } else {
2591
260
                    if ((code = gx_shade_trapezoid(pfs, q, 1, 2, 0, 3, q[1].y, q[3].y, swap_axes, &dc, orient)) < 0)
2592
0
                        return code;
2593
260
                    return gx_shade_trapezoid(pfs, q, 1, 2, 3, 2, q[3].y, q[2].y, swap_axes, &dc, orient);
2594
260
                }
2595
1.37k
            } else {
2596
0
                int64_t g12 = (int64_t)dx1 * dy2, h12 = (int64_t)dy1 * dx2;
2597
2598
0
                if (dx3 == 0 && dy3 == 0 && g12 == h12)
2599
0
                    return 0;
2600
0
                orient = (g12 > h12);
2601
0
                if (q[1].y <= q[2].y) {
2602
0
                    if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 3, 2, q[0].y, q[1].y, swap_axes, &dc, orient)) < 0)
2603
0
                        return code;
2604
0
                    return gx_shade_trapezoid(pfs, q, 1, 2, 3, 2, q[1].y, q[2].y, swap_axes, &dc, orient);
2605
0
                } else {
2606
0
                    if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 3, 2, q[0].y, q[2].y, swap_axes, &dc, orient)) < 0)
2607
0
                        return code;
2608
0
                    return gx_shade_trapezoid(pfs, q, 0, 1, 2, 1, q[2].y, q[1].y, swap_axes, &dc, orient);
2609
0
                }
2610
0
            }
2611
1.37k
        }
2612
688k
        orient = ((int64_t)dx1 * dy3 > (int64_t)dy1 * dx3);
2613
688k
    }
2614
688k
    if (q[1].y <= q[2].y && q[2].y <= q[3].y) {
2615
238k
        if (self_intersecting && intersection_of_small_bars(q, 0, 3, 1, 2, &ry, &ey)) {
2616
0
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 0, 3, q[0].y, q[1].y, swap_axes, &dc, orient)) < 0)
2617
0
                return code;
2618
0
            if ((code = gx_shade_trapezoid(pfs, q, 0, 3, 1, 2, q[1].y, ry + ey, swap_axes, &dc, orient)) < 0)
2619
0
                return code;
2620
0
            if ((code = gx_shade_trapezoid(pfs, q, 1, 2, 0, 3, ry, q[2].y, swap_axes, &dc, orient)) < 0)
2621
0
                return code;
2622
0
            return gx_shade_trapezoid(pfs, q, 0, 3, 2, 3, q[2].y, q[3].y, swap_axes, &dc, orient);
2623
238k
        } else {
2624
238k
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 0, 3, q[0].y, q[1].y, swap_axes, &dc, orient)) < 0)
2625
0
                return code;
2626
238k
            if ((code = gx_shade_trapezoid(pfs, q, 1, 2, 0, 3, q[1].y, q[2].y, swap_axes, &dc, orient)) < 0)
2627
0
                return code;
2628
238k
            return gx_shade_trapezoid(pfs, q, 2, 3, 0, 3, q[2].y, q[3].y, swap_axes, &dc, orient);
2629
238k
        }
2630
450k
    } else if (q[1].y <= q[3].y && q[3].y <= q[2].y) {
2631
184k
        if (self_intersecting && intersection_of_small_bars(q, 0, 3, 1, 2, &ry, &ey)) {
2632
0
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 0, 3, q[0].y, q[1].y, swap_axes, &dc, orient)) < 0)
2633
0
                return code;
2634
0
            if ((code = gx_shade_trapezoid(pfs, q, 1, 2, 0, 3, q[1].y, ry + ey, swap_axes, &dc, orient)) < 0)
2635
0
                return code;
2636
0
            if ((code = gx_shade_trapezoid(pfs, q, 0, 3, 1, 2, ry, q[3].y, swap_axes, &dc, orient)) < 0)
2637
0
                return code;
2638
0
            return gx_shade_trapezoid(pfs, q, 3, 2, 1, 2, q[3].y, q[2].y, swap_axes, &dc, orient);
2639
184k
        } else {
2640
184k
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 0, 3, q[0].y, q[1].y, swap_axes, &dc, orient)) < 0)
2641
0
                return code;
2642
184k
            if ((code = gx_shade_trapezoid(pfs, q, 1, 2, 0, 3, q[1].y, q[3].y, swap_axes, &dc, orient)) < 0)
2643
0
                return code;
2644
184k
            return gx_shade_trapezoid(pfs, q, 1, 2, 3, 2, q[3].y, q[2].y, swap_axes, &dc, orient);
2645
184k
        }
2646
266k
    } else if (q[2].y <= q[1].y && q[1].y <= q[3].y) {
2647
0
        if (self_intersecting && intersection_of_small_bars(q, 0, 1, 2, 3, &ry, &ey)) {
2648
0
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 0, 3, q[0].y, ry + ey, swap_axes, &dc, orient)) < 0)
2649
0
                return code;
2650
0
            if ((code = gx_shade_trapezoid(pfs, q, 2, 1, 2, 3, q[2].y, ry + ey, swap_axes, &dc, orient)) < 0)
2651
0
                return code;
2652
0
            if ((code = gx_shade_trapezoid(pfs, q, 2, 1, 0, 1, ry, q[1].y, swap_axes, &dc, orient)) < 0)
2653
0
                return code;
2654
0
            return gx_shade_trapezoid(pfs, q, 2, 3, 0, 3, ry, q[3].y, swap_axes, &dc, orient);
2655
0
        } else if (self_intersecting && intersection_of_small_bars(q, 0, 3, 1, 2, &ry, &ey)) {
2656
0
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 0, 3, q[0].y, ry + ey, swap_axes, &dc, orient)) < 0)
2657
0
                return code;
2658
0
            if ((code = gx_shade_trapezoid(pfs, q, 2, 1, 2, 3, q[2].y, ry + ey, swap_axes, &dc, orient)) < 0)
2659
0
                return code;
2660
0
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 2, 1, ry, q[1].y, swap_axes, &dc, orient)) < 0)
2661
0
                return code;
2662
0
            return gx_shade_trapezoid(pfs, q, 0, 3, 2, 3, ry, q[3].y, swap_axes, &dc, orient);
2663
0
        } else {
2664
0
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 0, 3, q[0].y, q[1].y, swap_axes, &dc, orient)) < 0)
2665
0
                return code;
2666
0
            if ((code = gx_shade_trapezoid(pfs, q, 2, 3, 2, 1, q[2].y, q[1].y, swap_axes, &dc, orient)) < 0)
2667
0
                return code;
2668
0
            return gx_shade_trapezoid(pfs, q, 2, 3, 0, 3, q[1].y, q[3].y, swap_axes, &dc, orient);
2669
0
        }
2670
266k
    } else if (q[2].y <= q[3].y && q[3].y <= q[1].y) {
2671
78
        if (self_intersecting && intersection_of_small_bars(q, 0, 1, 2, 3, &ry, &ey)) {
2672
            /* Same code as someone above. */
2673
0
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 0, 3, q[0].y, ry + ey, swap_axes, &dc, orient)) < 0)
2674
0
                return code;
2675
0
            if ((code = gx_shade_trapezoid(pfs, q, 2, 1, 2, 3, q[2].y, ry + ey, swap_axes, &dc, orient)) < 0)
2676
0
                return code;
2677
0
            if ((code = gx_shade_trapezoid(pfs, q, 2, 1, 0, 1, ry, q[1].y, swap_axes, &dc, orient)) < 0)
2678
0
                return code;
2679
0
            return gx_shade_trapezoid(pfs, q, 2, 3, 0, 3, ry, q[3].y, swap_axes, &dc, orient);
2680
78
        } else if (self_intersecting && intersection_of_small_bars(q, 0, 3, 2, 1, &ry, &ey)) {
2681
            /* Same code as someone above. */
2682
0
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 0, 3, q[0].y, ry + ey, swap_axes, &dc, orient)) < 0)
2683
0
                return code;
2684
0
            if ((code = gx_shade_trapezoid(pfs, q, 2, 1, 2, 3, q[2].y, ry + ey, swap_axes, &dc, orient)) < 0)
2685
0
                return code;
2686
0
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 2, 1, ry, q[1].y, swap_axes, &dc, orient)) < 0)
2687
0
                return code;
2688
0
            return gx_shade_trapezoid(pfs, q, 0, 3, 2, 3, ry, q[3].y, swap_axes, &dc, orient);
2689
78
        } else {
2690
78
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 0, 3, q[0].y, q[2].y, swap_axes, &dc, orient)) < 0)
2691
0
                return code;
2692
78
            if ((code = gx_shade_trapezoid(pfs, q, 2, 3, 0, 3, q[2].y, q[3].y, swap_axes, &dc, orient)) < 0)
2693
0
                return code;
2694
78
            return gx_shade_trapezoid(pfs, q, 0, 1, 2, 1, q[2].y, q[1].y, swap_axes, &dc, orient);
2695
78
        }
2696
266k
    } else if (q[3].y <= q[1].y && q[1].y <= q[2].y) {
2697
263k
        if (self_intersecting && intersection_of_small_bars(q, 0, 1, 3, 2, &ry, &ey)) {
2698
0
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 0, 3, q[0].y, q[3].y, swap_axes, &dc, orient)) < 0)
2699
0
                return code;
2700
0
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 3, 2, q[3].y, ry + ey, swap_axes, &dc, orient)) < 0)
2701
0
                return code;
2702
0
            if ((code = gx_shade_trapezoid(pfs, q, 3, 2, 0, 1, ry, q[1].y, swap_axes, &dc, orient)) < 0)
2703
0
                return code;
2704
0
            return gx_shade_trapezoid(pfs, q, 3, 2, 1, 2, q[1].y, q[2].y, swap_axes, &dc, orient);
2705
263k
        } else {
2706
263k
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 0, 3, q[0].y, q[3].y, swap_axes, &dc, orient)) < 0)
2707
0
                return code;
2708
263k
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 3, 2, q[3].y, q[1].y, swap_axes, &dc, orient)) < 0)
2709
0
                return code;
2710
263k
            return gx_shade_trapezoid(pfs, q, 1, 2, 3, 2, q[1].y, q[2].y, swap_axes, &dc, orient);
2711
263k
        }
2712
263k
    } else if (q[3].y <= q[2].y && q[2].y <= q[1].y) {
2713
3.09k
        if (self_intersecting && intersection_of_small_bars(q, 0, 1, 2, 3, &ry, &ey)) {
2714
0
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 0, 3, q[0].y, q[3].y, swap_axes, &dc, orient)) < 0)
2715
0
                return code;
2716
0
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 3, 2, q[3].y, ry + ey, swap_axes, &dc, orient)) < 0)
2717
0
                return code;
2718
0
            if ((code = gx_shade_trapezoid(pfs, q, 3, 2, 0, 1, ry, q[2].y, swap_axes, &dc, orient)) < 0)
2719
0
                return code;
2720
0
            return gx_shade_trapezoid(pfs, q, 2, 1, 0, 1, q[2].y, q[1].y, swap_axes, &dc, orient);
2721
3.09k
        } else {
2722
3.09k
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 0, 3, q[0].y, q[3].y, swap_axes, &dc, orient)) < 0)
2723
0
                return code;
2724
3.09k
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 3, 2, q[3].y, q[2].y, swap_axes, &dc, orient)) < 0)
2725
0
                return code;
2726
3.09k
            return gx_shade_trapezoid(pfs, q, 0, 1, 2, 1, q[2].y, q[1].y, swap_axes, &dc, orient);
2727
3.09k
        }
2728
3.09k
    } else {
2729
        /* Impossible. */
2730
0
        return_error(gs_error_unregistered);
2731
0
    }
2732
688k
}
2733
2734
int
2735
constant_color_quadrangle(patch_fill_state_t *pfs, const quadrangle_patch *p, bool self_intersecting)
2736
690k
{
2737
690k
    patch_color_t *c[3];
2738
690k
    byte *color_stack_ptr = reserve_colors_inline(pfs, c, 3);
2739
690k
    int code;
2740
2741
690k
    if (color_stack_ptr == NULL)
2742
0
        return_error(gs_error_unregistered); /* Must not happen. */
2743
690k
    code = constant_color_quadrangle_aux(pfs, p, self_intersecting, c);
2744
690k
    release_colors_inline(pfs, color_stack_ptr, 3);
2745
690k
    return code;
2746
690k
}
2747
2748
static inline void
2749
divide_quadrangle_by_v(patch_fill_state_t *pfs, quadrangle_patch *s0, quadrangle_patch *s1,
2750
            shading_vertex_t q[2], const quadrangle_patch *p, patch_color_t *c[2])
2751
805k
{
2752
805k
    q[0].c = c[0];
2753
805k
    q[1].c = c[1];
2754
805k
    q[0].p.x = (p->p[0][0]->p.x + p->p[1][0]->p.x) / 2;
2755
805k
    q[1].p.x = (p->p[0][1]->p.x + p->p[1][1]->p.x) / 2;
2756
805k
    q[0].p.y = (p->p[0][0]->p.y + p->p[1][0]->p.y) / 2;
2757
805k
    q[1].p.y = (p->p[0][1]->p.y + p->p[1][1]->p.y) / 2;
2758
805k
    patch_interpolate_color(c[0], p->p[0][0]->c, p->p[1][0]->c, pfs, 0.5);
2759
805k
    patch_interpolate_color(c[1], p->p[0][1]->c, p->p[1][1]->c, pfs, 0.5);
2760
805k
    s0->p[0][0] = p->p[0][0];
2761
805k
    s0->p[0][1] = p->p[0][1];
2762
805k
    s0->p[1][0] = s1->p[0][0] = &q[0];
2763
805k
    s0->p[1][1] = s1->p[0][1] = &q[1];
2764
805k
    s1->p[1][0] = p->p[1][0];
2765
805k
    s1->p[1][1] = p->p[1][1];
2766
805k
}
2767
2768
static inline void
2769
divide_quadrangle_by_u(patch_fill_state_t *pfs, quadrangle_patch *s0, quadrangle_patch *s1,
2770
            shading_vertex_t q[2], const quadrangle_patch *p, patch_color_t *c[2])
2771
1.64M
{
2772
1.64M
    q[0].c = c[0];
2773
1.64M
    q[1].c = c[1];
2774
1.64M
    q[0].p.x = (p->p[0][0]->p.x + p->p[0][1]->p.x) / 2;
2775
1.64M
    q[1].p.x = (p->p[1][0]->p.x + p->p[1][1]->p.x) / 2;
2776
1.64M
    q[0].p.y = (p->p[0][0]->p.y + p->p[0][1]->p.y) / 2;
2777
1.64M
    q[1].p.y = (p->p[1][0]->p.y + p->p[1][1]->p.y) / 2;
2778
1.64M
    patch_interpolate_color(c[0], p->p[0][0]->c, p->p[0][1]->c, pfs, 0.5);
2779
1.64M
    patch_interpolate_color(c[1], p->p[1][0]->c, p->p[1][1]->c, pfs, 0.5);
2780
1.64M
    s0->p[0][0] = p->p[0][0];
2781
1.64M
    s0->p[1][0] = p->p[1][0];
2782
1.64M
    s0->p[0][1] = s1->p[0][0] = &q[0];
2783
1.64M
    s0->p[1][1] = s1->p[1][0] = &q[1];
2784
1.64M
    s1->p[0][1] = p->p[0][1];
2785
1.64M
    s1->p[1][1] = p->p[1][1];
2786
1.64M
}
2787
2788
static inline int
2789
is_quadrangle_color_monotonic(const patch_fill_state_t *pfs, const quadrangle_patch *p,
2790
                              bool *not_monotonic_by_u, bool *not_monotonic_by_v)
2791
2.32M
{   /* returns : 1 = monotonic, 0 = don't know, <0 = error. */
2792
2.32M
    int code, r;
2793
2794
2.32M
    code = isnt_color_monotonic(pfs, p->p[0][0]->c, p->p[1][1]->c);
2795
2.32M
    if (code <= 0)
2796
2.14M
        return code;
2797
175k
    r = code << pfs->function_arg_shift;
2798
175k
    if (r & 1)
2799
0
        *not_monotonic_by_u = true;
2800
175k
    if (r & 2)
2801
175k
        *not_monotonic_by_v = true;
2802
175k
    return !code;
2803
2.32M
}
2804
2805
static inline void
2806
divide_bar(patch_fill_state_t *pfs,
2807
        const shading_vertex_t *p0, const shading_vertex_t *p1, int radix, shading_vertex_t *p,
2808
        patch_color_t *c)
2809
54.8M
{
2810
    /* Assuming p.c == c for providing a non-const access. */
2811
54.8M
    p->p.x = (fixed)((int64_t)p0->p.x * (radix - 1) + p1->p.x) / radix;
2812
54.8M
    p->p.y = (fixed)((int64_t)p0->p.y * (radix - 1) + p1->p.y) / radix;
2813
54.8M
    patch_interpolate_color(c, p0->c, p1->c, pfs, (double)(radix - 1) / radix);
2814
54.8M
}
2815
2816
static int
2817
triangle_by_4(patch_fill_state_t *pfs,
2818
        const shading_vertex_t *p0, const shading_vertex_t *p1, const shading_vertex_t *p2,
2819
        wedge_vertex_list_t *l01, wedge_vertex_list_t *l12, wedge_vertex_list_t *l20,
2820
        double cd, fixed sd)
2821
101M
{
2822
101M
    shading_vertex_t p01, p12, p20;
2823
101M
    patch_color_t *c[3];
2824
101M
    wedge_vertex_list_t L01, L12, L20, L[3];
2825
101M
    bool inside_save = pfs->inside;
2826
101M
    gs_fixed_rect r = {{0,0},{0,0}}, r1 =  {{0,0},{0,0}};
2827
101M
    int code = 0;
2828
101M
    byte *color_stack_ptr;
2829
101M
    const bool inside = pfs->inside; /* 'const' should help compiler to analyze initializations. */
2830
2831
101M
    if (!inside) {
2832
27.8M
        bbox_of_points(&r, &p0->p, &p1->p, &p2->p, NULL);
2833
27.8M
        r1 = r;
2834
27.8M
        rect_intersect(r, pfs->rect);
2835
27.8M
        if (r.q.x <= r.p.x || r.q.y <= r.p.y)
2836
9.72M
            return 0;
2837
27.8M
    }
2838
91.7M
    color_stack_ptr = reserve_colors_inline(pfs, c, 3);
2839
91.7M
    if(color_stack_ptr == NULL)
2840
0
        return_error(gs_error_unregistered);
2841
91.7M
    p01.c = c[0];
2842
91.7M
    p12.c = c[1];
2843
91.7M
    p20.c = c[2];
2844
91.7M
    code = try_device_linear_color(pfs, false, p0, p1, p2);
2845
91.7M
    switch(code) {
2846
40.7M
        case 0: /* The area is filled. */
2847
40.7M
            goto out;
2848
50.5M
        case 2: /* decompose to constant color areas */
2849
            /* Halftoned devices may do with some bigger areas
2850
               due to imprecise representation of a contone color.
2851
               So we multiply the decomposition limit by 4 for a faster rendering. */
2852
50.5M
            if (sd < pfs->decomposition_limit * 4) {
2853
13.8M
                code = constant_color_triangle(pfs, p2, p0, p1);
2854
13.8M
                goto out;
2855
13.8M
            }
2856
36.7M
            if (pfs->Function != NULL) {
2857
7.34M
                double d01 = color_span(pfs, p1->c, p0->c);
2858
7.34M
                double d12 = color_span(pfs, p2->c, p1->c);
2859
7.34M
                double d20 = color_span(pfs, p0->c, p2->c);
2860
2861
7.34M
                if (d01 <= pfs->smoothness / COLOR_CONTIGUITY &&
2862
7.34M
                    d12 <= pfs->smoothness / COLOR_CONTIGUITY &&
2863
7.34M
                    d20 <= pfs->smoothness / COLOR_CONTIGUITY) {
2864
5.93M
                    code = constant_color_triangle(pfs, p2, p0, p1);
2865
5.93M
                    goto out;
2866
5.93M
                }
2867
29.3M
            } else if (cd <= pfs->smoothness / COLOR_CONTIGUITY) {
2868
25.1M
                code = constant_color_triangle(pfs, p2, p0, p1);
2869
25.1M
                goto out;
2870
25.1M
            }
2871
5.66M
            break;
2872
5.66M
        case 1: /* decompose to linear color areas */
2873
455k
            if (sd < pfs->decomposition_limit) {
2874
194k
                code = constant_color_triangle(pfs, p2, p0, p1);
2875
194k
                goto out;
2876
194k
            }
2877
260k
            break;
2878
260k
        default: /* Error. */
2879
0
            goto out;
2880
91.7M
    }
2881
5.92M
    if (!inside) {
2882
874k
        if (r.p.x == r1.p.x && r.p.y == r1.p.y &&
2883
874k
            r.q.x == r1.q.x && r.q.y == r1.q.y)
2884
101k
            pfs->inside = true;
2885
874k
    }
2886
5.92M
    divide_bar(pfs, p0, p1, 2, &p01, c[0]);
2887
5.92M
    divide_bar(pfs, p1, p2, 2, &p12, c[1]);
2888
5.92M
    divide_bar(pfs, p2, p0, 2, &p20, c[2]);
2889
5.92M
    if (LAZY_WEDGES) {
2890
5.92M
        init_wedge_vertex_list(L, count_of(L));
2891
5.92M
        code = make_wedge_median(pfs, &L01, l01, true,  &p0->p, &p1->p, &p01.p);
2892
5.92M
        if (code >= 0)
2893
5.92M
            code = make_wedge_median(pfs, &L12, l12, true,  &p1->p, &p2->p, &p12.p);
2894
5.92M
        if (code >= 0)
2895
5.92M
            code = make_wedge_median(pfs, &L20, l20, false, &p2->p, &p0->p, &p20.p);
2896
5.92M
    } else {
2897
0
        code = fill_triangle_wedge(pfs, p0, p1, &p01);
2898
0
        if (code >= 0)
2899
0
            code = fill_triangle_wedge(pfs, p1, p2, &p12);
2900
0
        if (code >= 0)
2901
0
            code = fill_triangle_wedge(pfs, p2, p0, &p20);
2902
0
    }
2903
5.92M
    if (code >= 0)
2904
5.92M
        code = triangle_by_4(pfs, p0, &p01, &p20, &L01, &L[0], &L20, cd / 2, sd / 2);
2905
5.92M
    if (code >= 0) {
2906
5.92M
        if (LAZY_WEDGES) {
2907
5.92M
            move_wedge(&L01, l01, true);
2908
5.92M
            move_wedge(&L20, l20, false);
2909
5.92M
        }
2910
5.92M
        code = triangle_by_4(pfs, p1, &p12, &p01, &L12, &L[1], &L01, cd / 2, sd / 2);
2911
5.92M
    }
2912
5.92M
    if (code >= 0) {
2913
5.92M
        if (LAZY_WEDGES)
2914
5.92M
            move_wedge(&L12, l12, true);
2915
5.92M
        code = triangle_by_4(pfs, p2, &p20, &p12, &L20, &L[2], &L12, cd / 2, sd / 2);
2916
5.92M
    }
2917
5.92M
    if (code >= 0) {
2918
5.92M
        L[0].last_side = L[1].last_side = L[2].last_side = true;
2919
5.92M
        code = triangle_by_4(pfs, &p01, &p12, &p20, &L[1], &L[2], &L[0], cd / 2, sd / 2);
2920
5.92M
    }
2921
5.92M
    if (LAZY_WEDGES) {
2922
5.92M
        if (code >= 0)
2923
5.92M
            code = close_wedge_median(pfs, l01, p0->c, p1->c);
2924
5.92M
        if (code >= 0)
2925
5.92M
            code = close_wedge_median(pfs, l12, p1->c, p2->c);
2926
5.92M
        if (code >= 0)
2927
5.92M
            code = close_wedge_median(pfs, l20, p2->c, p0->c);
2928
5.92M
        if (code >= 0)
2929
5.92M
            code = terminate_wedge_vertex_list(pfs, &L[0], p01.c, p20.c);
2930
5.92M
        if (code >= 0)
2931
5.92M
            code = terminate_wedge_vertex_list(pfs, &L[1], p12.c, p01.c);
2932
5.92M
        if (code >= 0)
2933
5.92M
            code = terminate_wedge_vertex_list(pfs, &L[2], p20.c, p12.c);
2934
5.92M
    }
2935
5.92M
    pfs->inside = inside_save;
2936
91.7M
out:
2937
91.7M
    release_colors_inline(pfs, color_stack_ptr, 3);
2938
91.7M
    return code;
2939
5.92M
}
2940
2941
static inline int
2942
fill_triangle(patch_fill_state_t *pfs,
2943
        const shading_vertex_t *p0, const shading_vertex_t *p1, const shading_vertex_t *p2,
2944
        wedge_vertex_list_t *l01, wedge_vertex_list_t *l12, wedge_vertex_list_t *l20)
2945
77.8M
{
2946
77.8M
    fixed sd01 = max(any_abs(p1->p.x - p0->p.x), any_abs(p1->p.y - p0->p.y));
2947
77.8M
    fixed sd12 = max(any_abs(p2->p.x - p1->p.x), any_abs(p2->p.y - p1->p.y));
2948
77.8M
    fixed sd20 = max(any_abs(p0->p.x - p2->p.x), any_abs(p0->p.y - p2->p.y));
2949
77.8M
    fixed sd1 = max(sd01, sd12);
2950
77.8M
    fixed sd = max(sd1, sd20);
2951
77.8M
    double cd = 0;
2952
2953
#   if SKIP_TEST
2954
        dbg_triangle_cnt++;
2955
#   endif
2956
77.8M
    if (pfs->Function == NULL) {
2957
63.3M
        double d01 = color_span(pfs, p1->c, p0->c);
2958
63.3M
        double d12 = color_span(pfs, p2->c, p1->c);
2959
63.3M
        double d20 = color_span(pfs, p0->c, p2->c);
2960
63.3M
        double cd1 = max(d01, d12);
2961
2962
63.3M
        cd = max(cd1, d20);
2963
63.3M
    }
2964
77.8M
    return triangle_by_4(pfs, p0, p1, p2, l01, l12, l20, cd, sd);
2965
77.8M
}
2966
2967
static int
2968
small_mesh_triangle(patch_fill_state_t *pfs,
2969
        const shading_vertex_t *p0, const shading_vertex_t *p1, const shading_vertex_t *p2)
2970
7.73M
{
2971
7.73M
    int code;
2972
7.73M
    wedge_vertex_list_t l[3];
2973
2974
7.73M
    init_wedge_vertex_list(l, count_of(l));
2975
7.73M
    code = fill_triangle(pfs, p0, p1, p2, &l[0], &l[1], &l[2]);
2976
7.73M
    if (code < 0)
2977
0
        return code;
2978
7.73M
    code = terminate_wedge_vertex_list(pfs, &l[0], p0->c, p1->c);
2979
7.73M
    if (code < 0)
2980
0
        return code;
2981
7.73M
    code = terminate_wedge_vertex_list(pfs, &l[1], p1->c, p2->c);
2982
7.73M
    if (code < 0)
2983
0
        return code;
2984
7.73M
    return terminate_wedge_vertex_list(pfs, &l[2], p2->c, p0->c);
2985
7.73M
}
2986
2987
int
2988
gx_init_patch_fill_state_for_clist(gx_device *dev, patch_fill_state_t *pfs, gs_memory_t *memory)
2989
0
{
2990
0
    int i;
2991
2992
0
    pfs->dev = dev;
2993
0
    pfs->pgs = NULL;
2994
0
    pfs->direct_space = NULL;
2995
0
    pfs->num_components = dev->color_info.num_components;
2996
    /* pfs->cc_max_error[GS_CLIENT_COLOR_MAX_COMPONENTS] unused */
2997
0
    pfs->pshm = NULL;
2998
0
    pfs->Function = NULL;
2999
0
    pfs->function_arg_shift = 0;
3000
0
    pfs->vectorization = false; /* A stub for a while. Will use with pclwrite. */
3001
0
    pfs->n_color_args = 1; /* unused. */
3002
0
    pfs->max_small_coord = 0; /* unused. */
3003
0
    pfs->wedge_vertex_list_elem_buffer = NULL; /* fixme */
3004
0
    pfs->free_wedge_vertex = NULL; /* fixme */
3005
0
    pfs->wedge_vertex_list_elem_count = 0; /* fixme */
3006
0
    pfs->wedge_vertex_list_elem_count_max = 0; /* fixme */
3007
0
    for (i = 0; i < pfs->num_components; i++)
3008
0
        pfs->color_domain.paint.values[i] = (float)0x7fffffff;
3009
    /* decomposition_limit must be same as one in init_patch_fill_state */
3010
#ifdef MAX_SHADING_RESOLUTION
3011
    pfs->decomposition_limit = float2fixed(min(pfs->dev->HWResolution[0],
3012
                                               pfs->dev->HWResolution[1]) / MAX_SHADING_RESOLUTION);
3013
    pfs->decomposition_limit = max(pfs->decomposition_limit, fixed_1);
3014
#else
3015
0
    pfs->decomposition_limit = fixed_1;
3016
0
#endif
3017
0
    pfs->fixed_flat = 0; /* unused */
3018
0
    pfs->smoothness = 0; /* unused */
3019
0
    pfs->maybe_self_intersecting = false; /* unused */
3020
0
    pfs->monotonic_color = true;
3021
0
    pfs->linear_color = true;
3022
0
    pfs->unlinear = false; /* Because it is used when fill_linear_color_triangle was called. */
3023
0
    pfs->inside = false;
3024
0
    pfs->color_stack_size = 0;
3025
0
    pfs->color_stack_step = dev->color_info.num_components;
3026
0
    pfs->color_stack_ptr = NULL; /* fixme */
3027
0
    pfs->color_stack = NULL; /* fixme */
3028
0
    pfs->color_stack_limit = NULL; /* fixme */
3029
0
    pfs->pcic = NULL; /* Will do someday. */
3030
0
    pfs->trans_device = NULL;
3031
0
    pfs->icclink = NULL;
3032
0
    return alloc_patch_fill_memory(pfs, memory, NULL);
3033
0
}
3034
3035
/* A method for filling a small triangle that the device can't handle.
3036
   Used by clist playback. */
3037
int
3038
gx_fill_triangle_small(gx_device *dev, const gs_fill_attributes *fa,
3039
        const gs_fixed_point *p0, const gs_fixed_point *p1,
3040
        const gs_fixed_point *p2,
3041
        const frac31 *c0, const frac31 *c1, const frac31 *c2)
3042
0
{
3043
0
    patch_fill_state_t *pfs = fa->pfs;
3044
0
    patch_color_t c[3];
3045
0
    shading_vertex_t p[3];
3046
0
    uchar i;
3047
3048
    /* pfs->rect = *fa->clip; unused ? */
3049
0
    p[0].p = *p0;
3050
0
    p[1].p = *p1;
3051
0
    p[2].p = *p2;
3052
0
    p[0].c = &c[0];
3053
0
    p[1].c = &c[1];
3054
0
    p[2].c = &c[2];
3055
0
    c[0].t[0] = c[0].t[1] = c[1].t[0] = c[1].t[1] = c[2].t[0] = c[2].t[1] = 0; /* Dummy - not used. */
3056
0
    for (i = 0; i < dev->color_info.num_components; i++) {
3057
0
        c[0].cc.paint.values[i] = (float)c0[i];
3058
0
        c[1].cc.paint.values[i] = (float)c1[i];
3059
0
        c[2].cc.paint.values[i] = (float)c2[i];
3060
0
    }
3061
    /* fixme: the cycle above converts frac31 values into floats.
3062
       We don't like this because (1) it misses lower bits,
3063
       and (2) fixed point values can be faster on some platforms.
3064
       We could fix it with coding a template for small_mesh_triangle
3065
       and its callees until patch_color_to_device_color_inline.
3066
    */
3067
    /* fixme : this function is called from gxclrast.c
3068
       after dev->procs.fill_linear_color_triangle returns 0 - "subdivide".
3069
       After few moments small_mesh_triangle indirectly calls
3070
       same function with same arguments as a part of
3071
       try_device_linear_color in triangle_by_4.
3072
       Obviusly it will return zero again.
3073
       Actually we don't need the second call,
3074
       so optimize with skipping the second call.
3075
     */
3076
0
    return small_mesh_triangle(pfs, &p[0], &p[1], &p[2]);
3077
0
}
3078
3079
static int
3080
mesh_triangle_rec(patch_fill_state_t *pfs,
3081
        const shading_vertex_t *p0, const shading_vertex_t *p1, const shading_vertex_t *p2)
3082
9.00M
{
3083
9.00M
    pfs->unlinear = !is_linear_color_applicable(pfs);
3084
9.00M
    if (manhattan_dist(&p0->p, &p1->p) < pfs->max_small_coord &&
3085
9.00M
        manhattan_dist(&p1->p, &p2->p) < pfs->max_small_coord &&
3086
9.00M
        manhattan_dist(&p2->p, &p0->p) < pfs->max_small_coord)
3087
7.73M
        return small_mesh_triangle(pfs, p0, p1, p2);
3088
1.26M
    else {
3089
        /* Subdivide into 4 triangles with 3 triangle non-lazy wedges.
3090
           Doing so against the wedge_vertex_list_elem_buffer overflow.
3091
           We could apply a smarter method, dividing long sides
3092
           with no wedges and short sides with lazy wedges.
3093
           This needs to start wedges dynamically when
3094
           a side becomes short. We don't do so because the
3095
           number of checks per call significantly increases
3096
           and the logics is complicated, but the performance
3097
           advantage appears small due to big meshes are rare.
3098
         */
3099
1.26M
        shading_vertex_t p01, p12, p20;
3100
1.26M
        patch_color_t *c[3];
3101
1.26M
        int code;
3102
1.26M
        byte *color_stack_ptr = reserve_colors_inline(pfs, c, 3);
3103
3104
1.26M
        if (color_stack_ptr == NULL)
3105
0
            return_error(gs_error_unregistered); /* Must not happen. */
3106
1.26M
        p01.c = c[0];
3107
1.26M
        p12.c = c[1];
3108
1.26M
        p20.c = c[2];
3109
1.26M
        divide_bar(pfs, p0, p1, 2, &p01, c[0]);
3110
1.26M
        divide_bar(pfs, p1, p2, 2, &p12, c[1]);
3111
1.26M
        divide_bar(pfs, p2, p0, 2, &p20, c[2]);
3112
1.26M
        code = fill_triangle_wedge(pfs, p0, p1, &p01);
3113
1.26M
        if (code >= 0)
3114
1.26M
            code = fill_triangle_wedge(pfs, p1, p2, &p12);
3115
1.26M
        if (code >= 0)
3116
1.26M
            code = fill_triangle_wedge(pfs, p2, p0, &p20);
3117
1.26M
        if (code >= 0)
3118
1.26M
            code = mesh_triangle_rec(pfs, p0, &p01, &p20);
3119
1.26M
        if (code >= 0)
3120
1.26M
            code = mesh_triangle_rec(pfs, p1, &p12, &p01);
3121
1.26M
        if (code >= 0)
3122
1.26M
            code = mesh_triangle_rec(pfs, p2, &p20, &p12);
3123
1.26M
        if (code >= 0)
3124
1.26M
            code = mesh_triangle_rec(pfs, &p01, &p12, &p20);
3125
1.26M
        release_colors_inline(pfs, color_stack_ptr, 3);
3126
1.26M
        return code;
3127
1.26M
    }
3128
9.00M
}
3129
3130
int
3131
mesh_triangle(patch_fill_state_t *pfs,
3132
        const shading_vertex_t *p0, const shading_vertex_t *p1, const shading_vertex_t *p2)
3133
3.92M
{
3134
3.92M
    if ((*dev_proc(pfs->dev, dev_spec_op))(pfs->dev,
3135
3.92M
            gxdso_pattern_shading_area, NULL, 0) > 0) {
3136
        /* Inform the device with the shading coverage area.
3137
           First compute the sign of the area, because
3138
           all areas to be clipped in same direction. */
3139
1.65M
        gx_device *pdev = pfs->dev;
3140
1.65M
        gx_path path;
3141
1.65M
        int code;
3142
1.65M
        fixed d01x = p1->p.x - p0->p.x, d01y = p1->p.y - p0->p.y;
3143
1.65M
        fixed d12x = p2->p.x - p1->p.x, d12y = p2->p.y - p1->p.y;
3144
1.65M
        int64_t s1 = (int64_t)d01x * d12y - (int64_t)d01y * d12x;
3145
3146
1.65M
        gx_path_init_local(&path, pdev->memory);
3147
1.65M
        code = gx_path_add_point(&path, p0->p.x, p0->p.y);
3148
1.65M
        if (code >= 0 && s1 >= 0)
3149
1.65M
            code = gx_path_add_line(&path, p1->p.x, p1->p.y);
3150
1.65M
        if (code >= 0)
3151
1.65M
            code = gx_path_add_line(&path, p2->p.x, p2->p.y);
3152
1.65M
        if (code >= 0 && s1 < 0)
3153
9.34k
            code = gx_path_add_line(&path, p1->p.x, p1->p.y);
3154
1.65M
        if (code >= 0)
3155
1.65M
            code = gx_path_close_subpath(&path);
3156
1.65M
        if (code >= 0)
3157
1.65M
            code = (*dev_proc(pfs->dev, fill_path))(pdev, NULL, &path, NULL, NULL, NULL);
3158
1.65M
        gx_path_free(&path, "mesh_triangle");
3159
1.65M
        if (code < 0)
3160
0
            return code;
3161
1.65M
    }
3162
3.92M
    return mesh_triangle_rec(pfs, p0, p1, p2);
3163
3.92M
}
3164
3165
static inline int
3166
triangles4(patch_fill_state_t *pfs, const quadrangle_patch *p, bool dummy_argument)
3167
11.0M
{
3168
11.0M
    shading_vertex_t p0001, p1011, q;
3169
11.0M
    patch_color_t *c[3];
3170
11.0M
    wedge_vertex_list_t l[4];
3171
11.0M
    int code;
3172
11.0M
    byte *color_stack_ptr = reserve_colors_inline(pfs, c, 3);
3173
3174
11.0M
    if(color_stack_ptr == NULL)
3175
0
        return_error(gs_error_unregistered); /* Must not happen. */
3176
11.0M
    p0001.c = c[0];
3177
11.0M
    p1011.c = c[1];
3178
11.0M
    q.c = c[2];
3179
11.0M
    init_wedge_vertex_list(l, count_of(l));
3180
11.0M
    divide_bar(pfs, p->p[0][0], p->p[0][1], 2, &p0001, c[0]);
3181
11.0M
    divide_bar(pfs, p->p[1][0], p->p[1][1], 2, &p1011, c[1]);
3182
11.0M
    divide_bar(pfs, &p0001, &p1011, 2, &q, c[2]);
3183
11.0M
    code = fill_triangle(pfs, p->p[0][0], p->p[0][1], &q, p->l0001, &l[0], &l[3]);
3184
11.0M
    if (code >= 0) {
3185
11.0M
        l[0].last_side = true;
3186
11.0M
        l[3].last_side = true;
3187
11.0M
        code = fill_triangle(pfs, p->p[0][1], p->p[1][1], &q, p->l0111, &l[1], &l[0]);
3188
11.0M
    }
3189
11.0M
    if (code >= 0) {
3190
11.0M
        l[1].last_side = true;
3191
11.0M
        code = fill_triangle(pfs, p->p[1][1], p->p[1][0], &q, p->l1110, &l[2], &l[1]);
3192
11.0M
    }
3193
11.0M
    if (code >= 0) {
3194
11.0M
        l[2].last_side = true;
3195
11.0M
        code = fill_triangle(pfs, p->p[1][0], p->p[0][0], &q, p->l1000, &l[3], &l[2]);
3196
11.0M
    }
3197
11.0M
    if (code >= 0)
3198
11.0M
        code = terminate_wedge_vertex_list(pfs, &l[0], p->p[0][1]->c, q.c);
3199
11.0M
    if (code >= 0)
3200
11.0M
        code = terminate_wedge_vertex_list(pfs, &l[1], p->p[1][1]->c, q.c);
3201
11.0M
    if (code >= 0)
3202
11.0M
        code = terminate_wedge_vertex_list(pfs, &l[2], p->p[1][0]->c, q.c);
3203
11.0M
    if (code >= 0)
3204
11.0M
        code = terminate_wedge_vertex_list(pfs, &l[3], q.c, p->p[0][0]->c);
3205
11.0M
    release_colors_inline(pfs, color_stack_ptr, 3);
3206
11.0M
    return code;
3207
11.0M
}
3208
3209
static inline int
3210
triangles2(patch_fill_state_t *pfs, const quadrangle_patch *p, bool dummy_argument)
3211
12.8M
{
3212
12.8M
    wedge_vertex_list_t l;
3213
12.8M
    int code;
3214
3215
12.8M
    init_wedge_vertex_list(&l, 1);
3216
12.8M
    code = fill_triangle(pfs, p->p[0][0], p->p[0][1], p->p[1][1], p->l0001, p->l0111, &l);
3217
12.8M
    if (code < 0)
3218
0
        return code;
3219
12.8M
    l.last_side = true;
3220
12.8M
    code = fill_triangle(pfs, p->p[1][1], p->p[1][0], p->p[0][0], p->l1110, p->l1000, &l);
3221
12.8M
    if (code < 0)
3222
0
        return code;
3223
12.8M
    code = terminate_wedge_vertex_list(pfs, &l, p->p[1][1]->c, p->p[0][0]->c);
3224
12.8M
    if (code < 0)
3225
0
        return code;
3226
12.8M
    return 0;
3227
12.8M
}
3228
3229
static inline void
3230
make_quadrangle(const tensor_patch *p, shading_vertex_t qq[2][2],
3231
        wedge_vertex_list_t l[4], quadrangle_patch *q)
3232
25.0M
{
3233
25.0M
    qq[0][0].p = p->pole[0][0];
3234
25.0M
    qq[0][1].p = p->pole[0][3];
3235
25.0M
    qq[1][0].p = p->pole[3][0];
3236
25.0M
    qq[1][1].p = p->pole[3][3];
3237
25.0M
    qq[0][0].c = p->c[0][0];
3238
25.0M
    qq[0][1].c = p->c[0][1];
3239
25.0M
    qq[1][0].c = p->c[1][0];
3240
25.0M
    qq[1][1].c = p->c[1][1];
3241
25.0M
    q->p[0][0] = &qq[0][0];
3242
25.0M
    q->p[0][1] = &qq[0][1];
3243
25.0M
    q->p[1][0] = &qq[1][0];
3244
25.0M
    q->p[1][1] = &qq[1][1];
3245
25.0M
    q->l0001 = &l[0];
3246
25.0M
    q->l0111 = &l[1];
3247
25.0M
    q->l1110 = &l[2];
3248
25.0M
    q->l1000 = &l[3];
3249
25.0M
}
3250
3251
static inline int
3252
is_quadrangle_color_linear_by_u(const patch_fill_state_t *pfs, const quadrangle_patch *p)
3253
15.9M
{   /* returns : 1 = linear, 0 = unlinear, <0 = error. */
3254
15.9M
    int code;
3255
3256
15.9M
    code = is_color_linear(pfs, p->p[0][0]->c, p->p[0][1]->c);
3257
15.9M
    if (code <= 0)
3258
987
        return code;
3259
15.9M
    return is_color_linear(pfs, p->p[1][0]->c, p->p[1][1]->c);
3260
15.9M
}
3261
3262
static inline int
3263
is_quadrangle_color_linear_by_v(const patch_fill_state_t *pfs, const quadrangle_patch *p)
3264
1.06M
{   /* returns : 1 = linear, 0 = unlinear, <0 = error. */
3265
1.06M
    int code;
3266
3267
1.06M
    code = is_color_linear(pfs, p->p[0][0]->c, p->p[1][0]->c);
3268
1.06M
    if (code <= 0)
3269
217k
        return code;
3270
851k
    return is_color_linear(pfs, p->p[0][1]->c, p->p[1][1]->c);
3271
1.06M
}
3272
3273
static inline int
3274
is_quadrangle_color_linear_by_diagonals(const patch_fill_state_t *pfs, const quadrangle_patch *p)
3275
979k
{   /* returns : 1 = linear, 0 = unlinear, <0 = error. */
3276
979k
    int code;
3277
3278
979k
    code = is_color_linear(pfs, p->p[0][0]->c, p->p[1][1]->c);
3279
979k
    if (code <= 0)
3280
169k
        return code;
3281
809k
    return is_color_linear(pfs, p->p[0][1]->c, p->p[1][0]->c);
3282
979k
}
3283
3284
typedef enum {
3285
    color_change_small,
3286
    color_change_gradient,
3287
    color_change_linear,
3288
    color_change_bilinear,
3289
    color_change_general
3290
} color_change_type_t;
3291
3292
static inline color_change_type_t
3293
quadrangle_color_change(const patch_fill_state_t *pfs, const quadrangle_patch *p,
3294
                        bool is_big_u, bool is_big_v, double size_u, double size_v,
3295
                        bool *divide_u, bool *divide_v)
3296
25.4M
{
3297
25.4M
    patch_color_t d0001, d1011, d;
3298
25.4M
    double D, D0001, D1011, D0010, D0111, D0011, D0110;
3299
25.4M
    double Du, Dv;
3300
3301
25.4M
    color_diff(pfs, p->p[0][0]->c, p->p[0][1]->c, &d0001);
3302
25.4M
    color_diff(pfs, p->p[1][0]->c, p->p[1][1]->c, &d1011);
3303
25.4M
    D0001 = color_norm(pfs, &d0001);
3304
25.4M
    D1011 = color_norm(pfs, &d1011);
3305
25.4M
    D0010 = color_span(pfs, p->p[0][0]->c, p->p[1][0]->c);
3306
25.4M
    D0111 = color_span(pfs, p->p[0][1]->c, p->p[1][1]->c);
3307
25.4M
    D0011 = color_span(pfs, p->p[0][0]->c, p->p[1][1]->c);
3308
25.4M
    D0110 = color_span(pfs, p->p[0][1]->c, p->p[1][0]->c);
3309
25.4M
    if (pfs->unlinear) {
3310
9.11M
        if (D0001 <= pfs->smoothness && D1011 <= pfs->smoothness &&
3311
9.11M
            D0010 <= pfs->smoothness && D0111 <= pfs->smoothness &&
3312
9.11M
            D0011 <= pfs->smoothness && D0110 <= pfs->smoothness)
3313
6.92M
            return color_change_small;
3314
2.19M
        if (D0001 <= pfs->smoothness && D1011 <= pfs->smoothness) {
3315
617k
            if (!is_big_v) {
3316
                /* The color function looks uncontiguous. */
3317
116k
                return color_change_small;
3318
116k
            }
3319
500k
            *divide_v = true;
3320
500k
            return color_change_gradient;
3321
617k
        }
3322
1.57M
        if (D0010 <= pfs->smoothness && D0111 <= pfs->smoothness) {
3323
1.51M
            if (!is_big_u) {
3324
                /* The color function looks uncontiguous. */
3325
15.4k
                return color_change_small;
3326
15.4k
            }
3327
1.49M
            *divide_u = true;
3328
1.49M
            return color_change_gradient;
3329
1.51M
        }
3330
1.57M
    }
3331
16.3M
    color_diff(pfs, &d0001, &d1011, &d);
3332
16.3M
    Du = max(D0001, D1011);
3333
16.3M
    Dv = max(D0010, D0111);
3334
16.3M
    if (Du <= pfs->smoothness / 8 && Dv <= pfs->smoothness / 8)
3335
2.69M
        return color_change_small;
3336
13.6M
    if (Du <= pfs->smoothness / 8)
3337
358k
        return color_change_linear;
3338
13.3M
    if (Dv <= pfs->smoothness / 8)
3339
12.5M
        return color_change_linear;
3340
787k
    D = color_norm(pfs, &d);
3341
787k
    if (D <= pfs->smoothness)
3342
673k
        return color_change_bilinear;
3343
114k
#if 1
3344
114k
    if (Du > Dv && is_big_u)
3345
59.2k
        *divide_u = true;
3346
54.8k
    else if (Du < Dv && is_big_v)
3347
40.9k
        *divide_v = true;
3348
13.9k
    else if (is_big_u && size_u > size_v)
3349
5.52k
        *divide_u = true;
3350
8.40k
    else if (is_big_v && size_v > size_u)
3351
8.40k
        *divide_v = true;
3352
2
    else if (is_big_u)
3353
2
        *divide_u = true;
3354
0
    else if (is_big_v)
3355
0
        *divide_v = true;
3356
0
    else {
3357
        /* The color function looks uncontiguous. */
3358
0
        return color_change_small;
3359
0
    }
3360
#else /* Disabled due to infinite recursion with -r200 09-57.PS
3361
         (Standard Test 6.4  - Range 6) (Test05). */
3362
    if (Du > Dv)
3363
        *divide_u = true;
3364
    else
3365
        *divide_v = true;
3366
#endif
3367
114k
    return color_change_general;
3368
114k
}
3369
3370
static int
3371
fill_quadrangle(patch_fill_state_t *pfs, const quadrangle_patch *p, bool big)
3372
29.9M
{
3373
    /* The quadrangle is flattened enough by V and U, so ignore inner poles. */
3374
    /* Assuming the XY span is restricted with curve_samples.
3375
       It is important for intersection_of_small_bars to compute faster. */
3376
29.9M
    quadrangle_patch s0, s1;
3377
29.9M
    wedge_vertex_list_t l0, l1, l2;
3378
29.9M
    int code;
3379
29.9M
    bool divide_u = false, divide_v = false, big1 = big;
3380
29.9M
    shading_vertex_t q[2];
3381
29.9M
    bool monotonic_color_save = pfs->monotonic_color;
3382
29.9M
    bool linear_color_save = pfs->linear_color;
3383
29.9M
    bool inside_save = pfs->inside;
3384
29.9M
    const bool inside = pfs->inside; /* 'const' should help compiler to analyze initializations. */
3385
29.9M
    gs_fixed_rect r = {{0,0},{0,0}}, r1 = {{0,0},{0,0}};
3386
    /* Warning : pfs->monotonic_color is not restored on error. */
3387
3388
29.9M
    if (!inside) {
3389
9.40M
        bbox_of_points(&r, &p->p[0][0]->p, &p->p[0][1]->p, &p->p[1][0]->p, &p->p[1][1]->p);
3390
9.40M
        r1 = r;
3391
9.40M
        rect_intersect(r, pfs->rect);
3392
9.40M
        if (r.q.x <= r.p.x || r.q.y <= r.p.y)
3393
2.89M
            return 0; /* Outside. */
3394
9.40M
    }
3395
27.1M
    if (big) {
3396
        /* Likely 'big' is an unuseful rudiment due to curve_samples
3397
           restricts lengthes. We keep it for a while because its implementation
3398
           isn't obvious and its time consumption is invisibly small.
3399
         */
3400
22.3M
        fixed size_u = max(max(any_abs(p->p[0][0]->p.x - p->p[0][1]->p.x),
3401
22.3M
                               any_abs(p->p[1][0]->p.x - p->p[1][1]->p.x)),
3402
22.3M
                           max(any_abs(p->p[0][0]->p.y - p->p[0][1]->p.y),
3403
22.3M
                               any_abs(p->p[1][0]->p.y - p->p[1][1]->p.y)));
3404
22.3M
        fixed size_v = max(max(any_abs(p->p[0][0]->p.x - p->p[1][0]->p.x),
3405
22.3M
                               any_abs(p->p[0][1]->p.x - p->p[1][1]->p.x)),
3406
22.3M
                           max(any_abs(p->p[0][0]->p.y - p->p[1][0]->p.y),
3407
22.3M
                               any_abs(p->p[0][1]->p.y - p->p[1][1]->p.y)));
3408
3409
22.3M
        if (QUADRANGLES && pfs->maybe_self_intersecting) {
3410
0
            if (size_v > pfs->max_small_coord) {
3411
                /* constant_color_quadrangle can't handle big self-intersecting areas
3412
                   because we don't want int64_t in it. */
3413
0
                divide_v = true;
3414
0
            } else if (size_u > pfs->max_small_coord) {
3415
                /* constant_color_quadrangle can't handle big self-intersecting areas,
3416
                   because we don't want int64_t in it. */
3417
0
                divide_u = true;
3418
0
            } else
3419
0
                big1 = false;
3420
0
        } else
3421
22.3M
            big1 = false;
3422
22.3M
    }
3423
27.1M
    if (!big1) {
3424
27.1M
        bool is_big_u = false, is_big_v = false;
3425
27.1M
        double d0001x = any_abs(p->p[0][0]->p.x - p->p[0][1]->p.x);
3426
27.1M
        double d1011x = any_abs(p->p[1][0]->p.x - p->p[1][1]->p.x);
3427
27.1M
        double d0001y = any_abs(p->p[0][0]->p.y - p->p[0][1]->p.y);
3428
27.1M
        double d1011y = any_abs(p->p[1][0]->p.y - p->p[1][1]->p.y);
3429
27.1M
        double d0010x = any_abs(p->p[0][0]->p.x - p->p[1][0]->p.x);
3430
27.1M
        double d0111x = any_abs(p->p[0][1]->p.x - p->p[1][1]->p.x);
3431
27.1M
        double d0010y = any_abs(p->p[0][0]->p.y - p->p[1][0]->p.y);
3432
27.1M
        double d0111y = any_abs(p->p[0][1]->p.y - p->p[1][1]->p.y);
3433
27.1M
        double size_u = max(max(d0001x, d1011x), max(d0001y, d1011y));
3434
27.1M
        double size_v = max(max(d0010x, d0111x), max(d0010y, d0111y));
3435
3436
27.1M
        if (size_u > pfs->decomposition_limit)
3437
25.5M
            is_big_u = true;
3438
27.1M
        if (size_v > pfs->decomposition_limit)
3439
2.56M
            is_big_v = true;
3440
24.5M
        else if (!is_big_u)
3441
1.33M
            return (QUADRANGLES || !pfs->maybe_self_intersecting ?
3442
1.22M
                        constant_color_quadrangle : triangles4)(pfs, p,
3443
1.33M
                            pfs->maybe_self_intersecting);
3444
25.7M
        if (!pfs->monotonic_color) {
3445
2.32M
            bool not_monotonic_by_u = false, not_monotonic_by_v = false;
3446
3447
2.32M
            code = is_quadrangle_color_monotonic(pfs, p, &not_monotonic_by_u, &not_monotonic_by_v);
3448
2.32M
            if (code < 0)
3449
0
                return code;
3450
2.32M
            if (is_big_u)
3451
2.31M
                divide_u = not_monotonic_by_u;
3452
2.32M
            if (is_big_v)
3453
547k
                divide_v = not_monotonic_by_v;
3454
2.32M
            if (!divide_u && !divide_v)
3455
2.20M
                pfs->monotonic_color = true;
3456
2.32M
        }
3457
25.7M
        if (pfs->monotonic_color && !pfs->linear_color) {
3458
21.9M
            if (divide_v && divide_u) {
3459
0
                if (size_u > size_v)
3460
0
                    divide_v = false;
3461
0
                else
3462
0
                    divide_u = false;
3463
21.9M
            } else if (!divide_u && !divide_v && !pfs->unlinear) {
3464
16.3M
                if (d0001x + d1011x + d0001y + d1011y > d0010x + d0111x + d0010y + d0111y) { /* fixme: use size_u, size_v */
3465
15.9M
                    code = is_quadrangle_color_linear_by_u(pfs, p);
3466
15.9M
                    if (code < 0)
3467
0
                        return code;
3468
15.9M
                    divide_u = !code;
3469
15.9M
                }
3470
16.3M
                if (is_big_v) {
3471
1.06M
                    code = is_quadrangle_color_linear_by_v(pfs, p);
3472
1.06M
                    if (code < 0)
3473
0
                        return code;
3474
1.06M
                    divide_v = !code;
3475
1.06M
                }
3476
16.3M
                if (is_big_u && is_big_v) {
3477
979k
                    code = is_quadrangle_color_linear_by_diagonals(pfs, p);
3478
979k
                    if (code < 0)
3479
0
                        return code;
3480
979k
                    if (!code) {
3481
170k
                        if (d0001x + d1011x + d0001y + d1011y > d0010x + d0111x + d0010y + d0111y) { /* fixme: use size_u, size_v */
3482
85.1k
                            divide_u = true;
3483
85.1k
                            divide_v = false;
3484
85.1k
                        } else {
3485
85.0k
                            divide_v = true;
3486
85.0k
                            divide_u = false;
3487
85.0k
                        }
3488
170k
                    }
3489
979k
                }
3490
16.3M
            }
3491
21.9M
            if (!divide_u && !divide_v)
3492
21.7M
                pfs->linear_color = true;
3493
21.9M
        }
3494
25.7M
        if (!pfs->linear_color) {
3495
            /* go to divide. */
3496
25.4M
        } else switch(quadrangle_color_change(pfs, p, is_big_u, is_big_v, size_u, size_v, &divide_u, &divide_v)) {
3497
9.75M
            case color_change_small:
3498
9.75M
                code = (QUADRANGLES || !pfs->maybe_self_intersecting ?
3499
9.17M
                            constant_color_quadrangle : triangles4)(pfs, p,
3500
9.75M
                                pfs->maybe_self_intersecting);
3501
9.75M
                pfs->monotonic_color = monotonic_color_save;
3502
9.75M
                pfs->linear_color = linear_color_save;
3503
9.75M
                return code;
3504
673k
            case color_change_bilinear:
3505
673k
                if (!QUADRANGLES) {
3506
673k
                    code = triangles4(pfs, p, true);
3507
673k
                    pfs->monotonic_color = monotonic_color_save;
3508
673k
                    pfs->linear_color = linear_color_save;
3509
673k
                    return code;
3510
673k
                }
3511
12.8M
            case color_change_linear:
3512
12.8M
                if (!QUADRANGLES) {
3513
12.8M
                    code = triangles2(pfs, p, true);
3514
12.8M
                    pfs->monotonic_color = monotonic_color_save;
3515
12.8M
                    pfs->linear_color = linear_color_save;
3516
12.8M
                    return code;
3517
12.8M
                }
3518
1.99M
            case color_change_gradient:
3519
2.11M
            case color_change_general:
3520
2.11M
                ; /* goto divide. */
3521
25.4M
        }
3522
25.7M
    }
3523
2.45M
    if (!inside) {
3524
431k
        if (r.p.x == r1.p.x && r.p.y == r1.p.y &&
3525
431k
            r.q.x == r1.q.x && r.q.y == r1.q.y)
3526
125k
            pfs->inside = true;
3527
431k
    }
3528
2.45M
    if (LAZY_WEDGES)
3529
2.45M
        init_wedge_vertex_list(&l0, 1);
3530
2.45M
    if (divide_v) {
3531
805k
        patch_color_t *c[2];
3532
805k
        byte *color_stack_ptr = reserve_colors_inline(pfs, c, 2);
3533
3534
805k
        if(color_stack_ptr == NULL)
3535
0
            return_error(gs_error_unregistered); /* Must not happen. */
3536
805k
        q[0].c = c[0];
3537
805k
        q[1].c = c[1];
3538
805k
        divide_quadrangle_by_v(pfs, &s0, &s1, q, p, c);
3539
805k
        if (LAZY_WEDGES) {
3540
805k
            code = make_wedge_median(pfs, &l1, p->l0111, true,  &p->p[0][1]->p, &p->p[1][1]->p, &s0.p[1][1]->p);
3541
805k
            if (code >= 0)
3542
805k
                code = make_wedge_median(pfs, &l2, p->l1000, false, &p->p[1][0]->p, &p->p[0][0]->p, &s0.p[1][0]->p);
3543
805k
            if (code >= 0) {
3544
805k
                s0.l1110 = s1.l0001 = &l0;
3545
805k
                s0.l0111 = s1.l0111 = &l1;
3546
805k
                s0.l1000 = s1.l1000 = &l2;
3547
805k
                s0.l0001 = p->l0001;
3548
805k
                s1.l1110 = p->l1110;
3549
805k
            }
3550
805k
        } else {
3551
0
            code = fill_triangle_wedge(pfs, s0.p[0][0], s1.p[1][0], s0.p[1][0]);
3552
0
            if (code >= 0)
3553
0
                code = fill_triangle_wedge(pfs, s0.p[0][1], s1.p[1][1], s0.p[1][1]);
3554
0
        }
3555
805k
        if (code >= 0)
3556
805k
            code = fill_quadrangle(pfs, &s0, big1);
3557
805k
        if (code >= 0) {
3558
805k
            if (LAZY_WEDGES) {
3559
805k
                l0.last_side = true;
3560
805k
                move_wedge(&l1, p->l0111, true);
3561
805k
                move_wedge(&l2, p->l1000, false);
3562
805k
            }
3563
805k
            code = fill_quadrangle(pfs, &s1, big1);
3564
805k
        }
3565
805k
        if (LAZY_WEDGES) {
3566
805k
            if (code >= 0)
3567
805k
                code = close_wedge_median(pfs, p->l0111, p->p[0][1]->c, p->p[1][1]->c);
3568
805k
            if (code >= 0)
3569
805k
                code = close_wedge_median(pfs, p->l1000, p->p[1][0]->c, p->p[0][0]->c);
3570
805k
            if (code >= 0)
3571
805k
                code = terminate_wedge_vertex_list(pfs, &l0, s0.p[1][0]->c, s0.p[1][1]->c);
3572
805k
            release_colors_inline(pfs, color_stack_ptr, 2);
3573
805k
        }
3574
1.64M
    } else if (divide_u) {
3575
1.64M
        patch_color_t *c[2];
3576
1.64M
        byte *color_stack_ptr = reserve_colors_inline(pfs, c, 2);
3577
3578
1.64M
        if(color_stack_ptr == NULL)
3579
0
            return_error(gs_error_unregistered); /* Must not happen. */
3580
1.64M
        q[0].c = c[0];
3581
1.64M
        q[1].c = c[1];
3582
1.64M
        divide_quadrangle_by_u(pfs, &s0, &s1, q, p, c);
3583
1.64M
        if (LAZY_WEDGES) {
3584
1.64M
            code = make_wedge_median(pfs, &l1, p->l0001, true,  &p->p[0][0]->p, &p->p[0][1]->p, &s0.p[0][1]->p);
3585
1.64M
            if (code >= 0)
3586
1.64M
                code = make_wedge_median(pfs, &l2, p->l1110, false, &p->p[1][1]->p, &p->p[1][0]->p, &s0.p[1][1]->p);
3587
1.64M
            if (code >= 0) {
3588
1.64M
                s0.l0111 = s1.l1000 = &l0;
3589
1.64M
                s0.l0001 = s1.l0001 = &l1;
3590
1.64M
                s0.l1110 = s1.l1110 = &l2;
3591
1.64M
                s0.l1000 = p->l1000;
3592
1.64M
                s1.l0111 = p->l0111;
3593
1.64M
            }
3594
1.64M
        } else {
3595
0
            code = fill_triangle_wedge(pfs, s0.p[0][0], s1.p[0][1], s0.p[0][1]);
3596
0
            if (code >= 0)
3597
0
                code = fill_triangle_wedge(pfs, s0.p[1][0], s1.p[1][1], s0.p[1][1]);
3598
0
        }
3599
1.64M
        if (code >= 0)
3600
1.64M
            code = fill_quadrangle(pfs, &s0, big1);
3601
1.64M
        if (code >= 0) {
3602
1.64M
            if (LAZY_WEDGES) {
3603
1.64M
                l0.last_side = true;
3604
1.64M
                move_wedge(&l1, p->l0001, true);
3605
1.64M
                move_wedge(&l2, p->l1110, false);
3606
1.64M
            }
3607
1.64M
            code = fill_quadrangle(pfs, &s1, big1);
3608
1.64M
        }
3609
1.64M
        if (LAZY_WEDGES) {
3610
1.64M
            if (code >= 0)
3611
1.64M
                code = close_wedge_median(pfs, p->l0001, p->p[0][0]->c, p->p[0][1]->c);
3612
1.64M
            if (code >= 0)
3613
1.64M
                code = close_wedge_median(pfs, p->l1110, p->p[1][1]->c, p->p[1][0]->c);
3614
1.64M
            if (code >= 0)
3615
1.64M
                code = terminate_wedge_vertex_list(pfs, &l0, s0.p[0][1]->c, s0.p[1][1]->c);
3616
1.64M
            release_colors_inline(pfs, color_stack_ptr, 2);
3617
1.64M
        }
3618
1.64M
    } else
3619
0
        code = (QUADRANGLES || !pfs->maybe_self_intersecting ?
3620
0
                    constant_color_quadrangle : triangles4)(pfs, p,
3621
0
                        pfs->maybe_self_intersecting);
3622
2.45M
    pfs->monotonic_color = monotonic_color_save;
3623
2.45M
    pfs->linear_color = linear_color_save;
3624
2.45M
    pfs->inside = inside_save;
3625
2.45M
    return code;
3626
2.45M
}
3627
3628
/* This splits tensor patch p->pole[v][u] on u to give s0->pole[v][u] and s1->pole[v][u] */
3629
static inline void
3630
split_stripe(patch_fill_state_t *pfs, tensor_patch *s0, tensor_patch *s1, const tensor_patch *p, patch_color_t *c[2])
3631
45.5M
{
3632
45.5M
    s0->c[0][1] = c[0];
3633
45.5M
    s0->c[1][1] = c[1];
3634
45.5M
    split_curve_s(p->pole[0], s0->pole[0], s1->pole[0], 1);
3635
45.5M
    split_curve_s(p->pole[1], s0->pole[1], s1->pole[1], 1);
3636
45.5M
    split_curve_s(p->pole[2], s0->pole[2], s1->pole[2], 1);
3637
45.5M
    split_curve_s(p->pole[3], s0->pole[3], s1->pole[3], 1);
3638
45.5M
    s0->c[0][0] = p->c[0][0];
3639
45.5M
    s0->c[1][0] = p->c[1][0];
3640
45.5M
    s1->c[0][0] = s0->c[0][1];
3641
45.5M
    s1->c[1][0] = s0->c[1][1];
3642
45.5M
    patch_interpolate_color(s0->c[0][1], p->c[0][0], p->c[0][1], pfs, 0.5);
3643
45.5M
    patch_interpolate_color(s0->c[1][1], p->c[1][0], p->c[1][1], pfs, 0.5);
3644
45.5M
    s1->c[0][1] = p->c[0][1];
3645
45.5M
    s1->c[1][1] = p->c[1][1];
3646
45.5M
}
3647
3648
/* This splits tensor patch p->pole[v][u] on v to give s0->pole[v][u] and s1->pole[v][u] */
3649
static inline void
3650
split_patch(patch_fill_state_t *pfs, tensor_patch *s0, tensor_patch *s1, const tensor_patch *p, patch_color_t *c[2])
3651
10.2M
{
3652
10.2M
    s0->c[1][0] = c[0];
3653
10.2M
    s0->c[1][1] = c[1];
3654
10.2M
    split_curve_s(&p->pole[0][0], &s0->pole[0][0], &s1->pole[0][0], 4);
3655
10.2M
    split_curve_s(&p->pole[0][1], &s0->pole[0][1], &s1->pole[0][1], 4);
3656
10.2M
    split_curve_s(&p->pole[0][2], &s0->pole[0][2], &s1->pole[0][2], 4);
3657
10.2M
    split_curve_s(&p->pole[0][3], &s0->pole[0][3], &s1->pole[0][3], 4);
3658
10.2M
    s0->c[0][0] = p->c[0][0];
3659
10.2M
    s0->c[0][1] = p->c[0][1];
3660
10.2M
    s1->c[0][0] = s0->c[1][0];
3661
10.2M
    s1->c[0][1] = s0->c[1][1];
3662
10.2M
    patch_interpolate_color(s0->c[1][0], p->c[0][0], p->c[1][0], pfs, 0.5);
3663
10.2M
    patch_interpolate_color(s0->c[1][1], p->c[0][1], p->c[1][1], pfs, 0.5);
3664
10.2M
    s1->c[1][0] = p->c[1][0];
3665
10.2M
    s1->c[1][1] = p->c[1][1];
3666
10.2M
}
3667
3668
static inline void
3669
tensor_patch_bbox(gs_fixed_rect *r, const tensor_patch *p)
3670
77.0M
{
3671
77.0M
    int i, j;
3672
3673
77.0M
    r->p.x = r->q.x = p->pole[0][0].x;
3674
77.0M
    r->p.y = r->q.y = p->pole[0][0].y;
3675
385M
    for (i = 0; i < 4; i++) {
3676
1.54G
        for (j = 0; j < 4; j++) {
3677
1.23G
            const gs_fixed_point *q = &p->pole[i][j];
3678
3679
1.23G
            if (r->p.x > q->x)
3680
205M
                r->p.x = q->x;
3681
1.23G
            if (r->p.y > q->y)
3682
177M
                r->p.y = q->y;
3683
1.23G
            if (r->q.x < q->x)
3684
206M
                r->q.x = q->x;
3685
1.23G
            if (r->q.y < q->y)
3686
182M
                r->q.y = q->y;
3687
1.23G
        }
3688
308M
    }
3689
77.0M
}
3690
3691
static int
3692
decompose_stripe(patch_fill_state_t *pfs, const tensor_patch *p, int ku)
3693
101M
{
3694
101M
    if (ku > 1) {
3695
76.8M
        tensor_patch s0, s1;
3696
76.8M
        patch_color_t *c[2];
3697
76.8M
        int code;
3698
76.8M
        byte *color_stack_ptr;
3699
76.8M
        bool save_inside = pfs->inside;
3700
3701
76.8M
        if (!pfs->inside) {
3702
66.3M
            gs_fixed_rect r, r1;
3703
3704
66.3M
            tensor_patch_bbox(&r, p);
3705
66.3M
            r1 = r;
3706
66.3M
            rect_intersect(r, pfs->rect);
3707
66.3M
            if (r.q.x <= r.p.x || r.q.y <= r.p.y)
3708
31.3M
                return 0;
3709
35.0M
            if (r1.p.x == r.p.x && r1.p.y == r.p.y &&
3710
35.0M
                r1.q.x == r.q.x && r1.q.y == r.q.y)
3711
2.77M
                pfs->inside = true;
3712
35.0M
        }
3713
45.5M
        color_stack_ptr = reserve_colors_inline(pfs, c, 2);
3714
45.5M
        if(color_stack_ptr == NULL)
3715
0
            return_error(gs_error_unregistered); /* Must not happen. */
3716
45.5M
        split_stripe(pfs, &s0, &s1, p, c);
3717
45.5M
        code = decompose_stripe(pfs, &s0, ku / 2);
3718
45.5M
        if (code >= 0)
3719
45.5M
            code = decompose_stripe(pfs, &s1, ku / 2);
3720
45.5M
        release_colors_inline(pfs, color_stack_ptr, 2);
3721
45.5M
        pfs->inside = save_inside;
3722
45.5M
        return code;
3723
45.5M
    } else {
3724
25.0M
        quadrangle_patch q;
3725
25.0M
        shading_vertex_t qq[2][2];
3726
25.0M
        wedge_vertex_list_t l[4];
3727
25.0M
        int code;
3728
3729
25.0M
        init_wedge_vertex_list(l, count_of(l));
3730
25.0M
        make_quadrangle(p, qq, l, &q);
3731
#       if SKIP_TEST
3732
            dbg_quad_cnt++;
3733
#       endif
3734
25.0M
        code = fill_quadrangle(pfs, &q, true);
3735
25.0M
        if (code < 0)
3736
0
            return code;
3737
25.0M
        if (LAZY_WEDGES) {
3738
25.0M
            code = terminate_wedge_vertex_list(pfs, &l[0], q.p[0][0]->c, q.p[0][1]->c);
3739
25.0M
            if (code < 0)
3740
0
                return code;
3741
25.0M
            code = terminate_wedge_vertex_list(pfs, &l[1], q.p[0][1]->c, q.p[1][1]->c);
3742
25.0M
            if (code < 0)
3743
0
                return code;
3744
25.0M
            code = terminate_wedge_vertex_list(pfs, &l[2], q.p[1][1]->c, q.p[1][0]->c);
3745
25.0M
            if (code < 0)
3746
0
                return code;
3747
25.0M
            code = terminate_wedge_vertex_list(pfs, &l[3], q.p[1][0]->c, q.p[0][1]->c);
3748
25.0M
            if (code < 0)
3749
0
                return code;
3750
25.0M
        }
3751
25.0M
        return code;
3752
25.0M
    }
3753
101M
}
3754
3755
static int
3756
fill_stripe(patch_fill_state_t *pfs, const tensor_patch *p)
3757
10.9M
{
3758
    /* The stripe is flattened enough by V, so ignore inner poles. */
3759
10.9M
    int ku[4], kum, code;
3760
3761
    /* We would like to apply iterations for enumerating the kum curve parts,
3762
       but the roundinmg errors would be too complicated due to
3763
       the dependence on the direction. Note that neigbour
3764
       patches may use the opposite direction for same bounding curve.
3765
       We apply the recursive dichotomy, in which
3766
       the rounding errors do not depend on the direction. */
3767
10.9M
    ku[0] = curve_samples(pfs, p->pole[0], 1, pfs->fixed_flat);
3768
10.9M
    ku[3] = curve_samples(pfs, p->pole[3], 1, pfs->fixed_flat);
3769
10.9M
    kum = max(ku[0], ku[3]);
3770
10.9M
    code = fill_wedges(pfs, ku[0], kum, p->pole[0], 1, p->c[0][0], p->c[0][1], inpatch_wedge);
3771
10.9M
    if (code < 0)
3772
0
        return code;
3773
10.9M
    if (INTERPATCH_PADDING) {
3774
10.9M
        code = mesh_padding(pfs, &p->pole[0][0], &p->pole[3][0], p->c[0][0], p->c[1][0]);
3775
10.9M
        if (code < 0)
3776
13
            return code;
3777
10.9M
        code = mesh_padding(pfs, &p->pole[0][3], &p->pole[3][3], p->c[0][1], p->c[1][1]);
3778
10.9M
        if (code < 0)
3779
0
            return code;
3780
10.9M
    }
3781
10.9M
    code = decompose_stripe(pfs, p, kum);
3782
10.9M
    if (code < 0)
3783
0
        return code;
3784
10.9M
    return fill_wedges(pfs, ku[3], kum, p->pole[3], 1, p->c[1][0], p->c[1][1], inpatch_wedge);
3785
10.9M
}
3786
3787
static inline bool neqs(int *a, int b)
3788
32.5M
{   /* Unequal signs. Assuming -1, 0, 1 only. */
3789
32.5M
    if (*a * b < 0)
3790
10.0M
        return true;
3791
22.5M
    if (!*a)
3792
2.88M
        *a = b;
3793
22.5M
    return false;
3794
32.5M
}
3795
3796
static inline int
3797
vector_pair_orientation(const gs_fixed_point *p0, const gs_fixed_point *p1, const gs_fixed_point *p2)
3798
43.6M
{   fixed dx1 = p1->x - p0->x, dy1 = p1->y - p0->y;
3799
43.6M
    fixed dx2 = p2->x - p0->x, dy2 = p2->y - p0->y;
3800
43.6M
    int64_t vp = (int64_t)dx1 * dy2 - (int64_t)dy1 * dx2;
3801
3802
43.6M
    return (vp > 0 ? 1 : vp < 0 ? -1 : 0);
3803
43.6M
}
3804
3805
static inline bool
3806
is_x_bended(const tensor_patch *p)
3807
11.0M
{
3808
11.0M
    int sign = vector_pair_orientation(&p->pole[0][0], &p->pole[0][1], &p->pole[1][0]);
3809
3810
11.0M
    if (neqs(&sign, vector_pair_orientation(&p->pole[0][1], &p->pole[0][2], &p->pole[1][1])))
3811
5.78M
        return true;
3812
5.29M
    if (neqs(&sign, vector_pair_orientation(&p->pole[0][2], &p->pole[0][3], &p->pole[1][2])))
3813
3.19M
        return true;
3814
2.10M
    if (neqs(&sign, -vector_pair_orientation(&p->pole[0][3], &p->pole[0][2], &p->pole[1][3])))
3815
993k
        return true;
3816
3817
1.11M
    if (neqs(&sign, vector_pair_orientation(&p->pole[1][1], &p->pole[1][2], &p->pole[2][1])))
3818
12.8k
        return true;
3819
1.09M
    if (neqs(&sign, vector_pair_orientation(&p->pole[1][1], &p->pole[1][2], &p->pole[2][1])))
3820
0
        return true;
3821
1.09M
    if (neqs(&sign, vector_pair_orientation(&p->pole[1][2], &p->pole[1][3], &p->pole[2][2])))
3822
6.58k
        return true;
3823
1.09M
    if (neqs(&sign, -vector_pair_orientation(&p->pole[1][3], &p->pole[1][2], &p->pole[2][3])))
3824
5.07k
        return true;
3825
3826
1.08M
    if (neqs(&sign, vector_pair_orientation(&p->pole[2][1], &p->pole[2][2], &p->pole[3][1])))
3827
5.57k
        return true;
3828
1.08M
    if (neqs(&sign, vector_pair_orientation(&p->pole[2][1], &p->pole[2][2], &p->pole[3][1])))
3829
0
        return true;
3830
1.08M
    if (neqs(&sign, vector_pair_orientation(&p->pole[2][2], &p->pole[2][3], &p->pole[3][2])))
3831
4.03k
        return true;
3832
1.07M
    if (neqs(&sign, -vector_pair_orientation(&p->pole[2][3], &p->pole[2][2], &p->pole[3][3])))
3833
3.79k
        return true;
3834
3835
1.07M
    if (neqs(&sign, -vector_pair_orientation(&p->pole[3][1], &p->pole[3][2], &p->pole[2][1])))
3836
1.11k
        return true;
3837
1.07M
    if (neqs(&sign, -vector_pair_orientation(&p->pole[3][1], &p->pole[3][2], &p->pole[2][1])))
3838
0
        return true;
3839
1.07M
    if (neqs(&sign, -vector_pair_orientation(&p->pole[3][2], &p->pole[3][3], &p->pole[2][2])))
3840
954
        return true;
3841
1.07M
    if (neqs(&sign, vector_pair_orientation(&p->pole[3][3], &p->pole[3][2], &p->pole[2][3])))
3842
640
        return true;
3843
1.07M
    return false;
3844
1.07M
}
3845
3846
static inline bool
3847
is_y_bended(const tensor_patch *p)
3848
69.8k
{
3849
69.8k
    int sign = vector_pair_orientation(&p->pole[0][0], &p->pole[1][0], &p->pole[0][1]);
3850
3851
69.8k
    if (neqs(&sign, vector_pair_orientation(&p->pole[1][0], &p->pole[2][0], &p->pole[1][1])))
3852
540
        return true;
3853
69.3k
    if (neqs(&sign, vector_pair_orientation(&p->pole[2][0], &p->pole[3][0], &p->pole[2][1])))
3854
216
        return true;
3855
69.1k
    if (neqs(&sign, -vector_pair_orientation(&p->pole[3][0], &p->pole[2][0], &p->pole[3][1])))
3856
47
        return true;
3857
3858
69.0k
    if (neqs(&sign, vector_pair_orientation(&p->pole[1][1], &p->pole[2][1], &p->pole[1][2])))
3859
0
        return true;
3860
69.0k
    if (neqs(&sign, vector_pair_orientation(&p->pole[1][1], &p->pole[2][1], &p->pole[1][2])))
3861
0
        return true;
3862
69.0k
    if (neqs(&sign, vector_pair_orientation(&p->pole[2][1], &p->pole[3][1], &p->pole[2][2])))
3863
2
        return true;
3864
69.0k
    if (neqs(&sign, -vector_pair_orientation(&p->pole[3][1], &p->pole[2][1], &p->pole[3][2])))
3865
3
        return true;
3866
3867
69.0k
    if (neqs(&sign, vector_pair_orientation(&p->pole[1][2], &p->pole[2][2], &p->pole[1][3])))
3868
12
        return true;
3869
69.0k
    if (neqs(&sign, vector_pair_orientation(&p->pole[1][2], &p->pole[2][2], &p->pole[1][3])))
3870
0
        return true;
3871
69.0k
    if (neqs(&sign, vector_pair_orientation(&p->pole[2][2], &p->pole[3][2], &p->pole[2][3])))
3872
0
        return true;
3873
69.0k
    if (neqs(&sign, -vector_pair_orientation(&p->pole[3][2], &p->pole[2][2], &p->pole[3][3])))
3874
0
        return true;
3875
3876
69.0k
    if (neqs(&sign, -vector_pair_orientation(&p->pole[1][3], &p->pole[2][3], &p->pole[1][2])))
3877
0
        return true;
3878
69.0k
    if (neqs(&sign, -vector_pair_orientation(&p->pole[1][3], &p->pole[2][3], &p->pole[1][2])))
3879
0
        return true;
3880
69.0k
    if (neqs(&sign, -vector_pair_orientation(&p->pole[2][3], &p->pole[3][3], &p->pole[2][2])))
3881
0
        return true;
3882
69.0k
    if (neqs(&sign, vector_pair_orientation(&p->pole[3][3], &p->pole[2][3], &p->pole[3][2])))
3883
0
        return true;
3884
69.0k
    return false;
3885
69.0k
}
3886
3887
static inline bool
3888
is_curve_x_small(const patch_fill_state_t *pfs, const gs_fixed_point *pole, int pole_step, fixed fixed_flat)
3889
63.7M
{   /* Is curve within a single pixel, or smaller than half pixel ? */
3890
63.7M
    fixed xmin0 = min(pole[0 * pole_step].x, pole[1 * pole_step].x);
3891
63.7M
    fixed xmin1 = min(pole[2 * pole_step].x, pole[3 * pole_step].x);
3892
63.7M
    fixed xmin =  min(xmin0, xmin1);
3893
63.7M
    fixed xmax0 = max(pole[0 * pole_step].x, pole[1 * pole_step].x);
3894
63.7M
    fixed xmax1 = max(pole[2 * pole_step].x, pole[3 * pole_step].x);
3895
63.7M
    fixed xmax =  max(xmax0, xmax1);
3896
3897
63.7M
    if(xmax - xmin <= pfs->decomposition_limit)
3898
54.2M
        return true;
3899
9.56M
    return false;
3900
63.7M
}
3901
3902
static inline bool
3903
is_curve_y_small(const patch_fill_state_t *pfs, const gs_fixed_point *pole, int pole_step, fixed fixed_flat)
3904
42.5M
{   /* Is curve within a single pixel, or smaller than half pixel ? */
3905
42.5M
    fixed ymin0 = min(pole[0 * pole_step].y, pole[1 * pole_step].y);
3906
42.5M
    fixed ymin1 = min(pole[2 * pole_step].y, pole[3 * pole_step].y);
3907
42.5M
    fixed ymin =  min(ymin0, ymin1);
3908
42.5M
    fixed ymax0 = max(pole[0 * pole_step].y, pole[1 * pole_step].y);
3909
42.5M
    fixed ymax1 = max(pole[2 * pole_step].y, pole[3 * pole_step].y);
3910
42.5M
    fixed ymax =  max(ymax0, ymax1);
3911
3912
42.5M
    if (ymax - ymin <= pfs->decomposition_limit)
3913
41.1M
        return true;
3914
1.34M
    return false;
3915
42.5M
}
3916
3917
static inline bool
3918
is_patch_narrow(const patch_fill_state_t *pfs, const tensor_patch *p)
3919
20.8M
{
3920
20.8M
    if (!is_curve_x_small(pfs, &p->pole[0][0], 4, pfs->fixed_flat))
3921
4.06M
        return false;
3922
16.7M
    if (!is_curve_x_small(pfs, &p->pole[0][1], 4, pfs->fixed_flat))
3923
2.72M
        return false;
3924
14.0M
    if (!is_curve_x_small(pfs, &p->pole[0][2], 4, pfs->fixed_flat))
3925
1.83M
        return false;
3926
12.1M
    if (!is_curve_x_small(pfs, &p->pole[0][3], 4, pfs->fixed_flat))
3927
945k
        return false;
3928
11.2M
    if (!is_curve_y_small(pfs, &p->pole[0][0], 4, pfs->fixed_flat))
3929
491k
        return false;
3930
10.7M
    if (!is_curve_y_small(pfs, &p->pole[0][1], 4, pfs->fixed_flat))
3931
387k
        return false;
3932
10.3M
    if (!is_curve_y_small(pfs, &p->pole[0][2], 4, pfs->fixed_flat))
3933
244k
        return false;
3934
10.1M
    if (!is_curve_y_small(pfs, &p->pole[0][3], 4, pfs->fixed_flat))
3935
223k
        return false;
3936
9.90M
    return true;
3937
10.1M
}
3938
3939
static int
3940
fill_patch(patch_fill_state_t *pfs, const tensor_patch *p, int kv, int kv0, int kv1)
3941
21.7M
{
3942
21.7M
    if (kv <= 1) {
3943
20.8M
        if (is_patch_narrow(pfs, p))
3944
9.90M
            return fill_stripe(pfs, p);
3945
10.9M
        if (!is_x_bended(p))
3946
1.00M
            return fill_stripe(pfs, p);
3947
10.9M
    }
3948
10.8M
    {   tensor_patch s0, s1;
3949
10.8M
        patch_color_t *c[2];
3950
10.8M
        shading_vertex_t q0, q1, q2;
3951
10.8M
        int code = 0;
3952
10.8M
        byte *color_stack_ptr;
3953
10.8M
        bool save_inside = pfs->inside;
3954
3955
10.8M
        if (!pfs->inside) {
3956
10.6M
            gs_fixed_rect r, r1;
3957
3958
10.6M
            tensor_patch_bbox(&r, p);
3959
10.6M
            r.p.x -= INTERPATCH_PADDING;
3960
10.6M
            r.p.y -= INTERPATCH_PADDING;
3961
10.6M
            r.q.x += INTERPATCH_PADDING;
3962
10.6M
            r.q.y += INTERPATCH_PADDING;
3963
10.6M
            r1 = r;
3964
10.6M
            rect_intersect(r, pfs->rect);
3965
10.6M
            if (r.q.x <= r.p.x || r.q.y <= r.p.y)
3966
514k
                return 0;
3967
10.1M
            if (r1.p.x == r.p.x && r1.p.y == r.p.y &&
3968
10.1M
                r1.q.x == r.q.x && r1.q.y == r.q.y)
3969
57.0k
                pfs->inside = true;
3970
10.1M
        }
3971
10.2M
        color_stack_ptr = reserve_colors_inline(pfs, c, 2);
3972
10.2M
        if(color_stack_ptr == NULL)
3973
0
            return_error(gs_error_unregistered); /* Must not happen. */
3974
10.2M
        split_patch(pfs, &s0, &s1, p, c);
3975
10.2M
        if (kv0 <= 1) {
3976
9.96M
            q0.p = s0.pole[0][0];
3977
9.96M
            q0.c = s0.c[0][0];
3978
9.96M
            q1.p = s1.pole[3][0];
3979
9.96M
            q1.c = s1.c[1][0];
3980
9.96M
            q2.p = s0.pole[3][0];
3981
9.96M
            q2.c = s0.c[1][0];
3982
9.96M
            code = fill_triangle_wedge(pfs, &q0, &q1, &q2);
3983
9.96M
        }
3984
10.2M
        if (kv1 <= 1 && code >= 0) {
3985
9.96M
            q0.p = s0.pole[0][3];
3986
9.96M
            q0.c = s0.c[0][1];
3987
9.96M
            q1.p = s1.pole[3][3];
3988
9.96M
            q1.c = s1.c[1][1];
3989
9.96M
            q2.p = s0.pole[3][3];
3990
9.96M
            q2.c = s0.c[1][1];
3991
9.96M
            code = fill_triangle_wedge(pfs, &q0, &q1, &q2);
3992
9.96M
        }
3993
10.2M
        if (code >= 0)
3994
10.2M
            code = fill_patch(pfs, &s0, kv / 2, kv0 / 2, kv1 / 2);
3995
10.2M
        if (code >= 0)
3996
10.2M
            code = fill_patch(pfs, &s1, kv / 2, kv0 / 2, kv1 / 2);
3997
        /* fixme : To provide the precise filling order, we must
3998
           decompose left and right wedges into pieces by intersections
3999
           with stripes, and fill each piece with its stripe.
4000
           A lazy wedge list would be fine for storing
4001
           the necessary information.
4002
4003
           If the patch is created from a radial shading,
4004
           the wedge color appears a constant, so the filling order
4005
           isn't important. The order is important for other
4006
           self-overlapping patches, but the visible effect is
4007
           just a slight narrowing of the patch (as its lower layer appears
4008
           visible through the upper layer near the side).
4009
           This kind of dropout isn't harmful, because
4010
           contacting self-overlapping patches are painted
4011
           one after one by definition, so that a side coverage break
4012
           appears unavoidable by definition.
4013
4014
           Delaying this improvement because it is low importance.
4015
         */
4016
10.2M
        release_colors_inline(pfs, color_stack_ptr, 2);
4017
10.2M
        pfs->inside = save_inside;
4018
10.2M
        return code;
4019
10.2M
    }
4020
10.2M
}
4021
4022
static inline int64_t
4023
lcp1(int64_t p0, int64_t p3)
4024
7.21M
{   /* Computing the 1st pole of a 3d order besier, which appears a line. */
4025
7.21M
    return (p0 + p0 + p3);
4026
7.21M
}
4027
static inline int64_t
4028
lcp2(int64_t p0, int64_t p3)
4029
7.21M
{   /* Computing the 2nd pole of a 3d order besier, which appears a line. */
4030
7.21M
    return (p0 + p3 + p3);
4031
7.21M
}
4032
4033
static void
4034
patch_set_color(const patch_fill_state_t *pfs, patch_color_t *c, const float *cc)
4035
4.50M
{
4036
4.50M
    if (pfs->Function) {
4037
1.44M
        c->t[0] = cc[0];
4038
1.44M
        c->t[1] = cc[1];
4039
1.44M
    } else
4040
3.06M
        memcpy(c->cc.paint.values, cc, sizeof(c->cc.paint.values[0]) * pfs->num_components);
4041
4.50M
}
4042
4043
static void
4044
make_tensor_patch(const patch_fill_state_t *pfs, tensor_patch *p, const patch_curve_t curve[4],
4045
           const gs_fixed_point interior[4])
4046
1.12M
{
4047
1.12M
    const gs_color_space *pcs = pfs->direct_space;
4048
4049
1.12M
    p->pole[0][0] = curve[0].vertex.p;
4050
1.12M
    p->pole[1][0] = curve[0].control[0];
4051
1.12M
    p->pole[2][0] = curve[0].control[1];
4052
1.12M
    p->pole[3][0] = curve[1].vertex.p;
4053
1.12M
    p->pole[3][1] = curve[1].control[0];
4054
1.12M
    p->pole[3][2] = curve[1].control[1];
4055
1.12M
    p->pole[3][3] = curve[2].vertex.p;
4056
1.12M
    p->pole[2][3] = curve[2].control[0];
4057
1.12M
    p->pole[1][3] = curve[2].control[1];
4058
1.12M
    p->pole[0][3] = curve[3].vertex.p;
4059
1.12M
    p->pole[0][2] = curve[3].control[0];
4060
1.12M
    p->pole[0][1] = curve[3].control[1];
4061
1.12M
    if (interior != NULL) {
4062
766k
        p->pole[1][1] = interior[0];
4063
766k
        p->pole[1][2] = interior[1];
4064
766k
        p->pole[2][2] = interior[2];
4065
766k
        p->pole[2][1] = interior[3];
4066
766k
    } else {
4067
360k
        p->pole[1][1].x = (fixed)((3*(lcp1(p->pole[0][1].x, p->pole[3][1].x) +
4068
360k
                                      lcp1(p->pole[1][0].x, p->pole[1][3].x)) -
4069
360k
                                   lcp1(lcp1(p->pole[0][0].x, p->pole[0][3].x),
4070
360k
                                        lcp1(p->pole[3][0].x, p->pole[3][3].x)))/9);
4071
360k
        p->pole[1][2].x = (fixed)((3*(lcp1(p->pole[0][2].x, p->pole[3][2].x) +
4072
360k
                                      lcp2(p->pole[1][0].x, p->pole[1][3].x)) -
4073
360k
                                   lcp1(lcp2(p->pole[0][0].x, p->pole[0][3].x),
4074
360k
                                        lcp2(p->pole[3][0].x, p->pole[3][3].x)))/9);
4075
360k
        p->pole[2][1].x = (fixed)((3*(lcp2(p->pole[0][1].x, p->pole[3][1].x) +
4076
360k
                                      lcp1(p->pole[2][0].x, p->pole[2][3].x)) -
4077
360k
                                   lcp2(lcp1(p->pole[0][0].x, p->pole[0][3].x),
4078
360k
                                        lcp1(p->pole[3][0].x, p->pole[3][3].x)))/9);
4079
360k
        p->pole[2][2].x = (fixed)((3*(lcp2(p->pole[0][2].x, p->pole[3][2].x) +
4080
360k
                                      lcp2(p->pole[2][0].x, p->pole[2][3].x)) -
4081
360k
                                   lcp2(lcp2(p->pole[0][0].x, p->pole[0][3].x),
4082
360k
                                        lcp2(p->pole[3][0].x, p->pole[3][3].x)))/9);
4083
4084
360k
        p->pole[1][1].y = (fixed)((3*(lcp1(p->pole[0][1].y, p->pole[3][1].y) +
4085
360k
                                      lcp1(p->pole[1][0].y, p->pole[1][3].y)) -
4086
360k
                                   lcp1(lcp1(p->pole[0][0].y, p->pole[0][3].y),
4087
360k
                                        lcp1(p->pole[3][0].y, p->pole[3][3].y)))/9);
4088
360k
        p->pole[1][2].y = (fixed)((3*(lcp1(p->pole[0][2].y, p->pole[3][2].y) +
4089
360k
                                      lcp2(p->pole[1][0].y, p->pole[1][3].y)) -
4090
360k
                                   lcp1(lcp2(p->pole[0][0].y, p->pole[0][3].y),
4091
360k
                                        lcp2(p->pole[3][0].y, p->pole[3][3].y)))/9);
4092
360k
        p->pole[2][1].y = (fixed)((3*(lcp2(p->pole[0][1].y, p->pole[3][1].y) +
4093
360k
                                      lcp1(p->pole[2][0].y, p->pole[2][3].y)) -
4094
360k
                                   lcp2(lcp1(p->pole[0][0].y, p->pole[0][3].y),
4095
360k
                                        lcp1(p->pole[3][0].y, p->pole[3][3].y)))/9);
4096
360k
        p->pole[2][2].y = (fixed)((3*(lcp2(p->pole[0][2].y, p->pole[3][2].y) +
4097
360k
                                      lcp2(p->pole[2][0].y, p->pole[2][3].y)) -
4098
360k
                                   lcp2(lcp2(p->pole[0][0].y, p->pole[0][3].y),
4099
360k
                                        lcp2(p->pole[3][0].y, p->pole[3][3].y)))/9);
4100
360k
    }
4101
1.12M
    patch_set_color(pfs, p->c[0][0], curve[0].vertex.cc);
4102
1.12M
    patch_set_color(pfs, p->c[1][0], curve[1].vertex.cc);
4103
1.12M
    patch_set_color(pfs, p->c[1][1], curve[2].vertex.cc);
4104
1.12M
    patch_set_color(pfs, p->c[0][1], curve[3].vertex.cc);
4105
1.12M
    patch_resolve_color_inline(p->c[0][0], pfs);
4106
1.12M
    patch_resolve_color_inline(p->c[0][1], pfs);
4107
1.12M
    patch_resolve_color_inline(p->c[1][0], pfs);
4108
1.12M
    patch_resolve_color_inline(p->c[1][1], pfs);
4109
1.12M
    if (!pfs->Function) {
4110
766k
        pcs->type->restrict_color(&p->c[0][0]->cc, pcs);
4111
766k
        pcs->type->restrict_color(&p->c[0][1]->cc, pcs);
4112
766k
        pcs->type->restrict_color(&p->c[1][0]->cc, pcs);
4113
766k
        pcs->type->restrict_color(&p->c[1][1]->cc, pcs);
4114
766k
    }
4115
1.12M
}
4116
4117
int
4118
gx_shade_background(gx_device *pdev, const gs_fixed_rect *rect,
4119
        const gx_device_color *pdevc, gs_logical_operation_t log_op)
4120
201k
{
4121
201k
    gs_fixed_edge le, re;
4122
4123
201k
    le.start.x = rect->p.x - INTERPATCH_PADDING;
4124
201k
    le.start.y = rect->p.y - INTERPATCH_PADDING;
4125
201k
    le.end.x = rect->p.x - INTERPATCH_PADDING;
4126
201k
    le.end.y = rect->q.y + INTERPATCH_PADDING;
4127
201k
    re.start.x = rect->q.x + INTERPATCH_PADDING;
4128
201k
    re.start.y = rect->p.y - INTERPATCH_PADDING;
4129
201k
    re.end.x = rect->q.x + INTERPATCH_PADDING;
4130
201k
    re.end.y = rect->q.y + INTERPATCH_PADDING;
4131
201k
    return dev_proc(pdev, fill_trapezoid)(pdev,
4132
201k
            &le, &re, le.start.y, le.end.y, false, pdevc, log_op);
4133
201k
}
4134
4135
int
4136
patch_fill(patch_fill_state_t *pfs, const patch_curve_t curve[4],
4137
           const gs_fixed_point interior[4],
4138
           void (*transform) (gs_fixed_point *, const patch_curve_t[4],
4139
                              const gs_fixed_point[4], double, double))
4140
1.12M
{
4141
1.12M
    tensor_patch p;
4142
1.12M
    patch_color_t *c[4];
4143
1.12M
    int kv[4], kvm, ku[4], kum;
4144
1.12M
    int code = 0;
4145
1.12M
    byte *color_stack_ptr = reserve_colors_inline(pfs, c, 4); /* Can't fail */
4146
4147
1.12M
    p.c[0][0] = c[0];
4148
1.12M
    p.c[0][1] = c[1];
4149
1.12M
    p.c[1][0] = c[2];
4150
1.12M
    p.c[1][1] = c[3];
4151
#if SKIP_TEST
4152
    dbg_patch_cnt++;
4153
    /*if (dbg_patch_cnt != 67 && dbg_patch_cnt != 78)
4154
        return 0;*/
4155
#endif
4156
    /* We decompose the patch into tiny quadrangles,
4157
       possibly inserting wedges between them against a dropout. */
4158
1.12M
    make_tensor_patch(pfs, &p, curve, interior);
4159
1.12M
    pfs->unlinear = !is_linear_color_applicable(pfs);
4160
1.12M
    pfs->linear_color = false;
4161
1.12M
    if ((*dev_proc(pfs->dev, dev_spec_op))(pfs->dev,
4162
1.12M
            gxdso_pattern_shading_area, NULL, 0) > 0) {
4163
        /* Inform the device with the shading coverage area.
4164
           First compute the sign of the area, because
4165
           all areas to be clipped in same direction. */
4166
167k
        gx_device *pdev = pfs->dev;
4167
167k
        gx_path path;
4168
167k
        fixed d01x = (curve[1].vertex.p.x - curve[0].vertex.p.x) >> 1;
4169
167k
        fixed d01y = (curve[1].vertex.p.y - curve[0].vertex.p.y) >> 1;
4170
167k
        fixed d12x = (curve[2].vertex.p.x - curve[1].vertex.p.x) >> 1;
4171
167k
        fixed d12y = (curve[2].vertex.p.y - curve[1].vertex.p.y) >> 1;
4172
167k
        fixed d23x = (curve[3].vertex.p.x - curve[2].vertex.p.x) >> 1;
4173
167k
        fixed d23y = (curve[3].vertex.p.y - curve[2].vertex.p.y) >> 1;
4174
167k
        fixed d30x = (curve[0].vertex.p.x - curve[3].vertex.p.x) >> 1;
4175
167k
        fixed d30y = (curve[0].vertex.p.y - curve[3].vertex.p.y) >> 1;
4176
167k
        int64_t s1 = (int64_t)d01x * d12y - (int64_t)d01y * d12x;
4177
167k
        int64_t s2 = (int64_t)d23x * d30y - (int64_t)d23y * d30x;
4178
167k
        int s = (s1 + s2 > 0 ? 1 : 3), i, j, k, jj, l = (s == 1 ? 0 : 1);
4179
4180
167k
        gx_path_init_local(&path, pdev->memory);
4181
167k
        if (is_x_bended(&p) || is_y_bended(&p)) {
4182
            /* The patch possibly is self-overlapping,
4183
               so the patch coverage may fall outside the patch outline.
4184
               In this case we pass an empty path,
4185
               and the device must use a bitmap mask instead clipping. */
4186
98.4k
        } else {
4187
69.0k
            code = gx_path_add_point(&path, curve[0].vertex.p.x, curve[0].vertex.p.y);
4188
345k
            for (i = k = 0; k < 4 && code >= 0; i = j, k++) {
4189
276k
                j = (i + s) % 4, jj = (s == 1 ? i : j);
4190
276k
                if (curve[jj].straight)
4191
22.8k
                    code = gx_path_add_line(&path, curve[j].vertex.p.x,
4192
276k
                                                curve[j].vertex.p.y);
4193
253k
                else
4194
253k
                    code = gx_path_add_curve(&path, curve[jj].control[l].x, curve[jj].control[l].y,
4195
276k
                                                    curve[jj].control[(l + 1) & 1].x, curve[jj].control[(l + 1) & 1].y,
4196
276k
                                                    curve[j].vertex.p.x,
4197
276k
                                                    curve[j].vertex.p.y);
4198
276k
            }
4199
69.0k
            if (code >= 0)
4200
69.0k
                code = gx_path_close_subpath(&path);
4201
69.0k
        }
4202
167k
        if (code >= 0)
4203
167k
            code = (*dev_proc(pfs->dev, fill_path))(pdev, NULL, &path, NULL, NULL, NULL);
4204
167k
        gx_path_free(&path, "patch_fill");
4205
167k
        if (code < 0)
4206
0
            goto out;
4207
167k
    }
4208
    /* How many subdivisions of the patch in the u and v direction? */
4209
1.12M
    kv[0] = curve_samples(pfs, &p.pole[0][0], 4, pfs->fixed_flat);
4210
1.12M
    kv[1] = curve_samples(pfs, &p.pole[0][1], 4, pfs->fixed_flat);
4211
1.12M
    kv[2] = curve_samples(pfs, &p.pole[0][2], 4, pfs->fixed_flat);
4212
1.12M
    kv[3] = curve_samples(pfs, &p.pole[0][3], 4, pfs->fixed_flat);
4213
1.12M
    kvm = max(max(kv[0], kv[1]), max(kv[2], kv[3]));
4214
1.12M
    ku[0] = curve_samples(pfs, p.pole[0], 1, pfs->fixed_flat);
4215
1.12M
    ku[1] = curve_samples(pfs, p.pole[1], 1, pfs->fixed_flat);
4216
1.12M
    ku[2] = curve_samples(pfs, p.pole[2], 1, pfs->fixed_flat);
4217
1.12M
    ku[3] = curve_samples(pfs, p.pole[3], 1, pfs->fixed_flat);
4218
1.12M
    kum = max(max(ku[0], ku[1]), max(ku[2], ku[3]));
4219
#   if NOFILL_TEST
4220
    dbg_nofill = false;
4221
#   endif
4222
1.12M
    code = fill_wedges(pfs, ku[0], kum, p.pole[0], 1, p.c[0][0], p.c[0][1],
4223
1.12M
        interpatch_padding | inpatch_wedge);
4224
1.12M
    if (code >= 0) {
4225
        /* We would like to apply iterations for enumerating the kvm curve parts,
4226
           but the roundinmg errors would be too complicated due to
4227
           the dependence on the direction. Note that neigbour
4228
           patches may use the opposite direction for same bounding curve.
4229
           We apply the recursive dichotomy, in which
4230
           the rounding errors do not depend on the direction. */
4231
#       if NOFILL_TEST
4232
            dbg_nofill = false;
4233
            code = fill_patch(pfs, &p, kvm, kv[0], kv[3]);
4234
            dbg_nofill = true;
4235
#       endif
4236
1.12M
            code = fill_patch(pfs, &p, kvm, kv[0], kv[3]);
4237
1.12M
    }
4238
1.12M
    if (code >= 0)
4239
1.12M
        code = fill_wedges(pfs, ku[3], kum, p.pole[3], 1, p.c[1][0], p.c[1][1],
4240
1.12M
                interpatch_padding | inpatch_wedge);
4241
1.12M
out:
4242
1.12M
    release_colors_inline(pfs, color_stack_ptr, 4);
4243
1.12M
    return code;
4244
1.12M
}