/src/ghostpdl/brotli/c/enc/brotli_bit_stream.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* Copyright 2014 Google Inc. All Rights Reserved. |
2 | | |
3 | | Distributed under MIT license. |
4 | | See file LICENSE for detail or copy at https://opensource.org/licenses/MIT |
5 | | */ |
6 | | |
7 | | /* Brotli bit stream functions to support the low level format. There are no |
8 | | compression algorithms here, just the right ordering of bits to match the |
9 | | specs. */ |
10 | | |
11 | | #include "brotli_bit_stream.h" |
12 | | |
13 | | #include <string.h> /* memcpy, memset */ |
14 | | |
15 | | #include <brotli/types.h> |
16 | | |
17 | | #include "../common/constants.h" |
18 | | #include "../common/context.h" |
19 | | #include "../common/platform.h" |
20 | | #include "entropy_encode.h" |
21 | | #include "entropy_encode_static.h" |
22 | | #include "fast_log.h" |
23 | | #include "histogram.h" |
24 | | #include "memory.h" |
25 | | #include "write_bits.h" |
26 | | |
27 | | #if defined(__cplusplus) || defined(c_plusplus) |
28 | | extern "C" { |
29 | | #endif |
30 | | |
31 | | #define MAX_HUFFMAN_TREE_SIZE (2 * BROTLI_NUM_COMMAND_SYMBOLS + 1) |
32 | | /* The maximum size of Huffman dictionary for distances assuming that |
33 | | NPOSTFIX = 0 and NDIRECT = 0. */ |
34 | | #define MAX_SIMPLE_DISTANCE_ALPHABET_SIZE \ |
35 | 0 | BROTLI_DISTANCE_ALPHABET_SIZE(0, 0, BROTLI_LARGE_MAX_DISTANCE_BITS) |
36 | | /* MAX_SIMPLE_DISTANCE_ALPHABET_SIZE == 140 */ |
37 | | |
38 | 0 | static BROTLI_INLINE uint32_t BlockLengthPrefixCode(uint32_t len) { |
39 | 0 | uint32_t code = (len >= 177) ? (len >= 753 ? 20 : 14) : (len >= 41 ? 7 : 0); |
40 | 0 | while (code < (BROTLI_NUM_BLOCK_LEN_SYMBOLS - 1) && |
41 | 0 | len >= _kBrotliPrefixCodeRanges[code + 1].offset) ++code; |
42 | 0 | return code; |
43 | 0 | } |
44 | | |
45 | | static BROTLI_INLINE void GetBlockLengthPrefixCode(uint32_t len, size_t* code, |
46 | 0 | uint32_t* n_extra, uint32_t* extra) { |
47 | 0 | *code = BlockLengthPrefixCode(len); |
48 | 0 | *n_extra = _kBrotliPrefixCodeRanges[*code].nbits; |
49 | 0 | *extra = len - _kBrotliPrefixCodeRanges[*code].offset; |
50 | 0 | } |
51 | | |
52 | | typedef struct BlockTypeCodeCalculator { |
53 | | size_t last_type; |
54 | | size_t second_last_type; |
55 | | } BlockTypeCodeCalculator; |
56 | | |
57 | 0 | static void InitBlockTypeCodeCalculator(BlockTypeCodeCalculator* self) { |
58 | 0 | self->last_type = 1; |
59 | 0 | self->second_last_type = 0; |
60 | 0 | } |
61 | | |
62 | | static BROTLI_INLINE size_t NextBlockTypeCode( |
63 | 0 | BlockTypeCodeCalculator* calculator, uint8_t type) { |
64 | 0 | size_t type_code = (type == calculator->last_type + 1) ? 1u : |
65 | 0 | (type == calculator->second_last_type) ? 0u : type + 2u; |
66 | 0 | calculator->second_last_type = calculator->last_type; |
67 | 0 | calculator->last_type = type; |
68 | 0 | return type_code; |
69 | 0 | } |
70 | | |
71 | | /* |nibblesbits| represents the 2 bits to encode MNIBBLES (0-3) |
72 | | REQUIRES: length > 0 |
73 | | REQUIRES: length <= (1 << 24) */ |
74 | | static void BrotliEncodeMlen(size_t length, uint64_t* bits, |
75 | 0 | size_t* numbits, uint64_t* nibblesbits) { |
76 | 0 | size_t lg = (length == 1) ? 1 : Log2FloorNonZero((uint32_t)(length - 1)) + 1; |
77 | 0 | size_t mnibbles = (lg < 16 ? 16 : (lg + 3)) / 4; |
78 | 0 | BROTLI_DCHECK(length > 0); |
79 | 0 | BROTLI_DCHECK(length <= (1 << 24)); |
80 | 0 | BROTLI_DCHECK(lg <= 24); |
81 | 0 | *nibblesbits = mnibbles - 4; |
82 | 0 | *numbits = mnibbles * 4; |
83 | 0 | *bits = length - 1; |
84 | 0 | } |
85 | | |
86 | | static BROTLI_INLINE void StoreCommandExtra( |
87 | 0 | const Command* cmd, size_t* storage_ix, uint8_t* storage) { |
88 | 0 | uint32_t copylen_code = CommandCopyLenCode(cmd); |
89 | 0 | uint16_t inscode = GetInsertLengthCode(cmd->insert_len_); |
90 | 0 | uint16_t copycode = GetCopyLengthCode(copylen_code); |
91 | 0 | uint32_t insnumextra = GetInsertExtra(inscode); |
92 | 0 | uint64_t insextraval = cmd->insert_len_ - GetInsertBase(inscode); |
93 | 0 | uint64_t copyextraval = copylen_code - GetCopyBase(copycode); |
94 | 0 | uint64_t bits = (copyextraval << insnumextra) | insextraval; |
95 | 0 | BrotliWriteBits( |
96 | 0 | insnumextra + GetCopyExtra(copycode), bits, storage_ix, storage); |
97 | 0 | } |
98 | | |
99 | | /* Data structure that stores almost everything that is needed to encode each |
100 | | block switch command. */ |
101 | | typedef struct BlockSplitCode { |
102 | | BlockTypeCodeCalculator type_code_calculator; |
103 | | uint8_t type_depths[BROTLI_MAX_BLOCK_TYPE_SYMBOLS]; |
104 | | uint16_t type_bits[BROTLI_MAX_BLOCK_TYPE_SYMBOLS]; |
105 | | uint8_t length_depths[BROTLI_NUM_BLOCK_LEN_SYMBOLS]; |
106 | | uint16_t length_bits[BROTLI_NUM_BLOCK_LEN_SYMBOLS]; |
107 | | } BlockSplitCode; |
108 | | |
109 | | /* Stores a number between 0 and 255. */ |
110 | 0 | static void StoreVarLenUint8(size_t n, size_t* storage_ix, uint8_t* storage) { |
111 | 0 | if (n == 0) { |
112 | 0 | BrotliWriteBits(1, 0, storage_ix, storage); |
113 | 0 | } else { |
114 | 0 | size_t nbits = Log2FloorNonZero(n); |
115 | 0 | BrotliWriteBits(1, 1, storage_ix, storage); |
116 | 0 | BrotliWriteBits(3, nbits, storage_ix, storage); |
117 | 0 | BrotliWriteBits(nbits, n - ((size_t)1 << nbits), storage_ix, storage); |
118 | 0 | } |
119 | 0 | } |
120 | | |
121 | | /* Stores the compressed meta-block header. |
122 | | REQUIRES: length > 0 |
123 | | REQUIRES: length <= (1 << 24) */ |
124 | | static void StoreCompressedMetaBlockHeader(BROTLI_BOOL is_final_block, |
125 | | size_t length, |
126 | | size_t* storage_ix, |
127 | 0 | uint8_t* storage) { |
128 | 0 | uint64_t lenbits; |
129 | 0 | size_t nlenbits; |
130 | 0 | uint64_t nibblesbits; |
131 | | |
132 | | /* Write ISLAST bit. */ |
133 | 0 | BrotliWriteBits(1, (uint64_t)is_final_block, storage_ix, storage); |
134 | | /* Write ISEMPTY bit. */ |
135 | 0 | if (is_final_block) { |
136 | 0 | BrotliWriteBits(1, 0, storage_ix, storage); |
137 | 0 | } |
138 | |
|
139 | 0 | BrotliEncodeMlen(length, &lenbits, &nlenbits, &nibblesbits); |
140 | 0 | BrotliWriteBits(2, nibblesbits, storage_ix, storage); |
141 | 0 | BrotliWriteBits(nlenbits, lenbits, storage_ix, storage); |
142 | |
|
143 | 0 | if (!is_final_block) { |
144 | | /* Write ISUNCOMPRESSED bit. */ |
145 | 0 | BrotliWriteBits(1, 0, storage_ix, storage); |
146 | 0 | } |
147 | 0 | } |
148 | | |
149 | | /* Stores the uncompressed meta-block header. |
150 | | REQUIRES: length > 0 |
151 | | REQUIRES: length <= (1 << 24) */ |
152 | | static void BrotliStoreUncompressedMetaBlockHeader(size_t length, |
153 | | size_t* storage_ix, |
154 | 0 | uint8_t* storage) { |
155 | 0 | uint64_t lenbits; |
156 | 0 | size_t nlenbits; |
157 | 0 | uint64_t nibblesbits; |
158 | | |
159 | | /* Write ISLAST bit. |
160 | | Uncompressed block cannot be the last one, so set to 0. */ |
161 | 0 | BrotliWriteBits(1, 0, storage_ix, storage); |
162 | 0 | BrotliEncodeMlen(length, &lenbits, &nlenbits, &nibblesbits); |
163 | 0 | BrotliWriteBits(2, nibblesbits, storage_ix, storage); |
164 | 0 | BrotliWriteBits(nlenbits, lenbits, storage_ix, storage); |
165 | | /* Write ISUNCOMPRESSED bit. */ |
166 | 0 | BrotliWriteBits(1, 1, storage_ix, storage); |
167 | 0 | } |
168 | | |
169 | | static void BrotliStoreHuffmanTreeOfHuffmanTreeToBitMask( |
170 | | const int num_codes, const uint8_t* code_length_bitdepth, |
171 | 0 | size_t* storage_ix, uint8_t* storage) { |
172 | 0 | static const uint8_t kStorageOrder[BROTLI_CODE_LENGTH_CODES] = { |
173 | 0 | 1, 2, 3, 4, 0, 5, 17, 6, 16, 7, 8, 9, 10, 11, 12, 13, 14, 15 |
174 | 0 | }; |
175 | | /* The bit lengths of the Huffman code over the code length alphabet |
176 | | are compressed with the following static Huffman code: |
177 | | Symbol Code |
178 | | ------ ---- |
179 | | 0 00 |
180 | | 1 1110 |
181 | | 2 110 |
182 | | 3 01 |
183 | | 4 10 |
184 | | 5 1111 */ |
185 | 0 | static const uint8_t kHuffmanBitLengthHuffmanCodeSymbols[6] = { |
186 | 0 | 0, 7, 3, 2, 1, 15 |
187 | 0 | }; |
188 | 0 | static const uint8_t kHuffmanBitLengthHuffmanCodeBitLengths[6] = { |
189 | 0 | 2, 4, 3, 2, 2, 4 |
190 | 0 | }; |
191 | |
|
192 | 0 | size_t skip_some = 0; /* skips none. */ |
193 | | |
194 | | /* Throw away trailing zeros: */ |
195 | 0 | size_t codes_to_store = BROTLI_CODE_LENGTH_CODES; |
196 | 0 | if (num_codes > 1) { |
197 | 0 | for (; codes_to_store > 0; --codes_to_store) { |
198 | 0 | if (code_length_bitdepth[kStorageOrder[codes_to_store - 1]] != 0) { |
199 | 0 | break; |
200 | 0 | } |
201 | 0 | } |
202 | 0 | } |
203 | 0 | if (code_length_bitdepth[kStorageOrder[0]] == 0 && |
204 | 0 | code_length_bitdepth[kStorageOrder[1]] == 0) { |
205 | 0 | skip_some = 2; /* skips two. */ |
206 | 0 | if (code_length_bitdepth[kStorageOrder[2]] == 0) { |
207 | 0 | skip_some = 3; /* skips three. */ |
208 | 0 | } |
209 | 0 | } |
210 | 0 | BrotliWriteBits(2, skip_some, storage_ix, storage); |
211 | 0 | { |
212 | 0 | size_t i; |
213 | 0 | for (i = skip_some; i < codes_to_store; ++i) { |
214 | 0 | size_t l = code_length_bitdepth[kStorageOrder[i]]; |
215 | 0 | BrotliWriteBits(kHuffmanBitLengthHuffmanCodeBitLengths[l], |
216 | 0 | kHuffmanBitLengthHuffmanCodeSymbols[l], storage_ix, storage); |
217 | 0 | } |
218 | 0 | } |
219 | 0 | } |
220 | | |
221 | | static void BrotliStoreHuffmanTreeToBitMask( |
222 | | const size_t huffman_tree_size, const uint8_t* huffman_tree, |
223 | | const uint8_t* huffman_tree_extra_bits, const uint8_t* code_length_bitdepth, |
224 | | const uint16_t* code_length_bitdepth_symbols, |
225 | 0 | size_t* BROTLI_RESTRICT storage_ix, uint8_t* BROTLI_RESTRICT storage) { |
226 | 0 | size_t i; |
227 | 0 | for (i = 0; i < huffman_tree_size; ++i) { |
228 | 0 | size_t ix = huffman_tree[i]; |
229 | 0 | BrotliWriteBits(code_length_bitdepth[ix], code_length_bitdepth_symbols[ix], |
230 | 0 | storage_ix, storage); |
231 | | /* Extra bits */ |
232 | 0 | switch (ix) { |
233 | 0 | case BROTLI_REPEAT_PREVIOUS_CODE_LENGTH: |
234 | 0 | BrotliWriteBits(2, huffman_tree_extra_bits[i], storage_ix, storage); |
235 | 0 | break; |
236 | 0 | case BROTLI_REPEAT_ZERO_CODE_LENGTH: |
237 | 0 | BrotliWriteBits(3, huffman_tree_extra_bits[i], storage_ix, storage); |
238 | 0 | break; |
239 | 0 | } |
240 | 0 | } |
241 | 0 | } |
242 | | |
243 | | static void StoreSimpleHuffmanTree(const uint8_t* depths, |
244 | | size_t symbols[4], |
245 | | size_t num_symbols, |
246 | | size_t max_bits, |
247 | 0 | size_t* storage_ix, uint8_t* storage) { |
248 | | /* value of 1 indicates a simple Huffman code */ |
249 | 0 | BrotliWriteBits(2, 1, storage_ix, storage); |
250 | 0 | BrotliWriteBits(2, num_symbols - 1, storage_ix, storage); /* NSYM - 1 */ |
251 | |
|
252 | 0 | { |
253 | | /* Sort */ |
254 | 0 | size_t i; |
255 | 0 | for (i = 0; i < num_symbols; i++) { |
256 | 0 | size_t j; |
257 | 0 | for (j = i + 1; j < num_symbols; j++) { |
258 | 0 | if (depths[symbols[j]] < depths[symbols[i]]) { |
259 | 0 | BROTLI_SWAP(size_t, symbols, j, i); |
260 | 0 | } |
261 | 0 | } |
262 | 0 | } |
263 | 0 | } |
264 | |
|
265 | 0 | if (num_symbols == 2) { |
266 | 0 | BrotliWriteBits(max_bits, symbols[0], storage_ix, storage); |
267 | 0 | BrotliWriteBits(max_bits, symbols[1], storage_ix, storage); |
268 | 0 | } else if (num_symbols == 3) { |
269 | 0 | BrotliWriteBits(max_bits, symbols[0], storage_ix, storage); |
270 | 0 | BrotliWriteBits(max_bits, symbols[1], storage_ix, storage); |
271 | 0 | BrotliWriteBits(max_bits, symbols[2], storage_ix, storage); |
272 | 0 | } else { |
273 | 0 | BrotliWriteBits(max_bits, symbols[0], storage_ix, storage); |
274 | 0 | BrotliWriteBits(max_bits, symbols[1], storage_ix, storage); |
275 | 0 | BrotliWriteBits(max_bits, symbols[2], storage_ix, storage); |
276 | 0 | BrotliWriteBits(max_bits, symbols[3], storage_ix, storage); |
277 | | /* tree-select */ |
278 | 0 | BrotliWriteBits(1, depths[symbols[0]] == 1 ? 1 : 0, storage_ix, storage); |
279 | 0 | } |
280 | 0 | } |
281 | | |
282 | | /* num = alphabet size |
283 | | depths = symbol depths */ |
284 | | void BrotliStoreHuffmanTree(const uint8_t* depths, size_t num, |
285 | | HuffmanTree* tree, |
286 | 0 | size_t* storage_ix, uint8_t* storage) { |
287 | | /* Write the Huffman tree into the brotli-representation. |
288 | | The command alphabet is the largest, so this allocation will fit all |
289 | | alphabets. */ |
290 | | /* TODO(eustas): fix me */ |
291 | 0 | uint8_t huffman_tree[BROTLI_NUM_COMMAND_SYMBOLS]; |
292 | 0 | uint8_t huffman_tree_extra_bits[BROTLI_NUM_COMMAND_SYMBOLS]; |
293 | 0 | size_t huffman_tree_size = 0; |
294 | 0 | uint8_t code_length_bitdepth[BROTLI_CODE_LENGTH_CODES] = { 0 }; |
295 | 0 | uint16_t code_length_bitdepth_symbols[BROTLI_CODE_LENGTH_CODES]; |
296 | 0 | uint32_t huffman_tree_histogram[BROTLI_CODE_LENGTH_CODES] = { 0 }; |
297 | 0 | size_t i; |
298 | 0 | int num_codes = 0; |
299 | 0 | size_t code = 0; |
300 | |
|
301 | 0 | BROTLI_DCHECK(num <= BROTLI_NUM_COMMAND_SYMBOLS); |
302 | |
|
303 | 0 | BrotliWriteHuffmanTree(depths, num, &huffman_tree_size, huffman_tree, |
304 | 0 | huffman_tree_extra_bits); |
305 | | |
306 | | /* Calculate the statistics of the Huffman tree in brotli-representation. */ |
307 | 0 | for (i = 0; i < huffman_tree_size; ++i) { |
308 | 0 | ++huffman_tree_histogram[huffman_tree[i]]; |
309 | 0 | } |
310 | |
|
311 | 0 | for (i = 0; i < BROTLI_CODE_LENGTH_CODES; ++i) { |
312 | 0 | if (huffman_tree_histogram[i]) { |
313 | 0 | if (num_codes == 0) { |
314 | 0 | code = i; |
315 | 0 | num_codes = 1; |
316 | 0 | } else if (num_codes == 1) { |
317 | 0 | num_codes = 2; |
318 | 0 | break; |
319 | 0 | } |
320 | 0 | } |
321 | 0 | } |
322 | | |
323 | | /* Calculate another Huffman tree to use for compressing both the |
324 | | earlier Huffman tree with. */ |
325 | 0 | BrotliCreateHuffmanTree(huffman_tree_histogram, BROTLI_CODE_LENGTH_CODES, |
326 | 0 | 5, tree, code_length_bitdepth); |
327 | 0 | BrotliConvertBitDepthsToSymbols(code_length_bitdepth, |
328 | 0 | BROTLI_CODE_LENGTH_CODES, |
329 | 0 | code_length_bitdepth_symbols); |
330 | | |
331 | | /* Now, we have all the data, let's start storing it */ |
332 | 0 | BrotliStoreHuffmanTreeOfHuffmanTreeToBitMask(num_codes, code_length_bitdepth, |
333 | 0 | storage_ix, storage); |
334 | |
|
335 | 0 | if (num_codes == 1) { |
336 | 0 | code_length_bitdepth[code] = 0; |
337 | 0 | } |
338 | | |
339 | | /* Store the real Huffman tree now. */ |
340 | 0 | BrotliStoreHuffmanTreeToBitMask(huffman_tree_size, |
341 | 0 | huffman_tree, |
342 | 0 | huffman_tree_extra_bits, |
343 | 0 | code_length_bitdepth, |
344 | 0 | code_length_bitdepth_symbols, |
345 | 0 | storage_ix, storage); |
346 | 0 | } |
347 | | |
348 | | /* Builds a Huffman tree from histogram[0:length] into depth[0:length] and |
349 | | bits[0:length] and stores the encoded tree to the bit stream. */ |
350 | | static void BuildAndStoreHuffmanTree(const uint32_t* histogram, |
351 | | const size_t histogram_length, |
352 | | const size_t alphabet_size, |
353 | | HuffmanTree* tree, |
354 | | uint8_t* depth, |
355 | | uint16_t* bits, |
356 | | size_t* storage_ix, |
357 | 0 | uint8_t* storage) { |
358 | 0 | size_t count = 0; |
359 | 0 | size_t s4[4] = { 0 }; |
360 | 0 | size_t i; |
361 | 0 | size_t max_bits = 0; |
362 | 0 | for (i = 0; i < histogram_length; i++) { |
363 | 0 | if (histogram[i]) { |
364 | 0 | if (count < 4) { |
365 | 0 | s4[count] = i; |
366 | 0 | } else if (count > 4) { |
367 | 0 | break; |
368 | 0 | } |
369 | 0 | count++; |
370 | 0 | } |
371 | 0 | } |
372 | |
|
373 | 0 | { |
374 | 0 | size_t max_bits_counter = alphabet_size - 1; |
375 | 0 | while (max_bits_counter) { |
376 | 0 | max_bits_counter >>= 1; |
377 | 0 | ++max_bits; |
378 | 0 | } |
379 | 0 | } |
380 | |
|
381 | 0 | if (count <= 1) { |
382 | 0 | BrotliWriteBits(4, 1, storage_ix, storage); |
383 | 0 | BrotliWriteBits(max_bits, s4[0], storage_ix, storage); |
384 | 0 | depth[s4[0]] = 0; |
385 | 0 | bits[s4[0]] = 0; |
386 | 0 | return; |
387 | 0 | } |
388 | | |
389 | 0 | memset(depth, 0, histogram_length * sizeof(depth[0])); |
390 | 0 | BrotliCreateHuffmanTree(histogram, histogram_length, 15, tree, depth); |
391 | 0 | BrotliConvertBitDepthsToSymbols(depth, histogram_length, bits); |
392 | |
|
393 | 0 | if (count <= 4) { |
394 | 0 | StoreSimpleHuffmanTree(depth, s4, count, max_bits, storage_ix, storage); |
395 | 0 | } else { |
396 | 0 | BrotliStoreHuffmanTree(depth, histogram_length, tree, storage_ix, storage); |
397 | 0 | } |
398 | 0 | } |
399 | | |
400 | | static BROTLI_INLINE BROTLI_BOOL SortHuffmanTree( |
401 | 0 | const HuffmanTree* v0, const HuffmanTree* v1) { |
402 | 0 | return TO_BROTLI_BOOL(v0->total_count_ < v1->total_count_); |
403 | 0 | } |
404 | | |
405 | | void BrotliBuildAndStoreHuffmanTreeFast(HuffmanTree* tree, |
406 | | const uint32_t* histogram, |
407 | | const size_t histogram_total, |
408 | | const size_t max_bits, |
409 | | uint8_t* depth, uint16_t* bits, |
410 | | size_t* storage_ix, |
411 | 0 | uint8_t* storage) { |
412 | 0 | size_t count = 0; |
413 | 0 | size_t symbols[4] = { 0 }; |
414 | 0 | size_t length = 0; |
415 | 0 | size_t total = histogram_total; |
416 | 0 | while (total != 0) { |
417 | 0 | if (histogram[length]) { |
418 | 0 | if (count < 4) { |
419 | 0 | symbols[count] = length; |
420 | 0 | } |
421 | 0 | ++count; |
422 | 0 | total -= histogram[length]; |
423 | 0 | } |
424 | 0 | ++length; |
425 | 0 | } |
426 | |
|
427 | 0 | if (count <= 1) { |
428 | 0 | BrotliWriteBits(4, 1, storage_ix, storage); |
429 | 0 | BrotliWriteBits(max_bits, symbols[0], storage_ix, storage); |
430 | 0 | depth[symbols[0]] = 0; |
431 | 0 | bits[symbols[0]] = 0; |
432 | 0 | return; |
433 | 0 | } |
434 | | |
435 | 0 | memset(depth, 0, length * sizeof(depth[0])); |
436 | 0 | { |
437 | 0 | uint32_t count_limit; |
438 | 0 | for (count_limit = 1; ; count_limit *= 2) { |
439 | 0 | HuffmanTree* node = tree; |
440 | 0 | size_t l; |
441 | 0 | for (l = length; l != 0;) { |
442 | 0 | --l; |
443 | 0 | if (histogram[l]) { |
444 | 0 | if (BROTLI_PREDICT_TRUE(histogram[l] >= count_limit)) { |
445 | 0 | InitHuffmanTree(node, histogram[l], -1, (int16_t)l); |
446 | 0 | } else { |
447 | 0 | InitHuffmanTree(node, count_limit, -1, (int16_t)l); |
448 | 0 | } |
449 | 0 | ++node; |
450 | 0 | } |
451 | 0 | } |
452 | 0 | { |
453 | 0 | const int n = (int)(node - tree); |
454 | 0 | HuffmanTree sentinel; |
455 | 0 | int i = 0; /* Points to the next leaf node. */ |
456 | 0 | int j = n + 1; /* Points to the next non-leaf node. */ |
457 | 0 | int k; |
458 | |
|
459 | 0 | SortHuffmanTreeItems(tree, (size_t)n, SortHuffmanTree); |
460 | | /* The nodes are: |
461 | | [0, n): the sorted leaf nodes that we start with. |
462 | | [n]: we add a sentinel here. |
463 | | [n + 1, 2n): new parent nodes are added here, starting from |
464 | | (n+1). These are naturally in ascending order. |
465 | | [2n]: we add a sentinel at the end as well. |
466 | | There will be (2n+1) elements at the end. */ |
467 | 0 | InitHuffmanTree(&sentinel, BROTLI_UINT32_MAX, -1, -1); |
468 | 0 | *node++ = sentinel; |
469 | 0 | *node++ = sentinel; |
470 | |
|
471 | 0 | for (k = n - 1; k > 0; --k) { |
472 | 0 | int left, right; |
473 | 0 | if (tree[i].total_count_ <= tree[j].total_count_) { |
474 | 0 | left = i; |
475 | 0 | ++i; |
476 | 0 | } else { |
477 | 0 | left = j; |
478 | 0 | ++j; |
479 | 0 | } |
480 | 0 | if (tree[i].total_count_ <= tree[j].total_count_) { |
481 | 0 | right = i; |
482 | 0 | ++i; |
483 | 0 | } else { |
484 | 0 | right = j; |
485 | 0 | ++j; |
486 | 0 | } |
487 | | /* The sentinel node becomes the parent node. */ |
488 | 0 | node[-1].total_count_ = |
489 | 0 | tree[left].total_count_ + tree[right].total_count_; |
490 | 0 | node[-1].index_left_ = (int16_t)left; |
491 | 0 | node[-1].index_right_or_value_ = (int16_t)right; |
492 | | /* Add back the last sentinel node. */ |
493 | 0 | *node++ = sentinel; |
494 | 0 | } |
495 | 0 | if (BrotliSetDepth(2 * n - 1, tree, depth, 14)) { |
496 | | /* We need to pack the Huffman tree in 14 bits. If this was not |
497 | | successful, add fake entities to the lowest values and retry. */ |
498 | 0 | break; |
499 | 0 | } |
500 | 0 | } |
501 | 0 | } |
502 | 0 | } |
503 | 0 | BrotliConvertBitDepthsToSymbols(depth, length, bits); |
504 | 0 | if (count <= 4) { |
505 | 0 | size_t i; |
506 | | /* value of 1 indicates a simple Huffman code */ |
507 | 0 | BrotliWriteBits(2, 1, storage_ix, storage); |
508 | 0 | BrotliWriteBits(2, count - 1, storage_ix, storage); /* NSYM - 1 */ |
509 | | |
510 | | /* Sort */ |
511 | 0 | for (i = 0; i < count; i++) { |
512 | 0 | size_t j; |
513 | 0 | for (j = i + 1; j < count; j++) { |
514 | 0 | if (depth[symbols[j]] < depth[symbols[i]]) { |
515 | 0 | BROTLI_SWAP(size_t, symbols, j, i); |
516 | 0 | } |
517 | 0 | } |
518 | 0 | } |
519 | |
|
520 | 0 | if (count == 2) { |
521 | 0 | BrotliWriteBits(max_bits, symbols[0], storage_ix, storage); |
522 | 0 | BrotliWriteBits(max_bits, symbols[1], storage_ix, storage); |
523 | 0 | } else if (count == 3) { |
524 | 0 | BrotliWriteBits(max_bits, symbols[0], storage_ix, storage); |
525 | 0 | BrotliWriteBits(max_bits, symbols[1], storage_ix, storage); |
526 | 0 | BrotliWriteBits(max_bits, symbols[2], storage_ix, storage); |
527 | 0 | } else { |
528 | 0 | BrotliWriteBits(max_bits, symbols[0], storage_ix, storage); |
529 | 0 | BrotliWriteBits(max_bits, symbols[1], storage_ix, storage); |
530 | 0 | BrotliWriteBits(max_bits, symbols[2], storage_ix, storage); |
531 | 0 | BrotliWriteBits(max_bits, symbols[3], storage_ix, storage); |
532 | | /* tree-select */ |
533 | 0 | BrotliWriteBits(1, depth[symbols[0]] == 1 ? 1 : 0, storage_ix, storage); |
534 | 0 | } |
535 | 0 | } else { |
536 | 0 | uint8_t previous_value = 8; |
537 | 0 | size_t i; |
538 | | /* Complex Huffman Tree */ |
539 | 0 | StoreStaticCodeLengthCode(storage_ix, storage); |
540 | | |
541 | | /* Actual RLE coding. */ |
542 | 0 | for (i = 0; i < length;) { |
543 | 0 | const uint8_t value = depth[i]; |
544 | 0 | size_t reps = 1; |
545 | 0 | size_t k; |
546 | 0 | for (k = i + 1; k < length && depth[k] == value; ++k) { |
547 | 0 | ++reps; |
548 | 0 | } |
549 | 0 | i += reps; |
550 | 0 | if (value == 0) { |
551 | 0 | BrotliWriteBits(kZeroRepsDepth[reps], kZeroRepsBits[reps], |
552 | 0 | storage_ix, storage); |
553 | 0 | } else { |
554 | 0 | if (previous_value != value) { |
555 | 0 | BrotliWriteBits(kCodeLengthDepth[value], kCodeLengthBits[value], |
556 | 0 | storage_ix, storage); |
557 | 0 | --reps; |
558 | 0 | } |
559 | 0 | if (reps < 3) { |
560 | 0 | while (reps != 0) { |
561 | 0 | reps--; |
562 | 0 | BrotliWriteBits(kCodeLengthDepth[value], kCodeLengthBits[value], |
563 | 0 | storage_ix, storage); |
564 | 0 | } |
565 | 0 | } else { |
566 | 0 | reps -= 3; |
567 | 0 | BrotliWriteBits(kNonZeroRepsDepth[reps], kNonZeroRepsBits[reps], |
568 | 0 | storage_ix, storage); |
569 | 0 | } |
570 | 0 | previous_value = value; |
571 | 0 | } |
572 | 0 | } |
573 | 0 | } |
574 | 0 | } |
575 | | |
576 | 0 | static size_t IndexOf(const uint8_t* v, size_t v_size, uint8_t value) { |
577 | 0 | size_t i = 0; |
578 | 0 | for (; i < v_size; ++i) { |
579 | 0 | if (v[i] == value) return i; |
580 | 0 | } |
581 | 0 | return i; |
582 | 0 | } |
583 | | |
584 | 0 | static void MoveToFront(uint8_t* v, size_t index) { |
585 | 0 | uint8_t value = v[index]; |
586 | 0 | size_t i; |
587 | 0 | for (i = index; i != 0; --i) { |
588 | 0 | v[i] = v[i - 1]; |
589 | 0 | } |
590 | 0 | v[0] = value; |
591 | 0 | } |
592 | | |
593 | | static void MoveToFrontTransform(const uint32_t* BROTLI_RESTRICT v_in, |
594 | | const size_t v_size, |
595 | 0 | uint32_t* v_out) { |
596 | 0 | size_t i; |
597 | 0 | uint8_t mtf[256]; |
598 | 0 | uint32_t max_value; |
599 | 0 | if (v_size == 0) { |
600 | 0 | return; |
601 | 0 | } |
602 | 0 | max_value = v_in[0]; |
603 | 0 | for (i = 1; i < v_size; ++i) { |
604 | 0 | if (v_in[i] > max_value) max_value = v_in[i]; |
605 | 0 | } |
606 | 0 | BROTLI_DCHECK(max_value < 256u); |
607 | 0 | for (i = 0; i <= max_value; ++i) { |
608 | 0 | mtf[i] = (uint8_t)i; |
609 | 0 | } |
610 | 0 | { |
611 | 0 | size_t mtf_size = max_value + 1; |
612 | 0 | for (i = 0; i < v_size; ++i) { |
613 | 0 | size_t index = IndexOf(mtf, mtf_size, (uint8_t)v_in[i]); |
614 | 0 | BROTLI_DCHECK(index < mtf_size); |
615 | 0 | v_out[i] = (uint32_t)index; |
616 | 0 | MoveToFront(mtf, index); |
617 | 0 | } |
618 | 0 | } |
619 | 0 | } |
620 | | |
621 | | /* Finds runs of zeros in v[0..in_size) and replaces them with a prefix code of |
622 | | the run length plus extra bits (lower 9 bits is the prefix code and the rest |
623 | | are the extra bits). Non-zero values in v[] are shifted by |
624 | | *max_length_prefix. Will not create prefix codes bigger than the initial |
625 | | value of *max_run_length_prefix. The prefix code of run length L is simply |
626 | | Log2Floor(L) and the number of extra bits is the same as the prefix code. */ |
627 | | static void RunLengthCodeZeros(const size_t in_size, |
628 | | uint32_t* BROTLI_RESTRICT v, size_t* BROTLI_RESTRICT out_size, |
629 | 0 | uint32_t* BROTLI_RESTRICT max_run_length_prefix) { |
630 | 0 | uint32_t max_reps = 0; |
631 | 0 | size_t i; |
632 | 0 | uint32_t max_prefix; |
633 | 0 | for (i = 0; i < in_size;) { |
634 | 0 | uint32_t reps = 0; |
635 | 0 | for (; i < in_size && v[i] != 0; ++i) ; |
636 | 0 | for (; i < in_size && v[i] == 0; ++i) { |
637 | 0 | ++reps; |
638 | 0 | } |
639 | 0 | max_reps = BROTLI_MAX(uint32_t, reps, max_reps); |
640 | 0 | } |
641 | 0 | max_prefix = max_reps > 0 ? Log2FloorNonZero(max_reps) : 0; |
642 | 0 | max_prefix = BROTLI_MIN(uint32_t, max_prefix, *max_run_length_prefix); |
643 | 0 | *max_run_length_prefix = max_prefix; |
644 | 0 | *out_size = 0; |
645 | 0 | for (i = 0; i < in_size;) { |
646 | 0 | BROTLI_DCHECK(*out_size <= i); |
647 | 0 | if (v[i] != 0) { |
648 | 0 | v[*out_size] = v[i] + *max_run_length_prefix; |
649 | 0 | ++i; |
650 | 0 | ++(*out_size); |
651 | 0 | } else { |
652 | 0 | uint32_t reps = 1; |
653 | 0 | size_t k; |
654 | 0 | for (k = i + 1; k < in_size && v[k] == 0; ++k) { |
655 | 0 | ++reps; |
656 | 0 | } |
657 | 0 | i += reps; |
658 | 0 | while (reps != 0) { |
659 | 0 | if (reps < (2u << max_prefix)) { |
660 | 0 | uint32_t run_length_prefix = Log2FloorNonZero(reps); |
661 | 0 | const uint32_t extra_bits = reps - (1u << run_length_prefix); |
662 | 0 | v[*out_size] = run_length_prefix + (extra_bits << 9); |
663 | 0 | ++(*out_size); |
664 | 0 | break; |
665 | 0 | } else { |
666 | 0 | const uint32_t extra_bits = (1u << max_prefix) - 1u; |
667 | 0 | v[*out_size] = max_prefix + (extra_bits << 9); |
668 | 0 | reps -= (2u << max_prefix) - 1u; |
669 | 0 | ++(*out_size); |
670 | 0 | } |
671 | 0 | } |
672 | 0 | } |
673 | 0 | } |
674 | 0 | } |
675 | | |
676 | 0 | #define SYMBOL_BITS 9 |
677 | | |
678 | | typedef struct EncodeContextMapArena { |
679 | | uint32_t histogram[BROTLI_MAX_CONTEXT_MAP_SYMBOLS]; |
680 | | uint8_t depths[BROTLI_MAX_CONTEXT_MAP_SYMBOLS]; |
681 | | uint16_t bits[BROTLI_MAX_CONTEXT_MAP_SYMBOLS]; |
682 | | } EncodeContextMapArena; |
683 | | |
684 | | static void EncodeContextMap(MemoryManager* m, |
685 | | EncodeContextMapArena* arena, |
686 | | const uint32_t* context_map, |
687 | | size_t context_map_size, |
688 | | size_t num_clusters, |
689 | | HuffmanTree* tree, |
690 | 0 | size_t* storage_ix, uint8_t* storage) { |
691 | 0 | size_t i; |
692 | 0 | uint32_t* rle_symbols; |
693 | 0 | uint32_t max_run_length_prefix = 6; |
694 | 0 | size_t num_rle_symbols = 0; |
695 | 0 | uint32_t* BROTLI_RESTRICT const histogram = arena->histogram; |
696 | 0 | static const uint32_t kSymbolMask = (1u << SYMBOL_BITS) - 1u; |
697 | 0 | uint8_t* BROTLI_RESTRICT const depths = arena->depths; |
698 | 0 | uint16_t* BROTLI_RESTRICT const bits = arena->bits; |
699 | |
|
700 | 0 | StoreVarLenUint8(num_clusters - 1, storage_ix, storage); |
701 | |
|
702 | 0 | if (num_clusters == 1) { |
703 | 0 | return; |
704 | 0 | } |
705 | | |
706 | 0 | rle_symbols = BROTLI_ALLOC(m, uint32_t, context_map_size); |
707 | 0 | if (BROTLI_IS_OOM(m) || BROTLI_IS_NULL(rle_symbols)) return; |
708 | 0 | MoveToFrontTransform(context_map, context_map_size, rle_symbols); |
709 | 0 | RunLengthCodeZeros(context_map_size, rle_symbols, |
710 | 0 | &num_rle_symbols, &max_run_length_prefix); |
711 | 0 | memset(histogram, 0, sizeof(arena->histogram)); |
712 | 0 | for (i = 0; i < num_rle_symbols; ++i) { |
713 | 0 | ++histogram[rle_symbols[i] & kSymbolMask]; |
714 | 0 | } |
715 | 0 | { |
716 | 0 | BROTLI_BOOL use_rle = TO_BROTLI_BOOL(max_run_length_prefix > 0); |
717 | 0 | BrotliWriteBits(1, (uint64_t)use_rle, storage_ix, storage); |
718 | 0 | if (use_rle) { |
719 | 0 | BrotliWriteBits(4, max_run_length_prefix - 1, storage_ix, storage); |
720 | 0 | } |
721 | 0 | } |
722 | 0 | BuildAndStoreHuffmanTree(histogram, num_clusters + max_run_length_prefix, |
723 | 0 | num_clusters + max_run_length_prefix, |
724 | 0 | tree, depths, bits, storage_ix, storage); |
725 | 0 | for (i = 0; i < num_rle_symbols; ++i) { |
726 | 0 | const uint32_t rle_symbol = rle_symbols[i] & kSymbolMask; |
727 | 0 | const uint32_t extra_bits_val = rle_symbols[i] >> SYMBOL_BITS; |
728 | 0 | BrotliWriteBits(depths[rle_symbol], bits[rle_symbol], storage_ix, storage); |
729 | 0 | if (rle_symbol > 0 && rle_symbol <= max_run_length_prefix) { |
730 | 0 | BrotliWriteBits(rle_symbol, extra_bits_val, storage_ix, storage); |
731 | 0 | } |
732 | 0 | } |
733 | 0 | BrotliWriteBits(1, 1, storage_ix, storage); /* use move-to-front */ |
734 | 0 | BROTLI_FREE(m, rle_symbols); |
735 | 0 | } |
736 | | |
737 | | /* Stores the block switch command with index block_ix to the bit stream. */ |
738 | | static BROTLI_INLINE void StoreBlockSwitch(BlockSplitCode* code, |
739 | | const uint32_t block_len, |
740 | | const uint8_t block_type, |
741 | | BROTLI_BOOL is_first_block, |
742 | | size_t* storage_ix, |
743 | 0 | uint8_t* storage) { |
744 | 0 | size_t typecode = NextBlockTypeCode(&code->type_code_calculator, block_type); |
745 | 0 | size_t lencode; |
746 | 0 | uint32_t len_nextra; |
747 | 0 | uint32_t len_extra; |
748 | 0 | if (!is_first_block) { |
749 | 0 | BrotliWriteBits(code->type_depths[typecode], code->type_bits[typecode], |
750 | 0 | storage_ix, storage); |
751 | 0 | } |
752 | 0 | GetBlockLengthPrefixCode(block_len, &lencode, &len_nextra, &len_extra); |
753 | |
|
754 | 0 | BrotliWriteBits(code->length_depths[lencode], code->length_bits[lencode], |
755 | 0 | storage_ix, storage); |
756 | 0 | BrotliWriteBits(len_nextra, len_extra, storage_ix, storage); |
757 | 0 | } |
758 | | |
759 | | /* Builds a BlockSplitCode data structure from the block split given by the |
760 | | vector of block types and block lengths and stores it to the bit stream. */ |
761 | | static void BuildAndStoreBlockSplitCode(const uint8_t* types, |
762 | | const uint32_t* lengths, |
763 | | const size_t num_blocks, |
764 | | const size_t num_types, |
765 | | HuffmanTree* tree, |
766 | | BlockSplitCode* code, |
767 | | size_t* storage_ix, |
768 | 0 | uint8_t* storage) { |
769 | 0 | uint32_t type_histo[BROTLI_MAX_BLOCK_TYPE_SYMBOLS]; |
770 | 0 | uint32_t length_histo[BROTLI_NUM_BLOCK_LEN_SYMBOLS]; |
771 | 0 | size_t i; |
772 | 0 | BlockTypeCodeCalculator type_code_calculator; |
773 | 0 | memset(type_histo, 0, (num_types + 2) * sizeof(type_histo[0])); |
774 | 0 | memset(length_histo, 0, sizeof(length_histo)); |
775 | 0 | InitBlockTypeCodeCalculator(&type_code_calculator); |
776 | 0 | for (i = 0; i < num_blocks; ++i) { |
777 | 0 | size_t type_code = NextBlockTypeCode(&type_code_calculator, types[i]); |
778 | 0 | if (i != 0) ++type_histo[type_code]; |
779 | 0 | ++length_histo[BlockLengthPrefixCode(lengths[i])]; |
780 | 0 | } |
781 | 0 | StoreVarLenUint8(num_types - 1, storage_ix, storage); |
782 | 0 | if (num_types > 1) { /* TODO(eustas): else? could StoreBlockSwitch occur? */ |
783 | 0 | BuildAndStoreHuffmanTree(&type_histo[0], num_types + 2, num_types + 2, tree, |
784 | 0 | &code->type_depths[0], &code->type_bits[0], |
785 | 0 | storage_ix, storage); |
786 | 0 | BuildAndStoreHuffmanTree(&length_histo[0], BROTLI_NUM_BLOCK_LEN_SYMBOLS, |
787 | 0 | BROTLI_NUM_BLOCK_LEN_SYMBOLS, |
788 | 0 | tree, &code->length_depths[0], |
789 | 0 | &code->length_bits[0], storage_ix, storage); |
790 | 0 | StoreBlockSwitch(code, lengths[0], types[0], 1, storage_ix, storage); |
791 | 0 | } |
792 | 0 | } |
793 | | |
794 | | /* Stores a context map where the histogram type is always the block type. */ |
795 | | static void StoreTrivialContextMap(EncodeContextMapArena* arena, |
796 | | size_t num_types, |
797 | | size_t context_bits, |
798 | | HuffmanTree* tree, |
799 | | size_t* storage_ix, |
800 | 0 | uint8_t* storage) { |
801 | 0 | StoreVarLenUint8(num_types - 1, storage_ix, storage); |
802 | 0 | if (num_types > 1) { |
803 | 0 | size_t repeat_code = context_bits - 1u; |
804 | 0 | size_t repeat_bits = (1u << repeat_code) - 1u; |
805 | 0 | size_t alphabet_size = num_types + repeat_code; |
806 | 0 | uint32_t* BROTLI_RESTRICT const histogram = arena->histogram; |
807 | 0 | uint8_t* BROTLI_RESTRICT const depths = arena->depths; |
808 | 0 | uint16_t* BROTLI_RESTRICT const bits = arena->bits; |
809 | 0 | size_t i; |
810 | 0 | memset(histogram, 0, alphabet_size * sizeof(histogram[0])); |
811 | | /* Write RLEMAX. */ |
812 | 0 | BrotliWriteBits(1, 1, storage_ix, storage); |
813 | 0 | BrotliWriteBits(4, repeat_code - 1, storage_ix, storage); |
814 | 0 | histogram[repeat_code] = (uint32_t)num_types; |
815 | 0 | histogram[0] = 1; |
816 | 0 | for (i = context_bits; i < alphabet_size; ++i) { |
817 | 0 | histogram[i] = 1; |
818 | 0 | } |
819 | 0 | BuildAndStoreHuffmanTree(histogram, alphabet_size, alphabet_size, |
820 | 0 | tree, depths, bits, storage_ix, storage); |
821 | 0 | for (i = 0; i < num_types; ++i) { |
822 | 0 | size_t code = (i == 0 ? 0 : i + context_bits - 1); |
823 | 0 | BrotliWriteBits(depths[code], bits[code], storage_ix, storage); |
824 | 0 | BrotliWriteBits( |
825 | 0 | depths[repeat_code], bits[repeat_code], storage_ix, storage); |
826 | 0 | BrotliWriteBits(repeat_code, repeat_bits, storage_ix, storage); |
827 | 0 | } |
828 | | /* Write IMTF (inverse-move-to-front) bit. */ |
829 | 0 | BrotliWriteBits(1, 1, storage_ix, storage); |
830 | 0 | } |
831 | 0 | } |
832 | | |
833 | | /* Manages the encoding of one block category (literal, command or distance). */ |
834 | | typedef struct BlockEncoder { |
835 | | size_t histogram_length_; |
836 | | size_t num_block_types_; |
837 | | const uint8_t* block_types_; /* Not owned. */ |
838 | | const uint32_t* block_lengths_; /* Not owned. */ |
839 | | size_t num_blocks_; |
840 | | BlockSplitCode block_split_code_; |
841 | | size_t block_ix_; |
842 | | size_t block_len_; |
843 | | size_t entropy_ix_; |
844 | | uint8_t* depths_; |
845 | | uint16_t* bits_; |
846 | | } BlockEncoder; |
847 | | |
848 | | static void InitBlockEncoder(BlockEncoder* self, size_t histogram_length, |
849 | | size_t num_block_types, const uint8_t* block_types, |
850 | 0 | const uint32_t* block_lengths, const size_t num_blocks) { |
851 | 0 | self->histogram_length_ = histogram_length; |
852 | 0 | self->num_block_types_ = num_block_types; |
853 | 0 | self->block_types_ = block_types; |
854 | 0 | self->block_lengths_ = block_lengths; |
855 | 0 | self->num_blocks_ = num_blocks; |
856 | 0 | InitBlockTypeCodeCalculator(&self->block_split_code_.type_code_calculator); |
857 | 0 | self->block_ix_ = 0; |
858 | 0 | self->block_len_ = num_blocks == 0 ? 0 : block_lengths[0]; |
859 | 0 | self->entropy_ix_ = 0; |
860 | 0 | self->depths_ = 0; |
861 | 0 | self->bits_ = 0; |
862 | 0 | } |
863 | | |
864 | 0 | static void CleanupBlockEncoder(MemoryManager* m, BlockEncoder* self) { |
865 | 0 | BROTLI_FREE(m, self->depths_); |
866 | 0 | BROTLI_FREE(m, self->bits_); |
867 | 0 | } |
868 | | |
869 | | /* Creates entropy codes of block lengths and block types and stores them |
870 | | to the bit stream. */ |
871 | | static void BuildAndStoreBlockSwitchEntropyCodes(BlockEncoder* self, |
872 | 0 | HuffmanTree* tree, size_t* storage_ix, uint8_t* storage) { |
873 | 0 | BuildAndStoreBlockSplitCode(self->block_types_, self->block_lengths_, |
874 | 0 | self->num_blocks_, self->num_block_types_, tree, &self->block_split_code_, |
875 | 0 | storage_ix, storage); |
876 | 0 | } |
877 | | |
878 | | /* Stores the next symbol with the entropy code of the current block type. |
879 | | Updates the block type and block length at block boundaries. */ |
880 | | static void StoreSymbol(BlockEncoder* self, size_t symbol, size_t* storage_ix, |
881 | 0 | uint8_t* storage) { |
882 | 0 | if (self->block_len_ == 0) { |
883 | 0 | size_t block_ix = ++self->block_ix_; |
884 | 0 | uint32_t block_len = self->block_lengths_[block_ix]; |
885 | 0 | uint8_t block_type = self->block_types_[block_ix]; |
886 | 0 | self->block_len_ = block_len; |
887 | 0 | self->entropy_ix_ = block_type * self->histogram_length_; |
888 | 0 | StoreBlockSwitch(&self->block_split_code_, block_len, block_type, 0, |
889 | 0 | storage_ix, storage); |
890 | 0 | } |
891 | 0 | --self->block_len_; |
892 | 0 | { |
893 | 0 | size_t ix = self->entropy_ix_ + symbol; |
894 | 0 | BrotliWriteBits(self->depths_[ix], self->bits_[ix], storage_ix, storage); |
895 | 0 | } |
896 | 0 | } |
897 | | |
898 | | /* Stores the next symbol with the entropy code of the current block type and |
899 | | context value. |
900 | | Updates the block type and block length at block boundaries. */ |
901 | | static void StoreSymbolWithContext(BlockEncoder* self, size_t symbol, |
902 | | size_t context, const uint32_t* context_map, size_t* storage_ix, |
903 | 0 | uint8_t* storage, const size_t context_bits) { |
904 | 0 | if (self->block_len_ == 0) { |
905 | 0 | size_t block_ix = ++self->block_ix_; |
906 | 0 | uint32_t block_len = self->block_lengths_[block_ix]; |
907 | 0 | uint8_t block_type = self->block_types_[block_ix]; |
908 | 0 | self->block_len_ = block_len; |
909 | 0 | self->entropy_ix_ = (size_t)block_type << context_bits; |
910 | 0 | StoreBlockSwitch(&self->block_split_code_, block_len, block_type, 0, |
911 | 0 | storage_ix, storage); |
912 | 0 | } |
913 | 0 | --self->block_len_; |
914 | 0 | { |
915 | 0 | size_t histo_ix = context_map[self->entropy_ix_ + context]; |
916 | 0 | size_t ix = histo_ix * self->histogram_length_ + symbol; |
917 | 0 | BrotliWriteBits(self->depths_[ix], self->bits_[ix], storage_ix, storage); |
918 | 0 | } |
919 | 0 | } |
920 | | |
921 | | #define FN(X) X ## Literal |
922 | | /* NOLINTNEXTLINE(build/include) */ |
923 | | #include "block_encoder_inc.h" |
924 | | #undef FN |
925 | | |
926 | | #define FN(X) X ## Command |
927 | | /* NOLINTNEXTLINE(build/include) */ |
928 | | #include "block_encoder_inc.h" |
929 | | #undef FN |
930 | | |
931 | | #define FN(X) X ## Distance |
932 | | /* NOLINTNEXTLINE(build/include) */ |
933 | | #include "block_encoder_inc.h" |
934 | | #undef FN |
935 | | |
936 | 0 | static void JumpToByteBoundary(size_t* storage_ix, uint8_t* storage) { |
937 | 0 | *storage_ix = (*storage_ix + 7u) & ~7u; |
938 | 0 | storage[*storage_ix >> 3] = 0; |
939 | 0 | } |
940 | | |
941 | | typedef struct StoreMetablockArena { |
942 | | BlockEncoder literal_enc; |
943 | | BlockEncoder command_enc; |
944 | | BlockEncoder distance_enc; |
945 | | EncodeContextMapArena context_map_arena; |
946 | | } StoreMetablockArena; |
947 | | |
948 | | void BrotliStoreMetaBlock(MemoryManager* m, |
949 | | const uint8_t* input, size_t start_pos, size_t length, size_t mask, |
950 | | uint8_t prev_byte, uint8_t prev_byte2, BROTLI_BOOL is_last, |
951 | | const BrotliEncoderParams* params, ContextType literal_context_mode, |
952 | | const Command* commands, size_t n_commands, const MetaBlockSplit* mb, |
953 | 0 | size_t* storage_ix, uint8_t* storage) { |
954 | |
|
955 | 0 | size_t pos = start_pos; |
956 | 0 | size_t i; |
957 | 0 | uint32_t num_distance_symbols = params->dist.alphabet_size_max; |
958 | 0 | uint32_t num_effective_distance_symbols = params->dist.alphabet_size_limit; |
959 | 0 | HuffmanTree* tree; |
960 | 0 | ContextLut literal_context_lut = BROTLI_CONTEXT_LUT(literal_context_mode); |
961 | 0 | StoreMetablockArena* arena = NULL; |
962 | 0 | BlockEncoder* literal_enc = NULL; |
963 | 0 | BlockEncoder* command_enc = NULL; |
964 | 0 | BlockEncoder* distance_enc = NULL; |
965 | 0 | const BrotliDistanceParams* dist = ¶ms->dist; |
966 | 0 | BROTLI_DCHECK( |
967 | 0 | num_effective_distance_symbols <= BROTLI_NUM_HISTOGRAM_DISTANCE_SYMBOLS); |
968 | |
|
969 | 0 | StoreCompressedMetaBlockHeader(is_last, length, storage_ix, storage); |
970 | |
|
971 | 0 | tree = BROTLI_ALLOC(m, HuffmanTree, MAX_HUFFMAN_TREE_SIZE); |
972 | 0 | arena = BROTLI_ALLOC(m, StoreMetablockArena, 1); |
973 | 0 | if (BROTLI_IS_OOM(m) || BROTLI_IS_NULL(tree) || BROTLI_IS_NULL(arena)) return; |
974 | 0 | literal_enc = &arena->literal_enc; |
975 | 0 | command_enc = &arena->command_enc; |
976 | 0 | distance_enc = &arena->distance_enc; |
977 | 0 | InitBlockEncoder(literal_enc, BROTLI_NUM_LITERAL_SYMBOLS, |
978 | 0 | mb->literal_split.num_types, mb->literal_split.types, |
979 | 0 | mb->literal_split.lengths, mb->literal_split.num_blocks); |
980 | 0 | InitBlockEncoder(command_enc, BROTLI_NUM_COMMAND_SYMBOLS, |
981 | 0 | mb->command_split.num_types, mb->command_split.types, |
982 | 0 | mb->command_split.lengths, mb->command_split.num_blocks); |
983 | 0 | InitBlockEncoder(distance_enc, num_effective_distance_symbols, |
984 | 0 | mb->distance_split.num_types, mb->distance_split.types, |
985 | 0 | mb->distance_split.lengths, mb->distance_split.num_blocks); |
986 | |
|
987 | 0 | BuildAndStoreBlockSwitchEntropyCodes(literal_enc, tree, storage_ix, storage); |
988 | 0 | BuildAndStoreBlockSwitchEntropyCodes(command_enc, tree, storage_ix, storage); |
989 | 0 | BuildAndStoreBlockSwitchEntropyCodes(distance_enc, tree, storage_ix, storage); |
990 | |
|
991 | 0 | BrotliWriteBits(2, dist->distance_postfix_bits, storage_ix, storage); |
992 | 0 | BrotliWriteBits( |
993 | 0 | 4, dist->num_direct_distance_codes >> dist->distance_postfix_bits, |
994 | 0 | storage_ix, storage); |
995 | 0 | for (i = 0; i < mb->literal_split.num_types; ++i) { |
996 | 0 | BrotliWriteBits(2, literal_context_mode, storage_ix, storage); |
997 | 0 | } |
998 | |
|
999 | 0 | if (mb->literal_context_map_size == 0) { |
1000 | 0 | StoreTrivialContextMap( |
1001 | 0 | &arena->context_map_arena, mb->literal_histograms_size, |
1002 | 0 | BROTLI_LITERAL_CONTEXT_BITS, tree, storage_ix, storage); |
1003 | 0 | } else { |
1004 | 0 | EncodeContextMap(m, &arena->context_map_arena, |
1005 | 0 | mb->literal_context_map, mb->literal_context_map_size, |
1006 | 0 | mb->literal_histograms_size, tree, storage_ix, storage); |
1007 | 0 | if (BROTLI_IS_OOM(m)) return; |
1008 | 0 | } |
1009 | | |
1010 | 0 | if (mb->distance_context_map_size == 0) { |
1011 | 0 | StoreTrivialContextMap( |
1012 | 0 | &arena->context_map_arena, mb->distance_histograms_size, |
1013 | 0 | BROTLI_DISTANCE_CONTEXT_BITS, tree, storage_ix, storage); |
1014 | 0 | } else { |
1015 | 0 | EncodeContextMap(m, &arena->context_map_arena, |
1016 | 0 | mb->distance_context_map, mb->distance_context_map_size, |
1017 | 0 | mb->distance_histograms_size, tree, storage_ix, storage); |
1018 | 0 | if (BROTLI_IS_OOM(m)) return; |
1019 | 0 | } |
1020 | | |
1021 | 0 | BuildAndStoreEntropyCodesLiteral(m, literal_enc, mb->literal_histograms, |
1022 | 0 | mb->literal_histograms_size, BROTLI_NUM_LITERAL_SYMBOLS, tree, |
1023 | 0 | storage_ix, storage); |
1024 | 0 | if (BROTLI_IS_OOM(m)) return; |
1025 | 0 | BuildAndStoreEntropyCodesCommand(m, command_enc, mb->command_histograms, |
1026 | 0 | mb->command_histograms_size, BROTLI_NUM_COMMAND_SYMBOLS, tree, |
1027 | 0 | storage_ix, storage); |
1028 | 0 | if (BROTLI_IS_OOM(m)) return; |
1029 | 0 | BuildAndStoreEntropyCodesDistance(m, distance_enc, mb->distance_histograms, |
1030 | 0 | mb->distance_histograms_size, num_distance_symbols, tree, |
1031 | 0 | storage_ix, storage); |
1032 | 0 | if (BROTLI_IS_OOM(m)) return; |
1033 | 0 | BROTLI_FREE(m, tree); |
1034 | |
|
1035 | 0 | for (i = 0; i < n_commands; ++i) { |
1036 | 0 | const Command cmd = commands[i]; |
1037 | 0 | size_t cmd_code = cmd.cmd_prefix_; |
1038 | 0 | StoreSymbol(command_enc, cmd_code, storage_ix, storage); |
1039 | 0 | StoreCommandExtra(&cmd, storage_ix, storage); |
1040 | 0 | if (mb->literal_context_map_size == 0) { |
1041 | 0 | size_t j; |
1042 | 0 | for (j = cmd.insert_len_; j != 0; --j) { |
1043 | 0 | StoreSymbol(literal_enc, input[pos & mask], storage_ix, storage); |
1044 | 0 | ++pos; |
1045 | 0 | } |
1046 | 0 | } else { |
1047 | 0 | size_t j; |
1048 | 0 | for (j = cmd.insert_len_; j != 0; --j) { |
1049 | 0 | size_t context = |
1050 | 0 | BROTLI_CONTEXT(prev_byte, prev_byte2, literal_context_lut); |
1051 | 0 | uint8_t literal = input[pos & mask]; |
1052 | 0 | StoreSymbolWithContext(literal_enc, literal, context, |
1053 | 0 | mb->literal_context_map, storage_ix, storage, |
1054 | 0 | BROTLI_LITERAL_CONTEXT_BITS); |
1055 | 0 | prev_byte2 = prev_byte; |
1056 | 0 | prev_byte = literal; |
1057 | 0 | ++pos; |
1058 | 0 | } |
1059 | 0 | } |
1060 | 0 | pos += CommandCopyLen(&cmd); |
1061 | 0 | if (CommandCopyLen(&cmd)) { |
1062 | 0 | prev_byte2 = input[(pos - 2) & mask]; |
1063 | 0 | prev_byte = input[(pos - 1) & mask]; |
1064 | 0 | if (cmd.cmd_prefix_ >= 128) { |
1065 | 0 | size_t dist_code = cmd.dist_prefix_ & 0x3FF; |
1066 | 0 | uint32_t distnumextra = cmd.dist_prefix_ >> 10; |
1067 | 0 | uint64_t distextra = cmd.dist_extra_; |
1068 | 0 | if (mb->distance_context_map_size == 0) { |
1069 | 0 | StoreSymbol(distance_enc, dist_code, storage_ix, storage); |
1070 | 0 | } else { |
1071 | 0 | size_t context = CommandDistanceContext(&cmd); |
1072 | 0 | StoreSymbolWithContext(distance_enc, dist_code, context, |
1073 | 0 | mb->distance_context_map, storage_ix, storage, |
1074 | 0 | BROTLI_DISTANCE_CONTEXT_BITS); |
1075 | 0 | } |
1076 | 0 | BrotliWriteBits(distnumextra, distextra, storage_ix, storage); |
1077 | 0 | } |
1078 | 0 | } |
1079 | 0 | } |
1080 | 0 | CleanupBlockEncoder(m, distance_enc); |
1081 | 0 | CleanupBlockEncoder(m, command_enc); |
1082 | 0 | CleanupBlockEncoder(m, literal_enc); |
1083 | 0 | BROTLI_FREE(m, arena); |
1084 | 0 | if (is_last) { |
1085 | 0 | JumpToByteBoundary(storage_ix, storage); |
1086 | 0 | } |
1087 | 0 | } |
1088 | | |
1089 | | static void BuildHistograms(const uint8_t* input, |
1090 | | size_t start_pos, |
1091 | | size_t mask, |
1092 | | const Command* commands, |
1093 | | size_t n_commands, |
1094 | | HistogramLiteral* lit_histo, |
1095 | | HistogramCommand* cmd_histo, |
1096 | 0 | HistogramDistance* dist_histo) { |
1097 | 0 | size_t pos = start_pos; |
1098 | 0 | size_t i; |
1099 | 0 | for (i = 0; i < n_commands; ++i) { |
1100 | 0 | const Command cmd = commands[i]; |
1101 | 0 | size_t j; |
1102 | 0 | HistogramAddCommand(cmd_histo, cmd.cmd_prefix_); |
1103 | 0 | for (j = cmd.insert_len_; j != 0; --j) { |
1104 | 0 | HistogramAddLiteral(lit_histo, input[pos & mask]); |
1105 | 0 | ++pos; |
1106 | 0 | } |
1107 | 0 | pos += CommandCopyLen(&cmd); |
1108 | 0 | if (CommandCopyLen(&cmd) && cmd.cmd_prefix_ >= 128) { |
1109 | 0 | HistogramAddDistance(dist_histo, cmd.dist_prefix_ & 0x3FF); |
1110 | 0 | } |
1111 | 0 | } |
1112 | 0 | } |
1113 | | |
1114 | | static void StoreDataWithHuffmanCodes(const uint8_t* input, |
1115 | | size_t start_pos, |
1116 | | size_t mask, |
1117 | | const Command* commands, |
1118 | | size_t n_commands, |
1119 | | const uint8_t* lit_depth, |
1120 | | const uint16_t* lit_bits, |
1121 | | const uint8_t* cmd_depth, |
1122 | | const uint16_t* cmd_bits, |
1123 | | const uint8_t* dist_depth, |
1124 | | const uint16_t* dist_bits, |
1125 | | size_t* storage_ix, |
1126 | 0 | uint8_t* storage) { |
1127 | 0 | size_t pos = start_pos; |
1128 | 0 | size_t i; |
1129 | 0 | for (i = 0; i < n_commands; ++i) { |
1130 | 0 | const Command cmd = commands[i]; |
1131 | 0 | const size_t cmd_code = cmd.cmd_prefix_; |
1132 | 0 | size_t j; |
1133 | 0 | BrotliWriteBits( |
1134 | 0 | cmd_depth[cmd_code], cmd_bits[cmd_code], storage_ix, storage); |
1135 | 0 | StoreCommandExtra(&cmd, storage_ix, storage); |
1136 | 0 | for (j = cmd.insert_len_; j != 0; --j) { |
1137 | 0 | const uint8_t literal = input[pos & mask]; |
1138 | 0 | BrotliWriteBits( |
1139 | 0 | lit_depth[literal], lit_bits[literal], storage_ix, storage); |
1140 | 0 | ++pos; |
1141 | 0 | } |
1142 | 0 | pos += CommandCopyLen(&cmd); |
1143 | 0 | if (CommandCopyLen(&cmd) && cmd.cmd_prefix_ >= 128) { |
1144 | 0 | const size_t dist_code = cmd.dist_prefix_ & 0x3FF; |
1145 | 0 | const uint32_t distnumextra = cmd.dist_prefix_ >> 10; |
1146 | 0 | const uint32_t distextra = cmd.dist_extra_; |
1147 | 0 | BrotliWriteBits(dist_depth[dist_code], dist_bits[dist_code], |
1148 | 0 | storage_ix, storage); |
1149 | 0 | BrotliWriteBits(distnumextra, distextra, storage_ix, storage); |
1150 | 0 | } |
1151 | 0 | } |
1152 | 0 | } |
1153 | | |
1154 | | /* TODO(eustas): pull alloc/dealloc to caller? */ |
1155 | | typedef struct MetablockArena { |
1156 | | HistogramLiteral lit_histo; |
1157 | | HistogramCommand cmd_histo; |
1158 | | HistogramDistance dist_histo; |
1159 | | /* TODO(eustas): merge bits and depth? */ |
1160 | | uint8_t lit_depth[BROTLI_NUM_LITERAL_SYMBOLS]; |
1161 | | uint16_t lit_bits[BROTLI_NUM_LITERAL_SYMBOLS]; |
1162 | | uint8_t cmd_depth[BROTLI_NUM_COMMAND_SYMBOLS]; |
1163 | | uint16_t cmd_bits[BROTLI_NUM_COMMAND_SYMBOLS]; |
1164 | | uint8_t dist_depth[MAX_SIMPLE_DISTANCE_ALPHABET_SIZE]; |
1165 | | uint16_t dist_bits[MAX_SIMPLE_DISTANCE_ALPHABET_SIZE]; |
1166 | | HuffmanTree tree[MAX_HUFFMAN_TREE_SIZE]; |
1167 | | } MetablockArena; |
1168 | | |
1169 | | void BrotliStoreMetaBlockTrivial(MemoryManager* m, |
1170 | | const uint8_t* input, size_t start_pos, size_t length, size_t mask, |
1171 | | BROTLI_BOOL is_last, const BrotliEncoderParams* params, |
1172 | | const Command* commands, size_t n_commands, |
1173 | 0 | size_t* storage_ix, uint8_t* storage) { |
1174 | 0 | MetablockArena* arena = BROTLI_ALLOC(m, MetablockArena, 1); |
1175 | 0 | uint32_t num_distance_symbols = params->dist.alphabet_size_max; |
1176 | 0 | if (BROTLI_IS_OOM(m) || BROTLI_IS_NULL(arena)) return; |
1177 | | |
1178 | 0 | StoreCompressedMetaBlockHeader(is_last, length, storage_ix, storage); |
1179 | |
|
1180 | 0 | HistogramClearLiteral(&arena->lit_histo); |
1181 | 0 | HistogramClearCommand(&arena->cmd_histo); |
1182 | 0 | HistogramClearDistance(&arena->dist_histo); |
1183 | |
|
1184 | 0 | BuildHistograms(input, start_pos, mask, commands, n_commands, |
1185 | 0 | &arena->lit_histo, &arena->cmd_histo, &arena->dist_histo); |
1186 | |
|
1187 | 0 | BrotliWriteBits(13, 0, storage_ix, storage); |
1188 | |
|
1189 | 0 | BuildAndStoreHuffmanTree(arena->lit_histo.data_, BROTLI_NUM_LITERAL_SYMBOLS, |
1190 | 0 | BROTLI_NUM_LITERAL_SYMBOLS, arena->tree, |
1191 | 0 | arena->lit_depth, arena->lit_bits, |
1192 | 0 | storage_ix, storage); |
1193 | 0 | BuildAndStoreHuffmanTree(arena->cmd_histo.data_, BROTLI_NUM_COMMAND_SYMBOLS, |
1194 | 0 | BROTLI_NUM_COMMAND_SYMBOLS, arena->tree, |
1195 | 0 | arena->cmd_depth, arena->cmd_bits, |
1196 | 0 | storage_ix, storage); |
1197 | 0 | BuildAndStoreHuffmanTree(arena->dist_histo.data_, |
1198 | 0 | MAX_SIMPLE_DISTANCE_ALPHABET_SIZE, |
1199 | 0 | num_distance_symbols, arena->tree, |
1200 | 0 | arena->dist_depth, arena->dist_bits, |
1201 | 0 | storage_ix, storage); |
1202 | 0 | StoreDataWithHuffmanCodes(input, start_pos, mask, commands, |
1203 | 0 | n_commands, arena->lit_depth, arena->lit_bits, |
1204 | 0 | arena->cmd_depth, arena->cmd_bits, |
1205 | 0 | arena->dist_depth, arena->dist_bits, |
1206 | 0 | storage_ix, storage); |
1207 | 0 | BROTLI_FREE(m, arena); |
1208 | 0 | if (is_last) { |
1209 | 0 | JumpToByteBoundary(storage_ix, storage); |
1210 | 0 | } |
1211 | 0 | } |
1212 | | |
1213 | | void BrotliStoreMetaBlockFast(MemoryManager* m, |
1214 | | const uint8_t* input, size_t start_pos, size_t length, size_t mask, |
1215 | | BROTLI_BOOL is_last, const BrotliEncoderParams* params, |
1216 | | const Command* commands, size_t n_commands, |
1217 | 0 | size_t* storage_ix, uint8_t* storage) { |
1218 | 0 | MetablockArena* arena = BROTLI_ALLOC(m, MetablockArena, 1); |
1219 | 0 | uint32_t num_distance_symbols = params->dist.alphabet_size_max; |
1220 | 0 | uint32_t distance_alphabet_bits = |
1221 | 0 | Log2FloorNonZero(num_distance_symbols - 1) + 1; |
1222 | 0 | if (BROTLI_IS_OOM(m) || BROTLI_IS_NULL(arena)) return; |
1223 | | |
1224 | 0 | StoreCompressedMetaBlockHeader(is_last, length, storage_ix, storage); |
1225 | |
|
1226 | 0 | BrotliWriteBits(13, 0, storage_ix, storage); |
1227 | |
|
1228 | 0 | if (n_commands <= 128) { |
1229 | 0 | uint32_t histogram[BROTLI_NUM_LITERAL_SYMBOLS] = { 0 }; |
1230 | 0 | size_t pos = start_pos; |
1231 | 0 | size_t num_literals = 0; |
1232 | 0 | size_t i; |
1233 | 0 | for (i = 0; i < n_commands; ++i) { |
1234 | 0 | const Command cmd = commands[i]; |
1235 | 0 | size_t j; |
1236 | 0 | for (j = cmd.insert_len_; j != 0; --j) { |
1237 | 0 | ++histogram[input[pos & mask]]; |
1238 | 0 | ++pos; |
1239 | 0 | } |
1240 | 0 | num_literals += cmd.insert_len_; |
1241 | 0 | pos += CommandCopyLen(&cmd); |
1242 | 0 | } |
1243 | 0 | BrotliBuildAndStoreHuffmanTreeFast(arena->tree, histogram, num_literals, |
1244 | 0 | /* max_bits = */ 8, |
1245 | 0 | arena->lit_depth, arena->lit_bits, |
1246 | 0 | storage_ix, storage); |
1247 | 0 | StoreStaticCommandHuffmanTree(storage_ix, storage); |
1248 | 0 | StoreStaticDistanceHuffmanTree(storage_ix, storage); |
1249 | 0 | StoreDataWithHuffmanCodes(input, start_pos, mask, commands, |
1250 | 0 | n_commands, arena->lit_depth, arena->lit_bits, |
1251 | 0 | kStaticCommandCodeDepth, |
1252 | 0 | kStaticCommandCodeBits, |
1253 | 0 | kStaticDistanceCodeDepth, |
1254 | 0 | kStaticDistanceCodeBits, |
1255 | 0 | storage_ix, storage); |
1256 | 0 | } else { |
1257 | 0 | HistogramClearLiteral(&arena->lit_histo); |
1258 | 0 | HistogramClearCommand(&arena->cmd_histo); |
1259 | 0 | HistogramClearDistance(&arena->dist_histo); |
1260 | 0 | BuildHistograms(input, start_pos, mask, commands, n_commands, |
1261 | 0 | &arena->lit_histo, &arena->cmd_histo, &arena->dist_histo); |
1262 | 0 | BrotliBuildAndStoreHuffmanTreeFast(arena->tree, arena->lit_histo.data_, |
1263 | 0 | arena->lit_histo.total_count_, |
1264 | 0 | /* max_bits = */ 8, |
1265 | 0 | arena->lit_depth, arena->lit_bits, |
1266 | 0 | storage_ix, storage); |
1267 | 0 | BrotliBuildAndStoreHuffmanTreeFast(arena->tree, arena->cmd_histo.data_, |
1268 | 0 | arena->cmd_histo.total_count_, |
1269 | 0 | /* max_bits = */ 10, |
1270 | 0 | arena->cmd_depth, arena->cmd_bits, |
1271 | 0 | storage_ix, storage); |
1272 | 0 | BrotliBuildAndStoreHuffmanTreeFast(arena->tree, arena->dist_histo.data_, |
1273 | 0 | arena->dist_histo.total_count_, |
1274 | | /* max_bits = */ |
1275 | 0 | distance_alphabet_bits, |
1276 | 0 | arena->dist_depth, arena->dist_bits, |
1277 | 0 | storage_ix, storage); |
1278 | 0 | StoreDataWithHuffmanCodes(input, start_pos, mask, commands, |
1279 | 0 | n_commands, arena->lit_depth, arena->lit_bits, |
1280 | 0 | arena->cmd_depth, arena->cmd_bits, |
1281 | 0 | arena->dist_depth, arena->dist_bits, |
1282 | 0 | storage_ix, storage); |
1283 | 0 | } |
1284 | |
|
1285 | 0 | BROTLI_FREE(m, arena); |
1286 | |
|
1287 | 0 | if (is_last) { |
1288 | 0 | JumpToByteBoundary(storage_ix, storage); |
1289 | 0 | } |
1290 | 0 | } |
1291 | | |
1292 | | /* This is for storing uncompressed blocks (simple raw storage of |
1293 | | bytes-as-bytes). */ |
1294 | | void BrotliStoreUncompressedMetaBlock(BROTLI_BOOL is_final_block, |
1295 | | const uint8_t* BROTLI_RESTRICT input, |
1296 | | size_t position, size_t mask, |
1297 | | size_t len, |
1298 | | size_t* BROTLI_RESTRICT storage_ix, |
1299 | 0 | uint8_t* BROTLI_RESTRICT storage) { |
1300 | 0 | size_t masked_pos = position & mask; |
1301 | 0 | BrotliStoreUncompressedMetaBlockHeader(len, storage_ix, storage); |
1302 | 0 | JumpToByteBoundary(storage_ix, storage); |
1303 | |
|
1304 | 0 | if (masked_pos + len > mask + 1) { |
1305 | 0 | size_t len1 = mask + 1 - masked_pos; |
1306 | 0 | memcpy(&storage[*storage_ix >> 3], &input[masked_pos], len1); |
1307 | 0 | *storage_ix += len1 << 3; |
1308 | 0 | len -= len1; |
1309 | 0 | masked_pos = 0; |
1310 | 0 | } |
1311 | 0 | memcpy(&storage[*storage_ix >> 3], &input[masked_pos], len); |
1312 | 0 | *storage_ix += len << 3; |
1313 | | |
1314 | | /* We need to clear the next 4 bytes to continue to be |
1315 | | compatible with BrotliWriteBits. */ |
1316 | 0 | BrotliWriteBitsPrepareStorage(*storage_ix, storage); |
1317 | | |
1318 | | /* Since the uncompressed block itself may not be the final block, add an |
1319 | | empty one after this. */ |
1320 | 0 | if (is_final_block) { |
1321 | 0 | BrotliWriteBits(1, 1, storage_ix, storage); /* islast */ |
1322 | 0 | BrotliWriteBits(1, 1, storage_ix, storage); /* isempty */ |
1323 | 0 | JumpToByteBoundary(storage_ix, storage); |
1324 | 0 | } |
1325 | 0 | } |
1326 | | |
1327 | | #if defined(BROTLI_TEST) |
1328 | | void GetBlockLengthPrefixCodeForTest(uint32_t len, size_t* code, |
1329 | | uint32_t* n_extra, uint32_t* extra) { |
1330 | | GetBlockLengthPrefixCode(len, code, n_extra, extra); |
1331 | | } |
1332 | | #endif |
1333 | | |
1334 | | #if defined(__cplusplus) || defined(c_plusplus) |
1335 | | } /* extern "C" */ |
1336 | | #endif |