/src/ghostpdl/devices/vector/gdevpsdi.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* Copyright (C) 2001-2025 Artifex Software, Inc. |
2 | | All Rights Reserved. |
3 | | |
4 | | This software is provided AS-IS with no warranty, either express or |
5 | | implied. |
6 | | |
7 | | This software is distributed under license and may not be copied, |
8 | | modified or distributed except as expressly authorized under the terms |
9 | | of the license contained in the file LICENSE in this distribution. |
10 | | |
11 | | Refer to licensing information at http://www.artifex.com or contact |
12 | | Artifex Software, Inc., 39 Mesa Street, Suite 108A, San Francisco, |
13 | | CA 94129, USA, for further information. |
14 | | */ |
15 | | |
16 | | |
17 | | /* Image compression for PostScript and PDF writers */ |
18 | | #include "stdio_.h" /* for jpeglib.h */ |
19 | | #include "jpeglib_.h" /* for sdct.h */ |
20 | | #include "math_.h" |
21 | | #include "string_.h" |
22 | | #include "gx.h" |
23 | | #include "gserrors.h" |
24 | | #include "gscspace.h" |
25 | | #include "gdevpsdf.h" |
26 | | #include "gdevpsds.h" |
27 | | #include "gxdevmem.h" |
28 | | #include "gxcspace.h" |
29 | | #include "gsparamx.h" |
30 | | #include "strimpl.h" |
31 | | #include "scfx.h" |
32 | | #include "slzwx.h" |
33 | | #include "spngpx.h" |
34 | | #include "szlibx.h" |
35 | | #include "sbrotlix.h" |
36 | | #include "gsicc_manage.h" |
37 | | #include "sisparam.h" |
38 | | |
39 | | /* Define parameter-setting procedures. */ |
40 | | extern stream_state_proc_put_params(s_CF_put_params, stream_CF_state); |
41 | | extern stream_template s_IScale_template; |
42 | | |
43 | | /* ---------------- Image compression ---------------- */ |
44 | | |
45 | | /* |
46 | | * Add a filter to expand or reduce the pixel width if needed. |
47 | | * At least one of bpc_in and bpc_out is 8; the other is 1, 2, 4, or 8, |
48 | | * except if bpc_out is 8, bpc_in may be 12 (or 16). |
49 | | */ |
50 | | static int |
51 | | pixel_resize(psdf_binary_writer * pbw, int width, int num_components, |
52 | | int bpc_in, int bpc_out) |
53 | 86.9k | { |
54 | 86.9k | gs_memory_t *mem = pbw->dev->v_memory; |
55 | 86.9k | const stream_template *templat; |
56 | 86.9k | stream_1248_state *st; |
57 | 86.9k | int code; |
58 | | |
59 | 86.9k | if (bpc_out == bpc_in) |
60 | 86.9k | return 0; |
61 | 0 | if (bpc_in != 8) { |
62 | 0 | static const stream_template *const exts[17] = { |
63 | 0 | 0, &s_1_8_template, &s_2_8_template, 0, &s_4_8_template, |
64 | 0 | 0, 0, 0, 0, 0, 0, 0, &s_12_8_template, 0, 0, 0, &s_16_8_template |
65 | 0 | }; |
66 | |
|
67 | 0 | templat = exts[bpc_in]; |
68 | 0 | } else { |
69 | 0 | static const stream_template *const rets[5] = { |
70 | 0 | 0, &s_8_1_template, &s_8_2_template, 0, &s_8_4_template |
71 | 0 | }; |
72 | |
|
73 | 0 | templat = rets[bpc_out]; |
74 | 0 | } |
75 | 0 | st = (stream_1248_state *) |
76 | 0 | s_alloc_state(mem, templat->stype, "pixel_resize state"); |
77 | 0 | if (st == 0) |
78 | 0 | return_error(gs_error_VMerror); |
79 | 0 | code = psdf_encode_binary(pbw, templat, (stream_state *) st); |
80 | 0 | if (code < 0) { |
81 | 0 | gs_free_object(mem, st, "pixel_resize state"); |
82 | 0 | return code; |
83 | 0 | } |
84 | 0 | s_1248_init(st, width, num_components); |
85 | 0 | return 0; |
86 | 0 | } |
87 | | |
88 | | static int |
89 | | convert_color(gx_device *pdev, const gs_color_space *pcs, const gs_gstate * pgs, |
90 | | gs_client_color *cc, float c[3]) |
91 | 12.5k | { |
92 | 12.5k | int code; |
93 | 12.5k | gx_device_color dc; |
94 | | |
95 | 12.5k | cs_restrict_color(cc, pcs); |
96 | 12.5k | code = pcs->type->remap_color(cc, pcs, &dc, pgs, pdev, gs_color_select_texture); |
97 | 12.5k | if (code < 0) |
98 | 0 | return code; |
99 | 12.5k | c[0] = (float)((int)(dc.colors.pure >> pdev->color_info.comp_shift[0]) & ((1 << pdev->color_info.comp_bits[0]) - 1)); |
100 | 12.5k | c[1] = (float)((int)(dc.colors.pure >> pdev->color_info.comp_shift[1]) & ((1 << pdev->color_info.comp_bits[1]) - 1)); |
101 | 12.5k | c[2] = (float)((int)(dc.colors.pure >> pdev->color_info.comp_shift[2]) & ((1 << pdev->color_info.comp_bits[2]) - 1)); |
102 | 12.5k | return 0; |
103 | 12.5k | } |
104 | | |
105 | | /* A heuristic choice of DCT compression parameters - see bug 687174. */ |
106 | | static int |
107 | | choose_DCT_params(gx_device *pdev, const gs_color_space *pcs, |
108 | | const gs_gstate * pgs, |
109 | | gs_c_param_list *list, gs_c_param_list **param, |
110 | | stream_state *st) |
111 | 6.15k | { |
112 | 6.15k | gx_device_memory mdev; |
113 | 6.15k | gs_client_color cc; |
114 | 6.15k | int code; |
115 | 6.15k | float c[4][3]; |
116 | 6.15k | const float MIN_FLOAT = - MAX_FLOAT; |
117 | 6.15k | const float domination = (float)0.25; |
118 | 6.15k | const int one = 1, zero = 0; |
119 | | |
120 | 6.15k | if (pcs->type->num_components(pcs) != 3) |
121 | 3.01k | return 0; |
122 | 3.13k | if (*param != NULL) { |
123 | | /* Make a copy of the parameter list since we will modify it. */ |
124 | 3.13k | code = param_list_copy((gs_param_list *)list, (gs_param_list *)*param); |
125 | 3.13k | if (code < 0) |
126 | 0 | return code; |
127 | 3.13k | } |
128 | 3.13k | *param = list; |
129 | | |
130 | | /* Create a local memory device for transforming colors to DeviceRGB. */ |
131 | 3.13k | gs_make_mem_device(&mdev, gdev_mem_device_for_bits(24), pdev->memory, 0, NULL); |
132 | 3.13k | gx_device_retain((gx_device *)&mdev, true); /* prevent freeing */ |
133 | 3.13k | set_linear_color_bits_mask_shift((gx_device *)&mdev); |
134 | 3.13k | mdev.color_info.separable_and_linear = GX_CINFO_SEP_LIN; |
135 | | /* Set mem device icc profile */ |
136 | 3.13k | code = gsicc_init_device_profile_struct((gx_device *) &mdev, NULL, 0); |
137 | 3.13k | if (code < 0) |
138 | 0 | return code; |
139 | | |
140 | 3.13k | if (pgs) { |
141 | | /* Check for an RGB-like color space. |
142 | | To recognize that we make a matrix as it were a linear operator, |
143 | | suppress an ununiformity by subtracting the image of {0,0,0}, |
144 | | and then check for giagonal domination. */ |
145 | 3.13k | cc.paint.values[0] = cc.paint.values[1] = cc.paint.values[2] = MIN_FLOAT; |
146 | 3.13k | code = convert_color((gx_device *)&mdev, pcs, pgs, &cc, c[3]); |
147 | 3.13k | if (code < 0) |
148 | 0 | return code; |
149 | 3.13k | cc.paint.values[0] = MAX_FLOAT; cc.paint.values[1] = MIN_FLOAT; cc.paint.values[2] = MIN_FLOAT; |
150 | 3.13k | code = convert_color((gx_device *)&mdev, pcs, pgs, &cc, c[0]); |
151 | 3.13k | if (code < 0) |
152 | 0 | return code; |
153 | 3.13k | cc.paint.values[0] = MIN_FLOAT; cc.paint.values[1] = MAX_FLOAT; cc.paint.values[2] = MIN_FLOAT; |
154 | 3.13k | code = convert_color((gx_device *)&mdev, pcs, pgs, &cc, c[1]); |
155 | 3.13k | if (code < 0) |
156 | 0 | return code; |
157 | 3.13k | cc.paint.values[0] = MIN_FLOAT; cc.paint.values[1] = MIN_FLOAT; cc.paint.values[2] = MAX_FLOAT; |
158 | 3.13k | code = convert_color((gx_device *)&mdev, pcs, pgs, &cc, c[2]); |
159 | 3.13k | if (code < 0) |
160 | 0 | return code; |
161 | 3.13k | c[0][0] -= c[3][0]; c[0][1] -= c[3][1]; c[0][2] -= c[3][2]; |
162 | 3.13k | c[1][0] -= c[3][0]; c[1][1] -= c[3][1]; c[1][2] -= c[3][2]; |
163 | 3.13k | c[2][0] -= c[3][0]; c[2][1] -= c[3][1]; c[2][2] -= c[3][2]; |
164 | 3.13k | c[0][0] = any_abs(c[0][0]); c[0][1] = any_abs(c[0][1]); c[0][2] = any_abs(c[0][2]); |
165 | 3.13k | c[1][0] = any_abs(c[1][0]); c[1][1] = any_abs(c[1][1]); c[1][2] = any_abs(c[1][2]); |
166 | 3.13k | c[2][0] = any_abs(c[2][0]); c[2][1] = any_abs(c[2][1]); c[2][2] = any_abs(c[2][2]); |
167 | 3.13k | if (c[0][0] * domination > c[0][1] && c[0][0] * domination > c[0][2] && |
168 | 3.13k | c[1][1] * domination > c[1][0] && c[1][1] * domination > c[1][2] && |
169 | 3.13k | c[2][2] * domination > c[2][0] && c[2][2] * domination > c[2][1]) { |
170 | | /* Yes, it looks like an RGB color space. |
171 | | Replace ColorTransform with 1. */ |
172 | 3.13k | code = param_write_int((gs_param_list *)list, "ColorTransform", &one); |
173 | 3.13k | if (code < 0) |
174 | 0 | goto error; |
175 | 3.13k | goto done; |
176 | 3.13k | } |
177 | | |
178 | | /* Check for a Lab-like color space. |
179 | | Colors {v,0,0} should map to grays. */ |
180 | 0 | cc.paint.values[0] = MAX_FLOAT; cc.paint.values[1] = cc.paint.values[2] = 0; |
181 | 0 | convert_color((gx_device *)&mdev, pcs, pgs, &cc, c[0]); |
182 | 0 | cc.paint.values[0] /= 2; |
183 | 0 | convert_color((gx_device *)&mdev, pcs, pgs, &cc, c[1]); |
184 | 0 | cc.paint.values[0] /= 2; |
185 | 0 | convert_color((gx_device *)&mdev, pcs, pgs, &cc, c[2]); |
186 | 0 | c[0][1] -= c[0][0]; c[0][2] -= c[0][0]; |
187 | 0 | c[1][1] -= c[1][0]; c[1][2] -= c[1][0]; |
188 | 0 | c[2][1] -= c[2][0]; c[2][2] -= c[2][0]; |
189 | 0 | c[0][1] = any_abs(c[0][1]); c[0][2] = any_abs(c[0][2]); |
190 | 0 | c[1][1] = any_abs(c[1][1]); c[1][2] = any_abs(c[1][2]); |
191 | 0 | c[2][1] = any_abs(c[2][1]); c[2][2] = any_abs(c[2][2]); |
192 | 0 | } |
193 | 0 | if (pgs && c[0][0] * domination > c[0][1] && c[0][0] * domination > c[0][2] && |
194 | 0 | c[1][0] * domination > c[1][1] && c[1][0] * domination > c[1][2] && |
195 | 0 | c[2][0] * domination > c[2][1] && c[2][0] * domination > c[2][2]) { |
196 | | /* Yes, it looks like an Lab color space. |
197 | | Replace ColorTransform with 0. */ |
198 | 0 | code = param_write_int((gs_param_list *)list, "ColorTransform", &zero); |
199 | 0 | if (code < 0) |
200 | 0 | goto error; |
201 | 0 | } else { |
202 | | /* Unknown color space type. |
203 | | Replace /HSamples [1 1 1 1] /VSamples [1 1 1 1] to avoid quality degradation. */ |
204 | 0 | gs_param_string a; |
205 | 0 | static const byte v[4] = {1, 1, 1, 1}; |
206 | |
|
207 | 0 | a.data = v; |
208 | 0 | a.size = 4; |
209 | 0 | a.persistent = true; |
210 | 0 | code = param_write_string((gs_param_list *)list, "HSamples", &a); |
211 | 0 | if (code < 0) |
212 | 0 | goto error; |
213 | 0 | code = param_write_string((gs_param_list *)list, "VSamples", &a); |
214 | 0 | if (code < 0) |
215 | 0 | goto error; |
216 | 0 | } |
217 | 3.13k | done: |
218 | 3.13k | gs_c_param_list_read(list); |
219 | 3.13k | gx_device_finalize(pdev->memory, &mdev); |
220 | 3.13k | return 0; |
221 | 0 | error: |
222 | 0 | gx_device_finalize(pdev->memory, &mdev); |
223 | 0 | return code; |
224 | 0 | } |
225 | | |
226 | | /* Add the appropriate image compression filter, if any. */ |
227 | | static int |
228 | | setup_image_compression(psdf_binary_writer *pbw, const psdf_image_params *pdip, |
229 | | const gs_pixel_image_t * pim, const gs_gstate * pgs, |
230 | | bool lossless) |
231 | 86.9k | { |
232 | 86.9k | gx_device_psdf *pdev = pbw->dev; |
233 | 86.9k | gs_memory_t *mem = pdev->v_memory; |
234 | 86.9k | const stream_template *templat = pdip->filter_template; |
235 | 86.9k | const stream_template *lossless_template; |
236 | 86.9k | const gs_color_space *pcs = pim->ColorSpace; /* null if mask */ |
237 | 86.9k | int Colors = (pcs ? gs_color_space_num_components(pcs) : 1); |
238 | 86.9k | bool Indexed = |
239 | 86.9k | (pcs != 0 && |
240 | 86.9k | gs_color_space_get_index(pcs) == gs_color_space_index_Indexed); |
241 | 86.9k | gs_c_param_list *dict = pdip->Dict; |
242 | 86.9k | stream_state *st; |
243 | 86.9k | int code; |
244 | | |
245 | 86.9k | if (pdev->params.UseBrotliCompression) { |
246 | 0 | lossless_template = &s_brotliE_template; |
247 | 86.9k | } else { |
248 | 86.9k | if (pdev->params.UseFlateCompression && pdev->version >= psdf_version_ll3) |
249 | 22.8k | lossless_template = &s_zlibE_template; |
250 | 64.0k | else |
251 | 64.0k | lossless_template = &s_LZWE_template; |
252 | 86.9k | } |
253 | | |
254 | 86.9k | if (!pdip->Encode) /* no compression */ |
255 | 0 | return 0; |
256 | 86.9k | if (pdip->AutoFilter) { |
257 | | /* |
258 | | * Disregard the requested filter. What we should do at this point |
259 | | * is analyze the image to decide whether to use JPEG encoding |
260 | | * (DCTEncode with ACSDict) or the lossless filter. However, since |
261 | | * we don't buffer the entire image, we'll make the choice on-fly, |
262 | | * forking the image data into 3 streams : (1) JPEG, (2) lossless, |
263 | | * (3) the compression chooser. In this case this function is |
264 | | * called 2 times with different values of the 'lossless' argument. |
265 | | */ |
266 | 73.2k | if (lossless) { |
267 | 67.0k | templat = lossless_template; |
268 | 67.0k | } else if (templat == NULL || templat == &s_zlibE_template || |
269 | 6.25k | templat == &s_LZWE_template) { |
270 | 0 | templat = &s_DCTE_template; |
271 | 0 | } |
272 | 73.2k | dict = pdip->ACSDict; |
273 | 73.2k | } else if (!lossless) |
274 | 0 | return_error(gs_error_rangecheck); /* Reject the alternative stream. */ |
275 | 86.9k | if (pdev->version < psdf_version_ll3 && templat == &s_zlibE_template) |
276 | 12.1k | templat = lossless_template; |
277 | 86.9k | if (dict != NULL) /* Some interpreters don't supply filter parameters. */ |
278 | 27.3k | gs_c_param_list_read(dict); /* ensure param list is in read mode */ |
279 | 86.9k | if (templat == 0 || pdev->JPEG_PassThrough || pdev->JPX_PassThrough) /* no compression */ |
280 | 1.13k | return 0; |
281 | 85.7k | if (pim->Width < 200 && pim->Height < 200) /* Prevent a fixed overflow. */ |
282 | 77.4k | if (pim->Width * pim->Height * Colors * pim->BitsPerComponent <= 160) |
283 | 44.6k | return 0; /* not worth compressing */ |
284 | | /* Only use DCTE for 8-bit, non-Indexed data. */ |
285 | 41.1k | if (templat == &s_DCTE_template) { |
286 | 6.68k | if (Indexed || |
287 | 6.68k | !(pdip->Downsample ? |
288 | 0 | pdip->Depth == 8 || |
289 | 0 | (pdip->Depth == -1 && pim->BitsPerComponent == 8) : |
290 | 6.18k | pim->BitsPerComponent == 8) |
291 | 6.68k | ) { |
292 | | /* Use LZW/Flate/Brotli instead. */ |
293 | 536 | templat = lossless_template; |
294 | 536 | } |
295 | 6.68k | } |
296 | 41.1k | st = s_alloc_state(mem, templat->stype, "setup_image_compression"); |
297 | 41.1k | if (st == 0) |
298 | 0 | return_error(gs_error_VMerror); |
299 | | |
300 | 41.1k | st->templat = templat; |
301 | | |
302 | 41.1k | if (templat->set_defaults) |
303 | 41.1k | (*templat->set_defaults) (st); |
304 | 41.1k | if (templat == &s_CFE_template) { |
305 | 75 | stream_CFE_state *const ss = (stream_CFE_state *) st; |
306 | | |
307 | 75 | if (pdip->Dict != 0 && pdip->filter_template == templat) { |
308 | 75 | s_CF_put_params((gs_param_list *)pdip->Dict, |
309 | 75 | (stream_CF_state *)ss); /* ignore errors */ |
310 | 75 | } else { |
311 | 0 | ss->K = -1; |
312 | 0 | ss->BlackIs1 = true; |
313 | 0 | } |
314 | 75 | ss->Columns = pim->Width; |
315 | 75 | ss->Rows = (ss->EndOfBlock ? 0 : pim->Height); |
316 | 41.0k | } else if ((templat == &s_LZWE_template || |
317 | 41.0k | (templat == &s_zlibE_template) || templat == &s_brotliE_template) && |
318 | 41.0k | pdev->version >= psdf_version_ll3) { |
319 | 11.8k | int Effort = -1, Predictor = 15; |
320 | | |
321 | 11.8k | if (templat == &s_zlibE_template || templat == &s_brotliE_template) { |
322 | 11.8k | gs_c_param_list *param = pdip->Dict; |
323 | | |
324 | 11.8k | if (pdip->AutoFilter) |
325 | 10.4k | param = pdip->ACSDict; |
326 | | |
327 | 11.8k | if (param != NULL) { |
328 | 7.81k | code = param_read_int((gs_param_list *)param, "Effort", &Effort); |
329 | 7.81k | if (code == 0 && templat == &s_zlibE_template) { |
330 | 0 | stream_zlib_state *const ss = (stream_zlib_state *)st; |
331 | 0 | ss->level = Effort; |
332 | 0 | } |
333 | 7.81k | if (code == 0 && templat == &s_brotliE_template) { |
334 | 0 | stream_brotlie_state *const ss = (stream_brotlie_state *)st; |
335 | 0 | ss->level = Effort; |
336 | 0 | } |
337 | 7.81k | (void)param_read_int((gs_param_list *)param, "Predictor", &Predictor); |
338 | 7.81k | } |
339 | 11.8k | } |
340 | | /* If not Indexed, add a PNGPredictor filter. */ |
341 | 11.8k | if (!Indexed && Predictor >= 10) { |
342 | 11.3k | code = psdf_encode_binary(pbw, templat, st); |
343 | 11.3k | if (code < 0) |
344 | 0 | goto fail; |
345 | 11.3k | templat = &s_PNGPE_template; |
346 | 11.3k | st = s_alloc_state(mem, templat->stype, "setup_image_compression"); |
347 | 11.3k | if (st == 0) { |
348 | 0 | code = gs_note_error(gs_error_VMerror); |
349 | 0 | goto fail; |
350 | 0 | } |
351 | 11.3k | st->templat = templat; |
352 | 11.3k | if (templat->set_defaults) |
353 | 11.3k | (*templat->set_defaults) (st); |
354 | 11.3k | { |
355 | 11.3k | stream_PNGP_state *const ss = (stream_PNGP_state *) st; |
356 | | |
357 | 11.3k | ss->Colors = Colors; |
358 | 11.3k | ss->Columns = pim->Width; |
359 | 11.3k | ss->Predictor = Predictor; |
360 | 11.3k | } |
361 | 11.3k | } |
362 | 29.1k | } else if (templat == &s_DCTE_template) { |
363 | 6.15k | gs_c_param_list list, *param = dict; |
364 | | |
365 | 6.15k | gs_c_param_list_write(&list, mem); |
366 | 6.15k | code = choose_DCT_params((gx_device *)pbw->dev, pcs, pgs, &list, ¶m, st); |
367 | 6.15k | if (code < 0) { |
368 | 0 | gs_c_param_list_release(&list); |
369 | 0 | return code; |
370 | 0 | } |
371 | 6.15k | code = psdf_DCT_filter((gs_param_list *)param, |
372 | 6.15k | st, pim->Width, pim->Height, Colors, pbw); |
373 | 6.15k | gs_c_param_list_release(&list); |
374 | 6.15k | if (code < 0) |
375 | 0 | goto fail; |
376 | | /* psdf_DCT_filter already did the psdf_encode_binary. */ |
377 | 6.15k | return 0; |
378 | 6.15k | } |
379 | 35.0k | code = psdf_encode_binary(pbw, templat, st); |
380 | 35.0k | if (code >= 0) |
381 | 35.0k | return 0; |
382 | 0 | fail: |
383 | 0 | gs_free_object(mem, st, "setup_image_compression"); |
384 | 0 | return code; |
385 | 35.0k | } |
386 | | |
387 | | /* Determine whether an image should be downsampled. */ |
388 | | static bool |
389 | | do_downsample(const psdf_image_params *pdip, const gs_pixel_image_t *pim, |
390 | | double resolution) |
391 | 86.9k | { |
392 | 86.9k | double factor = resolution / pdip->Resolution; |
393 | | |
394 | 86.9k | return (pdip->Downsample && factor >= pdip->DownsampleThreshold && |
395 | 86.9k | factor <= pim->Width && factor <= pim->Height); |
396 | 86.9k | } |
397 | | |
398 | | /* Add downsampling, antialiasing, and compression filters. */ |
399 | | /* Uses AntiAlias, Depth, DownsampleThreshold, DownsampleType, Resolution. */ |
400 | | /* Assumes do_downsampling() is true. */ |
401 | | static int |
402 | | setup_downsampling(psdf_binary_writer * pbw, const psdf_image_params * pdip, |
403 | | gs_pixel_image_t * pim, const gs_gstate * pgs, |
404 | | double resolution, bool lossless) |
405 | 0 | { |
406 | 0 | gx_device_psdf *pdev = pbw->dev; |
407 | 0 | const stream_template *templat = &s_Subsample_template; |
408 | 0 | float factor = resolution / pdip->Resolution; |
409 | 0 | int orig_bpc = pim->BitsPerComponent; |
410 | 0 | int orig_width = pim->Width; |
411 | 0 | int orig_height = pim->Height; |
412 | 0 | stream_state *st; |
413 | 0 | int code; |
414 | | |
415 | | /* We can't apply anything other than a simple downsample to monochrome |
416 | | * image without turning them into greyscale images. We set the default |
417 | | * to subsample above, so just ignore it if the current image is monochtome. |
418 | | */ |
419 | 0 | if (pim->BitsPerComponent > 1) { |
420 | 0 | switch (pdip->DownsampleType) { |
421 | 0 | case ds_Subsample: |
422 | 0 | templat = &s_Subsample_template; |
423 | 0 | break; |
424 | 0 | case ds_Average: |
425 | 0 | templat = &s_Average_template; |
426 | 0 | break; |
427 | 0 | case ds_Bicubic: |
428 | 0 | templat = &s_IScale_template; |
429 | | /* We now use the Mitchell filter instead of the 'bicubic' filter |
430 | | * because it gives better results. |
431 | | templat = &s_Bicubic_template; |
432 | | */ |
433 | 0 | break; |
434 | 0 | default: |
435 | 0 | dmprintf1(pdev->v_memory, "Unsupported downsample type %d\n", pdip->DownsampleType); |
436 | 0 | return gs_note_error(gs_error_rangecheck); |
437 | 0 | } |
438 | | |
439 | 0 | if (pdip->DownsampleType != ds_Bicubic) { |
440 | | /* If downsample type is not bicubic, ensure downsample factor is |
441 | | * an integer if we're close to one (< 0.1) or silently switch to |
442 | | * bicubic transform otherwise. See bug #693917. */ |
443 | 0 | float rfactor = floor(factor + 0.5); |
444 | 0 | if (fabs(rfactor-factor) < 0.1 || pim->ColorSpace->type->index == gs_color_space_index_Indexed) |
445 | 0 | factor = rfactor; /* round factor to nearest integer */ |
446 | 0 | else |
447 | 0 | templat = &s_Bicubic_template; /* switch to bicubic */ |
448 | 0 | } |
449 | 0 | } else { |
450 | 0 | if (pdip->DownsampleType != ds_Subsample) { |
451 | 0 | dmprintf(pdev->memory, "The only Downsample filter for monochrome images is Subsample, ignoring request.\n"); |
452 | 0 | } |
453 | 0 | } |
454 | | |
455 | 0 | st = s_alloc_state(pdev->v_memory, templat->stype, |
456 | 0 | "setup_downsampling"); |
457 | 0 | if (st == 0) |
458 | 0 | return_error(gs_error_VMerror); |
459 | 0 | if (templat->set_defaults) |
460 | 0 | templat->set_defaults(st); |
461 | |
|
462 | 0 | if (templat != &s_IScale_template) |
463 | 0 | { |
464 | 0 | stream_Downsample_state *const ss = (stream_Downsample_state *) st; |
465 | |
|
466 | 0 | ss->Colors = |
467 | 0 | (pim->ColorSpace == 0 ? 1 /*mask*/ : |
468 | 0 | gs_color_space_num_components(pim->ColorSpace)); |
469 | 0 | ss->WidthIn = pim->Width; |
470 | 0 | ss->HeightIn = pim->Height; |
471 | 0 | ss->XFactor = ss->YFactor = factor; |
472 | 0 | ss->AntiAlias = pdip->AntiAlias; |
473 | 0 | ss->padX = ss->padY = false; /* should be true */ |
474 | |
|
475 | 0 | if (pim->BitsPerComponent == 1) { |
476 | 0 | if (floor(ss->XFactor) != ss->XFactor) |
477 | 0 | factor = ss->YFactor = ss->XFactor = floor(ss->XFactor + 0.5); |
478 | 0 | } |
479 | 0 | if (templat->init) { |
480 | 0 | code = templat->init(st); |
481 | 0 | if (code < 0) { |
482 | 0 | dmprintf(st->memory, "Failed to initialise downsample filter, downsampling aborted\n"); |
483 | 0 | gs_free_object(pdev->v_memory, st, "setup_image_compression"); |
484 | 0 | return 0; |
485 | 0 | } |
486 | 0 | } |
487 | 0 | pim->BitsPerComponent = pdip->Depth; |
488 | 0 | pim->Width = s_Downsample_size_out(pim->Width, factor, false); |
489 | 0 | pim->Height = s_Downsample_size_out(pim->Height, factor, false); |
490 | 0 | gs_matrix_scale(&pim->ImageMatrix, (double)pim->Width / orig_width, |
491 | 0 | (double)pim->Height / orig_height, |
492 | 0 | &pim->ImageMatrix); |
493 | | /****** NO ANTI-ALIASING YET ******/ |
494 | 0 | if ((code = setup_image_compression(pbw, pdip, pim, pgs, lossless)) < 0 || |
495 | 0 | (code = pixel_resize(pbw, pim->Width, ss->Colors, |
496 | 0 | 8, pdip->Depth)) < 0 || |
497 | 0 | (code = psdf_encode_binary(pbw, templat, st)) < 0 || |
498 | 0 | (code = pixel_resize(pbw, orig_width, ss->Colors, |
499 | 0 | orig_bpc, 8)) < 0 |
500 | 0 | ) { |
501 | 0 | gs_free_object(pdev->v_memory, st, "setup_image_compression"); |
502 | 0 | return code; |
503 | 0 | } |
504 | 0 | } else { |
505 | | /* The setup for the Mitchell filter is quite different to the other filters |
506 | | * because it isn't one of ours. |
507 | | */ |
508 | 0 | int Colors = (pim->ColorSpace == 0 ? 1 /*mask*/ : |
509 | 0 | gs_color_space_num_components(pim->ColorSpace)); |
510 | |
|
511 | 0 | stream_image_scale_state *ss = (stream_image_scale_state *)st; |
512 | |
|
513 | 0 | ss->params.EntireWidthIn = ss->params.WidthIn = ss->params.PatchWidthIn = pim->Width; |
514 | 0 | ss->params.EntireHeightIn = ss->params.HeightIn = ss->params.PatchHeightIn = pim->Height; |
515 | 0 | ss->params.EntireWidthOut = ss->params.WidthOut = ss->params.PatchWidthOut = s_Downsample_size_out(pim->Width, factor, false); |
516 | 0 | ss->params.EntireHeightOut = ss->params.HeightOut = ss->params.PatchHeightOut = ss->params.PatchHeightOut2 = s_Downsample_size_out(pim->Height, factor, false); |
517 | | |
518 | | /* Bug #697944 The code below to apply the downsampling filter always |
519 | | * resizes the input data to the filter with 8BPC and then resizes the output back to whatever |
520 | | * the original BPC was. So we need to make sure that the stream state |
521 | | * for the downsampling filter uses 8 BPC, no more and no less. |
522 | | */ |
523 | 0 | ss->params.BitsPerComponentIn = ss->params.BitsPerComponentOut = 8; |
524 | |
|
525 | 0 | ss->params.spp_interp = ss->params.spp_decode = Colors; |
526 | 0 | ss->params.TopMarginIn = ss->params.TopMarginOut = ss->params.TopMarginOut2 = ss->params.LeftMarginIn = ss->params.LeftMarginOut = 0; |
527 | 0 | ss->params.src_y_offset = ss->params.pad_y = 0; |
528 | 0 | ss->params.early_cm = true; |
529 | 0 | ss->params.MaxValueIn = ss->params.MaxValueOut = (int)pow(2, pdip->Depth); |
530 | | |
531 | | /* No idea what's a sensible value here, but we need to have something or we get a crash |
532 | | * It looks like this is for scaling up, and we don't do that, so fix it to 1. Parameter |
533 | | * Added by Ray in commit a936cf for Bug #693684, allows limiting interpolation to less# |
534 | | * than device resolution. |
535 | | */ |
536 | 0 | ss->params.abs_interp_limit = 1; |
537 | | /* Apparently ColorPolairtyAdditive is only used by the 'SpecialDownScale filter', don't |
538 | | * know what that is and we don't use it, so just set it to 0 to avoid uninitialised |
539 | | * variables |
540 | | */ |
541 | 0 | ss->params.ColorPolarityAdditive = 0; |
542 | | /* Active = 1 to match gxiscale.c, around line 374 in gs_image_class_0_interpolate() */ |
543 | 0 | ss->params.Active = 1; |
544 | |
|
545 | 0 | if (templat->init) { |
546 | 0 | code = templat->init(st); |
547 | 0 | if (code < 0) { |
548 | 0 | dmprintf(st->memory, "Failed to initialise downsample filter, downsampling aborted\n"); |
549 | 0 | gs_free_object(pdev->v_memory, st, "setup_image_compression"); |
550 | 0 | return 0; |
551 | 0 | } |
552 | 0 | } |
553 | 0 | pim->Width = s_Downsample_size_out(pim->Width, factor, false); |
554 | 0 | pim->Height = s_Downsample_size_out(pim->Height, factor, false); |
555 | 0 | pim->BitsPerComponent = pdip->Depth; |
556 | 0 | gs_matrix_scale(&pim->ImageMatrix, (double)pim->Width / orig_width, |
557 | 0 | (double)pim->Height / orig_height, |
558 | 0 | &pim->ImageMatrix); |
559 | | /****** NO ANTI-ALIASING YET ******/ |
560 | 0 | if ((code = setup_image_compression(pbw, pdip, pim, pgs, lossless)) < 0 || |
561 | 0 | (code = pixel_resize(pbw, pim->Width, Colors, |
562 | 0 | 8, pdip->Depth)) < 0 || |
563 | 0 | (code = psdf_encode_binary(pbw, templat, st)) < 0 || |
564 | 0 | (code = pixel_resize(pbw, orig_width, Colors, |
565 | 0 | orig_bpc, 8)) < 0 |
566 | 0 | ) { |
567 | 0 | gs_free_object(pdev->v_memory, st, "setup_image_compression"); |
568 | 0 | return code; |
569 | 0 | } |
570 | 0 | } |
571 | 0 | return 0; |
572 | 0 | } |
573 | | |
574 | | /* Decive whether to convert an image to RGB. */ |
575 | | bool |
576 | | psdf_is_converting_image_to_RGB(const gx_device_psdf * pdev, |
577 | | const gs_gstate * pgs, const gs_pixel_image_t * pim) |
578 | 5.70k | { |
579 | 5.70k | return pdev->params.ConvertCMYKImagesToRGB && |
580 | 5.70k | pgs != 0 && pim->ColorSpace && |
581 | 5.70k | (gs_color_space_get_index(pim->ColorSpace) == gs_color_space_index_DeviceCMYK || |
582 | 0 | (gs_color_space_get_index(pim->ColorSpace) == gs_color_space_index_ICC |
583 | 0 | && gsicc_get_default_type(pim->ColorSpace->cmm_icc_profile_data) == |
584 | 0 | gs_color_space_index_DeviceCMYK)); |
585 | 5.70k | } |
586 | | |
587 | | /* Set up compression and downsampling filters for an image. */ |
588 | | /* Note that this may modify the image parameters. */ |
589 | | int |
590 | | psdf_setup_image_filters(gx_device_psdf * pdev, psdf_binary_writer * pbw, |
591 | | gs_pixel_image_t * pim, const gs_matrix * pctm, |
592 | | const gs_gstate * pgs, bool lossless, bool in_line) |
593 | 5.70k | { |
594 | | /* |
595 | | * The following algorithms are per Adobe Tech Note # 5151, |
596 | | * "Acrobat Distiller Parameters", revised 16 September 1996 |
597 | | * for Acrobat(TM) Distiller(TM) 3.0. |
598 | | * |
599 | | * The control structure is a little tricky, because filter |
600 | | * pipelines must be constructed back-to-front. |
601 | | */ |
602 | 5.70k | int code = 0; |
603 | 5.70k | psdf_image_params params; |
604 | 5.70k | int bpc = pim->BitsPerComponent; |
605 | 5.70k | int bpc_out = pim->BitsPerComponent = min(bpc, 8); |
606 | 5.70k | int ncomp; |
607 | 5.70k | double resolution; |
608 | | |
609 | | /* |
610 | | * The Adobe documentation doesn't say this, but mask images are |
611 | | * compressed on the same basis as 1-bit-deep monochrome images, |
612 | | * except that anti-aliasing (resolution/depth tradeoff) is not |
613 | | * allowed. |
614 | | */ |
615 | 5.70k | if (pim->ColorSpace == NULL) { /* mask image */ |
616 | 3.15k | params = pdev->params.MonoImage; |
617 | 3.15k | params.Depth = 1; |
618 | 3.15k | ncomp = 1; |
619 | 3.15k | } else { |
620 | 2.54k | ncomp = gs_color_space_num_components(pim->ColorSpace); |
621 | 2.54k | if (pim->ColorSpace->type->index == gs_color_space_index_Indexed) { |
622 | 0 | params = pdev->params.ColorImage; |
623 | | /* Ensure we don't use JPEG on a /Indexed colour space */ |
624 | 0 | params.AutoFilter = false; |
625 | 0 | if (pdev->params.UseBrotliCompression) |
626 | 0 | params.Filter = "BrotliEncode"; |
627 | 0 | else |
628 | 0 | params.Filter = "FlateEncode"; |
629 | 2.54k | } else { |
630 | 2.54k | if (ncomp == 1) { |
631 | 0 | if (bpc == 1) |
632 | 0 | params = pdev->params.MonoImage; |
633 | 0 | else |
634 | 0 | params = pdev->params.GrayImage; |
635 | 0 | if (params.Depth == -1) |
636 | 0 | params.Depth = bpc; |
637 | 2.54k | } else { |
638 | 2.54k | params = pdev->params.ColorImage; |
639 | | /* params.Depth is reset below */ |
640 | 2.54k | } |
641 | 2.54k | } |
642 | 2.54k | } |
643 | | |
644 | | /* |
645 | | * We can compute the image resolution by: |
646 | | * W / (W * ImageMatrix^-1 * CTM / HWResolution). |
647 | | * We can replace W by 1 to simplify the computation. |
648 | | */ |
649 | 5.70k | if (pctm == 0) |
650 | 5.70k | resolution = -1; |
651 | 0 | else { |
652 | 0 | gs_point pt; |
653 | | |
654 | | /* We could do both X and Y, but why bother? */ |
655 | 0 | code = gs_distance_transform_inverse(1.0, 0.0, &pim->ImageMatrix, &pt); |
656 | 0 | if (code < 0) |
657 | 0 | return code; |
658 | 0 | gs_distance_transform(pt.x, pt.y, pctm, &pt); |
659 | 0 | resolution = 1.0 / hypot(pt.x / pdev->HWResolution[0], |
660 | 0 | pt.y / pdev->HWResolution[1]); |
661 | 0 | } |
662 | 5.70k | if (ncomp == 1 && pim->ColorSpace && pim->ColorSpace->type->index != gs_color_space_index_Indexed) { |
663 | | /* Monochrome, gray, or mask */ |
664 | | /* Check for downsampling. */ |
665 | 0 | if (do_downsample(¶ms, pim, resolution)) { |
666 | | /* Use the downsampled depth, not the original data depth. */ |
667 | 0 | if (params.Depth == 1) { |
668 | 0 | params.Filter = pdev->params.MonoImage.Filter; |
669 | 0 | params.filter_template = pdev->params.MonoImage.filter_template; |
670 | 0 | params.Dict = pdev->params.MonoImage.Dict; |
671 | 0 | } else { |
672 | 0 | params.Filter = pdev->params.GrayImage.Filter; |
673 | 0 | params.filter_template = pdev->params.GrayImage.filter_template; |
674 | 0 | params.Dict = pdev->params.GrayImage.Dict; |
675 | 0 | } |
676 | 0 | code = setup_downsampling(pbw, ¶ms, pim, pgs, resolution, lossless); |
677 | 0 | } else { |
678 | 0 | code = setup_image_compression(pbw, ¶ms, pim, pgs, lossless); |
679 | 0 | } |
680 | 0 | if (code < 0) |
681 | 0 | return code; |
682 | 0 | code = pixel_resize(pbw, pim->Width, ncomp, bpc, bpc_out); |
683 | 5.70k | } else { |
684 | | /* Color */ |
685 | 5.70k | bool cmyk_to_rgb = psdf_is_converting_image_to_RGB(pdev, pgs, pim); |
686 | | |
687 | 5.70k | if (cmyk_to_rgb) { |
688 | 0 | gs_memory_t *mem = pdev->v_memory; |
689 | | |
690 | | /* {csrc} decref old colorspace? */ |
691 | 0 | rc_decrement_only_cs(pim->ColorSpace, "psdf_setup_image_filters"); |
692 | 0 | pim->ColorSpace = gs_cspace_new_DeviceRGB(mem); |
693 | 0 | if (pim->ColorSpace == NULL) |
694 | 0 | return_error(gs_error_VMerror); |
695 | 0 | } |
696 | 5.70k | if (params.Depth == -1) |
697 | 2.54k | params.Depth = (cmyk_to_rgb ? 8 : bpc_out); |
698 | 5.70k | if (do_downsample(¶ms, pim, resolution)) { |
699 | 0 | code = setup_downsampling(pbw, ¶ms, pim, pgs, resolution, lossless); |
700 | 5.70k | } else { |
701 | 5.70k | code = setup_image_compression(pbw, ¶ms, pim, pgs, lossless); |
702 | 5.70k | } |
703 | 5.70k | if (code < 0) |
704 | 0 | return code; |
705 | 5.70k | if (cmyk_to_rgb) { |
706 | 0 | gs_memory_t *mem = pdev->v_memory; |
707 | 0 | stream_C2R_state *ss = (stream_C2R_state *) |
708 | 0 | s_alloc_state(mem, s_C2R_template.stype, "C2R state"); |
709 | 0 | int code = pixel_resize(pbw, pim->Width, 3, 8, bpc_out); |
710 | |
|
711 | 0 | if (ss == 0) |
712 | 0 | return_error(gs_error_VMerror); |
713 | | |
714 | 0 | if (code < 0 || |
715 | 0 | (code = psdf_encode_binary(pbw, &s_C2R_template, |
716 | 0 | (stream_state *) ss)) < 0 || |
717 | 0 | (code = pixel_resize(pbw, pim->Width, 4, bpc, 8)) < 0 |
718 | 0 | ) |
719 | 0 | return code; |
720 | 0 | s_C2R_init(ss, pgs); |
721 | 5.70k | } else { |
722 | 5.70k | code = pixel_resize(pbw, pim->Width, ncomp, bpc, bpc_out); |
723 | 5.70k | if (code < 0) |
724 | 0 | return code; |
725 | 5.70k | } |
726 | 5.70k | } |
727 | 5.70k | return code; |
728 | 5.70k | } |
729 | | |
730 | | /* Set up compression filters for a lossless image, downsampling is permitted, */ |
731 | | /* no color space conversion, and only lossless filters. */ |
732 | | /* Note that this may modify the image parameters. */ |
733 | | int |
734 | | psdf_setup_lossless_filters(gx_device_psdf *pdev, psdf_binary_writer *pbw, |
735 | | gs_pixel_image_t *pim, bool in_line) |
736 | 2.54k | { |
737 | | /* |
738 | | * Set up a device with modified parameters for computing the image |
739 | | * compression filters. Don't allow downsampling or lossy compression. |
740 | | */ |
741 | 2.54k | gx_device_psdf ipdev; |
742 | | |
743 | 2.54k | ipdev = *pdev; |
744 | 2.54k | ipdev.params.ColorImage.AutoFilter = false; |
745 | 2.54k | if (pdev->params.UseBrotliCompression) { |
746 | 0 | ipdev.params.ColorImage.Filter = "BrotliEncode"; |
747 | 0 | ipdev.params.ColorImage.filter_template = &s_brotliE_template; |
748 | 0 | ipdev.params.GrayImage.Filter = "BrotliEncode"; |
749 | 0 | ipdev.params.GrayImage.filter_template = &s_brotliE_template; |
750 | 2.54k | } else { |
751 | 2.54k | ipdev.params.ColorImage.Filter = "FlateEncode"; |
752 | 2.54k | ipdev.params.ColorImage.filter_template = &s_zlibE_template; |
753 | 2.54k | ipdev.params.GrayImage.Filter = "FlateEncode"; |
754 | 2.54k | ipdev.params.GrayImage.filter_template = &s_zlibE_template; |
755 | 2.54k | } |
756 | 2.54k | ipdev.params.ConvertCMYKImagesToRGB = false; |
757 | 2.54k | ipdev.params.GrayImage.AutoFilter = false; |
758 | 2.54k | return psdf_setup_image_filters(&ipdev, pbw, pim, NULL, NULL, true, in_line); |
759 | 2.54k | } |
760 | | |
761 | | /* Set up image compression chooser. */ |
762 | | int |
763 | | psdf_setup_compression_chooser(psdf_binary_writer *pbw, gx_device_psdf *pdev, |
764 | | int width, int height, int depth, int bits_per_sample) |
765 | 6.25k | { |
766 | 6.25k | int code; |
767 | 6.25k | stream_state *ss = s_alloc_state(pdev->memory, s_compr_chooser_template.stype, |
768 | 6.25k | "psdf_setup_compression_chooser"); |
769 | | |
770 | 6.25k | if (ss == 0) |
771 | 0 | return_error(gs_error_VMerror); |
772 | 6.25k | ss->templat = &s_compr_chooser_template; |
773 | | |
774 | 6.25k | pbw->memory = pdev->memory; |
775 | 6.25k | pbw->strm = pdev->strm; /* just a stub - will not write to it. */ |
776 | 6.25k | pbw->dev = pdev; |
777 | 6.25k | pbw->target = pbw->strm; /* Since s_add_filter may insert NullEncode to comply buffering, |
778 | | will need to close a chain of filetrs. */ |
779 | 6.25k | code = psdf_encode_binary(pbw, &s_compr_chooser_template, ss); |
780 | 6.25k | if (code < 0) |
781 | 0 | return code; |
782 | 6.25k | code = s_compr_chooser_set_dimensions((stream_compr_chooser_state *)ss, |
783 | 6.25k | width, height, depth, bits_per_sample); |
784 | 6.25k | return code; |
785 | 6.25k | } |
786 | | |
787 | | /* Set up an "image to mask" filter. */ |
788 | | int |
789 | | psdf_setup_image_to_mask_filter(psdf_binary_writer *pbw, gx_device_psdf *pdev, |
790 | | int width, int height, int input_width, |
791 | | int depth, int bits_per_sample, uint *MaskColor) |
792 | 0 | { |
793 | 0 | int code; |
794 | 0 | stream_state *ss = s_alloc_state(pdev->memory, s__image_colors_template.stype, |
795 | 0 | "psdf_setup_image_colors_filter"); |
796 | |
|
797 | 0 | if (ss == 0) |
798 | 0 | return_error(gs_error_VMerror); |
799 | 0 | pbw->memory = pdev->memory; |
800 | 0 | pbw->dev = pdev; |
801 | 0 | code = psdf_encode_binary(pbw, &s__image_colors_template, ss); |
802 | 0 | if (code < 0) |
803 | 0 | return code; |
804 | 0 | s_image_colors_set_dimensions((stream_image_colors_state *)ss, |
805 | 0 | width, height, input_width, depth, bits_per_sample); |
806 | 0 | s_image_colors_set_mask_colors((stream_image_colors_state *)ss, MaskColor); |
807 | 0 | return 0; |
808 | 0 | } |
809 | | |
810 | | /* Set up an image colors filter. */ |
811 | | int |
812 | | psdf_setup_image_colors_filter(psdf_binary_writer *pbw, |
813 | | gx_device_psdf *pdev, |
814 | | const gs_pixel_image_t *input_pim, |
815 | | gs_pixel_image_t * pim, |
816 | | const gs_gstate *pgs) |
817 | 1.62k | { /* fixme: currently it's a stub convertion to mask. */ |
818 | 1.62k | int code; |
819 | 1.62k | stream_state *ss = s_alloc_state(pdev->memory, s__image_colors_template.stype, |
820 | 1.62k | "psdf_setup_image_colors_filter"); |
821 | 1.62k | unsigned char i; |
822 | | |
823 | 1.62k | if (ss == 0) |
824 | 0 | return_error(gs_error_VMerror); |
825 | 1.62k | pbw->memory = pdev->memory; |
826 | 1.62k | pbw->dev = pdev; |
827 | 1.62k | code = psdf_encode_binary(pbw, &s__image_colors_template, ss); |
828 | 1.62k | if (code < 0) |
829 | 0 | return code; |
830 | 1.62k | s_image_colors_set_dimensions((stream_image_colors_state *)ss, |
831 | 1.62k | pim->Width, pim->Height, input_pim->Width, |
832 | 1.62k | gs_color_space_num_components(pim->ColorSpace), |
833 | 1.62k | pim->BitsPerComponent); |
834 | 1.62k | s_image_colors_set_color_space((stream_image_colors_state *)ss, |
835 | 1.62k | (gx_device *)pdev, pim->ColorSpace, pgs, pim->Decode); |
836 | 1.62k | pim->BitsPerComponent = pdev->color_info.comp_bits[0]; /* Same precision for all components. */ |
837 | 6.51k | for (i = 0; i < pdev->color_info.num_components; i++) { |
838 | 4.88k | pim->Decode[i * 2 + 0] = 0; |
839 | 4.88k | pim->Decode[i * 2 + 1] = 1; |
840 | 4.88k | } |
841 | 1.62k | return 0; |
842 | 1.62k | } |
843 | | |
844 | | /* Set up compression and downsampling filters for an image. */ |
845 | | /* Note that this may modify the image parameters. */ |
846 | | int |
847 | | new_setup_image_filters(gx_device_psdf * pdev, psdf_binary_writer * pbw, |
848 | | gs_pixel_image_t * pim, const gs_matrix * pctm, |
849 | | const gs_gstate * pgs, bool lossless, bool in_line, |
850 | | bool colour_conversion) |
851 | 81.2k | { |
852 | | /* |
853 | | * The following algorithms are per Adobe Tech Note # 5151, |
854 | | * "Acrobat Distiller Parameters", revised 16 September 1996 |
855 | | * for Acrobat(TM) Distiller(TM) 3.0. |
856 | | * |
857 | | * The control structure is a little tricky, because filter |
858 | | * pipelines must be constructed back-to-front. |
859 | | */ |
860 | 81.2k | int code = 0; |
861 | 81.2k | psdf_image_params params; |
862 | 81.2k | int bpc = pim->BitsPerComponent; |
863 | 81.2k | int bpc_out = pim->BitsPerComponent = min(bpc, 8); |
864 | 81.2k | int ncomp; |
865 | 81.2k | double resolution, resolutiony; |
866 | | |
867 | | /* |
868 | | * The Adobe documentation doesn't say this, but mask images are |
869 | | * compressed on the same basis as 1-bit-deep monochrome images, |
870 | | * except that anti-aliasing (resolution/depth tradeoff) is not |
871 | | * allowed. |
872 | | */ |
873 | 81.2k | if (pim->ColorSpace == NULL) { /* mask image */ |
874 | 55.8k | params = pdev->params.MonoImage; |
875 | 55.8k | params.Depth = 1; |
876 | 55.8k | ncomp = 1; |
877 | 55.8k | } else { |
878 | 25.3k | ncomp = gs_color_space_num_components(pim->ColorSpace); |
879 | 25.3k | if (pim->ColorSpace->type->index == gs_color_space_index_Indexed) { |
880 | 1.89k | params = pdev->params.ColorImage; |
881 | | /* Ensure we don't use JPEG on a /Indexed colour space */ |
882 | 1.89k | params.AutoFilter = false; |
883 | 1.89k | if (pdev->params.UseBrotliCompression) |
884 | 0 | params.Filter = "FlateEncode"; |
885 | 1.89k | else |
886 | 1.89k | params.Filter = "BrotliEncode"; |
887 | 23.4k | } else { |
888 | 23.4k | if (ncomp == 1) { |
889 | 7.25k | if (bpc == 1) |
890 | 541 | params = pdev->params.MonoImage; |
891 | 6.71k | else |
892 | 6.71k | params = pdev->params.GrayImage; |
893 | 7.25k | if (params.Depth == -1) |
894 | 7.25k | params.Depth = bpc; |
895 | 16.1k | } else { |
896 | 16.1k | params = pdev->params.ColorImage; |
897 | | /* params.Depth is reset below */ |
898 | 16.1k | } |
899 | 23.4k | } |
900 | 25.3k | } |
901 | | |
902 | | /* |
903 | | * We can compute the image resolution by: |
904 | | * W / (W * ImageMatrix^-1 * CTM / HWResolution). |
905 | | * We can replace W by 1 to simplify the computation. |
906 | | */ |
907 | 81.2k | if (pctm == 0) |
908 | 0 | resolution = -1; |
909 | 81.2k | else { |
910 | 81.2k | gs_point pt; |
911 | | |
912 | | /* We could do both X and Y, but why bother? */ |
913 | 81.2k | code = gs_distance_transform_inverse(1.0, 0.0, &pim->ImageMatrix, &pt); |
914 | 81.2k | if (code < 0) |
915 | 0 | return code; |
916 | 81.2k | gs_distance_transform(pt.x, pt.y, pctm, &pt); |
917 | 81.2k | resolution = 1.0 / hypot(pt.x / pdev->HWResolution[0], |
918 | 81.2k | pt.y / pdev->HWResolution[1]); |
919 | | |
920 | | /* Actually we must do both X and Y, in case the image is ananmorphically scaled |
921 | | * and one axis is not high enough resolution to be downsampled. |
922 | | * Bug #696152 |
923 | | */ |
924 | 81.2k | code = gs_distance_transform_inverse(0.0, 1.0, &pim->ImageMatrix, &pt); |
925 | 81.2k | if (code < 0) |
926 | 0 | return code; |
927 | 81.2k | gs_distance_transform(pt.x, pt.y, pctm, &pt); |
928 | 81.2k | resolutiony = 1.0 / hypot(pt.x / pdev->HWResolution[0], |
929 | 81.2k | pt.y / pdev->HWResolution[1]); |
930 | 81.2k | if (resolutiony < resolution) |
931 | 12.9k | resolution = resolutiony; |
932 | 81.2k | } |
933 | | |
934 | 81.2k | if (bpc != bpc_out) { |
935 | 0 | pdev->JPEG_PassThrough = 0; |
936 | 0 | pdev->JPX_PassThrough = 0; |
937 | 0 | } |
938 | | |
939 | 81.2k | if (ncomp == 1 && pim->ColorSpace && pim->ColorSpace->type->index != gs_color_space_index_Indexed) { |
940 | | /* Monochrome, gray, or mask */ |
941 | | /* Check for downsampling. */ |
942 | 7.25k | if (do_downsample(¶ms, pim, resolution)) { |
943 | | /* Use the downsampled depth, not the original data depth. */ |
944 | 0 | if (params.Depth == 1) { |
945 | 0 | params.Filter = pdev->params.MonoImage.Filter; |
946 | 0 | params.filter_template = pdev->params.MonoImage.filter_template; |
947 | 0 | params.Dict = pdev->params.MonoImage.Dict; |
948 | 0 | } else { |
949 | 0 | if (params.Depth > 8) |
950 | 0 | params.Depth = bpc_out; |
951 | 0 | params.Filter = pdev->params.GrayImage.Filter; |
952 | 0 | params.filter_template = pdev->params.GrayImage.filter_template; |
953 | 0 | params.Dict = pdev->params.GrayImage.Dict; |
954 | 0 | } |
955 | 0 | pdev->JPEG_PassThrough = 0; |
956 | 0 | pdev->JPX_PassThrough = 0; |
957 | 0 | code = setup_downsampling(pbw, ¶ms, pim, pgs, resolution, lossless); |
958 | 7.25k | } else { |
959 | 7.25k | code = setup_image_compression(pbw, ¶ms, pim, pgs, lossless); |
960 | 7.25k | } |
961 | 7.25k | if (code < 0) |
962 | 0 | return code; |
963 | 7.25k | code = pixel_resize(pbw, pim->Width, ncomp, bpc, bpc_out); |
964 | 73.9k | } else { |
965 | | /* Color */ |
966 | 73.9k | if (params.Depth == -1) |
967 | 18.0k | params.Depth = (colour_conversion ? 8 : bpc_out); |
968 | 73.9k | if (do_downsample(¶ms, pim, resolution)) { |
969 | 0 | pdev->JPEG_PassThrough = 0; |
970 | 0 | pdev->JPX_PassThrough = 0; |
971 | 0 | code = setup_downsampling(pbw, ¶ms, pim, pgs, resolution, lossless); |
972 | 73.9k | } else { |
973 | 73.9k | code = setup_image_compression(pbw, ¶ms, pim, pgs, lossless); |
974 | 73.9k | } |
975 | 73.9k | if (code < 0) |
976 | 0 | return code; |
977 | 73.9k | code = pixel_resize(pbw, pim->Width, ncomp, bpc, bpc_out); |
978 | 73.9k | if (code < 0) |
979 | 0 | return code; |
980 | 73.9k | } |
981 | 81.2k | return code; |
982 | 81.2k | } |
983 | | |
984 | | int |
985 | | new_setup_lossless_filters(gx_device_psdf *pdev, psdf_binary_writer *pbw, |
986 | | gs_pixel_image_t *pim, bool in_line, |
987 | | bool colour_conversion, const gs_matrix *pctm, gs_gstate * pgs) |
988 | 66.8k | { |
989 | | /* |
990 | | * Set up a device with modified parameters for computing the image |
991 | | * compression filters. Don't allow lossy compression, but do allow downsampling. |
992 | | */ |
993 | 66.8k | gx_device_psdf ipdev; |
994 | | |
995 | 66.8k | ipdev = *pdev; |
996 | 66.8k | ipdev.params.ColorImage.AutoFilter = false; |
997 | 66.8k | if (pdev->params.UseBrotliCompression) { |
998 | 0 | ipdev.params.ColorImage.Filter = "BrotliEncode"; |
999 | 0 | ipdev.params.ColorImage.filter_template = &s_brotliE_template; |
1000 | 0 | ipdev.params.GrayImage.Filter = "BrotliEncode"; |
1001 | 0 | ipdev.params.GrayImage.filter_template = &s_brotliE_template; |
1002 | 66.8k | } else { |
1003 | 66.8k | ipdev.params.ColorImage.Filter = "FlateEncode"; |
1004 | 66.8k | ipdev.params.ColorImage.filter_template = &s_zlibE_template; |
1005 | 66.8k | ipdev.params.GrayImage.Filter = "FlateEncode"; |
1006 | 66.8k | ipdev.params.GrayImage.filter_template = &s_zlibE_template; |
1007 | 66.8k | } |
1008 | 66.8k | ipdev.params.ConvertCMYKImagesToRGB = false; |
1009 | 66.8k | ipdev.params.GrayImage.AutoFilter = false; |
1010 | 66.8k | ipdev.params.GrayImage.Downsample = false; |
1011 | 66.8k | return new_setup_image_filters(&ipdev, pbw, pim, pctm, pgs, true, in_line, colour_conversion); |
1012 | 66.8k | } |
1013 | | |
1014 | | int new_resize_input(psdf_binary_writer *pbw, int width, int num_comps, int bpc_in, int bpc_out) |
1015 | 0 | { |
1016 | 0 | return pixel_resize(pbw, width, num_comps, bpc_in, bpc_out); |
1017 | 0 | } |