/src/ghostpdl/obj/jccoefct.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * jccoefct.c |
3 | | * |
4 | | * Copyright (C) 1994-1997, Thomas G. Lane. |
5 | | * Modified 2003-2022 by Guido Vollbeding. |
6 | | * This file is part of the Independent JPEG Group's software. |
7 | | * For conditions of distribution and use, see the accompanying README file. |
8 | | * |
9 | | * This file contains the coefficient buffer controller for compression. |
10 | | * This controller is the top level of the JPEG compressor proper. |
11 | | * The coefficient buffer lies between forward-DCT and entropy encoding steps. |
12 | | */ |
13 | | |
14 | | #define JPEG_INTERNALS |
15 | | #include "jinclude.h" |
16 | | #include "jpeglib.h" |
17 | | |
18 | | |
19 | | /* We use a full-image coefficient buffer when doing Huffman optimization, |
20 | | * and also for writing multiple-scan JPEG files. In all cases, the DCT |
21 | | * step is run during the first pass, and subsequent passes need only read |
22 | | * the buffered coefficients. |
23 | | */ |
24 | | #ifdef ENTROPY_OPT_SUPPORTED |
25 | | #define FULL_COEF_BUFFER_SUPPORTED |
26 | | #else |
27 | | #ifdef C_MULTISCAN_FILES_SUPPORTED |
28 | | #define FULL_COEF_BUFFER_SUPPORTED |
29 | | #endif |
30 | | #endif |
31 | | |
32 | | |
33 | | /* Private buffer controller object */ |
34 | | |
35 | | typedef struct { |
36 | | struct jpeg_c_coef_controller pub; /* public fields */ |
37 | | |
38 | | JDIMENSION iMCU_row_num; /* iMCU row # within image */ |
39 | | JDIMENSION MCU_ctr; /* counts MCUs processed in current row */ |
40 | | int MCU_vert_offset; /* counts MCU rows within iMCU row */ |
41 | | int MCU_rows_per_iMCU_row; /* number of such rows needed */ |
42 | | |
43 | | /* For single-pass compression, it's sufficient to buffer just one MCU |
44 | | * (although this may prove a bit slow in practice). |
45 | | * We append a workspace of C_MAX_BLOCKS_IN_MCU coefficient blocks, |
46 | | * and reuse it for each MCU constructed and sent. |
47 | | * In multi-pass modes, this array points to the current MCU's blocks |
48 | | * within the virtual arrays. |
49 | | */ |
50 | | JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU]; |
51 | | |
52 | | /* In multi-pass modes, we need a virtual block array for each component. */ |
53 | | jvirt_barray_ptr whole_image[MAX_COMPONENTS]; |
54 | | |
55 | | /* Workspace for single-pass compression (omitted otherwise). */ |
56 | | JBLOCK blk_buffer[C_MAX_BLOCKS_IN_MCU]; |
57 | | } my_coef_controller; |
58 | | |
59 | | typedef my_coef_controller * my_coef_ptr; |
60 | | |
61 | | |
62 | | /* Forward declarations */ |
63 | | METHODDEF(boolean) compress_data |
64 | | JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf)); |
65 | | #ifdef FULL_COEF_BUFFER_SUPPORTED |
66 | | METHODDEF(boolean) compress_first_pass |
67 | | JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf)); |
68 | | METHODDEF(boolean) compress_output |
69 | | JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf)); |
70 | | #endif |
71 | | |
72 | | |
73 | | LOCAL(void) |
74 | | start_iMCU_row (j_compress_ptr cinfo) |
75 | | /* Reset within-iMCU-row counters for a new row */ |
76 | 43.3k | { |
77 | 43.3k | my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
78 | | |
79 | | /* In an interleaved scan, an MCU row is the same as an iMCU row. |
80 | | * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows. |
81 | | * But at the bottom of the image, process only what's left. |
82 | | */ |
83 | 43.3k | if (cinfo->comps_in_scan > 1) { |
84 | 21.4k | coef->MCU_rows_per_iMCU_row = 1; |
85 | 21.9k | } else { |
86 | 21.9k | if (coef->iMCU_row_num < (cinfo->total_iMCU_rows-1)) |
87 | 16.1k | coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor; |
88 | 5.75k | else |
89 | 5.75k | coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height; |
90 | 21.9k | } |
91 | | |
92 | 43.3k | coef->MCU_ctr = 0; |
93 | 43.3k | coef->MCU_vert_offset = 0; |
94 | 43.3k | } |
95 | | |
96 | | |
97 | | /* |
98 | | * Initialize for a processing pass. |
99 | | */ |
100 | | |
101 | | METHODDEF(void) |
102 | | start_pass_coef (j_compress_ptr cinfo, J_BUF_MODE pass_mode) |
103 | 6.12k | { |
104 | 6.12k | my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
105 | | |
106 | 6.12k | coef->iMCU_row_num = 0; |
107 | 6.12k | start_iMCU_row(cinfo); |
108 | | |
109 | 6.12k | switch (pass_mode) { |
110 | 6.12k | case JBUF_PASS_THRU: |
111 | 6.12k | if (coef->whole_image[0] != NULL) |
112 | 0 | ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); |
113 | 6.12k | coef->pub.compress_data = compress_data; |
114 | 6.12k | break; |
115 | | #ifdef FULL_COEF_BUFFER_SUPPORTED |
116 | | case JBUF_SAVE_AND_PASS: |
117 | | if (coef->whole_image[0] == NULL) |
118 | | ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); |
119 | | coef->pub.compress_data = compress_first_pass; |
120 | | break; |
121 | | case JBUF_CRANK_DEST: |
122 | | if (coef->whole_image[0] == NULL) |
123 | | ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); |
124 | | coef->pub.compress_data = compress_output; |
125 | | break; |
126 | | #endif |
127 | 0 | default: |
128 | 0 | ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); |
129 | 6.12k | } |
130 | 6.12k | } |
131 | | |
132 | | |
133 | | /* |
134 | | * Process some data in the single-pass case. |
135 | | * We process the equivalent of one fully interleaved MCU row ("iMCU" row) |
136 | | * per call, ie, v_samp_factor block rows for each component in the image. |
137 | | * Returns TRUE if the iMCU row is completed, FALSE if suspended. |
138 | | * |
139 | | * NB: input_buf contains a plane for each component in image, |
140 | | * which we index according to the component's SOF position. |
141 | | */ |
142 | | |
143 | | METHODDEF(boolean) |
144 | | compress_data (j_compress_ptr cinfo, JSAMPIMAGE input_buf) |
145 | 42.6k | { |
146 | 42.6k | my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
147 | 42.6k | JDIMENSION MCU_col_num; /* index of current MCU within row */ |
148 | 42.6k | JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1; |
149 | 42.6k | JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; |
150 | 42.6k | int ci, xindex, yindex, yoffset, blockcnt; |
151 | 42.6k | JBLOCKROW blkp; |
152 | 42.6k | JSAMPARRAY input_ptr; |
153 | 42.6k | JDIMENSION xpos; |
154 | 42.6k | jpeg_component_info *compptr; |
155 | 42.6k | forward_DCT_ptr forward_DCT; |
156 | | |
157 | | /* Loop to write as much as one whole iMCU row */ |
158 | 98.2k | for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; |
159 | 61.0k | yoffset++) { |
160 | 648k | for (MCU_col_num = coef->MCU_ctr; MCU_col_num <= last_MCU_col; |
161 | 592k | MCU_col_num++) { |
162 | | /* Determine where data comes from in input_buf and do the DCT thing. |
163 | | * Each call on forward_DCT processes a horizontal row of DCT blocks as |
164 | | * wide as an MCU. Dummy blocks at the right or bottom edge are filled in |
165 | | * specially. The data in them does not matter for image reconstruction, |
166 | | * so we fill them with values that will encode to the smallest amount of |
167 | | * data, viz: all zeroes in the AC entries, DC entries equal to previous |
168 | | * block's DC value. (Thanks to Thomas Kinsman for this idea.) |
169 | | */ |
170 | 592k | blkp = coef->blk_buffer; /* pointer to current DCT block within MCU */ |
171 | 1.45M | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
172 | 864k | compptr = cinfo->cur_comp_info[ci]; |
173 | 864k | forward_DCT = cinfo->fdct->forward_DCT[compptr->component_index]; |
174 | 864k | input_ptr = input_buf[compptr->component_index] + |
175 | 864k | yoffset * compptr->DCT_v_scaled_size; |
176 | | /* ypos == (yoffset + yindex) * compptr->DCT_v_scaled_size */ |
177 | 864k | blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width |
178 | 864k | : compptr->last_col_width; |
179 | 864k | xpos = MCU_col_num * compptr->MCU_sample_width; |
180 | 1.86M | for (yindex = 0; yindex < compptr->MCU_height; yindex++) { |
181 | 995k | if (coef->iMCU_row_num < last_iMCU_row || |
182 | 995k | yoffset + yindex < compptr->last_row_height) { |
183 | 991k | (*forward_DCT) (cinfo, compptr, input_ptr, blkp, |
184 | 991k | xpos, (JDIMENSION) blockcnt); |
185 | 991k | input_ptr += compptr->DCT_v_scaled_size; |
186 | 991k | blkp += blockcnt; |
187 | | /* Dummy blocks at right edge */ |
188 | 991k | if ((xindex = compptr->MCU_width - blockcnt) == 0) |
189 | 986k | continue; |
190 | 991k | } else { |
191 | | /* At bottom of image, need a whole row of dummy blocks */ |
192 | 3.53k | xindex = compptr->MCU_width; |
193 | 3.53k | } |
194 | | /* Fill in any dummy blocks needed in this row */ |
195 | 9.17k | MEMZERO(blkp, xindex * SIZEOF(JBLOCK)); |
196 | 12.7k | do { |
197 | 12.7k | blkp[0][0] = blkp[-1][0]; |
198 | 12.7k | blkp++; |
199 | 12.7k | } while (--xindex); |
200 | 9.17k | } |
201 | 864k | } |
202 | | /* Try to write the MCU. In event of a suspension failure, we will |
203 | | * re-DCT the MCU on restart (a bit inefficient, could be fixed...) |
204 | | */ |
205 | 592k | if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) { |
206 | | /* Suspension forced; update state counters and exit */ |
207 | 5.47k | coef->MCU_vert_offset = yoffset; |
208 | 5.47k | coef->MCU_ctr = MCU_col_num; |
209 | 5.47k | return FALSE; |
210 | 5.47k | } |
211 | 592k | } |
212 | | /* Completed an MCU row, but perhaps not an iMCU row */ |
213 | 55.6k | coef->MCU_ctr = 0; |
214 | 55.6k | } |
215 | | /* Completed the iMCU row, advance counters for next one */ |
216 | 37.2k | coef->iMCU_row_num++; |
217 | 37.2k | start_iMCU_row(cinfo); |
218 | 37.2k | return TRUE; |
219 | 42.6k | } |
220 | | |
221 | | |
222 | | #ifdef FULL_COEF_BUFFER_SUPPORTED |
223 | | |
224 | | /* |
225 | | * Process some data in the first pass of a multi-pass case. |
226 | | * We process the equivalent of one fully interleaved MCU row ("iMCU" row) |
227 | | * per call, ie, v_samp_factor block rows for each component in the image. |
228 | | * This amount of data is read from the source buffer, DCT'd and quantized, |
229 | | * and saved into the virtual arrays. We also generate suitable dummy blocks |
230 | | * as needed at the right and lower edges. (The dummy blocks are constructed |
231 | | * in the virtual arrays, which have been padded appropriately.) This makes |
232 | | * it possible for subsequent passes not to worry about real vs. dummy blocks. |
233 | | * |
234 | | * We must also emit the data to the entropy encoder. This is conveniently |
235 | | * done by calling compress_output() after we've loaded the current strip |
236 | | * of the virtual arrays. |
237 | | * |
238 | | * NB: input_buf contains a plane for each component in image. All |
239 | | * components are DCT'd and loaded into the virtual arrays in this pass. |
240 | | * However, it may be that only a subset of the components are emitted to |
241 | | * the entropy encoder during this first pass; be careful about looking |
242 | | * at the scan-dependent variables (MCU dimensions, etc). |
243 | | */ |
244 | | |
245 | | METHODDEF(boolean) |
246 | | compress_first_pass (j_compress_ptr cinfo, JSAMPIMAGE input_buf) |
247 | | { |
248 | | my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
249 | | JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; |
250 | | JDIMENSION blocks_across, MCUs_across, MCUindex; |
251 | | int bi, ci, h_samp_factor, block_row, block_rows, ndummy; |
252 | | JCOEF lastDC; |
253 | | jpeg_component_info *compptr; |
254 | | JBLOCKARRAY buffer; |
255 | | JBLOCKROW thisblockrow, lastblockrow; |
256 | | JSAMPARRAY input_ptr; |
257 | | forward_DCT_ptr forward_DCT; |
258 | | |
259 | | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
260 | | ci++, compptr++) { |
261 | | /* Align the virtual buffer for this component. */ |
262 | | buffer = (*cinfo->mem->access_virt_barray) |
263 | | ((j_common_ptr) cinfo, coef->whole_image[ci], |
264 | | coef->iMCU_row_num * compptr->v_samp_factor, |
265 | | (JDIMENSION) compptr->v_samp_factor, TRUE); |
266 | | /* Count non-dummy DCT block rows in this iMCU row. */ |
267 | | if (coef->iMCU_row_num < last_iMCU_row) |
268 | | block_rows = compptr->v_samp_factor; |
269 | | else { |
270 | | /* NB: can't use last_row_height here, since may not be set! */ |
271 | | block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor); |
272 | | if (block_rows == 0) block_rows = compptr->v_samp_factor; |
273 | | } |
274 | | blocks_across = compptr->width_in_blocks; |
275 | | h_samp_factor = compptr->h_samp_factor; |
276 | | /* Count number of dummy blocks to be added at the right margin. */ |
277 | | ndummy = (int) (blocks_across % h_samp_factor); |
278 | | if (ndummy > 0) |
279 | | ndummy = h_samp_factor - ndummy; |
280 | | forward_DCT = cinfo->fdct->forward_DCT[ci]; |
281 | | input_ptr = input_buf[ci]; |
282 | | /* Perform DCT for all non-dummy blocks in this iMCU row. Each call |
283 | | * on forward_DCT processes a complete horizontal row of DCT blocks. |
284 | | */ |
285 | | for (block_row = 0; block_row < block_rows; block_row++) { |
286 | | thisblockrow = buffer[block_row]; |
287 | | (*forward_DCT) (cinfo, compptr, input_ptr, thisblockrow, |
288 | | (JDIMENSION) 0, blocks_across); |
289 | | input_ptr += compptr->DCT_v_scaled_size; |
290 | | if (ndummy > 0) { |
291 | | /* Create dummy blocks at the right edge of the image. */ |
292 | | thisblockrow += blocks_across; /* => first dummy block */ |
293 | | FMEMZERO((void FAR *) thisblockrow, ndummy * SIZEOF(JBLOCK)); |
294 | | lastDC = thisblockrow[-1][0]; |
295 | | for (bi = 0; bi < ndummy; bi++) { |
296 | | thisblockrow[bi][0] = lastDC; |
297 | | } |
298 | | } |
299 | | } |
300 | | /* If at end of image, create dummy block rows as needed. |
301 | | * The tricky part here is that within each MCU, we want the DC values |
302 | | * of the dummy blocks to match the last real block's DC value. |
303 | | * This squeezes a few more bytes out of the resulting file... |
304 | | */ |
305 | | if (block_row < compptr->v_samp_factor) { |
306 | | blocks_across += ndummy; /* include lower right corner */ |
307 | | MCUs_across = blocks_across / h_samp_factor; |
308 | | do { |
309 | | thisblockrow = buffer[block_row]; |
310 | | lastblockrow = buffer[block_row-1]; |
311 | | FMEMZERO((void FAR *) thisblockrow, |
312 | | (size_t) blocks_across * SIZEOF(JBLOCK)); |
313 | | for (MCUindex = 0; MCUindex < MCUs_across; MCUindex++) { |
314 | | lastDC = lastblockrow[h_samp_factor-1][0]; |
315 | | for (bi = 0; bi < h_samp_factor; bi++) { |
316 | | thisblockrow[bi][0] = lastDC; |
317 | | } |
318 | | thisblockrow += h_samp_factor; /* advance to next MCU in row */ |
319 | | lastblockrow += h_samp_factor; |
320 | | } |
321 | | } while (++block_row < compptr->v_samp_factor); |
322 | | } |
323 | | } |
324 | | /* NB: compress_output will increment iMCU_row_num if successful. |
325 | | * A suspension return will result in redoing all the work above next time. |
326 | | */ |
327 | | |
328 | | /* Emit data to the entropy encoder, sharing code with subsequent passes */ |
329 | | return compress_output(cinfo, input_buf); |
330 | | } |
331 | | |
332 | | |
333 | | /* |
334 | | * Process some data in subsequent passes of a multi-pass case. |
335 | | * We process the equivalent of one fully interleaved MCU row ("iMCU" row) |
336 | | * per call, ie, v_samp_factor block rows for each component in the scan. |
337 | | * The data is obtained from the virtual arrays and fed to the entropy coder. |
338 | | * Returns TRUE if the iMCU row is completed, FALSE if suspended. |
339 | | * |
340 | | * NB: input_buf is ignored; it is likely to be a NULL pointer. |
341 | | */ |
342 | | |
343 | | METHODDEF(boolean) |
344 | | compress_output (j_compress_ptr cinfo, JSAMPIMAGE input_buf) |
345 | | { |
346 | | my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
347 | | JDIMENSION MCU_col_num; /* index of current MCU within row */ |
348 | | int ci, xindex, yindex, yoffset; |
349 | | JDIMENSION start_col; |
350 | | JBLOCKARRAY blkp; |
351 | | JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN]; |
352 | | JBLOCKROW buffer_ptr; |
353 | | jpeg_component_info *compptr; |
354 | | |
355 | | /* Align the virtual buffers for the components used in this scan. |
356 | | * NB: during first pass, this is safe only because the buffers will |
357 | | * already be aligned properly, so jmemmgr.c won't need to do any I/O. |
358 | | */ |
359 | | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
360 | | compptr = cinfo->cur_comp_info[ci]; |
361 | | buffer[ci] = (*cinfo->mem->access_virt_barray) |
362 | | ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index], |
363 | | coef->iMCU_row_num * compptr->v_samp_factor, |
364 | | (JDIMENSION) compptr->v_samp_factor, FALSE); |
365 | | } |
366 | | |
367 | | /* Loop to process one whole iMCU row */ |
368 | | for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; |
369 | | yoffset++) { |
370 | | for (MCU_col_num = coef->MCU_ctr; MCU_col_num < cinfo->MCUs_per_row; |
371 | | MCU_col_num++) { |
372 | | /* Construct list of pointers to DCT blocks belonging to this MCU */ |
373 | | blkp = coef->MCU_buffer; /* pointer to current DCT block within MCU */ |
374 | | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
375 | | compptr = cinfo->cur_comp_info[ci]; |
376 | | start_col = MCU_col_num * compptr->MCU_width; |
377 | | for (yindex = 0; yindex < compptr->MCU_height; yindex++) { |
378 | | buffer_ptr = buffer[ci][yoffset + yindex] + start_col; |
379 | | xindex = compptr->MCU_width; |
380 | | do { |
381 | | *blkp++ = buffer_ptr++; |
382 | | } while (--xindex); |
383 | | } |
384 | | } |
385 | | /* Try to write the MCU. */ |
386 | | if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) { |
387 | | /* Suspension forced; update state counters and exit */ |
388 | | coef->MCU_vert_offset = yoffset; |
389 | | coef->MCU_ctr = MCU_col_num; |
390 | | return FALSE; |
391 | | } |
392 | | } |
393 | | /* Completed an MCU row, but perhaps not an iMCU row */ |
394 | | coef->MCU_ctr = 0; |
395 | | } |
396 | | /* Completed the iMCU row, advance counters for next one */ |
397 | | coef->iMCU_row_num++; |
398 | | start_iMCU_row(cinfo); |
399 | | return TRUE; |
400 | | } |
401 | | |
402 | | #endif /* FULL_COEF_BUFFER_SUPPORTED */ |
403 | | |
404 | | |
405 | | /* |
406 | | * Initialize coefficient buffer controller. |
407 | | */ |
408 | | |
409 | | GLOBAL(void) |
410 | | jinit_c_coef_controller (j_compress_ptr cinfo, boolean need_full_buffer) |
411 | 6.12k | { |
412 | 6.12k | my_coef_ptr coef; |
413 | | |
414 | 6.12k | if (need_full_buffer) { |
415 | | #ifdef FULL_COEF_BUFFER_SUPPORTED |
416 | | /* Allocate a full-image virtual array for each component, */ |
417 | | /* padded to a multiple of samp_factor DCT blocks in each direction. */ |
418 | | int ci; |
419 | | jpeg_component_info *compptr; |
420 | | |
421 | | coef = (my_coef_ptr) (*cinfo->mem->alloc_small) |
422 | | ((j_common_ptr) cinfo, JPOOL_IMAGE, |
423 | | SIZEOF(my_coef_controller) - SIZEOF(coef->blk_buffer)); |
424 | | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
425 | | ci++, compptr++) { |
426 | | coef->whole_image[ci] = (*cinfo->mem->request_virt_barray) |
427 | | ((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE, |
428 | | (JDIMENSION) jround_up((long) compptr->width_in_blocks, |
429 | | (long) compptr->h_samp_factor), |
430 | | (JDIMENSION) jround_up((long) compptr->height_in_blocks, |
431 | | (long) compptr->v_samp_factor), |
432 | | (JDIMENSION) compptr->v_samp_factor); |
433 | | } |
434 | | #else |
435 | 0 | ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); |
436 | 0 | #endif |
437 | 6.12k | } else { |
438 | | /* We only need a single-MCU buffer. */ |
439 | 6.12k | JBLOCKARRAY blkp; |
440 | 6.12k | JBLOCKROW buffer_ptr; |
441 | 6.12k | int bi; |
442 | | |
443 | 6.12k | coef = (my_coef_ptr) (*cinfo->mem->alloc_small) |
444 | 6.12k | ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_coef_controller)); |
445 | 6.12k | blkp = coef->MCU_buffer; |
446 | 6.12k | buffer_ptr = coef->blk_buffer; |
447 | 6.12k | bi = C_MAX_BLOCKS_IN_MCU; |
448 | 61.2k | do { |
449 | 61.2k | *blkp++ = buffer_ptr++; |
450 | 61.2k | } while (--bi); |
451 | 6.12k | coef->whole_image[0] = NULL; /* flag for no virtual arrays */ |
452 | 6.12k | } |
453 | | |
454 | 6.12k | coef->pub.start_pass = start_pass_coef; |
455 | 6.12k | cinfo->coef = &coef->pub; |
456 | 6.12k | } |