Coverage Report

Created: 2025-06-24 07:01

/src/ghostpdl/obj/jdarith.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jdarith.c
3
 *
4
 * Developed 1997-2020 by Guido Vollbeding.
5
 * This file is part of the Independent JPEG Group's software.
6
 * For conditions of distribution and use, see the accompanying README file.
7
 *
8
 * This file contains portable arithmetic entropy decoding routines for JPEG
9
 * (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81).
10
 *
11
 * Both sequential and progressive modes are supported in this single module.
12
 *
13
 * Suspension is not currently supported in this module.
14
 */
15
16
#define JPEG_INTERNALS
17
#include "jinclude.h"
18
#include "jpeglib.h"
19
20
21
/* Expanded entropy decoder object for arithmetic decoding. */
22
23
typedef struct {
24
  struct jpeg_entropy_decoder pub; /* public fields */
25
26
  INT32 c;       /* C register, base of coding interval + input bit buffer */
27
  INT32 a;               /* A register, normalized size of coding interval */
28
  int ct;     /* bit shift counter, # of bits left in bit buffer part of C */
29
                                                         /* init: ct = -16 */
30
                                                         /* run: ct = 0..7 */
31
                                                         /* error: ct = -1 */
32
  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
33
  int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */
34
35
  unsigned int restarts_to_go;  /* MCUs left in this restart interval */
36
37
  /* Pointers to statistics areas (these workspaces have image lifespan) */
38
  unsigned char * dc_stats[NUM_ARITH_TBLS];
39
  unsigned char * ac_stats[NUM_ARITH_TBLS];
40
41
  /* Statistics bin for coding with fixed probability 0.5 */
42
  unsigned char fixed_bin[4];
43
} arith_entropy_decoder;
44
45
typedef arith_entropy_decoder * arith_entropy_ptr;
46
47
/* The following two definitions specify the allocation chunk size
48
 * for the statistics area.
49
 * According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least
50
 * 49 statistics bins for DC, and 245 statistics bins for AC coding.
51
 *
52
 * We use a compact representation with 1 byte per statistics bin,
53
 * thus the numbers directly represent byte sizes.
54
 * This 1 byte per statistics bin contains the meaning of the MPS
55
 * (more probable symbol) in the highest bit (mask 0x80), and the
56
 * index into the probability estimation state machine table
57
 * in the lower bits (mask 0x7F).
58
 */
59
60
0
#define DC_STAT_BINS 64
61
0
#define AC_STAT_BINS 256
62
63
64
LOCAL(int)
65
get_byte (j_decompress_ptr cinfo)
66
/* Read next input byte; we do not support suspension in this module. */
67
0
{
68
0
  struct jpeg_source_mgr * src = cinfo->src;
69
70
0
  if (src->bytes_in_buffer == 0)
71
0
    if (! (*src->fill_input_buffer) (cinfo))
72
0
      ERREXIT(cinfo, JERR_CANT_SUSPEND);
73
0
  src->bytes_in_buffer--;
74
0
  return GETJOCTET(*src->next_input_byte++);
75
0
}
76
77
78
/*
79
 * The core arithmetic decoding routine (common in JPEG and JBIG).
80
 * This needs to go as fast as possible.
81
 * Machine-dependent optimization facilities
82
 * are not utilized in this portable implementation.
83
 * However, this code should be fairly efficient and
84
 * may be a good base for further optimizations anyway.
85
 *
86
 * Return value is 0 or 1 (binary decision).
87
 *
88
 * Note: I've changed the handling of the code base & bit
89
 * buffer register C compared to other implementations
90
 * based on the standards layout & procedures.
91
 * While it also contains both the actual base of the
92
 * coding interval (16 bits) and the next-bits buffer,
93
 * the cut-point between these two parts is floating
94
 * (instead of fixed) with the bit shift counter CT.
95
 * Thus, we also need only one (variable instead of
96
 * fixed size) shift for the LPS/MPS decision, and
97
 * we can do away with any renormalization update
98
 * of C (except for new data insertion, of course).
99
 *
100
 * I've also introduced a new scheme for accessing
101
 * the probability estimation state machine table,
102
 * derived from Markus Kuhn's JBIG implementation.
103
 */
104
105
LOCAL(int)
106
arith_decode (j_decompress_ptr cinfo, unsigned char *st)
107
0
{
108
0
  register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
109
0
  register unsigned char nl, nm;
110
0
  register INT32 qe, temp;
111
0
  register int sv, data;
112
113
  /* Renormalization & data input per section D.2.6 */
114
0
  while (e->a < 0x8000L) {
115
0
    if (--e->ct < 0) {
116
      /* Need to fetch next data byte */
117
0
      if (cinfo->unread_marker)
118
0
  data = 0;   /* stuff zero data */
119
0
      else {
120
0
  data = get_byte(cinfo); /* read next input byte */
121
0
  if (data == 0xFF) { /* zero stuff or marker code */
122
0
    do data = get_byte(cinfo);
123
0
    while (data == 0xFF);  /* swallow extra 0xFF bytes */
124
0
    if (data == 0)
125
0
      data = 0xFF; /* discard stuffed zero byte */
126
0
    else {
127
      /* Note: Different from the Huffman decoder, hitting
128
       * a marker while processing the compressed data
129
       * segment is legal in arithmetic coding.
130
       * The convention is to supply zero data
131
       * then until decoding is complete.
132
       */
133
0
      cinfo->unread_marker = data;
134
0
      data = 0;
135
0
    }
136
0
  }
137
0
      }
138
0
      e->c = (e->c << 8) | data; /* insert data into C register */
139
0
      if ((e->ct += 8) < 0)  /* update bit shift counter */
140
  /* Need more initial bytes */
141
0
  if (++e->ct == 0)
142
    /* Got 2 initial bytes -> re-init A and exit loop */
143
0
    e->a = 0x8000L; /* => e->a = 0x10000L after loop exit */
144
0
    }
145
0
    e->a <<= 1;
146
0
  }
147
148
  /* Fetch values from our compact representation of Table D.3(D.2):
149
   * Qe values and probability estimation state machine
150
   */
151
0
  sv = *st;
152
0
  qe = jpeg_aritab[sv & 0x7F];  /* => Qe_Value */
153
0
  nl = qe & 0xFF; qe >>= 8; /* Next_Index_LPS + Switch_MPS */
154
0
  nm = qe & 0xFF; qe >>= 8; /* Next_Index_MPS */
155
156
  /* Decode & estimation procedures per sections D.2.4 & D.2.5 */
157
0
  temp = e->a - qe;
158
0
  e->a = temp;
159
0
  temp <<= e->ct;
160
0
  if (e->c >= temp) {
161
0
    e->c -= temp;
162
    /* Conditional LPS (less probable symbol) exchange */
163
0
    if (e->a < qe) {
164
0
      e->a = qe;
165
0
      *st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */
166
0
    } else {
167
0
      e->a = qe;
168
0
      *st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */
169
0
      sv ^= 0x80;   /* Exchange LPS/MPS */
170
0
    }
171
0
  } else if (e->a < 0x8000L) {
172
    /* Conditional MPS (more probable symbol) exchange */
173
0
    if (e->a < qe) {
174
0
      *st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */
175
0
      sv ^= 0x80;   /* Exchange LPS/MPS */
176
0
    } else {
177
0
      *st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */
178
0
    }
179
0
  }
180
181
0
  return sv >> 7;
182
0
}
183
184
185
/*
186
 * Check for a restart marker & resynchronize decoder.
187
 */
188
189
LOCAL(void)
190
process_restart (j_decompress_ptr cinfo)
191
0
{
192
0
  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
193
0
  int ci;
194
0
  jpeg_component_info * compptr;
195
196
  /* Advance past the RSTn marker */
197
0
  if (! (*cinfo->marker->read_restart_marker) (cinfo))
198
0
    ERREXIT(cinfo, JERR_CANT_SUSPEND);
199
200
  /* Re-initialize statistics areas */
201
0
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
202
0
    compptr = cinfo->cur_comp_info[ci];
203
0
    if (! cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
204
0
      MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS);
205
      /* Reset DC predictions to 0 */
206
0
      entropy->last_dc_val[ci] = 0;
207
0
      entropy->dc_context[ci] = 0;
208
0
    }
209
0
    if ((! cinfo->progressive_mode && cinfo->lim_Se) ||
210
0
  (cinfo->progressive_mode && cinfo->Ss)) {
211
0
      MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS);
212
0
    }
213
0
  }
214
215
  /* Reset arithmetic decoding variables */
216
0
  entropy->c = 0;
217
0
  entropy->a = 0;
218
0
  entropy->ct = -16;  /* force reading 2 initial bytes to fill C */
219
220
  /* Reset restart counter */
221
0
  entropy->restarts_to_go = cinfo->restart_interval;
222
0
}
223
224
225
/*
226
 * Arithmetic MCU decoding.
227
 * Each of these routines decodes and returns one MCU's worth of
228
 * arithmetic-compressed coefficients.
229
 * The coefficients are reordered from zigzag order into natural array order,
230
 * but are not dequantized.
231
 *
232
 * The i'th block of the MCU is stored into the block pointed to by
233
 * MCU_data[i].  WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER.
234
 */
235
236
/*
237
 * MCU decoding for DC initial scan (either spectral selection,
238
 * or first pass of successive approximation).
239
 */
240
241
METHODDEF(boolean)
242
decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKARRAY MCU_data)
243
0
{
244
0
  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
245
0
  JBLOCKROW block;
246
0
  unsigned char *st;
247
0
  int blkn, ci, tbl, sign;
248
0
  int v, m;
249
250
  /* Process restart marker if needed */
251
0
  if (cinfo->restart_interval) {
252
0
    if (entropy->restarts_to_go == 0)
253
0
      process_restart(cinfo);
254
0
    entropy->restarts_to_go--;
255
0
  }
256
257
0
  if (entropy->ct == -1) return TRUE; /* if error do nothing */
258
259
  /* Outer loop handles each block in the MCU */
260
261
0
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
262
0
    block = MCU_data[blkn];
263
0
    ci = cinfo->MCU_membership[blkn];
264
0
    tbl = cinfo->cur_comp_info[ci]->dc_tbl_no;
265
266
    /* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */
267
268
    /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
269
0
    st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
270
271
    /* Figure F.19: Decode_DC_DIFF */
272
0
    if (arith_decode(cinfo, st) == 0)
273
0
      entropy->dc_context[ci] = 0;
274
0
    else {
275
      /* Figure F.21: Decoding nonzero value v */
276
      /* Figure F.22: Decoding the sign of v */
277
0
      sign = arith_decode(cinfo, st + 1);
278
0
      st += 2; st += sign;
279
      /* Figure F.23: Decoding the magnitude category of v */
280
0
      if ((m = arith_decode(cinfo, st)) != 0) {
281
0
  st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
282
0
  while (arith_decode(cinfo, st)) {
283
0
    if ((m <<= 1) == (int) 0x8000U) {
284
0
      WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
285
0
      entropy->ct = -1;     /* magnitude overflow */
286
0
      return TRUE;
287
0
    }
288
0
    st += 1;
289
0
  }
290
0
      }
291
      /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
292
0
      if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
293
0
  entropy->dc_context[ci] = 0;      /* zero diff category */
294
0
      else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
295
0
  entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */
296
0
      else
297
0
  entropy->dc_context[ci] = 4 + (sign * 4);  /* small diff category */
298
0
      v = m;
299
      /* Figure F.24: Decoding the magnitude bit pattern of v */
300
0
      st += 14;
301
0
      while (m >>= 1)
302
0
  if (arith_decode(cinfo, st)) v |= m;
303
0
      v += 1; if (sign) v = -v;
304
0
      entropy->last_dc_val[ci] += v;
305
0
    }
306
307
    /* Scale and output the DC coefficient (assumes jpeg_natural_order[0]=0) */
308
0
    (*block)[0] = (JCOEF) (entropy->last_dc_val[ci] << cinfo->Al);
309
0
  }
310
311
0
  return TRUE;
312
0
}
313
314
315
/*
316
 * MCU decoding for AC initial scan (either spectral selection,
317
 * or first pass of successive approximation).
318
 */
319
320
METHODDEF(boolean)
321
decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKARRAY MCU_data)
322
0
{
323
0
  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
324
0
  JBLOCKROW block;
325
0
  unsigned char *st;
326
0
  int tbl, sign, k;
327
0
  int v, m;
328
0
  const int * natural_order;
329
330
  /* Process restart marker if needed */
331
0
  if (cinfo->restart_interval) {
332
0
    if (entropy->restarts_to_go == 0)
333
0
      process_restart(cinfo);
334
0
    entropy->restarts_to_go--;
335
0
  }
336
337
0
  if (entropy->ct == -1) return TRUE; /* if error do nothing */
338
339
0
  natural_order = cinfo->natural_order;
340
341
  /* There is always only one block per MCU */
342
0
  block = MCU_data[0];
343
0
  tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
344
345
  /* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */
346
347
  /* Figure F.20: Decode_AC_coefficients */
348
0
  k = cinfo->Ss - 1;
349
0
  do {
350
0
    st = entropy->ac_stats[tbl] + 3 * k;
351
0
    if (arith_decode(cinfo, st)) break;   /* EOB flag */
352
0
    for (;;) {
353
0
      k++;
354
0
      if (arith_decode(cinfo, st + 1)) break;
355
0
      st += 3;
356
0
      if (k >= cinfo->Se) {
357
0
  WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
358
0
  entropy->ct = -1;     /* spectral overflow */
359
0
  return TRUE;
360
0
      }
361
0
    }
362
    /* Figure F.21: Decoding nonzero value v */
363
    /* Figure F.22: Decoding the sign of v */
364
0
    sign = arith_decode(cinfo, entropy->fixed_bin);
365
0
    st += 2;
366
    /* Figure F.23: Decoding the magnitude category of v */
367
0
    if ((m = arith_decode(cinfo, st)) != 0) {
368
0
      if (arith_decode(cinfo, st)) {
369
0
  m <<= 1;
370
0
  st = entropy->ac_stats[tbl] +
371
0
       (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
372
0
  while (arith_decode(cinfo, st)) {
373
0
    if ((m <<= 1) == (int) 0x8000U) {
374
0
      WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
375
0
      entropy->ct = -1;     /* magnitude overflow */
376
0
      return TRUE;
377
0
    }
378
0
    st += 1;
379
0
  }
380
0
      }
381
0
    }
382
0
    v = m;
383
    /* Figure F.24: Decoding the magnitude bit pattern of v */
384
0
    st += 14;
385
0
    while (m >>= 1)
386
0
      if (arith_decode(cinfo, st)) v |= m;
387
0
    v += 1; if (sign) v = -v;
388
    /* Scale and output coefficient in natural (dezigzagged) order */
389
0
    (*block)[natural_order[k]] = (JCOEF) (v << cinfo->Al);
390
0
  } while (k < cinfo->Se);
391
392
0
  return TRUE;
393
0
}
394
395
396
/*
397
 * MCU decoding for DC successive approximation refinement scan.
398
 * Note: we assume such scans can be multi-component,
399
 * although the spec is not very clear on the point.
400
 */
401
402
METHODDEF(boolean)
403
decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKARRAY MCU_data)
404
0
{
405
0
  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
406
0
  unsigned char *st;
407
0
  JCOEF p1;
408
0
  int blkn;
409
410
  /* Process restart marker if needed */
411
0
  if (cinfo->restart_interval) {
412
0
    if (entropy->restarts_to_go == 0)
413
0
      process_restart(cinfo);
414
0
    entropy->restarts_to_go--;
415
0
  }
416
417
0
  st = entropy->fixed_bin;  /* use fixed probability estimation */
418
0
  p1 = 1 << cinfo->Al;    /* 1 in the bit position being coded */
419
420
  /* Outer loop handles each block in the MCU */
421
422
0
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
423
    /* Encoded data is simply the next bit of the two's-complement DC value */
424
0
    if (arith_decode(cinfo, st))
425
0
      MCU_data[blkn][0][0] |= p1;
426
0
  }
427
428
0
  return TRUE;
429
0
}
430
431
432
/*
433
 * MCU decoding for AC successive approximation refinement scan.
434
 */
435
436
METHODDEF(boolean)
437
decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKARRAY MCU_data)
438
0
{
439
0
  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
440
0
  JBLOCKROW block;
441
0
  JCOEFPTR thiscoef;
442
0
  unsigned char *st;
443
0
  int tbl, k, kex;
444
0
  JCOEF p1, m1;
445
0
  const int * natural_order;
446
447
  /* Process restart marker if needed */
448
0
  if (cinfo->restart_interval) {
449
0
    if (entropy->restarts_to_go == 0)
450
0
      process_restart(cinfo);
451
0
    entropy->restarts_to_go--;
452
0
  }
453
454
0
  if (entropy->ct == -1) return TRUE; /* if error do nothing */
455
456
0
  natural_order = cinfo->natural_order;
457
458
  /* There is always only one block per MCU */
459
0
  block = MCU_data[0];
460
0
  tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
461
462
0
  p1 = 1 << cinfo->Al;    /* 1 in the bit position being coded */
463
0
  m1 = -p1;     /* -1 in the bit position being coded */
464
465
  /* Establish EOBx (previous stage end-of-block) index */
466
0
  kex = cinfo->Se;
467
0
  do {
468
0
    if ((*block)[natural_order[kex]]) break;
469
0
  } while (--kex);
470
471
0
  k = cinfo->Ss - 1;
472
0
  do {
473
0
    st = entropy->ac_stats[tbl] + 3 * k;
474
0
    if (k >= kex)
475
0
      if (arith_decode(cinfo, st)) break; /* EOB flag */
476
0
    for (;;) {
477
0
      thiscoef = *block + natural_order[++k];
478
0
      if (*thiscoef) {       /* previously nonzero coef */
479
0
  if (arith_decode(cinfo, st + 2)) {
480
0
    if (*thiscoef < 0)
481
0
      *thiscoef += m1;
482
0
    else
483
0
      *thiscoef += p1;
484
0
  }
485
0
  break;
486
0
      }
487
0
      if (arith_decode(cinfo, st + 1)) { /* newly nonzero coef */
488
0
  if (arith_decode(cinfo, entropy->fixed_bin))
489
0
    *thiscoef = m1;
490
0
  else
491
0
    *thiscoef = p1;
492
0
  break;
493
0
      }
494
0
      st += 3;
495
0
      if (k >= cinfo->Se) {
496
0
  WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
497
0
  entropy->ct = -1;     /* spectral overflow */
498
0
  return TRUE;
499
0
      }
500
0
    }
501
0
  } while (k < cinfo->Se);
502
503
0
  return TRUE;
504
0
}
505
506
507
/*
508
 * Decode one MCU's worth of arithmetic-compressed coefficients.
509
 */
510
511
METHODDEF(boolean)
512
decode_mcu (j_decompress_ptr cinfo, JBLOCKARRAY MCU_data)
513
0
{
514
0
  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
515
0
  jpeg_component_info * compptr;
516
0
  JBLOCKROW block;
517
0
  unsigned char *st;
518
0
  int blkn, ci, tbl, sign, k;
519
0
  int v, m;
520
0
  const int * natural_order;
521
522
  /* Process restart marker if needed */
523
0
  if (cinfo->restart_interval) {
524
0
    if (entropy->restarts_to_go == 0)
525
0
      process_restart(cinfo);
526
0
    entropy->restarts_to_go--;
527
0
  }
528
529
0
  if (entropy->ct == -1) return TRUE; /* if error do nothing */
530
531
0
  natural_order = cinfo->natural_order;
532
533
  /* Outer loop handles each block in the MCU */
534
535
0
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
536
0
    block = MCU_data[blkn];
537
0
    ci = cinfo->MCU_membership[blkn];
538
0
    compptr = cinfo->cur_comp_info[ci];
539
540
    /* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */
541
542
0
    tbl = compptr->dc_tbl_no;
543
544
    /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
545
0
    st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
546
547
    /* Figure F.19: Decode_DC_DIFF */
548
0
    if (arith_decode(cinfo, st) == 0)
549
0
      entropy->dc_context[ci] = 0;
550
0
    else {
551
      /* Figure F.21: Decoding nonzero value v */
552
      /* Figure F.22: Decoding the sign of v */
553
0
      sign = arith_decode(cinfo, st + 1);
554
0
      st += 2; st += sign;
555
      /* Figure F.23: Decoding the magnitude category of v */
556
0
      if ((m = arith_decode(cinfo, st)) != 0) {
557
0
  st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
558
0
  while (arith_decode(cinfo, st)) {
559
0
    if ((m <<= 1) == (int) 0x8000U) {
560
0
      WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
561
0
      entropy->ct = -1;     /* magnitude overflow */
562
0
      return TRUE;
563
0
    }
564
0
    st += 1;
565
0
  }
566
0
      }
567
      /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
568
0
      if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
569
0
  entropy->dc_context[ci] = 0;      /* zero diff category */
570
0
      else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
571
0
  entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */
572
0
      else
573
0
  entropy->dc_context[ci] = 4 + (sign * 4);  /* small diff category */
574
0
      v = m;
575
      /* Figure F.24: Decoding the magnitude bit pattern of v */
576
0
      st += 14;
577
0
      while (m >>= 1)
578
0
  if (arith_decode(cinfo, st)) v |= m;
579
0
      v += 1; if (sign) v = -v;
580
0
      entropy->last_dc_val[ci] += v;
581
0
    }
582
583
0
    (*block)[0] = (JCOEF) entropy->last_dc_val[ci];
584
585
    /* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */
586
587
0
    if (cinfo->lim_Se == 0) continue;
588
0
    tbl = compptr->ac_tbl_no;
589
0
    k = 0;
590
591
    /* Figure F.20: Decode_AC_coefficients */
592
0
    do {
593
0
      st = entropy->ac_stats[tbl] + 3 * k;
594
0
      if (arith_decode(cinfo, st)) break; /* EOB flag */
595
0
      for (;;) {
596
0
  k++;
597
0
  if (arith_decode(cinfo, st + 1)) break;
598
0
  st += 3;
599
0
  if (k >= cinfo->lim_Se) {
600
0
    WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
601
0
    entropy->ct = -1;     /* spectral overflow */
602
0
    return TRUE;
603
0
  }
604
0
      }
605
      /* Figure F.21: Decoding nonzero value v */
606
      /* Figure F.22: Decoding the sign of v */
607
0
      sign = arith_decode(cinfo, entropy->fixed_bin);
608
0
      st += 2;
609
      /* Figure F.23: Decoding the magnitude category of v */
610
0
      if ((m = arith_decode(cinfo, st)) != 0) {
611
0
  if (arith_decode(cinfo, st)) {
612
0
    m <<= 1;
613
0
    st = entropy->ac_stats[tbl] +
614
0
         (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
615
0
    while (arith_decode(cinfo, st)) {
616
0
      if ((m <<= 1) == (int) 0x8000U) {
617
0
        WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
618
0
        entropy->ct = -1;     /* magnitude overflow */
619
0
        return TRUE;
620
0
      }
621
0
      st += 1;
622
0
    }
623
0
  }
624
0
      }
625
0
      v = m;
626
      /* Figure F.24: Decoding the magnitude bit pattern of v */
627
0
      st += 14;
628
0
      while (m >>= 1)
629
0
  if (arith_decode(cinfo, st)) v |= m;
630
0
      v += 1; if (sign) v = -v;
631
0
      (*block)[natural_order[k]] = (JCOEF) v;
632
0
    } while (k < cinfo->lim_Se);
633
0
  }
634
635
0
  return TRUE;
636
0
}
637
638
639
/*
640
 * Initialize for an arithmetic-compressed scan.
641
 */
642
643
METHODDEF(void)
644
start_pass (j_decompress_ptr cinfo)
645
0
{
646
0
  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
647
0
  int ci, tbl;
648
0
  jpeg_component_info * compptr;
649
650
0
  if (cinfo->progressive_mode) {
651
    /* Validate progressive scan parameters */
652
0
    if (cinfo->Ss == 0) {
653
0
      if (cinfo->Se != 0)
654
0
  goto bad;
655
0
    } else {
656
      /* need not check Ss/Se < 0 since they came from unsigned bytes */
657
0
      if (cinfo->Se < cinfo->Ss || cinfo->Se > cinfo->lim_Se)
658
0
  goto bad;
659
      /* AC scans may have only one component */
660
0
      if (cinfo->comps_in_scan != 1)
661
0
  goto bad;
662
0
    }
663
0
    if (cinfo->Ah != 0) {
664
      /* Successive approximation refinement scan: must have Al = Ah-1. */
665
0
      if (cinfo->Ah-1 != cinfo->Al)
666
0
  goto bad;
667
0
    }
668
0
    if (cinfo->Al > 13) { /* need not check for < 0 */
669
0
      bad:
670
0
      ERREXIT4(cinfo, JERR_BAD_PROGRESSION,
671
0
         cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al);
672
0
    }
673
    /* Update progression status, and verify that scan order is legal.
674
     * Note that inter-scan inconsistencies are treated as warnings
675
     * not fatal errors ... not clear if this is right way to behave.
676
     */
677
0
    for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
678
0
      int coefi, cindex = cinfo->cur_comp_info[ci]->component_index;
679
0
      int *coef_bit_ptr = & cinfo->coef_bits[cindex][0];
680
0
      if (cinfo->Ss && coef_bit_ptr[0] < 0) /* AC without prior DC scan */
681
0
  WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0);
682
0
      for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) {
683
0
  int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi];
684
0
  if (cinfo->Ah != expected)
685
0
    WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi);
686
0
  coef_bit_ptr[coefi] = cinfo->Al;
687
0
      }
688
0
    }
689
    /* Select MCU decoding routine */
690
0
    if (cinfo->Ah == 0) {
691
0
      if (cinfo->Ss == 0)
692
0
  entropy->pub.decode_mcu = decode_mcu_DC_first;
693
0
      else
694
0
  entropy->pub.decode_mcu = decode_mcu_AC_first;
695
0
    } else {
696
0
      if (cinfo->Ss == 0)
697
0
  entropy->pub.decode_mcu = decode_mcu_DC_refine;
698
0
      else
699
0
  entropy->pub.decode_mcu = decode_mcu_AC_refine;
700
0
    }
701
0
  } else {
702
    /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
703
     * This ought to be an error condition, but we make it a warning.
704
     */
705
0
    if (cinfo->Ss != 0 || cinfo->Ah != 0 || cinfo->Al != 0 ||
706
0
  (cinfo->Se < DCTSIZE2 && cinfo->Se != cinfo->lim_Se))
707
0
      WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
708
    /* Select MCU decoding routine */
709
0
    entropy->pub.decode_mcu = decode_mcu;
710
0
  }
711
712
  /* Allocate & initialize requested statistics areas */
713
0
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
714
0
    compptr = cinfo->cur_comp_info[ci];
715
0
    if (! cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
716
0
      tbl = compptr->dc_tbl_no;
717
0
      if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
718
0
  ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
719
0
      if (entropy->dc_stats[tbl] == NULL)
720
0
  entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
721
0
    ((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS);
722
0
      MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS);
723
      /* Initialize DC predictions to 0 */
724
0
      entropy->last_dc_val[ci] = 0;
725
0
      entropy->dc_context[ci] = 0;
726
0
    }
727
0
    if ((! cinfo->progressive_mode && cinfo->lim_Se) ||
728
0
  (cinfo->progressive_mode && cinfo->Ss)) {
729
0
      tbl = compptr->ac_tbl_no;
730
0
      if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
731
0
  ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
732
0
      if (entropy->ac_stats[tbl] == NULL)
733
0
  entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
734
0
    ((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS);
735
0
      MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS);
736
0
    }
737
0
  }
738
739
  /* Initialize arithmetic decoding variables */
740
0
  entropy->c = 0;
741
0
  entropy->a = 0;
742
0
  entropy->ct = -16;  /* force reading 2 initial bytes to fill C */
743
744
  /* Initialize restart counter */
745
0
  entropy->restarts_to_go = cinfo->restart_interval;
746
0
}
747
748
749
/*
750
 * Finish up at the end of an arithmetic-compressed scan.
751
 */
752
753
METHODDEF(void)
754
finish_pass (j_decompress_ptr cinfo)
755
0
{
756
  /* no work necessary here */
757
0
}
758
759
760
/*
761
 * Module initialization routine for arithmetic entropy decoding.
762
 */
763
764
GLOBAL(void)
765
jinit_arith_decoder (j_decompress_ptr cinfo)
766
0
{
767
0
  arith_entropy_ptr entropy;
768
0
  int i;
769
770
0
  entropy = (arith_entropy_ptr) (*cinfo->mem->alloc_small)
771
0
    ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(arith_entropy_decoder));
772
0
  cinfo->entropy = &entropy->pub;
773
0
  entropy->pub.start_pass = start_pass;
774
0
  entropy->pub.finish_pass = finish_pass;
775
776
  /* Mark tables unallocated */
777
0
  for (i = 0; i < NUM_ARITH_TBLS; i++) {
778
0
    entropy->dc_stats[i] = NULL;
779
0
    entropy->ac_stats[i] = NULL;
780
0
  }
781
782
  /* Initialize index for fixed probability estimation */
783
0
  entropy->fixed_bin[0] = 113;
784
785
0
  if (cinfo->progressive_mode) {
786
    /* Create progression status table */
787
0
    int *coef_bit_ptr, ci;
788
0
    cinfo->coef_bits = (int (*)[DCTSIZE2]) (*cinfo->mem->alloc_small)
789
0
      ((j_common_ptr) cinfo, JPOOL_IMAGE,
790
0
       cinfo->num_components * DCTSIZE2 * SIZEOF(int));
791
0
    coef_bit_ptr = & cinfo->coef_bits[0][0];
792
0
    for (ci = 0; ci < cinfo->num_components; ci++) 
793
0
      for (i = 0; i < DCTSIZE2; i++)
794
0
  *coef_bit_ptr++ = -1;
795
0
  }
796
0
}