/src/ghostpdl/obj/jmemmgr.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * jmemmgr.c |
3 | | * |
4 | | * Copyright (C) 1991-1997, Thomas G. Lane. |
5 | | * Modified 2011-2019 by Guido Vollbeding. |
6 | | * This file is part of the Independent JPEG Group's software. |
7 | | * For conditions of distribution and use, see the accompanying README file. |
8 | | * |
9 | | * This file contains the JPEG system-independent memory management |
10 | | * routines. This code is usable across a wide variety of machines; most |
11 | | * of the system dependencies have been isolated in a separate file. |
12 | | * The major functions provided here are: |
13 | | * * pool-based allocation and freeing of memory; |
14 | | * * policy decisions about how to divide available memory among the |
15 | | * virtual arrays; |
16 | | * * control logic for swapping virtual arrays between main memory and |
17 | | * backing storage. |
18 | | * The separate system-dependent file provides the actual backing-storage |
19 | | * access code, and it contains the policy decision about how much total |
20 | | * main memory to use. |
21 | | * This file is system-dependent in the sense that some of its functions |
22 | | * are unnecessary in some systems. For example, if there is enough virtual |
23 | | * memory so that backing storage will never be used, much of the virtual |
24 | | * array control logic could be removed. (Of course, if you have that much |
25 | | * memory then you shouldn't care about a little bit of unused code...) |
26 | | */ |
27 | | |
28 | | #define JPEG_INTERNALS |
29 | | #define AM_MEMORY_MANAGER /* we define jvirt_Xarray_control structs */ |
30 | | #include "jinclude.h" |
31 | | #include "jpeglib.h" |
32 | | #include "jmemsys.h" /* import the system-dependent declarations */ |
33 | | |
34 | | #ifndef NO_GETENV |
35 | | #ifndef HAVE_STDLIB_H /* <stdlib.h> should declare getenv() */ |
36 | | extern char * getenv JPP((const char * name)); |
37 | | #endif |
38 | | #endif |
39 | | |
40 | | |
41 | | /* |
42 | | * Some important notes: |
43 | | * The allocation routines provided here must never return NULL. |
44 | | * They should exit to error_exit if unsuccessful. |
45 | | * |
46 | | * It's not a good idea to try to merge the sarray and barray routines, |
47 | | * even though they are textually almost the same, because samples are |
48 | | * usually stored as bytes while coefficients are shorts or ints. Thus, |
49 | | * in machines where byte pointers have a different representation from |
50 | | * word pointers, the resulting machine code could not be the same. |
51 | | */ |
52 | | |
53 | | |
54 | | /* |
55 | | * Many machines require storage alignment: longs must start on 4-byte |
56 | | * boundaries, doubles on 8-byte boundaries, etc. On such machines, malloc() |
57 | | * always returns pointers that are multiples of the worst-case alignment |
58 | | * requirement, and we had better do so too. |
59 | | * There isn't any really portable way to determine the worst-case alignment |
60 | | * requirement. This module assumes that the alignment requirement is |
61 | | * multiples of sizeof(ALIGN_TYPE). |
62 | | * By default, we define ALIGN_TYPE as double. This is necessary on some |
63 | | * workstations (where doubles really do need 8-byte alignment) and will work |
64 | | * fine on nearly everything. If your machine has lesser alignment needs, |
65 | | * you can save a few bytes by making ALIGN_TYPE smaller. |
66 | | * The only place I know of where this will NOT work is certain Macintosh |
67 | | * 680x0 compilers that define double as a 10-byte IEEE extended float. |
68 | | * Doing 10-byte alignment is counterproductive because longwords won't be |
69 | | * aligned well. Put "#define ALIGN_TYPE long" in jconfig.h if you have |
70 | | * such a compiler. |
71 | | */ |
72 | | |
73 | | #ifndef ALIGN_TYPE /* so can override from jconfig.h */ |
74 | | #define ALIGN_TYPE double |
75 | | #endif |
76 | | |
77 | | |
78 | | /* |
79 | | * We allocate objects from "pools", where each pool is gotten with a single |
80 | | * request to jpeg_get_small() or jpeg_get_large(). There is no per-object |
81 | | * overhead within a pool, except for alignment padding. Each pool has a |
82 | | * header with a link to the next pool of the same class. |
83 | | * Small and large pool headers are identical except that the latter's |
84 | | * link pointer must be FAR on 80x86 machines. |
85 | | * Notice that the "real" header fields are union'ed with a dummy ALIGN_TYPE |
86 | | * field. This forces the compiler to make SIZEOF(small_pool_hdr) a multiple |
87 | | * of the alignment requirement of ALIGN_TYPE. |
88 | | */ |
89 | | |
90 | | typedef union small_pool_struct * small_pool_ptr; |
91 | | |
92 | | typedef union small_pool_struct { |
93 | | struct { |
94 | | small_pool_ptr next; /* next in list of pools */ |
95 | | size_t bytes_used; /* how many bytes already used within pool */ |
96 | | size_t bytes_left; /* bytes still available in this pool */ |
97 | | } hdr; |
98 | | ALIGN_TYPE dummy; /* included in union to ensure alignment */ |
99 | | } small_pool_hdr; |
100 | | |
101 | | typedef union large_pool_struct FAR * large_pool_ptr; |
102 | | |
103 | | typedef union large_pool_struct { |
104 | | struct { |
105 | | large_pool_ptr next; /* next in list of pools */ |
106 | | size_t bytes_used; /* how many bytes already used within pool */ |
107 | | size_t bytes_left; /* bytes still available in this pool */ |
108 | | } hdr; |
109 | | ALIGN_TYPE dummy; /* included in union to ensure alignment */ |
110 | | } large_pool_hdr; |
111 | | |
112 | | |
113 | | /* |
114 | | * Here is the full definition of a memory manager object. |
115 | | */ |
116 | | |
117 | | typedef struct { |
118 | | struct jpeg_memory_mgr pub; /* public fields */ |
119 | | |
120 | | /* Each pool identifier (lifetime class) names a linked list of pools. */ |
121 | | small_pool_ptr small_list[JPOOL_NUMPOOLS]; |
122 | | large_pool_ptr large_list[JPOOL_NUMPOOLS]; |
123 | | |
124 | | /* Since we only have one lifetime class of virtual arrays, only one |
125 | | * linked list is necessary (for each datatype). Note that the virtual |
126 | | * array control blocks being linked together are actually stored somewhere |
127 | | * in the small-pool list. |
128 | | */ |
129 | | jvirt_sarray_ptr virt_sarray_list; |
130 | | jvirt_barray_ptr virt_barray_list; |
131 | | |
132 | | /* This counts total space obtained from jpeg_get_small/large */ |
133 | | size_t total_space_allocated; |
134 | | |
135 | | /* alloc_sarray and alloc_barray set this value for use by virtual |
136 | | * array routines. |
137 | | */ |
138 | | JDIMENSION last_rowsperchunk; /* from most recent alloc_sarray/barray */ |
139 | | } my_memory_mgr; |
140 | | |
141 | | typedef my_memory_mgr * my_mem_ptr; |
142 | | |
143 | | |
144 | | /* |
145 | | * The control blocks for virtual arrays. |
146 | | * Note that these blocks are allocated in the "small" pool area. |
147 | | * System-dependent info for the associated backing store (if any) is hidden |
148 | | * inside the backing_store_info struct. |
149 | | */ |
150 | | |
151 | | struct jvirt_sarray_control { |
152 | | JSAMPARRAY mem_buffer; /* => the in-memory buffer */ |
153 | | JDIMENSION rows_in_array; /* total virtual array height */ |
154 | | JDIMENSION samplesperrow; /* width of array (and of memory buffer) */ |
155 | | JDIMENSION maxaccess; /* max rows accessed by access_virt_sarray */ |
156 | | JDIMENSION rows_in_mem; /* height of memory buffer */ |
157 | | JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */ |
158 | | JDIMENSION cur_start_row; /* first logical row # in the buffer */ |
159 | | JDIMENSION first_undef_row; /* row # of first uninitialized row */ |
160 | | boolean pre_zero; /* pre-zero mode requested? */ |
161 | | boolean dirty; /* do current buffer contents need written? */ |
162 | | boolean b_s_open; /* is backing-store data valid? */ |
163 | | jvirt_sarray_ptr next; /* link to next virtual sarray control block */ |
164 | | backing_store_info b_s_info; /* System-dependent control info */ |
165 | | }; |
166 | | |
167 | | struct jvirt_barray_control { |
168 | | JBLOCKARRAY mem_buffer; /* => the in-memory buffer */ |
169 | | JDIMENSION rows_in_array; /* total virtual array height */ |
170 | | JDIMENSION blocksperrow; /* width of array (and of memory buffer) */ |
171 | | JDIMENSION maxaccess; /* max rows accessed by access_virt_barray */ |
172 | | JDIMENSION rows_in_mem; /* height of memory buffer */ |
173 | | JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */ |
174 | | JDIMENSION cur_start_row; /* first logical row # in the buffer */ |
175 | | JDIMENSION first_undef_row; /* row # of first uninitialized row */ |
176 | | boolean pre_zero; /* pre-zero mode requested? */ |
177 | | boolean dirty; /* do current buffer contents need written? */ |
178 | | boolean b_s_open; /* is backing-store data valid? */ |
179 | | jvirt_barray_ptr next; /* link to next virtual barray control block */ |
180 | | backing_store_info b_s_info; /* System-dependent control info */ |
181 | | }; |
182 | | |
183 | | |
184 | | #ifdef MEM_STATS /* optional extra stuff for statistics */ |
185 | | |
186 | | LOCAL(void) |
187 | | print_mem_stats (j_common_ptr cinfo, int pool_id) |
188 | | { |
189 | | my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
190 | | small_pool_ptr shdr_ptr; |
191 | | large_pool_ptr lhdr_ptr; |
192 | | |
193 | | /* Since this is only a debugging stub, we can cheat a little by using |
194 | | * fprintf directly rather than going through the trace message code. |
195 | | * This is helpful because message parm array can't handle longs. |
196 | | */ |
197 | | fprintf(stderr, "Freeing pool %d, total space = %ld\n", |
198 | | pool_id, (long) mem->total_space_allocated); |
199 | | |
200 | | for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL; |
201 | | lhdr_ptr = lhdr_ptr->hdr.next) { |
202 | | fprintf(stderr, " Large chunk used %ld\n", |
203 | | (long) lhdr_ptr->hdr.bytes_used); |
204 | | } |
205 | | |
206 | | for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL; |
207 | | shdr_ptr = shdr_ptr->hdr.next) { |
208 | | fprintf(stderr, " Small chunk used %ld free %ld\n", |
209 | | (long) shdr_ptr->hdr.bytes_used, |
210 | | (long) shdr_ptr->hdr.bytes_left); |
211 | | } |
212 | | } |
213 | | |
214 | | #endif /* MEM_STATS */ |
215 | | |
216 | | |
217 | | LOCAL(noreturn_t) |
218 | | out_of_memory (j_common_ptr cinfo, int which) |
219 | | /* Report an out-of-memory error and stop execution */ |
220 | | /* If we compiled MEM_STATS support, report alloc requests before dying */ |
221 | 0 | { |
222 | | #ifdef MEM_STATS |
223 | | cinfo->err->trace_level = 2; /* force self_destruct to report stats */ |
224 | | #endif |
225 | 0 | ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which); |
226 | 0 | } |
227 | | |
228 | | |
229 | | /* |
230 | | * Allocation of "small" objects. |
231 | | * |
232 | | * For these, we use pooled storage. When a new pool must be created, |
233 | | * we try to get enough space for the current request plus a "slop" factor, |
234 | | * where the slop will be the amount of leftover space in the new pool. |
235 | | * The speed vs. space tradeoff is largely determined by the slop values. |
236 | | * A different slop value is provided for each pool class (lifetime), |
237 | | * and we also distinguish the first pool of a class from later ones. |
238 | | * NOTE: the values given work fairly well on both 16- and 32-bit-int |
239 | | * machines, but may be too small if longs are 64 bits or more. |
240 | | */ |
241 | | |
242 | | static const size_t first_pool_slop[JPOOL_NUMPOOLS] = |
243 | | { |
244 | | 1600, /* first PERMANENT pool */ |
245 | | 16000 /* first IMAGE pool */ |
246 | | }; |
247 | | |
248 | | static const size_t extra_pool_slop[JPOOL_NUMPOOLS] = |
249 | | { |
250 | | 0, /* additional PERMANENT pools */ |
251 | | 5000 /* additional IMAGE pools */ |
252 | | }; |
253 | | |
254 | 0 | #define MIN_SLOP 50 /* greater than 0 to avoid futile looping */ |
255 | | |
256 | | |
257 | | METHODDEF(void *) |
258 | | alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject) |
259 | | /* Allocate a "small" object */ |
260 | 517k | { |
261 | 517k | my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
262 | 517k | small_pool_ptr hdr_ptr, prev_hdr_ptr; |
263 | 517k | size_t odd_bytes, min_request, slop; |
264 | 517k | char * data_ptr; |
265 | | |
266 | | /* Check for unsatisfiable request (do now to ensure no overflow below) */ |
267 | 517k | if (sizeofobject > (size_t) MAX_ALLOC_CHUNK - SIZEOF(small_pool_hdr)) |
268 | 0 | out_of_memory(cinfo, 1); /* request exceeds malloc's ability */ |
269 | | |
270 | | /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */ |
271 | 517k | odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE); |
272 | 517k | if (odd_bytes > 0) |
273 | 61.5k | sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes; |
274 | | |
275 | | /* See if space is available in any existing pool */ |
276 | 517k | if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) |
277 | 0 | ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ |
278 | 517k | prev_hdr_ptr = NULL; |
279 | 517k | hdr_ptr = mem->small_list[pool_id]; |
280 | 538k | while (hdr_ptr != NULL) { |
281 | 489k | if (hdr_ptr->hdr.bytes_left >= sizeofobject) |
282 | 468k | break; /* found pool with enough space */ |
283 | 21.1k | prev_hdr_ptr = hdr_ptr; |
284 | 21.1k | hdr_ptr = hdr_ptr->hdr.next; |
285 | 21.1k | } |
286 | | |
287 | | /* Time to make a new pool? */ |
288 | 517k | if (hdr_ptr == NULL) { |
289 | | /* min_request is what we need now, slop is what will be leftover */ |
290 | 49.1k | min_request = sizeofobject + SIZEOF(small_pool_hdr); |
291 | 49.1k | if (prev_hdr_ptr == NULL) /* first pool in class? */ |
292 | 36.4k | slop = first_pool_slop[pool_id]; |
293 | 12.6k | else |
294 | 12.6k | slop = extra_pool_slop[pool_id]; |
295 | | /* Don't ask for more than MAX_ALLOC_CHUNK */ |
296 | 49.1k | if (slop > (size_t) MAX_ALLOC_CHUNK - min_request) |
297 | 0 | slop = (size_t) MAX_ALLOC_CHUNK - min_request; |
298 | | /* Try to get space, if fail reduce slop and try again */ |
299 | 49.1k | for (;;) { |
300 | 49.1k | hdr_ptr = (small_pool_ptr) jpeg_get_small(cinfo, min_request + slop); |
301 | 49.1k | if (hdr_ptr != NULL) |
302 | 49.1k | break; |
303 | 0 | slop /= 2; |
304 | 0 | if (slop < MIN_SLOP) /* give up when it gets real small */ |
305 | 0 | out_of_memory(cinfo, 2); /* jpeg_get_small failed */ |
306 | 0 | } |
307 | 49.1k | mem->total_space_allocated += min_request + slop; |
308 | | /* Success, initialize the new pool header and add to end of list */ |
309 | 49.1k | hdr_ptr->hdr.next = NULL; |
310 | 49.1k | hdr_ptr->hdr.bytes_used = 0; |
311 | 49.1k | hdr_ptr->hdr.bytes_left = sizeofobject + slop; |
312 | 49.1k | if (prev_hdr_ptr == NULL) /* first pool in class? */ |
313 | 36.4k | mem->small_list[pool_id] = hdr_ptr; |
314 | 12.6k | else |
315 | 12.6k | prev_hdr_ptr->hdr.next = hdr_ptr; |
316 | 49.1k | } |
317 | | |
318 | | /* OK, allocate the object from the current pool */ |
319 | 517k | data_ptr = (char *) (hdr_ptr + 1); /* point to first data byte in pool */ |
320 | 517k | data_ptr += hdr_ptr->hdr.bytes_used; /* point to place for object */ |
321 | 517k | hdr_ptr->hdr.bytes_used += sizeofobject; |
322 | 517k | hdr_ptr->hdr.bytes_left -= sizeofobject; |
323 | | |
324 | 517k | return (void *) data_ptr; |
325 | 517k | } |
326 | | |
327 | | |
328 | | /* |
329 | | * Allocation of "large" objects. |
330 | | * |
331 | | * The external semantics of these are the same as "small" objects, |
332 | | * except that FAR pointers are used on 80x86. However the pool |
333 | | * management heuristics are quite different. We assume that each |
334 | | * request is large enough that it may as well be passed directly to |
335 | | * jpeg_get_large; the pool management just links everything together |
336 | | * so that we can free it all on demand. |
337 | | * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY |
338 | | * structures. The routines that create these structures (see below) |
339 | | * deliberately bunch rows together to ensure a large request size. |
340 | | */ |
341 | | |
342 | | METHODDEF(void FAR *) |
343 | | alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject) |
344 | | /* Allocate a "large" object */ |
345 | 69.0k | { |
346 | 69.0k | my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
347 | 69.0k | large_pool_ptr hdr_ptr; |
348 | 69.0k | size_t odd_bytes; |
349 | | |
350 | | /* Check for unsatisfiable request (do now to ensure no overflow below) */ |
351 | 69.0k | if (sizeofobject > (size_t) MAX_ALLOC_CHUNK - SIZEOF(large_pool_hdr)) |
352 | 0 | out_of_memory(cinfo, 3); /* request exceeds malloc's ability */ |
353 | | |
354 | | /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */ |
355 | 69.0k | odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE); |
356 | 69.0k | if (odd_bytes > 0) |
357 | 9.28k | sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes; |
358 | | |
359 | | /* Always make a new pool */ |
360 | 69.0k | if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) |
361 | 0 | ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ |
362 | | |
363 | 69.0k | hdr_ptr = (large_pool_ptr) jpeg_get_large(cinfo, sizeofobject + |
364 | 69.0k | SIZEOF(large_pool_hdr)); |
365 | 69.0k | if (hdr_ptr == NULL) |
366 | 0 | out_of_memory(cinfo, 4); /* jpeg_get_large failed */ |
367 | 69.0k | mem->total_space_allocated += sizeofobject + SIZEOF(large_pool_hdr); |
368 | | |
369 | | /* Success, initialize the new pool header and add to list */ |
370 | 69.0k | hdr_ptr->hdr.next = mem->large_list[pool_id]; |
371 | | /* We maintain space counts in each pool header for statistical purposes, |
372 | | * even though they are not needed for allocation. |
373 | | */ |
374 | 69.0k | hdr_ptr->hdr.bytes_used = sizeofobject; |
375 | 69.0k | hdr_ptr->hdr.bytes_left = 0; |
376 | 69.0k | mem->large_list[pool_id] = hdr_ptr; |
377 | | |
378 | 69.0k | return (void FAR *) (hdr_ptr + 1); /* point to first data byte in pool */ |
379 | 69.0k | } |
380 | | |
381 | | |
382 | | /* |
383 | | * Creation of 2-D sample arrays. |
384 | | * The pointers are in near heap, the samples themselves in FAR heap. |
385 | | * |
386 | | * To minimize allocation overhead and to allow I/O of large contiguous |
387 | | * blocks, we allocate the sample rows in groups of as many rows as possible |
388 | | * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request. |
389 | | * NB: the virtual array control routines, later in this file, know about |
390 | | * this chunking of rows. The rowsperchunk value is left in the mem manager |
391 | | * object so that it can be saved away if this sarray is the workspace for |
392 | | * a virtual array. |
393 | | */ |
394 | | |
395 | | METHODDEF(JSAMPARRAY) |
396 | | alloc_sarray (j_common_ptr cinfo, int pool_id, |
397 | | JDIMENSION samplesperrow, JDIMENSION numrows) |
398 | | /* Allocate a 2-D sample array */ |
399 | 65.0k | { |
400 | 65.0k | my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
401 | 65.0k | JSAMPARRAY result; |
402 | 65.0k | JSAMPROW workspace; |
403 | 65.0k | JDIMENSION rowsperchunk, currow, i; |
404 | 65.0k | long ltemp; |
405 | | |
406 | | /* Calculate max # of rows allowed in one allocation chunk */ |
407 | 65.0k | ltemp = (MAX_ALLOC_CHUNK - SIZEOF(large_pool_hdr)) / |
408 | 65.0k | ((long) samplesperrow * SIZEOF(JSAMPLE)); |
409 | 65.0k | if (ltemp <= 0) |
410 | 0 | ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); |
411 | 65.0k | if (ltemp < (long) numrows) |
412 | 0 | rowsperchunk = (JDIMENSION) ltemp; |
413 | 65.0k | else |
414 | 65.0k | rowsperchunk = numrows; |
415 | 65.0k | mem->last_rowsperchunk = rowsperchunk; |
416 | | |
417 | | /* Get space for row pointers (small object) */ |
418 | 65.0k | result = (JSAMPARRAY) alloc_small(cinfo, pool_id, |
419 | 65.0k | (size_t) numrows * SIZEOF(JSAMPROW)); |
420 | | |
421 | | /* Get the rows themselves (large objects) */ |
422 | 65.0k | currow = 0; |
423 | 130k | while (currow < numrows) { |
424 | 65.0k | rowsperchunk = MIN(rowsperchunk, numrows - currow); |
425 | 65.0k | workspace = (JSAMPROW) alloc_large(cinfo, pool_id, |
426 | 65.0k | (size_t) rowsperchunk * (size_t) samplesperrow * SIZEOF(JSAMPLE)); |
427 | 588k | for (i = rowsperchunk; i > 0; i--) { |
428 | 523k | result[currow++] = workspace; |
429 | 523k | workspace += samplesperrow; |
430 | 523k | } |
431 | 65.0k | } |
432 | | |
433 | 65.0k | return result; |
434 | 65.0k | } |
435 | | |
436 | | |
437 | | /* |
438 | | * Creation of 2-D coefficient-block arrays. |
439 | | * This is essentially the same as the code for sample arrays, above. |
440 | | */ |
441 | | |
442 | | METHODDEF(JBLOCKARRAY) |
443 | | alloc_barray (j_common_ptr cinfo, int pool_id, |
444 | | JDIMENSION blocksperrow, JDIMENSION numrows) |
445 | | /* Allocate a 2-D coefficient-block array */ |
446 | 4.05k | { |
447 | 4.05k | my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
448 | 4.05k | JBLOCKARRAY result; |
449 | 4.05k | JBLOCKROW workspace; |
450 | 4.05k | JDIMENSION rowsperchunk, currow, i; |
451 | 4.05k | long ltemp; |
452 | | |
453 | | /* Calculate max # of rows allowed in one allocation chunk */ |
454 | 4.05k | ltemp = (MAX_ALLOC_CHUNK - SIZEOF(large_pool_hdr)) / |
455 | 4.05k | ((long) blocksperrow * SIZEOF(JBLOCK)); |
456 | 4.05k | if (ltemp <= 0) |
457 | 0 | ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); |
458 | 4.05k | if (ltemp < (long) numrows) |
459 | 0 | rowsperchunk = (JDIMENSION) ltemp; |
460 | 4.05k | else |
461 | 4.05k | rowsperchunk = numrows; |
462 | 4.05k | mem->last_rowsperchunk = rowsperchunk; |
463 | | |
464 | | /* Get space for row pointers (small object) */ |
465 | 4.05k | result = (JBLOCKARRAY) alloc_small(cinfo, pool_id, |
466 | 4.05k | (size_t) numrows * SIZEOF(JBLOCKROW)); |
467 | | |
468 | | /* Get the rows themselves (large objects) */ |
469 | 4.05k | currow = 0; |
470 | 8.10k | while (currow < numrows) { |
471 | 4.05k | rowsperchunk = MIN(rowsperchunk, numrows - currow); |
472 | 4.05k | workspace = (JBLOCKROW) alloc_large(cinfo, pool_id, |
473 | 4.05k | (size_t) rowsperchunk * (size_t) blocksperrow * SIZEOF(JBLOCK)); |
474 | 77.9k | for (i = rowsperchunk; i > 0; i--) { |
475 | 73.9k | result[currow++] = workspace; |
476 | 73.9k | workspace += blocksperrow; |
477 | 73.9k | } |
478 | 4.05k | } |
479 | | |
480 | 4.05k | return result; |
481 | 4.05k | } |
482 | | |
483 | | |
484 | | /* |
485 | | * About virtual array management: |
486 | | * |
487 | | * The above "normal" array routines are only used to allocate strip buffers |
488 | | * (as wide as the image, but just a few rows high). Full-image-sized buffers |
489 | | * are handled as "virtual" arrays. The array is still accessed a strip at a |
490 | | * time, but the memory manager must save the whole array for repeated |
491 | | * accesses. The intended implementation is that there is a strip buffer in |
492 | | * memory (as high as is possible given the desired memory limit), plus a |
493 | | * backing file that holds the rest of the array. |
494 | | * |
495 | | * The request_virt_array routines are told the total size of the image and |
496 | | * the maximum number of rows that will be accessed at once. The in-memory |
497 | | * buffer must be at least as large as the maxaccess value. |
498 | | * |
499 | | * The request routines create control blocks but not the in-memory buffers. |
500 | | * That is postponed until realize_virt_arrays is called. At that time the |
501 | | * total amount of space needed is known (approximately, anyway), so free |
502 | | * memory can be divided up fairly. |
503 | | * |
504 | | * The access_virt_array routines are responsible for making a specific strip |
505 | | * area accessible (after reading or writing the backing file, if necessary). |
506 | | * Note that the access routines are told whether the caller intends to modify |
507 | | * the accessed strip; during a read-only pass this saves having to rewrite |
508 | | * data to disk. The access routines are also responsible for pre-zeroing |
509 | | * any newly accessed rows, if pre-zeroing was requested. |
510 | | * |
511 | | * In current usage, the access requests are usually for nonoverlapping |
512 | | * strips; that is, successive access start_row numbers differ by exactly |
513 | | * num_rows = maxaccess. This means we can get good performance with simple |
514 | | * buffer dump/reload logic, by making the in-memory buffer be a multiple |
515 | | * of the access height; then there will never be accesses across bufferload |
516 | | * boundaries. The code will still work with overlapping access requests, |
517 | | * but it doesn't handle bufferload overlaps very efficiently. |
518 | | */ |
519 | | |
520 | | |
521 | | METHODDEF(jvirt_sarray_ptr) |
522 | | request_virt_sarray (j_common_ptr cinfo, int pool_id, boolean pre_zero, |
523 | | JDIMENSION samplesperrow, JDIMENSION numrows, |
524 | | JDIMENSION maxaccess) |
525 | | /* Request a virtual 2-D sample array */ |
526 | 0 | { |
527 | 0 | my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
528 | 0 | jvirt_sarray_ptr result; |
529 | | |
530 | | /* Only IMAGE-lifetime virtual arrays are currently supported */ |
531 | 0 | if (pool_id != JPOOL_IMAGE) |
532 | 0 | ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ |
533 | | |
534 | | /* get control block */ |
535 | 0 | result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id, |
536 | 0 | SIZEOF(struct jvirt_sarray_control)); |
537 | |
|
538 | 0 | result->mem_buffer = NULL; /* marks array not yet realized */ |
539 | 0 | result->rows_in_array = numrows; |
540 | 0 | result->samplesperrow = samplesperrow; |
541 | 0 | result->maxaccess = maxaccess; |
542 | 0 | result->pre_zero = pre_zero; |
543 | 0 | result->b_s_open = FALSE; /* no associated backing-store object */ |
544 | 0 | result->next = mem->virt_sarray_list; /* add to list of virtual arrays */ |
545 | 0 | mem->virt_sarray_list = result; |
546 | |
|
547 | 0 | return result; |
548 | 0 | } |
549 | | |
550 | | |
551 | | METHODDEF(jvirt_barray_ptr) |
552 | | request_virt_barray (j_common_ptr cinfo, int pool_id, boolean pre_zero, |
553 | | JDIMENSION blocksperrow, JDIMENSION numrows, |
554 | | JDIMENSION maxaccess) |
555 | | /* Request a virtual 2-D coefficient-block array */ |
556 | 4.05k | { |
557 | 4.05k | my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
558 | 4.05k | jvirt_barray_ptr result; |
559 | | |
560 | | /* Only IMAGE-lifetime virtual arrays are currently supported */ |
561 | 4.05k | if (pool_id != JPOOL_IMAGE) |
562 | 0 | ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ |
563 | | |
564 | | /* get control block */ |
565 | 4.05k | result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id, |
566 | 4.05k | SIZEOF(struct jvirt_barray_control)); |
567 | | |
568 | 4.05k | result->mem_buffer = NULL; /* marks array not yet realized */ |
569 | 4.05k | result->rows_in_array = numrows; |
570 | 4.05k | result->blocksperrow = blocksperrow; |
571 | 4.05k | result->maxaccess = maxaccess; |
572 | 4.05k | result->pre_zero = pre_zero; |
573 | 4.05k | result->b_s_open = FALSE; /* no associated backing-store object */ |
574 | 4.05k | result->next = mem->virt_barray_list; /* add to list of virtual arrays */ |
575 | 4.05k | mem->virt_barray_list = result; |
576 | | |
577 | 4.05k | return result; |
578 | 4.05k | } |
579 | | |
580 | | |
581 | | METHODDEF(void) |
582 | | realize_virt_arrays (j_common_ptr cinfo) |
583 | | /* Allocate the in-memory buffers for any unrealized virtual arrays */ |
584 | 16.1k | { |
585 | 16.1k | my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
586 | 16.1k | long bytesperrow, space_per_minheight, maximum_space; |
587 | 16.1k | long avail_mem, minheights, max_minheights; |
588 | 16.1k | jvirt_sarray_ptr sptr; |
589 | 16.1k | jvirt_barray_ptr bptr; |
590 | | |
591 | | /* Compute the minimum space needed (maxaccess rows in each buffer) |
592 | | * and the maximum space needed (full image height in each buffer). |
593 | | * These may be of use to the system-dependent jpeg_mem_available routine. |
594 | | */ |
595 | 16.1k | space_per_minheight = 0; |
596 | 16.1k | maximum_space = 0; |
597 | 16.1k | for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { |
598 | 0 | if (sptr->mem_buffer == NULL) { /* if not realized yet */ |
599 | 0 | bytesperrow = (long) sptr->samplesperrow * SIZEOF(JSAMPLE); |
600 | 0 | space_per_minheight += (long) sptr->maxaccess * bytesperrow; |
601 | 0 | maximum_space += (long) sptr->rows_in_array * bytesperrow; |
602 | 0 | } |
603 | 0 | } |
604 | 20.1k | for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { |
605 | 4.05k | if (bptr->mem_buffer == NULL) { /* if not realized yet */ |
606 | 4.05k | bytesperrow = (long) bptr->blocksperrow * SIZEOF(JBLOCK); |
607 | 4.05k | space_per_minheight += (long) bptr->maxaccess * bytesperrow; |
608 | 4.05k | maximum_space += (long) bptr->rows_in_array * bytesperrow; |
609 | 4.05k | } |
610 | 4.05k | } |
611 | | |
612 | 16.1k | if (space_per_minheight <= 0) |
613 | 14.7k | return; /* no unrealized arrays, no work */ |
614 | | |
615 | | /* Determine amount of memory to actually use; this is system-dependent. */ |
616 | 1.36k | avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space, |
617 | 1.36k | (long) mem->total_space_allocated); |
618 | | |
619 | | /* If the maximum space needed is available, make all the buffers full |
620 | | * height; otherwise parcel it out with the same number of minheights |
621 | | * in each buffer. |
622 | | */ |
623 | 1.36k | if (avail_mem >= maximum_space) |
624 | 1.36k | max_minheights = 1000000000L; |
625 | 0 | else { |
626 | 0 | max_minheights = avail_mem / space_per_minheight; |
627 | | /* If there doesn't seem to be enough space, try to get the minimum |
628 | | * anyway. This allows a "stub" implementation of jpeg_mem_available(). |
629 | | */ |
630 | 0 | if (max_minheights <= 0) |
631 | 0 | max_minheights = 1; |
632 | 0 | } |
633 | | |
634 | | /* Allocate the in-memory buffers and initialize backing store as needed. */ |
635 | | |
636 | 1.36k | for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { |
637 | 0 | if (sptr->mem_buffer == NULL) { /* if not realized yet */ |
638 | 0 | minheights = ((long) sptr->rows_in_array - 1L) / sptr->maxaccess + 1L; |
639 | 0 | if (minheights <= max_minheights) { |
640 | | /* This buffer fits in memory */ |
641 | 0 | sptr->rows_in_mem = sptr->rows_in_array; |
642 | 0 | } else { |
643 | | /* It doesn't fit in memory, create backing store. */ |
644 | 0 | sptr->rows_in_mem = (JDIMENSION) (max_minheights * sptr->maxaccess); |
645 | 0 | jpeg_open_backing_store(cinfo, & sptr->b_s_info, |
646 | 0 | (long) sptr->rows_in_array * |
647 | 0 | (long) sptr->samplesperrow * |
648 | 0 | (long) SIZEOF(JSAMPLE)); |
649 | 0 | sptr->b_s_open = TRUE; |
650 | 0 | } |
651 | 0 | sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE, |
652 | 0 | sptr->samplesperrow, sptr->rows_in_mem); |
653 | 0 | sptr->rowsperchunk = mem->last_rowsperchunk; |
654 | 0 | sptr->cur_start_row = 0; |
655 | 0 | sptr->first_undef_row = 0; |
656 | 0 | sptr->dirty = FALSE; |
657 | 0 | } |
658 | 0 | } |
659 | | |
660 | 5.41k | for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { |
661 | 4.05k | if (bptr->mem_buffer == NULL) { /* if not realized yet */ |
662 | 4.05k | minheights = ((long) bptr->rows_in_array - 1L) / bptr->maxaccess + 1L; |
663 | 4.05k | if (minheights <= max_minheights) { |
664 | | /* This buffer fits in memory */ |
665 | 4.05k | bptr->rows_in_mem = bptr->rows_in_array; |
666 | 4.05k | } else { |
667 | | /* It doesn't fit in memory, create backing store. */ |
668 | 0 | bptr->rows_in_mem = (JDIMENSION) (max_minheights * bptr->maxaccess); |
669 | 0 | jpeg_open_backing_store(cinfo, & bptr->b_s_info, |
670 | 0 | (long) bptr->rows_in_array * |
671 | 0 | (long) bptr->blocksperrow * |
672 | 0 | (long) SIZEOF(JBLOCK)); |
673 | 0 | bptr->b_s_open = TRUE; |
674 | 0 | } |
675 | 4.05k | bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE, |
676 | 4.05k | bptr->blocksperrow, bptr->rows_in_mem); |
677 | 4.05k | bptr->rowsperchunk = mem->last_rowsperchunk; |
678 | 4.05k | bptr->cur_start_row = 0; |
679 | 4.05k | bptr->first_undef_row = 0; |
680 | 4.05k | bptr->dirty = FALSE; |
681 | 4.05k | } |
682 | 4.05k | } |
683 | 1.36k | } |
684 | | |
685 | | |
686 | | LOCAL(void) |
687 | | do_sarray_io (j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing) |
688 | | /* Do backing store read or write of a virtual sample array */ |
689 | 0 | { |
690 | 0 | long bytesperrow, file_offset, byte_count, rows, thisrow, i; |
691 | |
|
692 | 0 | bytesperrow = (long) ptr->samplesperrow * SIZEOF(JSAMPLE); |
693 | 0 | file_offset = (long) ptr->cur_start_row * bytesperrow; |
694 | | /* Loop to read or write each allocation chunk in mem_buffer */ |
695 | 0 | for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) { |
696 | | /* One chunk, but check for short chunk at end of buffer */ |
697 | 0 | rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i); |
698 | | /* Transfer no more than is currently defined */ |
699 | 0 | thisrow = (long) ptr->cur_start_row + i; |
700 | 0 | rows = MIN(rows, (long) ptr->first_undef_row - thisrow); |
701 | | /* Transfer no more than fits in file */ |
702 | 0 | rows = MIN(rows, (long) ptr->rows_in_array - thisrow); |
703 | 0 | if (rows <= 0) /* this chunk might be past end of file! */ |
704 | 0 | break; |
705 | 0 | byte_count = rows * bytesperrow; |
706 | 0 | if (writing) |
707 | 0 | (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info, |
708 | 0 | (void FAR *) ptr->mem_buffer[i], |
709 | 0 | file_offset, byte_count); |
710 | 0 | else |
711 | 0 | (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info, |
712 | 0 | (void FAR *) ptr->mem_buffer[i], |
713 | 0 | file_offset, byte_count); |
714 | 0 | file_offset += byte_count; |
715 | 0 | } |
716 | 0 | } |
717 | | |
718 | | |
719 | | LOCAL(void) |
720 | | do_barray_io (j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing) |
721 | | /* Do backing store read or write of a virtual coefficient-block array */ |
722 | 0 | { |
723 | 0 | long bytesperrow, file_offset, byte_count, rows, thisrow, i; |
724 | |
|
725 | 0 | bytesperrow = (long) ptr->blocksperrow * SIZEOF(JBLOCK); |
726 | 0 | file_offset = (long) ptr->cur_start_row * bytesperrow; |
727 | | /* Loop to read or write each allocation chunk in mem_buffer */ |
728 | 0 | for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) { |
729 | | /* One chunk, but check for short chunk at end of buffer */ |
730 | 0 | rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i); |
731 | | /* Transfer no more than is currently defined */ |
732 | 0 | thisrow = (long) ptr->cur_start_row + i; |
733 | 0 | rows = MIN(rows, (long) ptr->first_undef_row - thisrow); |
734 | | /* Transfer no more than fits in file */ |
735 | 0 | rows = MIN(rows, (long) ptr->rows_in_array - thisrow); |
736 | 0 | if (rows <= 0) /* this chunk might be past end of file! */ |
737 | 0 | break; |
738 | 0 | byte_count = rows * bytesperrow; |
739 | 0 | if (writing) |
740 | 0 | (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info, |
741 | 0 | (void FAR *) ptr->mem_buffer[i], |
742 | 0 | file_offset, byte_count); |
743 | 0 | else |
744 | 0 | (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info, |
745 | 0 | (void FAR *) ptr->mem_buffer[i], |
746 | 0 | file_offset, byte_count); |
747 | 0 | file_offset += byte_count; |
748 | 0 | } |
749 | 0 | } |
750 | | |
751 | | |
752 | | METHODDEF(JSAMPARRAY) |
753 | | access_virt_sarray (j_common_ptr cinfo, jvirt_sarray_ptr ptr, |
754 | | JDIMENSION start_row, JDIMENSION num_rows, |
755 | | boolean writable) |
756 | | /* Access the part of a virtual sample array starting at start_row */ |
757 | | /* and extending for num_rows rows. writable is true if */ |
758 | | /* caller intends to modify the accessed area. */ |
759 | 0 | { |
760 | 0 | JDIMENSION end_row = start_row + num_rows; |
761 | 0 | JDIMENSION undef_row; |
762 | | |
763 | | /* debugging check */ |
764 | 0 | if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess || |
765 | 0 | ptr->mem_buffer == NULL) |
766 | 0 | ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); |
767 | | |
768 | | /* Make the desired part of the virtual array accessible */ |
769 | 0 | if (start_row < ptr->cur_start_row || |
770 | 0 | end_row > ptr->cur_start_row + ptr->rows_in_mem) { |
771 | 0 | if (! ptr->b_s_open) |
772 | 0 | ERREXIT(cinfo, JERR_VIRTUAL_BUG); |
773 | | /* Flush old buffer contents if necessary */ |
774 | 0 | if (ptr->dirty) { |
775 | 0 | do_sarray_io(cinfo, ptr, TRUE); |
776 | 0 | ptr->dirty = FALSE; |
777 | 0 | } |
778 | | /* Decide what part of virtual array to access. |
779 | | * Algorithm: if target address > current window, assume forward scan, |
780 | | * load starting at target address. If target address < current window, |
781 | | * assume backward scan, load so that target area is top of window. |
782 | | * Note that when switching from forward write to forward read, will have |
783 | | * start_row = 0, so the limiting case applies and we load from 0 anyway. |
784 | | */ |
785 | 0 | if (start_row > ptr->cur_start_row) { |
786 | 0 | ptr->cur_start_row = start_row; |
787 | 0 | } else { |
788 | | /* use long arithmetic here to avoid overflow & unsigned problems */ |
789 | 0 | long ltemp; |
790 | |
|
791 | 0 | ltemp = (long) end_row - (long) ptr->rows_in_mem; |
792 | 0 | if (ltemp < 0) |
793 | 0 | ltemp = 0; /* don't fall off front end of file */ |
794 | 0 | ptr->cur_start_row = (JDIMENSION) ltemp; |
795 | 0 | } |
796 | | /* Read in the selected part of the array. |
797 | | * During the initial write pass, we will do no actual read |
798 | | * because the selected part is all undefined. |
799 | | */ |
800 | 0 | do_sarray_io(cinfo, ptr, FALSE); |
801 | 0 | } |
802 | | /* Ensure the accessed part of the array is defined; prezero if needed. |
803 | | * To improve locality of access, we only prezero the part of the array |
804 | | * that the caller is about to access, not the entire in-memory array. |
805 | | */ |
806 | 0 | if (ptr->first_undef_row < end_row) { |
807 | 0 | if (ptr->first_undef_row < start_row) { |
808 | 0 | if (writable) /* writer skipped over a section of array */ |
809 | 0 | ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); |
810 | 0 | undef_row = start_row; /* but reader is allowed to read ahead */ |
811 | 0 | } else { |
812 | 0 | undef_row = ptr->first_undef_row; |
813 | 0 | } |
814 | 0 | if (writable) |
815 | 0 | ptr->first_undef_row = end_row; |
816 | 0 | if (ptr->pre_zero) { |
817 | 0 | size_t bytesperrow = (size_t) ptr->samplesperrow * SIZEOF(JSAMPLE); |
818 | 0 | undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */ |
819 | 0 | end_row -= ptr->cur_start_row; |
820 | 0 | while (undef_row < end_row) { |
821 | 0 | FMEMZERO((void FAR *) ptr->mem_buffer[undef_row], bytesperrow); |
822 | 0 | undef_row++; |
823 | 0 | } |
824 | 0 | } else { |
825 | 0 | if (! writable) /* reader looking at undefined data */ |
826 | 0 | ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); |
827 | 0 | } |
828 | 0 | } |
829 | | /* Flag the buffer dirty if caller will write in it */ |
830 | 0 | if (writable) |
831 | 0 | ptr->dirty = TRUE; |
832 | | /* Return address of proper part of the buffer */ |
833 | 0 | return ptr->mem_buffer + (start_row - ptr->cur_start_row); |
834 | 0 | } |
835 | | |
836 | | |
837 | | METHODDEF(JBLOCKARRAY) |
838 | | access_virt_barray (j_common_ptr cinfo, jvirt_barray_ptr ptr, |
839 | | JDIMENSION start_row, JDIMENSION num_rows, |
840 | | boolean writable) |
841 | | /* Access the part of a virtual block array starting at start_row */ |
842 | | /* and extending for num_rows rows. writable is true if */ |
843 | | /* caller intends to modify the accessed area. */ |
844 | 307k | { |
845 | 307k | JDIMENSION end_row = start_row + num_rows; |
846 | 307k | JDIMENSION undef_row; |
847 | | |
848 | | /* debugging check */ |
849 | 307k | if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess || |
850 | 307k | ptr->mem_buffer == NULL) |
851 | 0 | ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); |
852 | | |
853 | | /* Make the desired part of the virtual array accessible */ |
854 | 307k | if (start_row < ptr->cur_start_row || |
855 | 307k | end_row > ptr->cur_start_row + ptr->rows_in_mem) { |
856 | 0 | if (! ptr->b_s_open) |
857 | 0 | ERREXIT(cinfo, JERR_VIRTUAL_BUG); |
858 | | /* Flush old buffer contents if necessary */ |
859 | 0 | if (ptr->dirty) { |
860 | 0 | do_barray_io(cinfo, ptr, TRUE); |
861 | 0 | ptr->dirty = FALSE; |
862 | 0 | } |
863 | | /* Decide what part of virtual array to access. |
864 | | * Algorithm: if target address > current window, assume forward scan, |
865 | | * load starting at target address. If target address < current window, |
866 | | * assume backward scan, load so that target area is top of window. |
867 | | * Note that when switching from forward write to forward read, will have |
868 | | * start_row = 0, so the limiting case applies and we load from 0 anyway. |
869 | | */ |
870 | 0 | if (start_row > ptr->cur_start_row) { |
871 | 0 | ptr->cur_start_row = start_row; |
872 | 0 | } else { |
873 | | /* use long arithmetic here to avoid overflow & unsigned problems */ |
874 | 0 | long ltemp; |
875 | |
|
876 | 0 | ltemp = (long) end_row - (long) ptr->rows_in_mem; |
877 | 0 | if (ltemp < 0) |
878 | 0 | ltemp = 0; /* don't fall off front end of file */ |
879 | 0 | ptr->cur_start_row = (JDIMENSION) ltemp; |
880 | 0 | } |
881 | | /* Read in the selected part of the array. |
882 | | * During the initial write pass, we will do no actual read |
883 | | * because the selected part is all undefined. |
884 | | */ |
885 | 0 | do_barray_io(cinfo, ptr, FALSE); |
886 | 0 | } |
887 | | /* Ensure the accessed part of the array is defined; prezero if needed. |
888 | | * To improve locality of access, we only prezero the part of the array |
889 | | * that the caller is about to access, not the entire in-memory array. |
890 | | */ |
891 | 307k | if (ptr->first_undef_row < end_row) { |
892 | 68.8k | if (ptr->first_undef_row < start_row) { |
893 | 855 | if (writable) /* writer skipped over a section of array */ |
894 | 0 | ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); |
895 | 855 | undef_row = start_row; /* but reader is allowed to read ahead */ |
896 | 67.9k | } else { |
897 | 67.9k | undef_row = ptr->first_undef_row; |
898 | 67.9k | } |
899 | 68.8k | if (writable) |
900 | 67.8k | ptr->first_undef_row = end_row; |
901 | 68.8k | if (ptr->pre_zero) { |
902 | 68.8k | size_t bytesperrow = (size_t) ptr->blocksperrow * SIZEOF(JBLOCK); |
903 | 68.8k | undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */ |
904 | 68.8k | end_row -= ptr->cur_start_row; |
905 | 142k | while (undef_row < end_row) { |
906 | 73.4k | FMEMZERO((void FAR *) ptr->mem_buffer[undef_row], bytesperrow); |
907 | 73.4k | undef_row++; |
908 | 73.4k | } |
909 | 68.8k | } else { |
910 | 0 | if (! writable) /* reader looking at undefined data */ |
911 | 0 | ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); |
912 | 0 | } |
913 | 68.8k | } |
914 | | /* Flag the buffer dirty if caller will write in it */ |
915 | 307k | if (writable) |
916 | 241k | ptr->dirty = TRUE; |
917 | | /* Return address of proper part of the buffer */ |
918 | 307k | return ptr->mem_buffer + (start_row - ptr->cur_start_row); |
919 | 307k | } |
920 | | |
921 | | |
922 | | /* |
923 | | * Release all objects belonging to a specified pool. |
924 | | */ |
925 | | |
926 | | METHODDEF(void) |
927 | | free_pool (j_common_ptr cinfo, int pool_id) |
928 | 53.7k | { |
929 | 53.7k | my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
930 | 53.7k | small_pool_ptr shdr_ptr; |
931 | 53.7k | large_pool_ptr lhdr_ptr; |
932 | 53.7k | size_t space_freed; |
933 | | |
934 | 53.7k | if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) |
935 | 0 | ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ |
936 | | |
937 | | #ifdef MEM_STATS |
938 | | if (cinfo->err->trace_level > 1) |
939 | | print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */ |
940 | | #endif |
941 | | |
942 | | /* If freeing IMAGE pool, close any virtual arrays first */ |
943 | 53.7k | if (pool_id == JPOOL_IMAGE) { |
944 | 34.2k | jvirt_sarray_ptr sptr; |
945 | 34.2k | jvirt_barray_ptr bptr; |
946 | | |
947 | 34.2k | for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { |
948 | 0 | if (sptr->b_s_open) { /* there may be no backing store */ |
949 | 0 | sptr->b_s_open = FALSE; /* prevent recursive close if error */ |
950 | 0 | (*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info); |
951 | 0 | } |
952 | 0 | } |
953 | 34.2k | mem->virt_sarray_list = NULL; |
954 | 38.2k | for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { |
955 | 4.05k | if (bptr->b_s_open) { /* there may be no backing store */ |
956 | 0 | bptr->b_s_open = FALSE; /* prevent recursive close if error */ |
957 | 0 | (*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info); |
958 | 0 | } |
959 | 4.05k | } |
960 | 34.2k | mem->virt_barray_list = NULL; |
961 | 34.2k | } |
962 | | |
963 | | /* Release large objects */ |
964 | 53.7k | lhdr_ptr = mem->large_list[pool_id]; |
965 | 53.7k | mem->large_list[pool_id] = NULL; |
966 | | |
967 | 122k | while (lhdr_ptr != NULL) { |
968 | 69.0k | large_pool_ptr next_lhdr_ptr = lhdr_ptr->hdr.next; |
969 | 69.0k | space_freed = lhdr_ptr->hdr.bytes_used + |
970 | 69.0k | lhdr_ptr->hdr.bytes_left + |
971 | 69.0k | SIZEOF(large_pool_hdr); |
972 | 69.0k | jpeg_free_large(cinfo, (void FAR *) lhdr_ptr, space_freed); |
973 | 69.0k | mem->total_space_allocated -= space_freed; |
974 | 69.0k | lhdr_ptr = next_lhdr_ptr; |
975 | 69.0k | } |
976 | | |
977 | | /* Release small objects */ |
978 | 53.7k | shdr_ptr = mem->small_list[pool_id]; |
979 | 53.7k | mem->small_list[pool_id] = NULL; |
980 | | |
981 | 102k | while (shdr_ptr != NULL) { |
982 | 49.1k | small_pool_ptr next_shdr_ptr = shdr_ptr->hdr.next; |
983 | 49.1k | space_freed = shdr_ptr->hdr.bytes_used + |
984 | 49.1k | shdr_ptr->hdr.bytes_left + |
985 | 49.1k | SIZEOF(small_pool_hdr); |
986 | 49.1k | jpeg_free_small(cinfo, (void *) shdr_ptr, space_freed); |
987 | 49.1k | mem->total_space_allocated -= space_freed; |
988 | 49.1k | shdr_ptr = next_shdr_ptr; |
989 | 49.1k | } |
990 | 53.7k | } |
991 | | |
992 | | |
993 | | /* |
994 | | * Close up shop entirely. |
995 | | * Note that this cannot be called unless cinfo->mem is non-NULL. |
996 | | */ |
997 | | |
998 | | METHODDEF(void) |
999 | | self_destruct (j_common_ptr cinfo) |
1000 | 19.5k | { |
1001 | 19.5k | int pool; |
1002 | | |
1003 | | /* Close all backing store, release all memory. |
1004 | | * Releasing pools in reverse order might help avoid fragmentation |
1005 | | * with some (brain-damaged) malloc libraries. |
1006 | | */ |
1007 | 58.5k | for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) { |
1008 | 39.0k | free_pool(cinfo, pool); |
1009 | 39.0k | } |
1010 | | |
1011 | | /* Release the memory manager control block too. */ |
1012 | 19.5k | jpeg_free_small(cinfo, (void *) cinfo->mem, SIZEOF(my_memory_mgr)); |
1013 | 19.5k | cinfo->mem = NULL; /* ensures I will be called only once */ |
1014 | | |
1015 | 19.5k | jpeg_mem_term(cinfo); /* system-dependent cleanup */ |
1016 | 19.5k | } |
1017 | | |
1018 | | |
1019 | | /* |
1020 | | * Memory manager initialization. |
1021 | | * When this is called, only the error manager pointer is valid in cinfo! |
1022 | | */ |
1023 | | |
1024 | | GLOBAL(void) |
1025 | | jinit_memory_mgr (j_common_ptr cinfo) |
1026 | 19.5k | { |
1027 | 19.5k | my_mem_ptr mem; |
1028 | 19.5k | long max_to_use; |
1029 | 19.5k | int pool; |
1030 | 19.5k | size_t test_mac; |
1031 | | |
1032 | 19.5k | cinfo->mem = NULL; /* for safety if init fails */ |
1033 | | |
1034 | | /* Check for configuration errors. |
1035 | | * SIZEOF(ALIGN_TYPE) should be a power of 2; otherwise, it probably |
1036 | | * doesn't reflect any real hardware alignment requirement. |
1037 | | * The test is a little tricky: for X>0, X and X-1 have no one-bits |
1038 | | * in common if and only if X is a power of 2, ie has only one one-bit. |
1039 | | * Some compilers may give an "unreachable code" warning here; ignore it. |
1040 | | */ |
1041 | 19.5k | if ((SIZEOF(ALIGN_TYPE) & (SIZEOF(ALIGN_TYPE)-1)) != 0) |
1042 | 0 | ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE); |
1043 | | /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be |
1044 | | * a multiple of SIZEOF(ALIGN_TYPE). |
1045 | | * Again, an "unreachable code" warning may be ignored here. |
1046 | | * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK. |
1047 | | */ |
1048 | 19.5k | test_mac = (size_t) MAX_ALLOC_CHUNK; |
1049 | 19.5k | if ((long) test_mac != MAX_ALLOC_CHUNK || |
1050 | 19.5k | (MAX_ALLOC_CHUNK % SIZEOF(ALIGN_TYPE)) != 0) |
1051 | 0 | ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK); |
1052 | | |
1053 | 19.5k | max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */ |
1054 | | |
1055 | | /* Attempt to allocate memory manager's control block */ |
1056 | 19.5k | mem = (my_mem_ptr) jpeg_get_small(cinfo, SIZEOF(my_memory_mgr)); |
1057 | | |
1058 | 19.5k | if (mem == NULL) { |
1059 | 0 | jpeg_mem_term(cinfo); /* system-dependent cleanup */ |
1060 | 0 | ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0); |
1061 | 0 | } |
1062 | | |
1063 | | /* OK, fill in the method pointers */ |
1064 | 19.5k | mem->pub.alloc_small = alloc_small; |
1065 | 19.5k | mem->pub.alloc_large = alloc_large; |
1066 | 19.5k | mem->pub.alloc_sarray = alloc_sarray; |
1067 | 19.5k | mem->pub.alloc_barray = alloc_barray; |
1068 | 19.5k | mem->pub.request_virt_sarray = request_virt_sarray; |
1069 | 19.5k | mem->pub.request_virt_barray = request_virt_barray; |
1070 | 19.5k | mem->pub.realize_virt_arrays = realize_virt_arrays; |
1071 | 19.5k | mem->pub.access_virt_sarray = access_virt_sarray; |
1072 | 19.5k | mem->pub.access_virt_barray = access_virt_barray; |
1073 | 19.5k | mem->pub.free_pool = free_pool; |
1074 | 19.5k | mem->pub.self_destruct = self_destruct; |
1075 | | |
1076 | | /* Make MAX_ALLOC_CHUNK accessible to other modules */ |
1077 | 19.5k | mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK; |
1078 | | |
1079 | | /* Initialize working state */ |
1080 | 19.5k | mem->pub.max_memory_to_use = max_to_use; |
1081 | | |
1082 | 58.5k | for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) { |
1083 | 39.0k | mem->small_list[pool] = NULL; |
1084 | 39.0k | mem->large_list[pool] = NULL; |
1085 | 39.0k | } |
1086 | 19.5k | mem->virt_sarray_list = NULL; |
1087 | 19.5k | mem->virt_barray_list = NULL; |
1088 | | |
1089 | 19.5k | mem->total_space_allocated = SIZEOF(my_memory_mgr); |
1090 | | |
1091 | | /* Declare ourselves open for business */ |
1092 | 19.5k | cinfo->mem = &mem->pub; |
1093 | | |
1094 | | /* Check for an environment variable JPEGMEM; if found, override the |
1095 | | * default max_memory setting from jpeg_mem_init. Note that the |
1096 | | * surrounding application may again override this value. |
1097 | | * If your system doesn't support getenv(), define NO_GETENV to disable |
1098 | | * this feature. |
1099 | | */ |
1100 | 19.5k | #ifndef NO_GETENV |
1101 | 19.5k | { char * memenv; |
1102 | | |
1103 | 19.5k | if ((memenv = getenv("JPEGMEM")) != NULL) { |
1104 | 0 | char ch = 'x'; |
1105 | |
|
1106 | 0 | if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) { |
1107 | 0 | if (ch == 'm' || ch == 'M') |
1108 | 0 | max_to_use *= 1000L; |
1109 | 0 | mem->pub.max_memory_to_use = max_to_use * 1000L; |
1110 | 0 | } |
1111 | 0 | } |
1112 | 19.5k | } |
1113 | 19.5k | #endif |
1114 | | |
1115 | 19.5k | } |