Coverage Report

Created: 2025-08-28 07:06

/src/ghostpdl/base/gdevdflt.c
Line
Count
Source (jump to first uncovered line)
1
/* Copyright (C) 2001-2025 Artifex Software, Inc.
2
   All Rights Reserved.
3
4
   This software is provided AS-IS with no warranty, either express or
5
   implied.
6
7
   This software is distributed under license and may not be copied,
8
   modified or distributed except as expressly authorized under the terms
9
   of the license contained in the file LICENSE in this distribution.
10
11
   Refer to licensing information at http://www.artifex.com or contact
12
   Artifex Software, Inc.,  39 Mesa Street, Suite 108A, San Francisco,
13
   CA 94129, USA, for further information.
14
*/
15
16
/* Default device implementation */
17
#include "math_.h"
18
#include "memory_.h"
19
#include "gx.h"
20
#include "gsstruct.h"
21
#include "gxobj.h"
22
#include "gserrors.h"
23
#include "gsropt.h"
24
#include "gxcomp.h"
25
#include "gxdevice.h"
26
#include "gxdevsop.h"
27
#include "gdevp14.h"        /* Needed to patch up the procs after compositor creation */
28
#include "gstrans.h"        /* For gs_pdf14trans_t */
29
#include "gxgstate.h"       /* for gs_image_state_s */
30
31
32
/* defined in gsdpram.c */
33
int gx_default_get_param(gx_device *dev, char *Param, void *list);
34
35
/* ---------------- Default device procedures ---------------- */
36
37
/*
38
 * Set a color model polarity to be additive or subtractive. In either
39
 * case, indicate an error (and don't modify the polarity) if the current
40
 * setting differs from the desired and is not GX_CINFO_POLARITY_UNKNOWN.
41
 */
42
static void
43
set_cinfo_polarity(gx_device * dev, gx_color_polarity_t new_polarity)
44
20.7M
{
45
#ifdef DEBUG
46
    /* sanity check */
47
    if (new_polarity == GX_CINFO_POLARITY_UNKNOWN) {
48
        dmprintf(dev->memory, "set_cinfo_polarity: illegal operand\n");
49
        return;
50
    }
51
#endif
52
    /*
53
     * The meory devices assume that single color devices are gray.
54
     * This may not be true if SeparationOrder is specified.  Thus only
55
     * change the value if the current value is unknown.
56
     */
57
20.7M
    if (dev->color_info.polarity == GX_CINFO_POLARITY_UNKNOWN)
58
0
        dev->color_info.polarity = new_polarity;
59
20.7M
}
60
61
static gx_color_index
62
(*get_encode_color(gx_device *dev))(gx_device *, const gx_color_value *)
63
210M
{
64
210M
    dev_proc_encode_color(*encode_proc);
65
66
    /* use encode_color if it has been provided */
67
210M
    if ((encode_proc = dev_proc(dev, encode_color)) == 0) {
68
20.7M
        if (dev->color_info.num_components == 1                          &&
69
20.7M
            dev_proc(dev, map_rgb_color) != 0) {
70
13.9M
            set_cinfo_polarity(dev, GX_CINFO_POLARITY_ADDITIVE);
71
13.9M
            encode_proc = gx_backwards_compatible_gray_encode;
72
13.9M
        } else  if ( (dev->color_info.num_components == 3    )           &&
73
6.79M
             (encode_proc = dev_proc(dev, map_rgb_color)) != 0  )
74
80.2k
            set_cinfo_polarity(dev, GX_CINFO_POLARITY_ADDITIVE);
75
6.71M
        else if ( dev->color_info.num_components == 4                    &&
76
6.71M
                 (encode_proc = dev_proc(dev, map_cmyk_color)) != 0   )
77
0
            set_cinfo_polarity(dev, GX_CINFO_POLARITY_SUBTRACTIVE);
78
20.7M
    }
79
80
    /*
81
     * If no encode_color procedure at this point, the color model had
82
     * better be monochrome (though not necessarily bi-level). In this
83
     * case, it is assumed to be additive, as that is consistent with
84
     * the pre-DeviceN code.
85
     *
86
     * If this is not the case, then the color model had better be known
87
     * to be separable and linear, for there is no other way to derive
88
     * an encoding. This is the case even for weakly linear and separable
89
     * color models with a known polarity.
90
     */
91
210M
    if (encode_proc == 0) {
92
6.71M
        if (dev->color_info.num_components == 1 && dev->color_info.depth != 0) {
93
6.71M
            set_cinfo_polarity(dev, GX_CINFO_POLARITY_ADDITIVE);
94
6.71M
            if (dev->color_info.max_gray == (1 << dev->color_info.depth) - 1)
95
6.71M
                encode_proc = gx_default_gray_fast_encode;
96
0
            else
97
0
                encode_proc = gx_default_gray_encode;
98
6.71M
            dev->color_info.separable_and_linear = GX_CINFO_SEP_LIN;
99
6.71M
        } else if (colors_are_separable_and_linear(&dev->color_info)) {
100
0
            gx_color_value  max_gray = dev->color_info.max_gray;
101
0
            gx_color_value  max_color = dev->color_info.max_color;
102
103
0
            if ( (max_gray & (max_gray + 1)) == 0  &&
104
0
                 (max_color & (max_color + 1)) == 0  )
105
                /* NB should be gx_default_fast_encode_color */
106
0
                encode_proc = gx_default_encode_color;
107
0
            else
108
0
                encode_proc = gx_default_encode_color;
109
0
        }
110
6.71M
    }
111
112
210M
    return encode_proc;
113
210M
}
114
115
/*
116
 * Determine if a color model has the properties of a DeviceRGB
117
 * color model. This procedure is, in all likelihood, high-grade
118
 * overkill, but since this is not a performance sensitive area
119
 * no harm is done.
120
 *
121
 * Since there is little benefit to checking the values 0, 1, or
122
 * 1/2, we use the values 1/4, 1/3, and 3/4 in their place. We
123
 * compare the results to see if the intensities match to within
124
 * a tolerance of .01, which is arbitrarily selected.
125
 */
126
127
static bool
128
is_like_DeviceRGB(gx_device * dev)
129
20.7M
{
130
20.7M
    frac                            cm_comp_fracs[3];
131
20.7M
    int                             i;
132
20.7M
    const gx_device                *cmdev;
133
20.7M
    const gx_cm_color_map_procs    *cmprocs;
134
135
20.7M
    if ( dev->color_info.num_components != 3                   ||
136
20.7M
         dev->color_info.polarity != GX_CINFO_POLARITY_ADDITIVE  )
137
20.6M
        return false;
138
139
80.2k
    cmprocs = dev_proc(dev, get_color_mapping_procs)(dev, &cmdev);
140
141
    /* check the values 1/4, 1/3, and 3/4 */
142
80.2k
    cmprocs->map_rgb(cmdev, 0, frac_1 / 4, frac_1 / 3, 3 * frac_1 / 4, cm_comp_fracs);
143
144
    /* verify results to .01 */
145
80.2k
    cm_comp_fracs[0] -= frac_1 / 4;
146
80.2k
    cm_comp_fracs[1] -= frac_1 / 3;
147
80.2k
    cm_comp_fracs[2] -= 3 * frac_1 / 4;
148
80.2k
    for ( i = 0;
149
321k
           i < 3                            &&
150
321k
           -frac_1 / 100 < cm_comp_fracs[i] &&
151
321k
           cm_comp_fracs[i] < frac_1 / 100;
152
240k
          i++ )
153
240k
        ;
154
80.2k
    return i == 3;
155
20.7M
}
156
157
/*
158
 * Similar to is_like_DeviceRGB, but for DeviceCMYK.
159
 */
160
static bool
161
is_like_DeviceCMYK(gx_device * dev)
162
0
{
163
0
    frac                            cm_comp_fracs[4];
164
0
    int                             i;
165
0
    const gx_device                *cmdev;
166
0
    const gx_cm_color_map_procs    *cmprocs;
167
168
0
    if ( dev->color_info.num_components != 4                      ||
169
0
         dev->color_info.polarity != GX_CINFO_POLARITY_SUBTRACTIVE  )
170
0
        return false;
171
172
0
    cmprocs = dev_proc(dev, get_color_mapping_procs)(dev, &cmdev);
173
    /* check the values 1/4, 1/3, 3/4, and 1/8 */
174
175
0
    cmprocs->map_cmyk(cmdev,
176
0
                      frac_1 / 4,
177
0
                      frac_1 / 3,
178
0
                      3 * frac_1 / 4,
179
0
                      frac_1 / 8,
180
0
                      cm_comp_fracs);
181
182
    /* verify results to .01 */
183
0
    cm_comp_fracs[0] -= frac_1 / 4;
184
0
    cm_comp_fracs[1] -= frac_1 / 3;
185
0
    cm_comp_fracs[2] -= 3 * frac_1 / 4;
186
0
    cm_comp_fracs[3] -= frac_1 / 8;
187
0
    for ( i = 0;
188
0
           i < 4                            &&
189
0
           -frac_1 / 100 < cm_comp_fracs[i] &&
190
0
           cm_comp_fracs[i] < frac_1 / 100;
191
0
          i++ )
192
0
        ;
193
0
    return i == 4;
194
0
}
195
196
/*
197
 * Two default decode_color procedures to use for monochrome devices.
198
 * These will make use of the map_color_rgb routine, and use the first
199
 * component of the returned value or its inverse.
200
 */
201
static int
202
gx_default_1_add_decode_color(
203
    gx_device *     dev,
204
    gx_color_index  color,
205
    gx_color_value  cv[1] )
206
0
{
207
0
    gx_color_value  rgb[3];
208
0
    int             code = dev_proc(dev, map_color_rgb)(dev, color, rgb);
209
210
0
    cv[0] = rgb[0];
211
0
    return code;
212
0
}
213
214
static int
215
gx_default_1_sub_decode_color(
216
    gx_device *     dev,
217
    gx_color_index  color,
218
    gx_color_value  cv[1] )
219
0
{
220
0
    gx_color_value  rgb[3];
221
0
    int             code = dev_proc(dev, map_color_rgb)(dev, color, rgb);
222
223
0
    cv[0] = gx_max_color_value - rgb[0];
224
0
    return code;
225
0
}
226
227
/*
228
 * A default decode_color procedure for DeviceCMYK color models.
229
 *
230
 * There is no generally accurate way of decode a DeviceCMYK color using
231
 * the map_color_rgb method. Unfortunately, there are many older devices
232
 * employ the DeviceCMYK color model but don't provide a decode_color
233
 * method. The code below works on the assumption of full undercolor
234
 * removal and black generation. This may not be accurate, but is the
235
 * best that can be done in the general case without other information.
236
 */
237
static int
238
gx_default_cmyk_decode_color(
239
    gx_device *     dev,
240
    gx_color_index  color,
241
    gx_color_value  cv[4] )
242
0
{
243
    /* The device may have been determined to be 'separable'. */
244
0
    if (colors_are_separable_and_linear(&dev->color_info))
245
0
        return gx_default_decode_color(dev, color, cv);
246
0
    else {
247
0
        int i, code = dev_proc(dev, map_color_rgb)(dev, color, cv);
248
0
        gx_color_value min_val = gx_max_color_value;
249
250
0
        for (i = 0; i < 3; i++) {
251
0
            if ((cv[i] = gx_max_color_value - cv[i]) < min_val)
252
0
                min_val = cv[i];
253
0
        }
254
0
        for (i = 0; i < 3; i++)
255
0
            cv[i] -= min_val;
256
0
        cv[3] = min_val;
257
258
0
        return code;
259
0
    }
260
0
}
261
262
/*
263
 * Special case default color decode routine for a canonical 1-bit per
264
 * component DeviceCMYK color model.
265
 */
266
static int
267
gx_1bit_cmyk_decode_color(
268
    gx_device *     dev,
269
    gx_color_index  color,
270
    gx_color_value  cv[4] )
271
0
{
272
0
    cv[0] = ((color & 0x8) != 0 ? gx_max_color_value : 0);
273
0
    cv[1] = ((color & 0x4) != 0 ? gx_max_color_value : 0);
274
0
    cv[2] = ((color & 0x2) != 0 ? gx_max_color_value : 0);
275
0
    cv[3] = ((color & 0x1) != 0 ? gx_max_color_value : 0);
276
0
    return 0;
277
0
}
278
279
static int
280
(*get_decode_color(gx_device * dev))(gx_device *, gx_color_index, gx_color_value *)
281
210M
{
282
    /* if a method has already been provided, use it */
283
210M
    if (dev_proc(dev, decode_color) != 0)
284
189M
        return dev_proc(dev, decode_color);
285
286
    /*
287
     * If a map_color_rgb method has been provided, we may be able to use it.
288
     * Currently this will always be the case, as a default value will be
289
     * provided this method. While this default may not be correct, we are not
290
     * introducing any new errors by using it.
291
     */
292
20.7M
    if (dev_proc(dev, map_color_rgb) != 0) {
293
294
        /* if the device has a DeviceRGB color model, use map_color_rgb */
295
20.7M
        if (is_like_DeviceRGB(dev))
296
80.2k
            return dev_proc(dev, map_color_rgb);
297
298
        /* If separable ande linear then use default */
299
20.6M
        if (colors_are_separable_and_linear(&dev->color_info))
300
6.71M
            return &gx_default_decode_color;
301
302
        /* gray devices can be handled based on their polarity */
303
13.9M
        if ( dev->color_info.num_components == 1 &&
304
13.9M
             dev->color_info.gray_index == 0       )
305
13.9M
            return dev->color_info.polarity == GX_CINFO_POLARITY_ADDITIVE
306
13.9M
                       ? &gx_default_1_add_decode_color
307
13.9M
                       : &gx_default_1_sub_decode_color;
308
309
        /*
310
         * There is no accurate way to decode colors for cmyk devices
311
         * using the map_color_rgb procedure. Unfortunately, this cases
312
         * arises with some frequency, so it is useful not to generate an
313
         * error in this case. The mechanism below assumes full undercolor
314
         * removal and black generation, which may not be accurate but are
315
         * the  best that can be done in the general case in the absence of
316
         * other information.
317
         *
318
         * As a hack to handle certain common devices, if the map_rgb_color
319
         * routine is cmyk_1bit_map_color_rgb, we provide a direct one-bit
320
         * decoder.
321
         */
322
0
        if (is_like_DeviceCMYK(dev)) {
323
0
            if (dev_proc(dev, map_color_rgb) == cmyk_1bit_map_color_rgb)
324
0
                return &gx_1bit_cmyk_decode_color;
325
0
            else
326
0
                return &gx_default_cmyk_decode_color;
327
0
        }
328
0
    }
329
330
    /*
331
     * The separable and linear case will already have been handled by
332
     * code in gx_device_fill_in_procs, so at this point we can only hope
333
     * the device doesn't use the decode_color method.
334
     */
335
0
    if (colors_are_separable_and_linear(&dev->color_info))
336
0
        return &gx_default_decode_color;
337
0
    else
338
0
        return &gx_error_decode_color;
339
0
}
340
341
/*
342
 * If a device has a linear and separable encode color function then
343
 * set up the comp_bits, comp_mask, and comp_shift fields.  Note:  This
344
 * routine assumes that the colorant shift factor decreases with the
345
 * component number.  See check_device_separable() for a general routine.
346
 */
347
void
348
set_linear_color_bits_mask_shift(gx_device * dev)
349
102k
{
350
102k
    int i;
351
102k
    byte gray_index = dev->color_info.gray_index;
352
102k
    gx_color_value max_gray = dev->color_info.max_gray;
353
102k
    gx_color_value max_color = dev->color_info.max_color;
354
102k
    int num_components = dev->color_info.num_components;
355
356
1.34M
#define comp_bits (dev->color_info.comp_bits)
357
670k
#define comp_mask (dev->color_info.comp_mask)
358
1.90M
#define comp_shift (dev->color_info.comp_shift)
359
102k
    comp_shift[num_components - 1] = 0;
360
670k
    for ( i = num_components - 1 - 1; i >= 0; i-- ) {
361
568k
        comp_shift[i] = comp_shift[i + 1] +
362
568k
            ( i == gray_index ? ilog2(max_gray + 1) : ilog2(max_color + 1) );
363
568k
    }
364
773k
    for ( i = 0; i < num_components; i++ ) {
365
670k
        comp_bits[i] = ( i == gray_index ?
366
59.9k
                         ilog2(max_gray + 1) :
367
670k
                         ilog2(max_color + 1) );
368
670k
        comp_mask[i] = (((gx_color_index)1 << comp_bits[i]) - 1)
369
670k
                                               << comp_shift[i];
370
670k
    }
371
102k
#undef comp_bits
372
102k
#undef comp_mask
373
102k
#undef comp_shift
374
102k
}
375
376
/* Determine if a number is a power of two.  Works only for integers. */
377
234M
#define is_power_of_two(x) ((((x) - 1) & (x)) == 0)
378
379
/* A brutish way to check if we are a HT device */
380
bool
381
device_is_contone(gx_device* pdev)
382
4.47M
{
383
4.47M
    if ((float)pdev->color_info.depth / (float)pdev->color_info.num_components >= 8)
384
705k
        return true;
385
3.76M
    return false;
386
4.47M
}
387
388
/*
389
 * This routine attempts to determine if a device's encode_color procedure
390
 * produces gx_color_index values which are 'separable'.  A 'separable' value
391
 * means two things.  Each colorant has a group of bits in the gx_color_index
392
 * value which is associated with the colorant.  These bits are separate.
393
 * I.e. no bit is associated with more than one colorant.  If a colorant has
394
 * a value of zero then the bits associated with that colorant are zero.
395
 * These criteria allows the graphics library to build gx_color_index values
396
 * from the colorant values and not using the encode_color routine. This is
397
 * useful and necessary for overprinting, halftoning more
398
 * than four colorants, and the fast shading logic.  However this information
399
 * is not setup by the default device macros.  Thus we attempt to derive this
400
 * information.
401
 *
402
 * This routine can be fooled.  However it usually errors on the side of
403
 * assuing that a device is not separable.  In this case it does not create
404
 * any new problems.  In theory it can be fooled into believing that a device
405
 * is separable when it is not.  However we do not know of any real cases that
406
 * will fool it.
407
 */
408
void
409
check_device_separable(gx_device * dev)
410
226M
{
411
226M
    int i, j;
412
226M
    gx_device_color_info * pinfo = &(dev->color_info);
413
226M
    int num_components = pinfo->num_components;
414
226M
    byte comp_shift[GX_DEVICE_COLOR_MAX_COMPONENTS];
415
226M
    byte comp_bits[GX_DEVICE_COLOR_MAX_COMPONENTS];
416
226M
    gx_color_index comp_mask[GX_DEVICE_COLOR_MAX_COMPONENTS];
417
226M
    gx_color_index color_index;
418
226M
    gx_color_index current_bits = 0;
419
226M
    gx_color_value colorants[GX_DEVICE_COLOR_MAX_COMPONENTS] = { 0 };
420
421
    /* If this is already known then we do not need to do anything. */
422
226M
    if (pinfo->separable_and_linear != GX_CINFO_UNKNOWN_SEP_LIN)
423
134M
        return;
424
    /* If there is not an encode_color_routine then we cannot proceed. */
425
92.2M
    if (dev_proc(dev, encode_color) == NULL)
426
13.9M
        return;
427
    /*
428
     * If these values do not check then we should have an error.  However
429
     * we do not know what to do so we are simply exitting and hoping that
430
     * the device will clean up its values.
431
     */
432
78.3M
    if (pinfo->gray_index < num_components &&
433
78.3M
        (!pinfo->dither_grays || pinfo->dither_grays != (pinfo->max_gray + 1)))
434
0
            return;
435
78.3M
    if ((num_components > 1 || pinfo->gray_index != 0) &&
436
78.3M
        (!pinfo->dither_colors || pinfo->dither_colors != (pinfo->max_color + 1)))
437
0
        return;
438
    /*
439
     * If dither_grays or dither_colors is not a power of two then we assume
440
     * that the device is not separable.  In theory this not a requirement
441
     * but it has been true for all of the devices that we have seen so far.
442
     * This assumption also makes the logic in the next section easier.
443
     */
444
78.3M
    if (!is_power_of_two(pinfo->dither_grays)
445
78.3M
                    || !is_power_of_two(pinfo->dither_colors))
446
0
        return;
447
    /*
448
     * Use the encode_color routine to try to verify that the device is
449
     * separable and to determine the shift count, etc. for each colorant.
450
     */
451
78.3M
    color_index = dev_proc(dev, encode_color)(dev, colorants);
452
78.3M
    if (color_index != 0)
453
77.6M
        return;    /* Exit if zero colorants produce a non zero index */
454
1.59M
    for (i = 0; i < num_components; i++) {
455
        /* Check this colorant = max with all others = 0 */
456
2.29M
        for (j = 0; j < num_components; j++)
457
1.41M
            colorants[j] = 0;
458
885k
        colorants[i] = gx_max_color_value;
459
885k
        color_index = dev_proc(dev, encode_color)(dev, colorants);
460
885k
        if (color_index == 0)  /* If no bits then we have a problem */
461
1
            return;
462
885k
        if (color_index & current_bits)  /* Check for overlapping bits */
463
0
            return;
464
885k
        current_bits |= color_index;
465
885k
        comp_mask[i] = color_index;
466
        /* Determine the shift count for the colorant */
467
2.98M
        for (j = 0; (color_index & 1) == 0 && color_index != 0; j++)
468
2.10M
            color_index >>= 1;
469
885k
        comp_shift[i] = j;
470
        /* Determine the bit count for the colorant */
471
3.76M
        for (j = 0; color_index != 0; j++) {
472
2.87M
            if ((color_index & 1) == 0) /* check for non-consecutive bits */
473
0
                return;
474
2.87M
            color_index >>= 1;
475
2.87M
        }
476
885k
        comp_bits[i] = j;
477
        /*
478
         * We could verify that the bit count matches the dither_grays or
479
         * dither_colors values, but this is not really required unless we
480
         * are halftoning.  Thus we are allowing for non equal colorant sizes.
481
         */
482
        /* Check for overlap with other colorant if they are all maxed */
483
2.29M
        for (j = 0; j < num_components; j++)
484
1.41M
            colorants[j] = gx_max_color_value;
485
885k
        colorants[i] = 0;
486
885k
        color_index = dev_proc(dev, encode_color)(dev, colorants);
487
885k
        if (color_index & comp_mask[i])  /* Check for overlapping bits */
488
0
            return;
489
885k
    }
490
    /* If we get to here then the device is very likely to be separable. */
491
709k
    pinfo->separable_and_linear = GX_CINFO_SEP_LIN;
492
1.59M
    for (i = 0; i < num_components; i++) {
493
885k
        pinfo->comp_shift[i] = comp_shift[i];
494
885k
        pinfo->comp_bits[i] = comp_bits[i];
495
885k
        pinfo->comp_mask[i] = comp_mask[i];
496
885k
    }
497
    /*
498
     * The 'gray_index' value allows one colorant to have a different number
499
     * of shades from the remainder.  Since the default macros only guess at
500
     * an appropriate value, we are setting its value based upon the data that
501
     * we just determined.  Note:  In some cases the macros set max_gray to 0
502
     * and dither_grays to 1.  This is not valid so ignore this case.
503
     */
504
709k
    for (i = 0; i < num_components; i++) {
505
709k
        int dither = 1 << comp_bits[i];
506
507
709k
        if (pinfo->dither_grays != 1 && dither == pinfo->dither_grays) {
508
709k
            pinfo->gray_index = i;
509
709k
            break;
510
709k
        }
511
709k
    }
512
709k
}
513
#undef is_power_of_two
514
515
/*
516
 * This routine attempts to determine if a device's encode_color procedure
517
 * produces values that are in keeping with "the standard encoding".
518
 * i.e. that given by pdf14_encode_color.
519
 *
520
 * It works by first checking to see if we are separable_and_linear. If not
521
 * we cannot hope to be the standard encoding.
522
 *
523
 * Then, we check to see if we are a dev device - if so, we must be
524
 * compatible.
525
 *
526
 * Failing that it checks to see if the encoding uses the appropriate
527
 * bit ranges for each individual color.
528
 *
529
 * If those (quick) tests pass, then we try the slower test of checking
530
 * the encodings. We can do this far faster than an exhaustive check, by
531
 * relying on the separability and linearity - we only need to check 256
532
 * possible values.
533
 *
534
 * The one tricky section there is to avoid the special case for
535
 * gx_no_color_index_value (which can occur when we have a 32bit
536
 * gx_color_index type, and a 4 component device, such as cmyk).
537
 * We allow the encoding to be off in the lower bits for that case.
538
 */
539
void check_device_compatible_encoding(gx_device *dev)
540
174M
{
541
174M
    gx_device_color_info * pinfo = &(dev->color_info);
542
174M
    int num_components = pinfo->num_components;
543
174M
    gx_color_index mul, color_index;
544
174M
    int i, j;
545
174M
    gx_color_value colorants[GX_DEVICE_COLOR_MAX_COMPONENTS];
546
174M
    bool deep = device_is_deep(dev);
547
548
174M
    if (pinfo->separable_and_linear == GX_CINFO_UNKNOWN_SEP_LIN)
549
38.9M
        check_device_separable(dev);
550
174M
    if (pinfo->separable_and_linear != GX_CINFO_SEP_LIN)
551
174M
        return;
552
553
70.2k
    if (dev_proc(dev, ret_devn_params)(dev) != NULL) {
554
        /* We know all devn devices are compatible. */
555
41.0k
        pinfo->separable_and_linear = GX_CINFO_SEP_LIN_STANDARD;
556
41.0k
        return;
557
41.0k
    }
558
559
    /* Do the superficial quick checks */
560
93.3k
    for (i = 0; i < num_components; i++) {
561
64.0k
        int shift = (num_components-1-i)*(8<<deep);
562
64.0k
        if (pinfo->comp_shift[i] != shift)
563
0
            goto bad;
564
64.0k
        if (pinfo->comp_bits[i] != 8<<deep)
565
0
            goto bad;
566
64.0k
        if (pinfo->comp_mask[i] != ((gx_color_index)(deep ? 65535 : 255))<<shift)
567
0
            goto bad;
568
64.0k
    }
569
570
    /* OK, now we are going to be slower. */
571
29.2k
    mul = 0;
572
93.3k
    for (i = 0; i < num_components; i++) {
573
64.0k
        mul = (mul<<(8<<deep)) | 1;
574
64.0k
    }
575
    /* In the deep case, we don't exhaustively test */
576
7.47M
    for (i = 0; i < 255; i++) {
577
23.7M
        for (j = 0; j < num_components; j++)
578
16.3M
            colorants[j] = i*257;
579
7.45M
        color_index = dev_proc(dev, encode_color)(dev, colorants);
580
7.45M
        if (color_index != i*mul*(deep ? 257 : 1) && (i*mul*(deep ? 257 : 1) != gx_no_color_index_value))
581
0
            goto bad;
582
7.45M
    }
583
    /* If we reach here, then every value matched, except possibly the last one.
584
     * We'll allow that to differ just in the lowest bits. */
585
29.2k
    if ((color_index | mul) != 255*mul*(deep ? 257 : 1))
586
0
        goto bad;
587
588
29.2k
    pinfo->separable_and_linear = GX_CINFO_SEP_LIN_STANDARD;
589
29.2k
    return;
590
0
bad:
591
0
    pinfo->separable_and_linear = GX_CINFO_SEP_LIN_NON_STANDARD;
592
0
}
593
594
int gx_default_no_copy_alpha_hl_color(gx_device * dev, const byte * data, int data_x, int raster, gx_bitmap_id id, int x, int y, int width, int height, const gx_drawing_color *pdcolor, int depth);
595
596
/* Fill in NULL procedures in a device procedure record. */
597
void
598
gx_device_fill_in_procs(register gx_device * dev)
599
210M
{
600
210M
    fill_dev_proc(dev, open_device, gx_default_open_device);
601
210M
    fill_dev_proc(dev, get_initial_matrix, gx_default_get_initial_matrix);
602
210M
    fill_dev_proc(dev, sync_output, gx_default_sync_output);
603
210M
    fill_dev_proc(dev, output_page, gx_default_output_page);
604
210M
    fill_dev_proc(dev, close_device, gx_default_close_device);
605
    /* see below for map_rgb_color */
606
210M
    fill_dev_proc(dev, map_color_rgb, gx_default_map_color_rgb);
607
    /* NOT fill_rectangle */
608
210M
    fill_dev_proc(dev, copy_mono, gx_default_copy_mono);
609
210M
    fill_dev_proc(dev, copy_color, gx_default_copy_color);
610
210M
    fill_dev_proc(dev, get_params, gx_default_get_params);
611
210M
    fill_dev_proc(dev, put_params, gx_default_put_params);
612
    /* see below for map_cmyk_color */
613
210M
    fill_dev_proc(dev, get_page_device, gx_default_get_page_device);
614
210M
    fill_dev_proc(dev, get_alpha_bits, gx_default_get_alpha_bits);
615
210M
    fill_dev_proc(dev, copy_alpha, gx_default_copy_alpha);
616
210M
    fill_dev_proc(dev, fill_path, gx_default_fill_path);
617
210M
    fill_dev_proc(dev, stroke_path, gx_default_stroke_path);
618
210M
    fill_dev_proc(dev, fill_mask, gx_default_fill_mask);
619
210M
    fill_dev_proc(dev, fill_trapezoid, gx_default_fill_trapezoid);
620
210M
    fill_dev_proc(dev, fill_parallelogram, gx_default_fill_parallelogram);
621
210M
    fill_dev_proc(dev, fill_triangle, gx_default_fill_triangle);
622
210M
    fill_dev_proc(dev, draw_thin_line, gx_default_draw_thin_line);
623
210M
    fill_dev_proc(dev, get_alpha_bits, gx_default_get_alpha_bits);
624
210M
    fill_dev_proc(dev, strip_tile_rectangle, gx_default_strip_tile_rectangle);
625
210M
    fill_dev_proc(dev, strip_copy_rop2, gx_default_strip_copy_rop2);
626
210M
    fill_dev_proc(dev, strip_tile_rect_devn, gx_default_strip_tile_rect_devn);
627
210M
    fill_dev_proc(dev, get_clipping_box, gx_default_get_clipping_box);
628
210M
    fill_dev_proc(dev, begin_typed_image, gx_default_begin_typed_image);
629
210M
    fill_dev_proc(dev, get_bits_rectangle, gx_default_get_bits_rectangle);
630
210M
    fill_dev_proc(dev, composite, gx_default_composite);
631
210M
    fill_dev_proc(dev, get_hardware_params, gx_default_get_hardware_params);
632
210M
    fill_dev_proc(dev, text_begin, gx_default_text_begin);
633
634
210M
    set_dev_proc(dev, encode_color, get_encode_color(dev));
635
210M
    if (dev->color_info.num_components == 3)
636
56.3M
        set_dev_proc(dev, map_rgb_color, dev_proc(dev, encode_color));
637
210M
    if (dev->color_info.num_components == 4)
638
61.1M
        set_dev_proc(dev, map_cmyk_color, dev_proc(dev, encode_color));
639
640
210M
    if (colors_are_separable_and_linear(&dev->color_info)) {
641
65.3M
        fill_dev_proc(dev, encode_color, gx_default_encode_color);
642
65.3M
        fill_dev_proc(dev, map_cmyk_color, gx_default_encode_color);
643
65.3M
        fill_dev_proc(dev, map_rgb_color, gx_default_encode_color);
644
144M
    } else {
645
        /* if it isn't set now punt */
646
144M
        fill_dev_proc(dev, encode_color, gx_error_encode_color);
647
144M
        fill_dev_proc(dev, map_cmyk_color, gx_error_encode_color);
648
144M
        fill_dev_proc(dev, map_rgb_color, gx_error_encode_color);
649
144M
    }
650
651
    /*
652
     * Fill in the color mapping procedures and the component index
653
     * assignment procedure if they have not been provided by the client.
654
     *
655
     * Because it is difficult to provide default encoding procedures
656
     * that handle level inversion, this code needs to check both
657
     * the number of components and the polarity of color model.
658
     */
659
210M
    switch (dev->color_info.num_components) {
660
92.5M
    case 1:     /* DeviceGray or DeviceInvertGray */
661
        /*
662
         * If not gray then the device must provide the color
663
         * mapping procs.
664
         */
665
92.5M
        if (dev->color_info.polarity == GX_CINFO_POLARITY_ADDITIVE) {
666
92.5M
            fill_dev_proc( dev,
667
92.5M
                       get_color_mapping_procs,
668
92.5M
                       gx_default_DevGray_get_color_mapping_procs );
669
92.5M
        } else
670
5.91k
            fill_dev_proc(dev, get_color_mapping_procs, gx_error_get_color_mapping_procs);
671
92.5M
        fill_dev_proc( dev,
672
92.5M
                       get_color_comp_index,
673
92.5M
                       gx_default_DevGray_get_color_comp_index );
674
92.5M
        break;
675
676
56.3M
    case 3:
677
56.3M
        if (dev->color_info.polarity == GX_CINFO_POLARITY_ADDITIVE) {
678
56.3M
            fill_dev_proc( dev,
679
56.3M
                       get_color_mapping_procs,
680
56.3M
                       gx_default_DevRGB_get_color_mapping_procs );
681
56.3M
            fill_dev_proc( dev,
682
56.3M
                       get_color_comp_index,
683
56.3M
                       gx_default_DevRGB_get_color_comp_index );
684
56.3M
        } else {
685
0
            fill_dev_proc(dev, get_color_mapping_procs, gx_error_get_color_mapping_procs);
686
0
            fill_dev_proc(dev, get_color_comp_index, gx_error_get_color_comp_index);
687
0
        }
688
56.3M
        break;
689
690
61.1M
    case 4:
691
61.1M
        fill_dev_proc(dev, get_color_mapping_procs, gx_default_DevCMYK_get_color_mapping_procs);
692
61.1M
        fill_dev_proc(dev, get_color_comp_index, gx_default_DevCMYK_get_color_comp_index);
693
61.1M
        break;
694
121k
    default:    /* Unknown color model - set error handlers */
695
121k
        if (dev_proc(dev, get_color_mapping_procs) == NULL) {
696
0
            fill_dev_proc(dev, get_color_mapping_procs, gx_error_get_color_mapping_procs);
697
0
            fill_dev_proc(dev, get_color_comp_index, gx_error_get_color_comp_index);
698
0
        }
699
210M
    }
700
701
210M
    set_dev_proc(dev, decode_color, get_decode_color(dev));
702
210M
    fill_dev_proc(dev, get_profile, gx_default_get_profile);
703
210M
    fill_dev_proc(dev, set_graphics_type_tag, gx_default_set_graphics_type_tag);
704
705
210M
    fill_dev_proc(dev, fill_rectangle_hl_color, gx_default_fill_rectangle_hl_color);
706
210M
    fill_dev_proc(dev, include_color_space, gx_default_include_color_space);
707
210M
    fill_dev_proc(dev, fill_linear_color_scanline, gx_default_fill_linear_color_scanline);
708
210M
    fill_dev_proc(dev, fill_linear_color_trapezoid, gx_default_fill_linear_color_trapezoid);
709
210M
    fill_dev_proc(dev, fill_linear_color_triangle, gx_default_fill_linear_color_triangle);
710
210M
    fill_dev_proc(dev, update_spot_equivalent_colors, gx_default_update_spot_equivalent_colors);
711
210M
    fill_dev_proc(dev, ret_devn_params, gx_default_ret_devn_params);
712
210M
    fill_dev_proc(dev, fillpage, gx_default_fillpage);
713
210M
    fill_dev_proc(dev, copy_alpha_hl_color, gx_default_no_copy_alpha_hl_color);
714
715
210M
    fill_dev_proc(dev, begin_transparency_group, gx_default_begin_transparency_group);
716
210M
    fill_dev_proc(dev, end_transparency_group, gx_default_end_transparency_group);
717
718
210M
    fill_dev_proc(dev, begin_transparency_mask, gx_default_begin_transparency_mask);
719
210M
    fill_dev_proc(dev, end_transparency_mask, gx_default_end_transparency_mask);
720
210M
    fill_dev_proc(dev, discard_transparency_layer, gx_default_discard_transparency_layer);
721
722
210M
    fill_dev_proc(dev, push_transparency_state, gx_default_push_transparency_state);
723
210M
    fill_dev_proc(dev, pop_transparency_state, gx_default_pop_transparency_state);
724
725
210M
    fill_dev_proc(dev, put_image, gx_default_put_image);
726
727
210M
    fill_dev_proc(dev, dev_spec_op, gx_default_dev_spec_op);
728
210M
    fill_dev_proc(dev, copy_planes, gx_default_copy_planes);
729
210M
    fill_dev_proc(dev, process_page, gx_default_process_page);
730
210M
    fill_dev_proc(dev, transform_pixel_region, gx_default_transform_pixel_region);
731
210M
    fill_dev_proc(dev, fill_stroke_path, gx_default_fill_stroke_path);
732
210M
    fill_dev_proc(dev, lock_pattern, gx_default_lock_pattern);
733
210M
}
734
735
736
int
737
gx_default_open_device(gx_device * dev)
738
614k
{
739
    /* Initialize the separable status if not known. */
740
614k
    check_device_separable(dev);
741
614k
    return 0;
742
614k
}
743
744
/* Get the initial matrix for a device with inverted Y. */
745
/* This includes essentially all printers and displays. */
746
/* Supports LeadingEdge, but no margins or viewports */
747
void
748
gx_default_get_initial_matrix(gx_device * dev, register gs_matrix * pmat)
749
103M
{
750
    /* NB this device has no paper margins */
751
103M
    double fs_res = dev->HWResolution[0] / 72.0;
752
103M
    double ss_res = dev->HWResolution[1] / 72.0;
753
754
103M
    switch(dev->LeadingEdge & LEADINGEDGE_MASK) {
755
17
    case 1: /* 90 degrees */
756
17
        pmat->xx = 0;
757
17
        pmat->xy = -ss_res;
758
17
        pmat->yx = -fs_res;
759
17
        pmat->yy = 0;
760
17
        pmat->tx = (float)dev->width;
761
17
        pmat->ty = (float)dev->height;
762
17
        break;
763
0
    case 2: /* 180 degrees */
764
0
        pmat->xx = -fs_res;
765
0
        pmat->xy = 0;
766
0
        pmat->yx = 0;
767
0
        pmat->yy = ss_res;
768
0
        pmat->tx = (float)dev->width;
769
0
        pmat->ty = 0;
770
0
        break;
771
0
    case 3: /* 270 degrees */
772
0
        pmat->xx = 0;
773
0
        pmat->xy = ss_res;
774
0
        pmat->yx = fs_res;
775
0
        pmat->yy = 0;
776
0
        pmat->tx = 0;
777
0
        pmat->ty = 0;
778
0
        break;
779
0
    default:
780
103M
    case 0:
781
103M
        pmat->xx = fs_res;
782
103M
        pmat->xy = 0;
783
103M
        pmat->yx = 0;
784
103M
        pmat->yy = -ss_res;
785
103M
        pmat->tx = 0;
786
103M
        pmat->ty = (float)dev->height;
787
        /****** tx/y is WRONG for devices with ******/
788
        /****** arbitrary initial matrix ******/
789
103M
        break;
790
103M
    }
791
103M
}
792
/* Get the initial matrix for a device with upright Y. */
793
/* This includes just a few printers and window systems. */
794
void
795
gx_upright_get_initial_matrix(gx_device * dev, register gs_matrix * pmat)
796
4.38M
{
797
4.38M
    pmat->xx = dev->HWResolution[0] / 72.0; /* x_pixels_per_inch */
798
4.38M
    pmat->xy = 0;
799
4.38M
    pmat->yx = 0;
800
4.38M
    pmat->yy = dev->HWResolution[1] / 72.0; /* y_pixels_per_inch */
801
    /****** tx/y is WRONG for devices with ******/
802
    /****** arbitrary initial matrix ******/
803
4.38M
    pmat->tx = 0;
804
4.38M
    pmat->ty = 0;
805
4.38M
}
806
807
int
808
gx_default_sync_output(gx_device * dev) /* lgtm [cpp/useless-expression] */
809
1.47M
{
810
1.47M
    return 0;
811
1.47M
}
812
813
int
814
gx_default_output_page(gx_device * dev, int num_copies, int flush)
815
16
{
816
16
    int code = dev_proc(dev, sync_output)(dev);
817
818
16
    if (code >= 0)
819
16
        code = gx_finish_output_page(dev, num_copies, flush);
820
16
    return code;
821
16
}
822
823
int
824
gx_default_close_device(gx_device * dev)
825
1.10M
{
826
1.10M
    return 0;
827
1.10M
}
828
829
gx_device *
830
gx_default_get_page_device(gx_device * dev)
831
681k
{
832
681k
    return NULL;
833
681k
}
834
gx_device *
835
gx_page_device_get_page_device(gx_device * dev)
836
43.3M
{
837
43.3M
    return dev;
838
43.3M
}
839
840
int
841
gx_default_get_alpha_bits(gx_device * dev, graphics_object_type type)
842
107M
{
843
107M
    return (type == go_text ? dev->color_info.anti_alias.text_bits :
844
107M
            dev->color_info.anti_alias.graphics_bits);
845
107M
}
846
847
void
848
gx_default_get_clipping_box(gx_device * dev, gs_fixed_rect * pbox)
849
91.5M
{
850
91.5M
    pbox->p.x = 0;
851
91.5M
    pbox->p.y = 0;
852
91.5M
    pbox->q.x = int2fixed(dev->width);
853
91.5M
    pbox->q.y = int2fixed(dev->height);
854
91.5M
}
855
void
856
gx_get_largest_clipping_box(gx_device * dev, gs_fixed_rect * pbox)
857
808
{
858
808
    pbox->p.x = min_fixed;
859
808
    pbox->p.y = min_fixed;
860
808
    pbox->q.x = max_fixed;
861
808
    pbox->q.y = max_fixed;
862
808
}
863
864
int
865
gx_no_composite(gx_device * dev, gx_device ** pcdev,
866
                        const gs_composite_t * pcte,
867
                        gs_gstate * pgs, gs_memory_t * memory,
868
                        gx_device *cdev)
869
0
{
870
0
    return_error(gs_error_unknownerror);  /* not implemented */
871
0
}
872
int
873
gx_default_composite(gx_device * dev, gx_device ** pcdev,
874
                             const gs_composite_t * pcte,
875
                             gs_gstate * pgs, gs_memory_t * memory,
876
                             gx_device *cdev)
877
28.0M
{
878
28.0M
    return pcte->type->procs.create_default_compositor
879
28.0M
        (pcte, pcdev, dev, pgs, memory);
880
28.0M
}
881
int
882
gx_null_composite(gx_device * dev, gx_device ** pcdev,
883
                          const gs_composite_t * pcte,
884
                          gs_gstate * pgs, gs_memory_t * memory,
885
                          gx_device *cdev)
886
0
{
887
0
    *pcdev = dev;
888
0
    return 0;
889
0
}
890
891
/*
892
 * Default handler for creating a compositor device when writing the clist. */
893
int
894
gx_default_composite_clist_write_update(const gs_composite_t *pcte, gx_device * dev,
895
                gx_device ** pcdev, gs_gstate * pgs, gs_memory_t * mem)
896
1.23M
{
897
1.23M
    *pcdev = dev;   /* Do nothing -> return the same device */
898
1.23M
    return 0;
899
1.23M
}
900
901
/* Default handler for adjusting a compositor's CTM. */
902
int
903
gx_default_composite_adjust_ctm(gs_composite_t *pcte, int x0, int y0, gs_gstate *pgs)
904
228M
{
905
228M
    return 0;
906
228M
}
907
908
/*
909
 * Default check for closing compositor.
910
 */
911
gs_compositor_closing_state
912
gx_default_composite_is_closing(const gs_composite_t *this, gs_composite_t **pcte, gx_device *dev)
913
0
{
914
0
    return COMP_ENQUEUE;
915
0
}
916
917
/*
918
 * Default check whether a next operation is friendly to the compositor.
919
 */
920
bool
921
gx_default_composite_is_friendly(const gs_composite_t *this, byte cmd0, byte cmd1)
922
3.37M
{
923
3.37M
    return false;
924
3.37M
}
925
926
/*
927
 * Default handler for updating the clist device when reading a compositing
928
 * device.
929
 */
930
int
931
gx_default_composite_clist_read_update(gs_composite_t *pxcte, gx_device * cdev,
932
                gx_device * tdev, gs_gstate * pgs, gs_memory_t * mem)
933
228M
{
934
228M
    return 0;     /* Do nothing */
935
228M
}
936
937
/*
938
 * Default handler for get_cropping returns no cropping.
939
 */
940
int
941
gx_default_composite_get_cropping(const gs_composite_t *pxcte, int *ry, int *rheight,
942
                                  int cropping_min, int cropping_max)
943
1.23M
{
944
1.23M
    return 0;     /* No cropping. */
945
1.23M
}
946
947
int
948
gx_default_initialize_device(gx_device *dev)
949
0
{
950
0
    return 0;
951
0
}
952
953
int
954
gx_default_dev_spec_op(gx_device *pdev, int dev_spec_op, void *data, int size)
955
422M
{
956
422M
    switch(dev_spec_op) {
957
0
        case gxdso_form_begin:
958
0
        case gxdso_form_end:
959
37.3k
        case gxdso_pattern_can_accum:
960
37.3k
        case gxdso_pattern_start_accum:
961
37.3k
        case gxdso_pattern_finish_accum:
962
190k
        case gxdso_pattern_load:
963
4.64M
        case gxdso_pattern_shading_area:
964
5.74M
        case gxdso_pattern_is_cpath_accum:
965
5.74M
        case gxdso_pattern_handles_clip_path:
966
5.78M
        case gxdso_is_pdf14_device:
967
148M
        case gxdso_supports_devn:
968
148M
        case gxdso_supports_hlcolor:
969
148M
        case gxdso_supports_saved_pages:
970
148M
        case gxdso_needs_invariant_palette:
971
149M
        case gxdso_supports_iccpostrender:
972
150M
        case gxdso_supports_alpha:
973
150M
        case gxdso_pdf14_sep_device:
974
152M
        case gxdso_supports_pattern_transparency:
975
152M
        case gxdso_overprintsim_state:
976
153M
        case gxdso_skip_icc_component_validation:
977
153M
            return 0;
978
374
        case gxdso_pattern_shfill_doesnt_need_path:
979
374
            return (dev_proc(pdev, fill_path) == gx_default_fill_path);
980
29.0M
        case gxdso_is_std_cmyk_1bit:
981
29.0M
            return (dev_proc(pdev, map_cmyk_color) == cmyk_1bit_map_cmyk_color);
982
0
        case gxdso_interpolate_antidropout:
983
0
            return pdev->color_info.use_antidropout_downscaler;
984
1.71M
        case gxdso_interpolate_threshold:
985
1.71M
            if ((pdev->color_info.num_components == 1 &&
986
1.71M
                 pdev->color_info.max_gray < 15) ||
987
1.71M
                (pdev->color_info.num_components > 1 &&
988
1.45M
                 pdev->color_info.max_color < 15)) {
989
                /* If we are a limited color device (i.e. we are halftoning)
990
                 * then only interpolate if we are upscaling by at least 4 */
991
790k
                return 4;
992
790k
            }
993
922k
            return 0; /* Otherwise no change */
994
5.12M
        case gxdso_get_dev_param:
995
5.12M
            {
996
5.12M
                dev_param_req_t *request = (dev_param_req_t *)data;
997
5.12M
                return gx_default_get_param(pdev, request->Param, request->list);
998
1.71M
            }
999
2.91M
        case gxdso_current_output_device:
1000
2.91M
            {
1001
2.91M
                *(gx_device **)data = pdev;
1002
2.91M
                return 0;
1003
1.71M
            }
1004
40.4k
        case gxdso_copy_color_is_fast:
1005
40.4k
            return (dev_proc(pdev, copy_color) != gx_default_copy_color);
1006
846k
        case gxdso_is_encoding_direct:
1007
846k
            if (pdev->color_info.depth != 8 * pdev->color_info.num_components)
1008
0
                return 0;
1009
846k
            return (dev_proc(pdev, encode_color) == gx_default_encode_color ||
1010
846k
                    dev_proc(pdev, encode_color) == gx_default_rgb_map_rgb_color);
1011
        /* Just ignore information about events */
1012
0
        case gxdso_event_info:
1013
0
            return 0;
1014
19.2M
        case gxdso_overprint_active:
1015
19.2M
            return 0;
1016
422M
    }
1017
422M
    return_error(gs_error_undefined);
1018
422M
}
1019
1020
int
1021
gx_default_fill_rectangle_hl_color(gx_device *pdev,
1022
    const gs_fixed_rect *rect,
1023
    const gs_gstate *pgs, const gx_drawing_color *pdcolor,
1024
    const gx_clip_path *pcpath)
1025
6
{
1026
6
    return_error(gs_error_rangecheck);
1027
6
}
1028
1029
int
1030
gx_default_include_color_space(gx_device *pdev, gs_color_space *cspace,
1031
        const byte *res_name, int name_length)
1032
0
{
1033
0
    return 0;
1034
0
}
1035
1036
/*
1037
 * If a device wants to determine an equivalent color for its spot colors then
1038
 * it needs to implement this method.  See comments at the start of
1039
 * src/gsequivc.c.
1040
 */
1041
int
1042
gx_default_update_spot_equivalent_colors(gx_device *pdev, const gs_gstate * pgs, const gs_color_space *pcs)
1043
22.3k
{
1044
22.3k
    return 0;
1045
22.3k
}
1046
1047
/*
1048
 * If a device wants to determine implement support for spot colors then
1049
 * it needs to implement this method.
1050
 */
1051
gs_devn_params *
1052
gx_default_ret_devn_params(gx_device *pdev)
1053
162M
{
1054
162M
    return NULL;
1055
162M
}
1056
1057
int
1058
gx_default_process_page(gx_device *dev, gx_process_page_options_t *options)
1059
0
{
1060
0
    gs_int_rect rect;
1061
0
    int code = 0;
1062
0
    void *buffer = NULL;
1063
1064
    /* Possible future improvements in here could be given by us dividing the
1065
     * page up into n chunks, and spawning a thread per chunk to do the
1066
     * process_fn call on. n could be given by NumRenderingThreads. This
1067
     * would give us multi-core advantages even without clist. */
1068
0
    if (options->init_buffer_fn) {
1069
0
        code = options->init_buffer_fn(options->arg, dev, dev->memory, dev->width, dev->height, &buffer);
1070
0
        if (code < 0)
1071
0
            return code;
1072
0
    }
1073
1074
0
    rect.p.x = 0;
1075
0
    rect.p.y = 0;
1076
0
    rect.q.x = dev->width;
1077
0
    rect.q.y = dev->height;
1078
0
    if (options->process_fn)
1079
0
        code = options->process_fn(options->arg, dev, dev, &rect, buffer);
1080
0
    if (code >= 0 && options->output_fn)
1081
0
        code = options->output_fn(options->arg, dev, buffer);
1082
1083
0
    if (options->free_buffer_fn)
1084
0
        options->free_buffer_fn(options->arg, dev, dev->memory, buffer);
1085
1086
0
    return code;
1087
0
}
1088
1089
int
1090
gx_default_begin_transparency_group(gx_device *dev, const gs_transparency_group_params_t *ptgp, const gs_rect *pbbox, gs_gstate *pgs, gs_memory_t *mem)
1091
0
{
1092
0
    return 0;
1093
0
}
1094
1095
int
1096
gx_default_end_transparency_group(gx_device *dev, gs_gstate *pgs)
1097
0
{
1098
0
    return 0;
1099
0
}
1100
1101
int
1102
gx_default_begin_transparency_mask(gx_device *dev, const gx_transparency_mask_params_t *ptgp, const gs_rect *pbbox, gs_gstate *pgs, gs_memory_t *mem)
1103
0
{
1104
0
    return 0;
1105
0
}
1106
1107
int
1108
gx_default_end_transparency_mask(gx_device *dev, gs_gstate *pgs)
1109
0
{
1110
0
    return 0;
1111
0
}
1112
1113
int
1114
gx_default_discard_transparency_layer(gx_device *dev, gs_gstate *pgs)
1115
0
{
1116
0
    return 0;
1117
0
}
1118
1119
int
1120
gx_default_push_transparency_state(gx_device *dev, gs_gstate *pgs)
1121
0
{
1122
0
    return 0;
1123
0
}
1124
1125
int
1126
gx_default_pop_transparency_state(gx_device *dev, gs_gstate *pgs)
1127
0
{
1128
0
    return 0;
1129
0
}
1130
1131
int
1132
gx_default_put_image(gx_device *dev, gx_device *mdev, const byte **buffers, int num_chan, int x, int y, int width, int height, int row_stride, int alpha_plane_index, int tag_plane_index)
1133
76.3k
{
1134
76.3k
    return_error(gs_error_undefined);
1135
76.3k
}
1136
1137
int
1138
gx_default_no_copy_alpha_hl_color(gx_device * dev, const byte * data, int data_x, int raster, gx_bitmap_id id, int x, int y, int width, int height, const gx_drawing_color *pdcolor, int depth)
1139
0
{
1140
0
    return_error(gs_error_undefined);
1141
0
}
1142
1143
int
1144
gx_default_copy_planes(gx_device *dev, const byte *data, int data_x, int raster, gx_bitmap_id id, int x, int y, int width, int height, int plane_height)
1145
0
{
1146
0
    return_error(gs_error_undefined);
1147
0
}
1148
1149
/* ---------------- Default per-instance procedures ---------------- */
1150
1151
int
1152
gx_default_install(gx_device * dev, gs_gstate * pgs)
1153
845k
{
1154
845k
    return 0;
1155
845k
}
1156
1157
int
1158
gx_default_begin_page(gx_device * dev, gs_gstate * pgs)
1159
1.09M
{
1160
1.09M
    return 0;
1161
1.09M
}
1162
1163
int
1164
gx_default_end_page(gx_device * dev, int reason, gs_gstate * pgs)
1165
1.29M
{
1166
1.29M
    return (reason != 2 ? 1 : 0);
1167
1.29M
}
1168
1169
void
1170
gx_default_set_graphics_type_tag(gx_device *dev, gs_graphics_type_tag_t graphics_type_tag)
1171
5.41M
{
1172
    /* set the tag but carefully preserve GS_DEVICE_ENCODES_TAGS */
1173
5.41M
    dev->graphics_type_tag = (dev->graphics_type_tag & GS_DEVICE_ENCODES_TAGS) | graphics_type_tag;
1174
5.41M
}
1175
1176
/* ---------------- Device subclassing procedures ---------------- */
1177
1178
/* Non-obvious code. The 'dest_procs' is the 'procs' memory occupied by the original device that we decided to subclass,
1179
 * 'src_procs' is the newly allocated piece of memory, to which we have already copied the content of the
1180
 * original device (including the procs), prototype is the device structure prototype for the subclassing device.
1181
 * Here we copy the methods from the prototype to the original device procs memory *but* if the original (src_procs)
1182
 * device had a NULL method, we make the new device procs have a NULL method too.
1183
 * The reason for ths is ugly, there are some places in the graphics library which explicitly check for
1184
 * a device having a NULL method and take different code paths depending on the result.
1185
 * Now in general we expect subclassing devices to implement *every* method, so if we didn't copy
1186
 * over NULL methods present in the original source device then the code path could be inappropriate for
1187
 * that underlying (now subclassed) device.
1188
 */
1189
/* November 10th 2017 Restored the original behaviour of the device methods, they should now never be NULL.
1190
 * Howwever, there are still places in the code which take different code paths if the device method is (now)
1191
 * the default device method, rather than a device-specific method.
1192
 * So instead of checking for NULL, we now need to check against the default implementation, and *NOT* copy the
1193
 * prototype (subclass device) method if the original device had the default implementation.
1194
 * I suspect a combination of forwarding and subclassing devices will not work properly for this reason.
1195
 */
1196
int gx_copy_device_procs(gx_device *dest, const gx_device *src, const gx_device *pprototype)
1197
35.1k
{
1198
35.1k
    gx_device prototype = *pprototype;
1199
1200
    /* In the new (as of 2021) world, the prototype does not contain
1201
     * device procs. We need to call the 'initialize_device_procs'
1202
     * function to properly populate the procs array. We can't write to
1203
     * the const prototype pointer we are passed in, so copy it to a
1204
     * local block, and initialize that instead, */
1205
35.1k
    prototype.initialize_device_procs(&prototype);
1206
    /* Fill in missing entries with the global defaults */
1207
35.1k
    gx_device_fill_in_procs(&prototype);
1208
1209
35.1k
    if (dest->initialize_device_procs == NULL)
1210
0
       dest->initialize_device_procs = prototype.initialize_device_procs;
1211
1212
35.1k
    set_dev_proc(dest, initialize_device, dev_proc(&prototype, initialize_device));
1213
35.1k
    set_dev_proc(dest, open_device, dev_proc(&prototype, open_device));
1214
35.1k
    set_dev_proc(dest, get_initial_matrix, dev_proc(&prototype, get_initial_matrix));
1215
35.1k
    set_dev_proc(dest, sync_output, dev_proc(&prototype, sync_output));
1216
35.1k
    set_dev_proc(dest, output_page, dev_proc(&prototype, output_page));
1217
35.1k
    set_dev_proc(dest, close_device, dev_proc(&prototype, close_device));
1218
35.1k
    set_dev_proc(dest, map_rgb_color, dev_proc(&prototype, map_rgb_color));
1219
35.1k
    set_dev_proc(dest, map_color_rgb, dev_proc(&prototype, map_color_rgb));
1220
35.1k
    set_dev_proc(dest, fill_rectangle, dev_proc(&prototype, fill_rectangle));
1221
35.1k
    set_dev_proc(dest, copy_mono, dev_proc(&prototype, copy_mono));
1222
35.1k
    set_dev_proc(dest, copy_color, dev_proc(&prototype, copy_color));
1223
35.1k
    set_dev_proc(dest, get_params, dev_proc(&prototype, get_params));
1224
35.1k
    set_dev_proc(dest, put_params, dev_proc(&prototype, put_params));
1225
35.1k
    set_dev_proc(dest, map_cmyk_color, dev_proc(&prototype, map_cmyk_color));
1226
35.1k
    set_dev_proc(dest, get_page_device, dev_proc(&prototype, get_page_device));
1227
35.1k
    set_dev_proc(dest, get_alpha_bits, dev_proc(&prototype, get_alpha_bits));
1228
35.1k
    set_dev_proc(dest, copy_alpha, dev_proc(&prototype, copy_alpha));
1229
35.1k
    set_dev_proc(dest, fill_path, dev_proc(&prototype, fill_path));
1230
35.1k
    set_dev_proc(dest, stroke_path, dev_proc(&prototype, stroke_path));
1231
35.1k
    set_dev_proc(dest, fill_trapezoid, dev_proc(&prototype, fill_trapezoid));
1232
35.1k
    set_dev_proc(dest, fill_parallelogram, dev_proc(&prototype, fill_parallelogram));
1233
35.1k
    set_dev_proc(dest, fill_triangle, dev_proc(&prototype, fill_triangle));
1234
35.1k
    set_dev_proc(dest, draw_thin_line, dev_proc(&prototype, draw_thin_line));
1235
35.1k
    set_dev_proc(dest, strip_tile_rectangle, dev_proc(&prototype, strip_tile_rectangle));
1236
35.1k
    set_dev_proc(dest, get_clipping_box, dev_proc(&prototype, get_clipping_box));
1237
35.1k
    set_dev_proc(dest, begin_typed_image, dev_proc(&prototype, begin_typed_image));
1238
35.1k
    set_dev_proc(dest, get_bits_rectangle, dev_proc(&prototype, get_bits_rectangle));
1239
35.1k
    set_dev_proc(dest, composite, dev_proc(&prototype, composite));
1240
35.1k
    set_dev_proc(dest, get_hardware_params, dev_proc(&prototype, get_hardware_params));
1241
35.1k
    set_dev_proc(dest, text_begin, dev_proc(&prototype, text_begin));
1242
35.1k
    set_dev_proc(dest, discard_transparency_layer, dev_proc(&prototype, discard_transparency_layer));
1243
35.1k
    set_dev_proc(dest, get_color_mapping_procs, dev_proc(&prototype, get_color_mapping_procs));
1244
35.1k
    set_dev_proc(dest, get_color_comp_index, dev_proc(&prototype, get_color_comp_index));
1245
35.1k
    set_dev_proc(dest, encode_color, dev_proc(&prototype, encode_color));
1246
35.1k
    set_dev_proc(dest, decode_color, dev_proc(&prototype, decode_color));
1247
35.1k
    set_dev_proc(dest, fill_rectangle_hl_color, dev_proc(&prototype, fill_rectangle_hl_color));
1248
35.1k
    set_dev_proc(dest, include_color_space, dev_proc(&prototype, include_color_space));
1249
35.1k
    set_dev_proc(dest, fill_linear_color_scanline, dev_proc(&prototype, fill_linear_color_scanline));
1250
35.1k
    set_dev_proc(dest, fill_linear_color_trapezoid, dev_proc(&prototype, fill_linear_color_trapezoid));
1251
35.1k
    set_dev_proc(dest, fill_linear_color_triangle, dev_proc(&prototype, fill_linear_color_triangle));
1252
35.1k
    set_dev_proc(dest, update_spot_equivalent_colors, dev_proc(&prototype, update_spot_equivalent_colors));
1253
35.1k
    set_dev_proc(dest, ret_devn_params, dev_proc(&prototype, ret_devn_params));
1254
35.1k
    set_dev_proc(dest, fillpage, dev_proc(&prototype, fillpage));
1255
35.1k
    set_dev_proc(dest, push_transparency_state, dev_proc(&prototype, push_transparency_state));
1256
35.1k
    set_dev_proc(dest, pop_transparency_state, dev_proc(&prototype, pop_transparency_state));
1257
35.1k
    set_dev_proc(dest, dev_spec_op, dev_proc(&prototype, dev_spec_op));
1258
35.1k
    set_dev_proc(dest, get_profile, dev_proc(&prototype, get_profile));
1259
35.1k
    set_dev_proc(dest, strip_copy_rop2, dev_proc(&prototype, strip_copy_rop2));
1260
35.1k
    set_dev_proc(dest, strip_tile_rect_devn, dev_proc(&prototype, strip_tile_rect_devn));
1261
35.1k
    set_dev_proc(dest, process_page, dev_proc(&prototype, process_page));
1262
35.1k
    set_dev_proc(dest, transform_pixel_region, dev_proc(&prototype, transform_pixel_region));
1263
35.1k
    set_dev_proc(dest, fill_stroke_path, dev_proc(&prototype, fill_stroke_path));
1264
35.1k
    set_dev_proc(dest, lock_pattern, dev_proc(&prototype, lock_pattern));
1265
1266
    /*
1267
     * We absolutely must set the 'set_graphics_type_tag' to the default subclass one
1268
     * even if the subclassed device is using the default. This is because the
1269
     * default implementation sets a flag in the device structure, and if we
1270
     * copy the default method, we'll end up setting the flag in the subclassing device
1271
     * instead of the subclassed device!
1272
     */
1273
35.1k
    set_dev_proc(dest, set_graphics_type_tag, dev_proc(&prototype, set_graphics_type_tag));
1274
1275
    /* These are the routines whose existence is checked against the default at
1276
     * some point in the code. The code path differs when the device implements a
1277
     * method other than the default, so the subclassing device needs to ensure that
1278
     * if the subclassed device has one of these methods set to the default, we
1279
     * do not overwrite the default method.
1280
     */
1281
35.1k
    if (dev_proc(src, fill_mask) != gx_default_fill_mask)
1282
23.0k
        set_dev_proc(dest, fill_mask, dev_proc(&prototype, fill_mask));
1283
35.1k
    if (dev_proc(src, begin_transparency_group) != gx_default_begin_transparency_group)
1284
0
        set_dev_proc(dest, begin_transparency_group, dev_proc(&prototype, begin_transparency_group));
1285
35.1k
    if (dev_proc(src, end_transparency_group) != gx_default_end_transparency_group)
1286
0
        set_dev_proc(dest, end_transparency_group, dev_proc(&prototype, end_transparency_group));
1287
35.1k
    if (dev_proc(src, put_image) != gx_default_put_image)
1288
0
        set_dev_proc(dest, put_image, dev_proc(&prototype, put_image));
1289
35.1k
    if (dev_proc(src, copy_planes) != gx_default_copy_planes)
1290
0
        set_dev_proc(dest, copy_planes, dev_proc(&prototype, copy_planes));
1291
35.1k
    if (dev_proc(src, copy_alpha_hl_color) != gx_default_no_copy_alpha_hl_color)
1292
0
        set_dev_proc(dest, copy_alpha_hl_color, dev_proc(&prototype, copy_alpha_hl_color));
1293
1294
35.1k
    return 0;
1295
35.1k
}
1296
1297
int gx_device_subclass(gx_device *dev_to_subclass, gx_device *new_prototype, unsigned int private_data_size)
1298
35.1k
{
1299
35.1k
    gx_device *child_dev;
1300
35.1k
    void *psubclass_data;
1301
35.1k
    gs_memory_struct_type_t *a_std = NULL, *b_std = NULL;
1302
35.1k
    int dynamic = dev_to_subclass->stype_is_dynamic;
1303
35.1k
    char *ptr, *ptr1;
1304
1305
    /* If this happens we are stuffed, as there is no way to get hold
1306
     * of the original device's stype structure, which means we cannot
1307
     * allocate a replacement structure. Abort if so.
1308
     * Also abort if the new_prototype device struct is too large.
1309
     */
1310
35.1k
    if (!dev_to_subclass->stype ||
1311
35.1k
        dev_to_subclass->stype->ssize < new_prototype->params_size)
1312
6
        return_error(gs_error_VMerror);
1313
1314
    /* We make a 'stype' structure for our new device, and copy the old stype into it
1315
     * This means our new device will always have the 'stype_is_dynamic' flag set
1316
     */
1317
35.1k
    a_std = (gs_memory_struct_type_t *)
1318
35.1k
        gs_alloc_bytes_immovable(dev_to_subclass->memory->non_gc_memory, sizeof(*a_std),
1319
35.1k
                                 "gs_device_subclass(stype)");
1320
35.1k
    if (!a_std)
1321
0
        return_error(gs_error_VMerror);
1322
35.1k
    *a_std = *dev_to_subclass->stype;
1323
35.1k
    a_std->ssize = dev_to_subclass->params_size;
1324
1325
35.1k
    if (!dynamic) {
1326
35.1k
        b_std = (gs_memory_struct_type_t *)
1327
35.1k
            gs_alloc_bytes_immovable(dev_to_subclass->memory->non_gc_memory, sizeof(*b_std),
1328
35.1k
                                     "gs_device_subclass(stype)");
1329
35.1k
        if (!b_std) {
1330
0
            gs_free_const_object(dev_to_subclass->memory->non_gc_memory, a_std, "gs_device_subclass(stype)");
1331
0
            return_error(gs_error_VMerror);
1332
0
        }
1333
35.1k
    }
1334
1335
    /* Allocate a device structure for the new child device */
1336
35.1k
    child_dev = gs_alloc_struct_immovable(dev_to_subclass->memory->stable_memory, gx_device, a_std,
1337
35.1k
                                        "gs_device_subclass(device)");
1338
35.1k
    if (child_dev == 0) {
1339
0
        gs_free_const_object(dev_to_subclass->memory->non_gc_memory, a_std, "gs_device_subclass(stype)");
1340
0
        gs_free_const_object(dev_to_subclass->memory->non_gc_memory, b_std, "gs_device_subclass(stype)");
1341
0
        return_error(gs_error_VMerror);
1342
0
    }
1343
1344
    /* Make sure all methods are filled in, note this won't work for a forwarding device
1345
     * so forwarding devices will have to be filled in before being subclassed. This doesn't fill
1346
     * in the fill_rectangle proc, that gets done in the ultimate device's open proc.
1347
     */
1348
35.1k
    gx_device_fill_in_procs(dev_to_subclass);
1349
35.1k
    memcpy(child_dev, dev_to_subclass, dev_to_subclass->stype->ssize);
1350
35.1k
    child_dev->stype = a_std;
1351
35.1k
    child_dev->stype_is_dynamic = 1;
1352
1353
    /* At this point, the only counted reference to the child is from its parent, and we need it to use the right allocator */
1354
35.1k
    rc_init(child_dev, dev_to_subclass->memory->stable_memory, 1);
1355
1356
35.1k
    psubclass_data = (void *)gs_alloc_bytes(dev_to_subclass->memory->non_gc_memory, private_data_size, "subclass memory for subclassing device");
1357
35.1k
    if (psubclass_data == 0){
1358
0
        gs_free_const_object(dev_to_subclass->memory->non_gc_memory, b_std, "gs_device_subclass(stype)");
1359
        /* We *don't* want to run the finalize routine. This would free the stype and
1360
         * properly handle the icc_struct and PageList, but for devices with a custom
1361
         * finalize (eg psdcmyk) it might also free memory it had allocated, and we're
1362
         * still pointing at that memory in the parent.
1363
         */
1364
0
        a_std->finalize = NULL;
1365
0
        gs_set_object_type(dev_to_subclass->memory->stable_memory, child_dev, a_std);
1366
0
        gs_free_object(dev_to_subclass->memory->stable_memory, child_dev, "free subclass memory for subclassing device");
1367
0
        gs_free_const_object(dev_to_subclass->memory->non_gc_memory, a_std, "gs_device_subclass(stype)");
1368
0
        return_error(gs_error_VMerror);
1369
0
    }
1370
35.1k
    memset(psubclass_data, 0x00, private_data_size);
1371
1372
35.1k
    gx_copy_device_procs(dev_to_subclass, child_dev, new_prototype);
1373
35.1k
    dev_to_subclass->finalize = new_prototype->finalize;
1374
35.1k
    dev_to_subclass->dname = new_prototype->dname;
1375
35.1k
    if (dev_to_subclass->icc_struct)
1376
35.1k
        rc_increment(dev_to_subclass->icc_struct);
1377
35.1k
    if (dev_to_subclass->PageList)
1378
35.1k
        rc_increment(dev_to_subclass->PageList);
1379
35.1k
    if (dev_to_subclass->NupControl)
1380
35.1k
        rc_increment(dev_to_subclass->NupControl);
1381
1382
35.1k
    dev_to_subclass->page_procs = new_prototype->page_procs;
1383
35.1k
    gx_subclass_fill_in_page_procs(dev_to_subclass);
1384
1385
    /* In case the new device we're creating has already been initialised, copy
1386
     * its additional data.
1387
     */
1388
35.1k
    ptr = ((char *)dev_to_subclass) + sizeof(gx_device);
1389
35.1k
    ptr1 = ((char *)new_prototype) + sizeof(gx_device);
1390
35.1k
    memcpy(ptr, ptr1, new_prototype->params_size - sizeof(gx_device));
1391
1392
    /* If the original device's stype structure was dynamically allocated, we need
1393
     * to 'fixup' the contents, it's procs need to point to the new device's procs
1394
     * for instance.
1395
     */
1396
35.1k
    if (dynamic) {
1397
0
        if (new_prototype->stype) {
1398
0
            b_std = (gs_memory_struct_type_t *)dev_to_subclass->stype;
1399
0
            *b_std = *new_prototype->stype;
1400
0
            b_std->ssize = a_std->ssize;
1401
0
            dev_to_subclass->stype_is_dynamic = 1;
1402
0
        } else {
1403
0
            gs_free_const_object(child_dev->memory->non_gc_memory, dev_to_subclass->stype,
1404
0
                             "unsubclass");
1405
0
            dev_to_subclass->stype = NULL;
1406
0
            b_std = (gs_memory_struct_type_t *)new_prototype->stype;
1407
0
            dev_to_subclass->stype_is_dynamic = 0;
1408
0
        }
1409
0
    }
1410
35.1k
    else {
1411
35.1k
        *b_std = *new_prototype->stype;
1412
35.1k
        b_std->ssize = a_std->ssize;
1413
35.1k
        dev_to_subclass->stype_is_dynamic = 1;
1414
35.1k
    }
1415
35.1k
    dev_to_subclass->stype = b_std;
1416
    /* We have to patch up the "type" parameters that the memory manage/garbage
1417
     * collector will use, as well.
1418
     */
1419
35.1k
    gs_set_object_type(child_dev->memory, dev_to_subclass, b_std);
1420
1421
35.1k
    dev_to_subclass->subclass_data = psubclass_data;
1422
35.1k
    dev_to_subclass->child = child_dev;
1423
35.1k
    if (child_dev->parent) {
1424
0
        dev_to_subclass->parent = child_dev->parent;
1425
0
        child_dev->parent->child = dev_to_subclass;
1426
0
    }
1427
35.1k
    if (child_dev->child) {
1428
0
        child_dev->child->parent = child_dev;
1429
0
    }
1430
35.1k
    child_dev->parent = dev_to_subclass;
1431
1432
35.1k
    return 0;
1433
35.1k
}
1434
1435
void gx_device_unsubclass(gx_device *dev)
1436
0
{
1437
0
    generic_subclass_data *psubclass_data;
1438
0
    gx_device *parent, *child;
1439
0
    gs_memory_struct_type_t *a_std = 0, *b_std = 0;
1440
0
    int dynamic, ref_count;
1441
0
    gs_memory_t *rcmem;
1442
1443
    /* This should not happen... */
1444
0
    if (!dev)
1445
0
        return;
1446
1447
0
    ref_count = dev->rc.ref_count;
1448
0
    rcmem = dev->rc.memory;
1449
1450
0
    child = dev->child;
1451
0
    psubclass_data = (generic_subclass_data *)dev->subclass_data;
1452
0
    parent = dev->parent;
1453
0
    dynamic = dev->stype_is_dynamic;
1454
1455
    /* We need to account for the fact that we are removing ourselves from
1456
     * the device chain after a clist device has been pushed, due to a
1457
     * compositor action. Since we patched the clist 'composite'
1458
     * method (and target device) when it was pushed.
1459
     * A point to note; we *don't* want to change the forwarding device's
1460
     * 'target', because when we copy the child up to replace 'this' device
1461
     * we do still want the forwarding device to point here. NB its the *child*
1462
     * device that goes away.
1463
     */
1464
0
    if (psubclass_data != NULL && psubclass_data->forwarding_dev != NULL && psubclass_data->saved_compositor_method)
1465
0
        psubclass_data->forwarding_dev->procs.composite = psubclass_data->saved_compositor_method;
1466
1467
    /* If ths device's stype is dynamically allocated, keep a copy of it
1468
     * in case we might need it.
1469
     */
1470
0
    if (dynamic) {
1471
0
        a_std = (gs_memory_struct_type_t *)dev->stype;
1472
0
        if (child)
1473
0
            *a_std = *child->stype;
1474
0
    }
1475
1476
    /* If ths device has any private storage, free it now */
1477
0
    if (psubclass_data)
1478
0
        gs_free_object(dev->memory->non_gc_memory, psubclass_data, "gx_device_unsubclass");
1479
1480
    /* Copy the child device into ths device's memory */
1481
0
    if (child) {
1482
0
        b_std = (gs_memory_struct_type_t *)dev->stype;
1483
0
        rc_decrement(dev->icc_struct, "unsubclass device");
1484
0
        rc_increment(child->icc_struct);
1485
0
        memcpy(dev, child, child->stype->ssize);
1486
        /* Patch back the 'stype' in the memory manager */
1487
0
        gs_set_object_type(child->memory, dev, b_std);
1488
1489
0
        dev->stype = b_std;
1490
        /* The reference count of the subclassing device may have been
1491
         * changed (eg graphics states pointing to it) after we subclassed
1492
         * the device. We need to ensure that we do not overwrite this
1493
         * when we copy back the subclassed device.
1494
         */
1495
0
        dev->rc.ref_count = ref_count;
1496
0
        dev->rc.memory = rcmem;
1497
1498
        /* If we have a chain of devices, make sure the chain beyond the
1499
         * device we're unsubclassing doesn't get broken, we need to
1500
         * detach the lower chain and reattach it at the new highest level.
1501
         */
1502
0
        if (child->child)
1503
0
            child->child->parent = dev;
1504
0
        child->parent->child = child->child;
1505
0
    }
1506
1507
    /* How can we have a subclass device with no child ? Simples; when we
1508
     * hit the end of job restore, the devices are not freed in device
1509
     * chain order. To make sure we don't end up following stale pointers,
1510
     * when a device is freed we remove it from the chain and update
1511
     * any dangling pointers to NULL. When we later free the remaining
1512
     * devices it's possible that their child pointer can then be NULL.
1513
     */
1514
0
    if (child) {
1515
        /* We cannot afford to free the child device if its stype is not
1516
         * dynamic because we can't 'null' the finalise routine, and we
1517
         * cannot permit the device to be finalised because we have copied
1518
         * it up one level, not discarded it. (This shouldn't happen! Child
1519
         * devices are always created with a dynamic stype.) If this ever
1520
         * happens garbage collecton will eventually clean up the memory.
1521
         */
1522
0
        if (child->stype_is_dynamic) {
1523
            /* Make sure that nothing will try to follow the device chain,
1524
             * just security here. */
1525
0
            child->parent = NULL;
1526
0
            child->child = NULL;
1527
1528
            /* We *don't* want to run the finalize routine. This would free
1529
             * the stype and properly handle the icc_struct and PageList,
1530
             * but for devices with a custom finalize (eg psdcmyk) it might
1531
             * also free memory it had allocated, and we're still pointing
1532
             * at that memory in the parent. The indirection through a
1533
             * variable is just to get rid of const warnings.
1534
             */
1535
0
            b_std = (gs_memory_struct_type_t *)child->stype;
1536
0
            gs_free_const_object(dev->memory->non_gc_memory, b_std, "gs_device_unsubclass(stype)");
1537
            /* Make this into a generic device */
1538
0
            child->stype = &st_device;
1539
0
            child->stype_is_dynamic = false;
1540
1541
            /* We can't simply discard the child device, because there may be references to it elsewhere,
1542
               but equally, we really don't want it doing anything, so set the procs so actions are just discarded.
1543
             */
1544
0
            gx_copy_device_procs(child, (gx_device *)&gs_null_device, (gx_device *)&gs_null_device);
1545
1546
            /* Having changed the stype, we need to make sure the memory
1547
             * manager uses it. It keeps a copy in its own data structure,
1548
             * and would use that copy, which would mean it would call the
1549
             * finalize routine that we just patched out.
1550
             */
1551
0
            gs_set_object_type(dev->memory->stable_memory, child, child->stype);
1552
0
            child->finalize = NULL;
1553
            /* Now (finally) free the child memory */
1554
0
            rc_decrement(child, "gx_device_unsubclass(device)");
1555
0
        }
1556
0
    }
1557
0
    dev->parent = parent;
1558
1559
    /* If this device has a dynamic stype, we wnt to keep using it, but we copied
1560
     * the stype pointer from the child when we copied the rest of the device. So
1561
     * we update the stype pointer with the saved pointer to this device's stype.
1562
     */
1563
0
    if (dynamic) {
1564
0
        dev->stype = a_std;
1565
0
        dev->stype_is_dynamic = 1;
1566
0
    } else {
1567
0
        dev->stype_is_dynamic = 0;
1568
0
    }
1569
0
}
1570
1571
int gx_update_from_subclass(gx_device *dev)
1572
189k
{
1573
189k
    if (!dev->child)
1574
0
        return 0;
1575
1576
189k
    memcpy(&dev->color_info, &dev->child->color_info, sizeof(gx_device_color_info));
1577
189k
    memcpy(&dev->cached_colors, &dev->child->cached_colors, sizeof(gx_device_cached_colors_t));
1578
189k
    dev->max_fill_band = dev->child->max_fill_band;
1579
189k
    dev->width = dev->child->width;
1580
189k
    dev->height = dev->child->height;
1581
189k
    dev->pad = dev->child->pad;
1582
189k
    dev->log2_align_mod = dev->child->log2_align_mod;
1583
189k
    dev->max_fill_band = dev->child->max_fill_band;
1584
189k
    dev->num_planar_planes = dev->child->num_planar_planes;
1585
189k
    dev->LeadingEdge = dev->child->LeadingEdge;
1586
189k
    memcpy(&dev->ImagingBBox, &dev->child->ImagingBBox, sizeof(dev->child->ImagingBBox));
1587
189k
    dev->ImagingBBox_set = dev->child->ImagingBBox_set;
1588
189k
    memcpy(&dev->MediaSize, &dev->child->MediaSize, sizeof(dev->child->MediaSize));
1589
189k
    memcpy(&dev->HWResolution, &dev->child->HWResolution, sizeof(dev->child->HWResolution));
1590
189k
    memcpy(&dev->Margins, &dev->child->Margins, sizeof(dev->child->Margins));
1591
189k
    memcpy(&dev->HWMargins, &dev->child->HWMargins, sizeof(dev->child->HWMargins));
1592
189k
    dev->FirstPage = dev->child->FirstPage;
1593
189k
    dev->LastPage = dev->child->LastPage;
1594
189k
    dev->PageCount = dev->child->PageCount;
1595
189k
    dev->ShowpageCount = dev->child->ShowpageCount;
1596
189k
    dev->NumCopies = dev->child->NumCopies;
1597
189k
    dev->NumCopies_set = dev->child->NumCopies_set;
1598
189k
    dev->IgnoreNumCopies = dev->child->IgnoreNumCopies;
1599
189k
    dev->UseCIEColor = dev->child->UseCIEColor;
1600
189k
    dev->LockSafetyParams= dev->child->LockSafetyParams;
1601
189k
    dev->band_offset_x = dev->child->band_offset_y;
1602
189k
    dev->sgr = dev->child->sgr;
1603
189k
    dev->MaxPatternBitmap = dev->child->MaxPatternBitmap;
1604
189k
    dev->page_uses_transparency = dev->child->page_uses_transparency;
1605
189k
    memcpy(&dev->space_params, &dev->child->space_params, sizeof(gdev_space_params));
1606
189k
    dev->graphics_type_tag = dev->child->graphics_type_tag;
1607
1608
189k
    return 0;
1609
189k
}
1610
1611
int gx_subclass_composite(gx_device *dev, gx_device **pcdev, const gs_composite_t *pcte,
1612
    gs_gstate *pgs, gs_memory_t *memory, gx_device *cdev)
1613
0
{
1614
0
    pdf14_clist_device *p14dev;
1615
0
    generic_subclass_data *psubclass_data;
1616
0
    int code = 0;
1617
1618
0
    p14dev = (pdf14_clist_device *)dev;
1619
0
    psubclass_data = (generic_subclass_data *)p14dev->target->subclass_data;
1620
1621
0
    set_dev_proc(dev, composite, psubclass_data->saved_compositor_method);
1622
1623
0
    if (gs_is_pdf14trans_compositor(pcte) != 0 && strncmp(dev->dname, "pdf14clist", 10) == 0) {
1624
0
        const gs_pdf14trans_t * pdf14pct = (const gs_pdf14trans_t *) pcte;
1625
1626
0
        switch (pdf14pct->params.pdf14_op) {
1627
0
            case PDF14_POP_DEVICE:
1628
0
                {
1629
0
                    pdf14_clist_device *p14dev = (pdf14_clist_device *)dev;
1630
0
                    gx_device *subclass_device;
1631
1632
0
                    p14dev->target->color_info = p14dev->saved_target_color_info;
1633
0
                    if (p14dev->target->child) {
1634
0
                        p14dev->target->child->color_info = p14dev->saved_target_color_info;
1635
1636
0
                        set_dev_proc(p14dev->target->child, encode_color, p14dev->saved_target_encode_color);
1637
0
                        set_dev_proc(p14dev->target->child, decode_color, p14dev->saved_target_decode_color);
1638
0
                        set_dev_proc(p14dev->target->child, get_color_mapping_procs, p14dev->saved_target_get_color_mapping_procs);
1639
0
                        set_dev_proc(p14dev->target->child, get_color_comp_index, p14dev->saved_target_get_color_comp_index);
1640
0
                    }
1641
1642
0
                    pgs->get_cmap_procs = p14dev->save_get_cmap_procs;
1643
0
                    gx_set_cmap_procs(pgs, p14dev->target);
1644
1645
0
                    subclass_device = p14dev->target;
1646
0
                    p14dev->target = p14dev->target->child;
1647
1648
0
                    code = dev_proc(dev, composite)(dev, pcdev, pcte, pgs, memory, cdev);
1649
1650
0
                    p14dev->target = subclass_device;
1651
1652
                    /* We return 0, rather than 1, as we have not created
1653
                     * a new compositor that wraps dev. */
1654
0
                    if (code == 1)
1655
0
                        code = 0;
1656
0
                    return code;
1657
0
                }
1658
0
                break;
1659
0
            default:
1660
0
                code = dev_proc(dev, composite)(dev, pcdev, pcte, pgs, memory, cdev);
1661
0
                break;
1662
0
        }
1663
0
    } else {
1664
0
        code = dev_proc(dev, composite)(dev, pcdev, pcte, pgs, memory, cdev);
1665
0
    }
1666
0
    set_dev_proc(dev, composite, gx_subclass_composite);
1667
0
    return code;
1668
0
}
1669
1670
typedef enum
1671
{
1672
    transform_pixel_region_portrait,
1673
    transform_pixel_region_landscape,
1674
    transform_pixel_region_skew
1675
} transform_pixel_region_posture;
1676
1677
typedef struct gx_default_transform_pixel_region_state_s gx_default_transform_pixel_region_state_t;
1678
1679
typedef int (gx_default_transform_pixel_region_render_fn)(gx_device *dev, gx_default_transform_pixel_region_state_t *state, const unsigned char **buffer, int data_x, gx_cmapper_t *cmapper, const gs_gstate *pgs);
1680
1681
struct gx_default_transform_pixel_region_state_s
1682
{
1683
    gs_memory_t *mem;
1684
    gx_dda_fixed_point pixels;
1685
    gx_dda_fixed_point rows;
1686
    gs_int_rect clip;
1687
    int w;
1688
    int h;
1689
    int spp;
1690
    transform_pixel_region_posture posture;
1691
    gs_logical_operation_t lop;
1692
    byte *line;
1693
    gx_default_transform_pixel_region_render_fn *render;
1694
};
1695
1696
static void
1697
get_portrait_y_extent(gx_default_transform_pixel_region_state_t *state, int *iy, int *ih)
1698
1.52M
{
1699
1.52M
    fixed y0, y1;
1700
1.52M
    gx_dda_fixed row = state->rows.y;
1701
1702
1.52M
    y0 = dda_current(row);
1703
1.52M
    dda_next(row);
1704
1.52M
    y1 = dda_current(row);
1705
1706
1.52M
    if (y1 < y0) {
1707
11.4k
        fixed t = y1; y1 = y0; y0 = t;
1708
11.4k
    }
1709
1710
1.52M
    *iy = fixed2int_pixround_perfect(y0);
1711
1.52M
    *ih = fixed2int_pixround_perfect(y1) - *iy;
1712
1.52M
}
1713
1714
static void
1715
get_landscape_x_extent(gx_default_transform_pixel_region_state_t *state, int *ix, int *iw)
1716
318
{
1717
318
    fixed x0, x1;
1718
318
    gx_dda_fixed row = state->rows.x;
1719
1720
318
    x0 = dda_current(row);
1721
318
    dda_next(row);
1722
318
    x1 = dda_current(row);
1723
1724
318
    if (x1 < x0) {
1725
0
        fixed t = x1; x1 = x0; x0 = t;
1726
0
    }
1727
1728
318
    *ix = fixed2int_pixround_perfect(x0);
1729
318
    *iw = fixed2int_pixround_perfect(x1) - *ix;
1730
318
}
1731
1732
static void
1733
get_skew_extents(gx_default_transform_pixel_region_state_t *state, fixed *w, fixed *h)
1734
5.41k
{
1735
5.41k
    fixed x0, x1, y0, y1;
1736
5.41k
    gx_dda_fixed_point row = state->rows;
1737
1738
5.41k
    x0 = dda_current(row.x);
1739
5.41k
    y0 = dda_current(row.y);
1740
5.41k
    dda_next(row.x);
1741
5.41k
    dda_next(row.y);
1742
5.41k
    x1 = dda_current(row.x);
1743
5.41k
    y1 = dda_current(row.y);
1744
1745
5.41k
    *w = x1-x0;
1746
5.41k
    *h = y1-y0;
1747
5.41k
}
1748
1749
static int
1750
transform_pixel_region_render_portrait(gx_device *dev, gx_default_transform_pixel_region_state_t *state, const unsigned char **buffer, int data_x, gx_cmapper_t *cmapper, const gs_gstate *pgs)
1751
744k
{
1752
744k
    gs_logical_operation_t lop = state->lop;
1753
744k
    gx_dda_fixed_point pnext;
1754
744k
    int vci, vdi;
1755
744k
    int irun;     /* int x/rrun */
1756
744k
    int w = state->w;
1757
744k
    int h = state->h;
1758
744k
    int spp = state->spp;
1759
744k
    const byte *data = buffer[0] + data_x * spp;
1760
744k
    const byte *bufend = NULL;
1761
744k
    int code = 0;
1762
744k
    const byte *run = NULL;
1763
744k
    int k;
1764
744k
    gx_color_value *conc = &cmapper->conc[0];
1765
744k
    int to_rects;
1766
744k
    gx_cmapper_fn *mapper = cmapper->set_color;
1767
744k
    int minx, maxx;
1768
1769
744k
    if (h == 0)
1770
0
        return 0;
1771
1772
    /* Clip on Y */
1773
744k
    get_portrait_y_extent(state, &vci, &vdi);
1774
744k
    if (vci < state->clip.p.y)
1775
13.7k
        vdi += vci - state->clip.p.y, vci = state->clip.p.y;
1776
744k
    if (vci+vdi > state->clip.q.y)
1777
6.43k
        vdi = state->clip.q.y - vci;
1778
744k
    if (vdi <= 0)
1779
393k
        return 0;
1780
1781
350k
    pnext = state->pixels;
1782
350k
    dda_translate(pnext.x,  (-fixed_epsilon));
1783
350k
    irun = fixed2int_var_rounded(dda_current(pnext.x));
1784
350k
    if_debug5m('b', dev->memory, "[b]y=%d data_x=%d w=%d xt=%f yt=%f\n",
1785
350k
               vci, data_x, w, fixed2float(dda_current(pnext.x)), fixed2float(dda_current(pnext.y)));
1786
350k
    to_rects = (dev->color_info.depth != spp*8);
1787
350k
    if (to_rects == 0) {
1788
341k
        if (dev_proc(dev, dev_spec_op)(dev, gxdso_copy_color_is_fast, NULL, 0) <= 0)
1789
301k
            to_rects = 1;
1790
341k
    }
1791
1792
350k
    minx = state->clip.p.x;
1793
350k
    maxx = state->clip.q.x;
1794
350k
    bufend = data + w * spp;
1795
350k
    if (to_rects) {
1796
11.7M
        while (data < bufend) {
1797
            /* Find the length of the next run. It will either end when we hit
1798
             * the end of the source data, or when the pixel data differs. */
1799
11.4M
            run = data + spp;
1800
141M
            while (1) {
1801
141M
                dda_next(pnext.x);
1802
141M
                if (run >= bufend)
1803
309k
                    break;
1804
140M
                if (memcmp(run, data, spp))
1805
11.1M
                    break;
1806
129M
                run += spp;
1807
129M
            }
1808
            /* So we have a run of pixels from data to run that are all the same. */
1809
            /* This needs to be sped up */
1810
22.9M
            for (k = 0; k < spp; k++) {
1811
11.4M
                conc[k] = gx_color_value_from_byte(data[k]);
1812
11.4M
            }
1813
11.4M
            mapper(cmapper);
1814
            /* Fill the region between irun and fixed2int_var_rounded(pnext.x) */
1815
11.4M
            {
1816
11.4M
                int xi = irun;
1817
11.4M
                int wi = (irun = fixed2int_var_rounded(dda_current(pnext.x))) - xi;
1818
1819
11.4M
                if (wi < 0)
1820
2.65k
                    xi += wi, wi = -wi;
1821
11.4M
                if (xi < minx)
1822
26.6k
                    wi += xi - minx, xi = minx;
1823
11.4M
                if (xi + wi > maxx)
1824
10.9k
                    wi = maxx - xi;
1825
11.4M
                if (wi > 0)
1826
9.21M
                    code = gx_fill_rectangle_device_rop(xi, vci, wi, vdi,
1827
11.4M
                                                        &cmapper->devc, dev, lop);
1828
11.4M
            }
1829
11.4M
            if (code < 0)
1830
0
                goto err;
1831
11.4M
            data = run;
1832
11.4M
        }
1833
309k
    } else {
1834
40.4k
        int pending_left = irun;
1835
40.4k
        int pending_right;
1836
40.4k
        byte *out;
1837
40.4k
        int depth = spp;
1838
40.4k
        if (state->line == NULL) {
1839
309
            state->line = gs_alloc_bytes(state->mem,
1840
309
                                         (size_t)dev->width * depth,
1841
309
                                         "image line");
1842
309
            if (state->line == NULL)
1843
0
                return gs_error_VMerror;
1844
309
        }
1845
40.4k
        out = state->line;
1846
1847
40.4k
        if (minx < 0)
1848
0
            minx = 0;
1849
40.4k
        if (maxx > dev->width)
1850
0
            maxx = dev->width;
1851
1852
40.4k
        if (pending_left < minx)
1853
214
            pending_left = minx;
1854
40.2k
        else if (pending_left > maxx)
1855
0
            pending_left = maxx;
1856
40.4k
        pending_right = pending_left;
1857
1858
3.05M
        while (data < bufend) {
1859
            /* Find the length of the next run. It will either end when we hit
1860
             * the end of the source data, or when the pixel data differs. */
1861
3.01M
            run = data + spp;
1862
20.4M
            while (1) {
1863
20.4M
                dda_next(pnext.x);
1864
20.4M
                if (run >= bufend)
1865
40.4k
                    break;
1866
20.4M
                if (memcmp(run, data, spp))
1867
2.97M
                    break;
1868
17.4M
                run += spp;
1869
17.4M
            }
1870
            /* So we have a run of pixels from data to run that are all the same. */
1871
            /* This needs to be sped up */
1872
6.03M
            for (k = 0; k < spp; k++) {
1873
3.01M
                conc[k] = gx_color_value_from_byte(data[k]);
1874
3.01M
            }
1875
3.01M
            mapper(cmapper);
1876
            /* Fill the region between irun and fixed2int_var_rounded(pnext.x) */
1877
3.01M
            {
1878
3.01M
                int xi = irun;
1879
3.01M
                int wi = (irun = fixed2int_var_rounded(dda_current(pnext.x))) - xi;
1880
1881
3.01M
                if (wi < 0)
1882
166
                    xi += wi, wi = -wi;
1883
1884
3.01M
                if (xi < minx)
1885
380
                    wi += xi - minx, xi = minx;
1886
3.01M
                if (xi + wi > maxx)
1887
72.2k
                    wi = maxx - xi;
1888
1889
3.01M
                if (wi > 0) {
1890
2.71M
                    if (color_is_pure(&cmapper->devc)) {
1891
2.71M
                        gx_color_index color = cmapper->devc.colors.pure;
1892
2.71M
                        int xii = xi * spp;
1893
1894
2.71M
                        if (pending_left > xi)
1895
166
                            pending_left = xi;
1896
2.71M
                        else
1897
2.71M
                            pending_right = xi + wi;
1898
16.8M
                        do {
1899
                            /* Excuse the double shifts below, that's to stop the
1900
                             * C compiler complaining if the color index type is
1901
                             * 32 bits. */
1902
16.8M
                            switch(depth)
1903
16.8M
                            {
1904
0
                            case 8: out[xii++] = ((color>>28)>>28) & 0xff;
1905
0
                            case 7: out[xii++] = ((color>>24)>>24) & 0xff;
1906
0
                            case 6: out[xii++] = ((color>>24)>>16) & 0xff;
1907
0
                            case 5: out[xii++] = ((color>>24)>>8) & 0xff;
1908
0
                            case 4: out[xii++] = (color>>24) & 0xff;
1909
0
                            case 3: out[xii++] = (color>>16) & 0xff;
1910
0
                            case 2: out[xii++] = (color>>8) & 0xff;
1911
16.8M
                            case 1: out[xii++] = color & 0xff;
1912
16.8M
                            }
1913
16.8M
                        } while (--wi != 0);
1914
2.71M
                    } else {
1915
0
                        if (pending_left != pending_right) {
1916
0
                            code = dev_proc(dev, copy_color)(dev, out, pending_left, 0, 0, pending_left, vci, pending_right - pending_left, vdi);
1917
0
                            if (code < 0)
1918
0
                                goto err;
1919
0
                        }
1920
0
                        pending_left = pending_right = xi + (pending_left > xi ? 0 : wi);
1921
0
                        code = gx_fill_rectangle_device_rop(xi, vci, wi, vdi,
1922
0
                                                            &cmapper->devc, dev, lop);
1923
0
                    }
1924
2.71M
                }
1925
3.01M
                if (code < 0)
1926
0
                    goto err;
1927
3.01M
            }
1928
3.01M
            data = run;
1929
3.01M
        }
1930
40.4k
        if (pending_left != pending_right) {
1931
40.4k
            code = dev_proc(dev, copy_color)(dev, out, pending_left, 0, 0, pending_left, vci, pending_right - pending_left, vdi);
1932
40.4k
            if (code < 0)
1933
0
                goto err;
1934
40.4k
        }
1935
40.4k
    }
1936
350k
    return 1;
1937
    /* Save position if error, in case we resume. */
1938
0
err:
1939
0
    buffer[0] = run;
1940
0
    return code;
1941
350k
}
1942
1943
static int
1944
transform_pixel_region_render_landscape(gx_device *dev, gx_default_transform_pixel_region_state_t *state, const unsigned char **buffer, int data_x, gx_cmapper_t *cmapper, const gs_gstate *pgs)
1945
159
{
1946
159
    gs_logical_operation_t lop = state->lop;
1947
159
    gx_dda_fixed_point pnext;
1948
159
    int vci, vdi;
1949
159
    int irun;     /* int x/rrun */
1950
159
    int w = state->w;
1951
159
    int h = state->h;
1952
159
    int spp = state->spp;
1953
159
    const byte *data = buffer[0] + data_x * spp;
1954
159
    const byte *bufend = NULL;
1955
159
    int code = 0;
1956
159
    const byte *run;
1957
159
    int k;
1958
159
    gx_color_value *conc = &cmapper->conc[0];
1959
159
    int to_rects;
1960
159
    gx_cmapper_fn *mapper = cmapper->set_color;
1961
159
    int miny, maxy;
1962
1963
159
    if (h == 0)
1964
0
        return 0;
1965
1966
    /* Clip on X */
1967
159
    get_landscape_x_extent(state, &vci, &vdi);
1968
159
    if (vci < state->clip.p.x)
1969
0
        vdi += vci - state->clip.p.x, vci = state->clip.p.x;
1970
159
    if (vci+vdi > state->clip.q.x)
1971
0
        vdi = state->clip.q.x - vci;
1972
159
    if (vdi <= 0)
1973
159
        return 0;
1974
1975
0
    pnext = state->pixels;
1976
0
    dda_translate(pnext.x,  (-fixed_epsilon));
1977
0
    irun = fixed2int_var_rounded(dda_current(pnext.y));
1978
0
    if_debug5m('b', dev->memory, "[b]y=%d data_x=%d w=%d xt=%f yt=%f\n",
1979
0
               vci, data_x, w, fixed2float(dda_current(pnext.x)), fixed2float(dda_current(pnext.y)));
1980
0
    to_rects = (dev->color_info.depth != spp*8);
1981
0
    if (to_rects == 0) {
1982
0
        if (dev_proc(dev, dev_spec_op)(dev, gxdso_copy_color_is_fast, NULL, 0) <= 0)
1983
0
            to_rects = 1;
1984
0
    }
1985
1986
0
    miny = state->clip.p.y;
1987
0
    maxy = state->clip.q.y;
1988
0
    bufend = data + w * spp;
1989
0
    while (data < bufend) {
1990
        /* Find the length of the next run. It will either end when we hit
1991
         * the end of the source data, or when the pixel data differs. */
1992
0
        run = data + spp;
1993
0
        while (1) {
1994
0
            dda_next(pnext.y);
1995
0
            if (run >= bufend)
1996
0
                break;
1997
0
            if (memcmp(run, data, spp))
1998
0
                break;
1999
0
            run += spp;
2000
0
        }
2001
        /* So we have a run of pixels from data to run that are all the same. */
2002
        /* This needs to be sped up */
2003
0
        for (k = 0; k < spp; k++) {
2004
0
            conc[k] = gx_color_value_from_byte(data[k]);
2005
0
        }
2006
0
        mapper(cmapper);
2007
        /* Fill the region between irun and fixed2int_var_rounded(pnext.y) */
2008
0
        {              /* 90 degree rotated rectangle */
2009
0
            int yi = irun;
2010
0
            int hi = (irun = fixed2int_var_rounded(dda_current(pnext.y))) - yi;
2011
2012
0
            if (hi < 0)
2013
0
                yi += hi, hi = -hi;
2014
0
            if (yi < miny)
2015
0
                hi += yi - miny, yi = miny;
2016
0
            if (yi + hi > maxy)
2017
0
                hi = maxy - yi;
2018
0
            if (hi > 0)
2019
0
                code = gx_fill_rectangle_device_rop(vci, yi, vdi, hi,
2020
0
                                                    &cmapper->devc, dev, lop);
2021
0
        }
2022
0
        if (code < 0)
2023
0
            goto err;
2024
0
        data = run;
2025
0
    }
2026
0
    return 1;
2027
    /* Save position if error, in case we resume. */
2028
0
err:
2029
0
    buffer[0] = run;
2030
0
    return code;
2031
0
}
2032
2033
static int
2034
transform_pixel_region_render_skew(gx_device *dev, gx_default_transform_pixel_region_state_t *state, const unsigned char **buffer, int data_x, gx_cmapper_t *cmapper, const gs_gstate *pgs)
2035
5.41k
{
2036
5.41k
    gs_logical_operation_t lop = state->lop;
2037
5.41k
    gx_dda_fixed_point pnext;
2038
5.41k
    fixed xprev, yprev;
2039
5.41k
    fixed pdyx, pdyy;   /* edge of parallelogram */
2040
5.41k
    int w = state->w;
2041
5.41k
    int h = state->h;
2042
5.41k
    int spp = state->spp;
2043
5.41k
    const byte *data = buffer[0] + data_x * spp;
2044
5.41k
    fixed xpos;     /* x ditto */
2045
5.41k
    fixed ypos;     /* y ditto */
2046
5.41k
    const byte *bufend = data + w * spp;
2047
5.41k
    int code = 0;
2048
5.41k
    int k;
2049
5.41k
    byte initial_run[GX_DEVICE_COLOR_MAX_COMPONENTS] = { 0 };
2050
5.41k
    const byte *prev = &initial_run[0];
2051
5.41k
    gx_cmapper_fn *mapper = cmapper->set_color;
2052
5.41k
    gx_color_value *conc = &cmapper->conc[0];
2053
2054
5.41k
    if (h == 0)
2055
0
        return 0;
2056
5.41k
    pnext = state->pixels;
2057
5.41k
    get_skew_extents(state, &pdyx, &pdyy);
2058
5.41k
    dda_translate(pnext.x,  (-fixed_epsilon));
2059
5.41k
    xprev = dda_current(pnext.x);
2060
5.41k
    yprev = dda_current(pnext.y);
2061
5.41k
    if_debug4m('b', dev->memory, "[b]y=? data_x=%d w=%d xt=%f yt=%f\n",
2062
5.41k
               data_x, w, fixed2float(xprev), fixed2float(yprev));
2063
5.41k
    initial_run[0] = ~data[0];  /* Force intial setting */
2064
1.11M
    while (data < bufend) {
2065
1.11M
        dda_next(pnext.x);
2066
1.11M
        dda_next(pnext.y);
2067
1.11M
        xpos = dda_current(pnext.x);
2068
1.11M
        ypos = dda_current(pnext.y);
2069
2070
1.11M
        if (memcmp(prev, data, spp) != 0)
2071
481k
        {
2072
            /* This needs to be sped up */
2073
962k
            for (k = 0; k < spp; k++) {
2074
481k
                conc[k] = gx_color_value_from_byte(data[k]);
2075
481k
            }
2076
481k
            mapper(cmapper);
2077
481k
        }
2078
        /* Fill the region between */
2079
        /* xprev/yprev and xpos/ypos */
2080
        /* Parallelogram */
2081
1.11M
        code = (*dev_proc(dev, fill_parallelogram))
2082
1.11M
                    (dev, xprev, yprev, xpos - xprev, ypos - yprev, pdyx, pdyy,
2083
1.11M
                     &cmapper->devc, lop);
2084
1.11M
        xprev = xpos;
2085
1.11M
        yprev = ypos;
2086
1.11M
        if (code < 0)
2087
0
            goto err;
2088
1.11M
        prev = data;
2089
1.11M
        data += spp;
2090
1.11M
    }
2091
5.41k
    return 1;
2092
    /* Save position if error, in case we resume. */
2093
0
err:
2094
    /* Only set buffer[0] if we've managed to set prev to something valid. */
2095
0
    if (prev != &initial_run[0]) buffer[0] = prev;
2096
0
    return code;
2097
5.41k
}
2098
2099
static int
2100
gx_default_transform_pixel_region_begin(gx_device *dev, int w, int h, int spp,
2101
                             const gx_dda_fixed_point *pixels, const gx_dda_fixed_point *rows,
2102
                             const gs_int_rect *clip, gs_logical_operation_t lop,
2103
                             gx_default_transform_pixel_region_state_t **statep)
2104
21.2k
{
2105
21.2k
    gx_default_transform_pixel_region_state_t *state;
2106
21.2k
    gs_memory_t *mem = dev->memory->non_gc_memory;
2107
2108
21.2k
    *statep = state = (gx_default_transform_pixel_region_state_t *)gs_alloc_bytes(mem, sizeof(gx_default_transform_pixel_region_state_t), "gx_default_transform_pixel_region_state_t");
2109
21.2k
    if (state == NULL)
2110
0
        return gs_error_VMerror;
2111
21.2k
    state->mem = mem;
2112
21.2k
    state->rows = *rows;
2113
21.2k
    state->pixels = *pixels;
2114
21.2k
    state->clip = *clip;
2115
21.2k
    state->w = w;
2116
21.2k
    state->h = h;
2117
21.2k
    state->spp = spp;
2118
21.2k
    state->lop = lop;
2119
21.2k
    state->line = NULL;
2120
2121
    /* FIXME: Consider sheers here too. Probably happens rarely enough not to be worth it. */
2122
21.2k
    if (rows->x.step.dQ == 0 && rows->x.step.dR == 0 && pixels->y.step.dQ == 0 && pixels->y.step.dR == 0)
2123
21.2k
        state->posture = transform_pixel_region_portrait;
2124
87
    else if (rows->y.step.dQ == 0 && rows->y.step.dR == 0 && pixels->x.step.dQ == 0 && pixels->x.step.dR == 0)
2125
1
        state->posture = transform_pixel_region_landscape;
2126
86
    else
2127
86
        state->posture = transform_pixel_region_skew;
2128
2129
21.2k
    if (state->posture == transform_pixel_region_portrait)
2130
21.2k
        state->render = transform_pixel_region_render_portrait;
2131
87
    else if (state->posture == transform_pixel_region_landscape)
2132
1
        state->render = transform_pixel_region_render_landscape;
2133
86
    else
2134
86
        state->render = transform_pixel_region_render_skew;
2135
2136
21.2k
    return 0;
2137
21.2k
}
2138
2139
static void
2140
step_to_next_line(gx_default_transform_pixel_region_state_t *state)
2141
783k
{
2142
783k
    fixed x = dda_current(state->rows.x);
2143
783k
    fixed y = dda_current(state->rows.y);
2144
2145
783k
    dda_next(state->rows.x);
2146
783k
    dda_next(state->rows.y);
2147
783k
    x = dda_current(state->rows.x) - x;
2148
783k
    y = dda_current(state->rows.y) - y;
2149
783k
    dda_translate(state->pixels.x, x);
2150
783k
    dda_translate(state->pixels.y, y);
2151
783k
}
2152
2153
static int
2154
gx_default_transform_pixel_region_data_needed(gx_device *dev, gx_default_transform_pixel_region_state_t *state)
2155
783k
{
2156
783k
    if (state->posture == transform_pixel_region_portrait) {
2157
777k
        int iy, ih;
2158
2159
777k
        get_portrait_y_extent(state, &iy, &ih);
2160
2161
777k
        if (iy + ih < state->clip.p.y || iy >= state->clip.q.y) {
2162
            /* Skip this line. */
2163
33.6k
            step_to_next_line(state);
2164
33.6k
            return 0;
2165
33.6k
        }
2166
777k
    } else if (state->posture == transform_pixel_region_landscape) {
2167
159
        int ix, iw;
2168
2169
159
        get_landscape_x_extent(state, &ix, &iw);
2170
2171
159
        if (ix + iw < state->clip.p.x || ix >= state->clip.q.x) {
2172
            /* Skip this line. */
2173
0
            step_to_next_line(state);
2174
0
            return 0;
2175
0
        }
2176
159
    }
2177
2178
749k
    return 1;
2179
783k
}
2180
2181
static int
2182
gx_default_transform_pixel_region_process_data(gx_device *dev, gx_default_transform_pixel_region_state_t *state, const unsigned char **buffer, int data_x, gx_cmapper_t *cmapper, const gs_gstate *pgs)
2183
749k
{
2184
749k
    int ret = state->render(dev, state, buffer, data_x, cmapper, pgs);
2185
2186
749k
    step_to_next_line(state);
2187
749k
    return ret;
2188
749k
}
2189
2190
static int
2191
gx_default_transform_pixel_region_end(gx_device *dev, gx_default_transform_pixel_region_state_t *state)
2192
21.2k
{
2193
21.2k
    if (state) {
2194
21.2k
        gs_free_object(state->mem, state->line, "image line");
2195
21.2k
        gs_free_object(state->mem, state, "gx_default_transform_pixel_region_state_t");
2196
21.2k
    }
2197
21.2k
    return 0;
2198
21.2k
}
2199
2200
int
2201
gx_default_transform_pixel_region(gx_device *dev,
2202
                       transform_pixel_region_reason reason,
2203
                       transform_pixel_region_data *data)
2204
1.57M
{
2205
1.57M
    gx_default_transform_pixel_region_state_t *state = (gx_default_transform_pixel_region_state_t *)data->state;
2206
2207
1.57M
    switch (reason)
2208
1.57M
    {
2209
21.2k
    case transform_pixel_region_begin:
2210
21.2k
        return gx_default_transform_pixel_region_begin(dev, data->u.init.w, data->u.init.h, data->u.init.spp, data->u.init.pixels, data->u.init.rows, data->u.init.clip, data->u.init.lop, (gx_default_transform_pixel_region_state_t **)&data->state);
2211
783k
    case transform_pixel_region_data_needed:
2212
783k
        return gx_default_transform_pixel_region_data_needed(dev, state);
2213
749k
    case transform_pixel_region_process_data:
2214
749k
        return gx_default_transform_pixel_region_process_data(dev, state, data->u.process_data.buffer, data->u.process_data.data_x, data->u.process_data.cmapper, data->u.process_data.pgs);
2215
21.2k
    case transform_pixel_region_end:
2216
21.2k
        data->state = NULL;
2217
21.2k
        return gx_default_transform_pixel_region_end(dev, state);
2218
0
    default:
2219
0
        return gs_error_unknownerror;
2220
1.57M
    }
2221
1.57M
}